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Preliminaries

Orthonormal wavelets and multiresolution analysis (MRA) (as tools in
approximation of function and spaces)

Regularity properties of the wavelets and scaling functions
(smoothness and decay)

Smooth orthonormal wavelets, with all derivatives bounded, cannot
have exponential decay

Orthonormal wavelet with subexponential decay (Dziubanski,
Herndndez; Pathak, Singh; Moritoh, Tomoeda and Fukuda, Kinoshita,
Yoshino, Uehara)

Gelfand-Shilov spaces are very convenient frameworks for investigation
Continuity of the wavelet transform and convergence of wavelet and

MRA expansions in Gelfand-Shilov spaces

@ S. Pilipovi¢, D. Raki¢, N. Teofanov, J. Vindas, The Wavelet Transforms in Gelfand-Shilov spaces, Collectanea
Mathematica, 67 (3) (2016), 443-4605.

@ S. Pilipovi¢, D. Raki¢, N. Teofanov, J. Vindas, Multiresolution expansions and wavelets in Gelfand-Shilov spaces,
RACSAM, 114:66 (2020).
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o A function ¢ € S(R?) belongs to the Gelfand-Shilov space Sh}(RY) if
there exists a constant h > 0 such that
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Gelfand-Shilov spaces

o A function ¢ € S(R?) belongs to the Gelfand-Shilov space Sh}(RY) if
there exists a constant h > 0 such that

|x°‘go(6)(x)| < ple+Al alf2g1Pr x € RY, a,B e N, J

@ The family of norms

pirr? p) = —| | aﬁﬂgo h>0
’ su X X)[,h >0,
h (¢) YeRO, ?e . !p25!p1| (x)|

defines the canonical inductive limit topology of Shi(R9).

o The space SH}(IR?) is nontrivial if and only if p; + p2 > 1 or
p1+p2=1and p1,p2 > 0.

I. M. Gelfand, G. E. Shilov, Generalized Functions I, Ill, Academic Press, 1967.
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Gelfand-Shilov spaces

o The Fourier transform F is an isomorphism between Sh2(R9) and
Sh(R).

o Also, p € Sh}(RY) if and only if there exists a constant h > 0 and
¢ > 0 such that

1
P (x)| < K 1PIgIPLe=<XI”? x e RY B e NI, J

e By D*1(R?) is denoted the subspace of S5}(R9) consisting of
compactly supported Gevrey ultradifferentiable functions, it is
non-trivial if and only if p; > 1 and S§*(R9) = D1 (RY) and
Sp,(RY) = F(D(RY)).

@ F. Nicola, L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators.
Theory and Applications 4, Birkhauser Verlag, Basel, 2010.
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Gelfand-Shilov spaces with moment condition

o If an orthonormal wavelet belongs to the Schwartz space S(RY), then
all of its moments must vanish.

o By (Sh1)o(IR?) is denoted the closed subspace of S/X(R9) given by

(S,ﬁjzl)o(Rd) = {30 € Sgi(Rd) : /Rd x%p(x)dx =0, Va € Nd} : J

Space (Sh)o(IR?) is non-trivial if and only if py > 1.
M. Holschneider, Wavelets. An analysis tool. The Clarendon Press, Oxford University Press, New York (1995)

@ E. Herndndez, G. Weiss, A first course on wavelets. CRC Press, Boca Raton (1996)
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The wavelet transform

o If 1 € SHY(RY) then the wavelet transform of an ultradistribution
f € (SP(RY)) with respect to the wavelet ¢ is defined by

Wyf(b,a) = <f(x), dw( b)>=aid/R F00) (X;b) ax,

where (b,a) € HY! = RY x R,
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The wavelet transform

o If 1 € SHY(RY) then the wavelet transform of an ultradistribution
f € (SP(RY)) with respect to the wavelet ¢ is defined by

Wet(6,2) = (0. 553 (*52) ) = 3 [, 7003 (552 ax

where (b,a) € HY! = RY x R,
o Lets>p; >0andt>py>0. If e SH(R?Y) and B is a bounded
set in (S§(RY)), then for each k > 0,

_1 _1
Wyf(b, a)] < k(T2 HOTIHE) () € o, J

uniformly for f € B.
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@ A smooth function ® belongs to S _ (HY*!) if for every o € N

t, 71,72

there exists a constant h > 0 such that
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Continuity of the wavelet transform in Gelfand-Shilov

spaces

@ A smooth function ® belongs to S _ (HY*!) if for every o € N

t, 71,72

there exists a constant h > 0 such that

agaa[[j(b(b’ a)‘ 5 h|,8| B!S eh(31/7—1+a—1/72+|b|1/t)’ (b, a) c Hd—f—l’ B e Nd. J

oletp1 >0, pp>1,0=p1+p2—1>0andlets>o, t >0+ 1.
Then the wavelet mapping

W (SE)o(R?) x (SZ)0(RY) = S5y s, (HTTY), )

given by W : (¢, p) — Wy is continuous.
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Orthonormal wavelet

e A function ¢ € L?(R) is called an orthonormal wavelet if
{¢)mn: m€EZ,nec7Z} is an orthonormal basis of L?(R), where

Ymn(x) =259(2™x —n),  mneZ, xR, J

If additionally 1) € L}(R), then [; ¥(x)dx = 0.
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Multiresolution analysis

@ A multiresolution analysis (MRA) is an increasing sequence { Vi }mez
of closed subspaces of L2(R9) such that:

(i) Nimez Vm = {0} and U,z Vim is dense in L2(R9);
(i) £(x) € Vin & F(2X) € Vimss, m €
(iii) f(X) eV f(x— n) eV, ne Zd;

)

(iv) there exists a scaling function ¢ € L?(R9) such that {¢(x — n)},cze is an
orthonormal basis of V.
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Multiresolution analysis

@ A multiresolution analysis (MRA) is an increasing sequence { Vi }mez
of closed subspaces of L2(R9) such that:

) Nmez Vm = {0} and U,pcz Vim is dense in L2(R?);
(ii) f(x) € Vim & f(2x) € Vipy1, m € Z;

) f(x) € Vo & f(x—n) € Vo, neZ7

)

there exists a scaling function ¢ € L2(R?) such that {¢(x — n)},cze is an
orthonormal basis of V.

o MRA is a classical way to construct orthonormal wavelets. Moreover,
any orthonormal wavelet from S(R) is an MRA wavelet.

@ E. Herndndez, G. Weiss, A first course on wavelets. CRC Press, Boca Raton (1996)
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(p1, p2)-regular orthonormal wavelet

@ Let p1 >0 and pp > 1. An MRA is called (p1, p2)-regular if it
possesses a scaling function ¢ € Sh(RY).
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(p1, p2)-regular orthonormal wavelet

@ Let p1 >0 and pp > 1. An MRA is called (p1, p2)-regular if it
possesses a scaling function ¢ € Sh(RY).

@ An orthonormal wavelet v is called (p1, p2)-regular if ¢ € (Sh )(R)
and if it arises from a (p1, p2)-regular MRA.
@ Y. Meyer, Wavelets and operators. Cambridge University Press, Cambridge (1992)

@ S. Pilipovi¢, N. Teofanov, Multiresolution expansion, approximation order and quasiasymptotic of tempered
distributions. J. Math. Anal. Appl. 331, 455-471 (2007)

ﬁ S. Kostadinova, J. Vindas, Multiresolution expansions of distributions: pointwise convergence and
quasiasymptotic behavior. Acta Appl. Math. 138, 115-134 (2015)

@ K. Saneva, J. Vindas, Wavelet expansions and asymptotic behavior of distributions. J. Math. Anal. Appl. 370,
543-554 (2010)
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o Let pp > 1 and a < w/3. Take ¢ € DP2(R) such that
supp ¢ € [—a,a], [7, ¢(&) d§ = 7/2 and pa(&) = (1/2)p(£/2). The
bell type function is defined by

E—2m

b(&) = sin (/_6_7r cp(t)dt) cos (/_oo goz(t)dt), J

o0

when £ > 0 and extended evenly to (—o0, 0].
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o Let pp > 1 and a < w/3. Take ¢ € DP2(R) such that
supp ¢ € [—a,a], [7, ¢(&) d§ = 7/2 and pa(&) = (1/2)p(£/2). The
bell type function is defined by

E—2m

b(&) = sin (/_6_7r cp(t)dt) cos (/_

o0

goz(t)dt), J

o0

when £ > 0 and extended evenly to (—o0, 0].
@ Then, b € D2(R) and

supp b C [-8n/3,—27/3] U [27/3,87/3].

@ P.G. Lemarié, Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), 1-18.

@ J. Dziubanski, E. Hernandez, Band-limited wavelets with subexponential decay, Canad. Math. Bull. 41 (1998),
398-403.
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Example

The associated orthonormal wavelet is

(&) = eb(¢), £€R, ]
and ¢ € F(Dr2(R)) C SH(R), for all p; > 0.

(%)
b 0.5
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@ An associated scaling function could be defined as

) 1 if || <2m/3,
()P = ¢ b?(2¢) if 2m/3 <|¢| < 4n/3,
0 if |£|247r/3,

and arg ¢(€) = €. Then ¢ € SH(R), for any p; > 0.

0.5]
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Wavelet expansions in Gelfand-Shilov spaces

o Let ¢ € (S85;)o(R) be a (p1, p2)-regular orthonormal wavelet, with
scaling function ¢ € Shy(R). Take

T/JA(X) ¢emn(x)_2md/2¢ ( X—n) XERd )\E/\ J

where A= Q x Z x Z9, Q = {0,1}9\ (0,...,0).
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Wavelet expansions in Gelfand-Shilov spaces

o Let ¢ € (S85;)o(R) be a (p1, p2)-regular orthonormal wavelet, with
scaling function ¢ € ShI(R). Take

T/JA(X) ¢6mn(x)_2md/2¢ ( X—n) XERd )\E/\ J

where A= Q x Z x Z9, Q = {0,1}9\ (0,...,0).

o Then, 1 € (Sh})o(R?) and {1/ | A € A} is an orthonormal basis of
L2(RY). The wavelet coefficients could be expressed in terms of the
wavelet transform

s =&t —m A—m
Cf(¢)=(¢,¢x>=2 2 Wye(n277,27™), X e A J
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Wavelet expansions in Gelfand-Shilov spaces

o {cr}aen is in space of rapidly decreasing multi-sequences W; ,  (A)
if and only if there exists k € N such that the norm

1 1
wWws =y m\s—=p7 n 1
H{C)\}Hk t,p1:P2 = ilés)\|c)\‘ek((2}n)t 92+(2 )5 P1 +|2W|t)' J

is finite.
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Wavelet expansions in Gelfand-Shilov spaces

o {cr}aen is in space of rapidly decreasing multi-sequences W; ,  (A)
if and only if there exists k € N such that the norm

1 1
W = mys= n ot
I{eats BALp2 . ig?\k)\‘ek((z}n)t P2 4-(2Mm)5=P1 4| t)' J

is finite.

o Let ¢ € (Sh)o(R) be a (p1, p2)-regular orthonormal wavelet, where
pr>0and pp >1.Seto=p1+pr—landlets>cand t >0+ 1.
Then, for every h > 0 there is k > 0 such that, for every
v € (8727)o(R?) with p;~ """ () < oo,

14%3 —ot—
{eX ()Ml "™ S Py~ (). J
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Wavelet expansions in Gelfand-Shilov spaces

o Let ¢ € (S5 )o(R) be a (p1, p2)-regular orthonormal wavelet, where
p1>0and pp > 1. Lets >0 and t > o0+ 1, where 0 = p1 + po — 1.
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Wavelet expansions in Gelfand-Shilov spaces

o Let ¢ € (S5 )o(R) be a (p1, p2)-regular orthonormal wavelet, where
p1>0and pp > 1. Lets >0 and t > o0+ 1, where 0 = p1 + po — 1.
o If p € (S:7)0(RY), then

Y= Z c;f’(gp) ¥y converges in (S3)o(RY). J
AEN
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o If p € (S:7)0(RY), then

Y= Z c;f’(gp) ¥y converges in (S3)o(RY). J
AEN

o If f € ((S§)o(RY)), then its wavelet series expansion

f=> c(f)v J

AEN

converges in (the strong dual topology of) ((S:=2)o(R9))’.
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Wavelet expansions in Gelfand-Shilov spaces

o Let ¢ € (S5 )o(R) be a (p1, p2)-regular orthonormal wavelet, where
p1>0and pp > 1. Lets >0 and t > o0+ 1, where 0 = p1 + po — 1.
o If p € (S:7)0(RY), then

Y= Z c;f’(gp) ¥y converges in (S3)o(RY). J
AEN

o If f € ((S§)o(RY)), then its wavelet series expansion

f=> c(f)v J

AEN

converges in (the strong dual topology of) ((S:=2)o(R9))’.
@ We have the Parseval identity

(F,0) =3 cl(F) L), e (SR, ¢ € (Sg)o(RY). J
AEN
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