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Whitney jets

Let E ⊆ Rn be closed. Let m ∈ N ∪ {∞}.

• Jm(E) := {F = (Fα)|α|≤m : Fα ∈ C0(E,R)} – m-jets on E

• jmE : Cm(U) 7→ Jm(E), f 7→ (∂αf |E)α – jet mapping

• Tma F (x) :=
∑
|α|≤m

(x−a)α
α! Fα(a) – Taylor polynomial of order m <∞

• Rma F := F − jmE Tma F – remainder term

A jet F ∈ Jm(E) is a Whitney jet of class Cm, m <∞, on E, in

symbols F ∈ Em(E), if for each |α| ≤ m,

(Rma F )α(b) = o(|a− b|m−|α|) as |a− b| → 0, a, b ∈ E.

Whitney jet of class C∞: E∞(E) :=
⋂
m∈N π

−1
m (Em(E)), where

πm : J∞(E)→ Jm(E) is the obvious truncation operator.
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Whitney’s classical extension theorem

Extension of Whitney jets [Whitney ’34]

We have

Em(E) = jmE C
m(Rn).

If m <∞ there is a continuous linear section Em(E)→ Cm(Rn).

Continuous linear extension operators for m =∞
• Continuous linear sections do not always exist, e.g. E = {0}.

• Continuous linear sections exist if:

◦ E is a closed halfspace [Mityagin ’61], [Seeley ’64];

◦ E is the closure of a Lipschitz domain [Stein ’70];

◦ E is closed subanalytic and intE = E [Bierstone ’78].

• E compact (for simplicity) admits an extension operator if and only if

E∞(E) satisfies (DN) [Tidten ’79].

• Paw lucki, Pleśniak, Bos, Milman, Frerick, Jordá, Wengenroth, . . .
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The ultradifferentiable setting

How are growth constraints on the jets preserved by the extension?

Problem (one possible formulation)

Let us henceforth assume that E is compact. Let M = (Mk) be a

positive sequence. A jet F = (Fα)α ∈ J∞(E) is a Whitney ultrajet of

class B{M}, in symbols F ∈ B{M}(E), if there exist C, ρ > 0 such that

|Fα(a)| ≤ Cρ|α|M|α|, α ∈ Nn, a ∈ E,

|(RpaF )α(b)| ≤ Cρp+1Mp+1
|b− a|p+1−|α|

(p+ 1− |α|)!
, p ∈ N, |α| ≤ p, a, b ∈ E.

• Characterize the sequences M such that j∞E B{M}(Rn) = B{M}(E).

• If a loss of regularity is unavoidable: Characterize the sequences N

such that j∞E B{N}(Rn) ⊇ B{M}(E).

B{M}(Rn) =
{
f ∈ C∞(Rn) : ∃ρ > 0 : supα∈Nn

‖f(α)‖L∞(Rn)

ρ|α|M|α|
<∞

}
.

(We will mostly be concerned with Roumieu type classes.) 5



Short history of the problem

In the special case E = {0} the problems were essentially solved by

[Petzsche ’88] and [Schmets, Valdivia ’04].

For general E:

• [Bruna ’80] proved: Under the assumptions

1. Mk/k! is logarithmically convex (log-convex),

2. M has moderate growth, i.e., ∃C: Mj+k ≤ Cj+kMjMk for all j, k,

we have j∞E B{M}(Rn) = B{M}(E) if and only if M satisfies the strong

non-quasianalyticity condition∑
`≥k

M`−1

M`
.
kMk−1

Mk
.
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Short history of the problem (continued)

• [Chaumat, Chollet ’94] (and [Langenbruch ’94] for convex E with

non-empty interior): Under the assumptions

1. Mk/k! is log-convex,

2. M has moderate growth,

3. Nk/k! is log-convex,

4. N is non-quasianalytic, i.e.,
∑
kNk−1/Nk <∞,

we have j∞E B{N}(Rn) ⊇ B{M}(E) if and only if∑
`≥k

N`−1
N`

.
kMk−1

Mk
.

• At about the same time the analogous problems were studied for

Braun–Meise–Taylor classes by several people (Bonet, Braun,

Langenbruch, Meise, Taylor, ...)
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Weight functions

• Ultradifferentiable classes introduced by [Beurling ’61] and [Björck ’66]

(by decay conditions on the Fourier transform) and equivalently described

by [Braun, Meise, and Taylor ’90]. The growth condition is described by a

weight function.

Weight functions

A continuous increasing function ω : [0,∞)→ [0,∞) with ω|[0,1] = 0 is

called weight function if it satisfies

• ω(2t) = O(ω(t)) as t→∞,

• ω(t) = O(t) as t→∞,

• log t = o(ω(t)) as t→∞,

• ϕ(t) := ω(et) is convex.

It is called non-quasianalytic if

ˆ ∞
1

ω(t)

t2
dt <∞.
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Ultradifferentiable classes

We consider the Young conjugate ϕ∗(x) := supy≥0(xy − ϕ(y)), x ≥ 0.

Braun–Meise–Taylor classes (BMT)

Let ω be a weight function and ρ > 0. Consider the Banach space

Bωρ (Rn) :=
{
f ∈ C∞(Rn) : ‖f‖ωρ := sup

x∈Rn, α∈Nn

|∂αf(x)|
exp( 1

ρϕ
∗(ρ|α|))

<∞
}

and the inductive limit B{ω}(Rn) := indρ∈N Bωρ (Rn).

Denjoy–Carleman classes (DC)

Let M be a weight sequence and ρ > 0. Consider the Banach space

BMρ (Rn) :=
{
f ∈ C∞(Rn) : ‖f‖Mρ := sup

x∈Rn, α∈Nn

|∂αf(x)|
ρ|α|M|α|

<∞
}
,

and the inductive limit B{M}(Rn) := indρ∈N BMρ (Rn).
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The extension problem for BMT classes

• [Bonet, Braun, Meise, Taylor ’91], [Abanin ’01]: Let ω be a

non-quasianalytic weight function. Then TFAE:

1. j∞E B{ω}(Rn) = B{ω}(E) for every compact E ⊆ Rn.

2. j∞E B{ω}(Rn) = B{ω}(E) for some compact E ⊆ Rn.

3. ω is strong, i.e., ∃C > 0 ∀t > 0 :
´∞
1

ω(tu)
u2 du ≤ Cω(t) + C.

Question: Let ω be a non-quasianalytic weight function. Let σ be

another weight function. Under which conditions do we have

j∞E B{ω}(Rn) ⊇ B{σ}(E) for all compact E ⊆ Rn?

• [Bonet, Meise, Taylor ’92]: For E = {0}:

j∞E B{ω}(Rn) ⊇ B{σ}(E)⇔ ∃C > 0 ∀t > 0 :

ˆ ∞
1

ω(tu)

u2
du ≤ Cσ(t) +C

• [Langenbruch ’94]: The equivalence holds for all convex compact E

with non-empty interior.
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Solution of the extension problem

Theorem [R., Schindl ’20]

Let ω be a non-quasianalytic concave weight function. Let σ be a

weight function satisfying σ(t) = o(t) as t→∞. Then TFAE:

1. j∞E B{ω}(Rn) ⊇ B{σ}(E) for every compact E ⊆ Rn.

2. ∃C > 0 ∀t > 0 :

ˆ ∞
1

ω(tu)

u2
du ≤ Cσ(t) + C.

The additional assumptions on ω and σ are natural:

• Any strong weight function is non-quasianalytic.

• Any strong weight function is equivalent to a concave weight function.

• Any strong weight function ω satisfies ω(t)→ o(t) as t→∞.

Thus the theorem is the “right” generalization of the case ω = σ, where

no loss of regularity occurs.
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Main ingredients

• Optimal cut-off functions of Bonet, Braun, Meise and Taylor

• Extension scheme of Dynkin adapted by Chaumat and Chollet

• Weight matrix framework for ultradifferentiability
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Uniform approach to ultradifferentiability

Associated weight matrix

Let ω be a weight function. We associate the weight matrix

W = {W x}x>0 by setting W x
k := exp( 1

xϕ
∗(xk)) for k ∈ N.

Equivalent description [R., Schindl ’14]

We have as locally convex spaces

B{ω}(Rn) = indx>0 B{W
x}(Rn) =: B{W}(Rn).

B(ω)(Rn) = projx>0 B(W
x)(Rn) =: B(W)(Rn).

TFAE (see also [Bonet, Meise, Melikhov ’07]):

• B[ω](Rn) = B[Wx](Rn) for all x > 0.

• ∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.

• W x has moderate growth for some x > 0.

• W x has moderate growth for all x > 0.
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Challenges

Assumptions in the theorem of Chaumat and Chollet

1. Mk/k! is log-convex, we say that M is strongly log-convex,

2. M has moderate growth,

3. Nk/k! is log-convex,

4. N is non-quasianalytic.

Properties of the associated weight matrix W = {W x}x>0

1. W x is log-convex (not strongly!) and (W x
k )1/k →∞.

2. ϑxk := W x
k /W

x
k−1 satisfies ϑx ≤ ϑy if x ≤ y, which entails

W x ≤W y.

3. For all x > 0 and all k ∈ N≥2, ϑx2k ≤ ϑ4xk (moderate growth in a

very weak sense).

The log-convexity and the moderate growth assumption in the theorem

of Chaumat and Chollet are too restrictive! 15



Associated functions

Let m = (mk) be a positive sequence with m0 = 1 and m
1/k
k →∞. (We

will apply this to mk := Mk/k!.)

• We associate the function

hm(t) :=

{
infk∈Nmkt

k if t > 0,

0 if t = 0.

It is increasing, continuous, positive for t > 0 and = 1 for large t.

• Let m = (mk) be log-convex. We associate the function

Γm(t) := min{k : hm(t) = mkt
k}, t > 0,

= min
{
k :

mk+1

mk
≥ 1

t

}
since m is log-convex.

It is decreasing, limt→0 Γm(t) =∞, and k 7→ mkt
k is decreasing for

k ≤ Γm(t).
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More associated weight matrices

Let σ be a weight function with σ(t) = o(t) as t→∞ which is

equivalent to a concave weight function.

• For the associated weight matrix S = {Sξ}ξ>0 we have B{σ} = B{S}.

• We also have B{σ} = B{S} where S = {Sξ}ξ>0 with Sξk := k! sξk and

(sξk) is the log-convex minorant of (sξk) = (Sξk/k!). So each Sξ is

strongly log-convex! Moreover, sξj+k ≤ Hj+ks2ξj s
2ξ
k , for all ξ > 0 and all

j, k ∈ N and thus hsξ(t) ≤ hs2ξ(Ht)2, for all ξ > 0 and all t > 0.

• For each ξ > 0 we define V ξk := k! vξk where vξk := min0≤j≤k s
2ξ
j s

2ξ
k−j .

Then, for each ξ > 0 and all k ≥ 1,
vξ2k−1

vξ2k−2

=
vξ2k
vξ2k−1

=
s2ξk
s2ξk−1

, and thus:

◦ V ξ is strongly log-convex,

◦ 2Γs2ξ(t) = Γvξ(t) for all t > 0, (not available with S only!)

◦ B{σ} = B{V} where V = {V ξ}ξ>0.
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Sufficiency of the condition

(Necessity follows from the well understood case E = {0}.)

(
∃C ∀t :

ˆ ∞
1

ω(tu)

u2
du ≤ Cσ(t) + C

)
⇒
(
j∞E B{ω}(Rn) ⊇ B{σ}(E)

)
Preparations:

• κ(t) :=
´∞
1

ω(tu)
u2 du is a concave weight function satisfying κ(t) = o(t)

and κ(t) = O(σ(t)) as t→∞, i.e., B{σ} ⊆ B{κ}.

• So we may assume without loss of generality that σ = κ ≥ ω is

concave and satisfies κ(t) = o(t) as t→∞. Thus the facts from the

previous slide are available and moreover

Sξ ≤ Sξ ≤W ξ, for all ξ > 0.
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Whitney cubes

Lemma

Let E ⊆ Rn be a non-empty compact set. There exists a collection of

closed cubes {Qi}i∈N with sides parallel to the axes satisfying:

1. Rn \ E =
⋃
i∈NQi.

2. The interiors of the Qi are pairwise disjoint.

3. diamQi ≤ d(Qi, E) ≤ 4 diamQi for all i ∈ N.

4. Let Q∗i be the closed cube which has the same center as Qi
expanded by the factor 9/8. For each i ∈ N the number of cubes Q∗j
which intersect Q∗i is bounded by 122n.

5. There exist b1, B1 > 0 (independent of E) such that for all i, j ∈ N
with Q∗i ∩Q∗j 6= ∅ we have b1 diamQi ≤ diamQj ≤ B1 diamQi.
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A special partition of unity

For σ = ω due to [Bonet, Braun, Meise, Taylor ’91] and based on

Hörmander’s L2-method and a Paley–Wiener theorem:

Proposition

Let E ⊆ Rn be compact and {Qi}i∈N be a family of Whitney cubes for

E. For all p ∈ N>0 there exist W ∈W, M > 0, 0 < r0 < 1/2, and a

family of smooth functions {ϕi,p}i∈N satisfying

1. 0 ≤ ϕi,p ≤ 1 for all i ∈ N,

2. suppϕi,p ⊆ Q∗i for all i ∈ N,

3.
∑
i∈N ϕi,p(x) = 1 for all x ∈ Rn \ E,

4. if d(Qi, E) ≤ r0/B1, then for all β ∈ Nn and x ∈ Rn \ E,

|ϕ(β)
i,p (x)| ≤MW|β| exp

(A1(n)

p
σ?
( b1p

A2(n)
diamQi

))
,

for constants A1(n) ≤ A2(n) only depending on n.
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The conjugate of a weight function

• Let σ be a weight function satisfying σ(t) = o(t) as t→∞.

σ?(t) := sup
s≥0

(
σ(t)− st

)
, t > 0.

σ? is decreasing, continuous, convex with σ?(t)→∞ as t→ 0.

• There is a connection between σ? and hsξ :

∀ξ > 0 ∃C ≥ 1 ∀t > 0 : exp(σ?(t)) ≤
( e

hsξ(t/C)

)C
The partition of unity is optimal: to substantiate this we look at Bruna’s

observation.
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Bruna’s observation

• Let r, λ > 0. Suppose ϕ ∈ B{M}(R) is = 1 for |x| ≤ r and = 0 for

|x| ≥ (1 + λ)r. By Taylor’s formula, for x ∈ (r, r + λr),

1
x→r←− |ϕ(x)| ≤ |ϕ

(k)(ξ)|
k!

(λr)k for some ξ ∈ (x, r + λr)

=⇒ sup
x
|ϕ(k)(x)| ≥ k!

(λr)k
∀k

=⇒ sup
x,k

|ϕ(k)(x)|
ρkMk

≥ sup
k

k!

(ρλr)kMk
=

1

infk(ρλr)kmk
=

1

hm(ρλr)

• Bruna showed: for strongly log-convex non-quasianalytic M with

moderate growth TFAE

1.
∑
`≥k

M`−1

M`
. kMk−1

Mk

2. ∀r, λ, ρ > 0 ∃ϕ as above s.t. |ϕ(k)| ≤ ρkMk

hm(Bρλr) where B is

independent of r, λ, ρ, i.e., there exist optimal bump functions.
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The extension of a Whitney ultrajet

• Every Whitney ultrajet F = (Fα) of class B{σ} on the compact set

E ⊆ Rn is an element of B{V ξ}(E) for some ξ > 0.

• Let p ∈ N (to be specified later) and {ϕi,p}i∈N the corresponding

partition of unity relative to {Qi}i∈N. Let xi := center(Qi).

• Then an extension of class B{ω} of F to a suitable neighborhood of E

in Rn is provided by

f(x) :=

{∑
i∈N ϕi,p(x)T

p(xi)
x̂i

F (x), if x ∈ Rn \ E,
F 0(x), if x ∈ E,

where x̂ is any point in E with d(x) := d(x,E) = |x− x̂| and

p(x) := max{2Γs2ξ(Ld(x))− 1, 0}.

Here L is a positive constant (to be specified later).
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Remarks

• The use of the Taylor polynomial T
p(xi)
x̂i

F (x) with variable degree goes

back to Dynkin and was used by Chaumat and Chollet.

• Its combination with the partition of unity {ϕi,p}i∈N which is

tailor-made for the BMT-case gives the optimal result.

• To check that f is the desired extension requires a series of intricate

estimates in which all the special properties of the associated functions

and weight matrices are used.

• The proof shows that for each ρ > 0, ξ > 0 there exist M(ρ) > 0,

W ∈W and a continuous linear extension operator

BV
ξ

ρ (E)→ BWM(ρ)(R
n).

This extension operator depends on ρ and ξ and in general there is no

continuous extension operator B{σ}(E)→ B{ω}(Rn).
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The Beurling case

• For DC-classes the same condition
∑
`≥k

N`−1

N`
. kMk−1

Mk
characterizes

the inclusion j∞E B(N)(Rn) ⊇ B(M)(E) [Chaumat, Chollet ’94].

• [Bonet, Braun, Meise, Taylor ’91], [Abanin ’01]: Let ω be a weight

function. Then TFAE:

1. j∞E B(ω)(Rn) = B(ω)(E) for every compact E ⊆ Rn.

2. j∞E B(ω)(Rn) = B(ω)(E) for some compact E ⊆ Rn.

3. ω is strong.

• [Bonet, Meise, Taylor ’92]: For E = {0}:

j∞E B(ω)(Rn) ⊇ B(σ)(E)⇔ ∃C > 0 ∀t > 0 :

ˆ ∞
1

ω(tu)

u2
du ≤ Cσ(t) + C

This problem seems to be open for general E.
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Extension operators

• Roumieu case: Usually extension operators do not exist. There is no

continuous linear section for j∞E : B{M}(Rn)→ B{M}(E) for compact

convex E and any Gevrey class [Langenbruch ’88].

• Beurling case: Usually extension operators exist. Let ω be strong.

◦ E = [0, 1] (or any bounded domain with real analytic boundary) has

an extension operator [Meise, Taylor ’89].

◦ E = {0} has an extension operator if and only if

∀C > 0 ∃δ > 0 ∃R0 ≥ 1 ∀R ≥ R0 : ω−1(CR)ω−1(δR) ≤ ω−1(R)2,

for instance Gevrey–Beurling classes [Meise, Taylor ’89].

◦ Any closed E has an extension operator if {0} has one [Franken ’93].

◦ If {0} has no extension operator then {(x, y) ∈ [0, 1]2 : y ≤ |f(x)|}
has no extension operator for any f ∈ E(ω)(R) with j∞{0}f = 0

[Franken ’94].
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Extension operators (continued)

• A positive result in the mixed case. Let M be strongly log-convex of

moderate growth and N strongly log-convex and non-quasianalytic such

that (Mk

Nk

)1/k
→ 0.

Then TFAE:

1. Mk

kMk−1

∑
`≥k

N`−1

N`
→ 0.

2. j∞{0}B
(N)(R) ⊇ B{M}({0}).

3. For all compact E ⊆ Rn there is an continuous linear extension

operator B{M}(E)→ B(N)(Rn).

[Chaumat, Chollet ’94].
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Concave weight functions

Theorem [R., Schindl ’20], [Fürdös, Nenning, R., Schindl ’20]

Let ω be a weight function satisfying ω(t) = o(t) as t→∞. TFAE:

1. ω is equivalent to a concave weight function.

2. ∃C > 0 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 : ω(λt) ≤ Cλω(t).

3. There is a weight matrix S consisting of strongly log-convex weight

sequences such that B[ω] = B[S].

4. B[ω] is stable under composition.

5. B[ω] is stable under inverse/implicit functions.

6. B[ω] is stable under solving ODEs.

7. B[ω] can be described by almost analytic extensions.

Here B[ω] stands for the Roumieu class B{ω} and the Beurling class B(ω).

29



Almost analytic extensions

An almost analytic extension of a real function f is an extension F to the

complex domain such that ∂F (z) has a certain growth rate as z

approaches the real domain. This growth rate encodes regularity

properties of f .

• Let f : R→ C. Then f is C∞ if and only if it has an extension F to C
such that ∂F (z) vanishes to infinite order on R. (Used in Nirenberg’s

proof of the Malgrange preparation theorem.)

• [Dynkin 70ies]: DC-Roumieu classes admit a description by almost

analytic extensions. (The weight sequence is strongly log-convex.)

f ∈ B{M}(U)⇔ ∃F ∈ C∞c (Cn) : F |U = f,

∃C,D > 0 : ∂F (z) ≤ Chm(Dd(z, U))

• [Petzsche, Vogt ’84]: Non-quasianalytic BMT-classes (of compact

support) admit a description by almost analytic extensions.
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Almost analytic extensions (continued)

We prove general ultradifferentiable almost analytic extension theorems

in [Fürdös, Nenning, R., Schindl ’20]; e.g.

Theorem

Let ω be a concave weight function satisfying ω(t) = o(t) as t→∞.

Let U ⊆ Rn be a bounded quasiconvex domain. Then:

1. f ∈ B{ω}(U) if and only if there exist F ∈ C1
c (Cn) and ρ > 0 such

that F |U = f and

sup
z∈Cn\U

|∂F (z)| exp(ρω?(d(z, U)/ρ)) <∞. (∗)

2. f ∈ B(ω)(U) if and only if for all ρ > 0 there exists F ∈ C1
c (Cn)

such that F |U = f and (∗).

If ω is a strong weight function, then the extension F in 2. may be

taken independent of ρ > 0.
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Idea of Dynkin’s extension scheme

Sufficiency: Bochner–Martinelli formula

Necessity: • Let E := U , where U is a bounded quasiconvex domain, and

f ∈ BMρ (E).

• Define G(z) := T
p(z)
ẑ f(z), z ∈ Cn \ E,

p(z) := Γm(C(n)ρd(z, E)).

• The desired extension is of the form

F (z) :=
(2c2)2n

δ(z)2n

ˆ
Ψ
(2c2(ζ − z)

δ(z)

)
G(ζ) dL2n(ζ), z ∈ Cn \ E;

Ψ is a suitable cut-off function and δ ∈ C∞(Ec) the regularized distance:

1. c1d(z, E) ≤ δ(z) ≤ c2d(z, E) for all z /∈ E,

2. for all α and z 6∈ E, ∣∣∂αδ(z)∣∣ ≤ Bαd(z, E)1−|α|,

where the constants Bα, c1, c2 are independent of E.
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Applications to microlocal analysis

[Fürdös, Nenning, R., Schindl ’20]

• We treat the ultradifferentiable wave front set for u ∈ D′ in the

uniform weight matrix setting; this generalizes the wave front sets of

Hörmander and of Albanese, Jornet, Oliaro.

• We obtain a characterization of the ultradifferentiable wave front set by

almost analytic extensions. As a consequence we show: The

ultradifferentiable wave front set is compatible with pullbacks by

mappings of the corresponding ultradifferentiable class and hence the

definition of the wave front set can be extended to ultradifferentiable

manifolds.

• We get a general ultradifferentiable version of Bony’s theorem, that is a

characterization of the ultradifferentiable wave front set not only by

almost analytic extensions but also in terms of the FBI transform.
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Applications to microlocal analysis (continued)

• We obtain generalizations of the elliptic regularity theorem.

Remark: In the Beurling case one must in general assume that the

coefficients of the linear operator are strictly more regular than the wave

front set in question. There are however circumstances when the

operator can be as regular as the wave front set. E.g.

Theorem

Let ω be a concave weight function and let

P (x,D) =
∑
|α|≤m aα(x)Dα be a linear partial differential operator

with E(ω)-coefficients. Then

WF(ω) u ⊆WF(ω) Pu ∪ CharP, u ∈ D′.

If P is elliptic, then WF(ω) u = WF(ω) Pu.
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Applications to microlocal analysis (continued)

• As a corollary we get a general version of the quasianalytic Holmgren

uniqueness theorem. In particular

Theorem

Let ω be a concave quasianalytic weight function. Let P be a linear

partial differential operator with coefficients in E{ω}(Ω). If X is a

C1-hypersurface in Ω that is non-characteristic at x0 and u ∈ D′(Ω) a

solution of Pu = 0 that vanishes on one side of X near x0, then u ≡ 0

in a full neighborhood of x0.
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Thank you for your attention!
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