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Abstract

The main achievement of this paper is a geometric characterisation of certain subvarieties of
the Cartan variety E6(K) over an arbitrary field K. The characterised varieties arise as Veronese
representations of certain ring projective planes over quadratic subalgebras of the split octonions
O′ over K (among which the sextonions, a 6-dimensional non-associative algebra). We describe
how these varieties are linked to the Freudenthal-Tits magic square, and discuss how they would
even fit in, when also allowing the sextonions and other “degenerate composition algebras” as
the algebras used to construct the square.
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1 Introduction

The characterisation which forms the core of this paper could be carried out without knowing the
existence of the Freudenthal-Tits magic square (FTMS). However, the latter carries both the idea
and motivation for it, in the sense that the characteristic behaviour of the varieties of the FTMS (in
particular, its second row) hints at the existence of similarly behaving varieties across the borders
of the square (leaving the non-degenerate world). This gives rise to an extended version of square;
in particular of the split version of its second row, the varieties of which are exactly the ones we
wish to study and characterise. Below, we explain this in more detail.

1.1 Context: Characterisations related to the FTMS

The FTMS is a 4×4 array of, depending on the viewpoint, Lie algebras, Dynkin diagrams, buildings,
projective varieties. Our viewpoint will be geometric in the sense of Tits [14], and over an arbitrary
field K. The square can be constructed using a pair of composition algebras (A1,A2) over K. The
algebra A1 indexes the rows and indicates the rank of the varieties in that row; the algebra A2

indexes the columns and encodes the algebraic structure over which the varieties in that column
are defined. In the geometric version of the square that we consider, the algebra A1 is always split,
whereas A2 can be either division or split, giving rise to a ‘non-split’ and ‘split’ version of the
square, respectively. Let us illustrate this by zooming in on the second row, which will be most
relevant for this paper.
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− In the non-split version, this row contains projective planes over division composition algebras
over K;

− In the split version, the three last entries of this row are the Segre variety S2,2(K) (Dynkin
type A2×A2), the line Grassmannian variety G6,2(K) (Dynkin type A5) and the Cartan variety
E6(K) (Dynkin type E6) (i.e., the projective version of the 27-dimensional module of the split
exceptional group of Lie type E6), respectively. Abstractly, these are ring projective planes
over the split composition algebras over K, and the mentioned varieties can be obtained by
taking the Veronese representation of these planes (see Section 10 of [3]). The first entry,
which coincides with the non-split case, could thus be seen as the quadric Veronese variety
V2(K) (Dynkin type A2), i.e., the Veronese representation of the projective plane over K.

The work of J. Schillewaert H. Van Maldeghem (e.g., [12, 6]) recently culminated in a common
characterisation of the Veronese representations of the varieties of the second row of the FTMS [2].
These Veronese varieties are point sets in a projective space equipped with a family of quadrics of a
certain kind, depending on the composition algebra. Their characterisation was achieved by means
of three elementary axioms, and was accomplished among an infinite family of objects consisting
of points and arbitrary (non-degenerate) quadrics in a projective space P over K. The fact that
such a general characterisation singles out exactly the varieties of the FTMS demonstrates the
latter’s special behaviour once more. It is especially remarkable that this can be done for the split
and non-split version simultaneously. The dichotomy of the composition algebras (division/split)
translates geometrically in the fact that in the above-mentioned Veronese varieties, the quadrics
are either all line-free (i.e., of minimal Witt index) or all hyperbolic (i.e., of maximal Witt index),
respectively.

1.2 Motivation: Characterisations across the borders of the FTMS

Inspired by a low-dimensional test case elaborated in [11], the author and H. Van Maldeghem
extended the above setting to certain ‘degenerate’ composition algebras B [4]. These algebras B
are setwise given by A⊕ tA, where A is an associative division composition algebra over K and t an
indeterminate with t2 = 0, and satisfy the Cayley-Dickson multiplication formulas (for example,
when A = K, this yields the dual numbers over K). Equivalently, B is the result of applying the
Cayley-Dickson process to A with 0 as a primitive element; we will hence refer to B by CD(A, 0).
Just like the composition algebras, CD(A, 0) is quadratic and alternative (since A is associative),
and its norm form a + tb 7→ N(a) (where N is the norm form of A) is multiplicative, though
degenerate. When taken to the above setting, where the quadrics are determined by the norm
form, this translates geometrically to projective varieties equipped with degenerate quadrics whose
base is a line-free quadric. Using similar axioms as in [2], it was shown in [4] that point-sets equipped
with such quadrics (a priori inside arbitrary dimensions) arise from the Veronese representation
of a projective Hjelmslev plane defined over an algebra CD(A, 0) with A an associative division
composition algebra. The current paper investigates the following question:

Question. What happens for the algebras setwise given by A ⊕ tA, where A is an associative
composition algebra over K which is not division?

A first essential difference with the former case is that we should not only consider the alge-
bras CD(A, 0). Indeed, also the ternions T, a non-commutative 3-dimensional subalgebra of the
split quaternions H′, and sextonions S, a strictly alternative 6-dimensional subalgebra of the split
octonions O′, can be written as L′ ⊕ tL′ (where L′ = K×K) and H′ ⊕ tH′, respectively (cf. Propo-
sition 2.2). The way we convey it, this gives rise to an additional layer for the FTMS. Denoting
division and split composition algebras of dimensions 2,4 over K by L and L′, H and H′, respectively,
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we see this second layer of the second row as ring projective planes over the following algebras.

dimKA 1 2 3 4 6 8

non-split / CD(K, 0) / CD(L, 0) / CD(H, 0)

split / CD(K, 0) ternions T CD(L′, 0) sextonions S CD(H′, 0)

A second difference is that it turns out that the Veronese variety associated to the octonion algebra
CD(H′, 0), where H′ are the split quaternions, behaves differently compared to the ones associated
to the other algebras in that series. It does not fit in, not in any natural way. This manifests itself
in some sense in the fact that, opposed to the Veronese varieties associated to the other algebras
in that row, it cannot be seen as a subvariety of the Cartan variety E6(K).

The link between the FTMS and the sextonions S was already explored in [17] by Westbury,
who suggested to extend the FTMS (which he considers as a square of complex semisimple Lie
algebras) by adding a row/column between the third and the fourth one. Around the same time,
also Landsberg and Manivel considered this intermediate Lie algebra between e7 and e8 in [8]. In
Section 8 of [8], they in particular study some (algebraic) geometric properties of the sextonionic
plane, i.e., a Veronese variety associated to S. Our approach on the other hand starts from the
(incidence) geometric properties of this Veronese variety and its smaller siblings related to T and
CD(L′, 0) (the one related to CD(K, 0) is viewed as a part of the non-split case). By means of three
elementary axioms, a natural extension of the ones used in [2] etc., we characterise these varieties.
We also provide two additional ways of viewing these varieties: on the one hand, constructed from
two (dual) representations of the non-degenerate varieties they are composed of (involving S2,2(K)
and G6,2(K)) (cf. Section 3.2.2), and on the other hand, as subvarieties of the 26-dimensional
projective E6(K)-variety, obtained by slicing it with certain subspaces of dimension 11, 14 or 20 (cf.
Section 2.4). This hence also gives us additional insight in the geometric structure of E6(K).

1.3 Main result: Characterisation of the Veronese varieties related to the “new”
split second row of the FTMS

Stating the main result (Theorem 3.6) requires more notation and a slightly technical set-up, so we
refer to Section 3.3 for that. For the purpose of this introduction, we prefer a simplified set-up, by
which means we can explain a related characterisation, proved in [12]. With this, we cannot only
informally situate the current main result, but also point out similarities and differences.

Consider a set of points X in a projective space PN (K), with N ∈ N∪{∞}, equipped with a family
Ξ of subspaces of PN (K) (of arbitrary yet fixed projective dimension d + 1 < ∞), |Ξ| ≥ 2, such
that, for each ξ ∈ Ξ, the intersection X(ξ) := X ∩ ξ is a parabolic or hyperbolic quadric generating
ξ (i.e., the maximal isotropic subspaces on X(ξ) := X ∩ ξ have projective dimension bd2c). Then
the pair (X,Ξ) is called a split Veronese set (of type d) if the following axioms are satisfied:

(SV1) Each pair of distinct points p1, p2 ∈ X is contained in a member of Ξ;
(SV2) If ξ1, ξ2 are distinct members of Ξ, then ξ1 ∩ ξ2 ⊆ X;
(SV3) for each point x ∈ X, the subspace Tx := 〈Tx(X(ξ)) | x ∈ ξ ∈ Ξ〉 has dimension at most 2d.

Theorem 1.1 (Main Result/Corollary of [12]) Let (X,Ξ) be a split Veronese set of type d ≥ 1
in PN (K). Then if dimTx = 2d for at least one point x ∈ X, we have d ∈ {1, 2, 4, 8} and (X,Ξ)
is projectively unique and the resulting varieties are exactly the (Veronese) varieties of the split
version of the second row of the FTMS, mentioned above. If dimTx < 2d but Tx = 〈Tx(ξ1), Tx(ξ2)〉
for at least one point x ∈ X and ξ1, ξ2 in Ξ with x ∈ ξ1 ∩ ξ2, then (X,Ξ) is either S1,2(K) (a
subvariety of S2,2(K)) or G5,2(K) (a subvariety of G6,2(K)).
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A natural way to define Veronese varieties related to T, CD(L′, 0), S and CD(H′, 0) is by giving an
affine description (see Section 2.4). A study of these reveals that, except for the variety associated
to CD(H′, 0), they also come with a set of points and quadrics “more or less” satisfying axioms
(SV1), (SV2) and (SV3) above. It was not obvious to see why this was more or less, but it turns
out that, this time, the structure is not homogenous: there are two types of points and two types
of quadrics. Taking this into account when rephrasing axioms (SV1) up to (SV3), the resulting
axioms are nothing but a natural extension of them (cf. Section 3.1). It remains slightly mysterious
why the variety related to CD(H′, 0) does not satisfy these axioms, not even more or less. As
hinted at above, it stands out from the other varieties in that it is not a subvariety of E6(K),
which is explained by the fact that all other algebras under consideration are subalgebras of the
split octonions O′, whereas CD(H′, 0) is not. Axioms (SV1) and (SV2) (and also their natural
extensions) imply that the convex closure of two points of X should form a quadric (corresponding
to a member of Ξ). However, for the variety related to CD(H′, 0), the convex closure of two points
is not a quadric anymore, it rather is a bunch of quadrics. One could argue that it is not a surprise
that octonions come with different behaviour, though we did not anticipate this. Indeed, in the
non-split case, treated in [4], the Veronese variety related to the octonion algebra CD(H, 0) behaves
as do the Veronese varieties related to CD(L, 0) and CD(K, 0) (with notation as above).

If we denote by X and Z the two types of point sets, and by Ξ and Θ the two types of subspaces
intersecting X ∪ Z in certain quadrics, and call (X,Z,Ξ,Θ) a dual split Veronese set if it satisfies
the axioms extending (SV1), (SV2) and (SV3) as explained above, then informally the main result
reads as follows (where we only exclude the field with two elements, see Remark 3.7).

Main Result–informal statement If (X,Z,Ξ,Θ) is a dual split Veronese set in PN (K), where
K is an arbitrary field with |K| > 2, then, up to projectivity and up to projection from a subspace
contained in each member of Ξ∪Θ, either Θ is empty and then (X,Ξ) is a split Veronese set, or Θ
is non-empty and there are four possibilities, all of which are subvarieties of E6(K); three of them
can be obtained as a Veronese variety associated to one of T,CD(L′, 0), S, the fourth and smallest
case is a subvariety of the Veronese variety associated to T.

1.4 Structure of the paper

In Section 2 the “degenerate composition algebras” are formally introduced and discussed to the
extent that we will need them. Afterwards, the Veronese varieties associated to T, CD(L′, 0), S and
CD(H′, 0) are defined and studied briefly. In Proposition 2.10, we show that, apart from the last
one, they all satisfy properties that naturally generalise (SV1), (SV2) and (SV3) above.

In Section 3, the axiomatic set-up for dual split Veronese sets is given, as is a purely geometric
description of certain families of varieties that we will encounter later on, each of them containing
examples of dual split Veronese sets. This geometric description does not rely on an underlying
algebraic structure, but is of course in accordance with the coordinate description given in Section 2.
In Section 3.3 we state the formal version of our main result and describe the examples.

In Section 4 we prove some basic properties, with the help of which we arrive in Section 5 to an
inductive approach in terms of point-residues. See Proposition 5.16 and Table 1 for a schematic
overview. Of the 6 cases that we obtain in Proposition 5.16, 3 lead to actual examples of dual split
Veronese sets, the other 3 do not.

Since there is some similarity among the existing cases, and also among the non-existing cases, we
do not treat all of them in full detail. We choose to focus on the case that leads to the Veronese
variety related to the sextonions S. This turns out to fit in the larger class of so-called dual line
Grassmannians, see subsection 3.2.2. To deal with these geometries (which we do in Section 7),
we first need to have a full understanding of their point-residue, which is a so-called half dual Segre
variety, see subsection 3.2.1. The latter class of geometries is treated in Section 6 and contains the
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Veronese variety related to T. In the final Section 8 we treat the reamining cases, in particular,
we show that V2(K, S) does not occur as a point-residue of some other dual split Veronese set.

2 “Degenerate composition algebras” and associated Veronese va-
rieties

Henceforth, let K be an arbitrary field. Seeing that composition algebras and (non-degenerate)
quadratic alternative algebras are equivalent notions, we will use the latter setting to incorporate the
degenerate case. In the literature, one does not find too much on quadratic alternative algebras with
a possibly non-trivial radical ánd without restriction on the characteristic of K. What follows is a
combination of elements from [9, 10] (allowing characteristic 2, but restricting to the non-degenerate
case) and [7] (where the possibilities for the radical are examined, excluding characteristic 2). For
a more extended version, we refer to Chapter 4 of [1].

2.1 Quadratic alternative algebras and their radical

Let A be a unital quadratic alternative K-algebra, i.e., the associator [a, b, c] := (ab)c−a(bc) yields a
trilinear alternating map and each a ∈ A satisfies a quadratic equation x2−T(a)x+N(a) = 0, where
the trace T : A→ K : a 7→ T(a) is a linear map with T(1) = 2 and the norm N : A→ K : a 7→ N(a)
is a quadratic map with N(1) = 1. The canonical involution associated to A is given by the map
A → A : x 7→ x := T(x) − x, which is indeed an involutive anti-automorphism (xy = y x for
all x, y ∈ A), fixing K. Note that N(a) = aa for each a ∈ A. The bilinear form f associated
to the quadratic form N is given by f(x, y) = N(x + y) − N(x) − N(y) = xy + yx. Its radical is
the set rad(f) = {x ∈ A | f(x, y) = 0 ∀y ∈ A}. We call A non-degenerate if its norm form N is
non-degenerate, i.e., if N is anisotropic on rad(f), so if {r ∈ rad(f) | N(r) = 0} is trivial. We call
the latter set the radical R of A. One could also describe R as the nil radical of A, which is the
maximal ideal of A with the property that each of its elements is nilpotent.

We note in passing that the non-degenerate quadratic alternative K-algebras A with dimK(A) <∞
can all be produced using the Cayley-Dickson doubling process. An extended version of this process
(in which the primitive element is allowed to be 0) also produces degenerate algebras, see also
Section 4.2 of [1]. We use the notation CD(A, 0) for the result of one application of the extended
Cayley-Dickson process on A, where CD(A, 0) is setwise equal to A+tA, where t is an indeterminate
with t2 = 0. Addition is natural, multiplication goes as follows: (a+ tb) · (c+ td) = ac+ t(ad+ cb)
for a, b, c, d ∈ A. The radical is given by tA, so it is generated by t.

Our interest goes out to the quadratic alternative algebras A for which R is, as a K-algebra,
generated by a single element. Since R is a 2-sided ideal of A and A(Ar) = Ar = rA = (rA)A for
each r ∈ R, this is equivalent to requiring that R is a principal ideal of A.

2.2 Non-degenerate split quadratic alternative algebras

Let A be a non-degenerate quadratic alternative algebra. It is well known that its norm form N
is either anisotropic on A or hyperbolic (i.e., has maximal Witt index). In the former case, A is a
division algebra, since x ∈ A is invertible if and only if N(x) 6= 0, in the latter case A is called split.

Two non-degenerate quadratic algebras are isomorphic if and only if their respective norm forms
are equivalent quadratic forms. So, since any two hyperbolic quadratic forms in the same (even)
dimension are equivalent, all non-degenerate split quadratic alternative algebras over K with the
same dimension over K are isomorphic. This allows us to speak of the non-degenerate split quadratic
alternative algebras over K, which we will refer to as K, L′, H′ and O′. They can be described as
follows (independently of the characteristic), see for instance [5].
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Fact 2.1 Let A be a non-degenerate split quadratic alternative algebra over a field K. Then A is iso-
morphic to either K, K×K, the 2×2-matricesM2(K) over K or the split octonions CD(M2(K), 1).

The split octonions, being non-associative, cannot be given by ordinary matrices and their ordinary
multiplication. Zorn’s vector-matrices however are a special way of writing the split octonions as
2× 2-matrices M(a, b, c, d, x, y, z, u), the off-diagonal elements of which are vectors:

O′ ∼=




a
[
b x y

] c
z
u

 d

 : a, b, c, d, x, y, u, z ∈ K

 ,

and the multiplication is given as follows (with the usual dot product and vector product):(
a v
w d

)(
a′ v′

w′ d′

)
=

(
aa′ + v ·w′ av′ + d′v + w ×w′

a′w + dw′ − v × v′ dd′ + v′ ·w

)
,

and norm (which can be seen as an element of K indeed)(
a v
w d

)(
a v
w d

)
=

(
a v
w d

)(
d −v
−w a

)
=

(
ad− bc− xz − yu 0

0 ad− bc− xz − yu

)
.

2.3 Split quadratic alternative algebras with a level 1 degeneracy

Let A be a degenerate quadratic alternative unital K-algebra with a non-trivial radical R. In
general, one can show that A contains a non-degenerate quadratic associative unital algebra B such
that A = B⊕R. The next proposition, the proof of which is based on methods occurring in [10] to
classify the composition algebras, deals with the special case where R is a principal ideal.

Proposition 2.2 (Theorem 4.4.1 of [1]) Let A be a degenerate quadratic alternative K-algebra
whose radical R is a principal ideal (t) for some t ∈ A \ {0}. Then there exists a non-degenerate
quadratic subalgebra B of A containing 1 such that A = B⊕ tB. Moreover, if B is split, then either
A is isomorphic to CD(B, 0) where B ∈ {K,L′,H′}, or dimK(A) ∈ {3, 6}. In the latter case, A is
isomorphic to the following respective quotients of CD(B, 0):

(a) the upper triangular 2× 2-matrices over K (the ternions T);
(b) {M(a, b, c, d, 0, y, z, 0) | a, b, c, d, y, z ∈ K} (the sextonions S);

If B is split and dimK(A) < 8, then A is isomorphic to a subalgebra of the split octonions O′.

Notation. We will refer to the algebras A = B ⊕ tB of the above proposition as “split quadratic
alternative algebras with a level 1 degeneracy”.

2.4 Veronese varieties associated to T, H′, S and O′

Let A be a split quadratic alternative K-algebra with a level 1 degeneracy, i.e., an algebra as
in Proposition 2.2: T, CD(L′, 0), S or CD(H′, 0). To each of those, we associate a plane Veronese
variety V2(K,A), by which we mean the image the Veronese map of the following point-line geometry
G2(K,A): the points (resp. lines) are given by the triples in A such that there is a left (resp. right)
A-linear combination that gives 1, incidence is containment. The geometry G2(K,A) is an instance
of a ring projective plane, a “projective plane” with the ring A as coordinatising structure (see for
instance [15]). Since A contains many non-invertible elements, it is hard to give a list of all points
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and lines of G2(K,A). So instead we start with an affine part of G2(K,A) (the affine part consisting
of points of the form (1, B,C)) and use the following partial Veronese map ρ, with d := dimK(A):

ρ : A× A→ P3d+2(K) : (1, B,C) 7→ (1, BB,CC,BC,C,B)

Remark 2.3 Usually, the Veronese map takes (y, z) to (1, yy, zz, yz, z, y), but we can change z to
z, and then obtain (1, yy, zz, yz, z, y), which linearly transforms into the above definition.

If |K| > 2, a calculation shows that a line L of P3d+2(K) containing three points of ρ(A×A) has all
its points in ρ(A×A), except for the unique point on L in the hyperplane H0 given by the equation
X0 = 0. As a first step, we add the points L ∩H0 for such lines L. Repeated steps of this process
(one could show that two steps suffice) yield a point-set which is projectively closed : each line of
P3d+2(K) is either contained in it, or meets it in at most two points. If |K| = 2, one can also define
this closure, but we do not do this effort as we will not consider F2 (see Remark 3.7).

Definition 2.4 For |K| > 2, we the Veronese variety V2(K,A) as the projective closure of ρ(A×A).

Proposition 2.5 (Corollary 10.42 of [3]) Let |K| > 2. Then the Veronese varieties V2(K,L′),
V2(K,H′), V2(K,O′) are isomorphic to the Segre variety S2,2(K), the line Grassmannian G6,2(K),
the Cartan variety E6(K), respectively.

We introduce some terminology.

Terminology. Let PN (K) denote the N -dimensional projective space over K generated by the
points of V2(K,A). In general, we call two points of V2(K,A) collinear if the line of PN (K) deter-
mined by them is fully contained in V2(K,A); in this case, the line is called a singular line. Also,
the convex closure of two non-collinear points x, y of V2(K,A) is given by the points of V2(K,A)
which are contained in the smallest projective subspace of PN (K) that contains all shortest paths
between x and y (where shortest paths are viewed in the incidence graph). In V2(K,O′) ∼= E6(K),
the convex closure of any pair of non-collinear points is isomorphic to a hyperbolic quadric (of rank
5) in P9(K), referred to as a a symp (following the parapolar spaces terminology, [13]).

2.4.1 The case A = S

We use O′ ∼= {M(a, b, c, d, x, y, z, u) | a, b, c, d, x, y, z, u ∈ K} (the Zorn matrices, see Subsection 2.2)
and S ∼= {M(a, b, c, d, 0, y, z, 0) | a, b, c, d, y, z ∈ K}. Note that S′ := M(a, b, c, d, x, 0, 0, u) |
a, b, c, d, x, u ∈ K} ∼= S and H′ ∼= {M(a, b, c, d, 0, 0, 0, 0) | a, b, c, d ∈ K}, so we may asume
H′ = S ∩ S′ ⊆ O′. If A′ ⊆ A then ρ(A′ × A′) ⊆ ρ(A × A) and hence also V2(K,A′) ⊆ V2(K,A).
So V2(K,H′) is a subgeometry of both V2(K, S) and V2(K, S), and the latter two are subge-
ometries of V2(K,O′) ∼= E6(K) (cf. Proposition 2.5). Take B = M(a, b, c, d, x, y, z, u) and C =
M(a′, b′, c′, d′, x′, y′, z′, u′) in O′. Then ρ(B,C) = (X0−26), where Xi−j = (xi, ..., xj), and we have

X0−2 = (1, ad− bc− zx− uy, a′d′ − b′c′ − z′x′ − u′y′),
X3−6 = (aa′ + bc′ + xz′ + yu′, d′b+ ab′ + zu′ − z′u, a′c+ dc′ + x′y − xy′, dd′ + b′c+ x′z + y′u),

X7−10 = (ax′ + d′x+ uc′ − cu′, d′y + ay′ + cz′ − c′z, a′z + dz′ + by′ − b′y, a′u+ du′ + b′x− bx′),
X11−26 = (a′, b′, c′, d′, x′, y′, z′, u′, a, b, c, d, x, y, z, u).

Note that, if B,C ∈ S (i.e., x = y = x′ = y = 0), then xi = 0 for i ∈ {7, 10, 15, 18, 23, 26} =: J ;
likewise, if B,C ∈ S′, then xi = 0 for i ∈ {8, 9, 16, 17, 24, 25} =: J ′. Let (e0, ..., e26) be the standard
basis of P26(K). Put I = {0, ..., 26} \ J and I ′ = {0, ..., 26} \ J ′ and define Y := 〈ei | i ∈ J〉
and Y ′ = 〈ei | i ∈ J ′〉, and finally F := 〈ei : i ∈ I ∩ I ′〉. Clearly, V2(K,S) is contained in the
20-dimensional subspace 〈F, Y 〉 = 〈ei | i ∈ I〉 and V2(K,H′) is contained in F . See also Figure 1.
In the following fact, we gather important properties of the variety V2(K,S).
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Fact 2.6 (Subsection 5.2.1 of [1]) (1) The variety V2(K,S) is the intersection of the 20-space
〈F, Y 〉 and V2(K,O′).

(2) Likewise, F ∩V2(K,O′) = F ∩V2(K, S) coincides with V2(K,H′) and is hence isomorphic to the
line Grassmannian G := G6,2(K) by Proposition 2.5.

(3) The subspace Y is a singular subspace of V2(K,S), which is not contained in ρ(S× S), so it is
“at infinity”.

(4) Each point p of V2(K, S) \ Y corresponds to a unique point pG of G and the set of points of
V2(K,S) \Y corresponding with this point pG forms an affine 4-space, whose 3-space at infinity
Up belongs to Y .

(5) In view of the foregoing and the transitivity properties in G, we have transitivity on the set of
pairs of collinear points of V2(K, S) \ Y and on the set of non-collinear points of V2(K, S) \ Y .

(6) The correspondence between G and Y , taking a point p of G to the 3-space Up, is a linear
duality.

F
14

Y’Y

20

20

20

5

3

5

5

11

26

3

Figure 1: A schematic representation of varieties isomorphic to V2(K, S) (living in 〈F, Y 〉 ∼=
〈F, Y ′〉 ∼= P20(K)), sharing the variety V2(K,H′) ∼= G6,2(K) (living in F ∼= P14(K)), viewed in-
side V2(K,O′) ∼= E6(K) (living in 〈F, Y, Y ′〉 ∼= P26(K)). Y and Y ′ are singular 5-spaces of E6(K).

The following proposition, whose proof is largely based on the correspondence given in (6) of
Fact 2.6, lists the possibilities for the intersection of V2(K,S) with a symp of V2(K,O′) ∼= E6(K).

Proposition 2.7 (Proposition 5.2.11 of [1]) Let Σ be a symp of V2(K,O′) such that ζ := Σ ∩
V2(K,S) contains a pair of non-collinear points of V2(K, S). Then either

(i) Y ∩Σ is a line L, in which case ζ is a cone with 1-dimensional vertex L and base isomorphic
to a hyperbolic quadric in P5(K), and hence ζ = L⊥ ∩ Σ;

(ii) Y ∩ Σ is a 4-space, in which case ζ = Σ.

In both cases, the convex closure (viewed in V2(K,S)) of two non-collinear points of ζ is ζ.

The symps of V2(K,S). We define Ξ := {Σ ∩ V2(K,S) | dim(Y ∩ Σ) = 1}, secondly we put
Θ := {Σ ∩ V2(K,S) | dim(Y ∩ Σ) = 4}.
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2.4.2 The case A = CD(L′, 0)

Here we use that H′′ := CD(L′, 0) is isomorphic to {M(a, 0, 0, d, 0, y, z, 0) | a, d, y, z ∈ K}. Clearly,
H′′ ⊆ S and hence V2(K,H′′) belongs to V2(K,S) and is, as one can easily verify, contained in
the 14-space 〈ei | i ∈ I \ {4, 5, 12, 13, 20, 21}〉, which can also be given as 〈Y, F ′〉 where F ′ is an
8-space in F . The subspace Y is a singular 5-space of V2(K,H′′) as well. As in the first case,
V2(K,S) ∩ 〈Y, F ′〉 = V2(K,H′′) and V2(K,H′′) ∩ F ′ = V2(K,L′) =: S, and the latter is isomorphic
to the Segre variety S2,2(K) by Proposition 2.5.

Now, let U ∼= P5(K) be (an abstract) projective space whose line Grassmannian gives G. Then the
Segre variety S, as subvariety of G, arises as the set of lines of U intersecting two given disjoint
planes π1 and π2 non-trivially. The correspondence between G and Y (as given in (6) of Fact 2.6)
implies that Y is isomorphic to the dual of U , and hence the lines of U intersecting both π1 and
π2 non-trivially correspond to 3-spaces having a line in common with two planes Z1 and Z2 in Y ,
and these 3-spaces all arise as Up = p⊥ ∩ Y , for some point p ∈ S. We then have the analogue of
Proposition 2.7.

Proposition 2.8 (Proposition 5.2.15 of[1]) Let Σ be a symp of V2(K,O′) such that ζ := Σ ∩
V2(K,H′′) contains at least two non-collinear points of (V2(K,H′′) \ Y ) ∪ Z1 ∪ Z2. Then either

(i) Y ∩Σ is a line V , in which case ζ is a cone with vertex V and base isomorphic to a hyperbolic
quadric in P3(K) (so ζ ⊆ L⊥ ∩ Σ); or,

(ii) Y ∩ Σ is a 4-space W generated by a line Vi in Zi and the plane Zj, with {i, j} = {1, 2}, in
which case ζ is a cone with vertex Vi and base isomorphic to a hyperbolic quadric in P5(K).

In both cases, the convex closure (viewed in V2(K,H′′)) of two non-collinear points of ζ is ζ.

The symps of V2(K,H′′). We put Ξ := {Σ∩V2(K,H′′) | dim(Y ∩Σ) = 1} and Θ := {Σ∩V2(K,H′′) |
Y ∩ Σ is a 4-space containing Z1 or Z2}.

2.4.3 The case A = T

Here we use T ∼= {M(a, 0, 0, d, 0, y, 0, 0) | a, d, y ∈ K}, and we obtain that V2(K,T) arises as the
intersection of V2(K,H′′) with the 11-space generated by the Segre variety S in F and by the plane
Z1 in Y . Again, we have:

Proposition 2.9 (Proposition 5.2.18 of[1]) Let Σ be a symp of V2(K,O′) such that ζ := Σ ∩
V2(K,T) contains at least two non-collinear points of V2(K,T). Then either

(i) Σ∩Z1 is a point V , in which case ζ is a cone with vertex V and base isomorphic to a hyperbolic
quadrangle over K;

(ii) Σ ∩ Z1 = Z1, in which case ζ is isomorphic to a hyperbolic quadric in P5(K).

In both cases, the convex closure (viewed in V2(K,T)) of two non-collinear points of ζ is ζ.

The symps of V2(K,T). We put Ξ := {Σ∩V2(K,T) | dim(Z1 ∩Σ) = 0} and Θ := {Σ∩V2(K,T) |
Z1 ⊆ Σ}.

2.4.4 The case A = CD(H′, 0)

As alluded to before, V2(K,CD(H′, 0)) does not exhibit the same behaviour as its three siblings
V2(K,T), V2(K,CD(L′, 0)) and V2(K,S). One thing that goes wrong for instance, is the following.
Firstly, the schematic representation (cf. Figure 1) of the embedding of varieties isomorphic to
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V2(K,S) and containing the same line Grassmannian variety V2(K,H′), is still applicable in this
case. Consider the 5-spaces Y , which are pairwise disjoint singular 5-spaces in an 11-dimensional
subspaces. A calculation shows that these are on a regulus of V2(K,CD(H′, 0)) (meaning that for
each point of Y there is a unique line of V2(K,CD(H′, 0)) which meets the other such 5-spaces),
whereas in V2(K, S), these 5-spaces were pairwise opposite (meaning that no point of one of them
is on a line of V2(K,S) with a point of one of the others). This is the reason why the convex closure
of two non-collinear points of V2(K,H′) is not a quadric, as opposed to the situation in V2(K, S)
(cf. Propositions 2.7, 2.8 and 2.9).

2.5 Properties of the Veronese varieties V2(K,T), V2(K,CD(L′, 0)) and V2(K,S)

We show some properties satisfied by each of the varieties V2(K,T), V2(K,CD(L′, 0)) and V2(K, S)
(which we will later on use as their characterising properties). In case of V2(K,T) and V2(K, S),
we define Z as the points of the subspace Y ; in V2(K,CD(L′, 0)) we define Z as the union of the
two subspaces Z1 and Z2 and Y as 〈Z1, Z2〉. In the three varieties V2(K, ·), we set X equal to the
points in V2(K, ·) \ Y . Recall the definitions of Ξ and Θ.

Proposition 2.10 The Veronese varieties V2(K,T), V2(K,CD(L′, 0)) and V2(K, S) satisfy the fol-
lowing three properties:

(S1) Each pair of distinct points p1, p2 ∈ X ∪ Z is contained in a member of Ξ ∪Θ;
(S2) for each pair of distinct members ζ1, ζ2 ∈ Ξ∪Θ, the intersection ζ1∩ζ2 is a singular subspace;
(S3) for each point x ∈ X, there exists ξ1, ξ2 in Ξ such that Tx = 〈Tx(ξ1), Tx(ξ2)〉.

Proof Consider V2(K,A), where A ∈ {T,CD(L′, 0), S}.

(S1) If p1 and p2 are non-collinear, then they determine a unique symp Σ of V2(K,O′), which by
assumption intersects V2(K,A) in two non-collinear points, so Σ ∩ V2(K,O′) ∈ Ξ ∪ Θ by Proposi-
tions 2.9, 2.8 and 2.7. If p1 and p2 are on a line, then we can always find a point p3 in X ∪Z which
is collinear to p1 and not to p2. Then the symp of V2(K,O′) containing p2 and p3 also contains p1

and the same argument as above applies.

(S2) This is immediate as each member of Ξ∪Θ is contained in a symp of V2(K,O′) and two symps
of the latter intersect in a singular subspace, which at its turn will intersect V2(K,A) in a singular
subspace.

(S3) This can be shown by using the correspondence between the “base” variety (the part contained
in F ) and the subspace Y (see Observation (6)), together with the properties of the base variety.

�

3 Dual split Veronese sets

We start with recalling some properties of quadrics and setting notation, as we will need this all
the time. Firstly, a (non-degenerate) quadric Q in Pn(K), n ∈ N, is the null set of an (irreducible)
quadratic homogeneous polynomial in the (homogeneous) coordinates of points of Pn(K). A line
L * Q of Pn(K) either meets Q in 0, 1 or 2 points. Two points x, x′ of Q are collinear if xx′ ⊆ Q.
A subspace S of PN (K) is called singular (w.r.t.Q) if S ⊆ Q. The rank of Q is one more than the
maximum dimension of a singular subspace. The rank is sometimes also called the Witt index.

Let x be any point of Q. Then a line of Pn(K) containing x that is either singular or meets Q in
x only is called a tangent line (to Q at x). The union Tx(Q) of all tangent lines to Q at x is a
subspace of Pn(K) with dimTx(Q) ≥ n − 1. Put V := {x ∈ Q | Tx(Q) = Pn(K)}. Then V is a
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subspace of Pn(K), called the vertex of Q. If V is empty, then Q is non-degenerate; if not, then Q
is a cone with vertex V and base a non-degenerate quadric Q′.

A property that we will often use is the one-or-all property: for each point x ∈ Q and line L ⊆ Q
with x /∈ L, the point x is collinear either to a unique point of L or to all points of L. Finally,
a quadric is called hyperbolic if a submaximal singular subspace (i.e., of dimension r − 2 where r
is the rank) is contained in exactly to maximal singular subspaces (i.e., of dimension r − 1). This
means that the set of maximal singular subspaces falls naturally in two families, where two maximal
singular subspaces S1 and S2 are in the same family if and only if dimSi has the same parity as
dim(S1 ∩ S2). We can now introduce the quadrics that we will be working with.

Definition 3.1 Let R, V be integers with V ≥ −1 and R ≥ 1. An (R, V )-cone C is a cone with a
V -dimensional vertex and as base a non-degenerate hyperbolic quadric of rank R + 1; C without
its vertex is called an (R, V )-tube.

Given a tube, there is a unique cone containing the tube, i.e., the vertex can be determined.

3.1 Definition

As mentioned after Propositions 2.7, 2.8 and 2.9, there are two types of symps. Hence we need
to work with two families of (R, V )-tubes with a different behaviour, ‘ordinary tubes’ (Ξ) and
‘special tubes’ (Θ); dually, we work with ‘ordinary points’ (X) and ‘special points’ (Z). Informally
speaking, an ordinary tube consists of ordinary points only; special points occur in the vertex of
ordinary tubes and in special tubes and their vertices. The definition for the dual split Veronese
sets uses the following set-up. When reading this, one may think of X and Z as disjoint sets, this
is not a requirement but we will prove in Lemma 4.3 the even stronger statement that X and 〈Z〉
are disjoint if (X,Z,Ξ,Θ) is a (pre-)DSV.

Definition 3.2 Let r, v, r′, v′, N be integers which are at least −1 with r′ > r ≥ 1 and put
d := 2r + v + 1 and d′ := 2r′ + v′ + 1. An (r, v, r′, v′;N)-system is a quadruple (X,Z,Ξ,Θ), where
X and Z are point sets of PN (K) with Y := 〈Z〉 and 〈X,Z〉 = PN (K), and Ξ is a collection of
(d + 1)-spaces of PN (K) with |Ξ| > 1 and Θ is a possibly empty collection of (d′ + 1)-spaces of
PN (K) such that:

• For each ξ ∈ Ξ, the intersection XY (ξ) := (X ∪ Y ) ∩ ξ is an (r, v)-cone Cξ, Y (ξ) := Y ∩ ξ is the
vertex of Cξ and X(ξ) := X ∩ ξ is the (r, v)-tube Cξ \ Y (ξ);
• for each θ ∈ Θ, the intersection XY (θ) := (X ∪ Y ) ∩ θ is an (r′, v′)-cone Cθ, Z(θ) := Z ∩ θ the

union of the vertex Vθ of Cθ and some r′-space of XY (θ) \ Vθ; the intersection Y (θ) := Y ∩ θ is
the maximal singular subspace 〈Z(θ)〉 of Cθ and X(θ) := X ∩ θ is Cθ \ Y (θ).

A subspace S of PN (K) is called singular if all its points are contained in X ∪ Y . For each point
x ∈ X, we denote by Tx the subspace spanned by all singular lines through x.

Definition 3.3 An (r, v, r′, v′;N)-system (X,Z,Ξ,Θ) is called a dual split Veronese set
(DSV for short) with parameters (r, v, r′, v′) if the following axioms are satisfied:

(S1) Each pair of distinct points p1, p2 ∈ X ∪ Z is contained in a member of Ξ ∪Θ;

(S2) the intersection ζ1 ∩ ζ2 of two distinct members ζ1, ζ2 ∈ Ξ ∪Θ is singular;

(S3) for each x ∈ X, therare are ξ1, ξ2 in Ξ with x ∈ ξ1 ∩ ξ2 and Tx = 〈Tx(ξ1), Tx(ξ2)〉.

If (X,Z,Ξ,Θ) satisfies (S1) and (S2), then we call it a dual split pre-Veronese set (pre-
DSV for short).
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Remark 3.4 If Θ is empty then r′ and v′ can be anything, so we omit them and speak of an
(r, v′;N)-system and of a (pre-)DSV with parameters (r, v) instead.

3.2 Examples

As was proven in Proposition 2.10, the Veronese varieties V2(K,T), V2(K,CD(L′, 0)) and V2(K, S)
are DSVs. Their parameters are discussed below. In this section, we describe more general classes of
(r, v, r′, v′;N)-systems which contain the Veronese varieties, as we will encounter those throughout
the proof.

3.2.1 (Half) dual Segre varieties

The Veronese variety V2(K,T) defined using the ternions T is an example of what we will call
a half dual Segre variety ; the Veronese variety V2(K,CD(L′, 0)) using the degenerate quaternions
CD(L′, 0) is an example of so-called dual Segre variety. The adjective ‘half’ will become clear when
the dual Segre varieties are introduced. Both classes of examples hence use a Segre variety, which
we recall below. Let ` and k be natural numbers with `, k ≥ 1 and put m := (`+ 1)(k + 1)− 1.

Segre varieties with two families of maximal singular subspaces. The Segre variety S`,k(K)
is the set of points in the image of the Segre map σ:

σ : P`(K)× Pk(K)→ Pm(K) : ((x0, .., x`), (y0, ..., yk)) 7→ (xiyj)0≤i≤`,0≤j≤k.

This product can be visualised in Pm(K) by taking an `-space Π` and a k-space Πk intersecting
each other in precisely a point, and considering Π`×Πk. There are two natural families of maximal
singular subspaces, where two maximal singular subspaces belong to the same family if and only if
they are disjoint. This is a pre-DSV with Θ and Z empty and parameters (1,−1).

Half dual Segre varieties. Inside Pm+`+1(K), we consider a Segre variety S := S`,k(K) and an
`-space Y complementary to 〈S〉. Let S be any `-space of S and χS a linear duality between S and
Y , which hence takes a point of S to a hyperplane of Y . We extend χS to a map χ from all points
of S to Y as follows. Given a point x ∈ S\S, let xS be the unique point in S collinear to x; if x ∈ S
then xS := x. Then we put χ(x) := χS(xS). We use this to define a (1, `−2, `,−1;m+`+1)-system
(X,Z,Ξ,Θ). The set X is defined as {〈x, χ(x)〉 \ χ(x) | x ∈ S} and Z := Y 1. A member of Ξ has
as base a hyperbolic quadrangle (for a generic member, this can be thought of as inside S) and as
vertex a (` − 2)-space of Y ; a member of Θ has empty vertex and is a hyperbolic quadric of rank
` + 1, and one of its maximal singular subspaces is Y . We call this a half dual Segre variety and
denote it by HDS`,k(K). One can verify that V2(K,T) is isomorphic to HDS2,2(K) (compare with
the description given in Subsection 2.4).

Dual Segre varieties. Inside Pm+2`+2(K), we consider a Segre variety S := S`,`(K), and in an
(2` + 1)-space Y complementary to it, we take two disjoint subspaces Z1 and Z2 of dimension `.
As above, let S1 be any `-space of S, and also take any `-space S2 of S which intersects S1 in a
point. For i = 1, 2, let χSi be a linear duality between Si and Zi, thus taking a point of Si to a
hyperplane of Zi. We extend the maps χS1 and χS2 to a map χ from all points of S to 〈Z1, Z2〉
by defining, for a point x of S, its image χ(x) as 〈χS1(xS1), χS2(xS2)〉, where xSi is equal to x
if x ∈ Sior it is the unique point in Si collinear to x if x /∈ Si. We again use this to define a
(1, 2`−1, `, `−1;m+2`+2)-system (X,Z,Ξ,Θ). The set X is defined as {〈x, χ(x)〉\χ(x) | x ∈ S},
and Z := S1 ∪S2. A member of Ξ has as base a hyperbolic quadrangle (for a generic member, this
can be thought of as inside S) and its vertex is a (2`−1)-space of Y generated by a hyperplane of S1

and a hyperplane of S2; a member of Θ has as vertex a hyperplane of S1 or S2 and is a hyperbolic

1The difference between Z and Y is only apparent in the dual Segre varieties.
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quadric of rank ` + 1, and S2 or S1, respectively, is one of its maximal singular subspaces. This
is called a dual Segre variety, which we will denote by DS`,`(K). One can verify that DS2,2(K) is
isomorphic to V2(K,CD(L′, 0)).

We add that the half dual Segre variety HDS`,`(K) can be obtained from the dual Segre variety
DS`,`(K) by projecting the latter from the subspace Z2.

3.2.2 Dual line Grassmannians

The Veronese variety V2(K, S) defined using the sextonions S is an example of what we will call a
dual line Grassmannian variety. This hence builds upon ordinare line Grassmannians, see below.
Let n be a natural number with n ≥ 2 and put m = 1

2(n2 + n)− 1.

Line Grassmannians of projective spaces. The line Grassmannian Gn+1,2(K) of Pn(K) is the
set of points in Pm(K) obtained by taking the images of all lines of Pn(K) under the Plücker map

pl : (〈x0, x1, ..., xn), (y0, y1, ..., yn)〉 7→
(∣∣∣∣xi xj
yi yj

∣∣∣∣)
0≤i<j≤n

.

This is a pre-DSV with Θ and Z empty and parameters (2,−1).

Dual line Grassmannians. Consider, inside Pm+n+1(K), an n-space Y and a complementary
subspace F of dimension m. In F , take a line Grassmannian G := Gn+1,2(K), which is the image
under the Plücker map pl of a certain n-dimensional projective space P. Let χ′ : P→ Y be a linear
duality, and note that each line of P corresponds to a (n − 2)-space of Y . As such, we can define
a map χ between G and Y which is defined by, for each point x ∈ G, taking x to χ′(pl−1(x)). The
set X is defined as {〈x, χ(x)〉 \ χ(x) | x ∈ G}, and Z := Y . Also here, we use this to define a
(2, n−4, n−1,−1;m+n+1)-system (X,Z,Ξ,Θ). A member of Ξ has as base a hyperbolic quadric
of rank 3 (for a generic member, this can be thought of as inside G) and its vertex is a (n−4)-space
of Y ; a member of Θ is a non-degenerate hyperbolic quadric of rank n, i.e., with empty vertex,
and it has a hyperplane of Y as one of its maximal singular subspaces. This is called a dual line
Grassmannian, which we will denote by DGn+1,2(K). One can verify that DG6,2(K) is isomorphic
to V2(K,S).

We do not explicitly claim that the (half) dual Segre varieties and the dual line Grassmannians
with general parameters are pre-DSVs, as this is not our main concern, we merely describe these
geometries as they will arise naturally when studying the pre-DSVs. Yet it should be conceivable
that they satisfy (S1) and (S2). They will in general not satisfy (S3), because for large enough
parameters, the tangent space in a point is bigger than the subspace generated by the tangent spaces
in that point of two symps through that point. For the specific parameters which correspond to
Veronese varieties (or subvarieties of those), we have:

Proposition 3.5 The varieties HDS2,2(K), DS2,2(K) and DG6,2(K) are isomorphic to V2(K,T),
V2(K,CD(L′, 0)) and V2(K,S), respectively, and hence they are dual split Veronese sets, with re-
spective parameters (1, 0, 2,−1), (1, 1, 2, 1), (2, 1, 4,−1). The variety HDS2,1(K) is a subvariety of
HDS2,2(K) and is also a dual split Veronese sets.

Proof The isomorphisms follow from the description of V2(K,T), V2(K,CD(L′, 0)) and V2(K,S)
in Section 2.4: the decomposition into a subspace Y and a “base variety” (which is the Segre variety
S2,2(K) in the smallest two cases and the line Grassmannian G6,2(K) in the largest case) is given,
together with the structure of p⊥ ∩ Y for each point p in the base variety. The fact that V2(K,T),
V2(K,CD(L′, 0)) and V2(K,S) are DSVs follows from Proposition 2.10. By definition, HDS2,1(K)
is a (1, 0, 2,−1; 8)-system. Since it is clearly are contained in HDS2,2(K) it is straightforward to
check that it inherites Axioms (S1) and (S2). A verification shows that also axiom (S3) holds. �
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3.3 Main result

Main Result 3.6 Let (X,Z,Ξ,Θ) be a dual split Veronese set with parameters (r, v, r′, v′)
where 〈X,Z〉 = PN (K) for some arbitrary field K with |K| > 2. If |Θ| ≥ 1, then X is
projectively equivalent to a cone with a vertex V ′ of dimension v′ over one of the following
varieties:

(i) A half dual Segre variety HDS2,k(K), where k ∈ {1, 2}, which is a dual split Veronese
set with parameters (1, 0, 2,−1);

(ii) A dual line Grassmannian variety DG6,2(K), which is a dual split Veronese set with
parameters (2, 1, 4,−1),

or X is projectively equivalent to:
(iii) A dual Segre variety DS2,2(K), with parameters (1, 1, 2, 1).
In particular, these varieties are subvarieties of the Veronese variety V2(K,O′) over the split
octonions O′. Apart from HDS2,1(K), all of them are a Veronese variety V2(K,A) for some
split quadratic alternative algebra A whose radical is a principal ideal and every such Veronese
variety occurs.

Lemma 4.14 explains why in the above we speak of a cone with vertex V ′. A brief structure the
proof is given in Subsection 1.4, for more details on its inductive nature, see Section 5.

Remark 3.7 We exclude the field of two elements in the above because already one of the very
preliminary lemmas (Lemma 4.1) might fail if |K| = 2. An alternative approach is required. Seeing
the high cost and low benefits, we did not pursue this. We know of no counterexamples.

The next theorem contains the special case in which Θ is empty. This case reduces almost immedi-
ately to the Main Result of [12], see also Theorem 1.1. On the one hand, we mention this because
it shows that the current result extends this characterisation in a natural way, on the other hand,
we will need this in the course of the proof of Main Result 3.6.

Theorem 3.8 Let (X,Z,Ξ,Θ) be a dual split Veronese set with parameters (r, v, r′, v′) where
〈X,Z〉 = PN (K) for some arbitrary field K. If |Θ| = 0, then all members of Ξ have 〈Z〉 as
their vertex and X is projectively equivalent to a cone with a vertex 〈Z〉 over one of the following
varieties:

(r = 1) a Segre variety S1,2(K) in P5(K) or S2,2(K) in P8(K);
(r = 2) a line Grassmannian G5,2(K) in P9(K) or G6,2(K) in P14(K);
(r = 4) the Cartan variety E6(K) in P26(K).

Proof This is proven in Lemma 4.15 and Proposition 4.16. �

4 Preliminaries

For now, we do not invoke axiom (S3), since many properties can be deduced without it.

Standing hypothesis. Throughout, let (X,Z,Ξ,Θ) be a pre-DSV with parameters
(r, v, r′, v′) with 〈X,Z〉 = PN (K) for an arbitrary field |K| > 2.

Notation. Recall that a subspace S of PN (K) is called singular if S ⊆ X ∪Y . If moreover S ⊆ X,
then we call S an X-space. Note that each ξ ∈ Ξ has r-dimensional X-spaces and each θ ∈ Θ has
r′-dimensional X-spaces. Two subspaces S1, S2 are called collinear if there is a singular subspace
containing them; we denote this by S1 ⊥ S2.
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4.1 Basic properties

We start with some direct consequences of Axioms (S1) and (S2). The following refines (S1).

Lemma 4.1 Suppose p1 and p2 are non-collinear points of X ∪Z. Then there is a unique member
of Ξ ∪Θ containing them, denoted by [p1, p2]. If p1 or p2 belongs to Z, then [p1, p2] ∈ Θ.

Proof By (S1), there exists a ζ ∈ Ξ ∪ Θ containing p1 and p2. If ζ ′ ∈ Ξ ∪ Θ also contains p1

and p2, and ζ 6= ζ ′, then (S2) implies that ζ ∩ ζ ′ is a singular subspace containing p1, p2. This
contradicts the fact that p1 and p2 are not collinear. If ζ ∈ Ξ, then by Definition 3.2, Y (ζ) = Y ∩ ζ
is the vertex of ζ and its points are hence collinear to all points of XY (ζ). So if p1 ∈ Z ⊆ Y , then
p1 would be collinear to p2, a contradiction; likewise if p2 ∈ Z. �

Lemma 4.2 The set X is non-empty and each x ∈ X is contained in a member of Ξ ∪Θ.

Proof Take any ζ ∈ Ξ∪Θ (recall that Ξ is non-empty by Definition 3.2). Then X(ζ) = X∩ζ ⊆ X
is non-empty. Now take any x ∈ X. If x ∈ X(ζ), the statement follows, so suppose x /∈ X(ζ). Take
any point x′ ∈ X(ζ). By (S1), x and x′ are cotnained in a member of Ξ ∪Θ. �

Lemma 4.3 The set X is disjoint from Y .

Proof Suppose for a contradiction that p is contained in both X and Y . Lemma 4.2 yields a
ζ ∈ Ξ ∪Θ containing p. By Definition 3.2, X(ζ) and Y (θ) are disjoint, a contradiction. �

Lemma 4.4 A line of PN (K) containing at least three points of X ∪Y is singular. A singular line
of PN (K) containing a point of X, contains at most one point of Y .

Proof Let L be line of PN (K) with |L ∩ (X ∪ Y )| ≥ 3. Observe that, if L contains two points
of Y , then L ⊆ Y since the latter is a subspace (generated by the points of Z) by definition. So
we may assume that L contains at least two points x1, x2 of X. By (S1), these are contained in a
member ζ of Ξ ∪Θ. Then L ⊆ ζ. Since a non-singular line in ζ would meet the quadric XY (ζ) in
at most two points, it follows that L is singular. If L contains a point of X, then by Lemma 4.3,
L * Y . Since Y is a subspace, L ∩ Y is at most one point. �

Lemma 4.5 Let L1 and L2 be two singular lines both not contained in Y , intersecting each other
in a unique point s. Then either 〈L1, L2〉 is a singular plane or it is contained in a unique member
of Ξ ∪Θ, denoted [L1, L2].

Proof For i = 1, 2, Li * Y means that Li contains at most one point of Y , according to
Lemma 4.4. Therefore, and since |K| > 2, we can take distinct X-points xi, x

′
i ∈ Li \ {s}, i = 1, 2.

Suppose first that x1 is not collinear to x2. Then they determine a unique member [x1, x2] ∈ Ξ∪Θ
by Lemma 4.1. By Lemma 4.4, x1 and x2 are the only points of X ∪ Y on x1x2. Since 〈L1, L2〉 is
a plane of PN (K), the line x′1x

′
2 intersects x1x2 in a point p, distinct from x1, x2. By the foregoing,

p /∈ X ∪ Y and as such the line x′1x
′
2 is not singular. So also x′1, x

′
2 determine a unique member

[x′1, x
′
2] ∈ Ξ ∪ Θ. If [x1, x2] and [x′1, x

′
2] are distinct, then by (S2), p ∈ [x1, x2] ∩ [x′1, x

′
2] ⊆ X ∪ Y ,

a contradiction. Hence [x1, x2] and [x′1, x
′
2] coincide and therefore they contain L1 = x1x

′
1 and

L2 = x2x
′
2. Since each member of Ξ ∪ Θ containing L1 ∪ L2 in particular contains x1 and x2, it

follows from Lemma 4.1 that [x1, x2] is the unique member of Ξ∪Θ containing L1 ∪L2, and hence
also 〈L1, L2〉. Next, suppose that x1 ⊥ x2 for each pair of X-points xi ∈ Li \ {s}, i = 1, 2. Let
p ∈ 〈L1, L2〉 \ (L1 ∪ L2) be arbitrary. As |K| > 2, there is a line through p meeting L1 and L2 in
distinct X-points. By assumption, these X-points are collinear and hence p ∈ X ∪Y . We conclude
that the plane 〈L1, L2〉 is singular indeed. �

15



Definition 4.6 For each point p ∈ X ∪ Y , we denote by p⊥ the union of all singular lines through
p with at most one point in Y (i.e., not entirely contained in Y ).

The following lemma expresses that, for ζ ∈ Ξ ∪ Θ, the quadric XY (ζ) can be obtained as the
convex closure of any two of its X-points, i.e., any shortest path between two non-collinear points
of XY (ζ) using lines that are not fully contained in Y is contained in XY (ζ).

Lemma 4.7 Let ζ ∈ Ξ ∪Θ and p ∈ (X ∪ Y ) \ ζ arbitrary. Then p⊥ ∩ ζ is a singular subspace. In
other words, a point of X∪Y (resp.X) collinear to two non-collinear points of X(ζ) (resp.XY (ζ)),
belongs to ζ.

Proof If |p⊥ ∩ ζ| ≤ 1, the first assertion is trivial. So suppose |p⊥ ∩ ζ| ≥ 2 and let p1, p2 be
distinct points in p⊥ ∩ ζ. Put Li := ppi, i = 1, 2. Then L1 and L2 are singular lines, both not
contained in Y (by definition of p⊥). If p1 and p2 are not collinear, then Lemma 4.5 implies that
p ∈ [L1, L2] = [p1, p2] = ζ, a contradiction. So p1 and p2 are collinear. Put L = p1p2 and let p3 be
a third point on L. We show that L3 := pp3 is singular too. Indeed, if p and p3 are not collinear,
then it follows from Lemma 4.5 that [p, p3] contains the plane 〈p, L〉. Since the quadric XY ([p, p3])
satisfies the 1-or-all axiom, it follows that p is collinear to p3 after all, a contradiction. We conclude
that L3 ∈ p⊥ and hence p⊥ ∩ ζ is a singular subspace. The other statement is a direct consequence
of the first one. �

We can extend Lemma 4.5 to higher-dimensional subspaces.

Lemma 4.8 Let S1 and S2 be two singular subspaces of dimension k, with k ≥ 1, both not contained
in Y , intersecting each other in a (k − 1)-space S. Then either 〈S1, S2〉 is a singular (k + 1)-space
or it is contained in a unique member of Ξ ∪Θ (denoted by [S1, S2]).

Proof If k = 1, this follows from Lemma 4.5, so let k > 1. Observe that S1 * Y implies that
S1 \ S * Y , likewise for S2. So there are X-points x1 ∈ S1 \ S and x2 ∈ S2 \ S. Suppose first
that x1 and x2 are not collinear. Then they are contained in a unique member [x1, x2] ∈ Ξ ∪Θ by
Lemma 4.1. By Lemma 4.7, S ⊆ [x1, x2] since S ⊆ X ∪ Y is collinear to x1 and x2. Therefore,
〈S1, S2〉 = 〈S, x1, x2〉 is contained in [x1, x2]. Since each member of Ξ ∪ Θ containing 〈S1, S2〉
contains x1, x2, uniqueness follows.

So we may suppose that x1 and x2 are collinear for any pair of X-points x1 ∈ S1\S and x2 ∈ S2\S.
Let p be any point in 〈S1, S2〉\ (S1∪S2). Take an X-point x1 ∈ S1 \S. Then the line x1p intersects
S2 \ S in a point p2. If p2 ∈ X, then x1 ⊥ p2 and hence p ∈ x1p2 ⊆ X ∪ Y . So suppose p2 ∈ Y .
Observe that this implies that S * Y , for otherwise 〈S, p2〉 ⊆ Y , a contradiction. So we can take
an X-point x′1 in S1 \ (S ∪ {x1}) such that the line x1x

′
1 intersects S in an X-point x. Let p′2 be

the point in S2 \ S on x′1p. The lines x1x
′
1 and x2x

′
2 intersect each other in the point x ∈ S, since

they are contained in the plane 〈x1, x
′
1, p〉. It follows that p′2 ∈ X, for otherwise x ∈ p2p

′
2 ⊆ Y ,

contradicting Lemma 4.3. So p ∈ x′2p′2 ⊆ X ∪ Y . Therefore, 〈S1, S2〉 is singular. �

Definition 4.9 For each X-space S, we denote by YS the set of points of Y collinear to (all points
p of) S, i.e., YS :=

⋂
p∈S(p⊥ ∩ Y ).

Corollary 4.10 For each X-space S of dimension k ≥ 0, YS is a subspace of Y and 〈S, YS〉 is a
singular subspace.

Proof If |YS | ≤ 1, there is nothing to prove. So suppose y1, y2 are distinct points in YS . Note
that y1y2 ⊆ Y because Y is a subspace by definition. We show that 〈S, y1, y2〉 is a singular subspace,
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which in particular implies that y1y2 ⊆ YS . Put S1 = 〈y1, S〉 and S2 = 〈y2, S〉. Then S1 and S2 are
not contained in Y since they contain S ⊆ X (and X and Y are disjoint). Hence, by Lemma 4.8,
〈S1, S2〉 = 〈S, y1, y2〉 is either a singular subspace (in which case we are done), or S1∪S2 is contained
in a member ζ of Ξ ∪Θ. In the second case, the 1-or-all axiom in the quadric XY (ζ) implies that
〈S, y1, y2〉 is a singular subspace. Since y1, y2 ∈ YS were arbitrary, this already shows that YS is a
subspace of Y . Now take any point p in 〈S, YS〉 \ S ∪ YS . Then p is contained in a line xy with
x ∈ S and y ∈ YS and hence, since x ⊥ y, we have p ∈ xy ⊆ X ∪ Y . So 〈S, YS〉 is singular. �

Lemma 4.11 Let S be a singular k-space with k ≥ 1 and suppose ζ ∈ Ξ ∪Θ is such that S ∩ ζ is
a subspace of dimension k − 1 not contained in Y and not a maximal singular subspace of XY (ζ).
Then there is a ζ ′ ∈ Ξ ∪Θ containing S such that ζ ′ ∩ ζ is not collinear to S.

Proof Since S ∩ ζ is not a maximal singular subspace of ζ, there are non-collinear singular
k-spaces S1 and S2 in ζ containing S ∩ ζ. Moreover, since S ∩ ζ * Y , also S \ ζ, S1 \ S ∩ ζ and
S2 \S∩ζ are not contained in Y . If both 〈S, S1〉 and 〈S, S2〉 were singular, then an X-point of S \ζ
(recall S * Y ) would be collinear to a pair of non-collinear X-points of S1 \ S, S \ S2, violating
Lemma 4.7. So we may assume that 〈S, S1〉 is not singular. By Lemma 4.8, 〈S, S1〉 is contained in
a unique ζ ′ ∈ Ξ ∪Θ. By construction, ζ ′ ∩ ζ contains S1, which is not collinear to S. �

We record a special case of the previous lemma. Observe that a crucial difference between Ξ and
Θ is that for each ξ ∈ Ξ, each point of Y (ξ) is collinear to each point of X(ξ), whereas for each
X-point of θ ∈ Θ there is a point y ∈ Y (θ) not collinear to it.

Corollary 4.12 Let L be a singular line with a unique point y ∈ Y , intersecting some ζ ∈ Ξ ∪ Θ
in an X-point x. Then there is a θ ∈ Θ containing L and an X-line of ζ.

Proof We verify that L and ζ satisfy the assumptions of Lemma 4.11 (with L in the role of S).
Indeed, dim(L∩ζ) = 0 and L∩ζ * Y since L∩ζ = {x} ⊆ X. Moreover, by assumption, r′ > r ≥ 1
so x is not a maximal singular subspace in ζ. Lemma 4.11 yields a ζ ′ ∈ Ξ ∪ Θ containing L such
that ζ ∩ ζ ′ is not collinear to L. In particular, ζ ∩ ζ ′ strictly contains x. So let L′ be a line of ζ ∩ ζ ′
containing x, with L′ not collinear to L. If L′ contains a point y′ ∈ Y , then y, y′ ∈ Yx and hence
〈x, y, y′〉 = 〈L,L′〉 is a singular subspace by Corollary 4.10, contradicting the fact that L and L′ are
not collinear. So L′ ⊆ X. Inside ζ ′, the point y is not collinear to L′, so by Lemma 4.1, ζ ′ ∈ Θ. �

4.2 Projections of (X,Z,Ξ,Θ) and the case where Θ is empty

Let S be a subspace of PN (K) and F a subspace complementary to it.

Definition 4.13 The projection of (X,Z,Ξ,Θ) from S onto F is induced by the following map.

ρS : X → F : x 7→ 〈Y, x〉 ∩ F.

If S is clear from the context, we write ρ instead of ρS . We denote ρ(Ξ) := {ρ(ξ) | ξ ∈ Ξ}, likewise
for Θ, and ρ(X,Z,Ξ,Θ) abbreviates (ρ(X), ρ(Z), ρ(Ξ), ρ(Θ)).

Writing V ∗ =
⋂
x∈X Yx ≤ Y , we show in the next lemma that it suffices to study the projection

ρV ∗(X,Z,Ξ,Θ), and then afterwards conclude that (X,Z,Ξ,Θ) is a cone with vertex V ∗ over
ρV ∗(X,Z,Ξ,Θ).

Lemma 4.14 Suppose (X,Z,Ξ,Θ) is a (pre-)DSV with parameters (r, v, r′, v′). Let V ∗ =
⋂
x∈X Yx

be the subspace of Y collinear to all points of X, and put v∗ = dimV ∗. Then ρV ∗(X,Z,Ξ,Θ) is a
(pre-)DSV with parameters (r, v − v∗ − 1, r′, v′ − v∗ − 1) inside PN−v∗−1(K).
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Proof If all points of X are collinear to V ∗, then all members of Ξ and Θ have V ∗ in their vertex
(cf. Lemma 4.7). A straightforward verification shows that the projection of (X,Z,Ξ,Θ) from V ∗

satisfies (Si) if (X,Z,Ξ,Θ) does, for each i ∈ {1, 2, 3}. �

In case Θ is empty, we can actually show that V ∗ = Y .

Lemma 4.15 Suppose Θ is empty. Then Y is collinear to all points of X and each member of Ξ
has Y as its vertex.

Proof Suppose for a contradiction that x ∈ X is a point with Yx a strict subspace of Y (cf.
Corollary 4.10). Since Z generates Y , there is a point z of Z in Y \ Yx. Since x and z are not
collinear, Lemma 4.1 implies that [x, z] ∈ Θ. Since Θ is empty, this is a contradiction. So Yx = Y
for each point x ∈ X. It then follows from Lemma 4.7 that each ξ ∈ Ξ has Y as its vertex:
considering two non-collinear points x1, x2 ∈ X(ξ), we have Y (ξ) = Yx1 ∩ Yx2 = Y . �

Since we now gathered everything we need to deal with the case where Θ is empty, we finish the
proof of Theorem 3.8 here.

Proposition 4.16 Let (X,Z,Ξ,Θ) be a dual split Veronese set with Θ empty. Then the projection
(ρY (X), ρY (Ξ)) is isomorphic to one of the following varieties: a Segre variety S1,2(K) or S2,2(K)
(r = 1), a line Grassmannian G5,2(K) or G6,2(K) (r = 2) or the variety E6(K) (r = 4).

Proof Recall that Lemma 4.15 says Yx = Y for each x ∈ X. By Lemma 4.14, the projection
(ρY (X), ρY (Ξ)) (where we omit the empty sets Z and Θ) satisfies axioms (S1), (S2) and (S3). We
claim that (ρY (X), ρY (Ξ)) is a split Veronese set of type 2r. Indeed, it is clear from Definition 3.2
that each ξ ∈ ρY (Ξ) is a subspace of dimension 2r + 1 which meets ρY (X) in a quadric whose
maximal singular subspaces have dimension r. Moreover, Axioms (S1) and (S2) are identical to
Axioms (SV1) and (SV2), respectively. Now take any x ∈ ρY (X). By Axiom (S3), the tangent
space Tx is generated by Tx(ξ1) and Tx(ξ2) for two members ξ1, ξ2 of ρY (Ξ) containing x. Therefore,
since dimTx(ξi) = 2r for i = 1, 2, it follows that dimTx ≤ 4r, and hence (SV3) is satisfied. Whence
the claim. By Theorem 1.1, the proposition follows. �

Another projection that we will frequently use, is from the subspace Y . In this context, we also
consider the connection between ρY (X) and Y :

Definition 4.17 The connection map between ρY (X) and Y (recalling Yx = x⊥ ∩Y ) is defined as
follows:

χ : ρY (X) 7→ Y : ρ(x) 7→ Yx.

We show some general properties on ρY and χ (in particular that χ is well defined).

Lemma 4.18 Put ρ = ρY .

(i) For each x ∈ X, ρ−1(ρ(x)) = 〈x, Yx〉 ∩X and hence χ is well defined;
(ii) for each ξ ∈ Ξ, ρ(X(ξ)) is a non-degenerate hyperbolic quadric of rank r + 1;

(iii) for each θ ∈ Θ, ρ(X(θ)) is a singular subspace of dimension r′.

Proof (i) If ρ(x) = ρ(x′) for points x, x′ ∈ X with x 6= x′, then 〈x, x′, Y 〉 contains Y as a
hyperplane. Therefore, the line xx′ meets Y in a point y ∈ Y , which by Lemma 4.4 means that
xx′ is singular. In particular, y ∈ Yx, and so x′ ∈ 〈x, Yx〉 ∩X indeed. Conversely it is clear that all
points of the latter set are mapped onto the same point by ρ. Consequently, 〈x′, Yx′〉 = 〈x, Yx〉, so
in particular Yx′ = Yx, from which we conclude that χ is well defined. Assertions (ii) and (iii) are
obvious noting that, for each ξ ∈ Ξ, Y ∩ ξ is the vertex of ξ and for each θ ∈ Θ, Y ∩ θ is a maximal
singular subspace of θ. �
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Remark 4.19 We will work towards the situation where (ρY (X), ∅, ρY (Ξ), ∅) is a (pre-)DSV. For
this, several things need to be established. Indeed, if p1, p2 are two non-collinear points of ρ(X),
and xi, x

′
i ∈ ρ−1(pi) for i = 1, 2, then x1 and x2 and also x′1 and x′2 are non-collinear points of X,

but it remains to be proven that ρ([x1, x2]) = ρ([x′1, x
′
2]). It also requires some work to determine

the inverse image of a singular line of ρ(X).

5 The inductive approach: point-residues

In view of Lemma 4.14, we may assume that no point of Y is collinear to all points of X; and by
Proposition 4.16, we may assume that Θ is non-empty. Summarized:

Standing hypothesis. We recall that (X,Z,Ξ,Θ) is a pre-DSV with parameters (r, v, r′, v′)
with 〈X,Z〉 = PN (K) for an arbitrary field |K| > 2, in which no point of Y is collinear to all
points of X and such that Θ is non-empty.

In this section we introduce the point-residue of (X,Z,Ξ,Θ) for a point x ∈ X. This amounts to
considering all singular lines through x and all members of Ξ and Θ through x. As a preparation,
we start by studying the members of Θ containing a given X-space.

5.1 Members of Θ containing a point x ∈ X

For x ∈ X, let Θx denote the set of members of Θ containing x.

Lemma 5.1 Each X-point x, |Θx| ≥ 1.

Proof Suppose for a contradiction that x ∈ X is not contained in any member of Θ. Observe
that Z (and hence also Y ) is non- empty, since Θ is non-empty by our standing hypothesis and
Z(θ) is non-empty for θ ∈ Θ (cf. Definition 3.2). So take any point z ∈ Z. If x and z are not
collinear, then Lemma 4.1 implies that [x, z] ∈ Θ, so x ⊥ z. Since Y = 〈Z〉, Corollary 4.10 implies
that Yx = Y . By Lemma 4.14, there is a point x′ ∈ X with Yx′ a strict subspace of Y (if not, then
each point of the non-emtpy subspace Y is collinear to all points of X, contradicting our standing
hypothesis). By (S1) and our assumption, there is a ξ ∈ Ξ containing x and x′, and its vertex Y (ξ)
is contained in Yx′ . Take a point y ∈ Y \ Y (ξ). Then the singular line xy has y as unique point
in Y and meets ξ in the point x. Corollary 4.12 then implies that xy contained in some θ ∈ Θ
together with an X-line of ξ through x. This contradiction shows the lemma. �

Next, we show that, if |Θx∗ | = 1 for some point x∗ ∈ X, then |Θx| = 1 for every x ∈ X.

Lemma 5.2 If |Θx∗ | = 1 for some point x∗ ∈ X, then Y (θ) = Y for each θ ∈ Θ. In particular,
dimY = r′ + v′ + 1 and dimYx = r′ + v′. Also, |Θx| = 1 for every x ∈ X.

Proof Let θ∗ be the unique member of Θx∗ . Suppose for a contradiction that Y (θ∗) ( Y . Since
Y = 〈Z〉, this means that there is a point z ∈ Z \ Y (θ∗). If z and x∗ are not collinear, then
by Lemma 4.1, [z, x∗] is a second member of Θ containing x∗, a contradiction. So z and x∗ are
collinear. Now let L1 and L2 be two X-lines in θ∗ containing x∗ with L1 and L2 non-collinear
(cf. Definition 3.2 and r′ > r ≥ 1). Take points xi ∈ Li \ {x∗} with i = 1, 2. Then x1 and x2 are
not collinear (otherwise 〈x∗, x1, x2〉 = 〈L1, L2〉 is singular after all). If z would be collinear to both
x1 and x2, then Lemma 4.7 yields z ∈ [x1, x2] = θ∗, a contradiction. Renumbering if necessary, z
is not collinear to x1. By Lemma 4.5, [x∗z, L1] is a member of Ξ ∪Θ and by Lemma 4.1, [x∗z, L1]
belongs to Θ. Again we found a second member of Θ containing x∗. We conclude that Y (θ∗) = Y .
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In particular, dimY = dimY (θ∗) = r′ + v′ + 1. If θ ∈ Θ is arbitrary, then Y (θ) = Y follows from
dimY (θ) = r′ + v′ + 1. Now let x ∈ X be arbitrary. Lemma 5.1 guarantees the existence of at
least one θ ∈ Θ containing x. Suppose for a contradiction that θ′ ∈ Θ \ θ contains x too. Then
Y (θ) = Y (θ′) = Y by the above. Observe that Yx is a hyperplane of the maximal singular subspace
Y = Y (θ) of θ. As above, this means that there is a point z ∈ Z which is not contained in Yx but
which is contained in both θ and θ′. By Lemma 4.1, θ = [x, z] = θ′. �

We go one step further by showing that |Θ| > 1, so in particular, if |Θx| = 1 for each x ∈ X, it
cannot be that it is the same member of Θ for each point x ∈ X.

Lemma 5.3 The set Θ contains at least 2 elements.

Proof Suppose for a contradiction that Θ = {θ} (recall that Θ is non-empty by our standing
hypothesis). Then by Lemma 5.1, each point of X is contained in some member of Θ, so X(θ) = X.
However, there is a ξ ∈ Ξ by assumption. Let x1, x2 be two non-collinear points of X(ξ). By the
foregoing, x1, x2 are also contained in θ. So ξ = [x1, x2] = θ by Lemma 4.1, a contradiction because
Θ and Ξ are disjoint (cf. their description in Definition 3.2 and the fact that X and Y are disjoint,
see Lemma 4.3). �

5.2 Members of Θ containing an X-line

Definition 5.4 An X-line contained in 0, 1 or at least 2 members of Θ is called a 0-line, a 1-line
or a 2-line, respectively.

It turns out that the nature of an X-line L can be expressed in terms of YL and Yx with x ∈ L (cf.
Definition 4.9 and Corollary 4.10).

Lemma 5.5 Let L be an X-line and x any of point of L. For each subspace H ⊆ Yx such that YL
is a hyperplane of H, there is a unique θH,L ∈ Θ containing L and with θH,L∩Yx = H. Conversely,
each θ ∈ Θ containing L coincides with θH,L for some subspace H as described and in particular,
YL ⊆ θ. Consequently:

(i) L is a 0-line if and only if Yx = YL, in which case Yx = Yx′ for each x′ ∈ L;
(ii) L is a 1-line if and only if YL is a hyperplane of Yx;

(iii) L is a 2-line if and only if YL is strictly contained in a hyperplane of Yx.

Proof Suppose x, L and H are as described and take a point y ∈ H \ YL. Since y ∈ Yx \ YL,
the line xy is singular and is not contained in a singular plane with L. So, by Lemma 4.5, [xy, L]
is the unique member of Ξ ∪ Θ containing L and y. Lemma 4.1 implies that [xy, L] ∈ Θ (since
y /∈ YL). According to Corollary 4.10, 〈x, Yx〉 and 〈L, YL〉 are singular subspaces, and hence so is
their intersection 〈x, YL〉. Let x′ be any point of 〈x, YL〉∩X, i.e., a point of 〈x, YL〉 \YL. Then x′ is
collinear to all points of L (since x′ ∈ 〈L, YL〉) and all points of xy (since x′ ∈ 〈x, Yx〉), so Lemma 4.7
implies that x′ belongs to [xy, L]. As x′ ∈ 〈x, YL〉\YL was arbitrary, and as ζ is a subspace, also YL
and 〈YL, y〉 are contained in [xy, L]. It follows that [xy, L] is the unique member of Θ containing L
and H, and is hence also denoted by θH,L. Inside the quadric XY (θH,L), the subspace Yx ∩ θH,L
(which contains H) and is a hyperplane of the maximal singular subspace Y (θH,L) of θH,L; the
subspace YL∩θH,L (which coincides with YL) is a hyperplane of Yx∩θH,L. Since YL is a hyperplane
of H, it follows that Yx ∩ θH,L = H. This shows the first statement.

Next, suppose θ ∈ Θ contains L and let y be a point in Y (θ) collinear to x but not collinear to L.
Then θ = [xy, L] by Lemma 4.1. As in the previous paragraph, [xy, L] contains 〈y, YL〉 and hence,
putting H := 〈y, YL〉, it follows that θ = θH,L. This shows the second statement.
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We conclude that the number of members of Θ through L depends on the number of subspaces
of Yx containing YL as a hyperplane. So YL = Yx is equivalenbt with the fact that there are no
members of Θ through L; and as x ∈ L was arbitrary, Yx′ = YL = Yx for each x′ ∈ L. �

5.3 X-planes and higher dimensions

Surprisingly, no X-plane is contained in more than one member of Θ.

Lemma 5.6 Two members of Θ sharing an X-plane coincide.

Proof Suppose θ1, θ2 are distinct members of Θ which share an X-plane π. Then they also share
an X-line L. By Lemma 5.5, θ1 ∩ θ2 contains 〈L, YL〉. Since this is a maximal singular subspace in
both θ1 and θ2, it follows that θ1 ∩ θ2 = 〈L, YL〉 and hence π ⊆ 〈L, YL〉, a contradiction. �

5.4 Point-residues and the inductive approach

Recall that, for each point x ∈ X, we denote by Tx the subspace generated by all singular lines
through x. We now introduce the point-residue, as hinted at in the beginning of this section.

Definition 5.7 For each x ∈ X, we define the point-residue ResX(x) := (Xx, Zx,Ξx,Θx) as follows.
Take any hyperplane Hx of Tx containing Yx and not containing x. We define Xx as the set
of points in Hx that are on an X-line with x and Zx := Yx ∩ Z; furthermore, Ξx is the set
{Tx(ξ)∩Hx | x ∈ ξ ∈ Ξ} and Θx as {Tx(θ)∩Hx | x ∈ θ ∈ Θ}. Choosing a different hyperplane H ′x
in Tx leads to an isomorphic point-residue (with canonical isomorphism).

Remark 5.8 Consider a point x ∈ X and ζ ∈ Ξ ∪Θ with x ∈ X(ζ). Let ζx be the corresponding
member Ξx ∪Θx, i..e, ζx = Tx(ζ)∩Hx. Then Xx(ζx) := Xx ∩ ζx is isomorphic to the point-residue
ResX(ζ)(x) of X(ζ) as a (degenerate) hyperbolic quadric. Conversely, given ζx, we can recover ζ by
taking the convex closure (cf. Lemma 4.7) of two non-collinear points of Xx(ζx) (note that these
points exist since there are non-collinear X-lines through x in ζ, as r′ > r ≥ 1). Note that, if ζ ∈ Ξ,
then ζx is an (r − 1, v)-tube and if ζ ∈ Θ, then ζx is an (r′ − 1, v′)-tube. Therefore, we will only
consider the point-residue if r > 1 (recall that r′ > r ≥ 1 so automatically, r′ > 1).

We give an example to clarify the definition and to point out why we need the residues.

Example 5.9 Consider the dual line Grassmannian G6,2(K) ∼= V2(K, S), as introduced in Sec-
tion 3.2.2, which is a DSV (X,Z,Ξ,Θ) with parameters (2, 1, 4,−1). Later we show (see Lemma 7.1
and further) that, for any x ∈ X, the point-residue (Xx, Zx,Ξx,Θx) is the half dual Segre variety
DS3,1(K), which is a (1, 1, 3,−1; 11)-system (it is also a pre-DSV). This can be made conceivable
as follows. The variety G6,2(K) is composed of a line Grassmannian G = G6,2(K) and a 5-space Y .
By transitivity (see Fact 2.6(5)), we may assume that x ∈ G. By definition, dimYx = 3, and on the
other hand ResG(x) is isomorphic to S3,1(K) =: S. Furthermore, for each Xx-point x′ it turns out
that Yx ∩ Yx′ is a plane of Yx, yielding the desired correspondence between the points of S and the
(hyper)planes of Yx. We leave the details to the interested reader.

As explained in Remark 5.8, we will not consider point-residues if r = 1. In case r ≥ 2, we want to
show that ResX(x) is a pre-DSV as well. For that, we first need that 〈Zx〉 = 〈Yx〉.

Lemma 5.10 For each x ∈ X, 〈Zx〉 = Yx.
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Proof Recall that Yx is a subspace by Corollary 4.10. Suppose for a contradiction that S := 〈Zx〉
is properly contained in Yx. Let θ ∈ Θ through x be arbitrary (cf. Lemma 5.1). Take an X-line L
through x in θ (which exists since r′ > r ≥ 1). By Lemma 5.5, YL is stricty contained in Yx. Since
two strict subspaces of Yx do not cover Yx and hence there is a point y ∈ Yx \ (YL ∪ S). According
to Lemmas 4.5 and 4.1, θ′ := [xy, L] ∈ Θ. Recall from Definition 3.2 that Y (θ′) is generated by
an r′-space M ⊆ Z and the vertex V ⊆ Z. Now x ∈ θ′ is collinear to a hyperplane of Y (θ),
which obviously contains V . Therefore x is collinear to only a hyperplane M ′ of M (otherwise
x ⊥ Y (θ)), and hence x⊥ ∩ Y (θ) is the hyperplane of Y (θ) generated by V and M ′. We conclude
that x⊥ ∩ Y (θ′) = 〈x⊥ ∩ Z(θ′)〉. As the former subspace contains y and the latter is contained in
S, this contradicts y /∈ S. The conclusion follows. �

We can show that ResX(x) is a pre-DSV, and that it also satisfies the properties mentioned in the
standing hypothesis.

Proposition 5.11 Let (X,Z,Ξ,Θ) be a pre-DSV with parameters (r, v, r′, v′) with r ≥ 2, |Θ| ≥ 1
and such that no point of Y is collinear to X. For each x ∈ X, (Xx, Zx,Ξx,Θx) is a pre-DSV in
PNx(K) with Nx = dim(Tx)− 1 with parameters (r − 1, v, r′ − 1, v′) and |Θx| ≥ 1, and is such that
no point of Yx is collinear to Xx. If (S3) holds in (X,Z,Ξ,Θ), then Nx ≤ 2d− 1.

Proof We first look at the ambient projective space. A singular line containing x is either an
X-line, which has a unique point in Xx, or it has a unique point in Yx. Since Tx is generated
by the singular lines containing x, it follows that Tx = 〈x,Xx, Yx〉. By Lemma 5.10 we also have
〈Zx〉 = Yx. So we obtain that Xx and Zx generate the projective space Hx and hence Hx

∼= PNx(K)
with Nx = dim(Tx)− 1 (so if (S3) holds, then indeed Nx ≤ 2d− 1).

A straightforward verification (see also Remark 5.8) tells us that each ζ ∈ Ξ ∪ Θ with x ∈ ζ,
intersects the sets Xx, Yx and Zx as described in Definition 3.2, and that its parameters are
(r − 1, v, r′ − 1, v′).

Since (S2) holds in (X,Z,Ξ,Θ), it also holds in ResX(x), as the projection of a singular subspace
containing x is a singular subspace itself. Next, we show that also (S1) holds in ResX(x). Take
two points p1, p2 in Xx ∪ Zx. These points correspond to two singular lines L1 and L2 containing
x, so both lines are not contained in Y . By Lemma 4.5, either [L1, L2] ∈ Ξ∪Θ, in which case (S1)
follows; or 〈L1, L2〉 is a singular plane π. In the latter case, (S1) implies the existence of a member
ζ of Ξ∪Θ containing L1. If ζ also contains L2, we are good, so suppose it does not. Since r, r′ ≥ 2,
there is a singular plane π′ in ζ through L1 not collinear to L2 (cf. Lemma 4.7). By Lemma 4.8, π
and π′ determine a unique member of Ξ∪Θ containing L1 and L2, so also in this case (S1) follows.

Finally, suppose for a contradiction that y ∈ Yx collinear to all points of Xx. Take any x′ ∈ X not
collinear to x. Then by Lemma 4.1, [x, x′] ∈ Ξ ∪ Θ. By assumption, y is collinear to all points of
Xx and to x, and hence y is collinear to x⊥ ∩X([x, x′]). Since each point of Yx is trivially collinear
to y, in fact x⊥ ∩ XY ([x, x′]) ⊆ y⊥ ∩ XY ([x, x′]). This is only possible if xy contains a point of
the vertex of XY ([x, x′]), and hence y belongs to the vertex of XY [x, x′]. Therefore, x′ ⊥ y. As
x′ ∈ X \ x⊥ was arbitrary, we conclude that all X-points are collinear to y. �

The fact that there are no X-planes contains in multiple members of Θ, translates to the following—
where we not only look at a point-residue but also at a point-residue of the point-residue (a line
residue in fact).

Lemma 5.12 Let x ∈ X be arbitrary and x′ ∈ Xx too. Put Xxx′ := (Xx)x′, et cetera. Then:

• If r ≥ 2, then in (Xx, Zx,Ξx,Θx), each Xx-line is contained in at most one member of Θx;
• If r ≥ 3, then in (Xxx′ , Zxx′ ,Ξxx′ ,Θxx′), each Xxx′-point is contained in a unique member of Θxx′.
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Proof Recall that if r ≥ 2, then (Xx, Zx,Ξx,Θx) is a pre-DSV with parameters (r−1, v, r′−1, v′)
by Proposition 5.11, and hence if r ≥ 3, also (Xxx′ , Zxx′ ,Ξxx′ ,Θxx′) is a pre-DSV, by the same token.

• Suppose r ≥ 2. Let L be an Xx-line in ResX(x). Then, viewed in (X,Z,Ξ,Θ), each line xu with
u ∈ L is an X-line by Definition 5.7. Therefore, the plane 〈u, L〉 is an X-plane in (X,Z,Ξ,Θ). By
Lemma 5.6, 〈u, L〉 is contained in at most one member of Θ. Consequently, L is contained in at
most one member of Θx.

• Next, suppose r ≥ 3. Since a point of Xxx′ corresponds to an X-plane of (X,Z,Ξ,Θ), there is
again at most one member of Θxx′ containing it. On the other hand, there is at least one member
of Θxx′ contianing it, by Lemma 5.1. �

This has a two very strong consequences.

Corollary 5.13 If there is a point of X contained in a unique member of Θ, then r = 1.

Proof Suppose for a contradiction that r ≥ 2 and |Θx| = 1 for some x ∈ X. Consider the point-
residue (Xx, Zx,Ξx,Θx), which is a pre-DSV with parameters (r−1, v, r′−1, v′) by Proposition 5.11.
The fact that |Θx| = 1 contradicts Lemma 5.3. We obtain that r = 1. �

Corollary 5.14 A pre-DSV (X,Z,Ξ,Θ) with parameters (r, v, r′, v′) has r ≤ 3.

Proof Suppose that r ≥ 3. Take a point x ∈ X and a point x′ ∈ Xx. Then (Xxx′ , Zxx′ ,Ξxx′ ,Θxx′)
is a pre-DSV with parameters (r− 2, v, r′ − 2, v′) by Proposition 5.11. By Lemma 5.12, each point
of Xxx′ is contained in a unique member of Θxx′ . So by Corollary 5.13, we obtain that r − 2 = 1,
i.e., r = 3. �

By the second item of Lemma 5.12 it will hence be crucial to study the pre-DSVs in which each
point of X is contained in a unique member of Θ, in which case we already know that r = 1 by
Corollary 5.13. Before pursuing this, we note that we can say something more about the X-lines
too, if r ≥ 2.

Lemma 5.15 If r ≥ 2, then either all X-lines are 1-lines or all X-lines are 2-lines.

Proof Let L be an X-line and let x be any point of L. Consider (Xx, Zx,Ξx,Θx), which is a
pre-DSV with parameters (r − 1, v, r′ − 1, v′) by Lemma 5.11. In here, L corresponds to a point
x′ ∈ Xx. By Lemma 5.1, there is a member of Θx containing x′. This means that there is a member
of Θ containing L. So L is either a 1-line or a 2-line. Assume that it is a 1-line, i.e., is is contained
in a unique member of Θx. Then all points of Xx are contained in a unique member of Θx by
Lemma 5.2. So each X-line through x is a 1-line. For any point x′′ on such a 1-line through X, the
same argument yields that each X-line through x′′ is a 1-line. By connectivity, we conclude that
each X-line is a 1-line. The lemma follows. �

5.5 Case distinction

Based on the previous subsection, we summarize the possibilities to investigate in Table 1, as is
shown in Proposition 5.16. For each X-line L and each X-plane π, let ΘL and Θπ denote the set
of members of Θ containing L and π, respectively, in analogy with the notation Θx for x ∈ X
(although we do admit that we use this notation twice, but the meaning should be clear from the
context).

Proposition 5.16 The possibilities for the pre-DSV (X,Z,Ξ,Θ) with parameters (r, v, r′, v′) are
as listed in Table 1.
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r = 3 ∀X-plane π, |Θπ| = 1
↓ ↓

r = 2 ∀X-line L, |ΘL| = 1 ∀X-line L, |ΘL| ≥ 2
↓ ↓ ↓

r = 1 ∀X-point x, |Θx| = 1 ∀X-point x, |Θx| ≥ 2 ∀X-point X, |Θx| ≥ 2
∀X-line L, |ΘL| ∈ {0, 1} ∀X-line L, |ΘL| ∈ {0, 1} ∃X-line L, |ΘL| ≥ 2

Table 1: The possible situations to consider, where the residue of a pre-DSV gives a pre-DSV with
properties as listed one cell below. The ones in red will turn out not to lead to examples of DSVs
(where also (S3) holds).

Proof Firstly, it follows from Corollary 5.14 that r ≤ 3. Moreover, if r = 3, then the second
item of Lemma 5.12 tells us that |Θπ| = 1 for each X-plane π. Next, suppose r = 2. Then it
follows from Lemma 5.15 that all X-line are either 1-lines or 2-lines; and by the foregoing, only
the former situation can occur as the residue of a pre-DSV. Finally, suppose r = 1. Then we know
that |Θx| ≥ 1 for each point x ∈ X by Lemma 5.1. In case the pre-DSV occurs as a residue, then
we know by the first item of Lemma 5.12 that there are no 2-lines. Note that, if L is a 2-line, then
for each x ∈ L we have |Θx| ≥ 2, so by Lemma 5.2, it follows that |Θx| ≥ 2 for all x ∈ X. �

We only treat the first column in full detail, since that contains the most interesting cases. For the
other columns we will be brief and give precise references to [1], also because the techniques are
very similar to the ones applied in the first column (it is not entirely straightforward, otherwise the
cases might just as well be treated simultanously, but at many points there is an overlap).

Overview. In Section 6, we start by the first column in case r = 1, which will lead us to the
half dual Segre varieties HDSr′,k(K) (which will be a DSV if r′ = 2 and k ∈ {1, 2}). In Section 7,
we treat the first column entry in case r = 2, which will lead us to the dual Line Grassmannian
varieties DGr′+2,2(K) (which will be a DSV if r′ = 4). In Section 8, we treat all remaining cases.
We mention already that the case r = 1 of the second column leads to the dual Segre variety
DSr′,r′(K) (which will be a DSV if r′ = 2).

6 The half dual Segre varieties

As explained in Subsection 5.5 (see also Proposition 5.11), one of the cases to be treated is the one
where r = 1 and |Θx| = 1 for each x ∈ X. So we summarize:

Standing hypothesis. Throughout this section, (X,Z,Ξ,Θ) is a pre-DSV with parameters
(1, v, r′, v′) with 〈X,Z〉 = PN (K) for an arbitrary field |K| > 2, in which no point of Y is
collinear to all points of X and such that for each x ∈ X, there is a unique member of Θ
containing x, which we denote by θx.

We start with a basic but useful observation.

Lemma 6.1 Each singular line containing x and not contained in θx is an X-line which is con-
tained in no member of Θ (a 0-line). Each singular line in θx containing x either has a unique
point in Y or it is an X-line contained in a unique member of Θ (a 1-line).

Proof Let L be a singular line containing x. Suppose first that L * θx. If L would not be an
X-line, then it contains a unique point of Y and hence it is contained in θx since Y = Y (θx) by
Lemma 5.2. So L is an X-line. If it would not be a 0-line, then we obtain at least two members
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of Θ containing x, contradicting our standing hypothesis |Θx| = 1. Next, suppose L ⊆ θx. If L
contains a point of Y , there is nothing to show, so suppose it is an X-line. Since it is contained in
θx and since θx is the unique member of Θ containing x, it follows that L is a 1-line. �

6.1 The parameters v, r′, v′

We already showed in Lemma 5.2 that each θ ∈ Θ has Y (θ) = θ. We continue by showing that
v′ = −1, and then it follows that Y has dimension r′, and coincides with Z. We can also deduce v
in terms of r′.

Lemma 6.2 We have v′ = −1, Y = Z and dimY = r′.

Proof Take any θ ∈ Θ. We show that all points of X are collinear to the vertex V (θ) of θ,
which then by our standing assumption leads to V (θ) being empty. Let x ∈ X be arbitrary. If
x ∈ X(θ), we trivially have that x is collinear to V (θ), so suppose x /∈ X(θ). Suppose first that x
is collinear to some point x′ ∈ X(θ). By Lemma 6.1, xx′ is a 0-line. It follows from Lemma 5.5(i)
that Yx′ = Yx. Since x′ is collinear to the vertex V (θ) of θ, we obtain that V (θ) ⊆ Yx and hence x
is collinear to V (θ) indeed.

Finally, suppose that x is not collinear to any point of X(θ). Taking x′ ∈ X(θ) arbitrary, Lemma 4.1
implies that [x, x′] ∈ Ξ ∪ Θ, and since |Θx′ | = 1 by assumption, we obtain [x, x′] ∈ Ξ. Let L1 and
L2 be two non-collinear X-lines of [x, x′] through x′. For i = 1, 2, we claim that Li is collinear to
V (θ). Indeed, if Li ⊆ θ then Li ⊥ V (θ) by definition, and if Li * θ then Li ⊥ V (θ) by the first
paragraph. By Lemma 4.7, V (θ) is contained in the vertex of [x, x′] and, in particular, x ⊥ V (θ).
This shows that V (θ) is collinear to all points of X and therefore is empty, so v′ = −1.

It now follows from Definition 3.2 that Y (θ) is a singular r′-space of θ which is contained in Z.
Since Y = Y (θ) by Lemma 5.2, the lemma follows. �

Lemma 6.3 Suppose θ1, θ2 are distinct member of Θ and suppose x1 ∈ X(θ1) and x2 ∈ X(θ2).
Then Yx1 = Yx2 if and only if x1 and x2 are collinear; if Yx1 6= Yx2, then [x1, x2] ∈ Ξ. In the latter
case, the vertex of [x1, x2] is Yx1 ∩ Yx2. In particular, v = r′ − 2.

Proof By Lemma 5.2 Y (θ1) = Y (θ2) = Y and Y (θi) is a maximal singular subspace in θi, i = 1, 2
(cf. Definition 3.2). So by (S2), θ1 ∩ θ2 = Y . Note that dimY = r′ by Lemma 6.2.

Suppose first that Yx1 6= Yx2 . Then x1 and x2 are not collinear, for otherwise x1x2 would be a
0-line by Lemma 6.1, and then Yx1 = Yx2 by Lemma 5.5(i), a contradiction. Lemma 4.1 implies
[x1, x2] ∈ Ξ ∪ Θ, and since x1x2 * θ1, we obtain [x1, x2] ∈ Ξ (recall |Θx1 | = 1). By Lemma 4.7,
the vertex of [x1, x2] is Yx1 ∩ Yx2 , which has dimension r′ − 2 since it is the intersection of two
hyperplanes of Y .

Note that Lemma 5.3 garantees that |Θ| ≥ 2, and that, as can be verified easily, points x1 ∈ X(θ1)
and x2 ∈ X(θ2) with Yx1 6= Yx2 exist. So we may conclude from the previous paragraph that
v = r′ − 2.

Finally, suppose that Yx1 = Yx2 . If x1 and x2 are not collinear, then the above argument shows
that [x1, x2] ∈ Ξ and has vertex Yx1 ∩ Yc2 = Yx1 , contradicting v = r′ − 2. So x1x2 is a singular
line. �
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6.2 The X-lines containing a common a point of X

Let x ∈ X be arbitrary. In this subsection, we show that the 0-lines containing x consistute a
maximal singular subspace. Note that Lemma 5.5(i) tells us that, for each x′ which is on a 0-line
with x, we have Yx = Yx′ . Moreover, since Y = Y (θx) (cf. Lemma 5.2), Yx is a hyperplane of Y .
In the following definition, we work more generally with any hyperplane of Y .

Definition 6.4 For any hyperplane H of Y , we define

π(H) := {x ∈ X | Yx = H} ∪H.

We show that π(H) is a non-empty maximal singular subspace, which in particular shows that each
hyperplane occurs as Yx for some x ∈ X.

Lemma 6.5 Let H be a hyperplane of Y . Then π(H) is a (maximal) singular subspace, and if
x ∈ π(H) ∩ X then also 〈x, Yx〉 ⊆ π(H). Moreover, π(H) intersects each θ ∈ Θ in a maximal
singular subspace of θ of the form 〈x,H〉 with x ∈ X(θ).

Proof Suppose x is a point of π(H) ∩X. Then Yx = H since both are hyperplanes of Y . Let
x′ ∈ 〈x, Yx〉 ∩ X be arbitrary. Since 〈x, Yx〉 is a singular subspace by Lemma 4.10, x′ is collinear
to Yx, and hence Yx = Yx′ = H. So x′ ∈ π(H) too. Next, take any θ ∈ Θ. Since Y (θ) = Y by
Lemma 5.2, X(θ) contains a point x with Yx = H. For such a point x, 〈x,H〉 ⊆ X(θ) ∩ π(H) by
the foregoing. By (S2) and the fact that 〈x,H〉 is a maximal singular subspace of X(θ), we obtain
〈x,H〉 = X(θ) ∩ π(H).

We claim that π(H) is a subspace. Let p, q be any pair of distinct points of π(H). We show that
pq ⊆ π(H). First, suppose p, q ∈ X, so Yp = Yq = H. If θp 6= θq, then pq is a singular line by
Lemma 6.3, even a 0-line by Lemma 6.1. According to Lemma 5.5, Yr = Yp = H for each point
∈ pq, so r ∈ π(H). So suppose θp = θq. Then since Y and 〈p,H〉 are the only two maximal singular
subspace of θp containing H, we obtain pq ⊆ 〈p,H〉. Now 〈p,H〉 ⊆ π(H) by the first paragraph.
Second, suppose p ∈ X and q ∈ Y . Then Yp = H and q ∈ H, so again pq ⊆ 〈p,H〉 ⊆ π(H). Finally,
suppose p, q ∈ Y , i.e., p, q ∈ H. Then y1y1 ⊆ H ⊆ π(H) since H is a subspace of Y . The claim
follows. Note that π(H) is singular since π(H) ⊆ X ∪ Y by definition. Maximality follows also
from the definition: no other point of X is collinear to H, and no point of Y is collinear to any
point of π(H) ∩X. �

Notation. For x ∈ X, we denote the subspace π(Yx) by πx. Note that by definition, πx = πx
′

for
any x′ ∈ πx ∩X since Yx = Yx′ for such x′. We define Π as the set {π(H) | H a hyperplane of Y },
or equivalently, the set {πx | x ∈ X}.

Corollary 6.6 Let x ∈ X be arbitrary. Then each X-line through x is contained in exactly on of
θx, πx.

Proof Let L be any X-line through x and suppose L is not contained in θx. If L is contained
in a member of Θ, then this would be a second member of Θ through x, violating our standing
hypothesis. So, L is a 0-line and by Lemma 5.5, Yx′ = Yx for all points x′ ∈ L. So, by definition
of πx = π(Yx), we obtain L ⊆ πx. By Lemma 6.5, θx ∩ πx = 〈x, Yx〉 and hence θ∩πx contains no
X-lines. �

Recall that r = 1 and hence, for each point x ∈ X(ξ) for ξ ∈ Ξ, there are exactly two maximal
singular subspaces of XY (ξ) containing x (of the form 〈L1, V 〉 and 〈L2, V 〉, where V is the vertex
of ξ and L1 and L2 are X-lines).
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Lemma 6.7 Let ξ ∈ Ξ be arbitrary. Then for each x ∈ X(ξ), the two maximal singular subspaces
of XY (ξ) containing x are given by θx ∩ ξ and πx ∩ ξ. If x1, x2 ∈ X(ξ) are non-collinear points,
then θx1 ∩ πx2 = 〈x∗, Y (ξ)〉 for some X-point x∗ ∈ x⊥1 ∩ x⊥2 ⊆ ξ.

Proof Let V denote the vertex Y (ξ) of ξ and suppose L1 and L2 are X-lines of ξ containing x such
that 〈L1, V 〉 and 〈L2, V 〉 are the two maximal singular subspaces of ξ containing x. Note that this
means that L1 and L2 are not collinear, so [L1, L2] = ξ by Lemma 4.5. According to Corollary 6.6,
each of L1, L2 is contained in θx or πx. If both are contained in θx, then ξ = [L1, L2] = θx,
a contradiction; if both are contained in πx, then L1 ⊥ L2 by Lemma 6.5, a contradiction. So
renumbering if necessary, L1 ⊆ θx and L2 ⊆ πx. Since θx contains Y , it in particular contains V ;
and πx by definition contains Yx and hence V . By maximality, we obtain θx ∩ ξ = 〈L1, V 〉 and
πx ∩ ξ = 〈L2, V 〉. The first statement follows.

Now let x1, x2 be non-collinear points of X(ξ) and note that Yx1 ∩ Yx2 = V by Lemma 4.7. By the
previous paragraph, θx1 ∩ ξ is of the form 〈L1, V 〉, where L1 is an X-line of ξ through x1; likewise
πx2 ∩ ξ is of the form 〈L2, V 〉, where L2 is an X-line of ξ through x2. Let x∗ be the unique point
of L1 collinear to x2. Note that L∗2 := xx2 is an X-line, for otherwise x∗ ∈ 〈x2, V 〉 ∩ x⊥1 = V .
By the previous paragraph and the fact that θx1 = θx

∗
, we obtain that L∗2 belongs to πx

∗
= πx2 .

Therefore, L∗2 ⊆ 〈L2, V 〉 and hence 〈L1, V 〉 ∩ 〈L2, V 〉 = 〈x∗, V 〉 indeed. �

6.3 The projection ρY (X) and its connection to Y

We consider the projection ρ := ρY of (X,Z,Ξ,Θ) from Y onto the subspace of F complementary
to Y in PN (K), and also the connection map χ between ρ(X) and Y (cf. Definitions 4.13 and 4.17).

Recall that the inverse image under ρ of a point ρ(x) with x ∈ X is given by 〈x, Yx〉 ∩ X by
Lemma 4.18. Our first aim is to determine the inverse image of a singular line of ρ(X), i.e., a line
of F which is contained in ρ(X).

Lemma 6.8 Suppose ρ(x1) and ρ(x2) determine a singular line of ρ(X), for x1, x2 ∈ X. Let
x′i ∈ ρ−1(ρ(xi)) be arbitrary, for i = 1, 2. Then:

(i) there is a unique ζ ∈ Θ ∪Π containing x′1 ∪ x′2, and ρ−1(ρ(x1)) ∪ ρ−1(ρ(x2)) ⊆ ζ, with ζ ∈ Θ
if and only if Yx1 6= Yx2;

(ii) there is an x′′2 ∈ ρ−1(ρ(x2)) such that x′1x
′′
2 is an X-line;

(iii) If ζ ∈ Θ, then {Yx | ρ(x) ∈ 〈ρ(x1), ρ(x2)〉} is the set of all (r′− 1)-spaces through the (r′− 2)-
space Yx1 ∩ Yx2 inside Y .

Proof As mentioned just before the statement of the proof, ρ−1(ρ(xi)) = 〈xi, Yxi〉∩X for i = 1, 2.
In particular, Yxi = Yx′i . We distinguish two cases.

Suppose first that Yx1 = Yx2 =: H. Then π(H) is the unique member of Π ∪Θ containing x′1 and
x′2. Moreover, π(H) contains 〈x′1, H〉 and 〈x′2, H〉 by Lemma 6.5. Assertion (i) follows in this case.
Since π(H) is a singular subspace by Lemma 6.5, so is its subspace 〈x′1, x′2, H〉. As such, the line
x′1x

′′
2 is an X-line for each point x′′2 ∈ 〈x2, H〉 ∩X = ρ−1(ρ(x2)). Assertion (ii) follows in this case.

Next, suppose Yx1 6= Yx2 . Recall that dimY = r′ by Lemma 6.2 and that r′ ≥ 2 since r′ > r = 1
by Definition 3.2. Consider the subspace 〈x1, x2, Y 〉 and note that 〈x1, x2, Y 〉 = 〈x1, x2, Yx1 , Yx2〉.
Let x3 be an X-point with ρ(x3) on 〈ρ(x1), ρ(x2)〉 \ {ρ(x1), ρ(x2)}. Then x3 ∈ 〈x1, x2, Y 〉 ∩ X \
(〈x1, Yx1〉 ∪ 〈x2, Yx2〉). Since ρ(x1) 6= ρ(x2), we have dim(〈x1, x2, Y 〉) = dimY + 2 = r′ + 2. Inside
〈x1, x2, Y 〉, we hence see that the (r′ + 1)-space 〈x3, x1, Yx1〉 intersects the r′-space 〈x2, Yx2〉 in an
(r′−1)-space M2 with M2∩Y equal to the (r′−2)-space Yx1 ∩Yx2 . The r′-space 〈M2, x3〉 intersects
〈x1, Yx1〉 in an (r′ − 1)-space M1 with M1 ∩ Y = Yx1 ∩ Yx2 . Since r′ − 1 ≥ 1, it follows that there
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is a point x∗1 ∈ M1 ∩X. Let x∗2 denote the unique point x∗1x3 ∩M2. Then x∗1x
∗
2 is an X-line: it is

singular by Lemma 4.4 since it contains at least 3 points of X ∪ Y , and if it would contain a point
of Y , then it is contained in 〈x1, Yx1〉, contradicting ρ(x1) 6= ρ(x3). By Corollary 6.6, the X-line
x∗1x

∗
2 belongs to a member ζ of Θ ∪ Π. Since Yx1 6= Yx2 , ζ ∈ Θ. Uniqueness follows from ζ = θx

∗
1 .

Since ζ contains Y , we have that ζ contains 〈x∗1, Yx1〉 ∪ 〈x∗2, Yx2〉. Assertion (i) follows. Viewed
inside the quadric XY (ζ), the point x′1 is collinear to a hyperplane M ′2 of 〈x2, Yx2〉, distinct from
Yx2 . For any point x′′2 ∈ M ′2 ∩ X, the line x′1x

′′
2 is hence an X-line. Assertion (ii) follows also in

this case.

(iii) Suppose ζ ∈ Θ. Let L be an X-line in ζ with ρ(L) = 〈ρ(x1), ρ(x2)〉 (possible by (ii)). Inside
the quadric XY (ζ), we see that YL = Yx1 ∩ Yx2 and that the collinearity relation x 7→ Yx gives a
bijection between the points of L and the (r′ − 1)-spaces of Y containing YL. Finally, ρ induces a
bijection between the points of L and the points of ρ(L). Composing thse bijections, assertion (iii)
follows. �

Next, we treat the case where x1 and x2 are non-collinear points of some ξ ∈ Ξ.

Lemma 6.9 Suppose x1, x2 ∈ X are non-collinear points with ξ = [x1, x2] ∈ Ξ and put V = Y (ξ).
Let x′i ∈ ρ−1(ρ(xi)) for i = 1, 2. Then x′1 and x′2 are non-collinear and ξ′ := [x′1, x

′
2] has vertex V

and ρ(X(ξ′)) = ρ(X(ξ)).

Proof Since [x1, x2] ∈ Ξ, we have θx1 6= θx2 . It follows from Lemma 6.3 that Yx1 6= Yx2 and that
V is the (r′ − 2)-space Yx1 ∩ Yx2 . Let x′1, x

′
2 be as described. By Lemma 4.18, x′i ∈ 〈xi, Yxi〉 ∩X

and Yx′i = Yxi for i = 1, 2. Suppose for a contradiction that x′1x
′
2 is singular. Then x′1x

′
2 is an

X-line, for otherwise x′2 ∈ 〈x′1, Yx1〉 and hence ρ(x′2) = ρ(x′1), a contradiction. By Lemma 6.6,
there is a θ ∈ Θ containing the X-line x′1x

′
2. Now, if θ contains x′1, x

′
2 then θ also contains 〈x1, Yx1〉

and 〈x2, Yx2〉 (even if x′1 and x′2 would not be collinear). However, this means by Lemma 4.1 that
θ = [x1, x2] = ξ, a contradiction. So x′1 and x′2 are not collinear, and it also follows that [x′1, x

′
2] ∈ Ξ.

Put ξ′ = [x′1, x
′
2]. Note that the vertex Y (ξ′) of ξ′ is given by Yx′1 ∩ Yx′2 = Yx1 ∩ Yx2 = V too.

We show that ρ(X(ξ)) = ρ(X(ξ′)). First observe that θx
′
1 = θx1 and πx2 = πx

′
2 , because x′1 ∈

〈x1, Yx1〉 ⊆ θx1 and Yx′2 = Yx2 . It then follows from Lemma 6.7 that there are points x12 ∈
x⊥1 ∩ x⊥2 ⊆ ξ and x′12 ∈ x′1

⊥ ∩ x′2
⊥ ⊆ ξ′ such that

〈x12, V 〉 = θx1 ∩ πx2 = θx
′
1 ∩ πx′2 = 〈x′12, V 〉.

We claim that ρ(x12) = ρ(x′12): indeed, Yx2 = Yx12 because x2, x12 ∈ πx2 , likewise Yx′2 = Yx′12 , and
since Yx2 = Yx′2 because ρ(x2) = ρ(x′2), we hence obtain that 〈x12, Yx12〉 = 〈x′12, Yx′12〉.

Next, we claim that the images under ρ of the lines x1x12 and x′1x
′
12 coincide, likewise for x2x12

and x′2x
′
12. We look in θx1 , which contains the X-lines x1x12 and x′1x

′
12. By Lemma 6.8(iii), each

point u1 ∈ x1x12 corresponds to a unique point u′1 ∈ x′1x′12 such that Yu1 = Yu′1 . Since πu1 = πu
′
1

shares exactly 〈u1, Yu1〉 with θu1 = θx1 by Lemma 6.5, we obtain that 〈u1, Yu1〉 = 〈u′1, Yu′1〉. As
such, ρ(u1) = ρ(u′1). Likewise, both X-lines x12x2 and x′12x

′
2 are contained in πx2 . Take any point

u2 ∈ x12x2 and consider the r′-space 〈u2, Yu2〉 = 〈u2, Yx2〉. The latter intersects the line x′12x
′
2 in a

unique point u′2 and hence 〈u′2, Yu′2〉 = 〈u′2, Yx2〉 = 〈u2, Yu2〉. We obtain ρ(u2) = ρ(u′2). The claim
follows.

Finally, let u be an arbitrary point on X(ξ)\(〈x12x2, V 〉∪〈x12x1, V 〉). Then u is collinear to unique
points u1 on x12x1 and u2 on x12x2. Let u′1 be the unique point on x′12x

′
1 corresponding to u1 via

ρ, likewise for u′2. Similarly as above, one can deduce that θu2 = θu
′
2 and πu1 = πu

′
2 , and that there

is a point u′ ∈ ξ′ such that

〈u, V 〉 = θu2 ∩ πu1 = θu
′
2 ∩ πu′1 = 〈u′, V 〉,
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and finally that ρ(u) = ρ(u′). We conclude that ρ(X(ξ)) ⊆ ρ(X(ξ′)), and switching the roles of ξ
and ξ′ we obtain ρ(X(ξ)) = ρ(X(ξ′)). �

Notation. We denote by L the set of X-lines.

Recall the notion of a Segre variety from Sections 3.2.1.

Proposition 6.10 The point-line geometry S := (ρ(X), ρ(L)) is an injective projection of the Segre
variety Sr′,k(K) where k = dim(π)− r′ for any π ∈ Π. Moreover,

(i) for each maximal singular subspace S in S, there is a unique ζS ∈ Θ∪Π with ρ(X(θS)) = S.
(ii) the sets ρ(Θ) := {ρ(X(θ)) | θ ∈ Θ} and ρ(Π) := {ρ(X(π)) | π ∈ Π} are the two natural

families of maximal singular subspaces of S.
(iii) for each hyperbolic quadrangle G of S, there is a unique v-space V in Y such that there is a

ξ ∈ Ξ with vertex V and ρ(X(ξ)) = G.

Proof We determine the maximal singular subspaces of the point-line geometry S = (ρ(X), ρ(L)).
Let ζ ∈ Θ∪Π be arbitrary. By Lemma 4.18 and the fact that members of Π are singular subspaces
(cf. Lemma 6.5), ρ(X(ζ)) is a singular subspace of S, which we denote by Sζ . We aim to prove that
Sζ is a maximal singular subspace and that each maximal singular subspace of S arises like this;
moreover, we show that S is the direct product of Sθ and Sπ for any pair θ ∈ Θ and π ∈ Π. We
proceed in a few steps.

Claim 1: each point p ∈ ρ(X) \ Sζ is collinear to at most one point of Sζ .
Suppose for a contradiction that there is a p ∈ ρ(X) \ Sζ collinear to distinct points s1 and s2 of
Sζ . Take x ∈ X with ρ(x) = p and put i = 1, 2. Since p and si determine a singular line of ρ(X),
Lemma 6.8(ii) yields a point xi ∈ ρ−1(si) such that xxi is an X-line. As also s1 and s2 determine a
singular line of ρ(X), (i) of the same lemma implies that x1, x2 ∈ ζ. Note that x /∈ ζ since p /∈ Sζ .
Suppose first that ζ ∈ Θ. According to Corollary 6.6, the X-line xxi, for i = 1, 2, is contained in
πxi = πx. This means that πx1 = πx and θx1 = ζ share the line x1x2. Lemma 6.5 then implies
that x1x2 contains a point of Y , and hence s1 = ρ(x1) = ρ(x2) = s2, a contradiction. If ζ ∈ Π, the
argument is analogous. This shows the claim.

Note that the previous claim implies that Sζ is a maximal singular subspace of S indeed. The
following claim in particular shows that each maximal singular subspace is of this form.

Claim 2: each point p of ρ(X) is contained in two maximal singular subspaces, namely Sθx and
Sπx, where x is any X-point with ρ(x) = p, and Sθx ∩ Sπx = {p}.
Let S be any maximal singular subspace of S containing a line L with p ∈ L ∈ ρ(L). By
Lemma 6.8(i), L is contained in Sζ for a unique ζ ∈ Θ ∪ Π, and ζ contains ρ−1(p), which means
that ζ = θx or ζ = πx}, where x is any point in ρ−1(p). Claim 1 implies that each point of S \ L
(if any) is contained in Sζ . It follows that p is not a maximal singular subspace itself, that Sπx

and Sθx are the unique maximal singular subspaces of S containing p and that Sπx ∩ Sθx does not
contain a line of L. The claim follows, and so does assertion (i).

Recall that ρ(Θ) := {Sθ | θ ∈ Θ} and ρ(Π) := {Sπ | π ∈ Π}. We will write SpΘ for Sθx and SpΠ for
Sπx , to denote the two maximal singular subspaces of S containing p, to avoid the use of the point
x ∈ ρ−1(p).

Claim 3: Two maximal singular subspaces S1 and S2 of S are disjoint if S1, S2 both belong to ρ(Θ)
or to ρ(Π), and intersect in a unique point otherwise. It follows from Claim 2 that no point is
contained nor in two members of ρ(Θ), neither in two members of ρ(Π). It remains to show that
S1 = Sθ, for any θ ∈ Θ, and S2 = Sπ, for any π ∈ Π, intersect non-trivially. This follows from
Lemma 6.5, as it says that θ∩π meet in a subspace 〈x, Yx〉 for some x ∈ X by. By Claim 2, S1∩S2

coincides with ρ(x). The claim follows.

We can now determine the structure of S.
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Claim 4: ρ(X) is the direct product of Sθ and Sπ for any θ ∈ Θ and π ∈ Π.
Let q ∈ ρ(X) be arbitrary. Consider the two maximal singular subspaces SqΘ and SqΠ containing q.
By Claim 3, SqΠ ∩Sθ is a unique point, say qθ; likewise, SqΘ ∩Sπ is a unique point, say qπ. We show
that the map

ρ(X) 7→ Sθ × Sπ : q 7→ (qθ, qπ)

is bijective by determining its inverse. So suppose we are given a pair of points (t, p) with t ∈ Sθ
and p ∈ Sπ. Then one can verify that the point q := StΠ ∩ S

p
Θ is such that t = qθ and p = qπ

(observe that StΠ = SqΠ and SpΘ = SqΘ). The claim follows.

Claim 5: ρ(L) is the line set of the direct product geometry Sθ × Sπ.
A line of the latter geometry either has the form {t}×L with t a point in Sθ and L a line in Sπ, or
the form L×{p} with L a line in Sθ and p a point in Sπ. Let L be a line of ρ(L). Considering any
point p ∈ L, Claim 2 implies that L is contained in SpΘ or SpΠ. Assume L ⊆ SpΘ (the case L ⊆ SpΠ is
analogous). With the notation introduced in the previous paragraph, consider Lπ := {qπ | q ∈ L}
and Lθ := {qθ | q ∈ L}. Clearly, Lπ is a unique point of Sπ since qπ = SqΘ ∩ Sπ does not depend on
the point q ∈ L since SqΘ = SpΘ. We show that Lθ := {qθ | q ∈ L} is a line in Sθ. If SpΘ = Sθ, then
Lθ = L, so suppose SpΘ 6= Sθ. Let q be a point of L \ {p}. Note that p and qθ are not collinear,
since qθ /∈ SpΘ ∪ S

p
Π. Take x1 ∈ ρ−1(p) and x2 ∈ ρ−1(qθ). Then x1 and x2 are not collinear and

do not belong to a member of Θ, for otherwise p and qθ would be collinear. So [x1, x2] ∈ Ξ. Then
ρ([x1, x2]) is a hyperbolic quadrangle in S. By Claim 3, the unique hyperbolic quadrangle in S
containing p and qθ also contains L and Lθ and it also follows that the latter is a line. We have
shown that L is a line of Sθ × Sπ. A similar argument now shows that a line of Sθ × Sπ is a line in
Sζ for some ζ ∈ Θ ∪Π, and by Lemma 6.8(ii), this line belongs to ρ(L). The claim follows.

We have shown that S = (ρ(X), ρ(L)) is isomorphic to the direct product geometry Sθ×Sπ for θ ∈ Θ
and π ∈ Π. In particular, k := dim(Sπ) does not depend on π ∈ Π; and hence S = (ρ(X), ρ(L))
is, as a point-line geometry, isomorphic to Ar′,1(K) × Ak,1(K). By the main result of [18], the
Segre variety Sr′,k(K) is the absolutely universal embedding of Ar′,1(K)×Ak,1(K). This means that
S = (ρ(X), ρ(L)) is an injective projection of Sr′,k(K).

For the final assertion, let Q be any hyperbolic quadrangle in S. As in Claim 5, it can be deduced
that Q is the direct product of a line in Sθ and a line in Sπ. Also as in Claim 5, it follows that Q
arises as the image under ρ of a member of Ξ. Assertion (iii) now follows from Lemma 6.9, since
any pair of members of Ξ with the same image under ρ will have the same vertex indeed. This
concludes the proof of the proposition. �

Remark 6.11 Note that k ≥ 1: considering any θ ∈ Θ and any point x ∈ X \ Θ (which exists,
for otherwise |Ξ| = 0), Lemma 6.5 implies that πx contains a point x′ ∈ X(θ), and hence xx′ is an
X-line.

Corollary 6.12 N ≤ (r′ + 1)(k + 2)− 1.

Proof By Lemma 5.2, we know dim(Y ) = r′ and by Proposition 6.10, dim(F ) ≤ (r′+1)(k+1)−1.
Since F and Y generate PN (K), we obtain N ≤ (r′ + 1)(k + 2)− 1. �

6.4 Mutants of the half dual Segre variety

In Proposition 6.10, we showed that S := (ρ(X), ρ(L)) is an injective projection of the Segre variety
Sr′,k(K). Next, we show that there is a subspace F ∗ of PN (K) such that, if F ∗ ∩ X contains a
subset X∗ and Ξ∗ := {〈ξ ∩ X∗〉 | ξ ∈ Ξ}, the subgeometry (X∗,Ξ∗) is an injective projection of
Sr′,k(K) and is a pre-DSV itself (where Θ is empty). Possibly, F ∗ is not disjoint from Y . We will
arrive naturally at a tweaked version of the half dual Segre variety, called a mutant.
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To start, we consider the projections of the Segre variety mentioned above in a more general setting,
by noting that the Segre variety is a pre-DSV with Θ empty.

Definition 6.13 Suppose that (X,Z,Ξ,Θ) is a pre-DSV in PN (K) with parameters (r, v, r′, v′). A
subspace S of PN (K) is called legal with respect to (X,Z,Ξ,Θ) if the projection of (X,Z,Ξ,Θ) from
S is injective on X ∪Z and yields a pre-DSV in PN ′(K), with N ′ = N −dimS− 1 with parameters
(r, v, r′, v′).

The following characterisation of legal projections comes in handy.

Lemma 6.14 Suppose that (X,Z,Ξ,Θ) is a pre-DSV in PN (K) with parameters (r, v, r′, v′). Then
a subspace S of PN (K) is legal w.r.t. (X,Z,Ξ,Θ) if and only if S is disjoint from 〈ζ1, ζ2〉 for any
pair of ζ1, ζ2 ∈ Ξ ∪Θ.

Proof Suppose that S is disjoint from 〈ζ1, ζ2〉 for any pair of ζ1, ζ2 ∈ Ξ∪Θ. Then in particular,
S is disjoint from any member of Ξ ∪ Θ. We claim that S is injective on X ∪ Z. Suppose for a
contradiction that two points p1, p2 ∈ X ∪Z project onto the same point. Then 〈S, p1〉 contains p2

and hence the line p1p2 contains a point s ∈ S. By (S1), p1, p2 are contained in some ζ ∈ Ξ ∪ Θ.
However, by the foregoing, ζ ∩ S =. The claim follows. From this we already deduce that the
projection of (X,Z,Ξ,Θ) is an (r, v′, r′, v′, N − dimS − 1)-system.

It follows from the previous paragraph that Axiom (S1) is preserved when projecting (X,Z,Ξ,Θ)
from S. Consider two members ζ1, ζ2 ∈ Ξ ∪Θ. Since S is disjoint from 〈ζ1, ζ2〉, the intersection of
the projections of ζ1 and ζ2 coincides with the projection of ζ1∩ ζ2. Hence Axiom (S2) is preserved
too.

Conversely, if there would be ζ1, ζ2 ∈ Ξ ∪ Θ with S ∩ 〈ζ1, ζ2〉 6= ∅, then the projections of ζ1 and
ζ2 would intersect in strictly more than the projection of ζ1 ∩ ζ2, and Axiom (S2) would no longer
hold. �

In the smallest cases however, no non-trivial legal projections of the Segre variety occur:

Lemma 6.15 The Segre varieties S`,k(K) with ` ≤ 3 and k ≥ 1 do not admit proper legal projec-
tions.

Proof Since S`,k(K) with ` < 3 is contained in S3,k(K) it suffices to show that the latter does
not admit proper legal projections. The Segre variety S3,k(K) is defined by the 4× (k+ 1) matrices
over K of rank 1 in the projective space defined by the vector space of all 4× (k+ 1) matrices over
K. If A is such a matrix of rank 4, then A is the sum of four rank 1 matrices A1, A2, A3 and A4

which are pairwise not collinear. Let ξ1 and ξ2 be the respective members of Ξ determined by the
pairs (A1, A2) and (A3, A4). Then A ∈ 〈ξ1, ξ2〉 is not a legal point w.r.t. S3,k(K). If A has rank 2
or 3, M is already the sum of two or three rank 1 matrices, respectively, and the same conclusion
can be reached analogously. �

We show that the subspace F ∗ and subset X∗ of X alluded to above exist.

Proposition 6.16 The set X contains a subset X∗ such that, with induced line set L∗, the geom-
etry Ω := (X∗, L∗) is a legal projection of Sr′,k(K), where containment gives a bijection between
the natural families of r′-spaces and k-spaces of Ω and the sets Θ and Π, respectively. For each
hyperbolic quadrangle Q in Ω, there is a unique ξ ∈ Ξ with X∗ ∩ ξ = Q. Moreover, if F ∗ = 〈X∗〉,
then

(i)
⊔
x∈X∗〈x, Yx〉 \ Yx = X and hence 〈F ∗, Y 〉 = PN (K);
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(ii) Re-choose F such F ⊆ F ∗. Then F ∗∩Y and F are complementary in F ∗, and the projection
ρ∗ of F ∗ ∩X from F ∗ ∩ Y on F coincides with the projection of ρ restricted to F ∗ ∩X. In
particular, if F ∗ ∩ Y = ∅, then X∗ = X ∩ F ∗ and ρ is the identity on X∗.

(iii) If r′ = 2 and k ∈ {1, 2}, then F ∗ ∩ Y = ∅.

Proof By Proposition 6.10, S = (ρ(X), ρ(L)) is an injective projection of the Segre geometry
Sr′,k(K), and the latter’s r′-dimensional subspaces are in 1 − 1-correspondence with the members
of Θ. We show that we can select an r′-dimensional space in X(θ) for each θ ∈ Θ, such that the
union of these r′-spaces, equipped with induced line set, is isomorphic to S = (ρ(X), ρ(L)). We
start however with the k-spaces, which are in 1− 1-correspondence with the members of Π.

Take r′ + 1 hyperplanes Y0, ..., Yr′ in Y such that they form a basis of the dual of Y (i.e., the
dimension of the intersection of i members of them, with 0 ≤ i ≤ r′, has dimension r′ − i).
For t ∈ {0, ..., r′}, let πt be short for the subspace π(Yt) ∈ Π (cf. Lemma 6.5). Take any k-
dimensional X-space S0

Π in π0 complementary to Y0 and let (x0,0, ..., x0,k) be a basis of S0
Π. For

each u ∈ {0, ..., k}, let θu be short for θx0,u ∈ Θ; and for each t ∈ {0, ..., r′}, put Πt,u := πt ∩ θu.
Recall that Lemma 6.5 says that Πt,u := 〈x′t,u, Yt〉 where x′t,u is any X-point in θu collinear to Yt.
In particular, dim Πt,u = r′.

Let u ∈ {0, ..., k}. We now choose points x1,u, ..., xr′,u in θu such that, together with x0,u, they form
an r′-dimensional subspace in X(θu). We choose these points consecutively. Suppose the points
x0,u, ..., xi,u have been chosen already, with 0 ≤ i ≤ r′ − 1. We choose the point xi+1,u. Consider
θu, which by definition contains 〈x′t,u, Yt〉 for all 0 ≤ t ≤ r′. Therefore, the subspace of the maximal
singular subspace 〈x′i+1,u, Yi+1〉 of θu that is collinear to all i + 1 points xi′,u with 0 ≤ i′ ≤ i has
dimension at least r′ − i − 1, and it intersects Yi+1 in the (r′ − i − 2)-space

⋂
0≤i′≤i+1 Yi′ . Noting

that r′ − i − 1 ≥ 0, there is a point xi+1,u ∈ 〈x′i+1,u, Yi+1〉 collinear to xi′,u for 0 ≤ i′ ≤ i. Define

SuΘ := 〈x0,u, ..., xr′,u〉. Then SuΘ is an r′-space in X(θu) indeed, since (SuΘ)⊥ ∩ Y =
⋂r′

i=0 Yi = ∅
implies that the subspaces SuΘ and Y are opposite subspaces in the quadric XY (θu), which is only
possible if they are disjoint and have the same dimension.

Next, we show that, for 0 ≤ t ≤ r′, the singular subspace StΠ := 〈xt,0, ..., xt,k〉 of πt has dimension
k. For t = 0 this is by construction. Let t > 0. We claim the subspace StΠ is isomorphic to S0

Π, with
isomorphism given by collinearity. We extend the correspondence x0,u 7→ xt,u between the k + 1
points of S0

Π and StΠ. As a first step, let x0 be a point on a line between two such points of S0
Π, to

fix ideas, let x ∈ x0,0x0,1. Note that the line x0,0x0,1 is an X-line by construction; the line xt,0xt,1
is also an X-line, because xt,0 ∈ θ0 and xt,1 ∈ θ1 and if xt,0xt,1 would contain a point of Y , then
xt,0xt,1 ⊆ θ0 ∩ θ1 ⊆ Y , a contradiction. The points x0,0 and xt,1 are not collinear, nor contained in
a member of Θ, as otherwise xt,1 would belong to π0 or to θ0 (and since xt,1 ∈ πt ∩ θ1, this is not
the case). Hence [x0,0, xt,1] ∈ Ξ by Lemma 4.1. Since [x0,0, xt,1] is the convex closure of x0,0, xt,1
(cf. Lemma 4.7), it follows that x0,1 and x0,0 also belong to [x0,0, xt,1]. Therefore, x0 is collinear to
a unique point xt on the line xt,0xt,1 ⊆ πt. Since θx0 meets πt in 〈x1, Yt〉, xt is the unique point of
StΠ collinear to x0. Continuing like this, it follows that each point x0 ∈ S0

Π is collinear to a unique
point of StΠ, moreover, each line of S0

Π is mapped to an X-line of StΠ. We conclude that collinearity
is an isomorphism between S0

Π and StΠ and in particular, StΠ ⊆ X and dimStΠ = k. Observe that
the bijective correspondence can equivalently be given by “being contained in the same member of
Θ”. Indeed, given the collinear points x0 and xt of the previous paragraph, we have Yx0 = Y0 and
Yxt = Yt and hence x0xt is an X-line, which is not contained in πx0 = π0 and hence it is contained
in θx0 . As above, θx0 meets StΠ exactly in the point xt.

By the foregoing, “collinearity” and “being contained in the same member of Θ” are bijections
between each pair of k-spaces StΠ and St

′
Π. It then follows that for each point x0 ∈ S0

Π, the subspace
〈x0, θ

x0 ∩ S1
Π, ..., θ

x0 ∩ Sr′Π 〉 is a singular subspace. By the same argument as used above, it is an
r′-dimensional X-space. So, if θ ∈ Θ is arbitrary, then it meets StΠ in a unique point xt(θ) and
these points generate an r′-space in X(θ), which we denote by Sθ.
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Finally, we can define X∗ as the union of all r′-spaces Sθ where θ ranges over Θ. Taking any point

x∗ ∈ X∗, we by definition of X∗ have that x∗ belongs to a unique r′-space, namely Sθ
x∗

. Now
consider πx

∗
and let S∗Π be the subspace generated by all points πx

∗ ∩ Sθ with θ ∈ Θ. Since it
belongs to πx

∗
it is a singular subspace, moreover it has dimension k and belongs to X because it

is isomorphic to S0
Π by the same argument as in the previous paragraph (using the correspondence

“being contained in the same Sθ”). We conclude that x∗ is contained in a unique singular r′-space
of X∗ (contained in X(θx

∗
)) and in a unique k-space of X∗ (contained in X(πx

∗
)). Note that this

implies that any two collinear points in X∗ are on an X-line which is contained in X∗; the resulting
line set we denote by L∗. Finally, since any π ∈ Π shares a point with S0

Θ, we see that π contains a
k-space in X∗ too. It is now straightforward to verify that (X∗, L∗), is isomorphic to S0

Θ×S0
Π. Then

(X∗, L∗) is an injective projection of Sr′,k(K). Consider a hyperbolic quadrangle Q in X∗. Then
we already deduced above that a pair of non-collinear points of Q gives rise to a unique ξ ∈ Ξ, and
Q ⊆ ξ. Moreover, since each point x of X(ξ) corresponds to a unique point xQ of Q (in the sense
that 〈x, Y (ξ)〉 = 〈xQ, Y (ξ)〉), we have X∗∩ ξ = Q and hence also 〈Q〉∩X∗ = Q. The resulting pair
(X∗,Ξ∗) with Ξ∗ := {〈Q〉 | Q hyperbolic quadrangle in Ω} is a pre-DSV: it is an (1,−1;N)-system
satisfying (S1) by the above, and (S2) holds because each 〈Q〉 ∈ Ξ∗ corresponds to a unique ξ ∈ Ξ.
So (X∗, L∗) is a legal projection of Sr′,k(K). This shows the main assertion.

(i) Let x ∈ X be arbitrary. Consider the quadric XY (θx), in which the X∗-space Sθx and Y are
opposite r′-spaces. Hence there is a unique point x∗ ∈ Sθx with Yx = Yx∗ . So x∗ ∈ πx∩θx = 〈x, Yx〉,
and therefore x ∈ 〈x∗, Yx∗〉. Note that x∗ is the unique point of X∗ in 〈x∗, Yx∗〉 because, as
mentioned above, collinear points in X∗ determine an X-line. Since x ∈ X was arbitrary and
F ∗ = 〈X∗〉, the assertion follows.

(ii) Suppose F ⊆ F ∗. Then F ∗ is generated by F and F ∗∩Y : if not, then F ∗ contains a subspace F ′

strictly containing F and disjoint from F ∗∩Y ; and because F and Y are complementary, F ′ meets
Y in a point outside F ∗ ∩ Y , a contradiction. So F and F ∗ ∩ Y are, being disjoint, complementary
subspaces of F ∗. Take any x ∈ F ∗∩X. By definition, ρ∗(x) = 〈x, F ∗∩Y 〉∩F and ρ(x) = 〈x, Y 〉∩F .
Since x ∈ 〈ρ∗(x), F ∗∩Y 〉 ⊆ 〈ρ∗(x), Y 〉, we get ρ∗(x) ∈ 〈x, Y 〉∩F = ρ(x), so ρ(x) = ρ∗(x). If F ∗∩Y
is empty, then ρ∗ is the identity on F ∗ ∩X. Since ρ(X) and X∗ both are projections of Sr′,k(K) in
F = F ∗, and X∗ = ρ(X∗) ⊆ ρ(X), we obtain that X∗ = ρ(X). In particular, if x ∈ F ∗ ∩X, then
x = ρ(x) ∈ X∗. So F ∗ ∩X = X∗ in case F ∗ ∩ Y = ∅.

(iii) Finally, suppose that r′ = 2. First let k = 1. Then (ρ(X), ρ(L) and (X∗, ρ(L∗) are injective
projections of S2,1(K). Since the latter contains disjoint planes, both 〈ρ(X)〉 and F ∗ = 〈X∗〉 have
dimension 5 and hence F = F ∗ so F ∗∩Y = ∅. So let k = 2. In this case, (ρ(X), ρ(L) is an injective
projection of S2,2(K) and (X∗, ρ(L∗) is a legal projection of S2,2(K). By Lemma 6.15, this means
that F ∗ = 〈X∗〉 has dimension 8. Suppose for a contradiction that F ∗∩Y contains a point y. Since
v = r′ − 2 = 0, it follows from Lemma 6.10(iii) that y occurs as the vertex of some member ξ ∈ Ξ.
By the foregoing, X∗ ∩ ξ is a hyperbolic quadrangle Q. The 4-space 〈Q, y〉 ⊆ ξ is hence contained
in F ∗ = 〈X∗〉, but intersects X∗ in precisely Q. Consider two planes Sπ = π∩X∗ and Sθ = θ∩X∗,
with π ∈ Π and θ ∈ Θ, such that they are disjoint from Q (then Q arises as the direct product of a
line in Sπ \ Sθ and a line in Sθ \ Sπ). The 4-space 〈Sθ, Sπ〉 then has a point q in common with the
4-space 〈Q, y〉 (both are contained in F ∗, which has dimension 8). By a dimension argument, there
are unique lines L1 ⊆ Sθ and L2 ⊆ Sπ with L1 ∩ L2 = Sθ ∩ Sπ such that q ∈ 〈L1, L2〉. Let Q′ be
the hyperbolic quadrangle determined by L1 and L2 and let ξ′ ∈ Ξ be the corresponding member.
Then ξ ∩ ξ′ contains q, and by (S2), q ∈ X. Now q belongs to the 3-space [L1, L2] and to X, and
we noted above that this means that q ∈ X∗. But then q ∈ Q, a contradiction. We conclude that
F ∗ ∩ Y = ∅ in this case too. �

Finally, we will show that X is, up to projection from a subspace in Y , a mutant of the half dual
Segre variety HDS`,k(K), which we define below. Recall that in Section 3.2.1, we constructed the
half dual Segre variety HDS`,k(K) by means of an `-space Y and a Segre variety S := S`,k(K) with
Y and S complementary, but the construction for X and Ξ do not depend on the fact that Y and
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S are disjoint.

Definition 6.17 Consider the half dual Segre variety HDS`,k(K) = (X,Z,Ξ,Θ) associated to the
Segre variety S := S`,k(K). Then:

− we may replace S by a legal projection of S`,k(K)
− we may choose Y = Z in such a way that the projection of 〈S〉∩X from 〈S〉∩Y (onto a subspace

of 〈S〉 complementary to 〈S〉∩Y ) yields an injective projection of S; the ambient projective space
is afterwards restricted to 〈S, Y 〉.

The resulting structure is called a mutant of HDS`,k(K).

6.5 Conclusion

We phrase the conclusion without the standing hypothesis, to deal with the situation in full gener-
ality. Only now we will invoke axiom (S3).

Theorem 6.18 Let (X,Z,Ξ,Θ) be a pre-DSV with parameters (r, v, r′, v′) such that there is an
x ∈ X with |Θx| = 1. Then r = 1, v = r′ − 2 and:

(i) Up to projection from a v′-space V ⊆ Y collinear to all points of X, we obtain that X is
the point set of a mutant of a half dual Segre variety HDSr′,k(K) for some k ≥ 1, with Z as
r′-space at infinity and Ξ ∪Θ as its symps;

(ii) if additionally, (X,Z,Ξ,Θ) satisfies (S3), then X is the point set of a half dual Segre variety
HDSr′,k(K) with r′ = 2 and k ∈ {1, 2} and X is projectively unique.

Proof (i) Lemma 6.2 yields the v′-space V collinear to all points of X and Lemma 4.14 allows
us to project from V , so that we only need to deal with the case where v′ = −1. That r = 1 follows
from Corollary 5.13 and v = r′ − 2 follows from Lemma 6.3.

By Proposition 6.16, X contains a subset X∗ such that X∗, with induced line set L∗, is a legal
projection of Sr′,k(K), and X =

⋃
x∈X∗〈x, Yx〉\Yx. Therefore it suffices to show that the connection

map χ : X∗ → Y : x 7→ Yx satisfies the properties mentioned in the definition of the half dual Segre
varieties (cf. Subsection 3.2.1).

Take θ ∈ Θ. Then by Proposition 6.16, S := θ∩X∗ is an r′-space of X∗. Inside the quadric XY (θ),
in which S and Y are opposite r′-spaces, it is clear that the restriction χS of χ to S coincides with
the collinearity relation between S and Y , so χS is a linear duality between S and Y .

Take x ∈ X arbitrary. If x /∈ S, then there is a unique point sx ∈ S collinear to x. Since the line
xsx belongs to πx, we have Ysxθ = Yx, and hence χ(sx) = χ(x). We conclude that χ is indeed as
described in Section 3.2.1. For each pair of non-collinear points p1, p2 of X, Lemmas 4.1 and 4.7
imply that the unique symp ζ through p1, p2, XY (ζ) coincides with the convex closure of p1 and
p2 via singular lines not contained in Y . Assertion (i) follows.

(ii) By Proposition 6.10, ρ(X) ⊆ F is an injective projection of a Segre variety Sr′,k(K). Let x ∈ X
be arbitrary. We denote by TFρ(x) the set of ρ(X)-lines in F through ρ(x) and by TFρ(x)(ξ) the tangent

space to ρ(X(ξ)) at ρ(x) for some ξ ∈ Ξ with ρ(x) ∈ ρ(X(ξ)).

Axiom (S3) yields members ξ1, ξ2 ∈ Ξ through x such that Tx = 〈Tx(ξ1), Tx(ξ2)〉. Since for i = 1, 2,
Tx(ξi) is generated by Y (ξi) and a pair of non-collinear X-lines through x (which project on
non-collinear ρ(X)-lines through ρ(x)) and since Yx ⊆ Tx, we obtain that Tx = 〈Tx(ξ1), Tx(ξ2)〉
is equivalent with Yx = 〈Y (ξ1), Y (ξ2)〉 and TFρ(x) = 〈TFρ(x)(ξ1), TFρ(x)(ξ2)〉. On the other hand,

dimTFρ(x) = r′+ k as the tangent space at ρ(x) is generated by the two maximal singular subspaces
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ρ(θx) and ρ(πx) of ρ(X) through ρ(x). Furthermore, since r = 1, TFρ(x)(ξ1) and TFρ(x)(ξ2) are just

planes, which generate at most a 4-space in F , and so r+ k′ ≤ 2 + 2 = 4. Recalling that r′ > r ≥ 1
by assumption and k ≥ 1, as noted in Remark 6.11, we deduce that (r′, k) ∈ {(3, 1), (2, 1), (2, 2)}.
However, if k = 1, then ρ(πx) is a line contained in both planes TFρ(x)(ξ1) and TFρ(x)(ξ2), and

hence these planes generate at most a 3-space, so r′ + k = r′ + 1 ≤ 3, excluding the possibility
(r′, k) = (3, 1). So r′ = 2. Since v = r′ − 2 = 0 and dimYx = r′ − 1 = 1, the requirement
Yx = 〈Y (ξ1), Y (ξ2)〉 only implies that ξ1 and ξ2 have disjoint vertices.

Put F ∗ = 〈X∗〉. Since 〈F ∗, Y 〉 = PN (K) by Proposition 6.16(i), we may choose the subspace F
complementary to Y such that F ⊆ F ∗. Since r′ = 2 and k ∈ {1, 2}, the variety Sr′,k(K) does
not admit legal projections (cf. Lemma 6.15), moreover F ∗ ∩ Y = ∅ by Proposition 6.16(iv), i.e.,
F = F ∗. So in this case, (X,Z,Ξ,Θ) is not a mutant of but a proper half dual Segre variety,
with r′ = 2 and k ∈ {1, 2}. For the uniqueness, up to projectivity: Y and F in PN (K), Ω in F .
Moreover, the projectivity χS between S and the dual of Y is unique up to a projectivity of Y . We
conclude that X is projectively unique. �

The case where |Θx| ≥ 1 for some x ∈ X hence leads us to the conclusion of Main Result 3.6(i).

7 The dual line Grassmannians

As explained in Subsection 5.5 (see also Proposition 5.11), one of the cases to be treated is the
following (corresponding to the r = 2 case in the first column of Table 1).

Standing hypothesis. Throughout this section, (X,Z,Ξ,Θ) is a pre-DSV with parameters
(2, v, r′, v′) with 〈X,Z〉 = PN (K) for an arbitrary field |K| > 2, in which no point of Y is
collinear to all points of X, and such that |ΘL| = 1 for each X-line L.

Recall Definition 5.7, which introduced the point-residue of (X,Z,Ξ,Θ). As also explained in
Subsection 5.5, our approach will be inductive. We make this formal in the next lemma. Recall
that r′ > r ≥ 2 by assumption, so r′ ≥ 3.

Lemma 7.1 For any x ∈ X, the point-residue ResX(x) = (Xx, Zx,Ξx,Θx) is isomorphic to a
mutant of a half dual Segre variety HDSr′−1,kx(K) for some kx ≥ 1. In particular, v = r′ − 3 and
v′ = −1. Moreover, each θ ∈ Θ containing x contains Yx = Zx.

Proof By Proposition 5.11, the point residue ResX(x) = (Xx, Zx,Ξx,Θx) is a pre-DSV with
parameters (1, v, r′ − 1, v′), and no point of Yx is collinear to all points of Xx. Since |ΘL| = 1 for
each X-line L, we have |Θx′ | = 1 for each x′ ∈ Xx. The first part of the statement now follows from
Theorem 6.18, and since no point of Yx is collinear to all points of Xx, the v′-space V is empty, so
v′ = −1. Finally, by Lemmas 5.2 and 6.2, each member of Θx contains Yx = Zx and therefore so
does the corresponding member of Θ. �

For each x ∈ X, we define kx as in the previous lemma. We start by relating dimY to kx, and
show that the latter does not depend on x ∈ X.

Lemma 7.2 The sets Y and Z coincide, and for any x ∈ X, dimY = r′ + kx.

Proof Let x ∈ X be arbitrary. By Lemma 7.1, the point-residue ResX(x) = (Xx, Zx,Ξx,Θx) is
isomorphic to a mutant of HDSr′−1,kx(K) and v′ = −1. According to Proposition 6.16, Xx contains
a legal projection Ω of the Segre variety Sr′−1,kx(K). By the same proposition, containment gives a
bijection between the (r′ − 1)-spaces of Ω and the members of Θx, which at their turn correspond
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bijectively with the members of Θ containing x. Let I be an index set such that {θi ∈ Θ | i ∈ I}
ranges over all members of Θ containing x. Let i ∈ I be arbitrary. Consider the (r′ − 1)-space Si
of Ω contained in θi. By Lemma 7.1, θi contains Yx, and according to Lemma 6.2, dimYx = r′− 1.
Since v′ = −1 by Lemma 7.1, we have that Y (θi) is an r′-space contained in Z by Definition 3.2.
The subspaces Yx and Si of θi are opposite r′ − 1-spaces, and hence the properties of the quadric
XY (θi) imply that Y (θi) contains a unique point zi ∈ Z collinear to Si. Clearly, zi /∈ Yx, so zi
corresponds to the unique point 〈Yx, zi〉 of ResY (Yx). Conversely, suppose we are given a point
z ∈ Z \ Yx. As x and z are not collinear, Lemma 4.1 yields [x, z] ∈ Θ, and hence [x, z] contains a
subspace Si of Ω for a unique i ∈ I. Therefore, 〈Yx, zi〉 = 〈Yx, z〉 for a unique i ∈ I. We conclude
that the map Si 7→ 〈Yx, zi〉 as defined above is a bijection between the set of (r′ − 1)-spaces of Ω
and the set M := {〈Yx, z〉 | z ∈ Z〉, which is a subset of the point set of ResY (Yx). We show that
this bijection is an isomorphism.

Let S be any kx-space of Ω. Each point of S is contained in a unique member of Θx and hence
corresponds to a unique point of M . We show that a line L of S corresponds to a (full) line of
M ⊆ ResY (Yx). Let J be the subset of I such that {Sj | j ∈ J} corresponds to the members of
Θ through x meeting L in a point. Consider the unique member θ of Θ containing the X-line L.
Again, by Lemma 7.1, θ contains Yxj for any j ∈ J , so in particular zj ∈ θ. On the other hand, as
L is contained in S, and S is contained in a unique member of Π of ResX(x) (see Proposition 6.16
and Definition 6.4), there is an (r′ − 2)-space YL in Yx collinear to all points of L. Viewed in the
quadric XY (θ), the map pj 7→ Ypj from the points of L to the (r′ − 1)-spaces containing YL is a
bijection. For each j ∈ J , zj ∈ θ is collinear to a unique point pj from L and hence zj ∈ Ypj .
Projecting Y (θ) from YL gives a full line which is in bijective correspondence with {zj | j ∈ J}.
When projecting from Y ⊇ Yx, we henco also obtain that {zj | j ∈ J} a full line of ResY (Yx). We
conclude that M is a subspace, isomorphic to S, and hence dimM = kx.

Since M contains all points of the form 〈Yx, z〉 with z ∈ Z, as explained above, we obtain that M
coincides with ResY (Yx) since Y = 〈Z〉. So dimY = dimYx + kx + 1 = r′ + kx indeed. Take any
y ∈ Y . Then by the above, y ∈ 〈Yx, zi〉 for some i ∈ I, and since Z(θi) = Y (θi) = 〈Yx, zi〉 we obtain
that y ∈ Z. So also Y = Z follows. �

Henceforth, we write k instead of kx since the latter does not depend on x ∈ X. Next, we show
that the mutual position of two points x1, x2 ∈ X is reflected in the mutual position of Yx1 and
Yx2 . This will in particular allow us to prove later on that k = 1.

Lemma 7.3 Take two distinct points x1, x2 ∈ X. Then

(i) x1x2 is a singular line with a unique point in Y ⇔ Yx1 = Yx2;
(ii) x1, x2 are non-collinear with [x1, x2] ∈ Θ or x1x2 is an X-line ⇔ dim(Yx1 ∩ Yx2) = r′ − 2;

(iii) x1 and x2 are non-collinear with [x1, x2] ∈ Ξ ⇔ dim(Yx1 ∩ Yx2) = r′ − 3.

Proof Clearly, the possibilities for x1, x2 described in (i), (ii) and (iii) exhaust the mutual
positions between x1 and x2, so it suffices to verify the “⇒”s.

(i)⇒: This is clear.

(ii),⇒: In both cases, there is a unique θ ∈ Θ containing x1, x2 since each X-line is contained in
a unique member of Θ by the standing hypothesis. Recall that the r′-space Y (θ) contains both
Yx1 and Yx2 (cf. Lemma 7.1). Therefore either dim(Yx1 ∩ Yx2) = r′ − 2 or Yx1 = Yx2 . Suppose for
a contradiction that Yx1 = Yx2 . Since XY (θ) is a hyperbolic quadric, there are only two r′-spaces
containing Yx1 , namely 〈x1, Yx1〉 and Y (θ). This means that x2 ∈ 〈x1, Yx1〉 and hence x1x2 is a
singular line with a unique point in Y , a contradiction.

(iii),⇒: If [x1, x2] = ξ ∈ Ξ, then its vertex Y (ξ) is exactly Yx1 ∩ Yx2 . By Lemma 7.1 v = r′ − 3,
and hence dim(Yx1 ∩ Yx2) = r′ − 3. �

We record an obvious but important consequence.
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Corollary 7.4 For all x1, x2 ∈ X, we have Yx1 = Yx2 ⇔ ρ(x1) = ρ(x2).

Proof By the previous lemma, Yx1 = Yx2 is equivalent with x1x2 being a singular line with a
unique point in Y , i.e., with x2 ∈ 〈x1, Yx1〉. By Lemma 4.18, this is at its turn equivalent with
ρ(x1) = ρ(x2). �

Lemma 7.3 becomes a powerful tool if we can show that each (r′ − 1)-space of Y occurs as Yx for
some x ∈ X:

Lemma 7.5 For each (r′ − 1)-space H in Y , there is a point x ∈ X such that Yx = H, and all
X-points collinear to H are precisely the points in 〈x,H〉 \H.

Proof Take x ∈ X arbitrary. Recall that dimY = r′ + k by Lemma 7.2, so in particular
dimY < ∞. This implies that it suffices to show that, for each (r′ − 1)-space H ′ of Y with
dim(Yx ∩H ′) = r′ − 2, we have H ′ = Yx′ for some x′ ∈ X, as then connectivity argument finishes
the proof. So without loss of generality, dim(Yx ∩H) = r′ − 2. Let z ∈ H \ Yx be arbitrary. Recall
that z ∈ Z by Lemma 7.2. So by Lemma 4.1, [z, x] ∈ Θ. By Lemma 7.1, [x, z] contains Yx. Since it
also contains z, also H ⊆ [x, z]. As such, [x, z] contains an X-point x′ collinear to H, i.e., Yx′ = H.
The second part of the assertion follows from Lemma 7.3(i). �

As promised, the above leads us to k = 1:

Corollary 7.6 We have k = 1.

Proof Let H1 and H2 be a pair of (r′ − 1)-spaces of Y with dim(H1 ∩ H2) minimal, i.e., H1

and H2 generate Y . By Lemma 7.5, there are points x1, x2 ∈ H with H1 = Yx1 and H2 = Yx2 .
According to Lemma 7.3, dim(H1 ∩H2) ≥ r′ − 3 and hence Y = 〈H1, H2〉 has dimension at most
2(r′−1)− (r′−3) = r′+ 1. Since there are points x′1, x

′
2 ∈ X with dim(Yx′1 ∩Yx′2) = r′−3 (because

|Ξ| ≥ 1), we obtain dimY = r′+1. However, we already know from Lemma 7.2 that dimY = r′+k,
so we conclude that k = 1. �

Another corollary is the following.

Corollary 7.7 For each r′-space Y ′ in Y , there is a unique θ ∈ Θ with Y (θ) = Y ′. Moreover, if
x ∈ X has Yx ⊆ Y ′, then x ∈ θ.

Proof Take any (r′ − 1)-space H in Y ′. By Lemma 7.5, we know that H = Yx for some x ∈ X.
Take any point z ∈ Y ′ \ H. Then θ := [x, z] is a member of Θ with Y (θ) = Y ′. Let x′ ∈ X
be such that Yx′ ⊆ Y ′. Then X(θ) contains a point x′′ with Yx′′ = Yx′ , so by Corollary 7.4,
x′ ∈ 〈x′′, Yx′′〉 ⊆ θ. This also shows that θ is the unique member of Θ containing Y ′. �

We proceed similarly as in Section 6 and nail down the structure of (X,Z,Ξ, θ), using the projection
ρ := ρY from (X,Z,Ξ,Θ) from Y onto a complementary subspace F , and the connection map χ
(cf. Definitions 4.13 and 4.17).

Lemma 7.8 Suppose ρ(x1) and ρ(x2) determine a singular line of ρ(X), for x1, x2 ∈ X. Let
x′i ∈ ρ−1(ρ(xi)) be arbitrary, for i = 1, 2. Then:

(i) there is a unique θ ∈ Θ containing x′1 ∪ x′2, and ρ−1(ρ(x1)) ∪ ρ−1(ρ(x2)) ⊆ θ;
(ii) there is an x′′2 ∈ ρ−1(ρ(x2)) such that 〈x′1, x′′2〉 is an X-line.

(iii) {Yx | ρ(x) ∈ 〈ρ(x1), ρ(x2)〉} is the set of all (r′− 1)-spaces through the (r′− 2)-space Yx1 ∩Yx2
inside the r′-space Y (θ).
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Proof Recall that ρ−1(xi) = 〈xi, Yxi〉 ∩X by Lemma 4.18. Corollary 7.4 implies that Yx1 6= Yx2
because ρ(x1) 6= ρ(x2). So Yx1 6= Yx2 . Note that dimY = r′ + k = r′ + 1 by Lemmas 7.2 and 7.6;
and dimYx1 = dimYx2 = r′ − 1. We claim that dim(Yx1 ∩ Yx2) = r′ − 2. Indeed, if so, then
by Lemma 7.3 and the fact that each X-line is contained in a unique member of Θ, there is a
unique θ ∈ Θ containing x1, x2, and θ also contains 〈xi, Yxi〉 ⊇ ρ−1(xi) for i = 1, 2 by Lemma 7.1.
Suppose for a contradiction that dim(Yx1 ∩ Yx2) 6= r′ − 2. Then by the above and Lemma 7.3,
dim(Yx1 ∩Yx2) = r′−3 and hence 〈Yx1 , Yx2〉 = Y . We can now use a similar dimension argument as
used in the third paragraph of the proof of Lemma 6.8 to show that there is an X-line containing
a point x∗1 ∈ ρ−1(x1) and a point x∗2 ∈ ρ−1(x2). By our standing hypthesis, there is a member of Θ
containing x∗1x

∗
2, which hence also contains x1, x2, a contradiction to [x1, x2] ∈ Ξ (see Lemma 7.3).

The claim follows, and assertion (i) is proven.

Assertion (ii) and (iii) can easily be verified inside the quadric XY (θ) containing ρ−1(ρ(x1)) ∪
ρ−1(ρ(x2)) (see also the last paragraph of the proof of Lemma 6.8). �

Lemma 7.9 Suppose x1, x2 ∈ X are non-collinear points with ξ = [x1, x2] ∈ Ξ and put V = Y (ξ).
Let x′i ∈ ρ−1(ρ(xi)) for i = 1, 2. Then x′1 and x′2 are non-collinear and ξ′ := [x′1, x

′
2] has vertex V

and ρ(X(ξ′)) = ρ(X(ξ)).

Proof For i = 1, 2, ρ(xi) = ρ(x′i) implies, by Lemma 7.4, that Yxi = Yx′i . In particular,
V = Yx1 ∩ Yx2 = Yx′1 ∩ Yx′2 . Lemma 7.3 tells us that x′1 and x′2 are non-collinear points indeed,
with ξ′ := [x′1, x

′
2] ∈ Ξ, and Y (ξ′) = V by the foregoing. To show that ρ(X(ξ)) = ρ(X(ξ′)), we use

the map σξ : ρ(X(ξ)) → {H | V ⊆ H ⊆ Y, dimH = r′ − 1} : ρ(x) 7→ Yx. We claim that it is an
isomorphism.

First of all, note that σξ is well-defined by Lemma 4.18. We consider the residue ResY (V ). Since
dim(V ) = r′ − 3 and dim(Y ) = r′ + 1, the residue ResY (T ) is isomorphic to a projective 3-space
over K, say ΠV (K), in which Yx corresponds to a line L(x). Let x, x′ be two points of X(ξ). By
Lemma 7.3, L(x) = L(x′) if and only if x and x′ belong to the same generator of X(ξ), i.e., if and
only if ρ(x) = ρ(x′); L(x) and L(x′) intersect in precisely a point if and only if xx′ is an X-line in
X(ξ) and L(x) and L(x′) are disjoint if and only if x and x′ are non-collinear. Moreover, Lemma 7.8
implies that each X-line of X(ξ) corresponds to a full planar point pencil in ΠV (K). On the other
hand, the Klein correspondence yields that the point-line geometry whose point set is the set of all
lines of ΠT (K) and whose lines are the planar line pencils of ΠV (K), is isomorphic to the point-line
geometry associated to a hyperbolic quadric Q of rank 3 in P5(K). Since ρ(X(ξ)) is a quadric of
the same kind (recall r = 2), we obtain that σ(ρ(X(ξ))) is embedded isometrically into Q. Since
both are defined over the field K, they actually coincide, i..e, σ(ρ(X(ξ))) = Q. The claim follows.
Since ξ′ also has vertex V , we then have that imσξ = imσξ′ and hence ρ(X(ξ)) = ρ(X(ξ′)). �

We use Y to define the following point-line geometry (P,B)Y .

Definition 7.10 Let P denote the set of (r′− 1)-dimensional subspaces of Y . For subspaces S− ⊆
S+ ⊆ Y with dimS− = r′ − 1 and dimS+ = r′, we define the pencil P (S−, S+) as the set {P ∈ P |
S− ⊆ P ⊆ S+}. Then we denote by B the set {P (S1, S2) | S1 ⊆ S2 ⊆ Y,dimS± = r′ − 1± 1}.

Lemma 7.11 The point-line geometry (P,B)Y is isomorphic to the (point-line truncation of the)
line Grassmannian Gr′+2,2(K).

Proof Since a projective space is self-dual and dimY = r′ + 1, the point-line geometry (P,B)Y
(with natural incidence relation) is by definition isomorphic to the (point-line truncation of the)
line Grassmannian Gr′+2,2(K); see also Subsection 3.2.2. �
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Proposition 7.12 The point-line geometry G := (ρ(X), ρ(L)) is an injective projection of the line
Grassmannian Gr′+2,2(K). Moreover, we have:

(i) for each singular r′-space S in G, there is a unique θS ∈ Θ with ρ(X(θS)) = S.
(ii) for each symp Q of G (viewing the latter as a parapolar space), there is a unique v-space V

in Y such that there is a ξ ∈ Ξ with vertex V such that ρ(X(ξ)) = Q.

Proof We claim that χ induces an isomorphism between the abstract point-line geometries
(ρ(X), ρ(L)) and (P,B)Y . Indeed, the fact that χ : ρ(X)→ P : x 7→ χ(x) = Yx is a bijection between
ρ(X) and P follows immediately from Corollary 7.4 (injectivity) and Lemma 7.5 (surjectivity). The
fact that a member of ρ(L) is mapped by χ to a member of B follows from Lemma 7.8(iii). This
shows the claim. So, by Lemma 7.11, (ρ(X), ρ(L)) is as a point-line geometry isomorphic to a
geometry of type Ar′+1,2(K). Since the latter’s absolutelety universal embedding is given by the
line Grassmannian Gr′+2,2(K), the geometry (ρ(X), ρ(L)) is an injective projection of Gr′+2,2(K).

(i) Let S be a maximal singular subspace of ρ(X) of dimension r′ and take a line L in S. By
Lemma 7.8(i), there is a unique θ ∈ Θ such that L ⊆ ρ(X(θ)). The properties of the line Grass-
mannian Gr′+2,2(K) imply that there is a unique r′-space through L; as such, the r′-space ρ(X(θ))
coincides with S.

(ii) Let Q be any symp of G (so Q is a hyperbolic quadric in P5(K) since r = 2). By Lemma 7.9,
it suffices to show that Q coincides with ρ(X(ξ)) for some ξ ∈ Ξ. Let p1 and p2 be non-collinear
points of Q and take points x1, x2 ∈ X with ρ(xi) = pi. Then, since p1 and p2 are distinct and
non-collinear, ξ := [x1, x2] ∈ Ξ. Now, ρ(X(ξ)) is a hyperbolic quadric of rank 3 in ρ(X) containing
the points p1 and p2, and since two non-collinear points determine a unique symp in ρ(X), we
obtain ρ(X(ξ)) = Q. �

7.1 Mutants of the dual line Grassmannian variety

Just like in subsection 6.4, we will show that (X,Z,Ξ,Θ) is a tweaked version a dual Line Grass-
mannian variety (a mutant, see Definition 7.14). For now, recall the notion of a legal projection
from Definition 6.13.

Lemma 7.13 The set X contains a subset X∗ such that, with induced line set L∗, the geometry
Ω := (X∗, L∗) is a legal projection of Gr′+2,2(K), where containment gives a bijection between the
r′-spaces of Ω and the set Θ. For any hyperbolic quadric Q of rank 3 of Ω, there is a unique ξ ∈ Ξ
with ξ ∩X∗ = Q. Morever, if F ∗ = 〈X∗〉, then

(i)
⊔
x∈X∗〈x, Yx〉 \ Yx = X and hence 〈F ∗, Y 〉 = PN (K);

(ii) Re-choose F such that F ∗ ⊆ F . Then F ∗ ∩ Y and F are complementary in F ∗, and the
projection ρ∗ of F ∗ ∩ X from F ∗ ∩ Y on F coincides with the projection of ρ restricted to
F ∗ ∩X. In particular, if F ∗ ∩ Y = ∅, then X∗ = X ∩ F ∗ and ρ is the identity on X∗.

(iii) If r′ = 4, then F ∗ ∩ Y = ∅.

Proof We construct a legal projection of Gr′+2,2(K) inside X, by choosing a set of points X∗ ⊆ X
such that {Yx | x ∈ X∗} = P (cf. Definition 7.10). To that end, let B := {p0, ..., pr′+1} be the set
of points of a basis of Y . Put A = {(i, j) | 0 ≤ i < j ≤ r′ + 1}. For each pair (i, j) ∈ A, let Hi,j

be the (r′ − 1)-space generated by the points of B \ {pi, pj}. By Lemma 7.5 and Corollary 7.4, the
X-points collinear to Hi,j are contained in the r′-space H i,j := 〈x′i,j , Hi,j〉 for some x′i,j ∈ X with
Yx′i,j = Hi,j . For each i ∈ {0, ..., r′+ 1}, Lemma 7.7 yields a unique θi ∈ Θ with Y (θi) = 〈B \ {pi}〉,
and by the same lemma, θi contains H i,j for all j ∈ {0, ..., r′ + 1}. In a similar fashion as in the
proof of Lemma 6.16, we can consecutively choose points xi,j ∈ H i,j ∩X, using the lexicographic
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order on the pairs in A, in such a way that xi,j is collinear to xi,j′ for each j′ < j and to xi′,j for
each i′ < i. For each i ∈ {0, ..., r′ + 1}, we define R′i := 〈xi,j | 0 ≤ j ≤ r′〉. By construction, R′i is
a singular subspace of θi and no point of Y is collinear to R′i, so R′i is an X-space of dimension r′.
Observe that points xi,j and xk,` with |{i, j, k, `} = 4 are non-collinear and determine a member of
Ξ because dim(Hi,j ∩Hk,`) = r′ − 3.

Claim: Each θ ∈ Θ contains a unique r′-space R′θ generated by the points {θ ∩R′i | 0 ≤ i ≤ r′ + 1}.
Recall that, for each r′-space H in Y , there is a unique member θY ′ of Θ with Y (θY ′) = H (cf.
Corollary 7.7). Firstly, suppose θ is such that H := Y (θ) contains H0,1. Then H meets the line p0p1

in a point p. If p = pi, for i ∈ {0, 1}, then θH = θi and hence R′θ = R′i; so suppose p /∈ {p0, p1}. Take
any j ∈ {2, ..., r′ + 1} and consider θj . By definition, θj contains the lines p0p1 and x0,jx1j . It is
easily verified in the quadric XY (θj) that the lines p0p1 and x0,jx1,j are opposite, and hence there is
a unique point qj on x0,jx1,j collinear to p. Then Yqj is a hyperplane of H, namely the one generated
by the point p and the (r′− 1)-space x⊥0,j ∩ x⊥1,j ∩H0,1. So qj ∈ θ by Corollary 7.7. Observe that qj
is exactly the intersection of Rj and θ. Put R′θ := 〈x0,1, q2, ..., qr′+1〉. We claim that R′θ is indeed
an X-space of dimension r′ in θ. To see that it is singular, take j, j′ ∈ {2, ..., r′+ 1} with j 6= j′ and
consider the points x0,j and x1,j′ , which determine a member of Ξ since dim(H0,j ∩H1,j′) = r′ − 3
(cf. Lemma 7.3). By Lemma 4.7, the points x0j′ and x1j also belong to [x0,j , x1,j′ ]. Therefore,
qj , q

′
j ∈ θ ∩ [x0,j , x1,j′ ], so by (S2), qjq

′
j is a singular line. This line is contained in X as otherwise

Yqj = Yqj′ (contradicting Lemma 7.3). The fact that dimR′θ = r′ follows as usual: no point of Y is
collinear to a point of R′θ. Continuing like this with other r′-spaces H, the claim follows.

We define X∗ as
⋃
θ∈ΘR

′
θ. Let x1, x2 ∈ X∗ be distinct points. One can verify that, by the above

procedure, Yx1 6= Yx2 . This means that, if θ 6= θ′, then R′θ ∩R′θ′ is the unique point x∗ in X∗ with
Yx∗ = Y (θ) ∩ Y (θ′). Conversely, each point x is contained in some θ ∈ Θ and hence R′θ contains
a (unique, by the foregoing) point x̃ with Yx = Yx̃ and hence x ∈ 〈x̃, Yx̃〉. This already shows
(i), ánd it shows that the map x∗ 7→ Yx∗ is a bijection between X∗ and P. We show that this
extends to an isomorphims. To that end, suppose x1, x2 ∈ X∗ are on an X-line L. Let θ be the
unique member of Θ containing L. Then by the beginning of this paragraph x1, x2 ⊆ R′θ and hence
L ⊆ R′θ, so L ⊆ X∗. Looking inside the quadric XY (θ), we see that the points of L correspond to
the (r′ − 1)-space in Y (θ) containing the (r′ − 2)-space Yx1 ∩ Yx2 . Moreover, if x1, x2 ∈ X∗ belong
to the same θ ∈ Θ, then they are necessarily collinear: by the beginning of this paragraph, x1, x2

belong to the X∗-space R′θ and hence they are on an X-line (even an X∗-line). We have shown that
X∗, equipped with the set L∗ of X-lines it contains, is isomorphic to (P,B)Y . Therefore (X∗, L∗) is
already an injective projection of the line Grassmannian Gr′+2,2(K). Since each line of L∗ is hence
contained in a unique r′-space, it follows that each r′-space of X∗ is given by R′θ for some θ ∈ Θ.
Next, consider a hyperbolic quadric Q of rank 3 in X∗. Take two of its non-collinear points x1, x2.
As noted just above, [x1, x2] ∈ Ξ (if [x1, x2] ∈ Θ then x1x2 is an X∗-line after all). By Lemma 4.7,
Q ⊆ [x1, x2]. As in the proof of Proposition 6.16, we naturally obtain a pair (X∗,Ξ∗), which is a
pre-DSV, so that (X∗, L∗) is a legal projection of Gr′+2,2(K).

(i)− (ii) Same as in the proof of Proposition 6.16.

(iii) Finally, suppose r′ = 4. As a consequence of the main result of [12], G6,2(K) has no proper
legal projections, and hence dimF ∗ = 14. Suppose for a contradiction that F ∗∩Y contains a point
y. Set X∗y := {x ∈ X∗ | y ∈ Yx}. Then X∗y induces a subgeometry of Ω is isomorphic to G5,2(K)
(cf. Lemma 7.11); in particular dim〈X∗y 〉 = 9. We first claim that 〈X∗y 〉 ∩ X = X∗y . Suppose for
a contradiction that x ∈ 〈X∗y 〉 \ X∗y . It is a well known property of G5,2(K) that x then lies on
a secant, i.e., there are (non-collinear) points x1, x2 ∈ X∗y with x ∈ x1x2. As noted above, non-
collinear points of X∗ determine a member of Ξ, so [x1, x2] ∈ Ξ. But then x ∈ x1x2 ⊆ X([x1, x2]),
violating Definition 3.2. The claim follows. Consequently, y /∈ 〈X∗y 〉, because otherwise, for any
point x∗ ∈ X∗y , we would have that x∗y ⊆ 〈X∗y 〉, whereas x∗y contains points of X \ X∗ (since
〈x∗, Yx〉 ∩ X∗ = {x∗} by (i)), contradicting the claim. So dim〈y,X∗y 〉 = 10. Let θ ∈ Θ be such
that y /∈ Y (θ). Then R′θ is a 4-space of X∗ disjoint from X∗y . By dimension, R′θ shares a point p
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with 〈y,X∗y 〉. Let q be the unique point of yp in 〈X∗y 〉. Note that q /∈ X since the line yp is not
singular (since y /∈ Yp ⊆ Y (θ)). As in the previous claim, q ∈ [x1, x2] ∈ Ξ for two non-collinear
points x1, x2 ∈ X∗y . Since y ∈ Yx1 ∩ Yx2 = Y ([x1, x2]), it follows that p ∈ X([x1, x2]), the same
contradiction as before. We conclude that Y ∩ F ∗ is empty if r′ = 4. �

Finally, we will show that X is, up to projection from a subspace in Y , a mutant of the dual
line Grassmannian variety DGn+1,2(K), which we define below. Recall that in Section 3.2.2 we
constructed the dual line Grassmannian variety DGn+1,2(K) by means of an n-space Y and a line
Grassmannian variety G := Gn+1,2(K) with Y and G complementary, but the construction for X,Z
and Ξ,Θ do not depend on the fact that Y and G are disjoint.

Definition 7.14 Consider the dual line Grassmannian variety DGn+1,2(K) = (X,Z,Ξ,Θ) associ-
ated to the Segre variety G := Gn+1,2(K). Then:

− we may replace G by a legal projection of Gn+1,2(K)
− we may choose Y = Z in such a way that the projection of 〈G〉∩X from 〈G〉∩Y (onto a subspace

of 〈G〉 complementary to 〈G〉 ∩ Y ) yields an injective projection of G; the ambient projective
space is afterwards restricted to 〈G, Y 〉.

The resulting structure is called a mutant of DGn+1,2(K).

7.2 Conclusion

Putting everything together, we obtain the following rather general classification result. We phrase
the conclusion without the standing hypothesis, to deal with the situation in full generality. Again,
only now we use axiom (S3).

Theorem 7.15 Let (X,Z,Ξ,Θ) be a pre-DSV with parameters (r, v, r′, v′) with r ≥ 2, such that
there is an X-line L with |ΘL| = 1. Then r = 2, v = r′ − 3 and:

(i) Up to projection from a v′-space V ⊆ Y collinear to all points of X, we obtain that X is the
point set of a mutant of the dual line Grassmannian DGr′+2,2(K) with Z as (r′ + 1)-space at
infinity and Ξ ∪Θ as its symps;

(ii) if additionally (X,Z,Ξ,Θ) satisfies (S3), then X is the point set of a dual line Greassmannian
DGr′+2,2(K) with r′ = 4 and X is projectively unique.

Proof (i) By Lemma 7.1 it follows that there is a v′-space V in Y collinear to all points of X,
and Lemma 4.14 allows us to project from V , so henceforth we assume v′ = −1. Lemma 7.1 also
shows that r = 2 and v = r′ − 3.

By Proposition 7.13, X contains a subset X∗ such that X∗, with induced line set L∗, is a legal
projection of Gr′+2,2(K), and X =

⊔
x∈X∗〈x, Yx〉 \Yx. Therefore it suffices to show that the connec-

tion map χ : Ω → Y : x 7→ Yx satisfies the properties mentioned in the definition of the dual Line
Grassmannians varieties (cf. Subsection 3.2.1). Let P be a projective space of dimension r′ + 1,
such that (X∗, L∗) is isomorphic to the image of P under the Plücker map pl (cf. Subsection 3.2.2).
Consider the map χ′ : P → Y , taking a line L ∈ P to χ(pl−1(L)) = Ypl−1(L). For ease of notation,

we denote the point pl−1(L) by xL.

Claim: χ′ induces a linear duality between P and Y .
Let p be any point of P. Then R′p := {xL | L line of P with p ∈ L} is the set of points of a singular
r′-space of X∗. By Lemma 7.13, there is a unique member θp ∈ Θ containing R′p. Then χ′ induces
a linear duality xL 7→ YxL = χ′(L) inside θp, meaning in particular that YxL ⊆ Y (θp) for each
xL ∈ R′p and that each (r′ − 1)-space in Y (θp) is given as YxL for some xL ∈ R′p. Conversely, each
hyperplane H of Y is contained in a unique member of Θ by Lemma 7.7. It follows that the map
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p 7→ Y (θp) is a bijection between the point set of P and the hyperplanes of Y (i.e., the point set of
the dual of Y ), preserving incidence. This means that it is a linear duality indeed: a line L of P
goes to the r′-spaces through the (r′ − 1)-space YxL and vice versa. The claim follows.

For each pair of non-collinear points p1, p2 of X, Lemmas 4.1 and 4.7 imply that the convex closure
of p1, p2 (via lines containing X-points) coincides with XY ([p1, p2]). The assertion follows.

(ii) Let x ∈ X be arbitrary. By Axiom (S3), there are ξ1, ξ2 ∈ Ξ through x such that Tx =
〈Tx(ξ1), Tx(ξ2)〉. As in the proof of Theorem 6.18 and with the same notation, we have that
this is equivalent to Yx = 〈Y (ξ1), Y (ξ2)〉 and TFρ(x) = 〈TFρ(x)(ξ1), TFρ(x)(ξ2)〉. This time, we know

dimTFρ(x) = 2r′ − 1 as ResX(x) is isomorphic to Sr′−1,1(K). Furthermore, since r = 2, TFρ(x)(ξ1)

and TFρ(x)(ξ2) are just 4-spaces, and so 2r′ − 1 ≤ 8. Recalling that r′ > r ≥ 2 by assumption, we

deduce that r′ ∈ {3, 4}. Since v = r′ − 3, the (r′ − 1)-space Yx can only be generated by the two
v-spaces Y (ξ1) and Y (ξ2) if r′ = 4 (and if Y (ξ1) ∩ Y (ξ2) = ∅). So r′ = 4. The variety G4+2,2(K)
does not admit legal projections (this follows from the main result of [12]) and F ∗ ∩ Y = ∅ by
Proposition 7.13(iii). The conclusion follows as in the proof of Theorem 6.18. �

The case where r = 2 and |ΘL| = 1 for each X-line L hence leads us to the conclusion of Main
Result 3.6(ii).

8 The remaining cases

Four of the cases that occur in Table 1 remain, namely the red ones (which have in common
that each X-line is contained in at least two members of Θ) and the r = 1 case of column 2. In
Subsection 8.1, we will treat the latter case, leading to a dual Segre variety; in Subsection 8.2, we
will show that the other cases do not lead to examples of DSVs.

8.1 Dual Segre variety

In this section, we deal with the r = 1 case of column 2 of Table 1. Due to the high similarity with
the half dual Segre varieties (see Section 6, where also r = 1), and since this case turns out not
occur as the residue of a DSV (see Proposition 8.6), we will be brief and refer to [1] for the proofs.

Standing hypothesis. Throughout this section, (X,Z,Ξ,Θ) is a pre-DSV with parameters
(1, v, r′, v′) with 〈X,Z〉 = PN (K) for an arbitrary field |K| > 2 and such that |Θx| ≥ 2 for
each x ∈ X and |ΘL| ∈ {0, 1} for each X-line L.

We only give the elements of the proof which add to the insight of the (local) structure of both the
geometry and the proof. Note that we left out the phrase “no point of Y is collinear to all points
of X” in the standing hypthesis, as in this case, we can prove this now.

Proposition 8.1 Let x ∈ X be arbitrary. Then there are precisely two members θx1 and θx2 of
Θ containing x, and their respective vertices V x

1 and V x
2 are disjoint ang generate Yx. Moreover,

θx1 ∩ θx2 = 〈x, Yx〉. Each X-line through x is contained in either θx1 or θx2 and L1 ⊆ θx1 and
L2 ⊆ θx2 are X-lines containing x, then L1 and L2 are non-collinear and [L1, L2] ∈ Ξ. Finally,
v = 2v′ − 1 = 2r′ − 3.

Proof This is proven on pages 139-140 of [1], Proposition 7.5.14 until Lemma 7.5.18, first for a
point x contained in a 1-line (i.e., contained in a unique member of Θ), and in the end it follows
by connectivity that each line is a 1-line. �
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Compare θx1 and θx2 with πx ∈ Π and θx ∈ Θ in Corollary 6.6. Let Rx1 be the r′-space Z(θx1 )
and note that V x

2 (which is contained in Yx and hence in θx1 ) is hence contained in Rx1 . Likewise,
V x

1 ⊆ Rx2 . An important lemma of [1] is:

Lemma 8.2 (Lemma 7.5.19 of [1]) For any point x ∈ X, we have Z = Rx1 ∪Rx2 and hence Y =
〈Y (θx1 ), Y (θx2 )〉; moreover, given any point x ∈ X and renumbering for x′ if necessary, Rx1 = Rx

′
1

and Rx2 = Rx
′

2 . In particular, dimY = 2r′ + 1.

Put R1 := Rx1 for any x ∈ X, likewise define R2. The set Θ is divided in two classes: Θ1 is the
subset of Θ with R1 ⊆ Z(θ), likewise, Θ2 is defined (and Θ = Θ1 ∪ Θ2). Pages 140-142 of [1]
further investigate the structure of Y . We only mention the analogue of Lemma 7.3, as this gives
information about the mutual position of two X-points in terms of Y :

Lemma 8.3 (Lemma 7.5.25 of [1]) Take two distinct points x1, x2 ∈ X. Putting V 1
x = x⊥ ∩R2

and V 2
x = x⊥ ∩R2 for each x ∈ X:

1. x1x2 is a singular line with a unique point in Y ⇔ V x1
i = V x2

i for all i ∈ {1, 2};
2. x1, x2 belong to a member of Θ⇔ V x1

i = V x2
i for one i ∈ {1, 2};

3. x1, x2 are non-collinear points with [x1, x2] ∈ ΞY ⇔ V x1
i 6= V x2

i for all i ∈ {1, 2}.

We already know form Proposition 8.1 that for x ∈ X, the subspace Yx is generated by a v′-space
in R1 and a v′-space in R2, but Lemma 7.5.22 of [1] shows that the subspace generated by any two
such v′-spaces occurs as Yx for some x ∈ X, moreover, if Yx = Yx′ then x′ ∈ 〈x, Yx〉. Also, Corollary
7.5.24 says that for each v′-space V of Ri, there is a unique member of Θj , with {i, j} = {1, 2},
such that V is the vertex of Θj . One can verify that the latter implies that each point y ∈ Y can
be put in a θ ∈ Θ, but not in its vertex, and hence there is a point of X(θ) not collinear to y. This
confirms that we did not need to include this as an assumption in the standing hypothesis.

The analogues of Lemmas 7.9, 6.8, 7.12 and 7.13 can be found in Lemmas 7.5.26, 7.5.27, 7.5.28,
7.5.30 of [1]. We copy the conclusion (with a correction in its statement):

Theorem 8.4 (Theorem 7.5.31 of [1]) Let (X,Z,Ξ,Θ) be a pre-DSV with with parameters (1, v, r′, v′)
such that |Θx| ≥ 2 for each x ∈ X and |ΘL| ∈ {0, 1} of each X-line L. Then:

(i) X is the point set of a mutant of the dual Segre variety DSr′,r′(K) with 〈Z〉 as subspace at
infinity and whose symps are given by Ξ ∪Θ;

(ii) if additionally (X,Z,Ξ,Θ) satisfies (S3), then X is the point set of a dual Segre variety
DS2,2(K) (so r′ = 2) and X is projectively unique.

The case where r = 1 and |Θx| ≥ 2 for each x ∈ X and |ΘL| ∈ {0, 1} for each X-line L hence leads
us to the conclusion of Main Result 3.6(iii). To finish the proof, all we have to do is show that the
remaining cases mentioned in Table 1 do not occur.

8.2 Non-examples

Note that for the non-examples, we consider DSVs instead of pre-DSVs, so we do use Axiom (S3).
We start with the first column of Table 1.

Proposition 8.5 There is no DSV (X,Z,Ξ,Θ) with parameters (3, v, r′, v′).
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Proof Suppose for a contradiction that such a DSV (X,Z,Ξ,Θ) exists. By Lemma 4.14 we
may suppose that there is no point of Y collinear to all points of X. Take any x ∈ X. By
Proposition 5.16, the point-residue ResX(x) is a pre-DSV (Xx, Zx,Ξx,Θx) with parameters (2, v, r′−
1, v′), where v = (r′ − 1) − 3, containing no Yx-points collinear to all points of Xx and such that
each Xx-line is contained in a unique member of Θx. It follows from Proposition 7.15(i) that Xx

is the point-set of a mutant of the dual line Grassmannian DGr′+1,2(K).

Axiom (S3) yields two members ξ1, ξ2 ∈ Ξ such that Tx = 〈Tx(ξ1), Tx(ξ2)〉. Recalling Definition 5.7,
this is equivalent to saying that 〈Xx, Yx〉 is generated by two members ξ̃1 and ξ̃2 of Ξx (where ξ̃i
is the residue of ξi from x, i ∈ {1, 2}). As noted above, v = r′ − 4, so since r − 1 = 2, we obtain
dim(ξ̃i) = (r′ − 4) + 5 + 1 = r′ + 2 for i = 1, 2, and hence dim〈Xx, Yx〉 ≤ 2r′ + 5. Moreover,
projected from Yx, we get an injective projection Ω of Gr′+1,2(K) (cf. Proposition 7.12), and we
put B := dim〈Ω〉. So dim〈Xx, Yx〉 = B + dimYx + 1 ≤ 25′ + 5. Since dimYx = (r′ − 1) + 1, we
obtain B ≤ r′ + 4. On the other hand, Ω contains (r′ − 1)-spaces which meet in exactly a point,
so B ≥ 2r′ − 2. So 2r′ − 2 ≤ r′ + 4, meaning that r′ ≤ 6. Recalling that r′ > r = 3, we get
r′ ∈ {4, 5, 6}. If r′ = 4, then G5,2(K) does not admit legal projections, hence B = 9, contradicting
B ≤ r′ + 4 = 8. Likewise, if r′ ∈ {5, 6}, then Ω contains G6,2(K) and since the latter contains no
legal projection, we have B ≥ 14, contradicting B ≤ r′ + 4 ≤ 10. This shows the proposition. �

We proceed to the second column of Table 1, which relies on the dual Segre varieties and hence is
not treated in full detail, but we give some hints for the proof though.

Proposition 8.6 (Lemma 7.7.7 in [1]) There is no DSV (X,Z,Ξ,Θ) with parameters (2, v, r′, v′)
in which |ΘL| ≥ 2 for each X-line L.

Proof (For a complete proof, we refer to [1]). Suppose for a contradiction that such a DSV
(X,Z,Ξ,Θ) exists. Take any x ∈ X. By Proposition 5.16, the point-reside ResX(x) = (Xx, Zx,Ξx,Θx)
is isomorphic to a mutant of the dual Segre variety DSr′−1,r′−1(K). A dimension argument as in
the previous proof then shows that dim〈Xx, Yx〉 ≤ 2r′ + 7. Since Xx contains a legal projection of
Sr′−1,r′−1(K) (cf. Lemma 7.5.30 in[1]) and since r′ > r = 2, we obtain that Xx contains a copy Ω′ of
S2,2(K) (cf. Lemma 6.15). Now, since dim〈Ω′〉 = 8 and dimYx = 2r′− 1, and dim〈Ω′, Yx〉 ≤ 2r′− 7,
we obtain that there is a point y ∈ Y ∩ 〈Ω′〉. A similar argument as used in the last paragraph of
the proof of Lemma 6.16 leads to a contradiction to (S2). �

Finally, the third column of Table 1. Also here, we refer to [1].

Proposition 8.7 There is no DSV (X,Z,Ξ,Θ) with parameters (1, v, r′, v′) in which |Θx| ≥ 2 for
each x ∈ X and such that there is an X-line L for which |ΘL| ≥ 2.

Proof Subsection 7.5.1 of [1] (pages 132-138) deals with a DSV with parameters (1, v, r′, v′) in
which each X-point is contained in at least two members of Θ and where, for each X-line is either
contained in no member of Θ or in at least 2, and leads to a contradiction. Hence (X,Z,Ξ,Θ)
contains an X-line which is contained in a unique member of Θ. However, Proposition 7.5.14 of [1]
(shown in a series of lemmas on pages 139-140 of [1], without using (S3) actually) then implies that
each X-line is contained in a unique member of Θ, contradicting our assumption. �

Conclusion. We treated all cases of Table 1 (see Proposition 5.16).

Acknowledgement. Many thanks to the referee, who’s helpful comments increased the readabilty
of this paper.
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