Hyper-power series and analytic generalized smooth functions

Diksha Tiwari¹

joint work with: Paolo Giordano (Wolfgang Pauli Institute, Vienna)

¹University of Vienna, Vienna

GF2020

GF2020 1 / 15

Definition

The ring of Robinson-Colombeau defined by the index set $\mathbb{N} \times I$ and ordered as $(n, \varepsilon) \leq (m, e)$ if and only if $\varepsilon \leq e$, is denoted as ${}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}$ i.e. $\exists Q \in \mathbb{N} \forall^{0} \varepsilon \forall n \in \mathbb{N} : |a_{n\varepsilon}| \leq \rho_{\varepsilon}^{-Q}$ and $\forall q \in \mathbb{N} \forall^{0} \varepsilon \forall n \in \mathbb{N} : |a_{n\varepsilon}| \leq \rho_{\varepsilon}^{q}$.

Diksha Tiwari (Uni Wien, Vienna)

GF2020 2 / 15

Definition

The ring of Robinson-Colombeau defined by the index set $\mathbb{N} \times I$ and ordered as $(n, \varepsilon) \leq (m, e)$ if and only if $\varepsilon \leq e$, is denoted as ${}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}$ i.e. $\exists Q \in \mathbb{N} \forall^{0} \varepsilon \forall n \in \mathbb{N} : |a_{n\varepsilon}| \leq \rho_{\varepsilon}^{-Q}$ and $\forall q \in \mathbb{N} \forall^{0} \varepsilon \forall n \in \mathbb{N} : |a_{n\varepsilon}| \leq \rho_{\varepsilon}^{q}$.

Also, in next slides we write $\sigma \geq \rho^*$ whenever $\exists Q_{\sigma,\rho} \in \mathbb{N} \forall^0 \varepsilon$: $\sigma_{\varepsilon} \geq \rho_{\varepsilon}^{Q_{\sigma,\rho}}$.

Definition

A hyperseries of the form ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ with $\sigma \ge \rho^*$ is hyper-power series such that $(a_n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!]$. Here ${}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!] = \{(a_n)_{n\in\mathbb{N}} \mid (a_n(x-c)^n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}\}.$

Definition

A hyperseries of the form ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ with $\sigma \ge \rho^*$ is hyper-power series such that $(a_n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!]$. Here ${}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!] = \{(a_n)_{n\in\mathbb{N}} \mid (a_n(x-c)^n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}\}.$

Definition

A hyperseries of the form ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ with $\sigma \ge \rho^*$ is hyper-power series such that $(a_n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!]$. Here ${}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!] = \{(a_n)_{n\in\mathbb{N}} \mid (a_n(x-c)^n)_{n\in\mathbb{N}}\in {}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}\}.$

Theorem

If x, c are in ${}^{\rho}\widetilde{\mathbb{R}}$ also $a_n \in {}^{\rho}\widetilde{\mathbb{R}}$ for every n. Then $(a_n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}[\![x - c]\!]$, if $\exists N \in \mathbb{N} : |x - c| \leq -N \log d\rho$.

Definition

A hyperseries of the form ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ with $\sigma \ge \rho^*$ is hyper-power series such that $(a_n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!]$. Here ${}^{\rho}\widetilde{\mathbb{R}}[\![x-c]\!] = \{(a_n)_{n \in \mathbb{N}} \mid (a_n(x-c)^n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}_{\mathrm{u}}\}.$

Theorem

If x, c are in ${}^{\rho}\widetilde{\mathbb{R}}$ also $a_n \in {}^{\rho}\widetilde{\mathbb{R}}$ for every n. Then $(a_n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}[\![x - c]\!]$, if $\exists N \in \mathbb{N} : |x - c| \leq -N \log d\rho$.

Lemma

If
$$x, c \in {}^{\rho}\widetilde{\mathbb{R}}$$
 and $(a_n)_n \in {}^{\rho}\widetilde{\mathbb{R}}_u$ so if $\forall^0 \varepsilon, \forall n \in \mathbb{N}$, we have $a_{n\varepsilon} \sim_{\rho} \overline{a}_{n\varepsilon}$,
 $x_{\varepsilon} \sim_{\rho} \overline{x}_{\varepsilon}$ and $c_{\varepsilon} \sim_{\rho} \overline{c}_{\varepsilon}$. Then if $(a_n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}[\![x - c]\!]$ so
 $(\overline{a}_n)_{n \in \mathbb{N}} \in {}^{\rho}\widetilde{\mathbb{R}}[\![x - c]\!]$.

Radius of Convergence

Theorem

If
$${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}}a_nx^n$$
 converges at x_i then it converges for all $|x|\leq |x_i|$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Radius of Convergence

Theorem

If
$${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}}a_{n}x^{n}$$
 converges at x_{i} then it converges for all $|x|\leq |x_{i}|$.

Corollary

Let ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ be a hyper-power series, if $\exists r = \sup\{|x-c|, {}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n \text{ converges}\}$, then the hyper-power series converges absolutely for $0 \le |x-c| < r$.

Image: Image:

Radius of Convergence

Theorem

If
$${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n x^n$$
 converges at x_i then it converges for all $|x| \leq |x_i|$.

Corollary

Let ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ be a hyper-power series, if $\exists r = \sup\{|x-c|, {}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n \text{ converges}\}$, then the hyper-power series converges absolutely for $0 \le |x-c| < r$.

Definition

Let ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ be a hyper-power series then the radius of convergence R of hyper-power series ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$ is defined as $R = \sup\{|x-c| : {}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n converges\}$, if exist. If the supremum does not exist, we can say that a hyper-power series converges at \bar{x} , hence also at all x such that $|x-c| \le |\bar{x}-c|$.

イロト イヨト イヨト イヨト

•
$$^{\rho}\sum_{n\in {}^{\rho}\widetilde{\mathbb{N}}}\frac{x^{n}}{n!}=e^{x}$$
, $\forall x\in {}^{\rho}\widetilde{\mathbb{R}}$ finite.

Diksha Tiwari (Uni Wien, Vienna)

メロト メポト メヨト メヨト

$$\begin{array}{l} \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{x^{n}}{n!} = e^{x}, \; \forall x \in {}^{\rho} \widetilde{\mathbb{R}} \; \text{finite.} \\ \\ \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{\delta^{(n)}(0)}{n!} x^{n} = \delta(x), \; \forall x : \; |x| < d\rho^{q} \end{array}$$

メロト メポト メヨト メヨト

$$\begin{array}{l} \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{x^{n}}{n!} = e^{x}, \; \forall x \in {}^{\rho} \widetilde{\mathbb{R}} \; \text{finite.} \\ \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{\delta^{(n)}(0)}{n!} x^{n} = \delta(x), \; \forall x : \; |x| < d\rho^{q} \\ \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; x^{n} \; \text{converges to} \; \frac{1}{1-x}, \; \forall \, |x| < 1. \end{array}$$

≣▶ ≣ ∽೩C GF2020 5/15

メロト メポト メヨト メヨト

$$\begin{array}{l} \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{x^{n}}{n!} = e^{x}, \, \forall x \in {}^{\rho} \widetilde{\mathbb{R}} \, \text{ finite.} \\ \\ \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; \frac{\delta^{(n)}(0)}{n!} x^{n} = \delta(x), \, \forall x : \, |x| < d\rho^{q} \\ \\ \bullet & {}^{\rho} \sum_{n \in {}^{\rho} \widetilde{\mathbb{N}}} \; x^{n} \text{ converges to } \frac{1}{1-x}, \, \forall \, |x| < 1. \end{array}$$

For the hyper-power series ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$, let us define A and ρ by $A = \limsup |a_n|^{1/n}$ for $n \in {}^{\sigma}\widetilde{\mathbb{N}}$, $\rho = 1/A$, if this $\limsup exist$ in sharp topology. Then ρ is the radius of convergence.

Theorem

If
$$f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$$
 converges under r then $f \in {}^{\rho}\mathcal{GC}^{\infty}(B_r(c), {}^{\rho}\widetilde{\mathbb{R}})$.

メロト メポト メモト メモト

Theorem

If
$$f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x-c)^n$$
 converges under r then $f \in {}^{\rho}\mathcal{GC}^{\infty}(B_r(c), {}^{\rho}\widetilde{\mathbb{R}})$.

Definition

Let $\sigma \geq \rho^*$, a GSF $f \in {}^{\rho}\mathcal{GC}^{\infty}(U, {}^{\rho}\widetilde{\mathbb{R}})$ is real analytic with respect to σ and ρ on a sharply open set U, if $\forall x_0 \in U \exists (a_n)_n \in {}^{\rho}\widetilde{\mathbb{R}} \exists r \in {}^{\rho}\widetilde{\mathbb{R}}_{>0} : B_r(x_0) \subseteq U$, $f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$. It is denoted by $f \in {}^{\rho}\mathcal{GC}^{\omega}(U, {}^{\rho}\widetilde{\mathbb{R}})$

Theorem

If
$$f(x) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} a_n(x - c)^n$$
 converges under r then $f \in {}^{\rho} \mathcal{GC}^{\infty}(B_r(c), {}^{\rho} \widetilde{\mathbb{R}})$.

Definition

Let $\sigma \geq \rho^*$, a GSF $f \in {}^{\rho}\mathcal{GC}^{\infty}(U, {}^{\rho}\widetilde{\mathbb{R}})$ is real analytic with respect to σ and ρ on a sharply open set U, if $\forall x_0 \in U \exists (a_n)_n \in {}^{\rho}\widetilde{\mathbb{R}} \exists r \in {}^{\rho}\widetilde{\mathbb{R}}_{>0} : B_r(x_0) \subseteq U$, $f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$. It is denoted by $f \in {}^{\rho}\mathcal{GC}^{\omega}(U, {}^{\rho}\widetilde{\mathbb{R}})$.

Theorem

Let f be an analytic function in $B_r(c)$, then necessarily we have $a_n = \frac{f^{(n)}(c)}{n!}$.

Theorem

If
$$f(x) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} a_n(x-c)^n$$
 converges under r then $f \in {}^{\rho} \mathcal{GC}^{\infty}(B_r(c), {}^{\rho} \widetilde{\mathbb{R}})$.

Definition

Let $\sigma \geq \rho^*$, a GSF $f \in {}^{\rho}\mathcal{GC}^{\infty}(U, {}^{\rho}\widetilde{\mathbb{R}})$ is real analytic with respect to σ and ρ on a sharply open set U, if $\forall x_0 \in U \exists (a_n)_n \in {}^{\rho}\widetilde{\mathbb{R}} \exists r \in {}^{\rho}\widetilde{\mathbb{R}}_{>0} : B_r(x_0) \subseteq U$, $f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$. It is denoted by $f \in {}^{\rho}\mathcal{GC}^{\omega}(U, {}^{\rho}\widetilde{\mathbb{R}})$.

Theorem

Let f be an analytic function in $B_r(c)$, then necessarily we have $a_n = \frac{f^{(n)}(c)}{n!}$.

Theorem

If $f \in C^{\omega}(\Omega)$ then $\exists \sigma \geq \rho^{\star}$ such that it's embedding is an analytic GSF.

If two hyper-power series, ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n x^n$ and ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} b_n x^n$ converges at x_1 and x_2 respectively, then their summation converges at min (x_1, x_2) .

If two hyper-power series, ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n x^n$ and ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} b_n x^n$ converges at x_1 and x_2 respectively, then their summation converges at min (x_1, x_2) .

Theorem

Consider two hyper-power series ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}}a_n(x-x_0)^n$ and ${}^{\rho}\sum_{n\in {}^{\sigma}\widetilde{\mathbb{N}}}b_n(x-x_0)^n$ centered at $x_o \in {}^{\rho}\widetilde{\mathbb{R}}$, then their sum and difference can be obtained by term-wise addition and subtraction.

Multiplication and division of hyper-power series

Theorem

If
$$f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$$
 and $g(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} b_n(x - x_0)^n$ are two hyper-power series, then $f(x) \cdot g(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} \sum_{i \ge 0}^n a_i b_{n-i}(x - x_0)^n$.

Diksha Tiwari (Uni Wien, Vienna)

< 円∛

Multiplication and division of hyper-power series

Theorem

If
$$f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$$
 and $g(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} b_n(x - x_0)^n$ are two hyper-power series, then $f(x) \cdot g(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} \sum_{i \ge 0}^n a_i b_{n-i}(x - x_0)^n$.

Theorem

If
$$f(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - x_0)^n$$
 and $g(x) = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} b_n(x - x_0)^n$ are two
hyper-power series such that $g(x)$ is invertible, then
$$\frac{f(x)}{g(x)} = {}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} d_n(x - x_0)^n, \text{ where } \forall^0 \varepsilon, d_0 \varepsilon = \frac{a_{0\varepsilon}}{b_{0\varepsilon}} \text{ and}$$
$$d_{n\varepsilon} = \frac{1}{b_{0\varepsilon}^{n+1}} det \begin{bmatrix} a_{n\varepsilon} & b_{1\varepsilon} & b_{2\varepsilon} & \dots & b_{n\varepsilon} \\ a_{n-1\varepsilon} & b_{0\varepsilon} & b_{1\varepsilon} & \dots & b_{n-1\varepsilon} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ a_2 & 0 & b_{0\varepsilon} & \dots & b_{n-2} \\ a_1 & 0 & 0 & \dots & b_{0\varepsilon} \end{bmatrix}.$$

< □ > < 同 >

Integration and differentiation of hyper-power series

Theorem

If $f \in {}^{\rho}\mathcal{GC}^{\omega}(B_r(c), {}^{\rho}\widetilde{\mathbb{R}})$, then f can be differentiated term by term in $B_r(c)$.

Diksha Tiwari (Uni Wien, Vienna)

GF2020 9 / 15

If $f \in {}^{\rho}\mathcal{GC}^{\omega}(B_r(c), {}^{\rho}\widetilde{\mathbb{R}})$, then f can be differentiated term by term in $B_r(c)$.

Theorem

If $f \in {}^{\rho}\mathcal{GC}^{\omega}(B_r(c), {}^{\rho}\widetilde{\mathbb{R}})$, then f can be integrated term by term in $B_r(c)$.

A hyper-power series ${}^{\rho}\sum_{n \in {}^{\sigma}\widetilde{\mathbb{N}}} a_n(x - \alpha)^n$ has radius of convergence r, iff for each 0 < R < r, there exist a constant $0 < C_R < 1$, such that $|a_j| \leq \frac{C_R}{R^j}$, $\forall j \in \mathbb{N}$.

A hyper-power series ${}^{\rho}\sum_{n \in {}^{\circ}\widetilde{\mathbb{N}}} a_n(x - \alpha)^n$ has radius of convergence r, iff for each 0 < R < r, there exist a constant $0 < C_R < 1$, such that $|a_j| \leq \frac{C_R}{R^j}$, $\forall j \in \mathbb{N}$.

Theorem

Let $f \in {}^{\rho}\mathcal{GC}^{\infty}(U, {}^{\rho}\widetilde{\mathbb{R}})$ for some open interval U. The function $f \in {}^{\rho}\mathcal{GC}^{\omega}(U, {}^{\rho}\widetilde{\mathbb{R}})$, iff for each $\alpha \in U$, there is an open set $J \in {}^{\rho}\widetilde{\mathbb{R}}$ with $\alpha \in J \subseteq U$ and constants $C \in (0, 1) \subseteq {}^{\rho}\widetilde{\mathbb{R}}$, $R \in {}^{\rho}\widetilde{\mathbb{R}}_{>0}$ such that the derivatives of f satisfy $|f_j(x)| \leq C \frac{j!}{R^j}, \forall x \in J, \forall j \in \mathbb{N}$.

If f and g are analytic GSF on an open interval U and if there is a point x_0 in U such that $f^j(x_0) = g^j(x_0), \forall j \in \mathbb{N}$. Then $f(x) = g(x), \forall x \in U$, if the following conditions are satisfied

If f and g are analytic GSF on an open interval U and if there is a point x_0 in U such that $f^j(x_0) = g^j(x_0), \forall j \in \mathbb{N}$. Then $f(x) = g(x), \forall x \in U$, if the following conditions are satisfied

■ Both f and g always have real convergence radii: $\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r): f(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{f^{j}(x)}{j!} (y - x)^{j}$ and $\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r): g(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{g^{j}(x)}{j!} (y - x)^{j}.$

If f and g are analytic GSF on an open interval U and if there is a point x_0 in U such that $f^j(x_0) = g^j(x_0), \forall j \in \mathbb{N}$. Then $f(x) = g(x), \forall x \in U$, if the following conditions are satisfied

Both f and g always have real convergence radii: ∀x ∈ U∃r ∈ ℝ_{>0} ∀y ∈ (x − r, x + r): f(y) = ^ρ∑_{n∈^σℕ} f^j(x)/j! (y − x)^j and ∀x ∈ U∃r ∈ ℝ_{>0} ∀y ∈ (x − r, x + r): g(y) = ^ρ∑_{n∈^σℕ} g^j(x)/j! (y − x)^j.
∀x ∈ U, f'(x) and g'(x) are finite.

Corollary

If f and g are analytic GSF on an open interval U and if there is an open set $W \subseteq U$ such that, $f(x) = g(x), \forall x \in W$, then $f(x) = g(x), \forall x \in U$, if

Corollary

If f and g are analytic GSF on an open interval U and if there is an open set $W \subseteq U$ such that, $f(x) = g(x), \forall x \in W$, then $f(x) = g(x), \forall x \in U$, if

• Both f and g always have real convergence radii:

$$\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r) : f(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{f^{j}(x)}{j!} (y - x)^{j}$$
 and
 $\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r) : g(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{g^{j}(x)}{j!} (y - x)^{j}.$

Corollary

If f and g are analytic GSF on an open interval U and if there is an open set $W \subseteq U$ such that, $f(x) = g(x), \forall x \in W$, then $f(x) = g(x), \forall x \in U$, if and g always have real convergence radii: $\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r) : f(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{f^{j}(x)}{j!} (y - x)^{j}$ and $\forall x \in U \exists r \in \mathbb{R}_{>0} \forall y \in (x - r, x + r) : g(y) = {}^{\rho} \sum_{n \in {}^{\sigma} \widetilde{\mathbb{N}}} \frac{g^{j}(x)}{j!} (y - x)^{j}$. $\forall x \in U, f'(x) \text{ and } g'(x) \text{ are finite.}$

イロト イ理ト イヨト イヨト

Real Analytic CGF

Definition

Let $\Omega \subseteq \mathbb{R}$ be an open set. A generalized function $u \in \mathcal{G}^{s}(\Omega)$ is called *real analytic* at $x_{0} \in \Omega$ if there exist an open ball $B = B_{r}(x_{0,}) \subseteq \Omega$ and a net (u_{ε}) such that $u|_{B} = [u_{\varepsilon}] \in \mathcal{G}^{s}(B)$ and

$$\exists C \in \mathbb{R}_{>0} \, \exists N \in \mathbb{R}_{>0} \, \forall^0 \varepsilon \, \forall \alpha \in \mathbb{N}^d : \, \sup_{x \in B} |u_{\varepsilon}^{\alpha}(x)| \leq C^{|\alpha|+1} \alpha! \varepsilon^{-N}.$$

Real Analytic CGF

Definition

Let $\Omega \subseteq \mathbb{R}$ be an open set. A generalized function $u \in \mathcal{G}^{s}(\Omega)$ is called *real analytic* at $x_{0} \in \Omega$ if there exist an open ball $B = B_{r}(x_{0,}) \subseteq \Omega$ and a net (u_{ε}) such that $u|_{B} = [u_{\varepsilon}] \in \mathcal{G}^{s}(B)$ and

$$\exists C \in \mathbb{R}_{>0} \, \exists N \in \mathbb{R}_{>0} \, \forall^0 \varepsilon \, \forall \alpha \in \mathbb{N}^d : \, \sup_{x \in B} |u_{\varepsilon}^{\alpha}(x)| \leq C^{|\alpha|+1} \alpha! \varepsilon^{-N}.$$

Conjecture:

If f is an analytic GSF defined on $\widetilde{\Omega}_c$ (i.e. compactly supported points of $\Omega \subseteq \mathbb{R}$), then f is an analytic CGF.

Real Analytic CGF

Definition

Let $\Omega \subseteq \mathbb{R}$ be an open set. A generalized function $u \in \mathcal{G}^{s}(\Omega)$ is called *real analytic* at $x_{0} \in \Omega$ if there exist an open ball $B = B_{r}(x_{0,}) \subseteq \Omega$ and a net (u_{ε}) such that $u|_{B} = [u_{\varepsilon}] \in \mathcal{G}^{s}(B)$ and

$$\exists C \in \mathbb{R}_{>0} \, \exists N \in \mathbb{R}_{>0} \, \forall^0 \varepsilon \, \forall \alpha \in \mathbb{N}^d : \, \sup_{x \in B} |u_{\varepsilon}^{\alpha}(x)| \leq C^{|\alpha|+1} \alpha! \varepsilon^{-N}.$$

Conjecture:

If f is an analytic GSF defined on $\widetilde{\Omega}_c$ (i.e. compactly supported points of $\Omega \subseteq \mathbb{R}$), then f is an analytic CGF.

Conjecture:

If f is an analytic CGF, then it is also an analytic GSF.

< □ > < 同 > < 回 > < Ξ > < Ξ

• Complex analytic GSF.

Diksha Tiwari (Uni Wien, Vienna)

< □ > < 同 > < 回 > < Ξ > < Ξ

э

GF2020

14 / 15

- Complex analytic GSF.
- Uniform convergence of complex analytic GSF.

(4) (3) (4) (4) (4)

Image: Image:

- Complex analytic GSF.
- Oniform convergence of complex analytic GSF.
- Gauchy-Kowalevsky theorem using (2) and Picard-Lindlöf theorem for PDE.

Contact:

diksha.tiwari@univie.ac.at

Thank you for your attention!

Diksha Tiwari (Uni Wien, Vienna)

GF2020 15 / 15

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >