Analytic pseudo-differential calculus via the Bargmann transform

Joachim Toft

Linnæus University, Växjö, Sweden, joachim.toft@Inu.se

GF2020, Ghent, Belgium, September 2020

Plan of the talk

- Pseudo-differential operators and something about modulation spaces
- 2 Test functions, distributions and expansions
- 3 Images under the Bargmann transform
- 4 Analytic pseudo-differential and integral operators

Important contributors to the topic, e.g.:

W. Bauer, F. A. Berezin, L. A. Coburn, N. Lerner

Important contributors to the topic, e.g.:

W. Bauer, F. A. Berezin, L. A. Coburn, N. Lerner

The talk is based on the following:

- J. Toft Images of function and distribution spaces under the Bargmann transform, J. Pseudo-Differ. Oper. Appl. 8 (2017), 83–139.
- N. Teofanov, J. Toft *Pseudo-differential calculus in a Bargmann setting*, Ann. Acad. Sci. Fenn. Math. 45 (2020), 227–257.
- N. Teofanov, J. Toft, P. Wahlberg *Some features on analytic pseudo-differential calculus* (Ongoing project)

N. Teofanov

P. Wahlberg

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}^{\prime}(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_{A}(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}^{\prime}(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal representation: A = 0, i.e. $a(x, D) = Op_0(a)$

Weyl quantization: $A = \frac{1}{2} \cdot I$, i.e. $Op^{w}(a) = Op_{\frac{1}{2} \cdot I}(a)$.

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi)e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal:
$$a(x, D) = Op_0(a)$$

Weyl:
$$\operatorname{Op}^{w}(a) = \operatorname{Op}_{\frac{1}{2} \cdot I}(a)$$

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_A(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^d).$$

Normal:
$$a(x, D) = \operatorname{Op}_0(a)$$
 Weyl: $\operatorname{Op}^w(a) = \operatorname{Op}_{\frac{1}{2}.I}(a)$

Partial differential equations:

$$a(x,\xi) = \sum_{|\alpha| \leqslant N} a_{\alpha}(x)\xi^{\alpha} \quad \Leftrightarrow \quad a(x,D) = \sum_{|\alpha| \leqslant N} a_{\alpha}(x)D^{\alpha}, \qquad D_{j} = \frac{1}{i}\frac{\partial}{\partial x_{j}}.$$

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_A(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^d).$$

Normal:
$$a(x, D) = \operatorname{Op}_0(a)$$
 Weyl: $\operatorname{Op}^w(a) = \operatorname{Op}_{\frac{1}{2}.I}(a)$

Partial differential equations:

$$a(x,\xi) = \sum_{|\alpha| \leqslant N} a_{\alpha}(x)\xi^{\alpha} \quad \Leftrightarrow \quad a(x,D) = \sum_{|\alpha| \leqslant N} a_{\alpha}(x)D^{\alpha}, \qquad D_{j} = \frac{1}{i}\frac{\partial}{\partial x_{j}}.$$

Natural assumption: *a* is smooth and e.g.

$$|\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi)| \lesssim \omega(x,\xi) (1+|\xi|)^{-|\beta|}.$$

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ト り へ ②

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi)e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal:
$$a(x, D) = Op_0(a)$$

Weyl:
$$\operatorname{Op}^{w}(a) = \operatorname{Op}_{\frac{1}{2} \cdot I}(a)$$

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal:
$$a(x, D) = \operatorname{Op}_0(a)$$
 Weyl: $\operatorname{Op}^w(a) = \operatorname{Op}_{\frac{1}{2}, I}(a)$

Time-frequency analysis: x = "time" and $\xi = "frequency". Then <math>a(x, D)$ describes a non-stationary filter with filter constant $a(x, \xi)$.

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal:
$$a(x, D) = \operatorname{Op}_0(a)$$
 Weyl: $\operatorname{Op}^w(a) = \operatorname{Op}_{\frac{1}{2}, I}(a)$

Time-frequency analysis: x = "time" and $\xi =$ "frequency". Then a(x, D) describes a non-stationary filter with filter constant $a(x, \xi)$.

Natural assumption: L^p -estimates on local Fourier transforms on $a(x, \xi)$.

(Local Fourier transforms = Short-time Fourier transforms, Wigner distributions, coherent state transforms etc.)

Let $A \in \mathbf{R}^{d \times d}$ (a matrix) be fixed, $a \in \mathscr{S}'(\mathbf{R}^{2d})$. Then the pseudo-differential operator $\operatorname{Op}_A(a)$ is defined as

$$\operatorname{Op}_{A}(a)f(x) = (2\pi)^{-d} \iint a(x - A(x - y), \xi) e^{i\langle x - y, \xi \rangle} f(y) \, dy d\xi, \quad f \in \mathscr{S}(\mathbf{R}^{d}).$$

Normal:
$$a(x, D) = \operatorname{Op}_0(a)$$
 Weyl: $\operatorname{Op}^w(a) = \operatorname{Op}_{\frac{1}{2}, I}(a)$

Time-frequency analysis: x = "time" and $\xi = \text{"frequency"}$. Then a(x, D) describes a non-stationary filter with filter constant $a(x, \xi)$.

Natural assumption: L^p -estimates on local Fourier transforms on $a(x, \xi)$.

(Local Fourier transforms = Short-time Fourier transforms, Wigner distributions, coherent state transforms etc.)

This leads to Modulation Spaces.

4 / 19

Modulation spaces (Feichtinger)

The Fourier transform and Short-time Fourier transform:

$$\widehat{f}(\xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y, \qquad V_\phi f(x, \xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \overline{\phi(y-x)} \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y.$$

H. Feichtinger

K. Gröchenig

Modulation spaces (Feichtinger)

The Fourier transform and Short-time Fourier transform:

$$\widehat{f}(\xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y, \qquad V_\phi f(x, \xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \overline{\phi(y-x)} \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y.$$

Let $p, q \in (0, \infty]$ and $0 < \omega \in L^{\infty}_{loc}(\mathbf{R}^{2d})$ be such that $1/\omega \in L^{\infty}_{loc}(\mathbf{R}^{2d})$.

H. Feichtinger

K. Gröchenig

Modulation spaces (Feichtinger)

The Fourier transform and Short-time Fourier transform:

$$\widehat{f}(\xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y, \qquad V_\phi f(x, \xi) = (2\pi)^{-\frac{d}{2}} \int f(y) \overline{\phi(y-x)} \mathrm{e}^{-\mathrm{i}\langle y, \xi \rangle} \, \mathrm{d}y.$$

 $p, q \in (0, \infty]$ and $0 < \omega \in L^{\infty}_{loc}(\mathbf{R}^{2d})$ be such that $1/\omega \in L^{\infty}_{loc}(\mathbf{R}^{2d})$.

• f in the modulation space $M_{(\omega)}^{p,q}(\mathbf{R}^d)$, iff

$$\|f\|_{M^{p,q}_{(\omega)}} \equiv \left(\int \left(\int |V_{\phi}f(x,\xi)\omega(x,\xi)|^p dx\right)^{q/p} d\xi\right)^{1/q} < \infty.$$

Analytic Ψdo

H. Feichtinger

K. Gröchenig

Some properties (Feichtinger, Gröchenig, ...)

$$\text{Let} \quad \textit{M}^{p,q}_{s,t} = \textit{M}^{p,q}_{(\omega)}, \quad \textit{M}^{p,q} = \textit{M}^{p,q}_{0,0} \quad \text{ when } \quad \omega(x,\xi) = \langle x \rangle^t \langle \xi \rangle^s, \ \langle x \rangle = (1+|x|^2)^{1/2}.$$

- $M_{s,0}^{2,2} = L_s^2$ and $M_{0,s}^{2,2} = H_s^2$
- $\bullet \ \| \mathscr{F} f \|_{M^{p,p}_{(\omega)}} \asymp \| f \|_{M^{p,p}_{(\omega)}} \quad \text{ when } \quad \omega(-x,\xi) = \omega(\xi,x).$
- $M_{(\omega)}^{p,q}$ independent of ϕ (Usually)

Some properties (Feichtinger, Gröchenig, ...)

$$\text{Let} \quad \textit{M}^{p,q}_{s,t} = \textit{M}^{p,q}_{(\omega)}, \quad \textit{M}^{p,q} = \textit{M}^{p,q}_{0,0} \quad \text{ when } \quad \omega(x,\xi) = \langle x \rangle^t \langle \xi \rangle^s, \ \langle x \rangle = (1+|x|^2)^{1/2}.$$

- $M_{s,0}^{2,2} = L_s^2$ and $M_{0,s}^{2,2} = H_s^2$
- $\bullet \ \| \mathscr{F} f \|_{M^{p,p}_{(\omega)}} \asymp \| f \|_{M^{p,p}_{(\omega)}} \quad \text{ when } \quad \omega(-x,\xi) = \omega(\xi,x).$
- $M_{(\omega)}^{p,q}$ independent of ϕ (Usually)
- ullet if $1\leqslant p,q<\infty$, then $(M_{(\omega)}^{p,q})'=M_{(1/\omega)}^{p',q'}$ ig(1/p+1/p'=1ig)
- if $p_1 \leqslant p_2$, $q_1 \leqslant q_2$ then $M_{(\omega)}^{p_1,q_1} \subseteq M_{(\omega)}^{p_2,q_2}$
- Convenient discretization properties with Gabor frames
- Convenient embeddings between modulation spaces, Lebesgue spaces and Besov spaces

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ ▼ 0 €

 J. Toft
 Analytic Ψdo
 Ghent, September 2020
 6 / 19

J. Toft

Ghent, September 2020

J. Toft

Analytic Ψdo

Ghent, September 2020 7 / 19

J. Toft Analytic Ψdo

Ghent, September 2020

7 / 19

J. Toft

Analytic Ψdo

Ghent, September 2020

J. Toft Analytic Ψdo

Ghent, September 2020

7 / 19

J. Toft

J. Toft Analytic Ψdo

Ghent, September 2020

7 / 19

Hermite function h_{α} with respect to $\alpha \in \mathbf{N}^d$ is given by

$$h_{\alpha}(x) = \pi^{-\frac{d}{4}} (-1)^{|\alpha|} (2^{|\alpha|} \alpha!)^{-\frac{1}{2}} e^{\frac{1}{2} \cdot |x|^2} (\partial^{\alpha} e^{-|x|^2}).$$

Formal Hermite function expansions:

$$f(x) = \sum_{\alpha \in \mathbb{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbb{R}^d, \ c(\alpha) \in \mathbb{C}.$$
 (*)

Hermite function h_{α} with respect to $\alpha \in \mathbf{N}^d$ is given by

$$h_{\alpha}(x) = \pi^{-\frac{d}{4}} (-1)^{|\alpha|} (2^{|\alpha|} \alpha!)^{-\frac{1}{2}} e^{\frac{1}{2} \cdot |x|^2} (\partial^{\alpha} e^{-|x|^2}).$$

Formal Hermite function expansions:

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Definition

Let $s, \sigma > 0$.

• The Pilipović space of Roumieu / Beurling type, $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$, consists of all f in (*) such that $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ holds for some / every r > 0.

Hermite function h_{α} with respect to $\alpha \in \mathbf{N}^d$ is given by

$$h_{\alpha}(x) = \pi^{-\frac{d}{4}}(-1)^{|\alpha|}(2^{|\alpha|}\alpha!)^{-\frac{1}{2}}e^{\frac{1}{2}\cdot|x|^2}(\partial^{\alpha}e^{-|x|^2}).$$

Formal Hermite function expansions:

$$f(x) = \sum_{\alpha \in \mathbb{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbb{R}^d, \ c(\alpha) \in \mathbb{C}.$$
 (*)

Definition

Let $s, \sigma > 0$.

- The Pilipović space of Roumieu / Beurling type, $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$, consists of all f in (*) such that $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ holds for some / every r > 0.
- The Pilipović space $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d)$ consists of all f in (*) such that $|c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}}$ holds for some / every r > 0.

8 / 19

J. Toft Analytic Ψdo Ghent, September 2020

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

We also let

 $\mathcal{H}_0(\mathbf{R}^d) = \text{All finite}$ Hermite series expansions in (*),

 $\mathcal{H}'_0(\mathbf{R}^d) = \text{All formal Hermite series expansions in (*)}.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

By letting $\mathbf{R}_{\flat} = \mathbf{R}_{+} \cup \{\flat_{\sigma}\}$ with convention

$$s < \flat_{\sigma_1} < \flat_{\sigma_2} < \frac{1}{2}$$
, when $s < \frac{1}{2}$, $\sigma_1 < \sigma_2$

it follows

$$\mathcal{H}_0 \overset{\text{Dense}}{\hookrightarrow} \mathcal{H}_{0,s_1} \overset{\text{Dense}}{\hookrightarrow} \mathcal{H}_{s_1} \overset{\text{Dense}}{\hookrightarrow} \mathcal{H}_{0,s_2}, \qquad s_1,s_2 \in \textbf{R}_{\flat}, \ s_1 < s_2.$$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every}$ r > 0

For Gelfand-Shilov spaces S_s and Σ_s , Pilipović proved 1986:

$$\mathcal{H}_s = \mathcal{S}_s = \{ f ; \|(|x|^2 - \Delta)^N f\|_{L^{\infty}} \lesssim h^N N!^{2s} \text{ for some } h > 0 \}, \qquad s \geqslant \frac{1}{2},$$

$$\mathcal{H}_{0,s} = \Sigma_s = \{\,f\,;\, \|(|x|^2 - \Delta)^N f\|_{L^\infty} \lesssim h^N N!^{2s} \text{ for every } h > 0\,\}, \qquad s > \frac{1}{2}.$$

$$\text{But} \dots \Sigma_{1/2} = \{0\} \neq \{\,f\,;\, \|(|x|^2 - \Delta)^N f\|_{L^\infty} \lesssim h^N N! \text{ for every } h > 0\,\} \qquad = \mathcal{H}_{0,1/2}.$$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Recent extension:

Thm. (T. 2017)

Let $0 \le s \in \mathbf{R}$. Then:

$$\mathcal{H}_s = \{\,f\,;\, \|(|x|^2 - \Delta)^N f\|_{L^\infty} \lesssim h^N N!^{2s} \text{ for some } h>0\,\},$$

and

$$\mathcal{H}_{0,s} = \{ \, f \, ; \, \| (|x|^2 - \Delta)^N f \|_{L^\infty} \lesssim h^N N!^{2s} \text{ for every } h > 0 \, \}.$$

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りで

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

We let $\mathcal{H}'_s(\mathbf{R}^d)$ / $\mathcal{H}'_{0,s}(\mathbf{R}^d)$ be the set of all f in (*) such that $|c(\alpha)| \lesssim e^{+r|\alpha|^{\frac{1}{2s}}}$, $s \in \mathbf{R}_+$, and $|c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{+\frac{1}{2\sigma}}$, $s = \flat_\sigma$, for every / some r > 0.

Let

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) h_{\alpha}(x), \quad x \in \mathbf{R}^d, \ c(\alpha) \in \mathbf{C}.$$
 (*)

Let $s, \sigma > 0$.

- $\mathcal{H}_s(\mathbf{R}^d)$ / $\mathcal{H}_{0,s}(\mathbf{R}^d)$ = all f in (*) s.t. $|c(\alpha)| \lesssim e^{-r|\alpha|^{\frac{1}{2s}}}$ for some / every r > 0.
- $\mathcal{H}_{\flat_{\sigma}}(\mathbf{R}^d) / \mathcal{H}_{0,\flat_{\sigma}}(\mathbf{R}^d) = \text{all } f \text{ in (*) s.t. } |c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}} \text{ for some } / \text{ every } r > 0.$

We let $\mathcal{H}'_s(\mathbf{R}^d)$ / $\mathcal{H}'_{0,s}(\mathbf{R}^d)$ be the set of all f in (*) such that $|c(\alpha)| \lesssim e^{+r|\alpha|^{\frac{1}{2s}}}$, $s \in \mathbf{R}_+$, and $|c(\alpha)| \lesssim r^{|\alpha|} \alpha!^{+\frac{1}{2\sigma}}$, $s = \flat_\sigma$, for every / some r > 0.

Then \mathcal{H}_s' for $s \ge 0$ and $\mathcal{H}_{0,s}'$ for s > 0 are the duals of \mathcal{H}_s and $\mathcal{H}_{0,s}$ under $(\cdot,\cdot)_{L^2}$.

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, dy.$$

Here
$$z = (z_1, \ldots, z_d) \in \mathbf{C}^d$$
, $\langle z, w \rangle = \sum_{j=1}^d z_j w_j$, $(z, w) = \langle z, \overline{w} \rangle$.

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, dy.$$

J. Toft

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, dy.$$

• $A(\mathbf{C}^d)$ is the set of all entire functions in \mathbf{C}^d

J. Toft

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, \mathrm{d}y.$$

- $A(\mathbf{C}^d)$ is the set of all entire functions in \mathbf{C}^d
- $A^2(\mathbf{C}^d)$ is the Hilbert space of entire analytic functions such that

$$||F||_{A^2} \equiv \left(\int_{\mathbf{C}^d} |F(z)|^2 d\mu(z)\right)^{1/2} < \infty.$$

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, \mathrm{d}y.$$

- $A(\mathbf{C}^d)$ is the set of all entire functions in \mathbf{C}^d
- $A^2(\mathbf{C}^d)$ is the Hilbert space of entire analytic functions such that

$$||F||_{A^2} \equiv \left(\int_{\mathbf{C}^d} |F(z)|^2 d\mu(z)\right)^{1/2} < \infty.$$

• Here $d\mu(z)=\pi^{-d}e^{-|z|^2}d\lambda(z)$, where $d\lambda(z)$ is the Lebesgue measure on ${\bf C}^d$.

• The Bargmann transform (1961):

$$(\mathfrak{V}_d f)(z) = \pi^{-d/4} \int_{\mathbf{R}^d} \exp\Big(-\frac{1}{2}(\langle z,z\rangle + |y|^2) + 2^{1/2}\langle z,y\rangle\Big) f(y) \, \mathrm{d}y.$$

- $A(\mathbf{C}^d)$ is the set of all entire functions in \mathbf{C}^d
- $A^2(\mathbf{C}^d)$ is the Hilbert space of entire analytic functions such that

$$||F||_{A^2} \equiv \left(\int_{\mathbf{C}^d} |F(z)|^2 d\mu(z)\right)^{1/2} < \infty.$$

- Here $d\mu(z)=\pi^{-d}e^{-|z|^2}\,d\lambda(z)$, where $d\lambda(z)$ is the Lebesgue measure on ${\bf C}^d$.
- A^2 -scalar product: $(F,G)_{A^2} = \int_{C^d} F(z) \overline{G(z)} d\mu(z)$.

J. Toft

V. Bargmann 1961 - Mapping properties

He proved:

- \mathfrak{V}_d is a bijective isometry from $L^2(\mathbf{R}^d)$ to $A^2(\mathbf{C}^d)$.
- $\mathfrak{V}_d h_\alpha = e_\alpha(z) \equiv \frac{z^\alpha}{(\alpha!)^{1/2}}$. Hence \mathfrak{V}_d maps ON-basis $\{h_\alpha(x)\}$ in L^2 into the ON-basis $\{e_{\alpha}(z)\}$ in A^2 .

V. Bargmann 1961 - Mapping properties

He proved:

- \mathfrak{V}_d is a bijective isometry from $L^2(\mathbf{R}^d)$ to $A^2(\mathbf{C}^d)$.
- $\mathfrak{V}_d h_\alpha = e_\alpha(z) \equiv \frac{z^\alpha}{(\alpha!)^{1/2}}$. Hence \mathfrak{V}_d maps ON-basis $\{h_\alpha(x)\}$ in L^2 into the ON-basis $\{e_\alpha(z)\}$ in A^2 .
- Reproducing kernel:

$$(\Pi_A F)(z) = \int_{\mathbf{C}^d} e^{(z,w)} F(w) \, d\mu(w), \quad F \text{ admissible.}$$

Then

$$(\Pi_A F)(z) = F(z), \quad F \in A^2, \quad d\mu(z) = \pi^{-d} e^{-|z|^2} d\lambda(z).$$

In the most general situation we consider the power series expansions

$$F(z) = \sum_{\alpha \in \mathbb{N}^d} c(\alpha) e_{\alpha}(z), \quad z \in \mathbb{C}^d, \ c(\alpha) \in \mathbb{C}, \ e_{\alpha}(z) = \frac{z^{\alpha}}{(\alpha!)^{1/2}}.$$
 (*)

In the most general situation we consider the power series expansions

$$F(z) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) e_{\alpha}(z), \quad z \in \mathbf{C}^d, \ c(\alpha) \in \mathbf{C}, \ e_{\alpha}(z) = \frac{z^{\alpha}}{(\alpha!)^{1/2}}.$$
 (*)

Smaller spaces:

 $\mathcal{A}_0(\mathbf{R}^d)$, the set of all analytic polynomials F(z) in (*)

Larger spaces:

 $\mathcal{A}'_0(\mathbf{C}^d)$, the set of all formal power series F(z) in (*)

In the most general situation we consider the power series expansions

$$F(z) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) e_{\alpha}(z), \quad z \in \mathbf{C}^d, \ c(\alpha) \in \mathbf{C}, \ e_{\alpha}(z) = \frac{z^{\alpha}}{(\alpha!)^{1/2}}.$$
 (*)

Smaller spaces:

 $\mathcal{A}_0(\mathbb{R}^d)$, the set of all analytic polynomials F(z) in (*)

Larger spaces:

 $\mathcal{A}'_0(\mathbf{C}^d)$, the set of all formal power series F(z) in (*)

(usually denoted by $\mathbf{C}[[z_1,\ldots,z_d]]$)

In the most general situation we consider the power series expansions

$$F(z) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) e_{\alpha}(z), \quad z \in \mathbf{C}^d, \ c(\alpha) \in \mathbf{C}, \ e_{\alpha}(z) = \frac{z^{\alpha}}{(\alpha!)^{1/2}}.$$
 (*)

Smaller spaces:

 $A_0(\mathbb{R}^d)$, the set of all analytic polynomials F(z) in (*)

Larger spaces:

 $\mathcal{A}'_0(\mathbf{C}^d)$, the set of all formal power series F(z) in (*)

In the most general situation we consider the power series expansions

$$F(z) = \sum_{\alpha \in \mathbf{N}^d} c(\alpha) e_{\alpha}(z), \quad z \in \mathbf{C}^d, \ c(\alpha) \in \mathbf{C}, \ e_{\alpha}(z) = \frac{z^{\alpha}}{(\alpha!)^{1/2}}.$$
 (*)

Smaller spaces:

 $\mathcal{A}_0(\mathbb{R}^d)$, the set of all analytic polynomials F(z) in (*)

For $s \in \mathbf{R}_{\flat}$, let $\mathcal{A}_{s}(\mathbf{C}^{d})$ $(\mathcal{A}_{0,s}(\mathbf{C}^{d}))$ be the set of all series expansions F(z) in (*) such that

$$|c(\alpha)| \lesssim \begin{cases} e^{-r|\alpha|^{\frac{1}{2s}}}, & s \in \mathbb{R}_+ \\ r^{|\alpha|} \alpha!^{-\frac{1}{2\sigma}}, & s = \flat_{\sigma} \end{cases}$$

for some (every) r > 0.

Larger spaces:

in (*) such that

 $\mathcal{A}'_0(\mathbf{C}^d)$, the set of all formal power series F(z) in (*)

For $s \in \mathbf{R}_{\flat}$, let $\mathcal{A}'_{s}(\mathbf{C}^{d})$ $(\mathcal{A}'_{0,s}(\mathbf{C}^{d}))$ the set of all series expansions F(z)

$$|c(\alpha)| \lesssim \begin{cases} e^{r|\alpha|^{\frac{1}{2s}}}, & s \in \mathbb{R}_{+} \\ r^{|\alpha|} \alpha!^{\frac{1}{2\sigma}}, & s = \flat_{\sigma} \end{cases}$$

11 / 19

for every (some) r > 0.

J. Toft Analytic Vdo Ghent, September 2020

Recall that $\mathfrak{V}_d h_\alpha = e_\alpha$.

Recall that $\mathfrak{V}_d h_\alpha = e_\alpha$.

For any
$$f=\sum_{lpha}c(lpha)h_{lpha}$$
, let $\mathfrak{V}_df=\sum_{lpha}c(lpha)e_{lpha}.$

Recall that $\mathfrak{V}_d h_\alpha = e_\alpha$.

For any
$$f = \sum_{\alpha} c(\alpha) h_{\alpha}$$
, let $\mathfrak{V}_d f = \sum_{\alpha} c(\alpha) e_{\alpha}$.

By the definitions it follows that

$$\mathfrak{V}_{d} : \mathcal{H}_{0,s}(\mathbf{R}^{d}) \to \mathcal{A}_{0,s}(\mathbf{C}^{d}),
\mathfrak{V}_{d} : \mathcal{H}_{s}(\mathbf{R}^{d}) \to \mathcal{A}_{s}(\mathbf{C}^{d}),
\mathfrak{V}_{d} : \mathcal{H}'_{s}(\mathbf{R}^{d}) \to \mathcal{A}'_{s}(\mathbf{C}^{d}),
\mathfrak{V}_{d} : \mathcal{H}'_{0,s}(\mathbf{R}^{d}) \to \mathcal{A}'_{0,s}(\mathbf{C}^{d})$$

are bijective.

Characterizations of certain spaces of power series

Any entire function F is equal to a power series expansion $\sum_{\alpha} c(\alpha) e_{\alpha}$ such that

$$|c(\alpha)| \lesssim r^{|\alpha|} (\alpha!)^{1/2},$$

for every r > 0. This implies $\mathcal{A}'_{\flat_1}(\mathbf{C}^d) = A(\mathbf{C}^d)$.

Characterizations of certain spaces of power series

Any entire function F is equal to a power series expansion $\sum_{lpha} c(lpha) e_{lpha}$ such that

$$|c(\alpha)| \lesssim r^{|\alpha|} (\alpha!)^{1/2},$$

for every r > 0. This implies $\mathcal{A}'_{b_1}(\mathbf{C}^d) = \mathcal{A}(\mathbf{C}^d)$.

From the definitions it now follows for $s\geqslant \frac{1}{2}$ and $s_0<\frac{1}{2}$:

$$\begin{split} \mathcal{A}_{0,s_0}(\mathbf{C}^d) \subseteq \mathcal{A}_{s_0}(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s}(\mathbf{C}^d) \subseteq \mathcal{A}_s(\mathbf{C}^d) \\ \subseteq \mathcal{A}_s'(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s}'(\mathbf{C}^d) \subseteq \mathcal{A}(\mathbf{C}^d) \subseteq \mathcal{A}_{s_0}'(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s_0}'(\mathbf{C}^d) \end{split}$$

Characterizations of certain spaces of power series

Any entire function F is equal to a power series expansion $\sum_{lpha} c(lpha) e_{lpha}$ such that

$$|c(\alpha)| \lesssim r^{|\alpha|} (\alpha!)^{1/2},$$

for every r > 0. This implies $\mathcal{A}'_{\flat_1}(\mathbf{C}^d) = \mathcal{A}(\mathbf{C}^d)$.

From the definitions it now follows for $s \geqslant \frac{1}{2}$ and $s_0 < \frac{1}{2}$:

$$\mathcal{A}_{0,s_0}(\mathbf{C}^d) \subseteq \mathcal{A}_{s_0}(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s}(\mathbf{C}^d) \subseteq \mathcal{A}_s(\mathbf{C}^d)$$
$$\subseteq \mathcal{A}_s'(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s}'(\mathbf{C}^d) \subseteq \mathcal{A}(\mathbf{C}^d) \subseteq \mathcal{A}_{s_0}'(\mathbf{C}^d) \subseteq \mathcal{A}_{0,s_0}'(\mathbf{C}^d)$$

What about those spaces which are contained in $A(\mathbb{C}^d)$??

Identifications with spaces of analytic functions

For
$$s_0 < \frac{1}{2}$$
, $s \geqslant \frac{1}{2}$, $\langle z \rangle = 1 + |z|$ (Recall: $s_0 < \flat_\sigma < \frac{1}{2}$):

The tiny planets (smaller than Gelfand-Shilov):

$$\begin{split} \mathcal{A}_{0,s_0} \; \left(\mathcal{A}_{s_0}\right) &= \{\, F \in A \, ; \, |F(z)| \lesssim e^{r(\log\langle z\rangle)^{\frac{1}{1-2s_0}}}, \text{ for every (some) } r > 0 \, \}, \\ \mathcal{A}_{0,\flat_\sigma} \; \left(\mathcal{A}_{\flat_\sigma}\right) &= \{\, F \in A \, ; \, |F(z)| \lesssim e^{r|z|^{\frac{2\sigma}{\sigma+1}}}, \text{ for every (some) } r > 0 \, \}, \\ \mathcal{A}_{0,\frac{1}{2}} &= \{\, F \in A \, ; \, |F(z)| \lesssim e^{r|z|^2}, \text{ for every } r > 0 \, \}, \end{split}$$

The Gelfand-Shilov world:

$$\mathcal{A}_{0,s} / (\mathcal{A}_s) = \{ F \in A; |F(z)| \lesssim e^{\frac{|z|^2}{2} - r|z|^{\frac{1}{s}}}, \text{ for every (some) } r > 0 \}, \ s \neq \frac{1}{2},$$

$$\mathcal{A}'_s (\mathcal{A}'_0, s) = \{ F \in A; |F(z)| \lesssim e^{\frac{|z|^2}{2} + r|z|^{\frac{1}{s}}}, \text{ for every (some) } r > 0 \}.$$

Beyond Gelfand-Shilov life:

$$\mathcal{A}'_{0,\frac{1}{2}} = \{ F \in A; |F(z)| \lesssim e^{r|z|^2}, \text{ for some } r > 0 \},$$

$$\begin{split} \mathcal{A}_{\flat_{\sigma}}'\left(\mathcal{A}_{0,\flat_{\sigma}}'\right) &= \{\,F \in A\,;\, |F(z)| \lesssim e^{r|z|^{\frac{2\sigma}{\sigma-1}}}, \text{ for every (some) } r > 0\,\}, \ \sigma > 1, \\ \mathcal{A}_{\flat_{1}}' &= A \quad (= A(\mathbf{C}^{d})), \qquad \mathcal{A}_{0,\flat_{1}}' &= \bigcup_{R > 0} A(B_{R}(0)). \end{split}$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

15 / 19

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

① The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

① The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

② The (analytic) kernel operator T_K is:

$$(T_K F)(z) = \int_{\mathbf{C}^d} K(z, w) F(w) d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

① The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacktriangle The analytic pseudo-differential operator $\operatorname{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

We have $T_K = \operatorname{Op}_{\mathfrak{V}}(a)$ when $K(z, w) = a(z, w)e^{(z, w)}$.

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks: If $a(z, w)e^{-(\frac{1}{2}+r)(|z|^2+|w|^2)} \in L^1(\mathbb{C}^{2d})$ for every r > 0, then there is a unique $a_0(z, w)$ such that

- $(z, w) \mapsto a_0(z, \overline{w})$ is entire (belongs to $A(\mathbf{C}^{2d})$);
- $a_0(z, w)e^{-(\frac{1}{2}+r)(|z|^2+|w|^2)} \in L^1(\mathbf{C}^{2d})$ for every r > 0;
- $\bullet \ \mathsf{Op}_{\mathfrak{V}}(a) = \mathsf{Op}_{\mathfrak{V}}(a_0).$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

15 / 19

J. Toft A

Let $\underline{a}(z, w)$ and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

$$(\operatorname{Op}_{\mathfrak{Y}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

$$\operatorname{Op}_{\mathfrak{V}}(a)F(z) = \sum_{|\alpha| \leqslant N} a_{\alpha}(z)(\partial_{z}^{\alpha}F)(z), \quad a(z,w) = \sum_{|\alpha| \leqslant N} a_{\alpha}(z)\overline{w}^{\alpha}.$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks: The creation and annihilation operators, $2^{-\frac{1}{2}}(x_j - \partial_j)$ respective $2^{-\frac{1}{2}}(x_j + \partial_j)$ are transferred into $F \mapsto z_j \cdot F$ and $F \mapsto \partial_i \cdot F$, by the Bargmann transform.

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

1 The analytic pseudo-differential operator $Op_{\mathfrak{N}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks: The creation and annihilation operators,

 $2^{-\frac{1}{2}}(x_i-\partial_i)$ respective $2^{-\frac{1}{2}}(x_i+\partial_i)$ are transferrd into $F\mapsto z_j\cdot F$ and $F \mapsto \partial_i \cdot F$, by the Bargmann transform.

It follows that if
$$b(x, \xi) =$$

$$b(x,\xi) = \sum_{|\alpha+\beta| \leq N} c_1(\alpha,\beta) x^{\alpha} \xi^{\beta},$$

$$a(z, w) = \sum_{|\alpha+\beta| \leq N} c_2(\alpha, \beta) z^{\alpha} \overline{w}^{\beta}$$

$$\mathsf{Op}_{\mathfrak{V}}(a) = \mathfrak{V}_d \circ \mathsf{Op}(b) \circ \mathfrak{V}_d^{-1}.$$

15 / 19

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacktriangle The analytic pseudo-differential operator $\operatorname{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{Y}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

If a(z, w) is analytic, then

$$(\mathsf{Op}_{\mathfrak{V}}(a)F)(z) = a(z,z)F(z).$$

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

If χ is the characteristic function of a polydisc and $a(z,w)=\chi(w)$, then $\operatorname{Op}_{\mathfrak{V}}(a)$ is bijective between suitable $\mathcal{A}_s(\mathbf{C}^d)$ spaces. Some sorts of analytic Paley-Wiener properties Nabizadeh-Pfeuffer-T. (2018).

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

lacksquare The analytic pseudo-differential operator $\mathsf{Op}_{\mathfrak{V}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Let a(z, w) and K(z, w), $z, w \in \mathbb{C}^d$, be suitable, analytic in z.

• The analytic pseudo-differential operator $Op_{\mathfrak{N}}(a)$ is:

$$(\operatorname{Op}_{\mathfrak{Y}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad F \in \mathcal{A}_0(\mathbf{C}^d).$$

Examples and remarks:

Analytic pseudo-differential operator are often called Wick operators or Berezin operators.

$$(\mathsf{Op}_{\mathfrak{V}}(a)F)(z) = \textstyle \int_{\mathsf{C}^d} a(z,w)F(w)e^{(z,w)}\,d\mu(w), \quad (T_KF)(z) = \textstyle \int_{\mathsf{C}^d} K(z,w)F(w)\,d\mu(w).$$

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_K F)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

In what follows we let

$$\widehat{\mathcal{A}}_s'(\mathbf{C}^{2d}) = \{ \, K(z,w) \, ; \, (z,w) \mapsto K(z,\overline{w}) \in \mathcal{A}_s'(\mathbf{C}^{2d}) \, \},$$

and similarly for other spaces.

$$(\mathsf{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathsf{C}^d} a(z,w)F(w)e^{(z,w)} \, d\mu(w), \quad (T_K F)(z) = \int_{\mathsf{C}^d} K(z,w)F(w) \, d\mu(w).$$

In what follows we let

$$\widehat{\mathcal{A}}_s'(\mathbf{C}^{2d}) = \{ K(z, w) ; (z, w) \mapsto K(z, \overline{w}) \in \mathcal{A}_s'(\mathbf{C}^{2d}) \},$$

and similarly for other spaces.

We also let $\mathcal{L}(V_1, V_2)$ be the set of all linear continuous mappings from the topological vector space V_1 to the topological vector space V_2 .

$$(\mathsf{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathsf{C}^d} a(z,w)F(w)e^{(z,w)} \, d\mu(w), \quad (T_K F)(z) = \int_{\mathsf{C}^d} K(z,w)F(w) \, d\mu(w).$$

In what follows we let

$$\widehat{\mathcal{A}}_s'(\mathbf{C}^{2d}) = \{ K(z, w) ; (z, w) \mapsto K(z, \overline{w}) \in \mathcal{A}_s'(\mathbf{C}^{2d}) \},$$

and similarly for other spaces.

J. Toft

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_KF)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

In what follows we let

$$\widehat{\mathcal{A}}'_{s}(\mathbf{C}^{2d}) = \{ K(z, w) ; (z, w) \mapsto K(z, \overline{w}) \in \mathcal{A}'_{s}(\mathbf{C}^{2d}) \},$$

and similarly for other spaces.

Thm. (by Kernel theorems for nuclear spaces)

Let $s_1 \in \mathbf{R}_{\flat}$ and $s_2 \in \overline{\mathbf{R}}_{\flat}$. The map $K \mapsto T_K$ is bijective

- from $\widehat{\mathcal{A}}_{0,s_1}(\mathbf{C}^{2d})$ to $\mathcal{L}(\mathcal{A}'_{0,s_1}(\mathbf{C}^d),\mathcal{A}_{0,s_1}(\mathbf{C}^d))$, and from $\widehat{\mathcal{A}}'_{0,s_1}(\mathbf{C}^{2d})$ to $\mathcal{L}(\mathcal{A}_{0,s_1}(\mathbf{C}^d),\mathcal{A}'_{0,s_1}(\mathbf{C}^d))$.
- from $\widehat{\mathcal{A}}_{s_2}(\mathbf{C}^{2d})$ to $\mathcal{L}(\mathcal{A}'_{s_2}(\mathbf{C}^d), \mathcal{A}_{s_2}(\mathbf{C}^d))$, and from $\widehat{\mathcal{A}}'_{s_2}(\mathbf{C}^{2d})$ to $\mathcal{L}(\mathcal{A}_{s_2}(\mathbf{C}^d), \mathcal{A}'_{s_2}(\mathbf{C}^d))$.

16 / 19

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \textstyle \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)}\,d\mu(w), \quad (T_KF)(z) = \textstyle \int_{\mathbf{C}^d} K(z,w)F(w)\,d\mu(w).$$

$$\mathcal{L}(\mathcal{A}'_{s_2}, \mathcal{A}_{s_2}) = \{ T_K ; K \in \widehat{\mathcal{A}}_{s_2} \}, \qquad \mathcal{L}(\mathcal{A}_{s_2}, \mathcal{A}'_{s_2}) = \{ T_K ; K \in \widehat{\mathcal{A}}'_{s_2} \} \quad \text{etc.} \dots$$

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_K F)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

$$\mathcal{L}(\mathcal{A}_{s_2}',\mathcal{A}_{s_2}) = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2} \ \}, \qquad \mathcal{L}(\mathcal{A}_{s_2},\mathcal{A}_{s_2}') = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2}' \ \} \quad \text{ etc.} \ .$$

Thm. Teofanov-T. (2019)

Let $t \in \mathbf{C}$, $s_1 \in \mathbf{R}_{\flat}$, $s_1 \leq \frac{1}{2}$, and $s_2 \in \overline{\mathbf{R}}_{\flat}$, $s_2 < \frac{1}{2}$. Then $K(z, w) \mapsto K(z, w)e^{t(z, w)}$ is a continuous bijection on $\widehat{\mathcal{A}}'_{0, s_1}(\mathbf{C}^{2d})$ and on $\widehat{\mathcal{A}}'_{s_2}(\mathbf{C}^{2d})$.

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_K F)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

$$\mathcal{L}(\mathcal{A}_{s_2}',\mathcal{A}_{s_2}) = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2} \}, \qquad \mathcal{L}(\mathcal{A}_{s_2},\mathcal{A}_{s_2}') = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2}' \} \quad \text{ etc.} \ . \ .$$

Thm. Teofanov-T. (2019)

Let $t \in \mathbf{C}$, $s_1 \in \mathbf{R}_{\flat}$, $s_1 \leqslant \frac{1}{2}$, and $s_2 \in \overline{\mathbf{R}}_{\flat}$, $s_2 < \frac{1}{2}$. Then $K(z, w) \mapsto K(z, w) e^{t(z, w)}$ is a continuous bijection on $\widehat{\mathcal{A}}'_{0, s_1}(\mathbf{C}^{2d})$ and on $\widehat{\mathcal{A}}'_{s_2}(\mathbf{C}^{2d})$.

By combining this with the earlier kernel theorems:

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_K F)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

$$\mathcal{L}(\mathcal{A}_{s_2}',\mathcal{A}_{s_2}) = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2} \ \}, \qquad \mathcal{L}(\mathcal{A}_{s_2},\mathcal{A}_{s_2}') = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2}' \ \} \quad \text{ etc.} \ .$$

Thm. Teofanov-T. (2019)

Let $t \in \mathbf{C}$, $s_1 \in \mathbf{R}_{\flat}$, $s_1 \leq \frac{1}{2}$, and $s_2 \in \overline{\mathbf{R}}_{\flat}$, $s_2 < \frac{1}{2}$. Then $K(z, w) \mapsto K(z, w)e^{t(z, w)}$ is a continuous bijection on $\widehat{\mathcal{A}}'_{0, s_1}(\mathbf{C}^{2d})$ and on $\widehat{\mathcal{A}}'_{s_2}(\mathbf{C}^{2d})$.

$$(\operatorname{Op}_{\mathfrak{V}}(a)F)(z) = \int_{\mathbf{C}^d} a(z,w)F(w)e^{(z,w)} d\mu(w), \quad (T_K F)(z) = \int_{\mathbf{C}^d} K(z,w)F(w) d\mu(w).$$

$$\mathcal{L}(\mathcal{A}_{s_2}',\mathcal{A}_{s_2}) = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2} \ \}, \qquad \mathcal{L}(\mathcal{A}_{s_2},\mathcal{A}_{s_2}') = \{ \ T_K \ ; \ K \in \widehat{\mathcal{A}}_{s_2}' \ \} \quad \text{ etc.} \ . \ .$$

Thm. Teofanov-T. (2019)

Let $t \in \mathbf{C}$, $s_1 \in \mathbf{R}_{\flat}$, $s_1 \leqslant \frac{1}{2}$, and $s_2 \in \mathbf{R}_{\flat}$, $s_2 < \frac{1}{2}$. Then $K(z, w) \mapsto K(z, w)e^{t(z, w)}$ is a continuous bijection on $\widehat{\mathcal{A}}'_{0,s_1}(\mathbf{C}^{2d})$ and on $\widehat{\mathcal{A}}'_{s_2}(\mathbf{C}^{2d})$.

Thm. Teofanov-T. (2019)

Let $s_1 \in \mathbf{R}_{\flat}$, $s_1 \leqslant \frac{1}{2}$, and $s_2 \in \overline{\mathbf{R}}_{\flat}$, $s_2 < \frac{1}{2}$. Then

- $\bullet \ \mathcal{L}(\mathcal{A}_{0,s_1}(\mathbf{C}^d),\mathcal{A}'_{0,s_1}(\mathbf{C}^d)) = \{ \operatorname{Op}_{\mathfrak{V}}(a) \, ; \, a \in \widehat{\mathcal{A}}'_{0,s_1}(\mathbf{C}^{2d}) \, \}.$
- $\mathcal{L}(\mathcal{A}_{\mathfrak{S}_2}(\mathbf{C}^d), \mathcal{A}'_{\mathfrak{S}_2}(\mathbf{C}^d)) = \{ \operatorname{Op}_{\mathfrak{N}}(a) ; a \in \widehat{\mathcal{A}}'_{\mathfrak{S}_2}(\mathbf{C}^{2d}) \}.$

• Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1,\infty]^{2d}$,

• Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d

• Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1,\infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d that is, $\omega_0 > 0$ and $\omega_0, 1/\omega_0 \in L^\infty_{loc}(\mathbf{C}^d)$.

• Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d

• Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- $\bullet \ \ \mathsf{Let} \ B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ \ F \ ; \ F(z) e^{-\frac{1}{2}\cdot|z|^2} \omega_0(\sqrt{2}\cdot \overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \ \}.$

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1,\infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- $\bullet \ \ \mathsf{Let} \ B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ \, F \, ; \, F(z) e^{-\frac{1}{2} \cdot |z|^2} \omega_0(\sqrt{2} \cdot \overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \, \}.$
- $\bullet \ \operatorname{Let} \, A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d).$

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- $\bullet \ \ \mathsf{Let} \ B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ \, F \, ; \, F(z) e^{-\frac{1}{2} \cdot |z|^2} \omega_0(\sqrt{2} \cdot \overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \, \}.$
- Let $A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d)$. If instead $\mathbf{p} \in [1, \infty]^{4d}$, let

$$\widehat{A}^{\,\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) = \{\, \mathsf{All} \,\, K \, ; \, (z,w) \mapsto K(z,\overline{w}) \in A^{\,\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) \, \}.$$

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- $\bullet \ \ \mathsf{Let} \ B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ \, F \, ; \, F(z) e^{-\frac{1}{2} \cdot |z|^2} \omega_0(\sqrt{2} \cdot \overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \, \}.$
- Let $A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d)$. If instead $\mathbf{p} \in [1, \infty]^{4d}$, let

$$\widehat{A}^{\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) = \{ \text{ All } K \, ; \, (z,w) \mapsto K(z,\overline{w}) \in A^{\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) \, \}.$$

Recently, results of the following type appeared

17 / 19

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- $\bullet \ \ \mathsf{Let} \ B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ \, F \, ; \, F(z) e^{-\frac{1}{2} \cdot |z|^2} \omega_0(\sqrt{2} \cdot \overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \, \}.$
- Let $A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d)$. If instead $\mathbf{p} \in [1, \infty]^{4d}$, let

$$\widehat{A}^{\,\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) = \{\, \mathsf{All} \,\, K \, ; \, (z,w) \mapsto K(z,\overline{w}) \in A^{\,\mathbf{p}}_{(\omega)}(\mathbf{C}^{2d}) \, \}.$$

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- Let $B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ F ; F(z)e^{-\frac{1}{2}\cdot|z|^2}\omega_0(\sqrt{2}\cdot\overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \}.$
- Let $A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d)$. If instead $\mathbf{p} \in [1, \infty]^{4d}$, let

$$\widehat{A}_{(\omega)}^{\mathbf{p}}(\mathbf{C}^{2d}) = \{ \text{All } K ; (z, w) \mapsto K(z, \overline{w}) \in A_{(\omega)}^{\mathbf{p}}(\mathbf{C}^{2d}) \}.$$

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$G_{K,\omega}(z+w,z) \in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w) = K(z,w) \cdot e^{-\frac{1}{2}(|z|^2+|w|^2)}\omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w),$$

$$\frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} = 1 - \frac{1}{p} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant p, \quad \frac{\omega_2(z)}{\omega_1(w)} \lesssim \omega(z, \overline{w}).$$

- Let $L^{\mathbf{p}}(\mathbf{C}^d) \simeq L^{\mathbf{p}}(\mathbf{R}^{2d})$ be the mixed Lebesgue space with respect to $\mathbf{p} \in [1, \infty]^{2d}$, ω_0 be a weight on \mathbf{C}^d and let ω be a weight on \mathbf{C}^{2d} .
- Let $B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = \{ F ; F(z)e^{-\frac{1}{2}\cdot|z|^2}\omega_0(\sqrt{2}\cdot\overline{z}) \in L^{\mathbf{p}}(\mathbf{C}^d) \}.$
- Let $A^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) = B^{\mathbf{p}}_{(\omega_0)}(\mathbf{C}^d) \bigcap A(\mathbf{C}^d)$. If instead $\mathbf{p} \in [1, \infty]^{4d}$, let

$$\widehat{A}_{(\omega)}^{\mathbf{p}}(\mathbf{C}^{2d}) = \{ \text{All } K ; (z, w) \mapsto K(z, \overline{w}) \in A_{(\omega)}^{\mathbf{p}}(\mathbf{C}^{2d}) \}.$$

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$G_{K,\omega}(z+w,z)\in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w)=K(z,w)\cdot e^{-\frac{1}{2}(|z|^2+|w|^2)}\omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w),$$

$$\frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} = 1 - \frac{1}{p} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant p, \quad \frac{\omega_2(\mathbf{z})}{\omega_1(\mathbf{w})} \lesssim \omega(\mathbf{z}, \overline{\mathbf{w}}).$$

Then T_K is continuous from $A^{\mathbf{p}_1}_{(\omega_1)}(\mathbf{C}^d)$ to $A^{\mathbf{p}_2}_{(\omega_2)}(\mathbf{C}^d)$.

17 / 19

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$G_{K,\omega}(z+w,z) \in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w) = K(z,w) \cdot e^{-\frac{1}{2}(|z|^2+|w|^2)} \omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w),$$

$$\frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} = 1 - \frac{1}{\rho} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant \rho, \quad \frac{\omega_2(z)}{\omega_1(w)} \lesssim \omega(z, \overline{w}).$$

Then T_K is continuous from $A_{(an)}^{\mathbf{p}_1}(\mathbf{C}^d)$ to $A_{(an)}^{\mathbf{p}_2}(\mathbf{C}^d)$.

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$G_{K,\omega}(z+w,z)\in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w)=K(z,w)\cdot e^{-\frac{1}{2}(|z|^2+|w|^2)}\omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w),$$

$$\frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} = 1 - \frac{1}{\rho} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant \rho, \quad \frac{\omega_2(z)}{\omega_1(w)} \lesssim \omega(z, \overline{w}).$$

Then T_K is continuous from $A^{\mathbf{p}_1}_{(\omega_1)}(\mathbf{C}^d)$ to $A^{\mathbf{p}_2}_{(\omega_2)}(\mathbf{C}^d)$.

By putting some restrictions on ω , ω_j and taking the counter image of the previous result with respect to the Bargmann transform

$$\left(\ \mathfrak{V}_d\ :\ M^{\mathbf{p}}_{(\omega)}(\mathbf{R}^d) \to A^{\mathbf{p}}_{(\omega)}(\mathbf{C}^d) \quad \text{bijective}\ \right)$$

one gets well-known results of continuity results of real Ψ do on modulation spaces, like

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$G_{K,\omega}(z+w,z) \in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w) = K(z,w) \cdot e^{-\frac{1}{2}(|z|^2+|w|^2)} \omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w),$$

$$\frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} = 1 - \frac{1}{\rho} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant \rho, \quad \frac{\omega_2(z)}{\omega_1(w)} \lesssim \omega(z, \overline{w}).$$

Then T_K is continuous from $A_{(an)}^{\mathbf{p}_1}(\mathbf{C}^d)$ to $A_{(an)}^{\mathbf{p}_2}(\mathbf{C}^d)$.

Thm. Teofanov-T. (2019)

Suppose $K \in \widehat{A}(\mathbf{C}^{2d})$,

$$\begin{split} G_{K,\omega}(z+w,z) \in L^{p,q}(\mathbf{C}^{2d}), \quad G_{K,\omega}(z,w) &= K(z,w) \cdot e^{-\frac{1}{2}(|z|^2+|w|^2)} \omega(\sqrt{2}\,\overline{z},\sqrt{2}\,w), \\ \frac{1}{\mathbf{p}_1} - \frac{1}{\mathbf{p}_2} &= 1 - \frac{1}{p} - \frac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant p, \quad \frac{\omega_2(z)}{\omega_1(w)} \lesssim \omega(z,\overline{w}). \end{split}$$

Then T_K is continuous from $A_{(\omega_1)}^{\mathbf{p}_1}(\mathbf{C}^d)$ to $A_{(\omega_2)}^{\mathbf{p}_2}(\mathbf{C}^d)$.

Thm. Gröchenig-Heil, T.

Suppose

$$\tfrac{1}{\mathbf{p}_1} - \tfrac{1}{\mathbf{p}_2} = 1 - \tfrac{1}{p} - \tfrac{1}{q}, \quad q \leqslant \mathbf{p}_2 \leqslant p, \quad \tfrac{\omega_2(\mathbf{x}, \xi + \eta)}{\omega_1(\mathbf{x} + \mathbf{y}, \xi)} \lesssim \omega(\mathbf{x}, \xi, \eta, \mathbf{y}), \quad a \in M^{p,q}_{(\omega)}(\mathbf{R}^{2d}).$$

Then $\operatorname{Op}(a)$ is continuous from $M_{(\omega_1)}^{\mathbf{p}_1}(\mathbf{R}^d)$ to $M_{(\omega_2)}^{\mathbf{p}_2}(\mathbf{R}^d)$.

◆ロト ◆@ ト ◆意 ト ・ 意 ・ 夕 Q @

1. Characterizations of global elliptic operators (N. Teofanov, T., P. Wahlberg):

1. Characterizations of global elliptic operators (N. Teofanov, T., P. Wahlberg): Let

$$b(x,\xi) = \sum_{|\alpha+\beta| \leqslant N} c_1(\alpha,\beta) x^{\alpha} \xi^{\beta}, \qquad b_0(x,\xi) = \sum_{|\alpha+\beta| = N} c_1(\alpha,\beta) x^{\alpha} \xi^{\beta}$$

and let

$$a(z,w) = \sum_{|\alpha+\beta| \leq N} c_2(\alpha,\beta) z^{\alpha} \overline{w}^{\beta}, \qquad a_0(z,w) = \sum_{|\alpha+\beta| = N} c_2(\alpha,\beta) z^{\alpha} \overline{w}^{\beta}$$

be the uniquely defined polynomials given by $\operatorname{Op}_{\mathfrak{M}}(a) = \mathfrak{V}_d \circ \operatorname{Op}(b) \circ \mathfrak{V}_{\perp}^{-1}$.

$$\mathsf{Op}_{\mathfrak{V}}(a) = \mathfrak{V}_d \circ \mathsf{Op}(b) \circ \mathfrak{V}_d^{-1}.$$

 Characterizations of global elliptic operators (N. Teofanov, T., P. Wahlberg): Let

$$b(x,\xi) = \sum_{|\alpha+\beta| \leqslant N} c_1(\alpha,\beta) x^{\alpha} \xi^{\beta}, \qquad b_0(x,\xi) = \sum_{|\alpha+\beta| = N} c_1(\alpha,\beta) x^{\alpha} \xi^{\beta}$$

and let

$$a(z,w) = \sum_{|\alpha+\beta| \leq N} c_2(\alpha,\beta) z^{\alpha} \overline{w}^{\beta}, \qquad a_0(z,w) = \sum_{|\alpha+\beta| = N} c_2(\alpha,\beta) z^{\alpha} \overline{w}^{\beta}$$

be the uniquely defined polynomials given by $\operatorname{Op}_{\mathfrak{M}}(a) = \mathfrak{V}_d \circ \operatorname{Op}(b) \circ \mathfrak{V}_{\perp}^{-1}$.

$$\mathsf{Op}_{\mathfrak{V}}(a) = \mathfrak{V}_d \circ \mathsf{Op}(b) \circ \mathfrak{V}_d^{-1}$$

Then the following conditions are equivalent:

- Op(b) is elliptic;
- $b_0(x,\xi) \neq 0$ when $(x,\xi) \neq (0,0)$;
- $a_0(z,z) \neq 0$ when $0 \neq z \in \mathbf{C}^d$.

4 D > 4 D > 4 E > 4 E > E 9 Q P

2. Continuity of analytic ΨDO on Orlicz spaces of analytic functions (T., R. Üster)

3. Transition of symbol classes from real ΨDO to analytic ΨDO (N. Teofanov, T., P. Wahlberg)

Thank you for your attention.

19 / 19