Extension operators for spaces of smooth functions and Whitney jets

Jochen Wengenroth

Joint work with Leonhard Frerick and Enrique Jordá

GF2020 Ghent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $C^n(K) = \{F|_K : F \in C^n_b(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• $C^n(K) = \{F|_K : F \in C^n_b(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

Problem: (partial) derivatives not well defined

• $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

- Problem: (partial) derivatives not well defined
- $\mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\}$ Whitney jets.

▶ $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Problem: (partial) derivatives not well defined
- $\mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\}$ Whitney jets.
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895

▶ $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

- Problem: (partial) derivatives not well defined
- $\mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\}$ Whitney jets.
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}^d_0}$ Borel 1895 / Peano 1884

▶ $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Problem: (partial) derivatives not well defined
- $\blacktriangleright \ \mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\} \text{ Whitney jets.}$
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895 / Peano 1884
- ► Derivatives: $\partial^{\beta}(f^{(\alpha)})_{|\alpha| < n+1} = (f^{(\alpha+\beta)})_{|\alpha| < n-|\beta|+1}$.

▶ $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Problem: (partial) derivatives not well defined
- $\blacktriangleright \ \mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\} \text{ Whitney jets.}$
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895 / Peano 1884
- ► Derivatives: $\partial^{\beta}(f^{(\alpha)})_{|\alpha| < n+1} = (f^{(\alpha+\beta)})_{|\alpha| < n-|\beta|+1}$.

► Taylor polynomials
$$T_y^n f(x) = \sum_{|\beta| \le n} \frac{f^{(\beta)}(y)}{\beta!} (x - y)^{\beta}.$$

- $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$
- Problem: (partial) derivatives not well defined
- $\blacktriangleright \ \mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\} \text{ Whitney jets.}$
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895 / Peano 1884
- Derivatives: $\partial^{\beta}(f^{(\alpha)})_{|\alpha| < n+1} = (f^{(\alpha+\beta)})_{|\alpha| < n-|\beta|+1}$.
- Taylor polynomials $T_y^n f(x) = \sum_{|\beta| \le n} \frac{f^{(\beta)}(y)}{\beta!} (x y)^{\beta}$.
- Question: How well can one choose an extension F depending on the data on K?

- $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$
- Problem: (partial) derivatives not well defined
- $\blacktriangleright \ \mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\} \text{ Whitney jets.}$
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895 / Peano 1884
- Derivatives: $\partial^{\beta}(f^{(\alpha)})_{|\alpha| < n+1} = (f^{(\alpha+\beta)})_{|\alpha| < n-|\beta|+1}$.
- Taylor polynomials $T_y^n f(x) = \sum_{|\beta| \le n} \frac{f^{(\beta)}(y)}{\beta!} (x y)^{\beta}$.
- Question: How well can one choose an extension F depending on the data on K?

A D N A 目 N A E N A E N A B N A C N

Whitney's Theorem 1934

$$\mathscr{E}^{n}(\mathcal{K}) = \left\{ (f^{(\alpha)})_{|\alpha| < n+1} : f^{(\alpha)} \in \mathcal{C}(\mathcal{K}) \text{ for all } |\alpha| \le m < n+1 \\ \frac{f^{(\alpha)}(x) - \partial^{\alpha} T_{y}^{m}(f)(x)}{|x - y|^{m-|\alpha|}} \to 0, \, x, y \in \mathcal{K}, |x - y| \to 0 \right\}$$

- ▶ $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ Banach for quotient norm, Fréchet for $n = \infty$
- Problem: (partial) derivatives not well defined
- $\blacktriangleright \ \mathscr{E}^n(K) = \left\{ (\partial^{\alpha} F|_K)_{|\alpha| < n+1} : F \in C_b^n(\mathbb{R}^d) \right\} \text{ Whitney jets.}$
- Example: $\mathscr{E}^{\infty}(\{0\}) = \mathbb{R}^{\mathbb{N}_0^d}$ Borel 1895 / Peano 1884
- Derivatives: $\partial^{\beta}(f^{(\alpha)})_{|\alpha| < n+1} = (f^{(\alpha+\beta)})_{|\alpha| < n-|\beta|+1}$.
- Taylor polynomials $T_y^n f(x) = \sum_{|\beta| \le n} \frac{f^{(\beta)}(y)}{\beta!} (x y)^{\beta}$.
- Question: How well can one choose an extension F depending on the data on K?

Whitney's Theorem 1934

$$\mathscr{E}^{n}(\mathcal{K}) = \left\{ (f^{(\alpha)})_{|\alpha| < n+1} : f^{(\alpha)} \in C(\mathcal{K}) \text{ for all } |\alpha| \le m < n+1 \\ \frac{f^{(\alpha)}(x) - \partial^{\alpha} T_{y}^{m}(f)(x)}{|x - y|^{m-|\alpha|}} \to 0, \, x, y \in \mathcal{K}, |x - y| \to 0 \right\}$$

Whitney norms $\|f\|_{m,K} = \|f\|_{m,K} + \sup$ of Taylor remainders for $x, y \in K, |\alpha| \le m$.

うしん 前 ふぼとうぼう (四)

For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(K) \to C_n^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_K = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Negative: {0} (Mityagin '61

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Negative: {0} (Mityagin '61/ Grothendieck '54)

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: deg $(p) \le k \Rightarrow ||p'||_{[-1,1]} \le c_k ||p||_{[-1,1]}$ for $c_k = k^2$

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...

- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: $\deg(p) \le k \Rightarrow \|p'\|_{[-r,r]} \le c_k r^{-1} \|p\|_{[-r,r]}$

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...
- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: deg(p) $\leq k \Rightarrow \|p'\|_{[-r,r]} \leq c_k r^{-1} \|p\|_{[-r,r]}$
- ▶ K has LMI(s) if there are c_k such that for all deg $(p) \le k$, $x_0 \in K$, $r \in (0, 1]$

 $|\partial_j p(x_0)| \leq c_k r^{-s} \|p\|_{K \cap B(x_0,r)}$ (SJW for s = 1, BM)

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...
- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: deg $(p) \le k \Rightarrow \|p'\|_{[-r,r]} \le c_k r^{-1} \|p\|_{[-r,r]}$
- ▶ K has LMI(s) if there are c_k such that for all deg $(p) \le k$, $x_0 \in K$, $r \in (0, 1]$

 $|\partial_j p(x_0)| \leq c_k r^{-s} \|p\|_{K \cap B(x_0,r)}$ (SJW for s = 1, BM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶ $LMI(s) \Rightarrow WEP$ with $||E(f)||_n \le c_n |f|_{an}$ for some $a \ge 1$ (essentially Bos & Milman '95,

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...
- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: deg $(p) \le k \Rightarrow \|p'\|_{[-r,r]} \le c_k r^{-1} \|p\|_{[-r,r]}$
- ▶ K has LMI(s) if there are c_k such that for all deg $(p) \le k$, $x_0 \in K$, $r \in (0, 1]$

 $|\partial_j p(x_0)| \le c_k r^{-s} \|p\|_{K \cap B(x_0,r)}$ (SJW for s = 1, BM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

LMI(s) ⇒ WEP with ||E(f)||_n ≤ c_n|f|_{an} for some a ≥ 1 (essentially Bos & Milman '95, FJW '11: a = s + ε, FJW '16: For s = 1 one can take a = 1)

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...
- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP \leftrightarrow K everywhere big enough.
- Markov inequality: deg $(p) \le k \Rightarrow \|p'\|_{[-r,r]} \le c_k r^{-1} \|p\|_{[-r,r]}$
- ▶ K has LMI(s) if there are c_k such that for all deg $(p) \le k$, $x_0 \in K$, $r \in (0, 1]$

 $|\partial_j p(x_0)| \le c_k r^{-s} \|p\|_{K \cap B(x_0, r)}$ (SJW for s = 1, BM)

LMI(s) ⇒ WEP with ||E(f)||_n ≤ c_n|f|_{an} for some a ≥ 1 (essentially Bos & Milman '95, FJW '11: a = s + ε, FJW '16: For s = 1 one can take a = 1)

Theorem (FJW '16)

 $K \subseteq \mathbb{R}^d$ admits a Whitney extension operator which extends to $\mathscr{E}^n(K) \to C^n(\mathbb{R}^d)$ for all $n \in \mathbb{N}_0$ if and only if

- ► d = 1: $\exists \rho \in (0,1) \ \forall x_0 \in K, \ \varepsilon \in (0,1) \ \exists x_1 \in K \text{ s.t. } \rho \varepsilon < |x_0 x_1| < \varepsilon.$
- Cantor set

- For finite $n \in \mathbb{N}_0$ there is always a continuous linear extension operator $E_n : \mathscr{E}^n(\mathcal{K}) \to C_b^n(\mathbb{R}^d)$, i.e., $\partial^{\alpha} E_n(f)|_{\mathcal{K}} = f^{(\alpha)}$ for all $|\alpha| \leq n$ (Whitney 1934)
- ▶ *K* has WEP if there is a continuous linear extension operator $E : \mathscr{E}^{\infty}(K) \to C_b^{\infty}(\mathbb{R}^d)$
- Mityagin, Seeley, Stein, Bierstone, Pawłucki, Plesniak, Bos, Milman, Tidten, Frerick, Goncharov,...
- ▶ Positive: [0, 1], $K = \mathring{K}$ with Lip^{α} boundary, polynomial cusps, Cantor set ...
- Negative: {0} (Mityagin '61/ Grothendieck '54), sharp cusps
- Idea: WEP $\leftrightarrow K$ everywhere big enough.
- Markov inequality: deg $(p) \le k \Rightarrow \|p'\|_{[-r,r]} \le c_k r^{-1} \|p\|_{[-r,r]}$
- ▶ K has LMI(s) if there are c_k such that for all deg $(p) \le k$, $x_0 \in K$, $r \in (0, 1]$

 $|\partial_j p(x_0)| \le c_k r^{-s} \|p\|_{K \cap B(x_0, r)}$ (SJW for s = 1, BM)

LMI(s) ⇒ WEP with ||E(f)||_n ≤ c_n|f|_{an} for some a ≥ 1 (essentially Bos & Milman '95, FJW '11: a = s + ε, FJW '16: For s = 1 one can take a = 1)

Theorem (FJW '16)

 $K \subseteq \mathbb{R}^d$ admits a Whitney extension operator which extends to $\mathscr{E}^n(K) \to C^n(\mathbb{R}^d)$ for all $n \in \mathbb{N}_0$ if and only if

$$\exists \ \varrho \in (0,1) \ \forall \ x_0 \in K, \ \varepsilon \in (0,1) \ \exists \ x_1 \dots, x_d \in K \cap B(x_0,\varepsilon)$$

 $\operatorname{dist}(x_{n+1}, \operatorname{affine hull}\{x_0, \ldots, x_n\}) \ge \varrho \varepsilon \text{ for all } n \in \{0, \ldots, d-1\}.$

► d = 1: $\exists \rho \in (0,1) \quad \forall x_0 \in K, \varepsilon \in (0,1) \quad \exists x_1 \in K \text{ s.t. } \rho \varepsilon < |x_0 - x_1| < \varepsilon.$

Cantor set , Lipschitz boundary (Stein '70), Sierpiński triangle,....

Whitney's operator

$$E_n(f)(x) = \begin{cases} f^{(0)}(x) & x \in K \\ \sum\limits_{i \in \mathbb{N}} \varphi_i(x) T_{y(i)}^n f(x) & x \notin K \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $(\varphi_i(x))_{i \in \mathbb{N}}$ Whitney partition of unity for $\mathbb{R}^d \setminus K$, $y(i) \in K$ minimizes $r_i = \operatorname{dist}(\operatorname{supp}(\varphi_i), K) \cong \operatorname{diam}(\operatorname{supp}(\varphi_i))$, $\|\partial^{\alpha}\varphi_i\| \leq cr_i^{-|\alpha|}$

Whitney's operator

$$E_n(f)(x) = \begin{cases} f^{(0)}(x) & x \in K \\ \sum_{i \in \mathbb{N}} \varphi_i(x) T_{y(i)}^n f(x) & x \notin K \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $(\varphi_i(x))_{i \in \mathbb{N}}$ Whitney partition of unity for $\mathbb{R}^d \setminus K$, $y(i) \in K$ minimizes $r_i = \operatorname{dist}(\operatorname{supp}(\varphi_i), K) \cong \operatorname{diam}(\operatorname{supp}(\varphi_i))$, $\|\partial^{\alpha}\varphi_i\| \leq cr_i^{-|\alpha|}$

Principle idea: Replace coefficients f^(β)(y) of Tⁿ_yf by ∫_K f⁽⁰⁾dµ_{β,y,ri} with suitable measures and estimate ||E_n(f) − Ẽ(f)||_n

Whitney's operator

$$E_n(f)(x) = \begin{cases} f^{(0)}(x) & x \in K \\ \sum\limits_{i \in \mathbb{N}} \varphi_i(x) T_{y(i)}^n f(x) & x \notin K \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $(\varphi_i(x))_{i \in \mathbb{N}}$ Whitney partition of unity for $\mathbb{R}^d \setminus K$, $y(i) \in K$ minimizes $r_i = \operatorname{dist}(\operatorname{supp}(\varphi_i), K) \cong \operatorname{diam}(\operatorname{supp}(\varphi_i))$, $\|\partial^{\alpha}\varphi_i\| \leq cr_i^{-|\alpha|}$

- Principle idea: Replace coefficients f^(β)(y) of Tⁿ_yf by ∫_K f⁽⁰⁾dµ_{β,y,ri} with suitable measures and estimate ||E_n(f) − Ẽ(f)||_n
- \tilde{E} is called a Whitney type operator

Whitney's operator

$$E_n(f)(x) = \begin{cases} f^{(0)}(x) & x \in K\\ \sum\limits_{i \in \mathbb{N}} \varphi_i(x) T_{y(i)}^n f(x) & x \notin K \end{cases}$$

 $(\varphi_i(x))_{i \in \mathbb{N}}$ Whitney partition of unity for $\mathbb{R}^d \setminus K$, $y(i) \in K$ minimizes $r_i = \operatorname{dist}(\operatorname{supp}(\varphi_i), K) \cong \operatorname{diam}(\operatorname{supp}(\varphi_i))$, $\|\partial^{\alpha}\varphi_i\| \leq cr_i^{-|\alpha|}$

- Principle idea: Replace coefficients f^(β)(y) of Tⁿ_yf by ∫_K f⁽⁰⁾dµ_{β,y,ri} with suitable measures and estimate ||E_n(f) − Ẽ(f)||_n
- \tilde{E} is called a Whitney type operator

Theorem (FJJW '20)

WEP \Leftrightarrow There is a Whitney type extension operator (& precise continuity estimates $\|\tilde{E}(f)\|_n \leq c_n |f|_{\sigma(n),K}$ in terms of the measures)

• WEP
$$\Leftrightarrow 0 \to J_K \to C_b^{\infty}(\mathbb{R}^d) \to \mathscr{E}^{\infty}(K) \to 0$$
 splits.

 $\blacktriangleright \ \mathsf{WEP} \Leftrightarrow 0 \to J_K \to C^\infty_b(\mathbb{R}^d) \to \mathscr{E}^\infty(K) \to 0 \ \mathsf{splits}.$

► This is a property of the functor L(𝔅[∞](K), −) namely whether its first right derivative vanishes in J_K.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_K .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)

•
$$(X, \|\cdot\|_n)$$
 Fréchet has (Ω) if $\forall n \exists m \forall k$ $\forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f-g\|_n \leq \varepsilon \text{ and } \|g\|_k < \infty$

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.
- Tidten '79: J_K has (Ω) for all K.

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

- Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.
- Tidten '79: J_K has (Ω) for all K.
- ▶ $(X, \|\cdot\|_n)$ Fréchet has (DN) if $\exists n \forall m \exists k, c \forall f \in X$

 $||f||_m^2 \leq c ||f||_k ||f||_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

- Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.
- Tidten '79: J_K has (Ω) for all K.
- ▶ $(X, \|\cdot\|_n)$ Fréchet has (DN) if $\exists n \forall m \exists k, c \forall f \in X$

$$||f||_m^2 \leq c ||f||_k ||f||_n$$

- Application to ultradifferentiable functions of Beurling type: (M_j)_{j∈ℕ} strongly non-quasianalytic weight sequence
- ► $C_b^{(M)}(\mathbb{R}^d) = \{f \in C^\infty : \text{ all } \|f\|_m = \sup\{|\partial^\alpha f(x)|\frac{m^{|\alpha|}}{M_{|\alpha|}} : \alpha \in \mathbb{N}_0^d, x \in \mathbb{R}^d\} < \infty\}$ always has (DN):

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

- Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.
- Tidten '79: J_K has (Ω) for all K.
- ▶ $(X, \|\cdot\|_n)$ Fréchet has (DN) if $\exists n \forall m \exists k, c \forall f \in X$

$$||f||_m^2 \leq c ||f||_k ||f||_n$$

- Application to ultradifferentiable functions of Beurling type: (M_j)_{j∈ℕ} strongly non-quasianalytic weight sequence
- ► $C_b^{(M)}(\mathbb{R}^d) = \{f \in C^\infty : \text{ all } \|f\|_m = \sup\{|\partial^\alpha f(x)|\frac{m^{|\alpha|}}{M_{|\alpha|}} : \alpha \in \mathbb{N}_0^d, x \in \mathbb{R}^d\} < \infty\}$ always has (DN):

•
$$(m^{|\alpha|}/M_{|\alpha|})^2 = (m^2)^{|\alpha|}/M_{|\alpha|} \cdot 1^{|\alpha|}/M_{|\alpha|}$$
 yields $||f||_m^2 \le ||f||_{m^2} ||f||_1$

- ▶ WEP \Leftrightarrow 0 \rightarrow $J_K \rightarrow C_b^{\infty}(\mathbb{R}^d) \rightarrow \mathscr{E}^{\infty}(K) \rightarrow$ 0 splits.
- ▶ This is a property of the functor $L(\mathscr{E}^{\infty}(K), -)$ namely whether its first right derivative vanishes in J_{K} .
- Splitting theorem of Vogt-Wagner: WEP $\Leftrightarrow \mathscr{E}^{\infty}(K)$ has (DN) & J_{K} has (Ω)
- $(X, \|\cdot\|_n)$ Fréchet has (Ω) if $\forall n \exists m \forall k \exists c, s \forall f \in X, \varepsilon > 0$

 $\|f\|_m \leq 1 \Rightarrow \exists g \in X \text{ with } \|f - g\|_n \leq \varepsilon \text{ and } \|g\|_k \leq c \varepsilon^{-s}$

- Whenever one proves surjectivity of an operator with the Mittag-Leffler method there is a good chance that this also shows (Ω) for the kernel.
- Tidten '79: J_K has (Ω) for all K.
- ▶ $(X, \|\cdot\|_n)$ Fréchet has (DN) if $\exists n \forall m \exists k, c \forall f \in X$

$$||f||_m^2 \le c ||f||_k ||f||_n$$

- Application to ultradifferentiable functions of Beurling type: (M_j)_{j∈ℕ} strongly non-quasianalytic weight sequence
- ► $C_b^{(M)}(\mathbb{R}^d) = \{f \in C^\infty : \text{ all } \|f\|_m = \sup\{|\partial^\alpha f(x)|\frac{m^{|\alpha|}}{M_{|\alpha|}} : \alpha \in \mathbb{N}_0^d, x \in \mathbb{R}^d\} < \infty\}$ always has (DN):
- $(m^{|\alpha|}/M_{|\alpha|})^2 = (m^2)^{|\alpha|}/M_{|\alpha|} \cdot 1^{|\alpha|}/M_{|\alpha|}$ yields $||f||_m^2 \le ||f||_{m^2} ||f||_1$
- Bruna '80: C_b^(M)(ℝ^d) → ℰ^(M)(K) surjective. Hence there exists an extension operator. (Bonet-Braun-Meise-Taylor, Franken,...) → talk of Armin Rainer

Sac

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.

▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

{0} has SEP

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \ldots, x_n]$ uniformly continuous on K_{\neq}^{n+1} (Whitney, Merrien)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \dots, x_n]$ uniformly continuous on K^{n+1}_{\neq} (Whitney, Merrien)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

FJW '19/20: Every closed ideal in $C^{\infty}(\mathbb{R})$ has (Ω) .

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \dots, x_n]$ uniformly continuous on K^{n+1}_{\neq} (Whitney, Merrien)
- FJW '19/20: Every closed ideal in $C^{\infty}(\mathbb{R})$ has (Ω).

Theorem FJW '19/20, d = 1

For $K \subseteq \mathbb{R}$ the following is sufficient for SEP: $\exists n \in \mathbb{N}, r \ge 1 \ \forall m \in \mathbb{N}, k \in \mathbb{N} \ \exists c > 0, \varepsilon_k > 0 \ \forall \varepsilon \in (0, \varepsilon_k), x \in K$:

EITHER $K \cap (x - \varepsilon^r, x + \varepsilon^r)$ contains less than n + 1 points

$$\mathsf{OR} \exists y_0, \dots, y_k \in \mathcal{K} \cap (x - \varepsilon, x + \varepsilon) \ \text{ with } \frac{\sup_{0 \leq i,j \leq k} |y_i - y_j|^{k-m}}{\inf_{i \neq j} |y_i - y_j|^k} \leq \frac{c}{\varepsilon^{rm}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \dots, x_n]$ uniformly continuous on K^{n+1}_{\neq} (Whitney, Merrien)
- FJW '19/20: Every closed ideal in $C^{\infty}(\mathbb{R})$ has (Ω) .

Theorem FJW '19/20, d = 1

For $K \subseteq \mathbb{R}$ the following is sufficient for SEP: $\exists n \in \mathbb{N}, r \ge 1 \ \forall m \in \mathbb{N}, k \in \mathbb{N} \ \exists c > 0, \varepsilon_k > 0 \ \forall \varepsilon \in (0, \varepsilon_k), x \in K$:

EITHER $K \cap (x - \varepsilon^r, x + \varepsilon^r)$ contains less than n + 1 points

$$\text{OR } \exists y_0, \dots, y_k \in \mathcal{K} \cap (x - \varepsilon, x + \varepsilon) \text{ with } \frac{\sup_{0 \leq i,j \leq k} |y_i - y_j|^{k-m}}{\inf_{i \neq j} |y_i - y_j|^k} \leq \frac{c}{\varepsilon^{rm}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Also a much weaker necessary condition.

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \dots, x_n]$ uniformly continuous on K^{n+1}_{\neq} (Whitney, Merrien)
- FJW '19/20: Every closed ideal in $C^{\infty}(\mathbb{R})$ has (Ω) .

Theorem FJW '19/20, d = 1

For $K \subseteq \mathbb{R}$ the following is sufficient for SEP: $\exists n \in \mathbb{N}, r \ge 1 \ \forall m \in \mathbb{N}, k \in \mathbb{N} \ \exists c > 0, \varepsilon_k > 0 \ \forall \varepsilon \in (0, \varepsilon_k), x \in K$:

EITHER $K \cap (x - \varepsilon^r, x + \varepsilon^r)$ contains less than n + 1 points

$$OR \exists y_0, \ldots, y_k \in K \cap (x - \varepsilon, x + \varepsilon) \text{ with } \frac{\sup_{0 \le i, j \le k} |y_i - y_j|^{k-m}}{\inf_{i \ne j} |y_i - y_j|^k} \le \frac{c}{\varepsilon^{rm}}.$$

Also a much weaker necessary condition.

$K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$

For $x_n = 1/n^{\alpha}$ (Fefferman-Ricci '12), $x_n = \exp(-n^{\alpha})$ ($\alpha = 1$ Vogt'14) and $x_n = 1/\log(n)^{\alpha}$ SEP holds.

- ▶ Fefferman: *n* finite. Characterization of $C^n(K) = \{F|_K : F \in C_b^n(\mathbb{R}^d)\}$ and there is always an extension operator.
- ▶ $n = \infty$, $d \ge 2$ no description, $C^{\infty}(K) \neq \bigcap_{n \in \mathbb{N}} C^n(K)$ (Pawłucki, Bierstone & Milman)
- Frerick'07: WEP $\Rightarrow \mathscr{E}^{\infty}(K) = C^{\infty}(K)$ and smooth extension property (SEP)
- {0} has SEP
- d = 1 $f \in C^{\infty}(K) \Leftrightarrow$ all divided differences $f[x_0, \dots, x_n]$ uniformly continuous on K^{n+1}_{\neq} (Whitney, Merrien)
- FJW '19/20: Every closed ideal in $C^{\infty}(\mathbb{R})$ has (Ω).

Theorem FJW '19/20, d = 1

For $K \subseteq \mathbb{R}$ the following is sufficient for SEP: $\exists n \in \mathbb{N}, r \ge 1 \ \forall m \in \mathbb{N}, k \in \mathbb{N} \ \exists c > 0, \varepsilon_k > 0 \ \forall \varepsilon \in (0, \varepsilon_k), x \in K$:

EITHER $K \cap (x - \varepsilon^r, x + \varepsilon^r)$ contains less than n + 1 points

$$OR \exists y_0, \ldots, y_k \in K \cap (x - \varepsilon, x + \varepsilon) \text{ with } \frac{\sup_{0 \le i, j \le k} |y_i - y_j|^{k-m}}{\inf_{i \ne j} |y_i - y_j|^k} \le \frac{c}{\varepsilon^{rm}}.$$

Also a much weaker necessary condition.

$K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$

For $x_n = 1/n^{\alpha}$ (Fefferman-Ricci '12), $x_n = \exp(-n^{\alpha})$ ($\alpha = 1$ Vogt'14) and $x_n = 1/\log(n)^{\alpha}$ SEP holds. For $x_n = \exp(-2^n)$ SEP fails.