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f(O)(x) x €K
E.(f)(x) = %@i(X)T;(;)f(X) x¢ K

(¢i(x))ien Whitney partition of unity for R? \ K, y(i) € K minimizes
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> E is called a Whitney type operator

Theorem (FJJW '20)

WEP < There is a Whitney type extension operator (& precise continuity estimates
IE(F)lln < cnlflq(n),k in terms of the measures)
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there is a good chance that this also shows () for the kernel.

Tidten ‘79: Jk has () for all K.
(X, ]| - l|ln) Fréchet has (DN) if 3nVm3Ik,cVfeX

1% < clifllelflln

Application to ultradifferentiable functions of Beurling type: (M;);en strongly
non-quasianalytic weight sequence

CM(R) = {f € €= : all |[f]|m = sup{\ao‘f(x)|% ‘€ Ng,x € R} < o0}
always has (DN):

2 .
(m|a\/M‘a|) = (m2)\a|/M|a‘ ~1|0¢\/I\/I‘a| yields ||f]12, < |l m2|If]l1

Bruna ‘80: CIEM)(IRd) — &M)(K) surjective. Hence there exists an extension

operator. (Bonet-Braun-Meise-Taylor, Franken,...) — talk of Armin Rainer
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Fefferman: n finite. Characterization of C"(K) = {F|x : F € CJ(R?)} and there
is always an extension operator.
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GneN,r>1VmeN,keNIc>0,e >0Ve € (0,64),x €K :

EITHER KN (x —e",x +€") contains less than n+ 1 points

k7
Ssupo<j j<k lyi = yiI"*=" < €
€ =

OR 3yo,...,yk € KN (x —¢&,x +¢€) with L .
infiz lyi — yj er

Also a much weaker necessary condition.

For x, = 1/n® (Fefferman-Ricci ‘12), x, = exp(—n®) (o = 1 Vogt'14) and
xn = 1/ log(n)® SEP holds. For x, = exp(—2") SEP fails.




