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The lecture is dedicated to Academician Stevan Pilipović
on the occasion of his 70th birthday.
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• 1989 prof. Pilipović gave lectures on Analysis II.
That was the most exciting course of my graduate studies.

• 1990’s during my postgraduate studies I had a privilege to witness his
amazing passion for scientific research.1

• 2000’s the first steps of my scientific career under the influence of
prof./Academician Pilipović, in parallel to my first serious international
cooperation(s).

• since 2010’s the new and equally exciting phase of our cooperation.

1as M. Kunzinger observed, in a wide range of fields.
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part I
some results from

A. Abdeljawad, S. Coriasco, N. Teofanov,
Bilinear Pseudo-differential Operators with GevreyHörmander Symbols,
Mediterr. J. Math. 17 (August 2020), 120.
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• The pseudo-differential operator Opt(a), t ∈ [0, 1], is the linear and
continuous operator on S(Rd), defined by the formula

Opt(a)f (x) =

∫∫
a(x− t(x− y), ξ)f (y)e2πi〈x−y,ξ〉 dydξ, x ∈ Rd,

and the definition extends uniquely to a ∈ S ′(R2d).
Then Opt(a) is continuous from S(Rd) to S ′(Rd).

• The above formula establishes the connection between the symbol a and
the operator Opt.

2

• By choosing t = 0 and t = 1/2 we get the Kohn-Nirenberg and the Weyl
correspondence respectively.

What about the symbol?

2We refer to yesterday’s lecture of J. Toft for OpA(a), where A is a matrix.
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• Hörmander classes are the common choice in the context of PDEs.
• In signal analysis (as explained in e.g. T. Strohmer’s paper (ACHA,

2006)) symbols with ”no reference to derivatives” appear more
naturally.3

• We consider some symbol-global type symbols, closely related to
Gelfand-Shilov type spaces.

• More precisely, we consider a ∈ C∞(Rd0+···+dk) which obey conditions
of the form

|∂αx ∂
β1
ξ1
. . . , ∂βk

ξk
a(x, ξ1, . . . , ξk)|

. h|α+β1+···+βk|α!σ
k∏

j=1

βj!
sj · ω(x, ξ1, . . . , ξk),

ω ∈ PE(Rd0+d1+···+dk), α ∈ Nd0 , βj ∈ Rdj , sj, σ, h > 0, j = 1, . . . , k.
• a ∈ Γσ,s1,...,sk

(ω) (Rd0+···+dk) if the above condition holds for some h > 0.
3The so called Sjöstrand class is an important example.
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• Hörmander classes are the common choice in the context of PDEs.
• In signal analysis (as explained in e.g. T. Strohmer’s paper (ACHA,

2006)) symbols with ”no reference to derivatives” appear more
naturally.3

• We consider some symbol-global type symbols, closely related to
Gelfand-Shilov type spaces.

• More precisely, we consider a ∈ C∞(Rd0+···+dk) which obey conditions
of the form

|∂αx ∂
β1
ξ1
. . . , ∂βk

ξk
a(x, ξ1, . . . , ξk)|

. h|α+β1+···+βk|α!σ
k∏

j=1

βj!
sj · ω(x, ξ1, . . . , ξk),

ω ∈ PE(Rd0+d1+···+dk), α ∈ Nd0 , βj ∈ Rdj , sj, σ, h > 0, j = 1, . . . , k.
• a ∈ Γσ,s1,...,sk

(ω) (Rd0+···+dk) if the above condition holds for some h > 0.
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• A (continuous) function ω is called a weight on Rd, if ω, 1/ω ∈ L∞loc(Rd)
are positive everywhere.
If ω and v are weights on Rd. Then ω is called v-moderate or moderate, if

ω(x1 + x2) . ω(x1)v(x2), x1, x2 ∈ Rd.

• By PE(Rd0+···+dk) we denote the set of all moderate weights on
Rd0+···+dk , and P0

s0,...,sk
(Rd0+···+dk) (Ps0,...,sk(Rd0+···+dk)) is the set of all

weights ω ∈ PE(Rd0+···+dk) such that

ω(x0 + y0, . . . , xk + yk) . ω(x0, . . . , xk)er(|y0|
1
s0 +···+|yk|

1
sk ), xj, yj ∈ Rdj

holds for every (for some) r > 0.
• If ω ∈ PE(Rd0+d1+···+dk), then there exists an ”equivalent” weight
ω0 ∈ PE(Rd0+d1+···+dk) ∩ C∞(Rd0+d1+···+dk).
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• Symbols considered in this lecture are related to pseudodifferential
operators of infinite order considered in the context of Gevrey type
regularity, so we call them Gervey–Hörmander symbols.

• We refer to the work of Liess–Rodino, Matsuzawa, Zanghirati in 80’s,
and Boutet de Monvel, Krée and Volevic even before.
In the 21st century similar ”symbol global type” operators are considered
by Coriasco, Cappiello, Pilipović, Teofanov, Prangoski, Toft, and others.

• In particular, our results can be considered as a bilinear extension of

M. Cappiello, J. Toft, Pseudo-differential operators in a Gelfand-Shilov
setting, Math. Nachr. 290 (2017), 738–755.

A. Abdeljawad, M. Cappiello, J. Toft, Pseudo-differential calculus in an
anisotropic Gelfand-Shilov setting, Integr. Equ. Oper. Theory (2019), 91:
26.

A. Abdeljawad, J. Toft, Anisotropic Gevrey-Hörmander pseudo-differential
operators on modulation spaces, in P. Boggiatto et al.(Eds), Advances in
Microlocal and Time-Frequency Analysis, Birkhäuser, Basel (2020), 1–20.
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• Bilinear operators in the context of Hörmander classes were studied by
Bényi, Okodjou and their co-authors. An excellent and carefully written
overview of the topic is given in Chapter 4 of recently published book

Á. Bényi, K. A. Okoudjou, Modulation Spaces, With Applications to
Pseudodifferential Operators and Nonlinead Schrödinger Equations,
ANHA, Birkhäuser, 2020.

• Indeed, we will use an idea given in

Á. Bényi, D. Maldonado, V. Naibo, R. H. Torres, On the Hörmander
classes of bilinear pseudodifferential operators, Integr. Equat. Oper. Th. 67
(2010), 341-364.

However, due to the global nature of Gervey–Hörmander symbol classes,
we apply a different technique to prove the continuity properties of
considered operators when acting on modulation spaces.
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• Let r, t ∈ [0, 1], r + t ≤ 1, let the bilinear symbol be given by

ar,t(x, y, z, ξ, η) = a(x + r(y− x) + t(z− x), ξ, η),

and let the phase function ψ be defined by

ψ(x, y, z, ξ, η) = 〈y− x, ξ〉+ 〈z− x, η〉, x, y, z, ξ, η ∈ Rd.

• Then the bilinear pseudo-differential operator Opr,t(a) is defined by(
Opr,t(a)(f , g)

)
(x) =∫∫∫∫

e−2πiψ(x,y,z,ξ,η)ar,t(x, y, z, ξ, η)f (y)g(z) dydzdξdη, x ∈ Rd. (1)

• Opr,t(a) is bilinear and continuous from S(Rd)⊗ S(Rd) to S′(Rd).
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• If r = t = 0, then the definition of Op0,0(a) coincides with the bilinear
pseudo-differential operator

Ta(f , g)(x) =

∫∫
e2πi〈x,ξ+η〉a(x, ξ, η)̂f (ξ)ĝ(η) dξdη, x ∈ Rd,

considered by Bényi et al. (2005). The corresponding multilinear
extension is studied by Molahajloo et al. (2016).

• Recall, if k ∈ N, σ = (σ0, . . . , σk) > 0, s = (s0, . . . , sk) > 0, and
d = d0 + · · ·+ dk. Then F ∈ Sσs (Rd) if

|∂αF(x0, . . . , xk)| . h|α|
k∏

j=0

α
σj
j e
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1
s0 +···+|xk|

1
sk

)
,
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• If r = t = 0, then the definition of Op0,0(a) coincides with the bilinear
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Theorem

Let there be given s, σ > 0 such that s + σ ≥ 1, ω ∈ P0
s,σ,σ(R3d), r, t ∈ [0, 1],

such that r + t ≤ 1, and a ∈ Γσ,s,s(ω) (R3d).
Then Opr,t(a) is continuous from Sσs (Rd)× Sσs (Rd) to Sσs (Rd), and from
(Sσs )′(Rd)× (Sσs )′(Rd) to (Sσs )′(Rd).

Recall, ω ∈ P0
s,σ,σ(R3d) means that

ω(x1 + x2, ξ1 + ξ2, η1 + η2) . ω(x1, ξ1, η1)er(|x2|
1
s +|ξ2|

1
σ +|η2|

1
σ ),

for every r > 0 and a ∈ Γσ,s,s(ω) (R3d) means that

|∂αx ∂
β
ξ ∂

γ
η a(x, ξ, η)| . h|α+β+γ|α!σβ!sγ!s · ω(x, ξ, η).
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Ingredients of the proof:

• Invariance property which implies that it is enough to consider the case
r = t = 0, i.e. Op0,0(a)(f , g).

• Use the idea of Bény et. al. and consider the linear pseudo-differential
operator

Op0,0(a)(f , g)(x) =

∫
e2πi〈x,ξ〉ag(x, ξ)̂f (ξ) dξ,

where
ag(x, ξ) =

∫
e2πi〈x,η〉a(x, ξ, η)ĝ(η) dη.

• Show that ag ∈ Γσ,s(ω̃)(R2d) with ω̃(x, ξ) = ω(x, ξ, 0) ∈ P0
s,σ(R2d).

• Use the continuity property proved by Abdeljawad and Toft (2020) and
representation of Gelfand-Shilov spaces as limits of modulation spaces.

• (Γσ,s(ω)(Rd) can be described by the decay properties of the STFT.)

GF2020 September 04, 2020 13 / 24



Ingredients of the proof:

• Invariance property which implies that it is enough to consider the case
r = t = 0, i.e. Op0,0(a)(f , g).
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• Use the idea of Bény et. al. and consider the linear pseudo-differential
operator

Op0,0(a)(f , g)(x) =

∫
e2πi〈x,ξ〉ag(x, ξ)̂f (ξ) dξ,

where
ag(x, ξ) =

∫
e2πi〈x,η〉a(x, ξ, η)ĝ(η) dη.

• Show that ag ∈ Γσ,s(ω̃)(R2d) with ω̃(x, ξ) = ω(x, ξ, 0) ∈ P0
s,σ(R2d).

• Use the continuity property proved by Abdeljawad and Toft (2020) and
representation of Gelfand-Shilov spaces as limits of modulation spaces.

• (Γσ,s(ω)(Rd) can be described by the decay properties of the STFT.)

GF2020 September 04, 2020 13 / 24



Ingredients of the proof:

• Invariance property which implies that it is enough to consider the case
r = t = 0, i.e. Op0,0(a)(f , g).
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• Show that ag ∈ Γσ,s(ω̃)(R2d) with ω̃(x, ξ) = ω(x, ξ, 0) ∈ P0
s,σ(R2d).

• Use the continuity property proved by Abdeljawad and Toft (2020) and
representation of Gelfand-Shilov spaces as limits of modulation spaces.

• (Γσ,s(ω)(Rd) can be described by the decay properties of the STFT.)

GF2020 September 04, 2020 13 / 24



The invariance property:
• Let sj, σj, j = 1, 2, 3, be such that

sj + σj ≥ 1, 0 < s2, s3 ≤ s1, and 0 < σ1 ≤ σ2, σ3 (2)

and let r, t ∈ [0, 1] be such that r + t ≤ 1. Then e−i〈rDξ+tDη ,Dx〉 on
S(R3d) restricts to a homeomorphism on Sσ1,s2,s3

s1,σ2,σ3(R3d), and extends
uniquely to a homeomorphism on (Sσ1,s2,s3

s1,σ2,σ3)
′(R3d).

If, in addition, ω ∈ P0
s1,σ2,σ3

(R3d), then a ∈ Γσ1,s2,s3
(ω) (R3d) if and only if

e−i〈rDξ+tDη ,Dx〉a ∈ Γσ1,s2,s3
(ω) (R3d).

• Let rj, tj ∈ [0, 1] be such that rj + tj ≤ 1, and let a, b ∈ (Sσ1,s2,s3
s1,σ2,σ3)

′(R3d),
where sj, σj > 0, and sj + σj ≥ 1, j = 1, 2, 3. Then

Opr1,t1(a) = Opr2,t2(b)

⇔ (3)

e−i〈r1Dξ+t1Dη ,Dx〉a(x, ξ, η) = e−i〈r2Dξ+t2Dη ,Dx〉b(x, ξ, η), x, ξ, η ∈ Rd.
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Remark:
By the definition of Γs0,s1,...,sk

(ω) (Rd0+···+dk) we conclude that if ω(x0, x1, . . . , xk)
is chosen to be

e−r(|x0|
1
σ0 +···+|xk|

1
σk ),

then
Γs0,s1,...,sk
(ω) (Rd0+···+dk) = Sσs (Rd).

If ωr(x0, x1, . . . , xk) = (1 + |x0|2 + . . . |xk|2)−r/2 instead, then

∩r>0Γ0
(ωr)

(Rd0+···+dk) = S(Rd).

GF2020 September 04, 2020 15 / 24



part II
some remarks
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• Let r, t ∈ [0, 1], r + t ≤ 1, and let (by a slight abuse of notation)
(r, t) ∈ R2d denote the vector with the first d coordinates equal to r, and
the others equal to t. The we consider the bilinear symbol given by

ar,t(x, y,w) = a(x + (r, t)(y− x),w)

= a((x1 + r(y1 − x1), x2 + t(y2 − x2),w1,w2)),

x = (x1, x2), y = (y1, y2),w = (w1,w2) ∈ R2d.
• Then the bilinear pseudo-differential operator Opr,t(a) is defined by(

Opr,t(a)(
−→
f )
)

(x)

=

∫∫
e−2πi〈y−x,w〉ar,t(x, y,w)f1(y1)f2(y2) dydw, x ∈ R2d, (4)

where
−→
f (y) = f1(y1)f2(y2).

• Assume that x1 = x2 = x ∈ Rd,R : (x, x) 7→ x (the trace mapping), and
let Φr,t : (x, y) 7→ R(x, x) + 〈(r, t), (y− x)〉.
Then (by considering the diagonal x1 = x2) Opr,t(a ◦ Φr,t) is the bilinear
operator considered in part I.
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• Let r, t ∈ [0, 1], r + t ≤ 1, and let f1, f2, g1, g2 ∈ S(1)(Rd),~f = (f1, f2)
and ~g = (g1, g2). Then the (r, t)–bilinear Wigner transform Wr,t(~f ,~g) is
given by

Wr,t(~f ,~g)(x, ω) = Wr(f1, g1)(x1, ω1)⊗Wt(f2, g2)(x2, ω2)

=

∫
R2d

e−2πi〈ω,s〉
∏

j=1,2

fj(xj + rsj)gj(xj − (1− r)sj) ds, (5)

s = (s1, s2) ∈ Rd × Rd.

• Then following formula holds (for ar,t ∈ (S(1)) (R4d)):

〈Opr,t(a)(
−→
f ),~g〉 = 〈ar,t,Wr,t(~g,~f )〉,

where 〈·, ·〉 is the extension of the inner product in L2(R4d).
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• Let r, t ∈ [0, 1], r + t ≤ 1, ~ϕ, ~φ ∈ S(1)(R2d) r {0} and a ∈ S(1)
′
(R4d).

Then (r, t)–localization operator is defined to be

A~ϕ,
~φ

a,r,t := Opr,t(a ∗Wr,t(~φ, ~ϕ)).

• Let there be given ϕ1, ϕ2, f1, f2 ∈ S(1)(Rd). Then the tensorized
short-time Fourier transform is given by

Vϕ1⊗ϕ2(f1 ⊗ f2)(x, ω) =

∫
R2d

(f1 ⊗ f2)(t)(Mω1Tx1ϕ1 ⊗Mω2Tx2ϕ2)(t)dt,

x = (x1, x2), ω = (ω1, ω2), t = (t1, t2) ∈ R2d.

• The weak definition of bilinear localization operator is given by

〈A~ϕ,~φa
~f ,~g〉 = 〈aVϕ1⊗ϕ2(f1 ⊗ f2),Vφ1⊗φ2(g1 ⊗ g2)〉

f1, f2, g1, g2 ∈ S(1)(Rd), a ∈ S(1)
′
(R4d).
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• The following invariance property holds: A~ϕ,
~φ

a = A~ϕ,
~φ

a,r,t.

• Continuity properties for bilinear localization operators when a and ~ϕ, ~φ
belong to certain modulation spaces can be found in e.g.

N. Teofanov, Bilinear localization operators on modulation spaces, J.
Funct. Spaces 2018, Art. ID 7560870, 10 pp.

• Decay and regularity properties for eigenfunctions of (linear) compact
localization operators are recently discussed in

F. Bastianoni, N. Teofanov, Subexponential decay and regularity estimates
for eigenfunctions of localization operators, submitted (arXiv:2004.12947)
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• Localization operators are also known as the STFT multipliers, and can
be interpreted as particular continuous frame multipliers.

• Bilinear continuous frame multipliers are introduced and studied in the
upcoming contribution

P. Balazs, N. Teofanov, Tensor products of continuous frames

• To conclude this lecture, we give just basic definitions here.
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• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,
and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. The mapping F : X → H is called a
continuous bilinear frame ofH with respect to (X, µ), if

1) F is weakly-measurable, i.e., for all~f ∈ H,

x = (x1, x2)→ 〈~f ,F(x)〉

is a measurable function on X;
2) there exist constants A,B > 0 such that

A‖~f‖2 ≤
∫

X
|〈~f ,F(x)〉|2 dµ(x) ≤ B‖~f‖2, ∀~f ∈ H. (6)

The constants A and B are called continuous frame bounds. If A = B,
then F is called a tight continuous frame, if A = B = 1 a Parseval frame.
The mapping F is called the Bessel mapping if only the second
inequality in (6) holds.

GF2020 September 04, 2020 22 / 24



• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,
and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. The mapping F : X → H is called a
continuous bilinear frame ofH with respect to (X, µ), if

1) F is weakly-measurable, i.e., for all~f ∈ H,

x = (x1, x2)→ 〈~f ,F(x)〉

is a measurable function on X;
2) there exist constants A,B > 0 such that

A‖~f‖2 ≤
∫

X
|〈~f ,F(x)〉|2 dµ(x) ≤ B‖~f‖2, ∀~f ∈ H. (6)

The constants A and B are called continuous frame bounds. If A = B,
then F is called a tight continuous frame, if A = B = 1 a Parseval frame.
The mapping F is called the Bessel mapping if only the second
inequality in (6) holds.

GF2020 September 04, 2020 22 / 24



• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,
and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. The mapping F : X → H is called a
continuous bilinear frame ofH with respect to (X, µ), if

1) F is weakly-measurable, i.e., for all~f ∈ H,

x = (x1, x2)→ 〈~f ,F(x)〉

is a measurable function on X;
2) there exist constants A,B > 0 such that

A‖~f‖2 ≤
∫

X
|〈~f ,F(x)〉|2 dµ(x) ≤ B‖~f‖2, ∀~f ∈ H. (6)

The constants A and B are called continuous frame bounds. If A = B,
then F is called a tight continuous frame, if A = B = 1 a Parseval frame.
The mapping F is called the Bessel mapping if only the second
inequality in (6) holds.

GF2020 September 04, 2020 22 / 24



• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,
and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. The mapping F : X → H is called a
continuous bilinear frame ofH with respect to (X, µ), if

1) F is weakly-measurable, i.e., for all~f ∈ H,

x = (x1, x2)→ 〈~f ,F(x)〉

is a measurable function on X;
2) there exist constants A,B > 0 such that

A‖~f‖2 ≤
∫

X
|〈~f ,F(x)〉|2 dµ(x) ≤ B‖~f‖2, ∀~f ∈ H. (6)

The constants A and B are called continuous frame bounds. If A = B,
then F is called a tight continuous frame, if A = B = 1 a Parseval frame.
The mapping F is called the Bessel mapping if only the second
inequality in (6) holds.

GF2020 September 04, 2020 22 / 24



• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,
and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. The mapping F : X → H is called a
continuous bilinear frame ofH with respect to (X, µ), if

1) F is weakly-measurable, i.e., for all~f ∈ H,

x = (x1, x2)→ 〈~f ,F(x)〉

is a measurable function on X;
2) there exist constants A,B > 0 such that

A‖~f‖2 ≤
∫

X
|〈~f ,F(x)〉|2 dµ(x) ≤ B‖~f‖2, ∀~f ∈ H. (6)

The constants A and B are called continuous frame bounds. If A = B,
then F is called a tight continuous frame, if A = B = 1 a Parseval frame.
The mapping F is called the Bessel mapping if only the second
inequality in (6) holds.

GF2020 September 04, 2020 22 / 24



• If F = F1 ⊗ F2 and G = G1 ⊗ G2 are Bessel mappings forH with
respect to (X, µ) and m : X → C is a measurable function, then the
operator Mm,F,G : H → H weakly defined by

〈Mm,F,G~f ,~g〉 = 〈Mm,F1⊗F2,G1⊗G2
~f ,~g〉

=

∫
X1

∫
X2

m(x1, x2)〈~f , (F1 ⊗ F2)(x)〉〈(G1 ⊗ G2)(x),~g〉dµ(x) (7)

for all~f ,~g ∈ H, is called continuous bilinear Bessel multiplier of F and
G with respect to the mapping m, called the symbol.
The following notation is to be understood in weak sense:

Mm,F,G~f :=

∫
X

m(x)〈~f ,F(x)〉G(x)dµ(x).

• We observe that the localization operators are an example of (linear)
multipliers in the above sense, cf. P. Balazs, D. Bayer, and A. Rahimi (J.
Phys A, 2012).
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for your kind attention!
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