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One-dim thick distribution theory (Estrada, Fulling)

Definition
The “thick test function space” is defined as the topological vector
space consists of all compactly supported functions which are smooth
on R\{a}, and whose one-sided derivatives at x = a exist.

Denoted as D∗,a(R).

Given a proper topology, it is a TVS, with D(R) its closed subspace.

Definition
The dual of D∗,a(R) is the “thick distribution space”, D ′

∗,a(R)
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By the Hahn-Banach Theorem, there is a projection from D∗,a(R) to
D(R) .

Example
δ+(x):

< δ+(x),ϕ(x)>= ϕ+(0) := lim
x→0+

ϕ(x)

Clearly, the projection of δ+(x) onto the usual distribution space is
δ (x).
Note: The lifting is NOT unique.
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Higher-dim thick distribution theory (Yang, Estrada)

Definition
Let D∗,a (Rn) denote the vector space of all smooth functions ϕ
defined in Rn\{a} , with support of the form K\{a} , where K is
compact in Rn, that admits a strong asymptotic expansion of the form

ϕ (a+x) = ϕ (a+ rw)∼
∞

∑
j=m

aj (w)rj, as x → 0, (1)

where m ∈ Z, and where aj are smooth functions of w, that is,
aj ∈ D

(
Sn−1

)
. We call D∗,a (Rn) the space of test functions on Rn

with a thick point located at x = a. It is sometimes convenient to take
a = 0; we denote D∗,0 (Rn) by D∗ (Rn) .
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Recall that

Definition
Let ϕ be defined in Rn\{0} . We say that ϕ has the asymptotic
expansion ∑∞

j=m aj (w)rj as x → 0 if for all M ≥ m,M ∈ Z,

lim
r→0+

∣∣∣∣∣ϕ (x)−
M

∑
j=m

aj (w)rj

∣∣∣∣∣r−M = 0, uniformly on w ∈ S. (2)

In this case we write ϕ(x)∼ ∑∞
j=m aj (w)rj as x → 0.
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With a proper topology, D∗,a (Rn) is a TVS:

Definition
Let m be a fixed integer and K a compact of subset of Whose interior
contains a. D

[m;K]
∗,a (Rn) consists of those test functions whose

expansion begins at m, and whose support is in K.

Definition
Let m be a fixed integer and K a compact subset of Rn whose interior
contains a. The topology of D

[m;K]
∗,a (Rn) is given by the seminorms{

∥∥q,s

}
q>m,s≥0

defined as

∥ϕ∥q,s = sup
x+a∈K

sup
|p|≤s

r−q

∣∣∣∣∣(∂/∂x)p ϕ (a+x)−
q−1

∑
j=m−|p|

aj.p (w)rj

∣∣∣∣∣ ,
where x = rw,p ∈Nn, and (∂/∂x)p ϕ (a+x)∼ ∑∞

j=m−|p| aj.p (w)rj.
The topology of D∗,a (Rn) is the inductive limit topology of the
D

[m]
∗,a (Rn) as K ↗ ∞. and m ↘−∞.
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Definition
The space of distributions on Rn with a thick point at x = a is the dual
space of D∗,a (Rn) . We denoted it by D ′

∗,a (Rn) , or just as D ′
∗ (Rn)

when a = 0.

inclusion map i : D (Rn) ↪→ D∗,a (Rn) .
projection map π : D ′

∗,a (Rn)→ D ′ (Rn) (Since D (Rn) is closed in
D∗,a (Rn) .)
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Example (Thick delta functions of degree q)
Let g(w) is a distribution in Sn−1. The thick delta function of degree
q, denoted as gδ [q]

∗ , acts on a thick test function ϕ (x) as⟨
gδ [q]

∗ ,ϕ
⟩
=

1
Cn−1

⟨g(w) ,aq (w)⟩ ,

where ϕ (rw)∼ ∑∞
j=m aj (w)rj as x → 0, and Cn−1 =

∫
Sn−1 dσ (w) is

the surface area of the (n-1)-dimensional unit sphere.
We consider the special case when q = 0,g(w)≡ 1, we denote it
δ [0]
∗ := δ∗. One could easily check that

π (δ∗) = δ ,

is the famous Dirac delta function.
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Reconstruction of the one-dimensional case
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Asymptotic expansions with respect to r

Now let us view the line segment [−1,1] as 1-dimensional unit ball,
and the boundary, i.e., the two points at −1 and 1 as the
“0 dimensional unit sphere”. We denote the two boundary points
−1 and 1, respectively. We denote the set {−1,1} as S0, in
accordance to the name “0 dimensional unit sphere”.

Thus we can generalize the concept of “functions on the unit sphere”
to “functions on the 0 dimensional unit sphere”: that is, a function
from two points to R. Notice that the two points are disconnected, and
any functions from one point to R is just a constant.

Now we can express the R\{0} as R\{0} ⊂ S0×R>0 : x = (w,r) ,
where r = |x| ; w = 1 when x > 0 and w =−1 when x < 0. That is, if
r > 0,(1,r) denotes all positive numbers while (−1,r) denotes all
negative numbers. Notice there are two points in S0×R>0 with r = 0,
that is, (1,0) and (−1,0) .
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Notice that S0 has the natural discrete topology. We endow the space
S0 ×R≥0 with the product topology. We endow S0 ×R+ with the
product topology, and it is not hard to see that R\{0} is
homeomorphic to S0 ×R+.
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Definition
Let r = |x| ,we say a function f (x) = f (w,r) defined on R\{0} has an

asymptotic expansion
∞
∑

j=m
aj (w)rj , as x → 0 , where w ∈ S0, ai (w) is

a function on S0, if

lim
r→0+

∣∣∣∣∣f (x)− M

∑
j=m

aj (w)rj

∣∣∣∣∣r−M = 0, uniformly on w ∈S0. (3)

In this case we write f (x)∼
∞
∑

j=m
aj (w)rj as x → 0. In fact, we can

interchange x → 0 with r → 0+ here.
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Example
The Heaviside function is given as

H (x) =
{

1 when x > 0
0 when x < 0

.

Let us write it in the above notation, then

H (x) = a0 (w) =

{
1 when w = 1

0 when w =−1 , (4)

and it admits an asymptotic expansion H (x)∼ a0 (w) as x → 0.
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Example
Let f : R→ R be a smooth function. It has a Taylor expansion at the

origin: f (x)∼
∞
∑

j=0

f (j)(0)
j! xj. It may not converge. But it is an asymptotic

expansion as x → 0. By the Lemma above, we have an asymptotic
expansion

f ∼
∞

∑
j=0

a2jr2j +a2j+1 (w)r2j+1 as r → 0+,

where a2j =
f (2j)(0)
(2j)! and

a2j+1 (w) =


f (2j+1)(0)
(2j+1)! when w = 1

− f (2j+1)(0)
(2j+1)! when w =−1

.
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Theorem
If f (x)∼

∞
∑

j=m
aj (w)rj as x → 0, then the term-by-term derivative with

respect to x of the expasion takes the following form in S0 ×R+ :

∞

∑
j=m

d
(
aj (w)rj

)
dx

=
∞

∑
j=m−1

aj,1 (w)rj, (5)

where aj,1 (w) =

{
aj+1 (w)(j+1) when w = 1

−aj+1 (w)(j+1) when w =−1 . (6)

Example
The above theorem shows that the usual derivative (NOT the
distributional derivative) of the Heaviside function is 0 on
S0 ×R+ = R\{0} . Here we can clearly distinguish between the
“usual derivative” and the “distributional derivative”. Since we know
the famous fact that the “distributinal derivative” of the Heaviside
function is the Dirac delta function.
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Proof.
Let us first discuss

d(a(w)rj)
dx , where w ∈ S0, a(w) is a function on S0.

Clearly, a(w)rj can be viewed as a function on x when r = |x| ̸= 0.
Thus, it is legal to talk about ”derivative with respect to x” in the usual
sense.
Now we discuss the derivative

d(a(w)rj)
dx , j ̸= 0, at x0 > 0. Denote the

coordinate of x0 at S0 ×R≥0 as (1,x0) . Since S0 is endowed with the
discrete topology, there is a small neighborhood of (1,x0) , denoted as
{1}× [x0 −δ ,x0 +δ ], on which the function a(w)rj equals a(1)xj,
where a(1) is the value of the function a(w) at w = 1, namely, a
constant. Thus we have

d
(
a(w)rj

)
dx

∣∣∣∣∣
x=x0

=
d
(
a(1)xj

)
dx

∣∣∣∣∣
x=x0

= a(1) jxj−1∣∣
x=x0

.

The case when x0 < 0 is similar.
When j = 0, a similar analysis shows that d(a(w))

dx

∣∣∣
x=x0

= 0 when

x0 ̸= 0.
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Comment:

When x = 0, a(w) can be viewed as a multi-valued function on x. On
the other hand, if j > 0, then a(w)rj = 0 at x = 0. We can talk about
the so called ”left-derivative” and ”right-derivative” of a(w)rj, j > 0
at x = 0. It is not hard to see, the ”left-derivative” and
”right-derivative” are both 0 when j > 1; and the ”right-derivative”
equals a(1) while the ”left-derivative” equals −a(−1) when j = 1, at
x = 0.



. . . . . .

Reconstruction of the space of test functions on R with a
thick point

Definition
Let D∗,a (R) denote the vector space of all compactly supported
smooth functions ϕ defined in R\{a} , that admit a strong asymptotic
expansion of the form

ϕ (a+ x)∼
∞

∑
j=m

aj (w)rj, as x → 0. (7)

where aj (w) is a function on S0 as defined above in definition 10. We

call D∗,a (R) “the space of test functions on R with a thick point
located at x = a”. We denote D∗,0 (R) as D∗ (R) .
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Recall that a thick test function defined in [Estrada, Fulling; Int. J.
Appl. Math. Stat. (2007)] is a compactly supported function ϕ with
domain R, smooth in R\{a} , and at x = a all its one-sided
derivatives,

ϕ (n) (a±0) = lim
x→a±

ϕ (n) (x) , ∀n ∈ N,

exist. Here let us introduce a different notation Dold
∗,a (R) to denote the

space of such functions. One can see that any function in Dold
∗,a (R)

admits a strong asymptotic expansion

ϕ (a+ x)∼
∞

∑
j=0

aj (w)rj, as x → 0, (8)

where aj (w) =


ϕ (j)(a+0)

j! when w = 1

(−1)j ϕ (j)(a−0)
j! when w =−1

.

In particular, if ϕ (x) has a jump discontinuity at x = a, then in the
expansion (8), a0 (1) ̸= a0 (−1) .
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Lemma
Thus there are natural inclusion maps :

D (R) ↪→ Dold
∗,a (R) ↪→ D∗,a (R) . (9)

With the following topology, Dold
∗,a (R)⊆ D∗,a (R) , as a closed

subspace. Moreover, Dold
∗,a (R) is closed in D∗,a (R) with respect to

derivatives.
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Definition
Let m be a fixed integer and K a compact subset of R whose interior
contains a. The topology of D

[m,K]
∗,a (R) is given by the seminorms{

∥∥q,s

}
s≥0

defined as

∥ϕ∥q,s = sup
x+a∈K

sup
0≤p≤s

r−q

∣∣∣∣∣(d/dx)p ϕ (a+ x)−
q−1

∑
j=m−p

aj,p (w)rj

∣∣∣∣∣ ,
where (d/dx)p ϕ (a+ x)∼

q−1
∑

j=m−p
aj,p (w)rj. The topology of D

[m]
∗,a (R)

is the inductive limit topology of the D
[m,K]
∗,a (R) as K ↗ ∞. The

topology of D∗,a (R) is the inductive limit topology of D
[m]
∗,a (R) as

m ↘−∞.
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Space of distributions on R with a thick point

Definition
The space of distributions on R with a thick point at x = a is the dual
space of D∗,a (R) . We denote it D ′

∗,a (R) , or just as D ′
∗ (R) when

a = 0. We call the elements of D ′
∗,a (R) “thick distributions”.

Let π : D ′
∗,a (R)→ D ′ (R) , be the projection operator, dual to the

inclusion i : D (R) ↪→ D∗,a (R) . Since D (R) is closed in D∗,a (R) , by
the Hanh-Banach theorem we have the following result.

Theorem
Let f be any distribution in D ′ (R) , then there exist thick distributions
g ∈ D ′

∗,a (R) such that π (g) = f .

Naturally, if f ∈ D ′ (R) then there are infinitely many thick
distributions g with π (g) = f .
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Before giving examples of thick distributions, recall that by the
convention of the discrete measure, the “integral” of a function on a
discrete set is just the summation of the function over these discrete
points, we have ∫

S0
ϕ (w)dσ (w) = ϕ (1)+ϕ (−1) .

Example
For example, for the Heaviside function as in equation (4):
H (x) = a0 (w) , ∫

S0
a0 (w)dσ (w) = 1. (10)

For a constant function ϕ (w)≡ 1,∫
S0

1dσ (w) =
∫

S0
dσ (w) = 2. (11)
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Thus one can discuss the ”double integral” on S0 ×R+ if it exists:∫
S0

∫ +∞

0
ϕ (w,r)drdσ (w) =

∫ +∞

0
[ϕ (1,r)+ϕ (−1,r)]dr (12)

=
∫ +∞

0
ϕ (x)dx+

∫ −∞

0
ϕ (x)d (−x)

=
∫ +∞

0
ϕ (x)dx+

∫ 0

−∞
ϕ (x)dx.

Clearly, if ϕ ∈ D (R) is a usual test function, then∫
S0

∫ +∞

0
ϕ (w,r)drdσ (w) =

∫ +∞

−∞
ϕ (x)dx,

is just a normal integral over R.
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Definition
Let f be a locally integrable function definied in R\{a} . The thick
distribution Pf (f (x)) is defined as

⟨Pf (f (x)) ,ϕ (x)⟩= F.p.
∫ +∞

−∞
f (x)ϕ (x)dx (13)

= F.p. lim
ε→0+

∫
|x−a|≥ε

f (x)ϕ (x)dx, ϕ ∈ D∗,a (R) ,

provided that the finite part integrals exist for all ϕ ∈ D∗,a (R) .
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Similar to the higher dimensional case, although the finite part limit is
not defined for all locally integrable functions f , Pf (f (x)) is defined
in many important and interesting cases.

Example
Since F.p.

∫ A
0 rαdr = Aα+1/(α +1) ,α ̸=−1,F.p.

∫ A
0 r−1dr = logA,

we obtain that if λ /∈ Z then⟨
Pf
(
|x−a|λ

)
,ϕ (x)

⟩
=
∫
|x−a|≥A

|x−a|λ ϕ (x)dx (14)

+
∫
|x−a|<A

|x−a|λ
(

ϕ (x)− ∑
j≤−Reλ−1

aj (w) |x−a|j
)

dx

+ ∑
j≤−Reλ−1

(aj (1)+aj (−1))
Aλ+j+1

λ + j+1
,
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Example (conti..)
while if λ = k ∈ Z then⟨

Pf
(
|x−a|λ

)
,ϕ (x)

⟩
=
∫
|x−a|≥A

|x−a|k ϕ (x)dx (15)

+
∫
|x−a|<A

|x−a|k
(

ϕ (x)− ∑
j≤−k−1

aj (w) |x−a|j
)

dx

+ ∑
j<−k−1

(aj (1)+aj (−1))
Aλ+j+1

λ + j+1
+(a−k−1 (1)+a−k−1 (−1)) logA.

Formulas (14) and (15) hold for any A > 0. The finite part is needed
for all λ in the space of thick distributions D ′

∗,a (R) .
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Example (Heaviside Function)
This example will be the “finite part regularization” of the Heaviside
function. The regulariztion is needed because of the singularity of the
thick test functions: let ϕ (x) ∈ D∗ (R) , the Pf (H (x)) ∈ D ′

∗ (R) is
defined as:

⟨Pf (H (x)) ,ϕ (x)⟩

=

∫
|x−a|≥A

H (x)ϕ (x)dx+
∫
|x−a|<A

H (x)

(
ϕ (x)− ∑

j≤−1
aj (w)rj

)
dx

(16)

+ ∑
j<−1

aj (1)
Aj+1

j+1
+a−1 (1) logA.
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Definition (thick delta function of degree q)
Let g(w) be a distribution in S0, the thick delta function of degree q,
denoted as gδ [q]

∗ , acts on a thick test function ϕ (x) as⟨
gδ [q]

∗ ,ϕ
⟩

D ′
∗(R)×D∗(R)

=
1

C0
⟨g(w) ,aq (w)⟩D ′

∗(S)×D∗(S) ,

where ϕ (x)∼
∞
∑

j=m
aj (w)rj,as x → 0, and C0 = 2.

In particular, if g(x)≡ 1,q = 0 then we obtain the one-dimensional
“plain thick delta function” δ∗, given as

⟨δ∗,ϕ⟩D ′
∗(R)×D∗(R) =

1
C0

∫
S0

a0 (w)dσ (w) =
a0 (1)

2
+

a0 (−1)
2

.
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Remark:

1 If ϕ ∈ D (R) is a usual test function, then

⟨π (δ∗) ,ϕ⟩= ⟨δ∗, i(ϕ)⟩=
ϕ (0)

2
+

ϕ (0)
2

= ϕ (0) ,

hence π (δ∗) = δ .

2 If ϕ ∈ Dold
∗ (R) , π ′ : D ′

∗ (R)→ D ′old
∗ (R), let ϕ+ (0) denote

lim
x→0+

ϕ (x) and ϕ− (0) denote lim
x→0−

ϕ (x) . Then

⟨
π ′ (δ∗) ,ϕ

⟩
=

1
2

ϕ+ (0)+
1
2

ϕ− (0)
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Example
Let gλ (w) be a distribution in S0 :
⟨gλ (w) ,a(w)⟩= 2λa(1)+2(1−λ )a(−1) ,
where 0 ≤ λ ≤ 1 is a constant. Then⟨

gλ δ [q]
∗ ,ϕ

⟩
D ′

∗(R)×D∗(R)
= λaq (1)+(1−λ )aq (−1) .

In particular, if λ = 1,⟨
g1δ [q]

∗ ,ϕ
⟩

D ′
∗(R)×D∗(R)

= aq (1) .

If ϕ ∈ Dold
∗ (R) , then ⟨

π ′ (g1δ∗) ,ϕ
⟩
= ϕ+ (0) .
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Algebraic and analytic operations in D ′
∗,a (R)

1 ⟨f +λg,ϕ⟩= ⟨f ,ϕ⟩+λ ⟨g,ϕ⟩ .
2 ⟨f (x+ c) ,ϕ (x)⟩= ⟨f (x) ,ϕ (x− c)⟩ .
3 ⟨f (cx) ,ϕ (x)⟩= 1

|c| ⟨f (x) ,ϕ (x/c)⟩ .
4 ⟨ψρ ,ϕ⟩ := ⟨ρ ,ψϕ⟩ . ψ is called a “multiplier” of D∗,a (R) and

D ′
∗,a (R) .

Example

The Heaviside function H (x) = a0 (w) =

{
1 when w = 1

0 when w =−1 is

NOT a multiplier of D ′ (R) , but it is a multiplier of D ′
∗ (R) .
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Definition (derivatives)
If f ∈ D ′

∗,a (R) then its thick distributional derivative d∗f/dx is defined
as ⟨

d∗f
dx

,ϕ
⟩
=−

⟨
f ,

dϕ
dx

⟩
, ϕ ∈ D∗,a (R) .

Remark:

d∗ (ψf )
dx

=
dψ
dx

f +ψ
d∗f
dx

, f ∈ D ′
∗,a (R) ,ψ ∈ E∗,a (R) .
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Example
Now let us compute the thick distributional derivative of the
Heaviside function. Now suppose dϕ/dx has asymptotic expansion

dϕ/dx ∼
+∞
∑

j=m
bj (w)rj and ϕ has the asymptotic expansion

ϕ ∼
+∞
∑

j=m+1
aj (w)rj. Then

⟨
d∗ (Pf (H (x)))

dx
,ϕ
⟩
=−

⟨
Pf (H (x)) ,

dϕ
dx

⟩
=−

∫ +∞

A

dϕ
dx

dx−
∫ A

0

(
d (ϕ (x))

dx
− ∑

j≤−1
bj (w)rj

)
dx

− ∑
j<−1

bj (1)
Aj+1

j+1
−b−1 (1) logA

= ϕ (A)−ϕ (A)+a0 (1)+0 = a0 (1) = ⟨g1δ∗,ϕ⟩D ′
∗(R)×D∗(R)

Thus the derivative of the Heaviside function is g1δ∗.
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Example (conti..)
Now consider the projection of the derivative of the Heaviside
function d∗ (Pf (H (x)))/dx = g1δ∗ onto the usual distribution space
D ′ (R) :

⟨π (g1δ∗) ,ϕ⟩= ⟨g1δ∗, i(ϕ)⟩= ϕ (0) = ⟨δ ,ϕ⟩ . (17)

Keep in mind that π (Pf (H (x))) = H (x) , the usual Heaviside
function. Hence
π (d∗ (Pf (H (x)))/dx) = δ (x) = d (π (Pf (H (x))))/dx as expected.
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An application

Problem
Paskusz [IEEE Trans. Ed. 43 (2000)] pointed out that the following
proof is problematic, where H (x) is the usual Heaviside function:
Since H (x) = H2 (x), taking the distributional derivative on both
sides, we have δ (x) = 2H (x)δ (x) . Hence H (x)δ (x) = 1

2 δ (x) .
However, if we multiply H (x) on both sides again we will get
1
2 δ (x) = H (x)δ (x) = H2 (x)δ (x) = 1

2 H (x)δ (x) = 1
4 δ (x) , hence we

have 1
2 = 1

4 , which is clearly wrong.

The key observation of this mistake is that H (x) ·H (x) is not a
well-defined distribution, that is,⟨
H2 (x) ,ϕ (x)

⟩
D ′(R)×D(R) = ⟨H (x) ,H (x)ϕ (x)⟩ is not well-defined

since H (x)ϕ (x) is not a usual test function in D (R) : it has a jump
discontinuity. Thus we cannot simply apply the distributional
derivative on both sides of the equaion H (x) = H2 (x) .
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Solution
In the sense of thick distributions we can restate this whole story in a
rigorous way thus to avoid the mistake 1

2 = 1
4 .

In fact, it’s easy to see that H (x) is a multiplier of the thick
distributions, i.e. H (x) f (x) ∈ D ′

∗ (R) for any f (x) ∈ D ′
∗ (R) . Thus

H (x) ·H (x) should be viewed as a multiplier times a thick
distribution: H (x) ·Pf (H (x)). Then

d∗ (H (x) ·Pf (H (x)))
dx

=
d (H (x))

dx
Pf (H (x))+H (x)

d∗ (Pf (H (x)))
dx

= 0+g1δ∗

And observe that π
(

d∗(H(x)·Pf (H(x)))
dx

)
= δ .

On the other hand, it is clear that H (x) ·Pf (H (x)) = Pf (H (x)) ,
taking derivatives on both sides yields

g1δ∗ = g1δ∗.
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Thank you!
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