The canonical isomorphism between $T^k T^* M$ and $T^* T^k M$

Frans Cantrijn Mike Crampin Willy Sarlet
David Saunders

Abstract — We discuss a natural symplectic structure on $T^k T^* M$ and a natural kth-order almost tangent structure on $T^* T^k M$. The main result concerns the construction of a vector bundle isomorphism $\psi_k : T^k T^* M \rightarrow T^* T^k M$ (over $T^k M$), which behaves naturally with respect to all structures of interest. We further use this result to prove that one can identify spaces such as $T^r T^s M$ and $T^s T^r M$ by a map which in coordinates simply consists in switching suffices.

1. Introduction. — The existence of a canonical isomorphism between $TT^* M$ and $T^* T M$ is well known and of fundamental importance in many applications. It is, for example, a key matter in Tulczyjew’s description of Lagrangian and Hamiltonian theory, in terms of a Lagrangian submanifold which is shared by two special symplectic structures on $TT^* M$ [1]. It is our belief that the canonical isomorphism between $T^k T^* M$ and $T^* T^k M$, which we will discuss in the present note, has a number of interesting features in its own right and will be valuable for clarifying certain aspects of the approach to higher-order mechanics described in [2] and [3].

2. Notations and Preliminaries. — We seek conformity in notations with some of our earlier work (see e.g. [4] and [5]), but slight adaptations are always necessary. Let $\tau_k : T^k N \rightarrow N$ denote the tangent bundle of order k of some manifold N. For $\ell < k$, we have projection operators $\tau_{\ell}^k : T^k N \rightarrow T^\ell N$. It is known that a smooth map $\phi : N \rightarrow N'$ induces a map $\phi^{(k)} : T^k N \rightarrow T^k N'$. Thus, for example, the manifold $T^k T^* M$ is fibred over $T^k M$ (as a vector bundle) through the map $\pi^{(k)}_M$, induced by the cotangent bundle projection $\pi_M : T^* M \rightarrow M$. As in [4] and [6], let T denote the canonical inclusion $T : T^k N \rightarrow TT^{k-1} N$ and d_T the total derivative operator which turns functions and forms on $T^\ell N$ into corresponding objects on $T^{\ell+1} N$. Repeated application of this operator on a 1-form α on N results in a 1-form $d_T^k \alpha$ on $T^k N$. A tangent bundle of order k such as $T^k N$ comes naturally equipped with a type (1,1) tensor field, the so-called vertical endomorphism, which we will denote by $S^{(k)}_N$. We recall from [4] the following commutation relations: $\phi^{(k+1)^*} \circ d_T = d_T \circ \phi^{(k)^*}$, $\tau^{k+1}_k \circ d_T = d_T \circ \tau_k^*$, and also, as a map on 1-forms,
\(S^{(k+1)}_N \circ d_T = d_T \circ S^{(k)}_N + \tau^{k+1}_N \). From these properties it is easy to deduce that
\(\phi^{(k)} \circ d_T^k = d_T^k \circ \phi^* \) and
\(S^{(k)}_N \circ d_T^k = k \tau^{k-1}_N \circ d_T^{k-1} \) (where for \(k = 1 \), \(d_T^0 \) is to be regarded as the identity operator). Other canonical objects which are soon to be discussed are the canonical 1-form of a cotangent bundle (notation: \(\theta M \) for \(T^*M \)), and dilation vector fields. For notational distinction we will write e.g. \(\Delta^M \) for the dilation field on \(T^*M \) and \(\Delta^k \) for the dilation field on \(T^kN \). Finally, we will indicate the complete lift of a geometrical object to its cotangent bundle with a tilde (as in [5]), while for the complete lift of a vector field \(X \) on \(N \) to a vector field on \(T^kN \) we will write \(\tilde{X} \) (as in [4]).

3. Main Results. — Representing coordinates on \(T^*M \) as \((q^a, p_a) \) \((a = 1, \ldots, n = \dim M)\), we will denote the corresponding natural coordinates on \(T^kT^*M \) by \((q^a_i, p_a|_i) \) \((i = 0, \ldots, k)\) and the coordinates on \(T^*T^kM \) by \((q^a_i, p^a_i) \).

The space \(T^kT^*M \) obviously carries a kth-order tangent structure. On the other hand, starting from \(\theta M \), its kth-order total derivative produces a globally defined 1-form on \(T^kT^*M \), which in coordinates reads
\[
d_T^k \theta_M = \sum_{i=0}^k \binom{k}{i} p_{a|_i} dq^a_i
\]
(with summation over \(a \) from 1 to \(n \) understood). It is clear from this expression that the exterior derivative yields a non-degenerate (exact) 2-form, which proves the following statement.

Theorem. \((T^kT^*M, dd_T^k \theta_M) \) is a symplectic manifold.

Next we turn to the space \(T^*T^kM \) which has a natural symplectic structure and can further be endowed with a type (1,1) tensor field via the complete lift of \(S^{(k)}_M \).

In coordinates:
\[
\tilde{S}^{(k)}_M = \sum_{i=1}^k \frac{\partial}{\partial q^a_i} \otimes dq^a_{i-1} + \sum_{i=1}^k \frac{\partial}{\partial p^a_{i-1}} \otimes dp^a_i.
\]

Theorem. \(\tilde{S}^{(k)}_M \) is an integrable kth-order almost tangent structure on \(T^*T^kM \).

Proof. Inspection of the above coordinate expression shows that for \(S = \tilde{S}^{(k)}_M \), ker \(S_j \) and im \(S^{k-j} \) are both spanned by the coordinate vector fields
\[
\left\{ \frac{\partial}{\partial q^a_{k-j}}, \ldots, \frac{\partial}{\partial q^a_k}, \frac{\partial}{\partial p^a_0}, \ldots, \frac{\partial}{\partial p^a_k} \right\} \quad \text{for} \quad j = 0, \ldots, k.
\]
The vanishing of the Nijenhuis tensor \(N_S \) is obvious because the coefficients in that same expression are all constants. Thus, all requirements for an integrable kth-order almost tangent structure are verified.

We now come to the generalization of the diffeomorphism \(TT^*M \leftrightarrow T^*TM \).
Theorem. — There is a vector bundle isomorphism \(\psi_k : T^k T^*M \rightarrow T^* T^k M \), which is both a symplectomorphism and an isomorphism of kth-order almost tangent structures.

The vector bundle structures we are referring to here are, respectively, the fibrations \(\pi_M^{(k)} : T^k T^*M \rightarrow T^*M \) and \(\pi_{T^k M} : T^* T^k M \rightarrow T^k M \). Observe first that the coordinate expression of \(d_{T^k \theta_M} \) clearly shows that this 1-form vanishes on vectors which are vertical with respect to \(\pi_M^{(k)} \). This justifies the following intrinsic construction.

Definition. — For each \(Q \in T^k T^*M \) with projection \(q = \pi_M^{(k)}(Q) \), we define \(\psi_k(Q) \in T^* T^k M \) to be the covector at \(q \), determined by the relation:

\[
\forall \zeta_q \in T_q T^k M, \quad \langle \zeta_q, \psi_k(Q) \rangle = \langle \xi_q, (d_{T^k \theta_M})_q \rangle,
\]

where \(\xi_q \in T_q T^k T^*M \) is any vector with the property \(T_{\pi_M^{(k)}}(\xi_q) = \zeta_q \).

It is clear from this definition that \(\pi_{T^k M} \circ \psi_k = \pi_M^{(k)} \). Moreover, we have: \(\forall \xi_Q \in T_q T^k T^*M \),

\[
\langle \xi_Q, (\psi_k \ast \psi_{T^k M})_Q \rangle = \langle T \psi_k(\xi_Q), (\theta_{T^k M})_{\psi_k(Q)} \rangle = \langle T \pi_{T^k M} \circ T \psi_k(\xi_Q), \psi_k(Q) \rangle = \langle T \pi_M^{(k)}(\xi_Q), \psi_k(Q) \rangle = \langle \xi_Q, (d_{T^k \theta_M})_Q \rangle,
\]

where we have used the definition of \(\theta_{T^k M} \). It follows that \(\psi_k \ast \theta_{T^k M} = d_{T^k \theta_M} \). Since the coordinate expression for \(\theta_{T^k M} \) reads \(\theta_{T^k M} = \sum_{i=0}^k p_a^i d q_a^i \), we see rightaway that the map \(\psi_k \) in coordinates is given by

\[
(q_i^a, p_{a|i}) \overset{\psi_k}{\mapsto} (q_i^a, p_a^i = \binom{k}{i} p_{a|i-k})
\]

and is truly a vector bundle isomorphism. Finally, if \(\psi_{k*} \) stands for the push forward operation on tensor fields, we have

\[
\psi_{k*} \frac{\partial}{\partial p_{a|i}} = \binom{k}{i} \frac{\partial}{\partial p_{a|i-k}}, \quad \psi_{k*} dp_{a|i-1} = \binom{k}{i-1}^{-1} dp_{a|i+k+1}.
\]

The kth-order tangent structure on \(T^k T^*M \) is determined by

\[
S_{T^* M}^{(k)} = \sum_{i=1}^k i \frac{\partial}{\partial q_i^a} \otimes dq_i^a + \sum_{i=1}^k i \frac{\partial}{\partial p_{a|i}} \otimes dp_{a|i-1}
\]

and it is now easy to verify that \(\psi_{k*} S_{T^* M}^{(k)} = S_M^{(k)} \), which completes the proof of our main theorem.
The geometrical structure of a tangent bundle (of any order) is, in a way, fully determined by the almost tangent structure and its associated dilation field. The dilation field associated to $S^{(k)}_M$ on T^kT^*M is the vector field

$$\Delta^{(k)}_{T^*M} = \sum_{i=1}^k q^a_i \frac{\partial}{\partial q^a_i} + \sum_{i=1}^k p^a_i \frac{\partial}{\partial p^a_i}.$$

Obviously, in view of the diffeomorphism ψ_k, the dilation field associated to the almost tangent structure $\tilde{S}^{(k)}_M$ on T^*T^kM is the vector field

$$\psi_k^* \Delta^{(k)}_{T^*M} = \sum_{i=1}^k q^a_i \frac{\partial}{\partial q^a_i} + \sum_{i=0}^{k-1} (k - i) p^a_i \frac{\partial}{\partial p^a_i}.$$

It is of some interest to find the relation between this vector field and other dilation fields which naturally live on T^*T^kM. There are in fact two such dilation fields, namely the complete lift of the one on T^kM and the dilation field of T^*T^kM as a cotangent bundle. Their coordinate expressions read

$$\tilde{\Delta}^{(k)}_M = \sum_{i=1}^k q^a_i \frac{\partial}{\partial q^a_i} - \sum_{i=1}^k p^a_i \frac{\partial}{\partial p^a_i}, \quad \Delta^{*}_{T^kM} = \sum_{i=0}^k p^a_i \frac{\partial}{\partial p^a_i}.$$

The following correspondence now can easily be verified.

Theorem. — The dilation field associated to the almost tangent structure $\tilde{S}^{(k)}_M$ on T^*T^kM is given by $\psi_k^* \Delta^{(k)}_{T^*M} = \tilde{\Delta}^{(k)}_M + k \Delta^{*}_{T^kM}$.

4. **Remarks.** — a) For $k = 1$ we recover the known results. Our present intrinsic definition of ψ_1 then coincides with the one in [7].

b) Note that the ψ_k-maps induce a projection of cotangent bundles of higher-order tangent bundles: we can define

$$\rho^{k-1}_k : T^*T^kM \longrightarrow T^*T^{k-1}M, \quad \rho^{k-1}_k = \psi_{k-1} \circ \tau^{k-1}_k \circ \psi^{-1}_k.$$

It is easy to show, using the main theorem and results of section 2, that

$$\tilde{S}^{(k)}_M (\theta_{T^*M}) = k \rho^{k-1}_k \theta_{T^{k-1}M}.$$

c) We know that θ_M is uniquely determined by the property $\alpha^* \theta_M = \alpha$, for any 1-form α on M, regarded as a section of T^*M. The induced section $\alpha^{(k)}$ of $\pi^{(k)}_M$ is easily seen to have the property $\alpha^{(k)*} d_T T^k \theta_M = d_T T^k (\alpha^* \theta_M) = d_T T^k \alpha$. It follows that $\psi_k \circ \alpha^{(k)} = d_T T^k \alpha$, regarded as a section of π_{T^kM}.

5. **Generalization of the canonical involution of TTM.** — Tulczyjew’s construction of the map ψ_1 [1] was based on the canonical involution of TTM. Roughly speaking, we now want to turn the arguments around and use the fact
that we already have $\psi_k : T^kT^*M \rightarrow T^*T^kM$ at our disposal, to define a canonical diffeomorphism between T^kT^*M and TT^kM. This will then be used to initialize an induction process.

A point $z \in T^kT^*M$ is the k-velocity of a curve $\gamma(t)$ in TM. Let $q \in T^kM$ denote the point $\tau_M^{(k)}(z)$, where $\tau_M : TM \rightarrow M$ is the tangent bundle projection. The point of TT^kM which we want to associate to z is going to be the vector $\zeta_q \in T_qT^kM$, determined by the condition:

$$\forall \alpha_q \in T_q^*T^kM : \langle \zeta_q, \alpha_q \rangle = \frac{d^k}{dt^k} \langle \gamma(t), \chi(t) \rangle \bigg|_{t=0},$$

where $\chi(t)$ is a curve in T^*M, representing the k-velocity $\psi_k^{-1}(\alpha_q) \in T^kT^*M$ and satisfying $\tau_M(\gamma(t)) = \pi_M(\chi(t)) \ \forall t$.

To see what this means in coordinates, let us denote the coordinates of z as $(q_{0,i}^a, q_{0,i}^b)$. A representative curve $\gamma(t)$ then is given by

$$\gamma(t) = \left(\sum_{i=0}^k \frac{1}{i!} q_{0,i}^a t^i, \sum_{i=0}^k \frac{1}{i!} q_{0,i}^b t^i \right).$$

The element ζ_q we look for will have coordinates $(q_{0,0}^a = q_{0,i}^a, q_{0,1}^a)$. Its pairing with an arbitrary $\alpha_q = (q_i^a, p_i^b)$ is given by $\sum_{i=0}^k q_{i,1}^a p_i^b$ and the defining relation will of course have to determine the $q_{0,1}^a$. We have $\psi_k^{-1}(\alpha_q) = \left(q_i^a, (k)^{-1}p_i^{k-i}\right)$ so that a representation of an appropriate $\chi(t)$ reads:

$$\chi(t) = \left(\sum_{i=0}^k \frac{1}{i!} q_i^a t^i, \sum_{i=0}^k \frac{(k-i)!}{k!} p_i^{k-i} t^i \right).$$

The right-hand side of the defining relation is precisely the coefficient of $(1/k!)t^k$ in the product of the second components of $\gamma(t)$ and $\chi(t)$ and is easily found to be $\sum_i q_i^a p_i^b$. It follows that the map $T^kT^*M \rightarrow TT^kM$ simply consists in switching suffices: $q_{r,i}^a \mapsto q_{0,r}^a \quad (i = 0, \ldots, k; \ r = 0, 1)$.

For the induction, assume that we know about the identification $T^sT^*M = T^sT^*M$ for some s and all r and that it consists of switching suffices (the case $s = 1$ having just been proved). Using the canonical injection of $T^{s+1}M$ into TT^sM we then obtain the chain $T^sT^{s+1}M \subset T^sTT^sM = TT^sT^*M = T^sT^*M$, which shows that there is an injective map $T^sT^{s+1}M \rightarrow TT^sT^*M$. A schematic coordinate representation of this map is obtained as follows (the ranges of the different indices are $i = 0, \ldots, s + 1; \ j = 0, \ldots, r; \ m = 0, \ldots, s; \ \ell = 0, 1$):

$$(q_{i,j}^a) \mapsto (q_{m,\ell,j}^a) \quad \text{where} \quad q_{m,\ell,j}^a = q_{i,j}^a \quad \text{with} \quad i = m + \ell$$

$$(q_{m,\ell,j}^a) \mapsto (q_{m,\ell,j}^a) \mapsto (q_{j,m,\ell}^a).$$
Since the image point in TT^*T^*M satisfies $q^{a}_{j,m,\ell} = q^{a}_{j,m',\ell'}$ when $m + \ell = m' + \ell'$, it is actually a point of the submanifold $T^{s+1}T^*M$, which means that there is a final identification: $(q^{a}_{j,m,\ell}) \mapsto (q^{a}_{j,i})$.

We conclude that there is a natural identification of T^rT^*M and T^sT^*M for all r and s. For a derivation of this result in a more abstract setting, see e.g. [8].

ACKNOWLEDGEMENTS. — This research is supported by NATO, under the Collaborative Research Grants Programme. One of us (M.C.) wishes to thank the Belgian National Fund for Scientific Research for support which made a longer stay possible at the Instituut voor Theoretische Mechanica (Gent).

REFERENCES

F.C.¹ and W.S. : Instituut voor Theoretische Mechanica
Rijksuniversiteit Gent
Krijgslaan 281, B–9000 Gent, Belgium

M.C. and D.S. : Faculty of Mathematics
The Open University
Milton Keynes MK7 6AA, U.K.

¹Research Associate of the National Fund for Scientific Research, Belgium