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Introduction

We consider the fractional stochastic heat equation:

∂tU(t, x) = K(t, x)RDα
xU(t, x) + f(x, t, U(x, t))

+ σ(t, x, U(x, t))P (x, t), α ∈ (1, 2), t > 0, x ∈ R,

∂tU(0, x) = Q(x)

where RDα
x denotes the αth Riesz fractional derivative with respect

to x and P and Q are certain Colombeau generalized stochastic

processes.
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Introduction

The generalized stochastic processes appearing in the equation are

of Colombeau type. For instance, authors often choose P to be a

(generalized) white noise process. Here, basically, P and Q can

both be almost arbitrary Colombeau generalized stochastic

processes of certain growth.
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Introduction

The generalized stochastic processes appearing in the equation are

of Colombeau type. For instance, authors often choose P to be a

(generalized) white noise process. Here, basically, P and Q can

both be almost arbitrary Colombeau generalized stochastic

processes of certain growth.

We consider the case when the Riesz fractional derivative is

involved.

We establish and prove the result concerning the existence and

uniqueness of solution within certain Colombeau space.

The solutions are obtained by using the theory of generalized

uniformly continuous semigroups of operators.
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The heat equation given above can be written in operator form:

∂tU(x, t) = AαU(x, t) + f(x, t, U(x, t)) + σ(x, t, U(x, t))P (x, t),

U(x, 0) = U0, t > 0, x ∈ R,

where AαU(x, t) = K(x, t)RDα
xU(x, t), 1 < α < 2.
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The heat equation given above can be written in operator form:

∂tU(x, t) = AαU(x, t) + f(x, t, U(x, t)) + σ(x, t, U(x, t))P (x, t),

U(x, 0) = U0, t > 0, x ∈ R,

where AαU(x, t) = K(x, t)RDα
xU(x, t), 1 < α < 2.

Instead of the original problem we solve an approximate problem

∂tU(x, t) = ÃαU(x, t) + f(x, t, U(x, t)) + σ(x, t, U(x, t))P (x, t),

U(x, 0) = U0, t > 0, x ∈ R,

where Ãα is obtained from Aα by regularizing Riesz derivative.
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The heat equation given above can be written in operator form:

∂tU(x, t) = AαU(x, t) + f(x, t, U(x, t)) + σ(x, t, U(x, t))P (x, t),

U(x, 0) = U0, t > 0, x ∈ R,

where AαU(x, t) = K(x, t)RDα
xU(x, t), 1 < α < 2.

Instead of the original problem we solve an approximate problem

∂tU(x, t) = ÃαU(x, t) + f(x, t, U(x, t)) + σ(x, t, U(x, t))P (x, t),

U(x, 0) = U0, t > 0, x ∈ R,

where Ãα is obtained from Aα by regularizing Riesz derivative.

We prove that Aα and Ãα are L2-associated and that, if we

suppose that solution of the original problem exists, it is

L2-associated to the solution of the approximate problem.
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Fractional derivatives

Suppose that u ∈ C∞
0 (R) and m− 1 < α < m, where m ∈ N.

The left Liouville fractional derivative of order α on the whole axis R

is given by

(Dα
+u)(x) =

1

Γ(m− α)

(
d

dx

)m
x∫

−∞

u(ξ)

(x− ξ)α−m+1
dξ.

It is well known thta this definition can be extended to a continuous

linear map from Hα(R) into L2(R). This extension of the left

Liouville fractional derivative we denote by Dα
+.
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Fractional derivatives

Similarly, the right Liouville fractional derivative of order α

(m− 1 < α < m, m ∈ N), on the whole axis R is given by

(Dα
−u)(x) =

1

Γ(m− α)

(
− d

dx

)m
∞∫
x

u(ξ)

(ξ − x)α−m+1
dξ.

Similarly, one can extend the definition to a continuous linear

mapping Dα
− from Hα(R) to L2(R).
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Fractional derivatives

The αth Riesz fractional derivative, m− 1 < α < m, m ∈ N,

denoted by RDα, is defined by using the left and right αth Liouville

fractional derivative as

RDαu(x) = − 1

2 cos απ
2

(Dα
+u(x) +Dα

−u(x)).
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Fractional derivatives

The αth Riesz fractional derivative, m− 1 < α < m, m ∈ N,

denoted by RDα, is defined by using the left and right αth Liouville

fractional derivative as

RDαu(x) = − 1

2 cos απ
2

(Dα
+u(x) +Dα

−u(x)).

The Fourier transform of the αth Riesz fractional derivative is

̂RDαu(ξ) = − 1

2 cos απ
2

[(iξ)αû(ξ) + (−iξ)αû(ξ)]

= −|ξ|αû(ξ), u ∈ Hα(R).
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Fractional derivatives

The αth Riesz fractional derivative, m− 1 < α < m, m ∈ N,

denoted by RDα, is defined by using the left and right αth Liouville

fractional derivative as

RDαu(x) = − 1

2 cos απ
2

(Dα
+u(x) +Dα

−u(x)).

The Fourier transform of the αth Riesz fractional derivative iŝRDαu(ξ) = − 1

2 cos απ
2

[(iξ)αû(ξ) + (−iξ)αû(ξ)]

= −|ξ|αû(ξ), u ∈ Hα(R).

If u(x) ∈ S(R) then

−(−∆)
α
2 u(x) = RDαu(x), α ∈ (0, 1) ∪ (1, 2).
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Colombeau spaces

We define the following spaces:

EM ([0,∞) : H2,∞(R)) is the space of all

Gε : (0,∞)×R 7→ C, Gε(t, ·) ∈ H2,∞(R), for every t ∈ [0,∞),

with the property that for every T > 0 there exist C > 0, N ∈ N

and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖∂αGε(t, ·)‖L∞(R) ≤ Cε−N , α ∈ {0, 1, 2}, ε < ε0.

We say that ‖∂αGε‖L∞ is moderate or that it has a moderate

bound.
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Colombeau spaces

N ([0,∞) : H2,∞(R)) is the space of all

Gε ∈ EM ([0,∞) : H2,∞(R)) with the property that for every

T > 0 and a ∈ R there exist C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖∂αGε(t, ·)‖L∞(R) ≤ Cεa, α ∈ {0, 1, 2}, ε < ε0.

We say that ‖∂αGε)‖L∞ is negligible or that it has N - bound.
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Spaces EM ([0,∞) : H2,∞(R)) and N ([0,∞) : H2,∞(R))

are algebras and N ([0,∞) : H2,∞(R)) is an ideal of

EM ([0,∞) : H2,∞(R)).

The factor algebra

G([0,∞) : H2,∞(R)) =
EM ([0,∞) : H2,∞(R))

N ([0,∞) : H2,∞(R))

is called the algebra of H2,∞-Colombeau generalized functions.
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Colombeau spaces

EM ([0,∞) : H2(R)) is the space of all

Gε : (0,∞)×R 7→ C, Gε(t, ·) ∈ H2(R), for every t ∈ [0,∞),

with the property that for every T > 0 there exist C > 0, N ∈ N

and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖∂α
t Gε(t, ·)‖H2(R) ≤ Cε−N , α ∈ {0, 1}, ε < ε0.
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Colombeau spaces

N ([0,∞) : H2(R)) is the space of all

Gε ∈ EM ([0,∞) : H2(R)) with the property that for every

T > 0 and a ∈ R there exist C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T )

‖∂α
t Gε(t, ·)‖H2(R) ≤ Cεa, α ∈ {0, 1}, ε < ε0.
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Colombeau spaces

Again, spaces EM ([0,∞) : H2(R)) and N ([0,∞) : H2(R))

are algebras and N ([0,∞) : H2(R)) is an ideal of

EM ([0,∞) : H2(R)), so we can define the factor algebra

G([0,∞) : H2(R)) =
EM ([0,∞) : H2(R))

N ([0,∞) : H2(R))

which is called the algebra of H2-Colombeau generalized functions.

By omitting the variable t, one can similarly define the spaces

EM (H2(R)), N (H2(R)) and G(H2(R)).
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Colombeau generalized stochastic processes

A GH2,∞ -Colombeau generalized stochastic process on a

probability space (Ω,Σ, µ) is a mapping

U : Ω 7→ G([0,∞) : H2,∞(R)) such that there exists a function

Ũ : (0, 1)× [0,∞)×R× Ω 7→ R with the following properties:

1) For fixed ε ∈ (0, 1), (t, x, ω) 7→ Ũ(ε, t, x, ω) is jointly

measurable in [0,∞)×R× Ω.

2) The mapping ε 7→ Ũ(ε, t, x, ω) is en element of

EM ([0,∞) : H2,∞(R)) almost surely in ω ∈ Ω, and it is a

representative of U(ω).

The algebra of GH2,∞ -Colombeau generalized stochastic

processes on Ω will be denoted by GΩ([0,∞) : H2,∞(R)).
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Colombeau generalized stochastic processes

A GH2 -Colombeau generalized stochastic processes on a

probability space (Ω,Σ, µ) is a mapping

U : Ω 7→ G([0,∞) : H2(R)) such that there exists a function

Ũ : (0, 1)× [0,∞)×R× Ω 7→ R with the following properties:

1) For fixed ε ∈ (0, 1), (t, x, ω) 7→ Ũ(ε, t, x, ω) is jointly

measurable in [0,∞)×R× Ω.

2) The mapping ε 7→ Ũ(ε, t, x, ω) is en element of

EM ([0,∞) : H2(R)) almost surely in ω ∈ Ω, and it is a

representative of U(ω).

The algebra of GH2 -Colombeau generalized stochastic processes

on Ω will be denoted by GΩ([0,∞) : H2(R)).
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Colombeau generalized stochastic processes

The smoothed white noise process is usually defined by

Ẇε = Ẇ ∗ hε, where hε is a mollifier net. If we make a slight

modification of the definition above, and define the smoothed white

noise process as

Ẇε =
(
Ẇ ∗ hε

)
ζε,

where ζε is a non-negative net of smooth, compactly supported

cutoff functions converging to identity, then this white noise process

is a representative of a GH2 -Colombeau generalized stochastic

process. The cutoff procedure is necessary in order to obtain

H2-moderate properties of the Ẇε.
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Colombeau generalized semigroups of operators

SEM ([0,∞) : L(E)) is the space of nets

Sε : [0,∞) → L(E), ε ∈ (0, 1),

differentiable with respect to t ∈ [0,∞), with the property that for

every T > 0 there exist N ∈ N, M > 0 and ε0 ∈ (0, 1) such

that

sup
t∈[0,T )

∥∥∥∥ dγ

dtγ
Sε(t)

∥∥∥∥
L(E)

≤ Mε−N , ε < ε0, γ ∈ {0, 1}.

(1)

It is an algebra with respect to composition of operators.
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Colombeau generalized semigroups of operators

SN([0,∞) : L(E)) is the space of nets

Nε : [0,∞) → L(E), ε ∈ (0, 1),

differentiable with respect to t ∈ [0,∞), with the property that for

every T > 0 and a ∈ R there exist M > 0 and ε0 ∈ (0, 1) such

that

sup
t∈[0,T )

∥∥∥∥ dγ

dtγ
Nε(t)

∥∥∥∥
L(E)

≤ Mεa, ε < ε0, γ ∈ {0, 1}.

(2)

It is an ideal of SEM .
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Colombeau generalized semigroups of operators

We define a Colombeau-type space by

SG([0,∞) : L(E)) =
SEM ([0,∞) : L(E))

SN([0,∞) : L(E))
. (3)

Elements of SG([0,∞) : L(E)) will be denoted by S = [Sε],

where Sε is a representative of the class.
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Colombeau generalized semigroups of operators

SEM (E) is the space of nets of linear continuous mappings

Aε : E → E, ε ∈ (0, 1),

with the property that there exists constants N ∈ N, M > 0 and

ε0 ∈ (0, 1) such that

‖Aε‖L(E) ≤ Mε−N , ε < ε0.

SN(E) is the space of nets of linear continuous mappings

Aε : E → E, ε ∈ (0, 1), with the property that for every
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a ∈ R, there exist M > 0 and ε0 ∈ (0, 1) such that

‖Aε‖L(E) ≤ Mεa, ε < ε0.

The Colombeau space of generalized linear operators on E is

defined by

SG(E) =
SEM (E)

SN(E)
.

Elements of SG(E) will be denoted by A = [Aε], where Aε is a

representative of the class.
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Colombeau generalized semigroups of operators

S ∈ SG([0,∞) : L(E)) is called a uniformly continuous

Colombeau semigroup if it has a representative Sε which is a

uniformly continuous semigroup for every ε small enough, i.e.

1. Sε(0) = I ,

2. Sε(t1 + t2) = Sε(t1)Sε(t2), for every t1 ≥ 0, t2 ≥ 0,

3. limt→0 ‖Sε(t)− I‖ = 0.

Let Sε and S̃ε be representatives of a uniformly continuous

Colombeau semigroup S, with infinitesimal generators Aε and Ãε,

respectively, for ε small enough. Then Aε − Ãε ∈ SN(E).
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Colombeau generalized semigroups of operators

A ∈ SG(E) is called the infinitesimal generator of a uniformly

continuous Colombeau semigroup S ∈ SG([0,∞) : L(E)) if Aε

is the infinitesimal generator of the representative Sε, for every ε

small enough.

Let A be the infinitesimal generator of a uniformly continuous

Colombeau semigroup S, and B be the infinitesimal generator of a

uniformly continuous Colombeau semigroup T . If A = B, then

S = T .
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Colombeau generalized semigroups of operators

Let hε be a positive net satisfying hε ≤ ε−1. It is said that

A ∈ SG(E) is of hε−type if it has a representative Aε such that

‖Aε‖L(E) = O(hε), ε → 0.

Every A ∈ SG(E) of hε−type, where hε ≤ C log
1

ε
, is the

infinitesimal generator of some T ∈ SG([0,∞) : L(E)).

Note that a uniformly continuous Colombeau semigroup always has

an infinitesimal generator and it is unique. That follows from the fact

that its representative is a classical uniformly continuous semigroup

for which there exists a unique infinitesimal generator.
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Colombeau generalized semigroups of operators

In the existence and uniqueness of solution proof it will be

necessary that corresponding generalized semigroup S is of

log 1
ε -type, too. Therefore, the operator A must satisfy the stronger

condition

Every uniformly continuous generalized semigroup

S ∈ SG([0,∞) : L(E)) generated by A ∈ SG(E) of

hε−type, where hε = o(log log 1
ε ), is of log 1

ε -type.
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Regularized derivative

Let m− 1 < α < m, m ∈ N, and G = [Gε] be a Colombeau

generalized function of hε-type, where hε is a positive net such that

hε ≤ ε−1.

Regularized αth Riesz derivative with respect to x of G, in notation
RD̃α

xG, is defined by the representative

RD̃α
hε
Gε =

RDα
xGε ∗ ϕhε = Gε ∗ RDα

xϕhε ,

where ϕhε(x) = hεϕ(xhε), ϕ ∈ C∞
0 , ϕ(ξ) ≥ 0, ϕ is symmetric

function with
∫
ϕ(ξ)dξ = 1.
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Solution of the approximative problem

Function f(x, t, u) is of a bounded type if satisfies:

(i) f(x, t, u) is a global Lipschitz function with respect to x and u,

(ii) f(x, t, u) has a bounded second order derivative with respect

to u

(iii) f(x, t, 0) = 0,

(iv) ∂xf(x, t, u) is a global Lipschitz function with respect to u.

We solve a stochastic fractional heat equation within the Colombeau

space GΩ([0,∞) : H2(R)).
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Solution of the approximative problem

Let functions f(x, t, u), σ(x, t, u) and their partial derivatives with

respect to u and x be the functions of bounded type in the sense of

previous definition. Let Colombeau generalized stochastic

processes Q and P be such that Q ∈ GΩ(H2(R)),

P ∈ GΩ([0,∞) : H2,∞(R)) and P is of log 1
ε -type. Let hε be a

net satisfying hε = o((log log 1
ε )

1/5), as ε → 0.
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Solution of the approximative problem

Suppose that operator Ãα ∈ SG(H2(R)) is represented by the

nets of operators

Ãα
ε : H2(R) → H2(R),

Ãα
ε u = KR

ε D̃α
hε
u = Kε(u ∗ RDα

xϕhε
), 1 < α < 2,

where Kε ∈ H2(R), ‖Kε‖H2(R) = O((log log 1
ε )

1/2),

ϕhε
(x) = hεϕ(xhε), ϕ ∈ C∞

0 , ϕ(ξ) ≥ 0, ϕ is symmetric

function with
∫
ϕ(ξ)dξ = 1.
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Solution of the approximative problem

Then for every 1 < α < 2 there exists a unique generalized

solution U ∈ GΩ([0,∞) : H2(R)), to the Cauchy problem

∂tU(t) = ÃαU(t)+f(·, t, U)+σ(·, t, U)P (·, t), U(0) = Q,

and it is represented by

Uε(t) = Sε(t)Qε +
t∫
0

Sε(t− s)f(·, s, Uε)ds

+
t∫
0

Sε(t− s)σ(·, s, Uε)Pε(·, s)ds,

where S ∈ SG([0,∞) : L((H2(R))) is an uniformly continuous

Colombeau semigroup generated by Ãα.
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Association of non-regularized and regularized operators

Let u ∈ H2(R) and A be an operator given by

Aαu = K(x, t)RDα
xu, where K ∈ L∞(R). Further, let Ãα

ε be

the operator given by

Ãα
ε u = K(x, t)RD̃α

hε
u = Kε(x, t)(

RDα
xu ∗ ϕhε), where

Kε(x, t) = K(x, t) ∗ ϕhε
such that

‖∂xK(x, t)‖L∞ ≤ g−M
ε , (4)

for some M > 0 and gε = log hε, hε < C log 1
ε .

Then the operators Aα and Ãα
ε are L2-associated when ε → 0,

i.e., for every u ∈ H2(R), the following holds

‖(Aα − Ãα
ε )u‖L2 → 0, ε → 0.
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Association of non-regularized and regularized problems

Assume that there exists the solution, Uε, of the non-regularized

problem:

∂tUε(x, t) = K(x, t)RDα
xUε(x, t)

+ f(x, t, Uε) + σ(x, t, Uε)Pε(x, t), Uε(0) = Qε,

where K ∈ H3(R) and Uε ∈ H4(R), and let Vε be a solution of

the corresponding regularized equation with the same initial data:

∂tVε(x, t) = K(x, t)RDα
xVε(x, t) ∗ ϕhε(x)) + f(x, t, Vε) +

σ(x, t, Vε)Pε(x, t), Vε(0) = Qε,

where hε, f and σ are as above.

Then, solutions Uε and Vε are L2−associated almost surely, i.e.,
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for every T > 0

sup
t∈[0,T )

‖Uε(t)−Vε(t)‖L2 → 0, as ε → 0, for almost all ω ∈ Ω.

GF2020, Ghent



40

THANKS!
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