On a construction of self-similar solutions to nonlinear wave equations

GF2020, Ghent University, Belgium, September 3, 2020

Mitsuru Sugimoto (Nagoya Univ.)

Nonlinear wave equation

We consider nonlinear wave equations of power type nonlineality:

$$
\left(\partial_{t}^{2}-\Delta_{x}\right) u(t, x)=|u(t, x)|^{p}, \quad(t, x) \in \mathbf{R}_{t} \times \mathbf{R}_{x}^{n} \quad(\mathrm{NLW})
$$

for $p>1$ and $n \geq 2$. Then

$$
\begin{aligned}
\Longrightarrow & u(t, x) \text { : sol. to (NLW) } \\
& u_{\lambda}(t, x)=\lambda^{2 /(p-1)} u(\lambda t, \lambda x): \text { sol. to (NLW), }
\end{aligned}
$$

where $\lambda \neq 0$.

Self-similar solution

A solution $u(t, x)$ to (NLW) is said to be self-similar if

$$
u(t, x) \equiv u_{\lambda}(t, x)
$$

for any $\lambda \neq 0$.

We discuss the existence of self-similar solution for as larger range of p as possible.

We introduce some critical indices:

- $p_{k}(n)=\frac{n+1}{n-1}$
: lower bound for the exist. of weak global sol.
- $p_{s t r}(n)=\frac{n+1+\sqrt{n^{2}+10 n-7}}{2(n-1)}$
: lower bound for the exist. of strong global sol.
- $p_{\text {conf }}(n)=\frac{n+3}{n-1}$: conformal critical

We note $p_{k}(n)<p_{s t r}(n)<p_{\text {conf }}(n)$.

Remark on $p_{k}(n)$

- T. Kato (1980): Assume $1<p \leq p_{k}(n)$. Then weak solution to (NLW) with compactly supported initial data satisfying

$$
\int u_{t}(0, x) d x>0
$$

or

$$
\int u_{t}(0, x) d x=0, \quad \int u(0, x) d x \neq 0
$$

does not exist time globally.

Remark on $p_{s t r}(n)$

- It is the positive root of $(n-1) p^{2}-(n+1) p-2=0$.
- Strauss conjecture (1981): Time global solutions always exist for (NLW) if $p>p_{s t r}(n)$ and the size of the compactly supported smooth initial data is small. No such result can hold if $1<p \leq p_{s t r}(n)$.

The case $n=2,3$ with $p \neq p_{\operatorname{str}(n)}$ was solved by Glassey (1981) and John (1979), respectively, and $p=p_{\operatorname{str}(n)}$ by Schaeffer (1985).

It is not a conjecture anymore:

* $1<p<p_{s t r}(n)$ blow-up : Sideris (1984).
* $p>p_{\text {str }}(n)$ global : Georgiev-Lindblad-Sogge (1997).
* $p=p_{\text {str }}(n)$ blow-up :

Yordanov-Zhang (2006), Zhou (2007).

Remark on $p_{\text {conf }}(n)$

- This index is associated with the conformal symmetry map:
$u(t, x) \mapsto u_{\text {conf }}(t, x)=\left(t^{2}-|x|^{2}\right)^{-\frac{n-1}{2}} u\left(\frac{t}{t^{2}-|x|^{2}}, \frac{x}{t^{2}-|x|^{2}}\right)$ for $|x|<t$.

If u solves (NLW) then $u_{\text {conf }}$ does when $p=p_{\text {conf }}(n)$.

Existence of self-similar solutions

- Pecher (2000) : $n=3, p_{s t r}$ (3) $<p<p_{\text {conf }}$ (3)
- Hidano (2002) : $n=2, p_{s t r}(2)<p<p_{\text {conf }}$ (2)
- Kato-Ozawa (2003): $n \geq 3$ odd, $p_{\operatorname{str}}(n)<p<p_{\text {conf }}(n)$
- Kato-Ozawa (2004) : $n \geq 2, p_{s t r}(n)<p<p_{\text {conf }}(n)$

Attempts for $p \notin\left[p_{s t r}, p_{\text {conf }}\right]$

- Pecher (2000) : $n=3, p=p_{\text {conf }}$ (3)
- Planchon (2000) : $p_{\text {conf }}(n)<p \in \mathbf{N}$
- Ribaud-Youssfi (2002) : $2 \leq n \leq 5, p_{\text {conf }}(n)<p$
- Attempts for $n \geq 6$ with large p by Ribaud-Youssfi (2002), De Almeida-Ferreira (2017).
- An attempt for $p_{k}(n)<p<p_{s t r}(n)$ by Kusumoto (in preparation).

Their basic strategy is to show the uniqueness of sol. to (NLW) with the initial data

$$
u(0, x)=\epsilon|x|^{-2 /(p-1)}, \quad \partial_{t} u(0, x)=\epsilon|x|^{-2 /(p-1)-1}
$$

for small $\epsilon>0$

$$
\begin{array}{cc}
\Longrightarrow & u(0, x)=u_{\lambda}(0, x), \partial_{t} u(0, x)=\partial_{t} u_{\lambda}(0, x) \\
\Longrightarrow & u(t, x) \equiv u_{\lambda}(t, x)
\end{array}
$$

more precisely, uniqueness in appropriates Banach spaces X as a fixed point of the contraction mapping

$$
\begin{aligned}
& X \ni u(t, x) \mapsto \cos \left(t D_{x}\right) u(0, x)+\frac{\sin \left(t D_{x}\right)}{\left|D_{x}\right|} u_{t}(0, x) \\
&+\int_{0}^{t} \frac{\sin \left((t-s) D_{x}\right)}{\left|D_{x}\right|}|u(s, \cdot)|^{p} \in X
\end{aligned}
$$

- Pecher

$$
\begin{gathered}
\|u(t, x)\|_{X}=\sup _{t>0} t^{\mu}\|u(t, x)\|_{L^{r}\left(\mathbf{R}^{n}\right)} \\
\|u(t, x)\|_{X}=\sup _{|x| \neq t}(|x|+t) \| x|-t|^{(3-p) /(p-1)} u(t, x)
\end{gathered}
$$

- Kato-Ozawa

$$
\|u(t, x)\|_{X}=\left\|\left|t^{2}-|x|^{2}\right|^{\gamma} u(t, x)\right\|_{L^{p, \infty}\left(\mathbf{R}_{+}^{1+n}\right)}
$$

Our goal is to give a constructive proof!

Reduction to ODE

The definition of self-similarity

$$
u(t, x) \equiv u_{\lambda}(t, x):=\lambda^{2 /(p-1)} u(\lambda t, \lambda x)
$$

with $\lambda=1 / t$ implies

$$
u(t, x)=t^{-2 /(p-1)} u(1, x / t)
$$

Hence $u(t, x)$ has to be of the for form

$$
u(t, x)=t^{-\beta} \varphi(x / t), \quad \beta=2 /(p-1)
$$

Conversely, such $u(t, x)$ is self-similar.

Plugging it into (NLW), we have

$$
\begin{aligned}
& \beta(\beta+1) \varphi(y)+2(\beta+1) y \cdot \nabla \varphi(y)-\Delta \varphi(y)+\left\langle\varphi^{\prime \prime} y, y\right\rangle=|\varphi(y)|^{p} \\
& \Longrightarrow \\
& \left(r^{2}-1\right) \psi_{r r}+\left(2(\beta+1) r-\frac{n-1}{r}\right) \psi_{r}+\beta(\beta+1) \psi=|\psi|^{p}
\end{aligned}
$$

with radially symmetric solution $\varphi(y)=\psi(|y|)$

$$
4 s(s-1) f_{s s}+2\{(2 \beta+3) s-n\} f_{s}+\beta(\beta+1) f=|f|^{p}
$$

$$
\text { with } \psi(r)=f\left(r^{2}\right)
$$

\Longrightarrow

$$
\begin{equation*}
L_{a, b, c} f(s)=\frac{1}{4}|f(s)|^{p} \tag{NLHG}
\end{equation*}
$$

where $s\left(=r^{2}\right) \geq 0$ and

$$
L_{a, b, c}=s(s-1) \frac{d^{2}}{d s^{2}}+\{(a+b+1) s-c\} \frac{d}{d s}+a b=0
$$

with

$$
\begin{aligned}
& a=\beta / 2=1 /(p-1) \\
& b=(\beta+1) / 2=1 /(p-1)+1 / 2 \\
& c=n / 2
\end{aligned}
$$

Hypergeometric function

(NLHG) can be regarded as a nonliner perturbation of hypergeometric differential equation:

$$
\begin{equation*}
L_{a, b, c} h=0 \tag{HG}
\end{equation*}
$$

Hypergeometric function

$$
h_{a, b, c}(z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \gamma(b+k)}{\Gamma(c+k)} \frac{z^{k}}{k!}
$$

is a solution to (HG). We remark $h_{a, b, c}(0)=1$ and $h_{a, b, c}(s)>0$ for $s \geq 0$.

We find a sol to (NLHG) of the form

$$
f(s)=\varepsilon h(s) g(s)
$$

where h is a sol to (HG) and $\varepsilon>0$. Plugging it into (NLHG), we have

$$
\begin{align*}
s(s-1) g_{s s}+2\{(a+b+1) s-c+s(s-1) & \left.\frac{h_{s}}{h}\right\} g_{s} \\
& =(\varepsilon h)^{p}|g|^{p} \tag{G}
\end{align*}
$$

We can construct a bounded function $g(s)>0$ on $[0,1]$ for sufficiently small $\varepsilon>0$ due to the symmetric property:

Symmetric property of (NLHG)

We set

$$
T: f(s) \mapsto f(1-s), \quad S: f(s) \mapsto-s^{-a} f(1 / s)
$$

then we have

$$
\begin{array}{rr}
L_{a, b, c} f=\frac{1}{4}|f|^{p} \quad \xrightarrow{S} \quad L_{a, a-c+1, a-b+1} f=\frac{1}{4}|f|^{p} \\
T \mid & \mid R=S^{-1} T S
\end{array}
$$

By this symmetry:

- Interval shift : $[0,1] \stackrel{S}{\longleftrightarrow}[1, \infty]$
\Longrightarrow It suffices to consider (G) on $[0,1]$.
- Singular points shift : $s=0 \stackrel{T}{\longleftrightarrow} s=1$
\Longrightarrow It suffices to consider (G) near $s=0$.

Then we construct a positive power series solution

$$
g(s)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} s^{k} ; \quad a_{k}=\frac{d^{k} g}{d t^{k}}(0)
$$

to

$$
\begin{aligned}
s(s-1) g_{s s}+2\{(a+b+1) s-c+s(s-1) & \left.\frac{h_{s}}{h}\right\} g_{s} \\
& =(\varepsilon h)^{p} g^{p}(\mathrm{G})
\end{aligned}
$$

for $|s|<1$.

Noting $h(0)=1$, we have

$$
\begin{aligned}
& (G)_{\mid s=0}:-2 c g^{\prime}(0)=\varepsilon^{p} g(0)^{p} \\
& (G)_{\mid s=0}^{\prime}:-g^{\prime \prime}(0)+2\left(a+b+1-h^{\prime}(0)\right) g^{\prime}(0)-2 c g^{\prime \prime}(0) \\
& \quad=p \varepsilon^{p} g(0)^{p-1}\left(h^{\prime}(0) g(0)+g^{\prime}(0)\right) \\
& (G)^{\prime \prime}{ }_{\mid s=0}: \quad \cdots \quad=\quad \cdots
\end{aligned}
$$

Setting $g(0)=1$, each $g^{(k)}(0)=O\left(\varepsilon^{p}\right)(k=1,2, \ldots)$ is given iteratively!.

Tentative self-similar solution

Summarising the argument so far, a self-similar solution is "tentatively" constructed by

$$
u(t, x)=\varepsilon t^{-2 /(p-1)} h\left(|x|^{2} / t^{2}\right) g\left(|x|^{2} / t^{2}\right)
$$

where h is a sol. to (HG) and g a bounded function.

Does the nonlinear term $|u(t, x)|^{p}$ has a meaning as a distribution?

- We have the stable self-similar sol. to (NLW):

$$
\begin{aligned}
u(t, x)= & c_{n, p}|x|^{-2 /(p-1)} \\
& c_{n, p}=\left\{\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right\}^{1 /(p-1)}
\end{aligned}
$$

Since

$$
|u(t, x)|^{p}=\left(c_{n, p}\right)^{p}|x|^{-2 p /(p-1)} \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)
$$

for $p<n /(n-2)$, then it can be understood as a distribution.

- Unfortunately, it is not always the case for our construction. Indeed, when $p=(n+1) /(n-1)$, corresponding hypergeometric function is

$$
h(s)=|1-s|^{-a-1}(1-s)
$$

with $a=(n-1) / 2$, and $g(s)$ is a constant. Then

$$
u(t, x)=c_{n}\left|t^{2}-|x|^{2}\right|^{-a-1}\left(t^{2}-|x|^{2}\right)
$$

we require $u \in L_{l o c}^{p}\left(\mathbf{R}^{n+1}\right)$ or equivalently

$$
p(-a)=-p /(p-1)>-1 \Longleftrightarrow \frac{p}{p-1}<1
$$

The case $n=3$

The hypergeometric function is given by an elementary function:

$$
h(s)= \begin{cases}\frac{(1+\sqrt{s})^{\frac{p-3}{p-1}}-(1-\sqrt{s})^{\frac{p-3}{p-1}}}{\sqrt{s}} & \text { for } 0<s<1 \\ \frac{(\sqrt{s}+1)^{\frac{p-3}{p-1}}+(\sqrt{s}-1)^{\frac{p-3}{p-1}}}{\sqrt{s}} & \text { for } s>1\end{cases}
$$

is a sol to (HG) with $a=1 /(p-1), b=1 /(p-1)+1 / 2$, $c=n / 2$ when $p \neq 3$.

When $p=3$, we need a modification:

$$
h(s)= \begin{cases}\frac{\log (1+\sqrt{s})-\log (1-\sqrt{s})}{\sqrt{s}} & \text { for } 0<s<1 \\ \frac{\log (\sqrt{s}+1)+\log (\sqrt{s}-1)}{\sqrt{s}} & \text { for } s>1\end{cases}
$$

When $1<p \leq 3, h(s)$ is singular only at $s=1$, while $h(s)$ has no singularity when $p>3$.

Then a self-similar solution is constructed by

$$
u(t, x)=\varepsilon t^{-2 /(p-1)} \underbrace{h\left(|x|^{2} / t^{2}\right)}_{\text {sing: }|x|=|t|} \underbrace{g\left(|x|^{2} / t^{2}\right)}_{b d d}
$$

For the nonlinear term $|u(t, x)|^{p}$ to make sense, we require $u \in L_{l o c}^{p}\left(\mathbf{R}^{n+1}\right)$ or equivalently

$$
\begin{aligned}
h\left(|x|^{2}\right) \in L_{l o c}^{p}\left(\mathbf{R}^{n}\right) & \Longleftrightarrow p \frac{p-3}{p-1}>-1 \\
& \Longleftrightarrow p>p_{s t r}(3)=1+\sqrt{2}
\end{aligned}
$$

For $u(t, \cdot) \in L^{p}\left(\mathbf{R}^{n}\right)$, we further require

$$
p\left(1-\frac{p-3}{p-1}\right)>3 \Longleftrightarrow p<p_{\operatorname{conf}}(3)=3
$$

The result by Pecher is recaptured!

Conclusions

- Hypergeometric functions are behind the nonliner wave equations. (Remark: Zhou (2007) and ZhouHua (2014) implicitly indicated this fact in different contexts.)
- By virtue of it, we can construct self-similar solutions.

This talk is dedicated to

Professor Stevan Pilipović.

for his 70th birthday!

