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background

anisotropy, exploration and global seismology

Anderson & Dziewonski (1982), Crampin (1984), Nataf, Nakanish & Anderson (1986), Helbig (1994)
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tomography

Hanyga (1982), Jech (1988), Pratt & Chapman (1992), Chapman & Miller (1996)

TTI

Vestrum, Lawton & Schmid (1999), Zhou & Greenhalgh (2008), Bakulin, Woodward, Nichols, Osypov &
Zdraveva (2010), Tsvankin & Wang (2013), Tavakoli, Operto, Ribodetti, Virieux & Sambolian (2018)
medical elasticity imaging (elastography), see for example,

Shore, Barbone, Oberai & Morgan (2011)
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TTI

Vestrum, Lawton & Schmid (1999), Zhou & Greenhalgh (2008), Bakulin, Woodward, Nichols, Osypov &
Zdraveva (2010), Tsvankin & Wang (2013), Tavakoli, Operto, Ribodetti, Virieux & Sambolian (2018)

medical elasticity imaging (elastography), see for example,

Shore, Barbone, Oberai & Morgan (2011)

Finsler geometry

Antonelli, Ingarden & Matsumoto (1993), Cerveny (2001), Yajima & Nagahama (2009), Clayton (2015)
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elastic waves R3

smooth stiffness tensor cjjxy = cjjke(x); symmetries
Cijke(X) = Gjike(x) = ckeij(x)
smooth density p = p(x), normalized elastic moduli
Cijke

ajjke =

elastic wave operator
82

5y —
léat2 '
Js

0 0
Pi¢g = . ﬁaijke(x)w + lower order terms
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elastic waves

smooth stiffness tensor cjjxy = cjjke(x); symmetries

Cijke(X) = Gjike(x) = ckeij(x)

smooth density p = p(x), normalized elastic moduli

Cijke
ajjke = .
elastic wave operator
0? 0
Py = (5,58 jZ: B ajjke(x )8 ¢ + lower order terms
principal symbol, Christoffel matrix
Fie(x, p) Z ajjke(X) PPk we also write £ for p

symmetric, positive definite for every (x, p) € R3 x (R3\ {0})
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matrix representation reflecting major symmetries

Voigt notation
tensor ajx, 11 22 33 23,32 31,13 12,21
matrix  ajj 1 2 3 4 5 6

aji = ajj: 21 parameters M(x,p) =T(x,p,a) =T(p,a)
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elastic waves, bicharacteristics polarizations

three positive eigenvalues G™(x, p), m € {1,2,3} eigenvectors ¢ = G"q™

G'(x,p) > G"(x,p), me{2,3}
level set of G for x fixed is convex

level sets of G2 and G3 must have points in common: D, (degenerate)
G=> Tuqar= Y ajkeqiqep;p
i ikt
avoid points at which D, G vanishes

slowness surface
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elastic waves, bicharacteristics polarizations

three positive eigenvalues G™(x, p), m € {1,2,3} eigenvectors ¢ = G"q™
G'(x,p) > G"(x,p), me{2,3}

level set of G for x fixed is convex

level sets of G2 and G3 must have points in common: D, (degenerate) slowness surface
G=> Tuqar= Y ajkeqiqep;p
i Y

avoid points at which D, G vanishes Hamiltonians: H(x,{) = G™(x, &) smooth outside D,

continuous function f(x, p) := 1/ G1(x, p) 7 dual to t
o f:R3x (R3\ {0}) — (0,00) is smooth, real analytic on the fibers
e for every (x,p) € R3 x R3 and s € R it holds that f(x, sp) = |s|f(x, p)

o for every (x,p) € R3 x (R®\ {0}) the Hessian of 2 is symmetric and positive definite
with respect to p
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elastic waves R3

-,

parameters vs surfaces (sheets), p = 77 1¢

(tilted) transverse isotropy gP, qSV, qSH
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elastic waves R3

-,

parameters vs surfaces (sheets), p = 77 1¢

(tilted) transverse isotropy gP, qSV, qSH
no symmetry

propagation of singularities governed by Hamiltonians H(x, &), bicharacteristics |
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geometric inverse problems propagation of singularities

geodesic ray transform, (tensor) tomography

Herglotz (1905), Wiechert & Zoeppritz (1907), Mukhometov (1975, 1982, 1987), Pestov & Sharafutdinov
(1988), Anikonov & Romanov (1997), Paternain, Salo & Uhlmann (2013) surfaces, Uhimann & Vasy (2016)
boundary rigidity

Michel (1981), Muhometov & Romanov (1978), Besson, Courtois & Gallot (1995), Stefanov & Uhlmann (1998),
Lassas, Sharafutdinov & Uhlmann (2003), Pestov & Uhlmann (2005), Stefanov, Uhlmann & Vasy (2017)
boundary distance data

Kurylev (1997), Katsuda, Kurylev & Lassas (2007), Ivanov (2010)

broken scattering relation data

Kurylev, Lassas & Uhlmann (2010) (compact) Riemannian manifolds
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elastic anisotropy through the lens of algebraic geometry
recovery of stiffness tensor from one slowness sheet
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inverse problem

slowness surface

is algebraic

M.V. de Hoop (Rice University)

Sy ={pe T:R®: det((x,p) — 1) =0}

inverse problems in anisotropic elasticity

ISAAC 2021
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inverse problem

slowness surface
Sy ={pe T:R®: det((x,p) — 1) =0}

is algebraic

given a number of points on a slowness surface, can we

@ reconstruct the entire slowness surface?

@ reconstruct the stiffness tensor that gave rise to it?
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anisotropy

Theorem (dH, llmavirta, Lassas & Vdrilly-Alvarado)

For most choices of triclinic (that is, totally anisotropic materials) the slowness surface at any
point is irreducible.
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anisotropy

Theorem (dH, llmavirta, Lassas & Vdrilly-Alvarado)

For most choices of triclinic (that is, totally anisotropic materials) the slowness surface at any
point is irreducible.

consequence: for most anisotropic materials, slownes surfaces can be reconstructed from a
small number of data points

bonus: for most anisotropic materials, the stiffness tensor can be recovered uniquely
(algorithmically!) from a slowness surface
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under the hood: algebraic geometry - irreducibility

all orthorhombic slowness surfaces at once
(“moduli space”)

S :={(p,a): det(I'(p,a)—1)=0}
N
C? ) X C?

(P1,p2,p3 (a11,a12,813,222,323,333,344, 355,366 )

szl

0 < given a point a € C°, the preimage pr, '(a) is the slowness
surface associated to the stiffness tensor that a represents

after compactifying the set-up, we show that the subset of pry(S) with irreducible preimages is

(Zariski) open in C°
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under the hood: algebraic geometry - irreducibility

e the subset of pry(S) with irreducible preimages is (Zariski) open in C°
e a single irreducible slowness surface would witness non-emptiness

e we use reduction modulo a prime number + Galois theory, and properties of finite fields
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under the hood: algebraic geometry - irreducibility

e the subset of pry(S) with irreducible preimages is (Zariski) open in C°
e a single irreducible slowness surface would witness non-emptiness

e we use reduction modulo a prime number + Galois theory, and properties of finite fields

5000424p% + 14708322p7 p3 + 18410832pF p2 — 105178p7 + 14702184 p3 p3
+ 38400324p3 p3p3 — 209855p3 p3 + 15221384p7p3 — 227260p3 p3
+ 647p? 4 4975872p5 + 20903748p3p5 — 107584p5 + 17362658 p2 p3
— 249931p3p32 + 668p3 + 3317072p5 — 81254p3 +583p2 —1 =10

is irreducible over Fzs = is irredicible over C particular mineral
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under the hood: algebraic geometry - irreducibility

Theorem (Grothendieck, EGA V.3, 1966)

Let f: X — Y be a proper morphism, flat and of finite presentation. Then the set of y € Y
such that the fiber X, is geometrically integral is open.
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under the hood: algebraic geometry - reconstruction

all orthorhombic stiffness tensors at once (“moduli space”)

l

9
AC C(all7312,313,32273237333734473557366)
| x
(CE(? - x(a) = vector of coefficients of corresponding slowness surfaces

e show: image of ¢ is 9-dimensional and generically 1 — 1
e reconstruction of pre-image: Grobner bases
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boundary rigidity, bicharacteristic curves point of view
recovery of TTI| parameters
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invariant setting, parametrization

e invariant setting based on Riemannian geometry

e a given background metric gy, which is typically the Euclidean metric; dual metric Gy

M.V. de Hoop (Rice University) inverse problems in anisotropic elasticity ISAAC 2021 16 / 44



invariant setting, parametrization

invariant setting based on Riemannian geometry

a given background metric gg, which is typically the Euclidean metric; dual metric Gy
parameterization of transversely isotropic materials:

e material constants a1, a3, 333, ass and agg
e axis of isotropy, which can be encoded by a vector field, or a one form w

use orthogonal coordinates relative to the metric gy, aligning the axis of isotropy with
the third coordinate axis
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qSH

(squared) Riemannian dual metric (defining the slowness surface)

G = Ggst = a66(x)|€'|” + as5(x)&3 = a66(x) Go + (as5(x) — a66(x))&3

corresponds to a Riemannian metric

g = BqSH = 366(x)*1 \dx'|2 + a55(x)*1 dx32 = a66(x)*1go + (;:)55(X)*1 — 366(x)’1) d><32
invariantly
g=ag+(f-—awew

metric is a rank one perturbation of a conformal multiple of the background (say, Euclidean)
metric, with o = 36_61, 8= 35_51 functions on the base manifold

@ g determines the span of w if § # «

@ kernel of w is well-defined (at any point in the manifold) as the 2-dimensional subspace
of the tangent space restricted to which g is a constant multiple of gp
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one form symmetry axis

o integrability — its kernel is an integrable hyperplane distribution, which means that Kerw
is the tangent space of a smooth family of submanifolds

@ locally level sets of a function f, w is a smooth multiple of df
g =ago+ydf ® df

@ this corresponds to some “stratification” given by the level sets of f
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convex foliation (Uhlmann & Vasy, '16)

e (M, g) is an n-dimensional Riemannian manifold with boundary, n > 3, and assume that
OM s strictly convex (in the second fundamental form sense) with respect to the g at
some p € OM

@ x is a smooth function with non-vanishing differential whose level sets are strictly concave
from the superlevel sets, and {x >0} "M C IM

(Hamiltonian flow (X(t),=(t)): &(xo X)(t) = 0 implies &5 (x 0 X)(t) > 0)

M.V. de Hoop (Rice University) inverse problems in anisotropic elasticity ISAAC 2021 19 / 44



determining the symmetry axis (dH, Uhlmann & Vasy, '19)

Theorem

consider the class of elastic problems in which Kerw = Ker df is an integrable hyperplane

distribution on a manifold with boundary M, with w not conormal to M and not orthogonal

to N*OM relative to Gy

then, under the local, resp. global, convexity conditions for Riemannian determination (up to
diffeomorphisms), f,a, B are locally, resp. globally, determined by the qSH travel times, resp.

qSH lens relations, and the labelling of the level sets of f at the boundary

there is no diffeomorphism freedom in this problem, unlike for the boundary rigidity problem in

Riemannian geometry!
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q'D/qSV co-Finsler metric

remaining material parameters, a1, ai3 and ass

at a point with coordinates gp-orthogonal and such that the isotropy axis is aligned with the x3
axis the Hamiltonians for the other waves take the form

Gypqsv = (a11 + as5)[€' % + (as3 + as5)E3

/(211 — as5)[E12 + (233 — 255)E3)% — 4E2[ET283

where
E? = (a11 — as5)(a33 — ass) — (a13 + ass)”
assumption
max{ass, ags } < min{ai1, ass}

microlocally weighted ray transform along “curves” (projected Hamiltonian flow)

determination of aji, asz3 and E2?
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triplications, ..

multiple points in the cotangent space potentially corresponding to the same tangent vector
via the Hamilton map

Lemma

suppose that either H = H, = Ggp, or instead H = H_ = Ggsy and

as3(a1 — ass) > (ar3 + ass)?

then the map £ — 53;(5) =2 g—ga;j has an invertible differential at & = 0, and indeed the
level sets of H are strictly convex J( from the sublevel sets) nearby

RENEILS

if E2 > 0, the right-hand side is < (a11 — ass)(a33 — ass), so the inequality in the statement of
the lemma is automatically true
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non-degeneracy condition

if the transverse isotropy orthogonal planes are close to the tangent spaces to a convex
foliation, then the material is non-degenerate relative to the convex foliation

a transversely isotropic material is non-degenerate relative to a convex foliation (concave from
the superlevel sets for Gysy/) if for each point x and each vector v tangent to the convex

foliation at the point x there is a covector £ in the cotangent space over x such that
Hx(§) = v and the map 9 has invertible differential at &, with ), arising from Ggsv

a transversely isotropic material is non-degenerate provided the statement above holds for all v
(and not just v tangent to a particular convex foliation)

M.V. de Hoop (Rice University) inverse problems in anisotropic elasticity ISAAC 2021 23 / 44



tangent plane to the artifical boundary strict sign

if the gradient Vf of the transverse isotropy foliation function is not parallel to the artificial
boundary, points with £ = 0 cannot give rise to vectors tangent to the artificial boundary
under Hamiltonian map $)x
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normal operators (dH, Uhlmann & Vasy, '19)

Theorem

assume that Vf is neither parallel, nor orthogonal to the artificial boundary with respect to gp;
assume moreover that the transversely isotropic material is non-degenerate relative to a convex
foliation if qSV data are used below, with convexity of the foliation always understood with
respect to Ggp, resp. Ggsy, if qP, resp. qSV data are used below

then the modified and localized “normal operators” arising from the Stefanov-Uhlmann
formula (pseudolinearization) are in Melrose's scattering pseudodifferential operator algebra

furthermore, the boundary principal symbol is elliptic at finite points of the scattering
cotangent bundle for any one of E2, a1y, as3 from the qP travel data, and for E? (as well as
a1 and asz if E2 >0 ) from the qSV travel data, furthermore, for a1 from the qP-travel time
data standard principal symbol ellipticity also holds
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double characteristics (dH, Uhlmann & Vasy, '19)

for az3, E? from the qP or qSV travel data, as well as for E?> and one of a11 and azs jointly
from the qP and qSV data, the standard principal symbol is not elliptic, rather vanishes in a
non-degenerate quadratic manner along the span of df at fiber infinity in the scattering
cotangent bundle

@ in general, for the normal operator’s standard principal symbol computation at a point
¢ € T;M, one takes a weighted average of certain quantities evaluated at covectors for
which the Hamilton vector field for the relevant polarization is annihilated by ¢

e if ( = df is in the axis direction, the tangent vectors involved in the integration correspond
to covectors in the gp-orthogonal plane, that is, with vanishing §~3 coordinate, and there
the qP and qSV wave speeds are insensitive to azz, E2 as these appear with a prefactor fg
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Finsler geometry point of view
recovery of “slowness surfaces”
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elastic waves, bicharacteristics, Finsler geodesics

f =/ G is a convex norm on the cotangent space

a Finsler manifold is a differentiable manifold M equipped with Fy: T,M — [0, c0) for each x
with the properties of a norm; combining the functions on separate fibers gives rise to the
Finsler function F: TM — [0, c0), which is continuous on TM and smooth enough on TM \ 0

e F*is related to F as (Legendre transform)

Fx(v(x,p)) = F<(p) with v(x,p) = op (p)
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elastic waves, bicharacteristics, geodesics

e forany x € M, v e T,M\ 0, in local coordinates

100 e ) = (aen)
< =1

iy ij=1

the local Riemannian metric
e the length of any curve is defined using Riemannian metric associated with its tangent
direction; the infinitesimal travel time dt is determined by the local Riemannian metric gj;

di? = F2(x,)'<) = g,-j(x,)'()Xin

let | be a closed interval; 7v: | — M, with a constant speed F(%(t)) = c > 0, is a geodesic of
Finsler manifold (M, F) if v(t) solves the system of geodesic equations

70+ 20(0) =0, Gixv) = 3 3 gx {2 5 - S i

_ Oxk ox!
Jjskl

G:TM — R
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distance and geodesics on Finsler manifolds

let x,y € M and let C, denote the collection of all piecewise C! paths from x to y

o) = inf{ﬁ(c) . /01 Fle(t), é(t)) dt : c e cx,y}

M.V. de Hoop (Rice University) inverse problems in anisotropic elasticity ISAAC 2021 30 / 44



Finsler isomorphism

we call a map WV : (My, F1) — (Ma, F2) a Finslerian isomorphism, if it is a diffeomorphism that
satisfies

Fl(V):FZ(w*V), ve TM
where W, is the push forward of W
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Finslerian boundary distance function

(M, F) is smooth compact n-dimensional, n > 2, Finsler manifold with boundary and x € Mint

boundary distance function r,: OM — R,  r(z) := de(x, 2)

boundary distance data:
(OM, {rc:x € M"t}) J

direction is from x to z
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inverse problem of Finslerian boundary distance functions

let (M;, F;), i = 1,2 be compact smooth n-dimensional (n > 2) Finsler manifolds with
boundary

boundary distance data of (M1, F1) and (Ma, F2) agree if 3 ¢: OM; — OMs,, diffeomorphism
such that

{dr(x,-): My —[0,00) | x € M{™} = {dr,(y,6(-)): OMy — [0,00) | y € MJ™ I

inverse problem: are (My, F1) and (M, F>) Finsler isometric if their boundary distance data
agree? not quite
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obstruction for the uniqueness

define set &(M, F) so that for (x,v) € &(M, F) C TM the geodesic 7 , is a distance
minimizer until it exits M at z € OM

e we can reconstruct F(x, v)
since (x,v) € (M, F) is related to dr(x, z)
e we cannot reconstruct F(x, v') since geodesic
Vx,v' is trapped
e we can “modify” F in neighborhood of (x, v’)

’ without changing dg(x,-)|am

V4

oM
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Theorem (dH, llmavirta, Lassas, Saksala)

let (M, F;), i = 1,2 be smooth, connected, compact Finsler manifolds with smooth boundary;
if the boundary distance data of (M, F1) and (My, F) agree, then there is a diffeomorphism
V: My — M, such that W on OM; coincides with ¢

the sets &(My, F1) and (My, V*F,) coincide and in this set F; = WV*F,

for any (x,v) € TMim \ &(My, F1) there exists a smooth Finsler function F3 : TMy — [0, 00)
so that dr,(p, z) = dg,(p, z) for all p € My and z € OM; but Fi(x, v) # F3(x,v)
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Theorem (dH, llmavirta, Lassas, Saksala)

let (M, F;), i = 1,2 be smooth, connected, compact Finsler manifolds with smooth boundary;
if the boundary distance data of (M, F1) and (My, F) agree, then there is a diffeomorphism
V: My — M, such that W on OM; coincides with ¢

the sets &(My, F1) and (My, V*F,) coincide and in this set F; = WV*F,

for any (x,v) € TMim \ &(My, F1) there exists a smooth Finsler function F3 : TMy — [0, 00)
so that dr,(p, z) = dg,(p, z) for all p € My and z € OM; but Fi(x, v) # F3(x,v)

anisotropic elasticity

Theorem (dH, limavirta, Lassas, Saksala)

let (M;, F;), i = 1,2 be smooth, connected, compact Finsler manifolds with smooth boundary;
if the boundary distance data of (M, F1) and (Ma, F») agree, and if Finsler function F; is
fiberwise real analytic, then there exists a Finslerian isometry W: (My, F1) — (Ma, F3) such
that W on OM; coincides with ¢
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strategy of the proof

proof of optimality consists of three steps
e reconstruction of topology
e reconstruction of smooth structure

e reconstruction of Finsler structure
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broken scattering relation
recovery of “slowness surfaces”
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convex foliation

( Definiton

A Finsler manifold with boundary is said to have a strictly convex foliation if there is a smooth
function f: M — R so that
o f~1{0} = OM, f71(0,S] = int(M), f~1(S) has empty interior
o for each s € [0, S) the set ¥ := f~1(s) is a strictly convex smooth surface in the sense
that df # 0 and any geodesic 7, having initial conditions in TX, satisfies
s ((D)]e=0 < 0.
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broken scattering relation

o let p;: SM — SM be the geodesic flow

the natural projection of the tangent bundle will be denoted by 7: TM — M
the boundary of the sphere bundle is

OSM = {v € SM; n(v) € OIM}

identify the inward-pointing part of this boundary
OinSM = {v € OSM; (v,v), > 0}

where v is the inward pointing normal vector field and (v,v), = g;(v)v'v/

identify the outward-pointing part

Oout SM = {v € OSM; (v,v), < 0}
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broken scattering relation

Definition

Let (M, F) be a Finsler manifold with boundary. For each ¢t > 0 we define a relation R; on
OinSM so that vR;w if and only if there exist two numbers t1, t, > 0 for which t; + t, = t and
(o4 (v)) = m(pr(w)). We call this relation the broken scattering relation.

the broken scattering relation, that is, the lengths of the broken geodesics, determine uniquely
the isometry type of a Finsler manifold
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compatible diffeomorphism boundary

Definition

Let M; and M, be two smooth manifolds with boundary. We say that a diffeomorphism
=: 0TM; — O0TM, is compatible with a diffeomorphism ¢: OM; — OM, if = is a linear
isomorphism on every fiber and satisfies =(TOM;) = TOM, and =|rop, = do.
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unigueness

Theorem (dH, llmavirta, Lassas & Saksala)

Let (M;, F;), i € {1,2} be two compact Finsler manifolds of dimension larger or equal to 3,
with boundary. We assume the following:

Then there is a diffeomorphism V: My — M, that is an isometry in the sense of F; = F, o dV,
which satisfies V|ap, = ¢, and dV|gTm, =

) F1 = FZOE on 8TI\/11.

isometry type

Both Finsler functions F1 and F» are reversible.

The manifolds (M;, F;), i € {1,2} have strictly convex foliations in the sense of
definition 11.

There are diffeomorphisms ¢: OMy; — OM, and =: 0 TMy; — 0 TM, that are compatible.

For any two vectors v,w € 0;,SM1 and t > 0 we have ngl)w if and only if
E(V)Rt(z)E(w), where Rg') is the broken scattering relation on (M;, F;).
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unigueness isometry type

in the elastic setting no foliation condition is needed; it can be replaced with fiberwise
analyticity
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perspective

e elasticity as interplay of microlocal analysis, algebraic geometry and Finsler geometry
e anisotropic elasticity (polarizations) — more rigidity than in the Riemannian case
[ J

boundary rigidity beyond TTI (in dimension 3) is still open

finite set of almost simultaneous point sources: approximate recovery of a manifold for the
simple Riemannian case — generalization?
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