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Cn-functions on compact sets K , n ∈ N ∪ {∞}

I Cn(K) = {F |K : F ∈ Cn
b (Rd )} Banach for quotient norm, Fréchet for n =∞

I Problem: (partial) derivatives not well defined

I E n(K) =
{

(∂αF |K )|α|<n+1 : F ∈ Cn
b (Rd )

}
Whitney jets.

I Example: E∞({0}) = RNd
0 Borel 1895

/ Peano 1884

I Derivatives: ∂β(f (α))|α|<n+1 = (f (α+β))|α|<n−|β|+1.

I Taylor polynomials T n
y f (x) =

∑
|β|≤n

f (β)(y)
β!

(x − y)β .

I Question: How well can one choose an extension F depending on the data on K?

Whitney’s Theorem 1934

E n(K) =
{

(f (α))|α|<n+1 : f (α) ∈ C(K) for all |α| ≤ m < n + 1

f (α)(x)− ∂αTm
y (f )(x)

|x − y |m−|α|
→ 0, x , y ∈ K , |x − y | → 0

}
Whitney norms |f |m,K = ‖f ‖m,K + sup of Taylor remainders for x , y ∈ K , |α| ≤ m.



Cn-functions on compact sets K , n ∈ N ∪ {∞}

I Cn(K) = {F |K : F ∈ Cn
b (Rd )} Banach for quotient norm, Fréchet for n =∞
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The Whitney extension property (WEP)
I For finite n ∈ N0 there is always a continuous linear extension operator

En : E n(K)→ Cn
b (Rd ), i.e., ∂αEn(f )|K = f (α) for all |α| ≤ n (Whitney 1934)

I K has WEP if there is a continuous linear extension operator
E : E∞(K)→ C∞b (Rd )

I Mityagin, Seeley, Stein, Bierstone, Paw lucki, Plesniak, Bos, Milman, Tidten,
Frerick, Goncharov,...

I Positive: [0, 1], K = K̊ with Lipα boundary, polynomial cusps, Cantor set ...
I Negative: {0} (Mityagin ‘61

/ Grothendieck ‘54) , sharp cusps

I Idea: WEP ↔ K everywhere big enough.
I Markov inequality: deg(p) ≤ k ⇒

‖p′‖[−r,r ] ≤ ck r
−1‖p‖[−r,r ]

I K has LMI(s) if there are ck such that for all deg(p) ≤ k, x0 ∈ K , r ∈ (0, 1]

|∂jp(x0)| ≤ ck r
−s‖p‖K∩B(x0,r) (SJW for s = 1, BM)

I LMI (s) ⇒ WEP with ‖E(f )‖n ≤ cn|f |an for some a ≥ 1 (essentially Bos &
Milman ‘95,

FJW ‘11: a = s + ε, FJW ‘16: For s = 1 one can take a = 1)

Theorem (FJW ’16)

K ⊆ Rd admits a Whitney extension operator which extends to E n(K)→ C n(Rd ) for all n ∈ N0 if
and only if

∃ % ∈ (0, 1) ∀ x0 ∈ K , ε ∈ (0, 1) ∃ x1 . . . , xd ∈ K ∩ B(x0, ε)

dist(xn+1, affine hull{x0, . . . , xn}) ≥ %ε for all n ∈ {0, . . . , d − 1}.

I d = 1: ∃ % ∈ (0, 1) ∀ x0 ∈ K , ε ∈ (0, 1) ∃ x1 ∈ K s.t. %ε < |x0 − x1| < ε.

I Cantor set

, Lipschitz boundary (Stein ’70), Sierpiński triangle,...
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The Whitney extension property (WEP)
I For finite n ∈ N0 there is always a continuous linear extension operator

En : E n(K)→ Cn
b (Rd ), i.e., ∂αEn(f )|K = f (α) for all |α| ≤ n (Whitney 1934)

I K has WEP if there is a continuous linear extension operator
E : E∞(K)→ C∞b (Rd )

I Mityagin, Seeley, Stein, Bierstone, Paw lucki, Plesniak, Bos, Milman, Tidten,
Frerick, Goncharov,...

I Positive: [0, 1], K = K̊ with Lipα boundary, polynomial cusps, Cantor set ...
I Negative: {0} (Mityagin ‘61/ Grothendieck ‘54) , sharp cusps
I Idea: WEP ↔ K everywhere big enough.
I Markov inequality: deg(p) ≤ k ⇒ ‖p′‖[−r,r ] ≤ ck r

−1‖p‖[−r,r ]
I K has LMI(s) if there are ck such that for all deg(p) ≤ k, x0 ∈ K , r ∈ (0, 1]

|∂jp(x0)| ≤ ck r
−s‖p‖K∩B(x0,r) (SJW for s = 1, BM)

I LMI (s) ⇒ WEP with ‖E(f )‖n ≤ cn|f |an for some a ≥ 1 (essentially Bos &
Milman ‘95,

FJW ‘11: a = s + ε, FJW ‘16: For s = 1 one can take a = 1)

Theorem (FJW ’16)

K ⊆ Rd admits a Whitney extension operator which extends to E n(K)→ C n(Rd ) for all n ∈ N0 if
and only if

∃ % ∈ (0, 1) ∀ x0 ∈ K , ε ∈ (0, 1) ∃ x1 . . . , xd ∈ K ∩ B(x0, ε)

dist(xn+1, affine hull{x0, . . . , xn}) ≥ %ε for all n ∈ {0, . . . , d − 1}.

I d = 1: ∃ % ∈ (0, 1) ∀ x0 ∈ K , ε ∈ (0, 1) ∃ x1 ∈ K s.t. %ε < |x0 − x1| < ε.

I Cantor set

, Lipschitz boundary (Stein ’70), Sierpiński triangle,...
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Whitney type operators

I Whitney’s operator

En(f )(x) =

f (0)(x) x ∈ K∑
i∈N

ϕi (x)T n
y(i)

f (x) x /∈ K

(ϕi (x))i∈N Whitney partition of unity for Rd \ K , y(i) ∈ K minimizes

ri =dist(supp(ϕi ),K) ∼=diam(supp(ϕi )), ‖∂αϕi‖ ≤ cr
−|α|
i

I Principle idea: Replace coefficients f (β)(y) of T n
y f by

∫
K f (0)dµβ,y,ri with

suitable measures and estimate ‖En(f )− Ẽ(f )‖n
I Ẽ is called a Whitney type operator

Theorem (FJJW ’20)

WEP ⇔ There is a Whitney type extension operator (& precise continuity estimates
‖Ẽ(f )‖n ≤ cn|f |σ(n),K in terms of the measures)
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Abstract method
I WEP ⇔ 0→ JK → C∞b (Rd )→ E∞(K)→ 0 splits.

I This is a property of the functor L(E∞(K),−) namely whether its first right
derivative vanishes in JK .

I Splitting theorem of Vogt-Wagner: WEP ⇔ E∞(K) has (DN) & JK has (Ω)

I (X , ‖ · ‖n) Fréchet has (Ω) if ∀ n∃m∀ k

∃ c, s

∀ f ∈ X , ε > 0

‖f ‖m ≤ 1 ⇒ ∃ g ∈ X with ‖f − g‖n ≤ ε and ‖g‖k

≤ cε−s

I Whenever one proves surjectivity of an operator with the Mittag-Leffler method
there is a good chance that this also shows (Ω) for the kernel.

I Tidten ‘79: JK has (Ω) for all K .

I (X , ‖ · ‖n) Fréchet has (DN) if ∃ n∀m∃ k, c ∀ f ∈ X

‖f ‖2
m ≤ c‖f ‖k‖f ‖n

I Application to ultradifferentiable functions of Beurling type: (Mj )j∈N strongly
non-quasianalytic weight sequence

I C
(M)
b (Rd ) = {f ∈ C∞ : all ‖f ‖m = sup{|∂αf (x)|m

|α|

M|α|
: α ∈ Nd

0 , x ∈ Rd} <∞}
always has (DN):

I
(
m|α|/M|α|

)2
= (m2)|α|/M|α| · 1|α|/M|α| yields ‖f ‖2

m ≤ ‖f ‖m2‖f ‖1

I Bruna ‘80: C
(M)
b (Rd )→ E (M)(K) surjective. Hence there exists an extension

operator. (Bonet-Braun-Meise-Taylor, Franken,...) → talk of Armin Rainer
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I (X , ‖ · ‖n) Fréchet has (Ω) if ∀ n∃m∀ k

∃ c, s

∀ f ∈ X , ε > 0

‖f ‖m ≤ 1 ⇒ ∃ g ∈ X with ‖f − g‖n ≤ ε and ‖g‖k

≤ cε−s

I Whenever one proves surjectivity of an operator with the Mittag-Leffler method
there is a good chance that this also shows (Ω) for the kernel.

I Tidten ‘79: JK has (Ω) for all K .
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Extension operators for Cn(K )

I Fefferman: n finite. Characterization of Cn(K) = {F |K : F ∈ Cn
b (Rd )} and there

is always an extension operator.
I n =∞, d ≥ 2 no description, C∞(K) 6=

⋂
n∈N Cn(K) (Paw lucki, Bierstone &

Milman)
I Frerick’07: WEP ⇒ E∞(K) = C∞(K) and smooth extension property (SEP)
I {0} has SEP
I d = 1 f ∈ C∞(K) ⇔ all divided differences f [x0, . . . , xn] uniformly continuous on

Kn+1
6= (Whitney, Merrien)

I FJW ‘19/20: Every closed ideal in C∞(R) has (Ω).

Theorem FJW ‘19/20, d = 1

For K ⊆ R the following is sufficient for SEP:
∃ n ∈ N, r ≥ 1 ∀m ∈ N, k ∈ N ∃ c > 0, εk > 0 ∀ ε ∈ (0, εk ), x ∈ K :

EITHER K ∩ (x − εr , x + εr ) contains less than n + 1 points

OR ∃ y0, . . . , yk ∈ K ∩ (x − ε, x + ε) with
sup0≤i,j≤k |yi − yj |k−m

inf i 6=j |yi − yj |k
≤

c

εrm
.

Also a much weaker necessary condition.

K = {0} ∪ {xn : n ∈ N}
For xn = 1/nα (Fefferman-Ricci ‘12), xn = exp(−nα) (α = 1 Vogt’14) and
xn = 1/ log(n)α SEP holds.

For xn = exp(−2n) SEP fails.
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