A geometric characterisation of subvarieties of $\mathcal{E}_{6}(\mathbb{K})$ related to the ternions and sextonions

Anneleen De Schepper*
Department of Mathematics: Algebra and Geometry Ghent University, Krijgslaan 281-S25, B-9000 Ghent
Anneleen. DeSchepper@UGent.be

Abstract

The main achievement of this paper is a geometric characterisation of certain subvarieties of the Cartan variety $\mathcal{E}_{6}(\mathbb{K})$ over an arbitrary field \mathbb{K}. The characterised varieties arise as Veronese representations of certain ring projective planes over quadratic subalgebras of the split octonions \mathbb{O}^{\prime} over \mathbb{K} (among which the sextonions, a 6 -dimensional non-associative algebra). We describe how these varieties are linked to the Freudenthal-Tits magic square, and discuss how they would even fit in, when also allowing the sextonions and other "degenerate composition algebras" as the algebras used to construct the square.

Keywords: Veronese varieties, ring geometries, composition algebras, Freudenthal-Tits magic square, E6
MSC 2010 classification: 14N05, 51A45, 51B25,51C05, 51E24

1 Introduction

The characterisation which forms the core of this paper could be carried out without knowing the existence of the Freudenthal-Tits magic square (FTMS). However, the latter carries both the idea and motivation for it, in the sense that the characteristic behaviour of the varieties of the FTMS (in particular, its second row) hints at the existence of similarly behaving varieties across the borders of the square (leaving the non-degenerate world). This gives rise to an extended version of square; in particular of the split version of its second row, the varieties of which are exactly the ones we wish to study and characterise. Below, we explain this in more detail.

1.1 Context: Characterisations related to the FTMS

The FTMS is a 4×4 array of, depending on the viewpoint, Lie algebras, Dynkin diagrams, buildings, projective varieties. Our viewpoint will be geometric in the sense of Tits [14], and over an arbitrary field \mathbb{K}. The square can be constructed using a pair of composition algebras $\left(\mathbb{A}_{1}, \mathbb{A}_{2}\right)$ over \mathbb{K}. The algebra \mathbb{A}_{1} indexes the rows and indicates the rank of the varieties in that row; the algebra \mathbb{A}_{2} indexes the columns and encodes the algebraic structure over which the varieties in that column are defined. In the geometric version of the square that we consider, the algebra \mathbb{A}_{1} is always split, whereas \mathbb{A}_{2} can be either division or split, giving rise to a 'non-split' and 'split' version of the square, respectively. Let us illustrate this by zooming in on the second row, which will be most relevant for this paper.

[^0]- In the non-split version, this row contains projective planes over division composition algebras over \mathbb{K};
- In the split version, the three last entries of this row are the Segre variety $\mathcal{S}_{2,2}(\mathbb{K})$ (Dynkin type $\mathrm{A}_{2} \times \mathrm{A}_{2}$), the line Grassmannian variety $\mathcal{G}_{6,2}(\mathbb{K})\left(\right.$ Dynkin type A_{5}) and the Cartan variety $\mathcal{E}_{6}(\mathbb{K})\left(\right.$ Dynkin type E_{6}) (i.e., the projective version of the 27 -dimensional module of the split exceptional group of Lie type E_{6}), respectively. Abstractly, these are ring projective planes over the split composition algebras over \mathbb{K}, and the mentioned varieties can be obtained by taking the Veronese representation of these planes (see Section 10 of [3]). The first entry, which coincides with the non-split case, could thus be seen as the quadric Veronese variety $\mathcal{V}_{2}(\mathbb{K})$ (Dynkin type A_{2}), i.e., the Veronese representation of the projective plane over \mathbb{K}.
The work of J. Schillewaert H. Van Maldeghem (e.g., [12, 6]) recently culminated in a common characterisation of the Veronese representations of the varieties of the second row of the FTMS [2]. These Veronese varieties are point sets in a projective space equipped with a family of quadrics of a certain kind, depending on the composition algebra. Their characterisation was achieved by means of three elementary axioms, and was accomplished among an infinite family of objects consisting of points and arbitrary (non-degenerate) quadrics in a projective space \mathbb{P} over \mathbb{K}. The fact that such a general characterisation singles out exactly the varieties of the FTMS demonstrates the latter's special behaviour once more. It is especially remarkable that this can be done for the split and non-split version simultaneously. The dichotomy of the composition algebras (division/split) translates geometrically in the fact that in the above-mentioned Veronese varieties, the quadrics are either all line-free (i.e., of minimal Witt index) or all hyperbolic (i.e., of maximal Witt index), respectively.

1.2 Motivation: Characterisations across the borders of the FTMS

Inspired by a low-dimensional test case elaborated in [11], the author and H. Van Maldeghem extended the above setting to certain 'degenerate' composition algebras $\mathbb{B}[4]$. These algebras \mathbb{B} are setwise given by $\mathbb{A} \oplus t \mathbb{A}$, where \mathbb{A} is an associative division composition algebra over \mathbb{K} and t an indeterminate with $t^{2}=0$, and satisfy the Cayley-Dickson multiplication formulas (for example, when $\mathbb{A}=\mathbb{K}$, this yields the dual numbers over \mathbb{K}). Equivalently, \mathbb{B} is the result of applying the Cayley-Dickson process to \mathbb{A} with 0 as a primitive element; we will hence refer to \mathbb{B} by $C D(\mathbb{A}, 0)$. Just like the composition algebras, $C D(\mathbb{A}, 0)$ is quadratic and alternative (since \mathbb{A} is associative), and its norm form $a+t b \mapsto \mathrm{~N}(a)$ (where N is the norm form of \mathbb{A}) is multiplicative, though degenerate. When taken to the above setting, where the quadrics are determined by the norm form, this translates geometrically to projective varieties equipped with degenerate quadrics whose base is a line-free quadric. Using similar axioms as in [2], it was shown in [4] that point-sets equipped with such quadrics (a priori inside arbitrary dimensions) arise from the Veronese representation of a projective Hjelmslev plane defined over an algebra $C D(\mathbb{A}, 0)$ with \mathbb{A} an associative division composition algebra. The current paper investigates the following question:
Question. What happens for the algebras setwise given by $\mathbb{A} \oplus t \mathbb{A}$, where \mathbb{A} is an associative composition algebra over \mathbb{K} which is not division?

A first essential difference with the former case is that we should not only consider the algebras $C D(\mathbb{A}, 0)$. Indeed, also the ternions \mathbb{T}, a non-commutative 3 -dimensional subalgebra of the split quaternions \mathbb{H}^{\prime}, and sextonions \mathbb{S}, a strictly alternative 6 -dimensional subalgebra of the split octonions \mathbb{O}^{\prime}, can be written as $\mathbb{L}^{\prime} \oplus t \mathbb{L}^{\prime}\left(\right.$ where $\left.\mathbb{L}^{\prime}=\mathbb{K} \times \mathbb{K}\right)$ and $\mathbb{H}^{\prime} \oplus t \mathbb{H}^{\prime}$, respectively (cf. Proposition 2.2). The way we convey it, this gives rise to an additional layer for the FTMS. Denoting division and split composition algebras of dimensions 2,4 over \mathbb{K} by \mathbb{L} and $\mathbb{L}^{\prime}, \mathbb{H}$ and \mathbb{H}^{\prime}, respectively,
we see this second layer of the second row as ring projective planes over the following algebras.

$\operatorname{dim}_{\mathbb{K}} \mathbb{A}$	1	2	3	4	6	8
non-split	$/$	$\mathrm{CD}(\mathbb{K}, 0)$	$/$	$\mathrm{CD}(\mathbb{L}, 0)$	$/$	$\mathrm{CD}(\mathbb{H}, 0)$
split	$/$	$\mathrm{CD}(\mathbb{K}, 0)$	ternions \mathbb{T}	$\mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)$	sextonions \mathbb{S}	$\mathrm{CD}(\mathbb{H}, 0)$

A second difference is that it turns out that the Veronese variety associated to the octonion algebra $C D\left(\mathbb{H}^{\prime}, 0\right)$, where \mathbb{H}^{\prime} are the split quaternions, behaves differently compared to the ones associated to the other algebras in that series. It does not fit in, not in any natural way. This manifests itself in some sense in the fact that, opposed to the Veronese varieties associated to the other algebras in that row, it cannot be seen as a subvariety of the Cartan variety $\mathcal{E}_{6}(\mathbb{K})$.

The link between the FTMS and the sextonions \mathbb{S} was already explored in [17] by Westbury, who suggested to extend the FTMS (which he considers as a square of complex semisimple Lie algebras) by adding a row/column between the third and the fourth one. Around the same time, also Landsberg and Manivel considered this intermediate Lie algebra between \mathfrak{e}_{7} and \mathfrak{e}_{8} in [8]. In Section 8 of [8], they in particular study some (algebraic) geometric properties of the sextonionic plane, i.e., a Veronese variety associated to \mathbb{S}. Our approach on the other hand starts from the (incidence) geometric properties of this Veronese variety and its smaller siblings related to \mathbb{T} and $C D\left(\mathbb{L}^{\prime}, 0\right)$ (the one related to $C D(\mathbb{K}, 0)$ is viewed as a part of the non-split case). By means of three elementary axioms, a natural extension of the ones used in [2] etc., we characterise these varieties. We also provide two additional ways of viewing these varieties: on the one hand, constructed from two (dual) representations of the non-degenerate varieties they are composed of (involving $\mathcal{S}_{2,2}(\mathbb{K})$ and $\mathcal{G}_{6,2}(\mathbb{K})$) (cf. Section 3.2.2), and on the other hand, as subvarieties of the 26 -dimensional projective $\mathcal{E}_{6}(\mathbb{K})$-variety, obtained by slicing it with certain subspaces of dimension 11,14 or 20 (cf. Section 2.4). This hence also gives us additional insight in the geometric structure of $\mathcal{E}_{6}(\mathbb{K})$.

1.3 Main result: Characterisation of the Veronese varieties related to the "new" split second row of the FTMS

Stating the main result (Theorem 3.6) requires more notation and a slightly technical set-up, so we refer to Section 3.3 for that. For the purpose of this introduction, we prefer a simplified set-up, by which means we can explain a related characterisation, proved in [12]. With this, we cannot only informally situate the current main result, but also point out similarities and differences.

Consider a set of points X in a projective space $\mathbb{P}^{N}(\mathbb{K})$, with $N \in \mathbb{N} \cup\{\infty\}$, equipped with a family Ξ of subspaces of $\mathbb{P}^{N}(\mathbb{K})$ (of arbitrary yet fixed projective dimension $d+1<\infty$), $|\Xi| \geq 2$, such that, for each $\xi \in \Xi$, the intersection $X(\xi):=X \cap \xi$ is a parabolic or hyperbolic quadric generating ξ (i.e., the maximal isotropic subspaces on $X(\xi):=X \cap \xi$ have projective dimension $\left.\left\lfloor\frac{d}{2}\right\rfloor\right)$. Then the pair (X, Ξ) is called a split Veronese set (of type d) if the following axioms are satisfied:
(SV1) Each pair of distinct points $p_{1}, p_{2} \in X$ is contained in a member of Ξ;
(SV2) If ξ_{1}, ξ_{2} are distinct members of Ξ, then $\xi_{1} \cap \xi_{2} \subseteq X$;
(SV3) for each point $x \in X$, the subspace $T_{x}:=\left\langle T_{x}(X(\xi)) \mid x \in \xi \in \Xi\right\rangle$ has dimension at most $2 d$.

Theorem 1.1 (Main Result/Corollary of [12]) Let (X, Ξ) be a split Veronese set of type $d \geq 1$ in $\mathbb{P}^{N}(\mathbb{K})$. Then if $\operatorname{dim} T_{x}=2 d$ for at least one point $x \in X$, we have $d \in\{1,2,4,8\}$ and (X, Ξ) is projectively unique and the resulting varieties are exactly the (Veronese) varieties of the split version of the second row of the FTMS, mentioned above. If $\operatorname{dim} T_{x}<2 d$ but $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$ for at least one point $x \in X$ and ξ_{1}, ξ_{2} in Ξ with $x \in \xi_{1} \cap \xi_{2}$, then (X, Ξ) is either $\mathcal{S}_{1,2}(\mathbb{K})$ (a subvariety of $\mathcal{S}_{2,2}(\mathbb{K})$) or $\mathcal{G}_{5,2}(\mathbb{K})$ (a subvariety of $\mathcal{G}_{6,2}(\mathbb{K})$).

A natural way to define Veronese varieties related to $\mathbb{T}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right), \mathbb{S}$ and $\mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)$ is by giving an affine description (see Section 2.4). A study of these reveals that, except for the variety associated to $C D\left(\mathbb{H}^{\prime}, 0\right)$, they also come with a set of points and quadrics "more or less" satisfying axioms (SV1), (SV2) and (SV3) above. It was not obvious to see why this was more or less, but it turns out that, this time, the structure is not homogenous: there are two types of points and two types of quadrics. Taking this into account when rephrasing axioms (SV1) up to (SV3), the resulting axioms are nothing but a natural extension of them (cf. Section 3.1). It remains slightly mysterious why the variety related to $C D\left(\mathbb{H}^{\prime}, 0\right)$ does not satisfy these axioms, not even more or less. As hinted at above, it stands out from the other varieties in that it is not a subvariety of $\mathcal{E}_{6}(\mathbb{K})$, which is explained by the fact that all other algebras under consideration are subalgebras of the split octonions \mathbb{O}^{\prime}, whereas $\mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)$ is not. Axioms (SV1) and (SV2) (and also their natural extensions) imply that the convex closure of two points of X should form a quadric (corresponding to a member of $\Xi)$. However, for the variety related to $\mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)$, the convex closure of two points is not a quadric anymore, it rather is a bunch of quadrics. One could argue that it is not a surprise that octonions come with different behaviour, though we did not anticipate this. Indeed, in the non-split case, treated in [4], the Veronese variety related to the octonion algebra $C D(\mathbb{H}, 0)$ behaves as do the Veronese varieties related to $\operatorname{CD}(\mathbb{L}, 0)$ and $\mathrm{CD}(\mathbb{K}, 0)$ (with notation as above).

If we denote by X and Z the two types of point sets, and by Ξ and Θ the two types of subspaces intersecting $X \cup Z$ in certain quadrics, and call (X, Z, Ξ, Θ) a dual split Veronese set if it satisfies the axioms extending (SV1), (SV2) and (SV3) as explained above, then informally the main result reads as follows (where we only exclude the field with two elements, see Remark 3.7).

Main Result-informal statement If (X, Z, Ξ, Θ) is a dual split Veronese set in $\mathbb{P}^{N}(\mathbb{K})$, where \mathbb{K} is an arbitrary field with $|\mathbb{K}|>2$, then, up to projectivity and up to projection from a subspace contained in each member of $\Xi \cup \Theta$, either Θ is empty and then (X, Ξ) is a split Veronese set, or Θ is non-empty and there are four possibilities, all of which are subvarieties of $\mathcal{E}_{6}(\mathbb{K})$; three of them can be obtained as a Veronese variety associated to one of $\mathbb{T}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right), \mathbb{S}$, the fourth and smallest case is a subvariety of the Veronese variety associated to \mathbb{T}.

1.4 Structure of the paper

In Section 2 the "degenerate composition algebras" are formally introduced and discussed to the extent that we will need them. Afterwards, the Veronese varieties associated to $\mathbb{T}, C D\left(\mathbb{L}^{\prime}, 0\right), \mathbb{S}$ and $C D\left(\mathbb{H}^{\prime}, 0\right)$ are defined and studied briefly. In Proposition 2.10, we show that, apart from the last one, they all satisfy properties that naturally generalise (SV1), (SV2) and (SV3) above.

In Section 3, the axiomatic set-up for dual split Veronese sets is given, as is a purely geometric description of certain families of varieties that we will encounter later on, each of them containing examples of dual split Veronese sets. This geometric description does not rely on an underlying algebraic structure, but is of course in accordance with the coordinate description given in Section 2. In Section 3.3 we state the formal version of our main result and describe the examples.

In Section 4 we prove some basic properties, with the help of which we arrive in Section 5 to an inductive approach in terms of point-residues. See Proposition 5.16 and Table 1 for a schematic overview. Of the 6 cases that we obtain in Proposition 5.16, 3 lead to actual examples of dual split Veronese sets, the other 3 do not.

Since there is some similarity among the existing cases, and also among the non-existing cases, we do not treat all of them in full detail. We choose to focus on the case that leads to the Veronese variety related to the sextonions \mathbb{S}. This turns out to fit in the larger class of so-called dual line Grassmannians, see subsection 3.2.2. To deal with these geometries (which we do in Section 7), we first need to have a full understanding of their point-residue, which is a so-called half dual Segre variety, see subsection 3.2.1. The latter class of geometries is treated in Section 6 and contains the

Veronese variety related to \mathbb{T}. In the final Section 8 we treat the reamining cases, in particular, we show that $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ does not occur as a point-residue of some other dual split Veronese set.

2 "Degenerate composition algebras" and associated Veronese varieties

Henceforth, let \mathbb{K} be an arbitrary field. Seeing that composition algebras and (non-degenerate) quadratic alternative algebras are equivalent notions, we will use the latter setting to incorporate the degenerate case. In the literature, one does not find too much on quadratic alternative algebras with a possibly non-trivial radical ánd without restriction on the characteristic of \mathbb{K}. What follows is a combination of elements from $[9,10]$ (allowing characteristic 2 , but restricting to the non-degenerate case) and [7] (where the possibilities for the radical are examined, excluding characteristic 2). For a more extended version, we refer to Chapter 4 of [1].

2.1 Quadratic alternative algebras and their radical

Let \mathbb{A} be a unital quadratic alternative \mathbb{K}-algebra, i.e., the associator $[a, b, c]:=(a b) c-a(b c)$ yields a trilinear alternating map and each $a \in \mathbb{A}$ satisfies a quadratic equation $x^{2}-\mathrm{T}(a) x+\mathrm{N}(a)=0$, where the trace $\mathrm{T}: \mathbb{A} \rightarrow \mathbb{K}: a \mapsto \mathrm{~T}(a)$ is a linear map with $\mathrm{T}(1)=2$ and the norm $\mathrm{N}: \mathbb{A} \rightarrow \mathbb{K}: a \mapsto \mathrm{~N}(a)$ is a quadratic map with $N(1)=1$. The canonical involution associated to \mathbb{A} is given by the map $\mathbb{A} \rightarrow \mathbb{A}: x \mapsto \bar{x}:=\mathrm{T}(x)-x$, which is indeed an involutive anti-automorphism $(\overline{x y}=\bar{y} \bar{x}$ for all $x, y \in \mathbb{A}$), fixing \mathbb{K}. Note that $\mathrm{N}(a)=a \bar{a}$ for each $a \in \mathbb{A}$. The bilinear form f associated to the quadratic form N is given by $f(x, y)=\mathrm{N}(x+y)-\mathrm{N}(x)-\mathrm{N}(y)=x \bar{y}+y \bar{x}$. Its radical is the set $\operatorname{rad}(f)=\{x \in \mathbb{A} \mid f(x, y)=0 \forall y \in \mathbb{A}\}$. We call \mathbb{A} non-degenerate if its norm form \mathbf{N} is non-degenerate, i.e., if \mathbf{N} is anisotropic on $\operatorname{rad}(f)$, so if $\{r \in \operatorname{rad}(f) \mid \mathbf{N}(r)=0\}$ is trivial. We call the latter set the radical R of \mathbb{A}. One could also describe R as the nil radical of \mathbb{A}, which is the maximal ideal of \mathbb{A} with the property that each of its elements is nilpotent.
We note in passing that the non-degenerate quadratic alternative \mathbb{K}-algebras \mathbb{A} with $\operatorname{dim}_{\mathbb{K}}(\mathbb{A})<\infty$ can all be produced using the Cayley-Dickson doubling process. An extended version of this process (in which the primitive element is allowed to be 0) also produces degenerate algebras, see also Section 4.2 of [1]. We use the notation $\operatorname{CD}(\mathbb{A}, 0)$ for the result of one application of the extended Cayley-Dickson process on \mathbb{A}, where $\operatorname{CD}(\mathbb{A}, 0)$ is setwise equal to $\mathbb{A}+t \mathbb{A}$, where t is an indeterminate with $t^{2}=0$. Addition is natural, multiplication goes as follows: $(a+t b) \cdot(c+t d)=a c+t(\bar{a} d+c b)$ for $a, b, c, d \in \mathbb{A}$. The radical is given by $t \mathbb{A}$, so it is generated by t.
Our interest goes out to the quadratic alternative algebras \mathbb{A} for which R is, as a \mathbb{K}-algebra, generated by a single element. Since R is a 2-sided ideal of \mathbb{A} and $\mathbb{A}(\mathbb{A} r)=\mathbb{A} r=r \mathbb{A}=(r \mathbb{A}) \mathbb{A}$ for each $r \in R$, this is equivalent to requiring that R is a principal ideal of \mathbb{A}.

2.2 Non-degenerate split quadratic alternative algebras

Let \mathbb{A} be a non-degenerate quadratic alternative algebra. It is well known that its norm form N is either anisotropic on \mathbb{A} or hyperbolic (i.e., has maximal Witt index). In the former case, \mathbb{A} is a division algebra, since $x \in \mathbb{A}$ is invertible if and only if $\mathrm{N}(x) \neq 0$, in the latter case \mathbb{A} is called split.
Two non-degenerate quadratic algebras are isomorphic if and only if their respective norm forms are equivalent quadratic forms. So, since any two hyperbolic quadratic forms in the same (even) dimension are equivalent, all non-degenerate split quadratic alternative algebras over \mathbb{K} with the same dimension over \mathbb{K} are isomorphic. This allows us to speak of the non-degenerate split quadratic alternative algebras over \mathbb{K}, which we will refer to as $\mathbb{K}, \mathbb{L}^{\prime}$, \mathbb{H}^{\prime} and \mathbb{O}^{\prime}. They can be described as follows (independently of the characteristic), see for instance [5].

Fact 2.1 Let \mathbb{A} be a non-degenerate split quadratic alternative algebra over a field \mathbb{K}. Then \mathbb{A} is isomorphic to either $\mathbb{K}, \mathbb{K} \times \mathbb{K}$, the 2×2-matrices $\mathcal{M}_{2}(\mathbb{K})$ over \mathbb{K} or the split octonions $\operatorname{CD}\left(\mathcal{M}_{2}(\mathbb{K}), 1\right)$.

The split octonions, being non-associative, cannot be given by ordinary matrices and their ordinary multiplication. Zorn's vector-matrices however are a special way of writing the split octonions as 2×2-matrices $M(a, b, c, d, x, y, z, u)$, the off-diagonal elements of which are vectors:

$$
\left.\mathbb{O}^{\prime} \cong\left\{\left(\left[\begin{array}{c}
a \\
c \\
z \\
u
\end{array}\right] \begin{array}{ccc}
b & x & y
\end{array}\right]\right): a, b, c, d, x, y, u, z \in \mathbb{K}\right\}
$$

and the multiplication is given as follows (with the usual dot product and vector product):

$$
\left(\begin{array}{cc}
a & \boldsymbol{v} \\
\boldsymbol{w} & d
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & \boldsymbol{v}^{\prime} \\
\boldsymbol{w}^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime}+\boldsymbol{v} \cdot \boldsymbol{w}^{\prime} & a \boldsymbol{v}^{\prime}+d^{\prime} \boldsymbol{v}+\boldsymbol{w} \times \boldsymbol{w}^{\prime} \\
a^{\prime} \boldsymbol{w}+d \boldsymbol{w}^{\prime}-\boldsymbol{v} \times \boldsymbol{v}^{\prime} & d d^{\prime}+\boldsymbol{v}^{\prime} \cdot \boldsymbol{w}
\end{array}\right),
$$

and norm (which can be seen as an element of \mathbb{K} indeed)

$$
\left(\begin{array}{cc}
a & \boldsymbol{v} \\
\boldsymbol{w} & d
\end{array}\right) \overline{\left(\begin{array}{cc}
a & \boldsymbol{v} \\
\boldsymbol{w} & d
\end{array}\right)}=\left(\begin{array}{cc}
a & \boldsymbol{v} \\
\boldsymbol{w} & d
\end{array}\right)\left(\begin{array}{cc}
d & -\boldsymbol{v} \\
-\boldsymbol{w} & a
\end{array}\right)=\left(\begin{array}{cc}
a d-b c-x z-y u & \mathbf{0} \\
\mathbf{0} & a d-b c-x z-y u
\end{array}\right) .
$$

2.3 Split quadratic alternative algebras with a level 1 degeneracy

Let \mathbb{A} be a degenerate quadratic alternative unital \mathbb{K}-algebra with a non-trivial radical R. In general, one can show that \mathbb{A} contains a non-degenerate quadratic associative unital algebra \mathbb{B} such that $\mathbb{A}=\mathbb{B} \oplus R$. The next proposition, the proof of which is based on methods occurring in [10] to classify the composition algebras, deals with the special case where R is a principal ideal.

Proposition 2.2 (Theorem 4.4.1 of [1]) Let \mathbb{A} be a degenerate quadratic alternative \mathbb{K}-algebra whose radical R is a principal ideal (t) for some $t \in \mathbb{A} \backslash\{0\}$. Then there exists a non-degenerate quadratic subalgebra \mathbb{B} of \mathbb{A} containing 1 such that $\mathbb{A}=\mathbb{B} \oplus t \mathbb{B}$. Moreover, if \mathbb{B} is split, then either \mathbb{A} is isomorphic to $\operatorname{CD}(\mathbb{B}, 0)$ where $\mathbb{B} \in\left\{\mathbb{K}, \mathbb{L}^{\prime}, \mathbb{H}^{\prime}\right\}$, or $\operatorname{dim}_{\mathbb{K}}(\mathbb{A}) \in\{3,6\}$. In the latter case, \mathbb{A} is isomorphic to the following respective quotients of $\operatorname{CD}(\mathbb{B}, 0)$:
(a) the upper triangular 2×2-matrices over \mathbb{K} (the ternions \mathbb{T});
(b) $\{M(a, b, c, d, 0, y, z, 0) \mid a, b, c, d, y, z \in \mathbb{K}\}$ (the sextonions \mathbb{S});

If \mathbb{B} is split and $\operatorname{dim}_{\mathbb{K}}(\mathbb{A})<8$, then \mathbb{A} is isomorphic to a subalgebra of the split octonions \mathbb{O}^{\prime}.
Notation. We will refer to the algebras $\mathbb{A}=\mathbb{B} \oplus t \mathbb{B}$ of the above proposition as "split quadratic alternative algebras with a level 1 degeneracy".

2.4 Veronese varieties associated to $\mathbb{T}, \mathbb{H}^{\prime}, \mathbb{S}$ and \mathbb{O}^{\prime}

Let \mathbb{A} be a split quadratic alternative \mathbb{K}-algebra with a level 1 degeneracy, i.e., an algebra as in Proposition 2.2: $\mathbb{T}, C D\left(\mathbb{L}^{\prime}, 0\right), \mathbb{S}$ or $\mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)$. To each of those, we associate a plane Veronese variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$, by which we mean the image the Veronese map of the following point-line geometry $G_{2}(\mathbb{K}, \mathbb{A})$: the points (resp. lines) are given by the triples in \mathbb{A} such that there is a left (resp. right) \mathbb{A}-linear combination that gives 1 , incidence is containment. The geometry $G_{2}(\mathbb{K}, \mathbb{A})$ is an instance of a ring projective plane, a "projective plane" with the ring \mathbb{A} as coordinatising structure (see for instance [15]). Since \mathbb{A} contains many non-invertible elements, it is hard to give a list of all points
and lines of $\mathrm{G}_{2}(\mathbb{K}, \mathbb{A})$. So instead we start with an affine part of $\mathrm{G}_{2}(\mathbb{K}, \mathbb{A})$ (the affine part consisting of points of the form $(1, B, C)$) and use the following partial Veronese map ρ, with $d:=\operatorname{dim}_{\mathbb{K}}(\mathbb{A})$:

$$
\rho: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{P}^{3 d+2}(\mathbb{K}):(1, B, C) \mapsto(1, B \bar{B}, C \bar{C}, B C, C, B)
$$

Remark 2.3 Usually, the Veronese map takes (y, z) to $(1, y \bar{y}, z \bar{z}, y \bar{z}, z, \bar{y})$, but we can change z to \bar{z}, and then obtain ($1, y \bar{y}, z \bar{z}, y z, \bar{z}, \bar{y}$), which linearly transforms into the above definition.

If $|\mathbb{K}|>2$, a calculation shows that a line L of $\mathbb{P}^{3 d+2}(\mathbb{K})$ containing three points of $\rho(\mathbb{A} \times \mathbb{A})$ has all its points in $\rho(\mathbb{A} \times \mathbb{A})$, except for the unique point on L in the hyperplane H_{0} given by the equation $X_{0}=0$. As a first step, we add the points $L \cap H_{0}$ for such lines L. Repeated steps of this process (one could show that two steps suffice) yield a point-set which is projectively closed: each line of $\mathbb{P}^{3 d+2}(\mathbb{K})$ is either contained in it, or meets it in at most two points. If $|\mathbb{K}|=2$, one can also define this closure, but we do not do this effort as we will not consider \mathbb{F}_{2} (see Remark 3.7).

Definition 2.4 For $|\mathbb{K}|>2$, we the Veronese variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ as the projective closure of $\rho(\mathbb{A} \times \mathbb{A})$.
Proposition 2.5 (Corollary 10.42 of $[3])$ Let $|\mathbb{K}|>2$. Then the Veronese varieties $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{L}^{\prime}\right)$, $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right), \mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ are isomorphic to the Segre variety $\mathcal{S}_{2,2}(\mathbb{K})$, the line Grassmannian $\mathcal{G}_{6,2}(\mathbb{K})$, the Cartan variety $\mathcal{E}_{6}(\mathbb{K})$, respectively.

We introduce some terminology.
Terminology. Let $\mathbb{P}^{N}(\mathbb{K})$ denote the N-dimensional projective space over \mathbb{K} generated by the points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$. In general, we call two points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ collinear if the line of $\mathbb{P}^{N}(\mathbb{K})$ determined by them is fully contained in $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$; in this case, the line is called a singular line. Also, the convex closure of two non-collinear points x, y of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ is given by the points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ which are contained in the smallest projective subspace of $\mathbb{P}^{N}(\mathbb{K})$ that contains all shortest paths between x and y (where shortest paths are viewed in the incidence graph). In $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right) \cong \mathcal{E}_{6}(\mathbb{K})$, the convex closure of any pair of non-collinear points is isomorphic to a hyperbolic quadric (of rank 5) in $\mathbb{P}^{9}(\mathbb{K})$, referred to as a a symp (following the parapolar spaces terminology, [13]).

2.4.1 The case $\mathbb{A}=\mathbb{S}$

We use $\mathbb{O}^{\prime} \cong\{M(a, b, c, d, x, y, z, u) \mid a, b, c, d, x, y, z, u \in \mathbb{K}\}$ (the Zorn matrices, see Subsection 2.2) and $\mathbb{S} \cong\{M(a, b, c, d, 0, y, z, 0) \mid a, b, c, d, y, z \in \mathbb{K}\}$. Note that $\mathbb{S}^{\prime}:=M(a, b, c, d, x, 0,0, u) \mid$ $a, b, c, d, x, u \in \mathbb{K}\} \cong \mathbb{S}$ and $\mathbb{H}^{\prime} \cong\{M(a, b, c, d, 0,0,0,0) \mid a, b, c, d \in \mathbb{K}\}$, so we may asume $\mathbb{H}^{\prime}=\mathbb{S} \cap \mathbb{S}^{\prime} \subseteq \mathbb{O}^{\prime}$. If $\mathbb{A}^{\prime} \subseteq \mathbb{A}$ then $\rho\left(\mathbb{A}^{\prime} \times \mathbb{A}^{\prime}\right) \subseteq \rho(\mathbb{A} \times \mathbb{A})$ and hence also $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{A}^{\prime}\right) \subseteq \mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$. So $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right)$ is a subgeometry of both $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, and the latter two are subgeometries of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right) \cong \mathcal{E}_{6}(\mathbb{K})$ (cf. Proposition 2.5). Take $B=M(a, b, c, d, x, y, z, u)$ and $C=$ $M\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right)$ in \mathbb{O}^{\prime}. Then $\rho(B, C)=\left(X_{0-26}\right)$, where $X_{i-j}=\left(x_{i}, \ldots, x_{j}\right)$, and we have

$$
\begin{aligned}
X_{0-2} & =\left(1, a d-b c-z x-u y, a^{\prime} d^{\prime}-b^{\prime} c^{\prime}-z^{\prime} x^{\prime}-u^{\prime} y^{\prime}\right), \\
X_{3-6} & =\left(a a^{\prime}+b c^{\prime}+x z^{\prime}+y u^{\prime}, d^{\prime} b+a b^{\prime}+z u^{\prime}-z^{\prime} u, a^{\prime} c+d c^{\prime}+x^{\prime} y-x y^{\prime}, d d^{\prime}+b^{\prime} c+x^{\prime} z+y^{\prime} u\right), \\
X_{7-10} & =\left(a x^{\prime}+d^{\prime} x+u c^{\prime}-c u^{\prime}, d^{\prime} y+a y^{\prime}+c z^{\prime}-c^{\prime} z, a^{\prime} z+d z^{\prime}+b y^{\prime}-b^{\prime} y, a^{\prime} u+d u^{\prime}+b^{\prime} x-b x^{\prime}\right), \\
X_{11-26} & =\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, a, b, c, d, x, y, z, u\right) .
\end{aligned}
$$

Note that, if $B, C \in \mathbb{S}$ (i.e., $x=y=x^{\prime}=y=0$), then $x_{i}=0$ for $i \in\{7,10,15,18,23,26\}=: J$; likewise, if $B, C \in \mathbb{S}^{\prime}$, then $x_{i}=0$ for $i \in\{8,9,16,17,24,25\}=: J^{\prime}$. Let $\left(e_{0}, \ldots, e_{26}\right)$ be the standard basis of $\mathbb{P}^{26}(\mathbb{K})$. Put $I=\{0, \ldots, 26\} \backslash J$ and $I^{\prime}=\{0, \ldots, 26\} \backslash J^{\prime}$ and define $Y:=\left\langle e_{i} \mid i \in J\right\rangle$ and $Y^{\prime}=\left\langle e_{i} \mid i \in J^{\prime}\right\rangle$, and finally $F:=\left\langle e_{i}: i \in I \cap I^{\prime}\right\rangle$. Clearly, $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ is contained in the 20-dimensional subspace $\langle F, Y\rangle=\left\langle e_{i} \mid i \in I\right\rangle$ and $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right)$ is contained in F. See also Figure 1. In the following fact, we gather important properties of the variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$.

Fact 2.6 (Subsection 5.2 .1 of $[1]$) (1) The variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ is the intersection of the 20 -space $\langle F, Y\rangle$ and $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$.
(2) Likewise, $F \cap \mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)=F \cap \mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ coincides with $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right)$ and is hence isomorphic to the line Grassmannian $\mathcal{G}:=\mathcal{G}_{6,2}(\mathbb{K})$ by Proposition 2.5.
(3) The subspace Y is a singular subspace of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, which is not contained in $\rho(\mathbb{S} \times \mathbb{S})$, so it is "at infinity".
(4) Each point p of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \backslash Y$ corresponds to a unique point p_{G} of \mathcal{G} and the set of points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \backslash Y$ corresponding with this point p_{G} forms an affine 4 -space, whose 3 -space at infinity U_{p} belongs to Y.
(5) In view of the foregoing and the transitivity properties in \mathcal{G}, we have transitivity on the set of pairs of collinear points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \backslash Y$ and on the set of non-collinear points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \backslash Y$.
(6) The correspondence between \mathcal{G} and Y, taking a point p of \mathcal{G} to the 3 -space U_{p}, is a linear duality.

Figure 1: A schematic representation of varieties isomorphic to $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ (living in $\langle F, Y\rangle \cong$ $\left\langle F, Y^{\prime}\right\rangle \cong \mathbb{P}^{20}(\mathbb{K})$), sharing the variety $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right) \cong \mathcal{G}_{6,2}(\mathbb{K})$ (living in $F \cong \mathbb{P}^{14}(\mathbb{K})$), viewed inside $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right) \cong \mathcal{E}_{6}(\mathbb{K})$ (living in $\left\langle F, Y, Y^{\prime}\right\rangle \cong \mathbb{P}^{26}(\mathbb{K})$). Y and Y^{\prime} are singular 5 -spaces of $\mathcal{E}_{6}(\mathbb{K})$.

The following proposition, whose proof is largely based on the correspondence given in (6) of Fact 2.6 , lists the possibilities for the intersection of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ with a symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right) \cong \mathcal{E}_{6}(\mathbb{K})$.

Proposition 2.7 (Proposition $\mathbf{5 . 2 . 1 1}$ of [1]) Let Σ be a symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ such that $\zeta:=\Sigma \cap$ $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ contains a pair of non-collinear points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$. Then either
(i) $Y \cap \Sigma$ is a line L, in which case ζ is a cone with 1 -dimensional vertex L and base isomorphic to a hyperbolic quadric in $\mathbb{P}^{5}(\mathbb{K})$, and hence $\zeta=L^{\perp} \cap \Sigma$;
(ii) $Y \cap \Sigma$ is a 4 -space, in which case $\zeta=\Sigma$.

In both cases, the convex closure (viewed in $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$) of two non-collinear points of ζ is ζ.
The symps of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$. We define $\Xi:=\left\{\Sigma \cap \mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \mid \operatorname{dim}(Y \cap \Sigma)=1\right\}$, secondly we put $\Theta:=\left\{\Sigma \cap \mathcal{V}_{2}(\mathbb{K}, \mathbb{S}) \mid \operatorname{dim}(Y \cap \Sigma)=4\right\}$.

2.4.2 The case $\mathbb{A}=C D\left(\mathbb{L}^{\prime}, 0\right)$

Here we use that $\mathbb{H}^{\prime \prime}:=\mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)$ is isomorphic to $\{M(a, 0,0, d, 0, y, z, 0) \mid a, d, y, z \in \mathbb{K}\}$. Clearly, $\mathbb{H}^{\prime \prime} \subseteq \mathbb{S}$ and hence $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$ belongs to $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ and is, as one can easily verify, contained in the 14 -space $\left\langle e_{i} \mid i \in I \backslash\{4,5,12,13,20,21\}\right\rangle$, which can also be given as $\left\langle Y, F^{\prime}\right\rangle$ where F^{\prime} is an 8 -space in F. The subspace Y is a singular 5 -space of $\mathbb{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$ as well. As in the first case, $\mathbb{V}_{2}(\mathbb{K}, \mathbb{S}) \cap\left\langle Y, F^{\prime}\right\rangle=\mathbb{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$ and $\mathbb{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right) \cap F^{\prime}=\mathbb{V}_{2}\left(\mathbb{K}, \mathbb{L}^{\prime}\right)=: \mathcal{S}$, and the latter is isomorphic to the Segre variety $\mathcal{S}_{2,2}(\mathbb{K})$ by Proposition 2.5.
Now, let $U \cong \mathbb{P}^{5}(\mathbb{K})$ be (an abstract) projective space whose line Grassmannian gives \mathcal{G}. Then the Segre variety \mathcal{S}, as subvariety of \mathcal{G}, arises as the set of lines of U intersecting two given disjoint planes π_{1} and π_{2} non-trivially. The correspondence between \mathcal{G} and Y (as given in (6) of Fact 2.6) implies that Y is isomorphic to the dual of U, and hence the lines of U intersecting both π_{1} and π_{2} non-trivially correspond to 3 -spaces having a line in common with two planes Z_{1} and Z_{2} in Y, and these 3 -spaces all arise as $U_{p}=p^{\perp} \cap Y$, for some point $p \in \mathcal{S}$. We then have the analogue of Proposition 2.7.

Proposition 2.8 (Proposition 5.2.15 of[1]) Let Σ be a symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ such that $\zeta:=\Sigma \cap$ $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$ contains at least two non-collinear points of $\left(\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right) \backslash Y\right) \cup Z_{1} \cup Z_{2}$. Then either
(i) $Y \cap \Sigma$ is a line V, in which case ζ is a cone with vertex V and base isomorphic to a hyperbolic quadric in $\mathbb{P}^{3}(\mathbb{K})$ (so $\zeta \subseteq L^{\perp} \cap \Sigma$); or,
(ii) $Y \cap \Sigma$ is a 4-space W generated by a line V_{i} in Z_{i} and the plane Z_{j}, with $\{i, j\}=\{1,2\}$, in which case ζ is a cone with vertex V_{i} and base isomorphic to a hyperbolic quadric in $\mathbb{P}^{5}(\mathbb{K})$.

In both cases, the convex closure (viewed in $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$) of two non-collinear points of ζ is ζ.

The symps of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$. We put $\Xi:=\left\{\Sigma \cap \mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right) \mid \operatorname{dim}(Y \cap \Sigma)=1\right\}$ and $\Theta:=\left\{\Sigma \cap \mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H} \mathbb{H}^{\prime \prime}\right) \mid\right.$ $Y \cap \Sigma$ is a 4 -space containing Z_{1} or $\left.Z_{2}\right\}$.

2.4.3 The case $\mathbb{A}=\mathbb{T}$

Here we use $\mathbb{T} \cong\{M(a, 0,0, d, 0, y, 0,0) \mid a, d, y \in \mathbb{K}\}$, and we obtain that $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$ arises as the intersection of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime \prime}\right)$ with the 11 -space generated by the Segre variety \mathcal{S} in F and by the plane Z_{1} in Y. Again, we have:

Proposition 2.9 (Proposition 5.2.18 of[1]) Let Σ be a symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ such that $\zeta:=\Sigma \cap$ $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$ contains at least two non-collinear points of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$. Then either
(i) $\Sigma \cap Z_{1}$ is a point V, in which case ζ is a cone with vertex V and base isomorphic to a hyperbolic quadrangle over \mathbb{K};
(ii) $\Sigma \cap Z_{1}=Z_{1}$, in which case ζ is isomorphic to a hyperbolic quadric in $\mathbb{P}^{5}(\mathbb{K})$.

In both cases, the convex closure (viewed in $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$) of two non-collinear points of ζ is ζ.

The symps of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$. We put $\Xi:=\left\{\Sigma \cap \mathcal{V}_{2}(\mathbb{K}, \mathbb{T}) \mid \operatorname{dim}\left(Z_{1} \cap \Sigma\right)=0\right\}$ and $\Theta:=\left\{\Sigma \cap \mathcal{V}_{2}(\mathbb{K}, \mathbb{T}) \mid\right.$ $\left.Z_{1} \subseteq \Sigma\right\}$.

2.4.4 The case $\mathbb{A}=C D\left(\mathbb{H}^{\prime}, 0\right)$

As alluded to before, $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)\right)$ does not exhibit the same behaviour as its three siblings $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$. One thing that goes wrong for instance, is the following. Firstly, the schematic representation (cf. Figure 1) of the embedding of varieties isomorphic to
$\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ and containing the same line Grassmannian variety $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right)$, is still applicable in this case. Consider the 5 -spaces Y, which are pairwise disjoint singular 5 -spaces in an 11-dimensional subspaces. A calculation shows that these are on a regulus of $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)\right.$) (meaning that for each point of Y there is a unique line of $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{H}^{\prime}, 0\right)\right)$ which meets the other such 5 -spaces $)$, whereas in $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, these 5 -spaces were pairwise opposite (meaning that no point of one of them is on a line of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ with a point of one of the others). This is the reason why the convex closure of two non-collinear points of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{H}^{\prime}\right)$ is not a quadric, as opposed to the situation in $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ (cf. Propositions 2.7, 2.8 and 2.9).

2.5 Properties of the Veronese varieties $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, C D\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$

We show some properties satisfied by each of the varieties $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ (which we will later on use as their characterising properties). In case of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, we define Z as the points of the subspace Y; in $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ we define Z as the union of the two subspaces Z_{1} and Z_{2} and Y as $\left\langle Z_{1}, Z_{2}\right\rangle$. In the three varieties $\mathcal{V}_{2}(\mathbb{K}, \cdot)$, we set X equal to the points in $\mathcal{V}_{2}(\mathbb{K}, \cdot) \backslash Y$. Recall the definitions of Ξ and Θ.

Proposition 2.10 The Veronese varieties $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, C D\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ satisfy the following three properties:
(S1) Each pair of distinct points $p_{1}, p_{2} \in X \cup Z$ is contained in a member of $\Xi \cup \Theta$;
(S2) for each pair of distinct members $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$, the intersection $\zeta_{1} \cap \zeta_{2}$ is a singular subspace;
(S3) for each point $x \in X$, there exists ξ_{1}, ξ_{2} in Ξ such that $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$.

Proof Consider $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$, where $\mathbb{A} \in\left\{\mathbb{T}, C D\left(\mathbb{L}^{\prime}, 0\right), \mathbb{S}\right\}$.
(S1) If p_{1} and p_{2} are non-collinear, then they determine a unique symp Σ of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$, which by assumption intersects $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ in two non-collinear points, so $\Sigma \cap \mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right) \in \Xi \cup \Theta$ by Propositions 2.9, 2.8 and 2.7. If p_{1} and p_{2} are on a line, then we can always find a point p_{3} in $X \cup Z$ which is collinear to p_{1} and not to p_{2}. Then the symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ containing p_{2} and p_{3} also contains p_{1} and the same argument as above applies.
(S2) This is immediate as each member of $\Xi \cup \Theta$ is contained in a symp of $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ and two symps of the latter intersect in a singular subspace, which at its turn will intersect $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ in a singular subspace.
(S3) This can be shown by using the correspondence between the "base" variety (the part contained in F) and the subspace Y (see Observation (6)), together with the properties of the base variety.

3 Dual split Veronese sets

We start with recalling some properties of quadrics and setting notation, as we will need this all the time. Firstly, a (non-degenerate) quadric Q in $\mathbb{P}^{n}(\mathbb{K}), n \in \mathbb{N}$, is the null set of an (irreducible) quadratic homogeneous polynomial in the (homogeneous) coordinates of points of $\mathbb{P}^{n}(\mathbb{K})$. A line $L \nsubseteq Q$ of $\mathbb{P}^{n}(\mathbb{K})$ either meets Q in 0,1 or 2 points. Two points x, x^{\prime} of Q are collinear if $x x^{\prime} \subseteq Q$. A subspace S of $\mathbb{P}^{N}(\mathbb{K})$ is called singular (w.r.t. Q) if $S \subseteq Q$. The rank of Q is one more than the maximum dimension of a singular subspace. The rank is sometimes also called the Witt index.

Let x be any point of Q. Then a line of $\mathbb{P}^{n}(\mathbb{K})$ containing x that is either singular or meets Q in x only is called a tangent line (to Q at x). The union $T_{x}(Q)$ of all tangent lines to Q at x is a subspace of $\mathbb{P}^{n}(\mathbb{K})$ with $\operatorname{dim} T_{x}(Q) \geq n-1$. Put $V:=\left\{x \in Q \mid T_{x}(Q)=\mathbb{P}^{n}(\mathbb{K})\right\}$. Then V is a
subspace of $\mathbb{P}^{n}(\mathbb{K})$, called the vertex of Q. If V is empty, then Q is non-degenerate; if not, then Q is a cone with vertex V and base a non-degenerate quadric Q^{\prime}.
A property that we will often use is the one-or-all property: for each point $x \in Q$ and line $L \subseteq Q$ with $x \notin L$, the point x is collinear either to a unique point of L or to all points of L. Finally, a quadric is called hyperbolic if a submaximal singular subspace (i.e., of dimension $r-2$ where r is the rank) is contained in exactly to maximal singular subspaces (i.e., of dimension $r-1$). This means that the set of maximal singular subspaces falls naturally in two families, where two maximal singular subspaces S_{1} and S_{2} are in the same family if and only if $\operatorname{dim} S_{i}$ has the same parity as $\operatorname{dim}\left(S_{1} \cap S_{2}\right)$. We can now introduce the quadrics that we will be working with.

Definition 3.1 Let R, V be integers with $V \geq-1$ and $R \geq 1$. An (R, V)-cone C is a cone with a V-dimensional vertex and as base a non-degenerate hyperbolic quadric of rank $R+1$; C without its vertex is called an (R, V)-tube.

Given a tube, there is a unique cone containing the tube, i.e., the vertex can be determined.

3.1 Definition

As mentioned after Propositions 2.7, 2.8 and 2.9, there are two types of symps. Hence we need to work with two families of (R, V)-tubes with a different behaviour, 'ordinary tubes' (Ξ) and 'special tubes' (Θ); dually, we work with 'ordinary points' (X) and 'special points' (Z). Informally speaking, an ordinary tube consists of ordinary points only; special points occur in the vertex of ordinary tubes and in special tubes and their vertices. The definition for the dual split Veronese sets uses the following set-up. When reading this, one may think of X and Z as disjoint sets, this is not a requirement but we will prove in Lemma 4.3 the even stronger statement that X and $\langle Z\rangle$ are disjoint if (X, Z, Ξ, Θ) is a (pre-) DSV .

Definition 3.2 Let $r, v, r^{\prime}, v^{\prime}, N$ be integers which are at least -1 with $r^{\prime}>r \geq 1$ and put $d:=2 r+v+1$ and $d^{\prime}:=2 r^{\prime}+v^{\prime}+1$. An $\left(r, v, r^{\prime}, v^{\prime} ; N\right)$-system is a quadruple (X, Z, Ξ, Θ), where X and Z are point sets of $\mathbb{P}^{N}(\mathbb{K})$ with $Y:=\langle Z\rangle$ and $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$, and Ξ is a collection of $(d+1)$-spaces of $\mathbb{P}^{N}(\mathbb{K})$ with $|\Xi|>1$ and Θ is a possibly empty collection of $\left(d^{\prime}+1\right)$-spaces of $\mathbb{P}^{N}(\mathbb{K})$ such that:

- For each $\xi \in \Xi$, the intersection $X Y(\xi):=(X \cup Y) \cap \xi$ is an (r, v)-cone $C_{\xi}, Y(\xi):=Y \cap \xi$ is the vertex of C_{ξ} and $X(\xi):=X \cap \xi$ is the (r, v)-tube $C_{\xi} \backslash Y(\xi)$;
- for each $\theta \in \Theta$, the intersection $X Y(\theta):=(X \cup Y) \cap \theta$ is an $\left(r^{\prime}, v^{\prime}\right)$-cone $C_{\theta}, Z(\theta):=Z \cap \theta$ the union of the vertex V_{θ} of C_{θ} and some r^{\prime}-space of $X Y(\theta) \backslash V_{\theta}$; the intersection $Y(\theta):=Y \cap \theta$ is the maximal singular subspace $\langle Z(\theta)\rangle$ of C_{θ} and $X(\theta):=X \cap \theta$ is $C_{\theta} \backslash Y(\theta)$.

A subspace S of $\mathbb{P}^{N}(\mathbb{K})$ is called singular if all its points are contained in $X \cup Y$. For each point $x \in X$, we denote by T_{x} the subspace spanned by all singular lines through x.

Definition 3.3 An $\left(r, v, r^{\prime}, v^{\prime} ; N\right)$-system (X, Z, Ξ, Θ) is called a dual split Veronese set (DSV for short) with parameters ($r, v, r^{\prime}, v^{\prime}$) if the following axioms are satisfied:
(S1) Each pair of distinct points $p_{1}, p_{2} \in X \cup Z$ is contained in a member of $\Xi \cup \Theta$;
(S2) the intersection $\zeta_{1} \cap \zeta_{2}$ of two distinct members $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$ is singular;
(S3) for each $x \in X$, therare are ξ_{1}, ξ_{2} in Ξ with $x \in \xi_{1} \cap \xi_{2}$ and $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$.
If (X, Z, Ξ, Θ) satisfies (S1) and (S2), then we call it a dual split pre-Veronese set (preDSV for short).

Remark 3.4 If Θ is empty then r^{\prime} and v^{\prime} can be anything, so we omit them and speak of an $\left(r, v^{\prime} ; N\right)$-system and of a (pre-)DSV with parameters (r, v) instead.

3.2 Examples

As was proven in Proposition 2.10, the Veronese varieties $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, C D\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ are DSVs. Their parameters are discussed below. In this section, we describe more general classes of $\left(r, v, r^{\prime}, v^{\prime} ; N\right)$-systems which contain the Veronese varieties, as we will encounter those throughout the proof.

3.2.1 (Half) dual Segre varieties

The Veronese variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$ defined using the ternions \mathbb{T} is an example of what we will call a half dual Segre variety; the Veronese variety $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ using the degenerate quaternions $\operatorname{CD}\left(\mathbb{L}^{\prime}, 0\right)$ is an example of so-called dual Segre variety. The adjective 'half' will become clear when the dual Segre varieties are introduced. Both classes of examples hence use a Segre variety, which we recall below. Let ℓ and k be natural numbers with $\ell, k \geq 1$ and put $m:=(\ell+1)(k+1)-1$.

Segre varieties with two families of maximal singular subspaces. The Segre variety $\mathcal{S}_{\ell, k}(\mathbb{K})$ is the set of points in the image of the Segre map σ :

$$
\sigma: \mathbb{P}^{\ell}(\mathbb{K}) \times \mathbb{P}^{k}(\mathbb{K}) \rightarrow \mathbb{P}^{m}(\mathbb{K}):\left(\left(x_{0}, . ., x_{\ell}\right),\left(y_{0}, \ldots, y_{k}\right)\right) \mapsto\left(x_{i} y_{j}\right)_{0 \leq i \leq \ell, 0 \leq j \leq k}
$$

This product can be visualised in $\mathbb{P}^{m}(\mathbb{K})$ by taking an ℓ-space Π_{ℓ} and a k-space Π_{k} intersecting each other in precisely a point, and considering $\Pi_{\ell} \times \Pi_{k}$. There are two natural families of maximal singular subspaces, where two maximal singular subspaces belong to the same family if and only if they are disjoint. This is a pre-DSV with Θ and Z empty and parameters $(1,-1)$.
Half dual Segre varieties. Inside $\mathbb{P}^{m+\ell+1}(\mathbb{K})$, we consider a Segre variety $S:=\mathcal{S}_{\ell, k}(\mathbb{K})$ and an ℓ-space Y complementary to $\langle\mathrm{S}\rangle$. Let S be any ℓ-space of S and χ_{S} a linear duality between S and Y, which hence takes a point of S to a hyperplane of Y. We extend χ_{S} to a map χ from all points of S to Y as follows. Given a point $x \in \mathrm{~S} \backslash S$, let x_{S} be the unique point in S collinear to x; if $x \in S$ then $x_{S}:=x$. Then we put $\chi(x):=\chi_{S}\left(x_{S}\right)$. We use this to define a $(1, \ell-2, \ell,-1 ; m+\ell+1)$-system (X, Z, Ξ, Θ). The set X is defined as $\{\langle x, \chi(x)\rangle \backslash \chi(x) \mid x \in \mathrm{~S}\}$ and $Z:=Y^{1}$. A member of Ξ has as base a hyperbolic quadrangle (for a generic member, this can be thought of as inside S) and as vertex a $(\ell-2)$-space of Y; a member of Θ has empty vertex and is a hyperbolic quadric of rank $\ell+1$, and one of its maximal singular subspaces is Y. We call this a half dual Segre variety and denote it by $\mathcal{H D} \mathcal{S}_{\ell, k}(\mathbb{K})$. One can verify that $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$ is isomorphic to $\mathcal{H D} \mathcal{S}_{2,2}(\mathbb{K})$ (compare with the description given in Subsection 2.4).
Dual Segre varieties. Inside $\mathbb{P}^{m+2 \ell+2}(\mathbb{K})$, we consider a Segre variety $S:=\mathcal{S}_{\ell, \ell}(\mathbb{K})$, and in an $(2 \ell+1)$-space Y complementary to it, we take two disjoint subspaces Z_{1} and Z_{2} of dimension ℓ. As above, let S_{1} be any ℓ-space of S , and also take any ℓ-space S_{2} of S which intersects S_{1} in a point. For $i=1,2$, let $\chi_{S_{i}}$ be a linear duality between S_{i} and Z_{i}, thus taking a point of S_{i} to a hyperplane of Z_{i}. We extend the maps $\chi_{S_{1}}$ and $\chi_{S_{2}}$ to a map χ from all points of S to $\left\langle Z_{1}, Z_{2}\right\rangle$ by defining, for a point x of S , its image $\chi(x)$ as $\left\langle\chi_{S_{1}}\left(x_{S_{1}}\right), \chi_{S_{2}}\left(x_{S_{2}}\right)\right\rangle$, where $x_{S_{i}}$ is equal to x if $x \in S_{i}$ or it is the unique point in S_{i} collinear to x if $x \notin S_{i}$. We again use this to define a $(1,2 \ell-1, \ell, \ell-1 ; m+2 \ell+2)$-system (X, Z, Ξ, Θ). The set X is defined as $\{\langle x, \chi(x)\rangle \backslash \chi(x) \mid x \in \mathrm{~S}\}$, and $Z:=S_{1} \cup S_{2}$. A member of Ξ has as base a hyperbolic quadrangle (for a generic member, this can be thought of as inside S) and its vertex is a ($2 \ell-1$)-space of Y generated by a hyperplane of S_{1} and a hyperplane of S_{2}; a member of Θ has as vertex a hyperplane of S_{1} or S_{2} and is a hyperbolic

[^1]quadric of rank $\ell+1$, and S_{2} or S_{1}, respectively, is one of its maximal singular subspaces. This is called a dual Segre variety, which we will denote by $\mathcal{D} \mathcal{S}_{\ell, \ell}(\mathbb{K})$. One can verify that $\mathcal{D} \mathcal{S}_{2,2}(\mathbb{K})$ is isomorphic to $\mathcal{V}_{2}\left(\mathbb{K}, \operatorname{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$.
We add that the half dual Segre variety $\mathcal{H D} \mathcal{S}_{\ell, \ell}(\mathbb{K})$ can be obtained from the dual Segre variety $\mathcal{D} \mathcal{S}_{\ell, \ell}(\mathbb{K})$ by projecting the latter from the subspace Z_{2}.

3.2.2 Dual line Grassmannians

The Veronese variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ defined using the sextonions \mathbb{S} is an example of what we will call a dual line Grassmannian variety. This hence builds upon ordinare line Grassmannians, see below. Let n be a natural number with $n \geq 2$ and put $m=\frac{1}{2}\left(n^{2}+n\right)-1$.
Line Grassmannians of projective spaces. The line Grassmannian $\mathcal{G}_{n+1,2}(\mathbb{K})$ of $\mathbb{P}^{n}(\mathbb{K})$ is the set of points in $\mathbb{P}^{m}(\mathbb{K})$ obtained by taking the images of all lines of $\mathbb{P}^{n}(\mathbb{K})$ under the Plücker map

$$
\mathrm{pl}:\left(\left\langle x_{0}, x_{1}, \ldots, x_{n}\right),\left(y_{0}, y_{1}, \ldots, y_{n}\right)\right\rangle \mapsto\left(\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right|\right)_{0 \leq i<j \leq n}
$$

This is a pre-DSV with Θ and Z empty and parameters $(2,-1)$.
Dual line Grassmannians. Consider, inside $\mathbb{P}^{m+n+1}(\mathbb{K})$, an n-space Y and a complementary subspace F of dimension m. In F, take a line Grassmannian $\mathcal{G}:=\mathcal{G}_{n+1,2}(\mathbb{K})$, which is the image under the Plücker map pl of a certain n-dimensional projective space \mathbb{P}. Let $\chi^{\prime}: \mathbb{P} \rightarrow Y$ be a linear duality, and note that each line of \mathbb{P} corresponds to a $(n-2)$-space of Y. As such, we can define a map χ between \mathcal{G} and Y which is defined by, for each point $x \in \mathcal{G}$, taking x to $\chi^{\prime}\left(\mathbf{p l}^{-1}(x)\right)$. The set X is defined as $\{\langle x, \chi(x)\rangle \backslash \chi(x) \mid x \in \mathcal{G}\}$, and $Z:=Y$. Also here, we use this to define a $(2, n-4, n-1,-1 ; m+n+1)$-system (X, Z, Ξ, Θ). A member of Ξ has as base a hyperbolic quadric of rank 3 (for a generic member, this can be thought of as inside \mathcal{G}) and its vertex is a ($n-4$)-space of Y; a member of Θ is a non-degenerate hyperbolic quadric of rank n, i.e., with empty vertex, and it has a hyperplane of Y as one of its maximal singular subspaces. This is called a dual line Grassmannian, which we will denote by $\mathcal{D} \mathcal{G}_{n+1,2}(\mathbb{K})$. One can verify that $\mathcal{D} \mathcal{G}_{6,2}(\mathbb{K})$ is isomorphic to $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$.
We do not explicitly claim that the (half) dual Segre varieties and the dual line Grassmannians with general parameters are pre-DSVs, as this is not our main concern, we merely describe these geometries as they will arise naturally when studying the pre-DSVs. Yet it should be conceivable that they satisfy (S1) and (S2). They will in general not satisfy (S3), because for large enough parameters, the tangent space in a point is bigger than the subspace generated by the tangent spaces in that point of two symps through that point. For the specific parameters which correspond to Veronese varieties (or subvarieties of those), we have:

Proposition 3.5 The varieties $\mathcal{H D}_{2,2}(\mathbb{K}), \mathcal{D S}_{2,2}(\mathbb{K})$ and $\mathcal{D G}_{6,2}(\mathbb{K})$ are isomorphic to $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$, $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, respectively, and hence they are dual split Veronese sets, with respective parameters $(1,0,2,-1),(1,1,2,1),(2,1,4,-1)$. The variety $\mathcal{H D} \mathcal{S}_{2,1}(\mathbb{K})$ is a subvariety of $\mathcal{H D S}_{2,2}(\mathbb{K})$ and is also a dual split Veronese sets.

Proof The isomorphisms follow from the description of $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T}), \mathcal{V}_{2}\left(\mathbb{K}, C D\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ in Section 2.4: the decomposition into a subspace Y and a "base variety" (which is the Segre variety $\mathcal{S}_{2,2}(\mathbb{K})$ in the smallest two cases and the line Grassmannian $\mathcal{G}_{6,2}(\mathbb{K})$ in the largest case) is given, together with the structure of $p^{\perp} \cap Y$ for each point p in the base variety. The fact that $\mathcal{V}_{2}(\mathbb{K}, \mathbb{T})$, $\mathcal{V}_{2}\left(\mathbb{K}, \mathrm{CD}\left(\mathbb{L}^{\prime}, 0\right)\right)$ and $\mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$ are DSVs follows from Proposition 2.10. By definition, $\mathcal{H D} \mathcal{S}_{2,1}(\mathbb{K})$ is a $(1,0,2,-1 ; 8)$-system. Since it is clearly are contained in $\mathcal{H D S} \mathcal{D}_{2,2}(\mathbb{K})$ it is straightforward to check that it inherites Axioms (S1) and (S2). A verification shows that also axiom (S3) holds.

3.3 Main result

Main Result 3.6 Let (X, Z, Ξ, Θ) be a dual split Veronese set with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ where $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for some arbitrary field \mathbb{K} with $|\mathbb{K}|>2$. If $|\Theta| \geq 1$, then X is projectively equivalent to a cone with a vertex V^{\prime} of dimension v^{\prime} over one of the following varieties:
(i) A half dual Segre variety $\mathcal{H D}_{2, k}(\mathbb{K})$, where $k \in\{1,2\}$, which is a dual split Veronese set with parameters $(1,0,2,-1)$;
(ii) A dual line Grassmannian variety $\mathcal{D} \mathcal{G}_{6,2}(\mathbb{K})$, which is a dual split Veronese set with parameters $(2,1,4,-1)$,
or X is projectively equivalent to:
(iii) A dual Segre variety $\mathcal{D}_{2,2}(\mathbb{K})$, with parameters $(1,1,2,1)$.

In particular, these varieties are subvarieties of the Veronese variety $\mathcal{V}_{2}\left(\mathbb{K}, \mathbb{O}^{\prime}\right)$ over the split octonions \mathbb{O}^{\prime}. Apart from $\mathcal{H D} \mathcal{S}_{2,1}(\mathbb{K})$, all of them are a Veronese variety $\mathcal{V}_{2}(\mathbb{K}, \mathbb{A})$ for some split quadratic alternative algebra \mathbb{A} whose radical is a principal ideal and every such Veronese variety occurs.

Lemma 4.14 explains why in the above we speak of a cone with vertex V^{\prime}. A brief structure the proof is given in Subsection 1.4, for more details on its inductive nature, see Section 5.

Remark 3.7 We exclude the field of two elements in the above because already one of the very preliminary lemmas (Lemma 4.1) might fail if $|\mathbb{K}|=2$. An alternative approach is required. Seeing the high cost and low benefits, we did not pursue this. We know of no counterexamples.

The next theorem contains the special case in which Θ is empty. This case reduces almost immediately to the Main Result of [12], see also Theorem 1.1. On the one hand, we mention this because it shows that the current result extends this characterisation in a natural way, on the other hand, we will need this in the course of the proof of Main Result 3.6.

Theorem 3.8 Let (X, Z, Ξ, Θ) be a dual split Veronese set with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ where $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for some arbitrary field \mathbb{K}. If $|\Theta|=0$, then all members of Ξ have $\langle Z\rangle$ as their vertex and X is projectively equivalent to a cone with a vertex $\langle Z\rangle$ over one of the following varieties:
$(r=1)$ a Segre variety $\mathcal{S}_{1,2}(\mathbb{K})$ in $\mathbb{P}^{5}(\mathbb{K})$ or $\mathcal{S}_{2,2}(\mathbb{K})$ in $\mathbb{P}^{8}(\mathbb{K})$;
$(r=2)$ a line Grassmannian $\mathcal{G}_{5,2}(\mathbb{K})$ in $\mathbb{P}^{9}(\mathbb{K})$ or $\mathcal{G}_{6,2}(\mathbb{K})$ in $\mathbb{P}^{14}(\mathbb{K})$;
$(r=4)$ the Cartan variety $\mathcal{E}_{6}(\mathbb{K})$ in $\mathbb{P}^{26}(\mathbb{K})$.
Proof This is proven in Lemma 4.15 and Proposition 4.16.

4 Preliminaries

For now, we do not invoke axiom (S3), since many properties can be deduced without it.

Standing hypothesis. Throughout, let (X, Z, Ξ, Θ) be a pre-DSV with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ with $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for an arbitrary field $|\mathbb{K}|>2$.

Notation. Recall that a subspace S of $\mathbb{P}^{N}(\mathbb{K})$ is called singular if $S \subseteq X \cup Y$. If moreover $S \subseteq X$, then we call S an X-space. Note that each $\xi \in \Xi$ has r-dimensional X-spaces and each $\theta \in \Theta$ has r^{\prime}-dimensional X-spaces. Two subspaces S_{1}, S_{2} are called collinear if there is a singular subspace containing them; we denote this by $S_{1} \perp S_{2}$.

4.1 Basic properties

We start with some direct consequences of Axioms (S1) and (S2). The following refines (S1).

Lemma 4.1 Suppose p_{1} and p_{2} are non-collinear points of $X \cup Z$. Then there is a unique member of $\Xi \cup \Theta$ containing them, denoted by $\left[p_{1}, p_{2}\right]$. If p_{1} or p_{2} belongs to Z, then $\left[p_{1}, p_{2}\right] \in \Theta$.

Proof $\operatorname{By}(\mathrm{S} 1)$, there exists a $\zeta \in \Xi \cup \Theta$ containing p_{1} and p_{2}. If $\zeta^{\prime} \in \Xi \cup \Theta$ also contains p_{1} and p_{2}, and $\zeta \neq \zeta^{\prime}$, then (S2) implies that $\zeta \cap \zeta^{\prime}$ is a singular subspace containing p_{1}, p_{2}. This contradicts the fact that p_{1} and p_{2} are not collinear. If $\zeta \in \Xi$, then by Definition $3.2, Y(\zeta)=Y \cap \zeta$ is the vertex of ζ and its points are hence collinear to all points of $X Y(\zeta)$. So if $p_{1} \in Z \subseteq Y$, then p_{1} would be collinear to p_{2}, a contradiction; likewise if $p_{2} \in Z$.

Lemma 4.2 The set X is non-empty and each $x \in X$ is contained in a member of $\Xi \cup \Theta$.

Proof Take any $\zeta \in \Xi \cup \Theta$ (recall that Ξ is non-empty by Definition 3.2). Then $X(\zeta)=X \cap \zeta \subseteq X$ is non-empty. Now take any $x \in X$. If $x \in X(\zeta)$, the statement follows, so suppose $x \notin X(\zeta)$. Take any point $x^{\prime} \in X(\zeta)$. By (S1), x and x^{\prime} are cotnained in a member of $\Xi \cup \Theta$.

Lemma 4.3 The set X is disjoint from Y.

Proof Suppose for a contradiction that p is contained in both X and Y. Lemma 4.2 yields a $\zeta \in \Xi \cup \Theta$ containing p. By Definition 3.2, $X(\zeta)$ and $Y(\theta)$ are disjoint, a contradiction.

Lemma 4.4 A line of $\mathbb{P}^{N}(\mathbb{K})$ containing at least three points of $X \cup Y$ is singular. A singular line of $\mathbb{P}^{N}(\mathbb{K})$ containing a point of X, contains at most one point of Y.

Proof Let L be line of $\mathbb{P}^{N}(\mathbb{K})$ with $|L \cap(X \cup Y)| \geq 3$. Observe that, if L contains two points of Y, then $L \subseteq Y$ since the latter is a subspace (generated by the points of Z) by definition. So we may assume that L contains at least two points x_{1}, x_{2} of X. By (S1), these are contained in a member ζ of $\Xi \cup \Theta$. Then $L \subseteq \zeta$. Since a non-singular line in ζ would meet the quadric $X Y(\zeta)$ in at most two points, it follows that L is singular. If L contains a point of X, then by Lemma 4.3, $L \nsubseteq Y$. Since Y is a subspace, $L \cap Y$ is at most one point.

Lemma 4.5 Let L_{1} and L_{2} be two singular lines both not contained in Y, intersecting each other in a unique point s. Then either $\left\langle L_{1}, L_{2}\right\rangle$ is a singular plane or it is contained in a unique member of $\Xi \cup \Theta$, denoted $\left[L_{1}, L_{2}\right]$.

Proof For $i=1,2, L_{i} \nsubseteq Y$ means that L_{i} contains at most one point of Y, according to Lemma 4.4. Therefore, and since $|\mathbb{K}|>2$, we can take distinct X-points $x_{i}, x_{i}^{\prime} \in L_{i} \backslash\{s\}, i=1,2$. Suppose first that x_{1} is not collinear to x_{2}. Then they determine a unique member $\left[x_{1}, x_{2}\right] \in \Xi \cup \Theta$ by Lemma 4.1. By Lemma 4.4, x_{1} and x_{2} are the only points of $X \cup Y$ on $x_{1} x_{2}$. Since $\left\langle L_{1}, L_{2}\right\rangle$ is a plane of $\mathbb{P}^{N}(\mathbb{K})$, the line $x_{1}^{\prime} x_{2}^{\prime}$ intersects $x_{1} x_{2}$ in a point p, distinct from x_{1}, x_{2}. By the foregoing, $p \notin X \cup Y$ and as such the line $x_{1}^{\prime} x_{2}^{\prime}$ is not singular. So also $x_{1}^{\prime}, x_{2}^{\prime}$ determine a unique member $\left[x_{1}^{\prime}, x_{2}^{\prime}\right] \in \Xi \cup \Theta$. If $\left[x_{1}, x_{2}\right]$ and $\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ are distinct, then by (S2), $p \in\left[x_{1}, x_{2}\right] \cap\left[x_{1}^{\prime}, x_{2}^{\prime}\right] \subseteq X \cup Y$, a contradiction. Hence $\left[x_{1}, x_{2}\right]$ and $\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ coincide and therefore they contain $L_{1}=x_{1} x_{1}^{\prime}$ and $L_{2}=x_{2} x_{2}^{\prime}$. Since each member of $\Xi \cup \Theta$ containing $L_{1} \cup L_{2}$ in particular contains x_{1} and x_{2}, it follows from Lemma 4.1 that $\left[x_{1}, x_{2}\right.$] is the unique member of $\Xi \cup \Theta$ containing $L_{1} \cup L_{2}$, and hence also $\left\langle L_{1}, L_{2}\right\rangle$. Next, suppose that $x_{1} \perp x_{2}$ for each pair of X-points $x_{i} \in L_{i} \backslash\{s\}, i=1,2$. Let $p \in\left\langle L_{1}, L_{2}\right\rangle \backslash\left(L_{1} \cup L_{2}\right)$ be arbitrary. As $|\mathbb{K}|>2$, there is a line through p meeting L_{1} and L_{2} in distinct X-points. By assumption, these X-points are collinear and hence $p \in X \cup Y$. We conclude that the plane $\left\langle L_{1}, L_{2}\right\rangle$ is singular indeed.

Definition 4.6 For each point $p \in X \cup Y$, we denote by p^{\perp} the union of all singular lines through p with at most one point in Y (i.e., not entirely contained in Y).

The following lemma expresses that, for $\zeta \in \Xi \cup \Theta$, the quadric $X Y(\zeta)$ can be obtained as the convex closure of any two of its X-points, i.e., any shortest path between two non-collinear points of $X Y(\zeta)$ using lines that are not fully contained in Y is contained in $X Y(\zeta)$.

Lemma 4.7 Let $\zeta \in \Xi \cup \Theta$ and $p \in(X \cup Y) \backslash \zeta$ arbitrary. Then $p^{\perp} \cap \zeta$ is a singular subspace. In other words, a point of $X \cup Y$ (resp. X) collinear to two non-collinear points of $X(\zeta)$ (resp. $X Y(\zeta)$), belongs to ζ.

Proof If $\left|p^{\perp} \cap \zeta\right| \leq 1$, the first assertion is trivial. So suppose $\left|p^{\perp} \cap \zeta\right| \geq 2$ and let p_{1}, p_{2} be distinct points in $p^{\perp} \cap \zeta$. Put $L_{i}:=p p_{i}, i=1,2$. Then L_{1} and L_{2} are singular lines, both not contained in Y (by definition of p^{\perp}). If p_{1} and p_{2} are not collinear, then Lemma 4.5 implies that $p \in\left[L_{1}, L_{2}\right]=\left[p_{1}, p_{2}\right]=\zeta$, a contradiction. So p_{1} and p_{2} are collinear. Put $L=p_{1} p_{2}$ and let p_{3} be a third point on L. We show that $L_{3}:=p p_{3}$ is singular too. Indeed, if p and p_{3} are not collinear, then it follows from Lemma 4.5 that $\left[p, p_{3}\right]$ contains the plane $\langle p, L\rangle$. Since the quadric $X Y\left(\left[p, p_{3}\right]\right)$ satisfies the 1 -or-all axiom, it follows that p is collinear to p_{3} after all, a contradiction. We conclude that $L_{3} \in p^{\perp}$ and hence $p^{\perp} \cap \zeta$ is a singular subspace. The other statement is a direct consequence of the first one.

We can extend Lemma 4.5 to higher-dimensional subspaces.
Lemma 4.8 Let S_{1} and S_{2} be two singular subspaces of dimension k, with $k \geq 1$, both not contained in Y, intersecting each other in a $(k-1)$-space S. Then either $\left\langle S_{1}, S_{2}\right\rangle$ is a singular $(k+1)$-space or it is contained in a unique member of $\Xi \cup \Theta$ (denoted by $\left[S_{1}, S_{2}\right]$).

Proof If $k=1$, this follows from Lemma 4.5, so let $k>1$. Observe that $S_{1} \nsubseteq Y$ implies that $S_{1} \backslash S \nsubseteq Y$, likewise for S_{2}. So there are X-points $x_{1} \in S_{1} \backslash S$ and $x_{2} \in S_{2} \backslash S$. Suppose first that x_{1} and x_{2} are not collinear. Then they are contained in a unique member $\left[x_{1}, x_{2}\right] \in \Xi \cup \Theta$ by Lemma 4.1. By Lemma 4.7, $S \subseteq\left[x_{1}, x_{2}\right]$ since $S \subseteq X \cup Y$ is collinear to x_{1} and x_{2}. Therefore, $\left\langle S_{1}, S_{2}\right\rangle=\left\langle S, x_{1}, x_{2}\right\rangle$ is contained in $\left[x_{1}, x_{2}\right]$. Since each member of $\Xi \cup \Theta$ containing $\left\langle S_{1}, S_{2}\right\rangle$ contains x_{1}, x_{2}, uniqueness follows.
So we may suppose that x_{1} and x_{2} are collinear for any pair of X-points $x_{1} \in S_{1} \backslash S$ and $x_{2} \in S_{2} \backslash S$. Let p be any point in $\left\langle S_{1}, S_{2}\right\rangle \backslash\left(S_{1} \cup S_{2}\right)$. Take an X-point $x_{1} \in S_{1} \backslash S$. Then the line $x_{1} p$ intersects $S_{2} \backslash S$ in a point p_{2}. If $p_{2} \in X$, then $x_{1} \perp p_{2}$ and hence $p \in x_{1} p_{2} \subseteq X \cup Y$. So suppose $p_{2} \in Y$. Observe that this implies that $S \nsubseteq Y$, for otherwise $\left\langle S, p_{2}\right\rangle \subseteq Y$, a contradiction. So we can take an X-point x_{1}^{\prime} in $S_{1} \backslash\left(S \cup\left\{x_{1}\right\}\right)$ such that the line $x_{1} x_{1}^{\prime}$ intersects S in an X-point x. Let p_{2}^{\prime} be the point in $S_{2} \backslash S$ on $x_{1}^{\prime} p$. The lines $x_{1} x_{1}^{\prime}$ and $x_{2} x_{2}^{\prime}$ intersect each other in the point $x \in S$, since they are contained in the plane $\left\langle x_{1}, x_{1}^{\prime}, p\right\rangle$. It follows that $p_{2}^{\prime} \in X$, for otherwise $x \in p_{2} p_{2}^{\prime} \subseteq Y$, contradicting Lemma 4.3. So $p \in x_{2}^{\prime} p_{2}^{\prime} \subseteq X \cup Y$. Therefore, $\left\langle S_{1}, S_{2}\right\rangle$ is singular.

Definition 4.9 For each X-space S, we denote by Y_{S} the set of points of Y collinear to (all points p of) S, i.e., $Y_{S}:=\bigcap_{p \in S}\left(p^{\perp} \cap Y\right)$.

Corollary 4.10 For each X-space S of dimension $k \geq 0, Y_{S}$ is a subspace of Y and $\left\langle S, Y_{S}\right\rangle$ is a singular subspace.

Proof If $\left|Y_{S}\right| \leq 1$, there is nothing to prove. So suppose y_{1}, y_{2} are distinct points in Y_{S}. Note that $y_{1} y_{2} \subseteq Y$ because Y is a subspace by definition. We show that $\left\langle S, y_{1}, y_{2}\right\rangle$ is a singular subspace,
which in particular implies that $y_{1} y_{2} \subseteq Y_{S}$. Put $S_{1}=\left\langle y_{1}, S\right\rangle$ and $S_{2}=\left\langle y_{2}, S\right\rangle$. Then S_{1} and S_{2} are not contained in Y since they contain $S \subseteq X$ (and X and Y are disjoint). Hence, by Lemma 4.8, $\left\langle S_{1}, S_{2}\right\rangle=\left\langle S, y_{1}, y_{2}\right\rangle$ is either a singular subspace (in which case we are done), or $S_{1} \cup S_{2}$ is contained in a member ζ of $\Xi \cup \Theta$. In the second case, the 1-or-all axiom in the quadric $X Y(\zeta)$ implies that $\left\langle S, y_{1}, y_{2}\right\rangle$ is a singular subspace. Since $y_{1}, y_{2} \in Y_{S}$ were arbitrary, this already shows that Y_{S} is a subspace of Y. Now take any point p in $\left\langle S, Y_{S}\right\rangle \backslash S \cup Y_{S}$. Then p is contained in a line $x y$ with $x \in S$ and $y \in Y_{S}$ and hence, since $x \perp y$, we have $p \in x y \subseteq X \cup Y$. So $\left\langle S, Y_{S}\right\rangle$ is singular.

Lemma 4.11 Let S be a singular k-space with $k \geq 1$ and suppose $\zeta \in \Xi \cup \Theta$ is such that $S \cap \zeta$ is a subspace of dimension $k-1$ not contained in Y and not a maximal singular subspace of $X Y(\zeta)$. Then there is a $\zeta^{\prime} \in \Xi \cup \Theta$ containing S such that $\zeta^{\prime} \cap \zeta$ is not collinear to S.

Proof Since $S \cap \zeta$ is not a maximal singular subspace of ζ, there are non-collinear singular k-spaces S_{1} and S_{2} in ζ containing $S \cap \zeta$. Moreover, since $S \cap \zeta \nsubseteq Y$, also $S \backslash \zeta, S_{1} \backslash S \cap \zeta$ and $S_{2} \backslash S \cap \zeta$ are not contained in Y. If both $\left\langle S, S_{1}\right\rangle$ and $\left\langle S, S_{2}\right\rangle$ were singular, then an X-point of $S \backslash \zeta$ (recall $S \nsubseteq Y$) would be collinear to a pair of non-collinear X-points of $S_{1} \backslash S, S \backslash S_{2}$, violating Lemma 4.7. So we may assume that $\left\langle S, S_{1}\right\rangle$ is not singular. By Lemma 4.8, $\left\langle S, S_{1}\right\rangle$ is contained in a unique $\zeta^{\prime} \in \Xi \cup \Theta$. By construction, $\zeta^{\prime} \cap \zeta$ contains S_{1}, which is not collinear to S.
We record a special case of the previous lemma. Observe that a crucial difference between Ξ and Θ is that for each $\xi \in \Xi$, each point of $Y(\xi)$ is collinear to each point of $X(\xi)$, whereas for each X-point of $\theta \in \Theta$ there is a point $y \in Y(\theta)$ not collinear to it.

Corollary 4.12 Let L be a singular line with a unique point $y \in Y$, intersecting some $\zeta \in \Xi \cup \Theta$ in an X-point x. Then there is a $\theta \in \Theta$ containing L and an X-line of ζ.

Proof We verify that L and ζ satisfy the assumptions of Lemma 4.11 (with L in the role of S). Indeed, $\operatorname{dim}(L \cap \zeta)=0$ and $L \cap \zeta \nsubseteq Y$ since $L \cap \zeta=\{x\} \subseteq X$. Moreover, by assumption, $r^{\prime}>r \geq 1$ so x is not a maximal singular subspace in ζ. Lemma 4.11 yields a $\zeta^{\prime} \in \Xi \cup \Theta$ containing L such that $\zeta \cap \zeta^{\prime}$ is not collinear to L. In particular, $\zeta \cap \zeta^{\prime}$ strictly contains x. So let L^{\prime} be a line of $\zeta \cap \zeta^{\prime}$ containing x, with L^{\prime} not collinear to L. If L^{\prime} contains a point $y^{\prime} \in Y$, then $y, y^{\prime} \in Y_{x}$ and hence $\left\langle x, y, y^{\prime}\right\rangle=\left\langle L, L^{\prime}\right\rangle$ is a singular subspace by Corollary 4.10, contradicting the fact that L and L^{\prime} are not collinear. So $L^{\prime} \subseteq X$. Inside ζ^{\prime}, the point y is not collinear to L^{\prime}, so by Lemma 4.1, $\zeta^{\prime} \in \Theta$.

4.2 Projections of (X, Z, Ξ, Θ) and the case where Θ is empty

Let S be a subspace of $\mathbb{P}^{N}(\mathbb{K})$ and F a subspace complementary to it.
Definition 4.13 The projection of (X, Z, Ξ, Θ) from S onto F is induced by the following map.

$$
\rho_{S}: X \rightarrow F: x \mapsto\langle Y, x\rangle \cap F
$$

If S is clear from the context, we write ρ instead of ρ_{S}. We denote $\rho(\Xi):=\{\rho(\xi) \mid \xi \in \Xi\}$, likewise for Θ, and $\rho(X, Z, \Xi, \Theta)$ abbreviates $(\rho(X), \rho(Z), \rho(\Xi), \rho(\Theta))$.

Writing $V^{*}=\bigcap_{x \in X} Y_{x} \leq Y$, we show in the next lemma that it suffices to study the projection $\rho_{V^{*}}(X, Z, \Xi, \Theta)$, and then afterwards conclude that (X, Z, Ξ, Θ) is a cone with vertex V^{*} over $\rho_{V^{*}}(X, Z, \Xi, \Theta)$.

Lemma 4.14 Suppose (X, Z, Ξ, Θ) is a (pre-) DSV with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$. Let $V^{*}=\bigcap_{x \in X} Y_{x}$ be the subspace of Y collinear to all points of X, and put $v^{*}=\operatorname{dim} V^{*}$. Then $\rho_{V^{*}}(X, Z, \Xi, \Theta)$ is a (pre-)DSV with parameters $\left(r, v-v^{*}-1, r^{\prime}, v^{\prime}-v^{*}-1\right)$ inside $\mathbb{P}^{N-v^{*}-1}(\mathbb{K})$.

Proof If all points of X are collinear to V^{*}, then all members of Ξ and Θ have V^{*} in their vertex (cf. Lemma 4.7). A straightforward verification shows that the projection of (X, Z, Ξ, Θ) from V^{*} satisfies ($\mathrm{S} i$) if (X, Z, Ξ, Θ) does, for each $i \in\{1,2,3\}$.
In case Θ is empty, we can actually show that $V^{*}=Y$.
Lemma 4.15 Suppose Θ is empty. Then Y is collinear to all points of X and each member of Ξ has Y as its vertex.

Proof Suppose for a contradiction that $x \in X$ is a point with Y_{x} a strict subspace of Y (cf. Corollary 4.10). Since Z generates Y, there is a point z of Z in $Y \backslash Y_{x}$. Since x and z are not collinear, Lemma 4.1 implies that $[x, z] \in \Theta$. Since Θ is empty, this is a contradiction. So $Y_{x}=Y$ for each point $x \in X$. It then follows from Lemma 4.7 that each $\xi \in \Xi$ has Y as its vertex: considering two non-collinear points $x_{1}, x_{2} \in X(\xi)$, we have $Y(\xi)=Y_{x_{1}} \cap Y_{x_{2}}=Y$.
Since we now gathered everything we need to deal with the case where Θ is empty, we finish the proof of Theorem 3.8 here.

Proposition 4.16 Let (X, Z, Ξ, Θ) be a dual split Veronese set with Θ empty. Then the projection $\left(\rho_{Y}(X), \rho_{Y}(\Xi)\right)$ is isomorphic to one of the following varieties: a Segre variety $\mathcal{S}_{1,2}(\mathbb{K})$ or $\mathcal{S}_{2,2}(\mathbb{K})$ $(r=1)$, a line Grassmannian $\mathcal{G}_{5,2}(\mathbb{K})$ or $\mathcal{G}_{6,2}(\mathbb{K})(r=2)$ or the variety $\mathcal{E}_{6}(\mathbb{K})(r=4)$.

Proof Recall that Lemma 4.15 says $Y_{x}=Y$ for each $x \in X$. By Lemma 4.14, the projection ($\rho_{Y}(X), \rho_{Y}(\Xi)$) (where we omit the empty sets Z and Θ) satisfies axioms (S1), (S2) and (S3). We claim that $\left(\rho_{Y}(X), \rho_{Y}(\Xi)\right)$ is a split Veronese set of type $2 r$. Indeed, it is clear from Definition 3.2 that each $\xi \in \rho_{Y}(\Xi)$ is a subspace of dimension $2 r+1$ which meets $\rho_{Y}(X)$ in a quadric whose maximal singular subspaces have dimension r. Moreover, Axioms (S1) and (S2) are identical to Axioms (SV1) and (SV2), respectively. Now take any $x \in \rho_{Y}(X)$. By Axiom (S3), the tangent space T_{x} is generated by $T_{x}\left(\xi_{1}\right)$ and $T_{x}\left(\xi_{2}\right)$ for two members ξ_{1}, ξ_{2} of $\rho_{Y}(\Xi)$ containing x. Therefore, since $\operatorname{dim} T_{x}\left(\xi_{i}\right)=2 r$ for $i=1,2$, it follows that $\operatorname{dim} T_{x} \leq 4 r$, and hence (SV3) is satisfied. Whence the claim. By Theorem 1.1, the proposition follows.
Another projection that we will frequently use, is from the subspace Y. In this context, we also consider the connection between $\rho_{Y}(X)$ and Y :

Definition 4.17 The connection map between $\rho_{Y}(X)$ and Y (recalling $Y_{x}=x^{\perp} \cap Y$) is defined as follows:

$$
\chi: \rho_{Y}(X) \mapsto Y: \rho(x) \mapsto Y_{x}
$$

We show some general properties on ρ_{Y} and χ (in particular that χ is well defined).
Lemma 4.18 Put $\rho=\rho_{Y}$.
(i) For each $x \in X, \rho^{-1}(\rho(x))=\left\langle x, Y_{x}\right\rangle \cap X$ and hence χ is well defined;
(ii) for each $\xi \in \Xi, \rho(X(\xi))$ is a non-degenerate hyperbolic quadric of rank $r+1$;
(iii) for each $\theta \in \Theta, \rho(X(\theta))$ is a singular subspace of dimension r^{\prime}.

Proof (i) If $\rho(x)=\rho\left(x^{\prime}\right)$ for points $x, x^{\prime} \in X$ with $x \neq x^{\prime}$, then $\left\langle x, x^{\prime}, Y\right\rangle$ contains Y as a hyperplane. Therefore, the line $x x^{\prime}$ meets Y in a point $y \in Y$, which by Lemma 4.4 means that $x x^{\prime}$ is singular. In particular, $y \in Y_{x}$, and so $x^{\prime} \in\left\langle x, Y_{x}\right\rangle \cap X$ indeed. Conversely it is clear that all points of the latter set are mapped onto the same point by ρ. Consequently, $\left\langle x^{\prime}, Y_{x^{\prime}}\right\rangle=\left\langle x, Y_{x}\right\rangle$, so in particular $Y_{x^{\prime}}=Y_{x}$, from which we conclude that χ is well defined. Assertions (ii) and (iii) are obvious noting that, for each $\xi \in \Xi, Y \cap \xi$ is the vertex of ξ and for each $\theta \in \Theta, Y \cap \theta$ is a maximal singular subspace of θ.

Remark 4.19 We will work towards the situation where ($\left.\rho_{Y}(X), \emptyset, \rho_{Y}(\Xi), \emptyset\right)$ is a (pre-)DSV. For this, several things need to be established. Indeed, if p_{1}, p_{2} are two non-collinear points of $\rho(X)$, and $x_{i}, x_{i}^{\prime} \in \rho^{-1}\left(p_{i}\right)$ for $i=1,2$, then x_{1} and x_{2} and also x_{1}^{\prime} and x_{2}^{\prime} are non-collinear points of X, but it remains to be proven that $\rho\left(\left[x_{1}, x_{2}\right]\right)=\rho\left(\left[x_{1}^{\prime}, x_{2}^{\prime}\right]\right)$. It also requires some work to determine the inverse image of a singular line of $\rho(X)$.

5 The inductive approach: point-residues

In view of Lemma 4.14, we may assume that no point of Y is collinear to all points of X; and by Proposition 4.16, we may assume that Θ is non-empty. Summarized:

Standing hypothesis. We recall that (X, Z, Ξ, Θ) is a pre-DSV with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ with $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for an arbitrary field $|\mathbb{K}|>2$, in which no point of Y is collinear to all points of X and such that Θ is non-empty.

In this section we introduce the point-residue of (X, Z, Ξ, Θ) for a point $x \in X$. This amounts to considering all singular lines through x and all members of Ξ and Θ through x. As a preparation, we start by studying the members of Θ containing a given X-space.

5.1 Members of Θ containing a point $x \in X$

For $x \in X$, let Θ_{x} denote the set of members of Θ containing x.
Lemma 5.1 Each X-point $x,\left|\Theta_{x}\right| \geq 1$.
Proof Suppose for a contradiction that $x \in X$ is not contained in any member of Θ. Observe that Z (and hence also Y) is non- empty, since Θ is non-empty by our standing hypothesis and $Z(\theta)$ is non-empty for $\theta \in \Theta$ (cf. Definition 3.2). So take any point $z \in Z$. If x and z are not collinear, then Lemma 4.1 implies that $[x, z] \in \Theta$, so $x \perp z$. Since $Y=\langle Z\rangle$, Corollary 4.10 implies that $Y_{x}=Y$. By Lemma 4.14, there is a point $x^{\prime} \in X$ with $Y_{x^{\prime}}$ a strict subspace of Y (if not, then each point of the non-emtpy subspace Y is collinear to all points of X, contradicting our standing hypothesis). By (S1) and our assumption, there is a $\xi \in \Xi$ containing x and x^{\prime}, and its vertex $Y(\xi)$ is contained in $Y_{x^{\prime}}$. Take a point $y \in Y \backslash Y(\xi)$. Then the singular line $x y$ has y as unique point in Y and meets ξ in the point x. Corollary 4.12 then implies that $x y$ contained in some $\theta \in \Theta$ together with an X-line of ξ through x. This contradiction shows the lemma.
Next, we show that, if $\left|\Theta_{x^{*}}\right|=1$ for some point $x^{*} \in X$, then $\left|\Theta_{x}\right|=1$ for every $x \in X$.

Lemma 5.2 If $\left|\Theta_{x^{*}}\right|=1$ for some point $x^{*} \in X$, then $Y(\theta)=Y$ for each $\theta \in \Theta$. In particular, $\operatorname{dim} Y=r^{\prime}+v^{\prime}+1$ and $\operatorname{dim} Y_{x}=r^{\prime}+v^{\prime}$. Also, $\left|\Theta_{x}\right|=1$ for every $x \in X$.

Proof Let θ^{*} be the unique member of $\Theta_{x^{*}}$. Suppose for a contradiction that $Y\left(\theta^{*}\right) \subsetneq Y$. Since $Y=\langle Z\rangle$, this means that there is a point $z \in Z \backslash Y\left(\theta^{*}\right)$. If z and x^{*} are not collinear, then by Lemma 4.1, $\left[z, x^{*}\right]$ is a second member of Θ containing x^{*}, a contradiction. So z and x^{*} are collinear. Now let L_{1} and L_{2} be two X-lines in θ^{*} containing x^{*} with L_{1} and L_{2} non-collinear (cf. Definition 3.2 and $r^{\prime}>r \geq 1$). Take points $x_{i} \in L_{i} \backslash\left\{x^{*}\right\}$ with $i=1,2$. Then x_{1} and x_{2} are not collinear (otherwise $\left\langle x^{*}, x_{1}, x_{2}\right\rangle=\left\langle L_{1}, L_{2}\right\rangle$ is singular after all). If z would be collinear to both x_{1} and x_{2}, then Lemma 4.7 yields $z \in\left[x_{1}, x_{2}\right]=\theta^{*}$, a contradiction. Renumbering if necessary, z is not collinear to x_{1}. By Lemma 4.5, $\left[x^{*} z, L_{1}\right]$ is a member of $\Xi \cup \Theta$ and by Lemma 4.1, $\left[x^{*} z, L_{1}\right]$ belongs to Θ. Again we found a second member of Θ containing x^{*}. We conclude that $Y\left(\theta^{*}\right)=Y$.

In particular, $\operatorname{dim} Y=\operatorname{dim} Y\left(\theta^{*}\right)=r^{\prime}+v^{\prime}+1$. If $\theta \in \Theta$ is arbitrary, then $Y(\theta)=Y$ follows from $\operatorname{dim} Y(\theta)=r^{\prime}+v^{\prime}+1$. Now let $x \in X$ be arbitrary. Lemma 5.1 guarantees the existence of at least one $\theta \in \Theta$ containing x. Suppose for a contradiction that $\theta^{\prime} \in \Theta \backslash \theta$ contains x too. Then $Y(\theta)=Y\left(\theta^{\prime}\right)=Y$ by the above. Observe that Y_{x} is a hyperplane of the maximal singular subspace $Y=Y(\theta)$ of θ. As above, this means that there is a point $z \in Z$ which is not contained in Y_{x} but which is contained in both θ and θ^{\prime}. By Lemma 4.1, $\theta=[x, z]=\theta^{\prime}$.
We go one step further by showing that $|\Theta|>1$, so in particular, if $\left|\Theta_{x}\right|=1$ for each $x \in X$, it cannot be that it is the same member of Θ for each point $x \in X$.

Lemma 5.3 The set Θ contains at least 2 elements.
Proof Suppose for a contradiction that $\Theta=\{\theta\}$ (recall that Θ is non-empty by our standing hypothesis). Then by Lemma 5.1, each point of X is contained in some member of Θ, so $X(\theta)=X$. However, there is a $\xi \in \Xi$ by assumption. Let x_{1}, x_{2} be two non-collinear points of $X(\xi)$. By the foregoing, x_{1}, x_{2} are also contained in θ. So $\xi=\left[x_{1}, x_{2}\right]=\theta$ by Lemma 4.1, a contradiction because Θ and Ξ are disjoint (cf. their description in Definition 3.2 and the fact that X and Y are disjoint, see Lemma 4.3).

5.2 Members of Θ containing an X-line

Definition 5.4 An X-line contained in 0,1 or at least 2 members of Θ is called a 0 -line, a 1 -line or a 2 -line, respectively.

It turns out that the nature of an X-line L can be expressed in terms of Y_{L} and Y_{x} with $x \in L$ (cf. Definition 4.9 and Corollary 4.10).

Lemma 5.5 Let L be an X-line and x any of point of L. For each subspace $H \subseteq Y_{x}$ such that Y_{L} is a hyperplane of H, there is a unique $\theta_{H, L} \in \Theta$ containing L and with $\theta_{H, L} \cap Y_{x}=H$. Conversely, each $\theta \in \Theta$ containing L coincides with $\theta_{H, L}$ for some subspace H as described and in particular, $Y_{L} \subseteq \theta$. Consequently:
(i) L is a 0-line if and only if $Y_{x}=Y_{L}$, in which case $Y_{x}=Y_{x^{\prime}}$ for each $x^{\prime} \in L$;
(ii) L is a 1-line if and only if Y_{L} is a hyperplane of Y_{x};
(iii) L is a 2-line if and only if Y_{L} is strictly contained in a hyperplane of Y_{x}.

Proof Suppose x, L and H are as described and take a point $y \in H \backslash Y_{L}$. Since $y \in Y_{x} \backslash Y_{L}$, the line $x y$ is singular and is not contained in a singular plane with L. So, by Lemma $4.5,[x y, L]$ is the unique member of $\Xi \cup \Theta$ containing L and y. Lemma 4.1 implies that $[x y, L] \in \Theta$ (since $y \notin Y_{L}$). According to Corollary 4.10, $\left\langle x, Y_{x}\right\rangle$ and $\left\langle L, Y_{L}\right\rangle$ are singular subspaces, and hence so is their intersection $\left\langle x, Y_{L}\right\rangle$. Let x^{\prime} be any point of $\left\langle x, Y_{L}\right\rangle \cap X$, i.e., a point of $\left\langle x, Y_{L}\right\rangle \backslash Y_{L}$. Then x^{\prime} is collinear to all points of L (since $x^{\prime} \in\left\langle L, Y_{L}\right\rangle$) and all points of $x y$ (since $x^{\prime} \in\left\langle x, Y_{x}\right\rangle$), so Lemma 4.7 implies that x^{\prime} belongs to $[x y, L]$. As $x^{\prime} \in\left\langle x, Y_{L}\right\rangle \backslash Y_{L}$ was arbitrary, and as ζ is a subspace, also Y_{L} and $\left\langle Y_{L}, y\right\rangle$ are contained in $[x y, L]$. It follows that $[x y, L]$ is the unique member of Θ containing L and H, and is hence also denoted by $\theta_{H, L}$. Inside the quadric $X Y\left(\theta_{H, L}\right)$, the subspace $Y_{x} \cap \theta_{H, L}$ (which contains H) and is a hyperplane of the maximal singular subspace $Y\left(\theta_{H, L}\right)$ of $\theta_{H, L}$; the subspace $Y_{L} \cap \theta_{H, L}$ (which coincides with Y_{L}) is a hyperplane of $Y_{x} \cap \theta_{H, L}$. Since Y_{L} is a hyperplane of H, it follows that $Y_{x} \cap \theta_{H, L}=H$. This shows the first statement.
Next, suppose $\theta \in \Theta$ contains L and let y be a point in $Y(\theta)$ collinear to x but not collinear to L. Then $\theta=[x y, L]$ by Lemma 4.1. As in the previous paragraph, $[x y, L]$ contains $\left\langle y, Y_{L}\right\rangle$ and hence, putting $H:=\left\langle y, Y_{L}\right\rangle$, it follows that $\theta=\theta_{H, L}$. This shows the second statement.

We conclude that the number of members of Θ through L depends on the number of subspaces of Y_{x} containing Y_{L} as a hyperplane. So $Y_{L}=Y_{x}$ is equivalenbt with the fact that there are no members of Θ through L; and as $x \in L$ was arbitrary, $Y_{x^{\prime}}=Y_{L}=Y_{x}$ for each $x^{\prime} \in L$.

5.3 X-planes and higher dimensions

Surprisingly, no X-plane is contained in more than one member of Θ.

Lemma 5.6 Two members of Θ sharing an X-plane coincide.
Proof Suppose θ_{1}, θ_{2} are distinct members of Θ which share an X-plane π. Then they also share an X-line L. By Lemma 5.5, $\theta_{1} \cap \theta_{2}$ contains $\left\langle L, Y_{L}\right\rangle$. Since this is a maximal singular subspace in both θ_{1} and θ_{2}, it follows that $\theta_{1} \cap \theta_{2}=\left\langle L, Y_{L}\right\rangle$ and hence $\pi \subseteq\left\langle L, Y_{L}\right\rangle$, a contradiction.

5.4 Point-residues and the inductive approach

Recall that, for each point $x \in X$, we denote by T_{x} the subspace generated by all singular lines through x. We now introduce the point-residue, as hinted at in the beginning of this section.

Definition 5.7 For each $x \in X$, we define the point-residue $\operatorname{Res}_{X}(x):=\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ as follows. Take any hyperplane H_{x} of T_{x} containing Y_{x} and not containing x. We define X_{x} as the set of points in H_{x} that are on an X-line with x and $Z_{x}:=Y_{x} \cap Z$; furthermore, Ξ_{x} is the set $\left\{T_{x}(\xi) \cap H_{x} \mid x \in \xi \in \Xi\right\}$ and Θ_{x} as $\left\{T_{x}(\theta) \cap H_{x} \mid x \in \theta \in \Theta\right\}$. Choosing a different hyperplane H_{x}^{\prime} in T_{x} leads to an isomorphic point-residue (with canonical isomorphism).

Remark 5.8 Consider a point $x \in X$ and $\zeta \in \Xi \cup \Theta$ with $x \in X(\zeta)$. Let ζ_{x} be the corresponding member $\Xi_{x} \cup \Theta_{x}$, i..e, $\zeta_{x}=T_{x}(\zeta) \cap H_{x}$. Then $X_{x}\left(\zeta_{x}\right):=X_{x} \cap \zeta_{x}$ is isomorphic to the point-residue $\operatorname{Res}_{X(\zeta)}(x)$ of $X(\zeta)$ as a (degenerate) hyperbolic quadric. Conversely, given ζ_{x}, we can recover ζ by taking the convex closure (cf. Lemma 4.7) of two non-collinear points of $X_{x}\left(\zeta_{x}\right)$ (note that these points exist since there are non-collinear X-lines through x in ζ, as $r^{\prime}>r \geq 1$). Note that, if $\zeta \in \Xi$, then ζ_{x} is an $(r-1, v)$-tube and if $\zeta \in \Theta$, then ζ_{x} is an $\left(r^{\prime}-1, v^{\prime}\right)$-tube. Therefore, we will only consider the point-residue if $r>1$ (recall that $r^{\prime}>r \geq 1$ so automatically, $r^{\prime}>1$).

We give an example to clarify the definition and to point out why we need the residues.

Example 5.9 Consider the dual line Grassmannian $\mathcal{G}_{6,2}(\mathbb{K}) \cong \mathcal{V}_{2}(\mathbb{K}, \mathbb{S})$, as introduced in Section 3.2.2, which is a DSV (X, Z, Ξ, Θ) with parameters $(2,1,4,-1)$. Later we show (see Lemma 7.1 and further) that, for any $x \in X$, the point-residue ($X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}$) is the half dual Segre variety $\mathcal{D} S_{3,1}(\mathbb{K})$, which is a $(1,1,3,-1 ; 11)$-system (it is also a pre-DSV). This can be made conceivable as follows. The variety $\mathcal{G}_{6,2}(\mathbb{K})$ is composed of a line Grassmannian $\mathcal{G}=\mathcal{G}_{6,2}(\mathbb{K})$ and a 5 -space Y. By transitivity (see Fact 2.6(5)), we may assume that $x \in \mathrm{G}$. By definition, $\operatorname{dim} Y_{x}=3$, and on the other hand $\operatorname{Res}_{\mathcal{G}}(x)$ is isomorphic to $\mathcal{S}_{3,1}(\mathbb{K})=: \mathrm{S}$. Furthermore, for each X_{x}-point x^{\prime} it turns out that $Y_{x} \cap Y_{x^{\prime}}$ is a plane of Y_{x}, yielding the desired correspondence between the points of S and the (hyper)planes of Y_{x}. We leave the details to the interested reader.

As explained in Remark 5.8, we will not consider point-residues if $r=1$. In case $r \geq 2$, we want to show that $\operatorname{Res}_{X}(x)$ is a pre-DSV as well. For that, we first need that $\left\langle Z_{x}\right\rangle=\left\langle Y_{x}\right\rangle$.

Lemma 5.10 For each $x \in X,\left\langle Z_{x}\right\rangle=Y_{x}$.

Proof Recall that Y_{x} is a subspace by Corollary 4.10. Suppose for a contradiction that $S:=\left\langle Z_{x}\right\rangle$ is properly contained in Y_{x}. Let $\theta \in \Theta$ through x be arbitrary (cf. Lemma 5.1). Take an X-line L through x in θ (which exists since $r^{\prime}>r \geq 1$). By Lemma 5.5, Y_{L} is stricty contained in Y_{x}. Since two strict subspaces of Y_{x} do not cover Y_{x} and hence there is a point $y \in Y_{x} \backslash\left(Y_{L} \cup S\right)$. According to Lemmas 4.5 and 4.1, $\theta^{\prime}:=[x y, L] \in \Theta$. Recall from Definition 3.2 that $Y\left(\theta^{\prime}\right)$ is generated by an r^{\prime}-space $M \subseteq Z$ and the vertex $V \subseteq Z$. Now $x \in \theta^{\prime}$ is collinear to a hyperplane of $Y(\theta)$, which obviously contains V. Therefore x is collinear to only a hyperplane M^{\prime} of M (otherwise $x \perp Y(\theta)$), and hence $x^{\perp} \cap Y(\theta)$ is the hyperplane of $Y(\theta)$ generated by V and M^{\prime}. We conclude that $x^{\perp} \cap Y\left(\theta^{\prime}\right)=\left\langle x^{\perp} \cap Z\left(\theta^{\prime}\right)\right\rangle$. As the former subspace contains y and the latter is contained in S, this contradicts $y \notin S$. The conclusion follows.
We can show that $\operatorname{Res}_{X}(x)$ is a pre-DSV, and that it also satisfies the properties mentioned in the standing hypothesis.

Proposition 5.11 Let (X, Z, Ξ, Θ) be a pre-DSV with parameters ($r, v, r^{\prime}, v^{\prime}$) with $r \geq 2,|\Theta| \geq 1$ and such that no point of Y is collinear to X. For each $x \in X,\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is a pre-DSV in $\mathbb{P}^{N_{x}}(\mathbb{K})$ with $N_{x}=\operatorname{dim}\left(T_{x}\right)-1$ with parameters $\left(r-1, v, r^{\prime}-1, v^{\prime}\right)$ and $\left|\Theta_{x}\right| \geq 1$, and is such that no point of Y_{x} is collinear to X_{x}. If (S3) holds in (X, Z, Ξ, Θ), then $N_{x} \leq 2 d-1$.

Proof We first look at the ambient projective space. A singular line containing x is either an X-line, which has a unique point in X_{x}, or it has a unique point in Y_{x}. Since T_{x} is generated by the singular lines containing x, it follows that $T_{x}=\left\langle x, X_{x}, Y_{x}\right\rangle$. By Lemma 5.10 we also have $\left\langle Z_{x}\right\rangle=Y_{x}$. So we obtain that X_{x} and Z_{x} generate the projective space H_{x} and hence $H_{x} \cong \mathbb{P}^{N_{x}}(\mathbb{K})$ with $N_{x}=\operatorname{dim}\left(T_{x}\right)-1$ (so if (S3) holds, then indeed $N_{x} \leq 2 d-1$).
A straightforward verification (see also Remark 5.8) tells us that each $\zeta \in \Xi \cup \Theta$ with $x \in \zeta$, intersects the sets X_{x}, Y_{x} and Z_{x} as described in Definition 3.2, and that its parameters are $\left(r-1, v, r^{\prime}-1, v^{\prime}\right)$.
Since (S2) holds in (X, Z, Ξ, Θ), it also holds in $\operatorname{Res}_{X}(x)$, as the projection of a singular subspace containing x is a singular subspace itself. Next, we show that also (S1) holds in $\operatorname{Res}_{X}(x)$. Take two points p_{1}, p_{2} in $X_{x} \cup Z_{x}$. These points correspond to two singular lines L_{1} and L_{2} containing x, so both lines are not contained in Y. By Lemma 4.5, either $\left[L_{1}, L_{2}\right] \in \Xi \cup \Theta$, in which case (S1) follows; or $\left\langle L_{1}, L_{2}\right\rangle$ is a singular plane π. In the latter case, (S1) implies the existence of a member ζ of $\Xi \cup \Theta$ containing L_{1}. If ζ also contains L_{2}, we are good, so suppose it does not. Since $r, r^{\prime} \geq 2$, there is a singular plane π^{\prime} in ζ through L_{1} not collinear to L_{2} (cf. Lemma 4.7). By Lemma 4.8, π and π^{\prime} determine a unique member of $\Xi \cup \Theta$ containing L_{1} and L_{2}, so also in this case (S1) follows.

Finally, suppose for a contradiction that $y \in Y_{x}$ collinear to all points of X_{x}. Take any $x^{\prime} \in X$ not collinear to x. Then by Lemma 4.1, $\left[x, x^{\prime}\right] \in \Xi \cup \Theta$. By assumption, y is collinear to all points of X_{x} and to x, and hence y is collinear to $x^{\perp} \cap X\left(\left[x, x^{\prime}\right]\right)$. Since each point of Y_{x} is trivially collinear to y, in fact $x^{\perp} \cap X Y\left(\left[x, x^{\prime}\right]\right) \subseteq y^{\perp} \cap X Y\left(\left[x, x^{\prime}\right]\right)$. This is only possible if $x y$ contains a point of the vertex of $X Y\left(\left[x, x^{\prime}\right]\right)$, and hence y belongs to the vertex of $X Y\left[x, x^{\prime}\right]$. Therefore, $x^{\prime} \perp y$. As $x^{\prime} \in X \backslash x^{\perp}$ was arbitrary, we conclude that all X-points are collinear to y.

The fact that there are no X-planes contains in multiple members of Θ, translates to the followingwhere we not only look at a point-residue but also at a point-residue of the point-residue (a line residue in fact).

Lemma 5.12 Let $x \in X$ be arbitrary and $x^{\prime} \in X_{x}$ too. Put $X_{x x^{\prime}}:=\left(X_{x}\right)_{x^{\prime}}$, et cetera. Then:

- If $r \geq 2$, then in $\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$, each X_{x}-line is contained in at most one member of Θ_{x};
- If $r \geq 3$, then in $\left(X_{x x^{\prime}}, Z_{x x^{\prime}}, \Xi_{x x^{\prime}}, \Theta_{x x^{\prime}}\right)$, each $X_{x x^{\prime}}$-point is contained in a unique member of $\Theta_{x x^{\prime}}$.

Proof Recall that if $r \geq 2$, then $\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is a pre-DSV with parameters $\left(r-1, v, r^{\prime}-1, v^{\prime}\right)$ by Proposition 5.11, and hence if $r \geq 3$, also $\left(X_{x x^{\prime}}, Z_{x x^{\prime}}, \Xi_{x x^{\prime}}, \Theta_{x x^{\prime}}\right)$ is a pre-DSV, by the same token.

- Suppose $r \geq 2$. Let L be an X_{x}-line in $\operatorname{Res}_{X}(x)$. Then, viewed in (X, Z, Ξ, Θ), each line $x u$ with $u \in L$ is an X-line by Definition 5.7. Therefore, the plane $\langle u, L\rangle$ is an X-plane in (X, Z, Ξ, Θ). By Lemma 5.6, $\langle u, L\rangle$ is contained in at most one member of Θ. Consequently, L is contained in at most one member of Θ_{x}.
- Next, suppose $r \geq 3$. Since a point of $X_{x x^{\prime}}$ corresponds to an X-plane of (X, Z, Ξ, Θ), there is again at most one member of $\Theta_{x x^{\prime}}$ containing it. On the other hand, there is at least one member of $\Theta_{x x^{\prime}}$ contianing it, by Lemma 5.1.

This has a two very strong consequences.

Corollary 5.13 If there is a point of X contained in a unique member of Θ, then $r=1$.
Proof Suppose for a contradiction that $r \geq 2$ and $\left|\Theta_{x}\right|=1$ for some $x \in X$. Consider the pointresidue $\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$, which is a pre-DSV with parameters $\left(r-1, v, r^{\prime}-1, v^{\prime}\right)$ by Proposition 5.11. The fact that $\left|\Theta_{x}\right|=1$ contradicts Lemma 5.3. We obtain that $r=1$.

Corollary 5.14 A pre- $\operatorname{DSV}(X, Z, \Xi, \Theta)$ with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ has $r \leq 3$.

Proof Suppose that $r \geq 3$. Take a point $x \in X$ and a point $x^{\prime} \in X_{x}$. Then $\left(X_{x x^{\prime}}, Z_{x x^{\prime}}, \Xi_{x x^{\prime}}, \Theta_{x x^{\prime}}\right)$ is a pre-DSV with parameters $\left(r-2, v, r^{\prime}-2, v^{\prime}\right)$ by Proposition 5.11. By Lemma 5.12, each point of $X_{x x^{\prime}}$ is contained in a unique member of $\Theta_{x x^{\prime}}$. So by Corollary 5.13 , we obtain that $r-2=1$, i.e., $r=3$.

By the second item of Lemma 5.12 it will hence be crucial to study the pre-DSVs in which each point of X is contained in a unique member of Θ, in which case we already know that $r=1$ by Corollary 5.13. Before pursuing this, we note that we can say something more about the X-lines too, if $r \geq 2$.

Lemma 5.15 If $r \geq 2$, then either all X-lines are 1-lines or all X-lines are 2-lines.

Proof Let L be an X-line and let x be any point of L. Consider $\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$, which is a pre-DSV with parameters $\left(r-1, v, r^{\prime}-1, v^{\prime}\right)$ by Lemma 5.11 . In here, L corresponds to a point $x^{\prime} \in X_{x}$. By Lemma 5.1, there is a member of Θ_{x} containing x^{\prime}. This means that there is a member of Θ containing L. So L is either a 1-line or a 2-line. Assume that it is a 1-line, i.e., is is contained in a unique member of Θ_{x}. Then all points of X_{x} are contained in a unique member of Θ_{x} by Lemma 5.2. So each X-line through x is a 1 -line. For any point $x^{\prime \prime}$ on such a 1 -line through X, the same argument yields that each X-line through $x^{\prime \prime}$ is a 1 -line. By connectivity, we conclude that each X-line is a 1 -line. The lemma follows.

5.5 Case distinction

Based on the previous subsection, we summarize the possibilities to investigate in Table 1, as is shown in Proposition 5.16. For each X-line L and each X-plane π, let Θ_{L} and Θ_{π} denote the set of members of Θ containing L and π, respectively, in analogy with the notation Θ_{x} for $x \in X$ (although we do admit that we use this notation twice, but the meaning should be clear from the context).

Proposition 5.16 The possibilities for the pre-DSV (X, Z, Ξ, Θ) with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ are as listed in Table 1.

$r=3$	$\forall X$-plane $\pi,\left\|\Theta_{\pi}\right\|=1$	
\downarrow	\downarrow	
$r=2$	$\forall X$-line $L,\left\|\Theta_{L}\right\|=1$	$\forall X$-line $L,\left\|\Theta_{L}\right\| \geq 2$
\downarrow	\downarrow	\downarrow
$r=1$	$\forall X$-point $x,\left\|\Theta_{x}\right\|=1$	$\forall X$-point $x,\left\|\Theta_{x}\right\| \geq 2$
	$\forall X$-point $X,\left\|\Theta_{x}\right\| \geq 2$	
	$\forall X$-line $L,\left\|\Theta_{L}\right\| \in\{0,1\}$	$\forall X$-line $L,\left\|\Theta_{L}\right\| \in\{0,1\}$
	$\exists X$-line $L,\left\|\Theta_{L}\right\| \geq 2$	

Table 1: The possible situations to consider, where the residue of a pre-DSV gives a pre-DSV with properties as listed one cell below. The ones in red will turn out not to lead to examples of DSVs (where also (S3) holds).

Proof Firstly, it follows from Corollary 5.14 that $r \leq 3$. Moreover, if $r=3$, then the second item of Lemma 5.12 tells us that $\left|\Theta_{\pi}\right|=1$ for each X-plane π. Next, suppose $r=2$. Then it follows from Lemma 5.15 that all X-line are either 1-lines or 2-lines; and by the foregoing, only the former situation can occur as the residue of a pre-DSV. Finally, suppose $r=1$. Then we know that $\left|\Theta_{x}\right| \geq 1$ for each point $x \in X$ by Lemma 5.1. In case the pre-DSV occurs as a residue, then we know by the first item of Lemma 5.12 that there are no 2-lines. Note that, if L is a 2 -line, then for each $x \in L$ we have $\left|\Theta_{x}\right| \geq 2$, so by Lemma 5.2, it follows that $\left|\Theta_{x}\right| \geq 2$ for all $x \in X$.

We only treat the first column in full detail, since that contains the most interesting cases. For the other columns we will be brief and give precise references to [1], also because the techniques are very similar to the ones applied in the first column (it is not entirely straightforward, otherwise the cases might just as well be treated simultanously, but at many points there is an overlap).

Overview. In Section 6, we start by the first column in case $r=1$, which will lead us to the half dual Segre varieties $\mathcal{H D} \mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ (which will be a DSV if $r^{\prime}=2$ and $k \in\{1,2\}$). In Section 7 , we treat the first column entry in case $r=2$, which will lead us to the dual Line Grassmannian varieties $\mathcal{D} \mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$ (which will be a DSV if $r^{\prime}=4$). In Section 8, we treat all remaining cases. We mention already that the case $r=1$ of the second column leads to the dual Segre variety $\mathcal{D} \mathcal{S}_{r^{\prime}, r^{\prime}}(\mathbb{K})$ (which will be a DSV if $r^{\prime}=2$).

6 The half dual Segre varieties

As explained in Subsection 5.5 (see also Proposition 5.11), one of the cases to be treated is the one where $r=1$ and $\left|\Theta_{x}\right|=1$ for each $x \in X$. So we summarize:

Standing hypothesis. Throughout this section, (X, Z, Ξ, Θ) is a pre-DSV with parameters $\left(1, v, r^{\prime}, v^{\prime}\right)$ with $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for an arbitrary field $|\mathbb{K}|>2$, in which no point of Y is collinear to all points of X and such that for each $x \in X$, there is a unique member of Θ containing x, which we denote by θ^{x}.

We start with a basic but useful observation.

Lemma 6.1 Each singular line containing x and not contained in θ^{x} is an X-line which is contained in no member of Θ (a 0-line). Each singular line in θ^{x} containing x either has a unique point in Y or it is an X-line contained in a unique member of Θ (a 1-line).

Proof Let L be a singular line containing x. Suppose first that $L \nsubseteq \theta^{x}$. If L would not be an X-line, then it contains a unique point of Y and hence it is contained in θ^{x} since $Y=Y\left(\theta^{x}\right)$ by Lemma 5.2. So L is an X-line. If it would not be a 0 -line, then we obtain at least two members
of Θ containing x, contradicting our standing hypothesis $\left|\Theta_{x}\right|=1$. Next, suppose $L \subseteq \theta^{x}$. If L contains a point of Y, there is nothing to show, so suppose it is an X-line. Since it is contained in θ^{x} and since θ^{x} is the unique member of Θ containing x, it follows that L is a 1-line.

6.1 The parameters $v, r^{\prime}, v^{\prime}$

We already showed in Lemma 5.2 that each $\theta \in \Theta$ has $Y(\theta)=\theta$. We continue by showing that $v^{\prime}=-1$, and then it follows that Y has dimension r^{\prime}, and coincides with Z. We can also deduce v in terms of r^{\prime}.

Lemma 6.2 We have $v^{\prime}=-1, Y=Z$ and $\operatorname{dim} Y=r^{\prime}$.

Proof Take any $\theta \in \Theta$. We show that all points of X are collinear to the vertex $V(\theta)$ of θ, which then by our standing assumption leads to $V(\theta)$ being empty. Let $x \in X$ be arbitrary. If $x \in X(\theta)$, we trivially have that x is collinear to $V(\theta)$, so suppose $x \notin X(\theta)$. Suppose first that x is collinear to some point $x^{\prime} \in X(\theta)$. By Lemma 6.1, $x x^{\prime}$ is a 0-line. It follows from Lemma $5.5(i)$ that $Y_{x^{\prime}}=Y_{x}$. Since x^{\prime} is collinear to the vertex $V(\theta)$ of θ, we obtain that $V(\theta) \subseteq Y_{x}$ and hence x is collinear to $V(\theta)$ indeed.
Finally, suppose that x is not collinear to any point of $X(\theta)$. Taking $x^{\prime} \in X(\theta)$ arbitrary, Lemma 4.1 implies that $\left[x, x^{\prime}\right] \in \Xi \cup \Theta$, and since $\left|\Theta_{x^{\prime}}\right|=1$ by assumption, we obtain $\left[x, x^{\prime}\right] \in \Xi$. Let L_{1} and L_{2} be two non-collinear X-lines of $\left[x, x^{\prime}\right]$ through x^{\prime}. For $i=1,2$, we claim that L_{i} is collinear to $V(\theta)$. Indeed, if $L_{i} \subseteq \theta$ then $L_{i} \perp V(\theta)$ by definition, and if $L_{i} \nsubseteq \theta$ then $L_{i} \perp V(\theta)$ by the first paragraph. By Lemma 4.7, $V(\theta)$ is contained in the vertex of $\left[x, x^{\prime}\right]$ and, in particular, $x \perp V(\theta)$. This shows that $V(\theta)$ is collinear to all points of X and therefore is empty, so $v^{\prime}=-1$.

It now follows from Definition 3.2 that $Y(\theta)$ is a singular r^{\prime}-space of θ which is contained in Z. Since $Y=Y(\theta)$ by Lemma 5.2, the lemma follows.

Lemma 6.3 Suppose θ_{1}, θ_{2} are distinct member of Θ and suppose $x_{1} \in X\left(\theta_{1}\right)$ and $x_{2} \in X\left(\theta_{2}\right)$. Then $Y_{x_{1}}=Y_{x_{2}}$ if and only if x_{1} and x_{2} are collinear; if $Y_{x_{1}} \neq Y_{x_{2}}$, then $\left[x_{1}, x_{2}\right] \in \Xi$. In the latter case, the vertex of $\left[x_{1}, x_{2}\right]$ is $Y_{x_{1}} \cap Y_{x_{2}}$. In particular, $v=r^{\prime}-2$.

Proof By Lemma 5.2 $Y\left(\theta_{1}\right)=Y\left(\theta_{2}\right)=Y$ and $Y\left(\theta_{i}\right)$ is a maximal singular subspace in $\theta_{i}, i=1,2$ (cf. Definition 3.2). So by (S2), $\theta_{1} \cap \theta_{2}=Y$. Note that $\operatorname{dim} Y=r^{\prime}$ by Lemma 6.2.
Suppose first that $Y_{x_{1}} \neq Y_{x_{2}}$. Then x_{1} and x_{2} are not collinear, for otherwise $x_{1} x_{2}$ would be a 0 -line by Lemma 6.1, and then $Y_{x_{1}}=Y_{x_{2}}$ by Lemma $5.5(i)$, a contradiction. Lemma 4.1 implies $\left[x_{1}, x_{2}\right] \in \Xi \cup \Theta$, and since $x_{1} x_{2} \nsubseteq \theta_{1}$, we obtain $\left[x_{1}, x_{2}\right] \in \Xi$ (recall $\left|\Theta_{x_{1}}\right|=1$). By Lemma 4.7, the vertex of $\left[x_{1}, x_{2}\right]$ is $Y_{x_{1}} \cap Y_{x_{2}}$, which has dimension $r^{\prime}-2$ since it is the intersection of two hyperplanes of Y.

Note that Lemma 5.3 garantees that $|\Theta| \geq 2$, and that, as can be verified easily, points $x_{1} \in X\left(\theta_{1}\right)$ and $x_{2} \in X\left(\theta_{2}\right)$ with $Y_{x_{1}} \neq Y_{x_{2}}$ exist. So we may conclude from the previous paragraph that $v=r^{\prime}-2$.

Finally, suppose that $Y_{x_{1}}=Y_{x_{2}}$. If x_{1} and x_{2} are not collinear, then the above argument shows that $\left[x_{1}, x_{2}\right] \in \Xi$ and has vertex $Y_{x_{1}} \cap Y_{c_{2}}=Y_{x_{1}}$, contradicting $v=r^{\prime}-2$. So $x_{1} x_{2}$ is a singular line.

6.2 The X-lines containing a common a point of X

Let $x \in X$ be arbitrary. In this subsection, we show that the 0 -lines containing x consistute a maximal singular subspace. Note that Lemma $5.5(i)$ tells us that, for each x^{\prime} which is on a 0 -line with x, we have $Y_{x}=Y_{x^{\prime}}$. Moreover, since $Y=Y\left(\theta^{x}\right)$ (cf. Lemma 5.2), Y_{x} is a hyperplane of Y. In the following definition, we work more generally with any hyperplane of Y.

Definition 6.4 For any hyperplane H of Y, we define

$$
\pi(H):=\left\{x \in X \mid Y_{x}=H\right\} \cup H
$$

We show that $\pi(H)$ is a non-empty maximal singular subspace, which in particular shows that each hyperplane occurs as Y_{x} for some $x \in X$.

Lemma 6.5 Let H be a hyperplane of Y. Then $\pi(H)$ is a (maximal) singular subspace, and if $x \in \pi(H) \cap X$ then also $\left\langle x, Y_{x}\right\rangle \subseteq \pi(H)$. Moreover, $\pi(H)$ intersects each $\theta \in \Theta$ in a maximal singular subspace of θ of the form $\langle x, H\rangle$ with $x \in X(\theta)$.

Proof Suppose x is a point of $\pi(H) \cap X$. Then $Y_{x}=H$ since both are hyperplanes of Y. Let $x^{\prime} \in\left\langle x, Y_{x}\right\rangle \cap X$ be arbitrary. Since $\left\langle x, Y_{x}\right\rangle$ is a singular subspace by Lemma 4.10, x^{\prime} is collinear to Y_{x}, and hence $Y_{x}=Y_{x^{\prime}}=H$. So $x^{\prime} \in \pi(H)$ too. Next, take any $\theta \in \Theta$. Since $Y(\theta)=Y$ by Lemma 5.2, $X(\theta)$ contains a point x with $Y_{x}=H$. For such a point $x,\langle x, H\rangle \subseteq X(\theta) \cap \pi(H)$ by the foregoing. By (S2) and the fact that $\langle x, H\rangle$ is a maximal singular subspace of $X(\theta)$, we obtain $\langle x, H\rangle=X(\theta) \cap \pi(H)$.
We claim that $\pi(H)$ is a subspace. Let p, q be any pair of distinct points of $\pi(H)$. We show that $p q \subseteq \pi(H)$. First, suppose $p, q \in X$, so $Y_{p}=Y_{q}=H$. If $\theta^{p} \neq \theta^{q}$, then $p q$ is a singular line by Lemma 6.3, even a 0 -line by Lemma 6.1. According to Lemma 5.5, $Y_{r}=Y_{p}=H$ for each point $\in p q$, so $r \in \pi(H)$. So suppose $\theta^{p}=\theta^{q}$. Then since Y and $\langle p, H\rangle$ are the only two maximal singular subspace of θ^{p} containing H, we obtain $p q \subseteq\langle p, H\rangle$. Now $\langle p, H\rangle \subseteq \pi(H)$ by the first paragraph. Second, suppose $p \in X$ and $q \in Y$. Then $Y_{p}=H$ and $q \in H$, so again $p q \subseteq\langle p, H\rangle \subseteq \pi(H)$. Finally, suppose $p, q \in Y$, i.e., $p, q \in H$. Then $y_{1} y_{1} \subseteq H \subseteq \pi(H)$ since H is a subspace of Y. The claim follows. Note that $\pi(H)$ is singular since $\pi(H) \subseteq X \cup Y$ by definition. Maximality follows also from the definition: no other point of X is collinear to H, and no point of Y is collinear to any point of $\pi(H) \cap X$.
Notation. For $x \in X$, we denote the subspace $\pi\left(Y_{x}\right)$ by π^{x}. Note that by definition, $\pi^{x}=\pi^{x^{\prime}}$ for any $x^{\prime} \in \pi^{x} \cap X$ since $Y_{x}=Y_{x^{\prime}}$ for such x^{\prime}. We define Π as the set $\{\pi(H) \mid H$ a hyperplane of $Y\}$, or equivalently, the set $\left\{\pi^{x} \mid x \in X\right\}$.

Corollary 6.6 Let $x \in X$ be arbitrary. Then each X-line through x is contained in exactly on of θ^{x}, π^{x}.

Proof Let L be any X-line through x and suppose L is not contained in θ^{x}. If L is contained in a member of Θ, then this would be a second member of Θ through x, violating our standing hypothesis. So, L is a 0 -line and by Lemma $5.5, Y_{x^{\prime}}=Y_{x}$ for all points $x^{\prime} \in L$. So, by definition of $\pi^{x}=\pi\left(Y_{x}\right)$, we obtain $L \subseteq \pi^{x}$. By Lemma 6.5, $\theta^{x} \cap \pi^{x}=\left\langle x, Y_{x}\right\rangle$ and hence $\theta^{\cap} \pi^{x}$ contains no X-lines.
Recall that $r=1$ and hence, for each point $x \in X(\xi)$ for $\xi \in \Xi$, there are exactly two maximal singular subspaces of $X Y(\xi)$ containing x (of the form $\left\langle L_{1}, V\right\rangle$ and $\left\langle L_{2}, V\right\rangle$, where V is the vertex of ξ and L_{1} and L_{2} are X-lines).

Lemma 6.7 Let $\xi \in \Xi$ be arbitrary. Then for each $x \in X(\xi)$, the two maximal singular subspaces of $X Y(\xi)$ containing x are given by $\theta^{x} \cap \xi$ and $\pi^{x} \cap \xi$. If $x_{1}, x_{2} \in X(\xi)$ are non-collinear points, then $\theta^{x_{1}} \cap \pi^{x_{2}}=\left\langle x^{*}, Y(\xi)\right\rangle$ for some X-point $x^{*} \in x_{1}^{\perp} \cap x_{2}^{\perp} \subseteq \xi$.

Proof Let V denote the vertex $Y(\xi)$ of ξ and suppose L_{1} and L_{2} are X-lines of ξ containing x such that $\left\langle L_{1}, V\right\rangle$ and $\left\langle L_{2}, V\right\rangle$ are the two maximal singular subspaces of ξ containing x. Note that this means that L_{1} and L_{2} are not collinear, so $\left[L_{1}, L_{2}\right]=\xi$ by Lemma 4.5. According to Corollary 6.6, each of L_{1}, L_{2} is contained in θ^{x} or π^{x}. If both are contained in θ^{x}, then $\xi=\left[L_{1}, L_{2}\right]=\theta^{x}$, a contradiction; if both are contained in π^{x}, then $L_{1} \perp L_{2}$ by Lemma 6.5, a contradiction. So renumbering if necessary, $L_{1} \subseteq \theta^{x}$ and $L_{2} \subseteq \pi^{x}$. Since θ^{x} contains Y, it in particular contains V; and π^{x} by definition contains Y_{x} and hence V. By maximality, we obtain $\theta^{x} \cap \xi=\left\langle L_{1}, V\right\rangle$ and $\pi^{x} \cap \xi=\left\langle L_{2}, V\right\rangle$. The first statement follows.
Now let x_{1}, x_{2} be non-collinear points of $X(\xi)$ and note that $Y_{x_{1}} \cap Y_{x_{2}}=V$ by Lemma 4.7. By the previous paragraph, $\theta^{x_{1}} \cap \xi$ is of the form $\left\langle L_{1}, V\right\rangle$, where L_{1} is an X-line of ξ through x_{1}; likewise $\pi^{x_{2}} \cap \xi$ is of the form $\left\langle L_{2}, V\right\rangle$, where L_{2} is an X-line of ξ through x_{2}. Let x^{*} be the unique point of L_{1} collinear to x_{2}. Note that $L_{2}^{*}:=x x_{2}$ is an X-line, for otherwise $x^{*} \in\left\langle x_{2}, V\right\rangle \cap x_{1}^{\perp}=V$. By the previous paragraph and the fact that $\theta^{x_{1}}=\theta^{x^{*}}$, we obtain that L_{2}^{*} belongs to $\pi^{x^{*}}=\pi^{x_{2}}$. Therefore, $L_{2}^{*} \subseteq\left\langle L_{2}, V\right\rangle$ and hence $\left\langle L_{1}, V\right\rangle \cap\left\langle L_{2}, V\right\rangle=\left\langle x^{*}, V\right\rangle$ indeed.

6.3 The projection $\rho_{Y}(X)$ and its connection to Y

We consider the projection $\rho:=\rho_{Y}$ of (X, Z, Ξ, Θ) from Y onto the subspace of F complementary to Y in $\mathbb{P}^{N}(\mathbb{K})$, and also the connection map χ between $\rho(X)$ and Y (cf. Definitions 4.13 and 4.17).

Recall that the inverse image under ρ of a point $\rho(x)$ with $x \in X$ is given by $\left\langle x, Y_{x}\right\rangle \cap X$ by Lemma 4.18. Our first aim is to determine the inverse image of a singular line of $\rho(X)$, i.e., a line of F which is contained in $\rho(X)$.

Lemma 6.8 Suppose $\rho\left(x_{1}\right)$ and $\rho\left(x_{2}\right)$ determine a singular line of $\rho(X)$, for $x_{1}, x_{2} \in X$. Let $x_{i}^{\prime} \in \rho^{-1}\left(\rho\left(x_{i}\right)\right)$ be arbitrary, for $i=1,2$. Then:
(i) there is a unique $\zeta \in \Theta \cup \Pi$ containing $x_{1}^{\prime} \cup x_{2}^{\prime}$, and $\rho^{-1}\left(\rho\left(x_{1}\right)\right) \cup \rho^{-1}\left(\rho\left(x_{2}\right)\right) \subseteq \zeta$, with $\zeta \in \Theta$ if and only if $Y_{x_{1}} \neq Y_{x_{2}}$;
(ii) there is an $x_{2}^{\prime \prime} \in \rho^{-1}\left(\rho\left(x_{2}\right)\right)$ such that $x_{1}^{\prime} x_{2}^{\prime \prime}$ is an X-line;
(iii) If $\zeta \in \Theta$, then $\left\{Y_{x} \mid \rho(x) \in\left\langle\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right\rangle\right\}$ is the set of all $\left(r^{\prime}-1\right)$-spaces through the $\left(r^{\prime}-2\right)$ space $Y_{x_{1}} \cap Y_{x_{2}}$ inside Y.

Proof As mentioned just before the statement of the proof, $\rho^{-1}\left(\rho\left(x_{i}\right)\right)=\left\langle x_{i}, Y_{x_{i}}\right\rangle \cap X$ for $i=1,2$. In particular, $Y_{x_{i}}=Y_{x_{i}^{\prime}}$. We distinguish two cases.
Suppose first that $Y_{x_{1}}=Y_{x_{2}}=: H$. Then $\pi(H)$ is the unique member of $\Pi \cup \Theta$ containing x_{1}^{\prime} and x_{2}^{\prime}. Moreover, $\pi(H)$ contains $\left\langle x_{1}^{\prime}, H\right\rangle$ and $\left\langle x_{2}^{\prime}, H\right\rangle$ by Lemma 6.5. Assertion (i) follows in this case. Since $\pi(H)$ is a singular subspace by Lemma 6.5 , so is its subspace $\left\langle x_{1}^{\prime}, x_{2}^{\prime}, H\right\rangle$. As such, the line $x_{1}^{\prime} x_{2}^{\prime \prime}$ is an X-line for each point $x_{2}^{\prime \prime} \in\left\langle x_{2}, H\right\rangle \cap X=\rho^{-1}\left(\rho\left(x_{2}\right)\right)$. Assertion (ii) follows in this case. Next, suppose $Y_{x_{1}} \neq Y_{x_{2}}$. Recall that $\operatorname{dim} Y=r^{\prime}$ by Lemma 6.2 and that $r^{\prime} \geq 2$ since $r^{\prime}>r=1$ by Definition 3.2. Consider the subspace $\left\langle x_{1}, x_{2}, Y\right\rangle$ and note that $\left\langle x_{1}, x_{2}, Y\right\rangle=\left\langle x_{1}, x_{2}, Y_{x_{1}}, Y_{x_{2}}\right\rangle$. Let x_{3} be an X-point with $\rho\left(x_{3}\right)$ on $\left\langle\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right\rangle \backslash\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right\}$. Then $x_{3} \in\left\langle x_{1}, x_{2}, Y\right\rangle \cap X \backslash$ $\left(\left\langle x_{1}, Y_{x_{1}}\right\rangle \cup\left\langle x_{2}, Y_{x_{2}}\right\rangle\right)$. Since $\rho\left(x_{1}\right) \neq \rho\left(x_{2}\right)$, we have $\operatorname{dim}\left(\left\langle x_{1}, x_{2}, Y\right\rangle\right)=\operatorname{dim} Y+2=r^{\prime}+2$. Inside $\left\langle x_{1}, x_{2}, Y\right\rangle$, we hence see that the $\left(r^{\prime}+1\right)$-space $\left\langle x_{3}, x_{1}, Y_{x_{1}}\right\rangle$ intersects the r^{\prime}-space $\left\langle x_{2}, Y_{x_{2}}\right\rangle$ in an ($r^{\prime}-1$)-space M_{2} with $M_{2} \cap Y$ equal to the ($r^{\prime}-2$)-space $Y_{x_{1}} \cap Y_{x_{2}}$. The r^{\prime}-space $\left\langle M_{2}, x_{3}\right\rangle$ intersects $\left\langle x_{1}, Y_{x_{1}}\right\rangle$ in an $\left(r^{\prime}-1\right)$-space M_{1} with $M_{1} \cap Y=Y_{x_{1}} \cap Y_{x_{2}}$. Since $r^{\prime}-1 \geq 1$, it follows that there
is a point $x_{1}^{*} \in M_{1} \cap X$. Let x_{2}^{*} denote the unique point $x_{1}^{*} x_{3} \cap M_{2}$. Then $x_{1}^{*} x_{2}^{*}$ is an X-line: it is singular by Lemma 4.4 since it contains at least 3 points of $X \cup Y$, and if it would contain a point of Y, then it is contained in $\left\langle x_{1}, Y_{x_{1}}\right\rangle$, contradicting $\rho\left(x_{1}\right) \neq \rho\left(x_{3}\right)$. By Corollary 6.6, the X-line $x_{1}^{*} x_{2}^{*}$ belongs to a member ζ of $\Theta \cup \Pi$. Since $Y_{x_{1}} \neq Y_{x_{2}}, \zeta \in \Theta$. Uniqueness follows from $\zeta=\theta^{x_{1}^{*}}$. Since ζ contains Y, we have that ζ contains $\left\langle x_{1}^{*}, Y_{x_{1}}\right\rangle \cup\left\langle x_{2}^{*}, Y_{x_{2}}\right\rangle$. Assertion (i) follows. Viewed inside the quadric $X Y(\zeta)$, the point x_{1}^{\prime} is collinear to a hyperplane M_{2}^{\prime} of $\left\langle x_{2}, Y_{x_{2}}\right\rangle$, distinct from $Y_{x_{2}}$. For any point $x_{2}^{\prime \prime} \in M_{2}^{\prime} \cap X$, the line $x_{1}^{\prime} x_{2}^{\prime \prime}$ is hence an X-line. Assertion (ii) follows also in this case.
(iii) Suppose $\zeta \in \Theta$. Let L be an X-line in ζ with $\rho(L)=\left\langle\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right\rangle$ (possible by (ii)). Inside the quadric $X Y(\zeta)$, we see that $Y_{L}=Y_{x_{1}} \cap Y_{x_{2}}$ and that the collinearity relation $x \mapsto Y_{x}$ gives a bijection between the points of L and the $\left(r^{\prime}-1\right)$-spaces of Y containing Y_{L}. Finally, ρ induces a bijection between the points of L and the points of $\rho(L)$. Composing thse bijections, assertion (iii) follows.

Next, we treat the case where x_{1} and x_{2} are non-collinear points of some $\xi \in \Xi$.

Lemma 6.9 Suppose $x_{1}, x_{2} \in X$ are non-collinear points with $\xi=\left[x_{1}, x_{2}\right] \in \Xi$ and put $V=Y(\xi)$. Let $x_{i}^{\prime} \in \rho^{-1}\left(\rho\left(x_{i}\right)\right)$ for $i=1,2$. Then x_{1}^{\prime} and x_{2}^{\prime} are non-collinear and $\xi^{\prime}:=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ has vertex V and $\rho\left(X\left(\xi^{\prime}\right)\right)=\rho(X(\xi))$.

Proof Since $\left[x_{1}, x_{2}\right] \in \Xi$, we have $\theta^{x_{1}} \neq \theta^{x_{2}}$. It follows from Lemma 6.3 that $Y_{x_{1}} \neq Y_{x_{2}}$ and that V is the $\left(r^{\prime}-2\right)$-space $Y_{x_{1}} \cap Y_{x_{2}}$. Let $x_{1}^{\prime}, x_{2}^{\prime}$ be as described. By Lemma 4.18, $x_{i}^{\prime} \in\left\langle x_{i}, Y_{x_{i}}\right\rangle \cap X$ and $Y_{x_{i}^{\prime}}=Y_{x_{i}}$ for $i=1,2$. Suppose for a contradiction that $x_{1}^{\prime} x_{2}^{\prime}$ is singular. Then $x_{1}^{\prime} x_{2}^{\prime}$ is an X-line, for otherwise $x_{2}^{\prime} \in\left\langle x_{1}^{\prime}, Y_{x_{1}}\right\rangle$ and hence $\rho\left(x_{2}^{\prime}\right)=\rho\left(x_{1}^{\prime}\right)$, a contradiction. By Lemma 6.6, there is a $\theta \in \Theta$ containing the X-line $x_{1}^{\prime} x_{2}^{\prime}$. Now, if θ contains $x_{1}^{\prime}, x_{2}^{\prime}$ then θ also contains $\left\langle x_{1}, Y_{x_{1}}\right\rangle$ and $\left\langle x_{2}, Y_{x_{2}}\right\rangle$ (even if x_{1}^{\prime} and x_{2}^{\prime} would not be collinear). However, this means by Lemma 4.1 that $\theta=\left[x_{1}, x_{2}\right]=\xi$, a contradiction. So x_{1}^{\prime} and x_{2}^{\prime} are not collinear, and it also follows that $\left[x_{1}^{\prime}, x_{2}^{\prime}\right] \in \Xi$. Put $\xi^{\prime}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$. Note that the vertex $Y\left(\xi^{\prime}\right)$ of ξ^{\prime} is given by $Y_{x_{1}^{\prime}} \cap Y_{x_{2}^{\prime}}=Y_{x_{1}} \cap Y_{x_{2}}=V$ too.
We show that $\rho(X(\xi))=\rho\left(X\left(\xi^{\prime}\right)\right)$. First observe that $\theta^{x_{1}^{\prime}}=\theta^{x_{1}}$ and $\pi^{x_{2}}=\pi^{x_{2}^{\prime}}$, because $x_{1}^{\prime} \in$ $\left\langle x_{1}, Y_{x_{1}}\right\rangle \subseteq \theta^{x_{1}}$ and $Y_{x_{2}^{\prime}}=Y_{x_{2}}$. It then follows from Lemma 6.7 that there are points $x_{12} \in$ $x_{1}^{\perp} \cap x_{2}^{\perp} \subseteq \xi$ and $x_{12}^{\prime} \in x_{1}^{\prime \perp} \cap x_{2}^{\prime \perp} \subseteq \xi^{\prime}$ such that

$$
\left\langle x_{12}, V\right\rangle=\theta^{x_{1}} \cap \pi^{x_{2}}=\theta^{x_{1}^{\prime}} \cap \pi^{x_{2}^{\prime}}=\left\langle x_{12}^{\prime}, V\right\rangle
$$

We claim that $\rho\left(x_{12}\right)=\rho\left(x_{12}^{\prime}\right)$: indeed, $Y_{x_{2}}=Y_{x_{12}}$ because $x_{2}, x_{12} \in \pi^{x_{2}}$, likewise $Y_{x_{2}^{\prime}}=Y_{x_{12}^{\prime}}$, and since $Y_{x_{2}}=Y_{x_{2}^{\prime}}$ because $\rho\left(x_{2}\right)=\rho\left(x_{2}^{\prime}\right)$, we hence obtain that $\left\langle x_{12}, Y_{x_{12}}\right\rangle=\left\langle x_{12}^{\prime}, Y_{x_{12}^{\prime}}\right\rangle$.
Next, we claim that the images under ρ of the lines $x_{1} x_{12}$ and $x_{1}^{\prime} x_{12}^{\prime}$ coincide, likewise for $x_{2} x_{12}$ and $x_{2}^{\prime} x_{12}^{\prime}$. We look in $\theta^{x_{1}}$, which contains the X-lines $x_{1} x_{12}$ and $x_{1}^{\prime} x_{12}^{\prime}$. By Lemma 6.8(iii), each point $u_{1} \in x_{1} x_{12}$ corresponds to a unique point $u_{1}^{\prime} \in x_{1}^{\prime} x_{12}^{\prime}$ such that $Y_{u_{1}}=Y_{u_{1}^{\prime}}$. Since $\pi^{u_{1}}=\pi^{u_{1}^{\prime}}$ shares exactly $\left\langle u_{1}, Y_{u_{1}}\right\rangle$ with $\theta^{u_{1}}=\theta^{x_{1}}$ by Lemma 6.5 , we obtain that $\left\langle u_{1}, Y_{u_{1}}^{1}\right\rangle=\left\langle u_{1}^{\prime}, Y_{u_{1}^{\prime}}\right\rangle$. As such, $\rho\left(u_{1}\right)=\rho\left(u_{1}^{\prime}\right)$. Likewise, both X-lines $x_{12} x_{2}$ and $x_{12}^{\prime} x_{2}^{\prime}$ are contained in $\pi^{x_{2}}$. Take any point $u_{2} \in x_{12} x_{2}$ and consider the r^{\prime}-space $\left\langle u_{2}, Y_{u_{2}}\right\rangle=\left\langle u_{2}, Y_{x_{2}}\right\rangle$. The latter intersects the line $x_{12}^{\prime} x_{2}^{\prime}$ in a unique point u_{2}^{\prime} and hence $\left\langle u_{2}^{\prime}, Y_{u_{2}^{\prime}}\right\rangle=\left\langle u_{2}^{\prime}, Y_{x_{2}}\right\rangle=\left\langle u_{2}, Y_{u_{2}}\right\rangle$. We obtain $\rho\left(u_{2}\right)=\rho\left(u_{2}^{\prime}\right)$. The claim follows.

Finally, let u be an arbitrary point on $X(\xi) \backslash\left(\left\langle x_{12} x_{2}, V\right\rangle \cup\left\langle x_{12} x_{1}, V\right\rangle\right)$. Then u is collinear to unique points u_{1} on $x_{12} x_{1}$ and u_{2} on $x_{12} x_{2}$. Let u_{1}^{\prime} be the unique point on $x_{12}^{\prime} x_{1}^{\prime}$ corresponding to u_{1} via ρ, likewise for u_{2}^{\prime}. Similarly as above, one can deduce that $\theta^{u_{2}}=\theta^{u_{2}^{\prime}}$ and $\pi^{u_{1}}=\pi^{u_{2}^{\prime}}$, and that there is a point $u^{\prime} \in \xi^{\prime}$ such that

$$
\langle u, V\rangle=\theta^{u_{2}} \cap \pi^{u_{1}}=\theta^{u_{2}^{\prime}} \cap \pi^{u_{1}^{\prime}}=\left\langle u^{\prime}, V\right\rangle
$$

and finally that $\rho(u)=\rho\left(u^{\prime}\right)$. We conclude that $\rho(X(\xi)) \subseteq \rho\left(X\left(\xi^{\prime}\right)\right)$, and switching the roles of ξ and ξ^{\prime} we obtain $\rho(X(\xi))=\rho\left(X\left(\xi^{\prime}\right)\right)$.
Notation. We denote by L the set of X-lines.
Recall the notion of a Segre variety from Sections 3.2.1.

Proposition 6.10 The point-line geometry $\mathcal{S}:=(\rho(X), \rho(\mathrm{L}))$ is an injective projection of the Segre variety $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ where $k=\operatorname{dim}(\pi)-r^{\prime}$ for any $\pi \in \Pi$. Moreover,
(i) for each maximal singular subspace S in \mathcal{S}, there is a unique $\zeta_{S} \in \Theta \cup \Pi$ with $\rho\left(X\left(\theta_{S}\right)\right)=S$.
(ii) the sets $\rho(\Theta):=\{\rho(X(\theta)) \mid \theta \in \Theta\}$ and $\rho(\Pi):=\{\rho(X(\pi)) \mid \pi \in \Pi\}$ are the two natural families of maximal singular subspaces of \mathcal{S}.
(iii) for each hyperbolic quadrangle G of \mathcal{S}, there is a unique v-space V in Y such that there is a $\xi \in \Xi$ with vertex V and $\rho(X(\xi))=G$.

Proof We determine the maximal singular subspaces of the point-line geometry $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$. Let $\zeta \in \Theta \cup \Pi$ be arbitrary. By Lemma 4.18 and the fact that members of Π are singular subspaces (cf. Lemma 6.5), $\rho(X(\zeta))$ is a singular subspace of \mathcal{S}, which we denote by S_{ζ}. We aim to prove that S_{ζ} is a maximal singular subspace and that each maximal singular subspace of \mathcal{S} arises like this; moreover, we show that \mathcal{S} is the direct product of S_{θ} and S_{π} for any pair $\theta \in \Theta$ and $\pi \in \Pi$. We proceed in a few steps.

Claim 1: each point $p \in \rho(X) \backslash S_{\zeta}$ is collinear to at most one point of S_{ζ}.
Suppose for a contradiction that there is a $p \in \rho(X) \backslash S_{\zeta}$ collinear to distinct points s_{1} and s_{2} of S_{ζ}. Take $x \in X$ with $\rho(x)=p$ and put $i=1,2$. Since p and s_{i} determine a singular line of $\rho(X)$, Lemma 6.8(ii) yields a point $x_{i} \in \rho^{-1}\left(s_{i}\right)$ such that $x x_{i}$ is an X-line. As also s_{1} and s_{2} determine a singular line of $\rho(X),(i)$ of the same lemma implies that $x_{1}, x_{2} \in \zeta$. Note that $x \notin \zeta$ since $p \notin S_{\zeta}$. Suppose first that $\zeta \in \Theta$. According to Corollary 6.6, the X-line $x x_{i}$, for $i=1,2$, is contained in $\pi^{x_{i}}=\pi^{x}$. This means that $\pi^{x_{1}}=\pi^{x}$ and $\theta^{x_{1}}=\zeta$ share the line $x_{1} x_{2}$. Lemma 6.5 then implies that $x_{1} x_{2}$ contains a point of Y, and hence $s_{1}=\rho\left(x_{1}\right)=\rho\left(x_{2}\right)=s_{2}$, a contradiction. If $\zeta \in \Pi$, the argument is analogous. This shows the claim.

Note that the previous claim implies that S_{ζ} is a maximal singular subspace of \mathcal{S} indeed. The following claim in particular shows that each maximal singular subspace is of this form.
Claim 2: each point p of $\rho(X)$ is contained in two maximal singular subspaces, namely $S_{\theta^{x}}$ and $S_{\pi^{x}}$, where x is any X-point with $\rho(x)=p$, and $S_{\theta^{x}} \cap S_{\pi^{x}}=\{p\}$.
Let S be any maximal singular subspace of \mathcal{S} containing a line L with $p \in L \in \rho(\mathrm{~L})$. By Lemma $6.8(i), L$ is contained in S_{ζ} for a unique $\zeta \in \Theta \cup \Pi$, and ζ contains $\rho^{-1}(p)$, which means that $\zeta=\theta^{x}$ or $\left.\zeta=\pi^{x}\right\}$, where x is any point in $\rho^{-1}(p)$. Claim 1 implies that each point of $S \backslash L$ (if any) is contained in S_{ζ}. It follows that p is not a maximal singular subspace itself, that $S_{\pi^{x}}$ and $S_{\theta^{x}}$ are the unique maximal singular subspaces of \mathcal{S} containing p and that $S_{\pi^{x}} \cap S_{\theta^{x}}$ does not contain a line of L . The claim follows, and so does assertion (i).
Recall that $\rho(\Theta):=\left\{S_{\theta} \mid \theta \in \Theta\right\}$ and $\rho(\Pi):=\left\{S_{\pi} \mid \pi \in \Pi\right\}$. We will write S_{Θ}^{p} for $S_{\theta^{x}}$ and S_{Π}^{p} for $S_{\pi^{x}}$, to denote the two maximal singular subspaces of \mathcal{S} containing p, to avoid the use of the point $x \in \rho^{-1}(p)$.

Claim 3: Two maximal singular subspaces S_{1} and S_{2} of \mathcal{S} are disjoint if S_{1}, S_{2} both belong to $\rho(\Theta)$ or to $\rho(\Pi)$, and intersect in a unique point otherwise. It follows from Claim 2 that no point is contained nor in two members of $\rho(\Theta)$, neither in two members of $\rho(\Pi)$. It remains to show that $S_{1}=S_{\theta}$, for any $\theta \in \Theta$, and $S_{2}=S_{\pi}$, for any $\pi \in \Pi$, intersect non-trivially. This follows from Lemma 6.5, as it says that $\theta \cap \pi$ meet in a subspace $\left\langle x, Y_{x}\right\rangle$ for some $x \in X$ by. By Claim $2, S_{1} \cap S_{2}$ coincides with $\rho(x)$. The claim follows.

We can now determine the structure of \mathcal{S}.

Claim 4: $\rho(X)$ is the direct product of S_{θ} and S_{π} for any $\theta \in \Theta$ and $\pi \in \Pi$.
Let $q \in \rho(X)$ be arbitrary. Consider the two maximal singular subspaces S_{Θ}^{q} and S_{Π}^{q} containing q. By Claim $3, S_{\Pi}^{q} \cap S_{\theta}$ is a unique point, say q_{θ}; likewise, $S_{\Theta}^{q} \cap S_{\pi}$ is a unique point, say q_{π}. We show that the map

$$
\rho(X) \mapsto S_{\theta} \times S_{\pi}: q \mapsto\left(q_{\theta}, q_{\pi}\right)
$$

is bijective by determining its inverse. So suppose we are given a pair of points (t, p) with $t \in S_{\theta}$ and $p \in S_{\pi}$. Then one can verify that the point $q:=S_{\Pi}^{t} \cap S_{\Theta}^{p}$ is such that $t=q_{\theta}$ and $p=q_{\pi}$ (observe that $S_{\Pi}^{t}=S_{\Pi}^{q}$ and $S_{\Theta}^{p}=S_{\Theta}^{q}$). The claim follows.
Claim 5: $\rho(\mathrm{L})$ is the line set of the direct product geometry $S_{\theta} \times S_{\pi}$.
A line of the latter geometry either has the form $\{t\} \times L$ with t a point in S_{θ} and L a line in S_{π}, or the form $L \times\{p\}$ with L a line in S_{θ} and p a point in S_{π}. Let L be a line of $\rho(\mathrm{L})$. Considering any point $p \in L$, Claim 2 implies that L is contained in S_{Θ}^{p} or S_{Π}^{p}. Assume $L \subseteq S_{\Theta}^{p}$ (the case $L \subseteq S_{\Pi}^{p}$ is analogous). With the notation introduced in the previous paragraph, consider $L_{\pi}:=\left\{q_{\pi} \mid q \in L\right\}$ and $L_{\theta}:=\left\{q_{\theta} \mid q \in L\right\}$. Clearly, L_{π} is a unique point of S_{π} since $q_{\pi}=S_{\Theta}^{q} \cap S_{\pi}$ does not depend on the point $q \in L$ since $S_{\Theta}^{q}=S_{\Theta}^{p}$. We show that $L_{\theta}:=\left\{q_{\theta} \mid q \in L\right\}$ is a line in S_{θ}. If $S_{\Theta}^{p}=S_{\theta}$, then $L_{\theta}=L$, so suppose $S_{\Theta}^{p} \neq S_{\theta}$. Let q be a point of $L \backslash\{p\}$. Note that p and q^{θ} are not collinear, since $q^{\theta} \notin S_{\Theta}^{p} \cup S_{\Pi}^{p}$. Take $x_{1} \in \rho-1(p)$ and $x_{2} \in \rho^{-1}\left(q_{\theta}\right)$. Then x_{1} and x_{2} are not collinear and do not belong to a member of Θ, for otherwise p and q^{θ} would be collinear. So $\left[x_{1}, x_{2}\right] \in \Xi$. Then $\rho\left(\left[x_{1}, x_{2}\right]\right)$ is a hyperbolic quadrangle in \mathcal{S}. By Claim 3 , the unique hyperbolic quadrangle in \mathcal{S} containing p and q^{θ} also contains L and L^{θ} and it also follows that the latter is a line. We have shown that L is a line of $S_{\theta} \times S_{\pi}$. A similar argument now shows that a line of $S_{\theta} \times S_{\pi}$ is a line in S_{ζ} for some $\zeta \in \Theta \cup \Pi$, and by Lemma 6.8(ii), this line belongs to $\rho(\mathrm{L})$. The claim follows.

We have shown that $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$ is isomorphic to the direct product geometry $S_{\theta} \times S_{\pi}$ for $\theta \in \Theta$ and $\pi \in \Pi$. In particular, $k:=\operatorname{dim}\left(S_{\pi}\right)$ does not depend on $\pi \in \Pi$; and hence $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$ is, as a point-line geometry, isomorphic to $A_{r^{\prime}, 1}(\mathbb{K}) \times \mathrm{A}_{k, 1}(\mathbb{K})$. By the main result of [18], the Segre variety $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ is the absolutely universal embedding of $\mathrm{A}_{r^{\prime}, 1}(\mathbb{K}) \times \mathrm{A}_{k, 1}(\mathbb{K})$. This means that $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$ is an injective projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$.

For the final assertion, let Q be any hyperbolic quadrangle in \mathcal{S}. As in Claim 5 , it can be deduced that Q is the direct product of a line in S_{θ} and a line in S_{π}. Also as in Claim 5, it follows that Q arises as the image under ρ of a member of Ξ. Assertion (iii) now follows from Lemma 6.9, since any pair of members of Ξ with the same image under ρ will have the same vertex indeed. This concludes the proof of the proposition.

Remark 6.11 Note that $k \geq 1$: considering any $\theta \in \Theta$ and any point $x \in X \backslash \Theta$ (which exists, for otherwise $|\Xi|=0$), Lemma 6.5 implies that π^{x} contains a point $x^{\prime} \in X(\theta)$, and hence $x x^{\prime}$ is an X-line.

Corollary 6.12 $N \leq\left(r^{\prime}+1\right)(k+2)-1$.

Proof By Lemma 5.2, we know $\operatorname{dim}(Y)=r^{\prime}$ and by Proposition 6.10, $\operatorname{dim}(F) \leq\left(r^{\prime}+1\right)(k+1)-1$. Since F and Y generate $\mathbb{P}^{N}(\mathbb{K})$, we obtain $N \leq\left(r^{\prime}+1\right)(k+2)-1$.

6.4 Mutants of the half dual Segre variety

In Proposition 6.10, we showed that $\mathcal{S}:=(\rho(X), \rho(\mathrm{L}))$ is an injective projection of the Segre variety $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$. Next, we show that there is a subspace F^{*} of $\mathbb{P}^{N}(\mathbb{K})$ such that, if $F^{*} \cap X$ contains a subset X^{*} and $\Xi^{*}:=\left\{\left\langle\xi \cap X^{*}\right\rangle \mid \xi \in \Xi\right\}$, the subgeometry $\left(X^{*}, \Xi^{*}\right)$ is an injective projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ and is a pre-DSV itself (where Θ is empty). Possibly, F^{*} is not disjoint from Y. We will arrive naturally at a tweaked version of the half dual Segre variety, called a mutant.

To start, we consider the projections of the Segre variety mentioned above in a more general setting, by noting that the Segre variety is a pre-DSV with Θ empty.

Definition 6.13 Suppose that (X, Z, Ξ, Θ) is a pre-DSV in $\mathbb{P}^{N}(\mathbb{K})$ with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$. A subspace S of $\mathbb{P}^{N}(\mathbb{K})$ is called legal with respect to (X, Z, Ξ, Θ) if the projection of (X, Z, Ξ, Θ) from S is injective on $X \cup Z$ and yields a pre-DSV in $\mathbb{P}^{N^{\prime}}(\mathbb{K})$, with $N^{\prime}=N-\operatorname{dim} S-1$ with parameters ($r, v, r^{\prime}, v^{\prime}$).

The following characterisation of legal projections comes in handy.

Lemma 6.14 Suppose that (X, Z, Ξ, Θ) is a pre-DSV in $\mathbb{P}^{N}(\mathbb{K})$ with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$. Then a subspace S of $\mathbb{P}^{N}(\mathbb{K})$ is legal w.r.t. (X, Z, Ξ, Θ) if and only if S is disjoint from $\left\langle\zeta_{1}, \zeta_{2}\right\rangle$ for any pair of $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$.

Proof Suppose that S is disjoint from $\left\langle\zeta_{1}, \zeta_{2}\right\rangle$ for any pair of $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$. Then in particular, S is disjoint from any member of $\Xi \cup \Theta$. We claim that S is injective on $X \cup Z$. Suppose for a contradiction that two points $p_{1}, p_{2} \in X \cup Z$ project onto the same point. Then $\left\langle S, p_{1}\right\rangle$ contains p_{2} and hence the line $p_{1} p_{2}$ contains a point $s \in S$. By (S 1), p_{1}, p_{2} are contained in some $\zeta \in \Xi \cup \Theta$. However, by the foregoing, $\zeta \cap S=$. The claim follows. From this we already deduce that the projection of (X, Z, Ξ, Θ) is an $\left(r, v^{\prime}, r^{\prime}, v^{\prime}, N-\operatorname{dim} S-1\right)$-system.

It follows from the previous paragraph that Axiom (S1) is preserved when projecting (X, Z, Ξ, Θ) from S. Consider two members $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$. Since S is disjoint from $\left\langle\zeta_{1}, \zeta_{2}\right\rangle$, the intersection of the projections of ζ_{1} and ζ_{2} coincides with the projection of $\zeta_{1} \cap \zeta_{2}$. Hence Axiom (S2) is preserved too.

Conversely, if there would be $\zeta_{1}, \zeta_{2} \in \Xi \cup \Theta$ with $S \cap\left\langle\zeta_{1}, \zeta_{2}\right\rangle \neq \emptyset$, then the projections of ζ_{1} and ζ_{2} would intersect in strictly more than the projection of $\zeta_{1} \cap \zeta_{2}$, and Axiom (S2) would no longer hold.

In the smallest cases however, no non-trivial legal projections of the Segre variety occur:

Lemma 6.15 The Segre varieties $\mathcal{S}_{\ell, k}(\mathbb{K})$ with $\ell \leq 3$ and $k \geq 1$ do not admit proper legal projections.

Proof Since $\mathcal{S}_{\ell, k}(\mathbb{K})$ with $\ell<3$ is contained in $\mathcal{S}_{3, k}(\mathbb{K})$ it suffices to show that the latter does not admit proper legal projections. The Segre variety $\mathcal{S}_{3, k}(\mathbb{K})$ is defined by the $4 \times(k+1)$ matrices over \mathbb{K} of rank 1 in the projective space defined by the vector space of all $4 \times(k+1)$ matrices over \mathbb{K}. If A is such a matrix of rank 4 , then A is the sum of four rank 1 matrices A_{1}, A_{2}, A_{3} and A_{4} which are pairwise not collinear. Let ξ_{1} and ξ_{2} be the respective members of Ξ determined by the pairs $\left(A_{1}, A_{2}\right)$ and $\left(A_{3}, A_{4}\right)$. Then $A \in\left\langle\xi_{1}, \xi_{2}\right\rangle$ is not a legal point w.r.t. $\mathcal{S}_{3, k}(\mathbb{K})$. If A has rank 2 or $3, M$ is already the sum of two or three rank 1 matrices, respectively, and the same conclusion can be reached analogously.

We show that the subspace F^{*} and subset X^{*} of X alluded to above exist.

Proposition 6.16 The set X contains a subset X^{*} such that, with induced line set L^{*}, the geometry $\Omega:=\left(X^{*}, L^{*}\right)$ is a legal projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$, where containment gives a bijection between the natural families of r^{\prime}-spaces and k-spaces of Ω and the sets Θ and Π, respectively. For each hyperbolic quadrangle Q in Ω, there is a unique $\xi \in \Xi$ with $X^{*} \cap \xi=Q$. Moreover, if $F^{*}=\left\langle X^{*}\right\rangle$, then
(i) $\bigsqcup_{x \in X^{*}}\left\langle x, Y_{x}\right\rangle \backslash Y_{x}=X$ and hence $\left\langle F^{*}, Y\right\rangle=\mathbb{P}^{N}(\mathbb{K})$;
(ii) Re-choose F such $F \subseteq F^{*}$. Then $F^{*} \cap Y$ and F are complementary in F^{*}, and the projection ρ^{*} of $F^{*} \cap X$ from $F^{*} \cap Y$ on F coincides with the projection of ρ restricted to $F^{*} \cap X$. In particular, if $F^{*} \cap Y=\emptyset$, then $X^{*}=X \cap F^{*}$ and ρ is the identity on X^{*}.
(iii) If $r^{\prime}=2$ and $k \in\{1,2\}$, then $F^{*} \cap Y=\emptyset$.

Proof By Proposition 6.10, $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$ is an injective projection of the Segre geometry $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$, and the latter's r^{\prime}-dimensional subspaces are in $1-1$-correspondence with the members of Θ. We show that we can select an r^{\prime}-dimensional space in $X(\theta)$ for each $\theta \in \Theta$, such that the union of these r^{\prime}-spaces, equipped with induced line set, is isomorphic to $\mathcal{S}=(\rho(X), \rho(\mathrm{L}))$. We start however with the k-spaces, which are in 1-1-correspondence with the members of Π.
Take $r^{\prime}+1$ hyperplanes $Y_{0}, \ldots, Y_{r^{\prime}}$ in Y such that they form a basis of the dual of Y (i.e., the dimension of the intersection of i members of them, with $0 \leq i \leq r^{\prime}$, has dimension $r^{\prime}-i$). For $t \in\left\{0, \ldots, r^{\prime}\right\}$, let π_{t} be short for the subspace $\pi\left(Y_{t}\right) \in \Pi$ (cf. Lemma 6.5). Take any k dimensional X-space S_{Π}^{0} in π_{0} complementary to Y_{0} and let ($x_{0,0}, \ldots, x_{0, k}$) be a basis of S_{Π}^{0}. For each $u \in\{0, \ldots, k\}$, let θ_{u} be short for $\theta^{x_{0, u}} \in \Theta$; and for each $t \in\left\{0, \ldots, r^{\prime}\right\}$, put $\Pi_{t, u}:=\pi_{t} \cap \theta_{u}$. Recall that Lemma 6.5 says that $\Pi_{t, u}:=\left\langle x_{t, u}^{\prime}, Y_{t}\right\rangle$ where $x_{t, u}^{\prime}$ is any X-point in θ_{u} collinear to Y_{t}. In particular, $\operatorname{dim} \Pi_{t, u}=r^{\prime}$.
Let $u \in\{0, \ldots, k\}$. We now choose points $x_{1, u}, \ldots, x_{r^{\prime}, u}$ in θ^{u} such that, together with $x_{0, u}$, they form an r^{\prime}-dimensional subspace in $X\left(\theta^{u}\right)$. We choose these points consecutively. Suppose the points $x_{0, u}, \ldots, x_{i, u}$ have been chosen already, with $0 \leq i \leq r^{\prime}-1$. We choose the point $x_{i+1, u}$. Consider θ_{u}, which by definition contains $\left\langle x_{t, u}^{\prime}, Y_{t}\right\rangle$ for all $0 \leq t \leq r^{\prime}$. Therefore, the subspace of the maximal singular subspace $\left\langle x_{i+1, u}^{\prime}, Y_{i+1}\right\rangle$ of θ_{u} that is collinear to all $i+1$ points $x_{i^{\prime}, u}$ with $0 \leq i^{\prime} \leq i$ has dimension at least $r^{\prime}-i-1$, and it intersects Y_{i+1} in the ($r^{\prime}-i-2$)-space $\bigcap_{0 \leq i^{\prime} \leq i+1} Y_{i^{\prime}}$. Noting that $r^{\prime}-i-1 \geq 0$, there is a point $x_{i+1, u} \in\left\langle x_{i+1, u}^{\prime}, Y_{i+1}\right\rangle$ collinear to $x_{i^{\prime}, u}$ for $\overline{0} \leq i^{\prime} \leq i$. Define $S_{\Theta}^{u}:=\left\langle x_{0, u}, \ldots, x_{r^{\prime}, u}\right\rangle$. Then S_{Θ}^{u} is an r^{\prime}-space in $X\left(\theta^{u}\right)$ indeed, since $\left(S_{\Theta}^{u}\right)^{\perp} \cap Y=\bigcap_{i=0}^{r^{\prime}} Y_{i}=\emptyset$ implies that the subspaces $S^{u} \Theta$ and Y are opposite subspaces in the quadric $X Y\left(\theta^{u}\right)$, which is only possible if they are disjoint and have the same dimension.
Next, we show that, for $0 \leq t \leq r^{\prime}$, the singular subspace $S_{\Pi}^{t}:=\left\langle x_{t, 0}, \ldots, x_{t, k}\right\rangle$ of π_{t} has dimension k. For $t=0$ this is by construction. Let $t>0$. We claim the subspace S_{Π}^{t} is isomorphic to S_{Π}^{0}, with isomorphism given by collinearity. We extend the correspondence $x_{0, u} \mapsto x_{t, u}$ between the $k+1$ points of S_{Π}^{0} and S_{Π}^{t}. As a first step, let x_{0} be a point on a line between two such points of S_{Π}^{0}, to fix ideas, let $x \in x_{0,0} x_{0,1}$. Note that the line $x_{0,0} x_{0,1}$ is an X-line by construction; the line $x_{t, 0} x_{t, 1}$ is also an X-line, because $x_{t, 0} \in \theta^{0}$ and $x_{t, 1} \in \theta^{1}$ and if $x_{t, 0} x_{t, 1}$ would contain a point of Y, then $x_{t, 0} x_{t, 1} \subseteq \theta^{0} \cap \theta^{1} \subseteq Y$, a contradiction. The points $x_{0,0}$ and $x_{t, 1}$ are not collinear, nor contained in a member of Θ, as otherwise $x_{t, 1}$ would belong to π_{0} or to θ_{0} (and since $x_{t, 1} \in \pi_{t} \cap \theta_{1}$, this is not the case). Hence $\left[x_{0,0}, x_{t, 1}\right] \in \Xi$ by Lemma 4.1. Since $\left[x_{0,0}, x_{t, 1}\right]$ is the convex closure of $x_{0,0}, x_{t, 1}$ (cf. Lemma 4.7), it follows that $x_{0,1}$ and $x_{0,0}$ also belong to $\left[x_{0,0}, x_{t, 1}\right]$. Therefore, x_{0} is collinear to a unique point x_{t} on the line $x_{t, 0} x_{t, 1} \subseteq \pi_{t}$. Since $\theta^{x_{0}}$ meets π_{t} in $\left\langle x_{1}, Y_{t}\right\rangle, x_{t}$ is the unique point of S_{Π}^{t} collinear to x_{0}. Continuing like this, it follows that each point $x_{0} \in S_{\Pi}^{0}$ is collinear to a unique point of S_{Π}^{t}, moreover, each line of S_{Π}^{0} is mapped to an X-line of S_{Π}^{t}. We conclude that collinearity is an isomorphism between S_{Π}^{0} and S_{Π}^{t} and in particular, $S_{\Pi}^{t} \subseteq X$ and $\operatorname{dim} S_{\Pi}^{t}=k$. Observe that the bijective correspondence can equivalently be given by "being contained in the same member of Θ ". Indeed, given the collinear points x_{0} and x_{t} of the previous paragraph, we have $Y_{x_{0}}=Y_{0}$ and $Y_{x_{t}}=Y_{t}$ and hence $x_{0} x_{t}$ is an X-line, which is not contained in $\pi_{x_{0}}=\pi_{0}$ and hence it is contained in $\theta^{x_{0}}$. As above, $\theta^{x_{0}}$ meets S_{Π}^{t} exactly in the point x_{t}.
By the foregoing, "collinearity" and "being contained in the same member of Θ " are bijections between each pair of k-spaces S_{Π}^{t} and $S_{\Pi}^{t^{\prime}}$. It then follows that for each point $x_{0} \in S_{\Pi}^{0}$, the subspace $\left\langle x_{0}, \theta^{x_{0}} \cap S_{\Pi}^{1}, \ldots, \theta^{x_{0}} \cap S_{\Pi}^{r^{\prime}}\right\rangle$ is a singular subspace. By the same argument as used above, it is an r^{\prime}-dimensional X-space. So, if $\theta \in \Theta$ is arbitrary, then it meets S_{Π}^{t} in a unique point $x_{t}(\theta)$ and these points generate an r^{\prime}-space in $X(\theta)$, which we denote by S_{θ}.

Finally, we can define X^{*} as the union of all r^{\prime}-spaces S_{θ} where θ ranges over Θ. Taking any point $x^{*} \in X^{*}$, we by definition of X^{*} have that x^{*} belongs to a unique r^{\prime}-space, namely $S^{\theta^{x^{*}}}$. Now consider $\pi^{x^{*}}$ and let S_{Π}^{*} be the subspace generated by all points $\pi^{x^{*}} \cap S_{\theta}$ with $\theta \in \Theta$. Since it belongs to $\pi^{x^{*}}$ it is a singular subspace, moreover it has dimension k and belongs to X because it is isomorphic to S_{Π}^{0} by the same argument as in the previous paragraph (using the correspondence "being contained in the same S_{θ} "). We conclude that x^{*} is contained in a unique singular r^{\prime}-space of X^{*} (contained in $X\left(\theta^{x^{*}}\right)$) and in a unique k-space of $X^{*}\left(\right.$ contained in $X\left(\pi^{x^{*}}\right)$). Note that this implies that any two collinear points in X^{*} are on an X-line which is contained in X^{*}; the resulting line set we denote by L*. Finally, since any $\pi \in \Pi$ shares a point with S_{Θ}^{0}, we see that π contains a k-space in X^{*} too. It is now straightforward to verify that ($X^{*}, \mathrm{~L}^{*}$), is isomorphic to $S_{\Theta}^{0} \times S_{\Pi}^{0}$. Then $\left(X^{*}, \mathrm{~L}^{*}\right)$ is an injective projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$. Consider a hyperbolic quadrangle Q in X^{*}. Then we already deduced above that a pair of non-collinear points of Q gives rise to a unique $\xi \in \Xi$, and $Q \subseteq \xi$. Moreover, since each point x of $X(\xi)$ corresponds to a unique point x_{Q} of Q (in the sense that $\langle x, Y(\xi)\rangle=\left\langle x_{Q}, Y(\xi)\right\rangle$), we have $X^{*} \cap \xi=Q$ and hence also $\langle Q\rangle \cap X^{*}=Q$. The resulting pair $\left(X^{*}, \Xi^{*}\right)$ with $\Xi^{*}:=\{\langle Q\rangle \mid Q$ hyperbolic quadrangle in $\Omega\}$ is a pre-DSV: it is an $(1,-1 ; N)$-system satisfying (S1) by the above, and (S2) holds because each $\langle Q\rangle \in \Xi^{*}$ corresponds to a unique $\xi \in \Xi$. So $\left(X^{*}, \mathrm{~L}^{*}\right)$ is a legal projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$. This shows the main assertion.
(i) Let $x \in X$ be arbitrary. Consider the quadric $X Y\left(\theta^{x}\right)$, in which the X^{*}-space $S_{\theta^{x}}$ and Y are opposite r^{\prime}-spaces. Hence there is a unique point $x^{*} \in S_{\theta^{x}}$ with $Y_{x}=Y_{x^{*}}$. So $x^{*} \in \pi_{x} \cap \theta_{x}=\left\langle x, Y_{x}\right\rangle$, and therefore $x \in\left\langle x^{*}, Y_{x^{*}}\right\rangle$. Note that x^{*} is the unique point of X^{*} in $\left\langle x^{*}, Y_{x^{*}}\right\rangle$ because, as mentioned above, collinear points in X^{*} determine an X-line. Since $x \in X$ was arbitrary and $F^{*}=\left\langle X^{*}\right\rangle$, the assertion follows.
(ii) Suppose $F \subseteq F^{*}$. Then F^{*} is generated by F and $F^{*} \cap Y$: if not, then F^{*} contains a subspace F^{\prime} strictly containing F and disjoint from $F^{*} \cap Y$; and because F and Y are complementary, F^{\prime} meets Y in a point outside $F^{*} \cap Y$, a contradiction. So F and $F^{*} \cap Y$ are, being disjoint, complementary subspaces of F^{*}. Take any $x \in F^{*} \cap X$. By definition, $\rho^{*}(x)=\left\langle x, F^{*} \cap Y\right\rangle \cap F$ and $\rho(x)=\langle x, Y\rangle \cap F$. Since $x \in\left\langle\rho^{*}(x), F^{*} \cap Y\right\rangle \subseteq\left\langle\rho^{*}(x), Y\right\rangle$, we get $\rho^{*}(x) \in\langle x, Y\rangle \cap F=\rho(x)$, so $\rho(x)=\rho^{*}(x)$. If $F^{*} \cap Y$ is empty, then ρ^{*} is the identity on $F^{*} \cap X$. Since $\rho(X)$ and X^{*} both are projections of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ in $F=F^{*}$, and $X^{*}=\rho\left(X^{*}\right) \subseteq \rho(X)$, we obtain that $X^{*}=\rho(X)$. In particular, if $x \in F^{*} \cap X$, then $x=\rho(x) \in X^{*}$. So $F^{*} \cap X=X^{*}$ in case $F^{*} \cap Y=\emptyset$.
(iii) Finally, suppose that $r^{\prime}=2$. First let $k=1$. Then $\left(\rho(X), \rho(\mathrm{L})\right.$ and ($X^{*}, \rho\left(\mathrm{~L}^{*}\right)$ are injective projections of $\mathcal{S}_{2,1}(\mathbb{K})$. Since the latter contains disjoint planes, both $\langle\rho(X)\rangle$ and $F^{*}=\left\langle X^{*}\right\rangle$ have dimension 5 and hence $F=F^{*}$ so $F^{*} \cap Y=\emptyset$. So let $k=2$. In this case, $(\rho(X), \rho(\mathrm{L})$ is an injective projection of $\mathcal{S}_{2,2}(\mathbb{K})$ and $\left(X^{*}, \rho\left(\mathrm{~L}^{*}\right)\right.$ is a legal projection of $\mathcal{S}_{2,2}(\mathbb{K})$. By Lemma 6.15, this means that $F^{*}=\left\langle X^{*}\right\rangle$ has dimension 8. Suppose for a contradiction that $F^{*} \cap Y$ contains a point y. Since $v=r^{\prime}-2=0$, it follows from Lemma $6.10(i i i)$ that y occurs as the vertex of some member $\xi \in \Xi$. By the foregoing, $X^{*} \cap \xi$ is a hyperbolic quadrangle Q. The 4 -space $\langle Q, y\rangle \subseteq \xi$ is hence contained in $F^{*}=\left\langle X^{*}\right\rangle$, but intersects X^{*} in precisely Q. Consider two planes $S^{\pi}=\pi \cap X^{*}$ and $S_{\theta}=\theta \cap X^{*}$, with $\pi \in \Pi$ and $\theta \in \Theta$, such that they are disjoint from Q (then Q arises as the direct product of a line in $S^{\pi} \backslash S_{\theta}$ and a line in $S^{\theta} \backslash S_{\pi}$). The 4 -space $\left\langle S_{\theta}, S_{\pi}\right\rangle$ then has a point q in common with the 4 -space $\langle Q, y\rangle$ (both are contained in F^{*}, which has dimension 8). By a dimension argument, there are unique lines $L_{1} \subseteq S_{\theta}$ and $L_{2} \subseteq S_{\pi}$ with $L_{1} \cap L_{2}=S_{\theta} \cap S_{\pi}$ such that $q \in\left\langle L_{1}, L_{2}\right\rangle$. Let Q^{\prime} be the hyperbolic quadrangle determined by L_{1} and L_{2} and let $\xi^{\prime} \in \Xi$ be the corresponding member. Then $\xi \cap \xi^{\prime}$ contains q, and by (S2), $q \in X$. Now q belongs to the 3 -space $\left[L_{1}, L_{2}\right]$ and to X, and we noted above that this means that $q \in X^{*}$. But then $q \in Q$, a contradiction. We conclude that $F^{*} \cap Y=\emptyset$ in this case too.

Finally, we will show that X is, up to projection from a subspace in Y, a mutant of the half dual Segre variety $\mathcal{H D} \mathcal{S}_{\ell, k}(\mathbb{K})$, which we define below. Recall that in Section 3.2.1, we constructed the half dual Segre variety $\mathcal{H D} \mathcal{S}_{\ell, k}(\mathbb{K})$ by means of an ℓ-space Y and a Segre variety $S:=\mathcal{S}_{\ell, k}(\mathbb{K})$ with Y and S complementary, but the construction for X and Ξ do not depend on the fact that Y and
S are disjoint.

Definition 6.17 Consider the half dual Segre variety $\mathcal{H D S}_{\ell, k}(\mathbb{K})=(X, Z, \Xi, \Theta)$ associated to the Segre variety $S:=\mathcal{S}_{\ell, k}(\mathbb{K})$. Then:

- we may replace S by a legal projection of $\mathcal{S}_{\ell, k}(\mathbb{K})$
- we may choose $Y=Z$ in such a way that the projection of $\langle\mathrm{S}\rangle \cap X$ from $\langle\mathrm{S}\rangle \cap Y$ (onto a subspace of $\langle\mathrm{S}\rangle$ complementary to $\langle\mathrm{S}\rangle \cap Y$) yields an injective projection of S ; the ambient projective space is afterwards restricted to $\langle\mathrm{S}, Y\rangle$.
The resulting structure is called a mutant of $\operatorname{HDS}_{\ell, k}(\mathbb{K})$.

6.5 Conclusion

We phrase the conclusion without the standing hypothesis, to deal with the situation in full generality. Only now we will invoke axiom (S3).

Theorem 6.18 Let (X, Z, Ξ, Θ) be a pre-DSV with parameters ($r, v, r^{\prime}, v^{\prime}$) such that there is an $x \in X$ with $\left|\Theta_{x}\right|=1$. Then $r=1, v=r^{\prime}-2$ and:
(i) Up to projection from $a v^{\prime}$-space $V \subseteq Y$ collinear to all points of X, we obtain that X is the point set of a mutant of a half dual Segre variety $\mathcal{H D}_{r^{\prime}, k}(\mathbb{K})$ for some $k \geq 1$, with Z as r^{\prime}-space at infinity and $\Xi \cup \Theta$ as its symps;
(ii) if additionally, (X, Z, Ξ, Θ) satisfies (S3), then X is the point set of a half dual Segre variety $\mathcal{H D S}_{r^{\prime}, k}(\mathbb{K})$ with $r^{\prime}=2$ and $k \in\{1,2\}$ and X is projectively unique.

Proof (i) Lemma 6.2 yields the v^{\prime}-space V collinear to all points of X and Lemma 4.14 allows us to project from V, so that we only need to deal with the case where $v^{\prime}=-1$. That $r=1$ follows from Corollary 5.13 and $v=r^{\prime}-2$ follows from Lemma 6.3.
By Proposition $6.16, X$ contains a subset X^{*} such that X^{*}, with induced line set L^{*}, is a legal projection of $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$, and $X=\bigcup_{x \in X^{*}}\left\langle x, Y_{x}\right\rangle \backslash Y_{x}$. Therefore it suffices to show that the connection map $\chi: X^{*} \rightarrow Y: x \mapsto Y_{x}$ satisfies the properties mentioned in the definition of the half dual Segre varieties (cf. Subsection 3.2.1).
Take $\theta \in \Theta$. Then by Proposition 6.16, $S:=\theta \cap X^{*}$ is an r^{\prime}-space of X^{*}. Inside the quadric $X Y(\theta)$, in which S and Y are opposite r^{\prime}-spaces, it is clear that the restriction χ_{S} of χ to S coincides with the collinearity relation between S and Y, so χ_{S} is a linear duality between S and Y.
Take $x \in X$ arbitrary. If $x \notin S$, then there is a unique point $s^{x} \in S$ collinear to x. Since the line $x s^{x}$ belongs to π^{x}, we have $Y_{s_{\theta}^{x}}=Y_{x}$, and hence $\chi\left(s^{x}\right)=\chi(x)$. We conclude that χ is indeed as described in Section 3.2.1. For each pair of non-collinear points p_{1}, p_{2} of X, Lemmas 4.1 and 4.7 imply that the unique symp ζ through $p_{1}, p_{2}, X Y(\zeta)$ coincides with the convex closure of p_{1} and p_{2} via singular lines not contained in Y. Assertion (i) follows.
(ii) By Proposition 6.10, $\rho(X) \subseteq F$ is an injective projection of a Segre variety $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$. Let $x \in X$ be arbitrary. We denote by $T_{\rho(x)}^{F}$ the set of $\rho(X)$-lines in F through $\rho(x)$ and by $T_{\rho(x)}^{F}(\xi)$ the tangent space to $\rho(X(\xi))$ at $\rho(x)$ for some $\xi \in \Xi$ with $\rho(x) \in \rho(X(\xi))$.
Axiom (S3) yields members $\xi_{1}, \xi_{2} \in \Xi$ through x such that $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$. Since for $i=1,2$, $T_{x}\left(\xi_{i}\right)$ is generated by $Y\left(\xi_{i}\right)$ and a pair of non-collinear X-lines through x (which project on non-collinear $\rho(X)$-lines through $\rho(x))$ and since $Y_{x} \subseteq T_{x}$, we obtain that $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$ is equivalent with $Y_{x}=\left\langle Y\left(\xi_{1}\right), Y\left(\xi_{2}\right)\right\rangle$ and $T_{\rho(x)}^{F}=\left\langle T_{\rho(x)}^{F}\left(\xi_{1}\right), T_{\rho(x)}^{F}\left(\xi_{2}\right)\right\rangle$. On the other hand, $\operatorname{dim} T_{\rho(x)}^{F}=r^{\prime}+k$ as the tangent space at $\rho(x)$ is generated by the two maximal singular subspaces
$\rho\left(\theta^{x}\right)$ and $\rho\left(\pi^{x}\right)$ of $\rho(X)$ through $\rho(x)$. Furthermore, since $r=1, T_{\rho(x)}^{F}\left(\xi_{1}\right)$ and $T_{\rho(x)}^{F}\left(\xi_{2}\right)$ are just planes, which generate at most a 4 -space in F, and so $r+k^{\prime} \leq 2+2=4$. Recalling that $r^{\prime}>r \geq 1$ by assumption and $k \geq 1$, as noted in Remark 6.11, we deduce that $\left(r^{\prime}, k\right) \in\{(3,1),(2,1),(2,2)\}$. However, if $k=1$, then $\rho\left(\pi^{x}\right)$ is a line contained in both planes $T_{\rho(x)}^{F}\left(\xi_{1}\right)$ and $T_{\rho(x)}^{F}\left(\xi_{2}\right)$, and hence these planes generate at most a 3 -space, so $r^{\prime}+k=r^{\prime}+1 \leq 3$, excluding the possibility $\left(r^{\prime}, k\right)=(3,1)$. So $r^{\prime}=2$. Since $v=r^{\prime}-2=0$ and $\operatorname{dim} Y_{x}=r^{\prime}-1=1$, the requirement $Y_{x}=\left\langle Y\left(\xi_{1}\right), Y\left(\xi_{2}\right)\right\rangle$ only implies that ξ_{1} and ξ_{2} have disjoint vertices.
Put $F^{*}=\left\langle X^{*}\right\rangle$. Since $\left\langle F^{*}, Y\right\rangle=\mathbb{P}^{N}(\mathbb{K})$ by Proposition $6.16(i)$, we may choose the subspace F complementary to Y such that $F \subseteq F^{*}$. Since $r^{\prime}=2$ and $k \in\{1,2\}$, the variety $\mathcal{S}_{r^{\prime}, k}(\mathbb{K})$ does not admit legal projections (cf. Lemma 6.15), moreover $F^{*} \cap Y=\emptyset$ by Proposition 6.16(iv), i.e., $F=F^{*}$. So in this case, (X, Z, Ξ, Θ) is not a mutant of but a proper half dual Segre variety, with $r^{\prime}=2$ and $k \in\{1,2\}$. For the uniqueness, up to projectivity: Y and F in $\mathbb{P}^{N}(\mathbb{K}), \Omega$ in F. Moreover, the projectivity χ_{S} between S and the dual of Y is unique up to a projectivity of Y. We conclude that X is projectively unique.

The case where $\left|\Theta_{x}\right| \geq 1$ for some $x \in X$ hence leads us to the conclusion of Main Result 3.6(i).

7 The dual line Grassmannians

As explained in Subsection 5.5 (see also Proposition 5.11), one of the cases to be treated is the following (corresponding to the $r=2$ case in the first column of Table 1).

Standing hypothesis. Throughout this section, (X, Z, Ξ, Θ) is a pre-DSV with parameters $\left(2, v, r^{\prime}, v^{\prime}\right)$ with $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for an arbitrary field $|\mathbb{K}|>2$, in which no point of Y is collinear to all points of X, and such that $\left|\Theta_{L}\right|=1$ for each X-line L.

Recall Definition 5.7, which introduced the point-residue of (X, Z, Ξ, Θ). As also explained in Subsection 5.5, our approach will be inductive. We make this formal in the next lemma. Recall that $r^{\prime}>r \geq 2$ by assumption, so $r^{\prime} \geq 3$.

Lemma 7.1 For any $x \in X$, the point-residue $\operatorname{Res}_{X}(x)=\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is isomorphic to a mutant of a half dual Segre variety $\mathcal{H D} \mathcal{S}_{r^{\prime}-1, k_{x}}(\mathbb{K})$ for some $k_{x} \geq 1$. In particular, $v=r^{\prime}-3$ and $v^{\prime}=-1$. Moreover, each $\theta \in \Theta$ containing x contains $Y_{x}=Z_{x}$.

Proof By Proposition 5.11, the point residue $\operatorname{Res}_{X}(x)=\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is a pre-DSV with parameters $\left(1, v, r^{\prime}-1, v^{\prime}\right)$, and no point of Y_{x} is collinear to all points of X_{x}. Since $\left|\Theta_{L}\right|=1$ for each X-line L, we have $\left|\Theta_{x^{\prime}}\right|=1$ for each $x^{\prime} \in X_{x}$. The first part of the statement now follows from Theorem 6.18, and since no point of Y_{x} is collinear to all points of X_{x}, the v^{\prime}-space V is empty, so $v^{\prime}=-1$. Finally, by Lemmas 5.2 and 6.2 , each member of Θ_{x} contains $Y_{x}=Z_{x}$ and therefore so does the corresponding member of Θ.
For each $x \in X$, we define k_{x} as in the previous lemma. We start by relating $\operatorname{dim} Y$ to k_{x}, and show that the latter does not depend on $x \in X$.

Lemma 7.2 The sets Y and Z coincide, and for any $x \in X, \operatorname{dim} Y=r^{\prime}+k_{x}$.

Proof Let $x \in X$ be arbitrary. By Lemma 7.1, the point-residue $\operatorname{Res}_{X}(x)=\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is isomorphic to a mutant of $\mathcal{H D} \mathcal{S}_{r^{\prime}-1, k_{x}}(\mathbb{K})$ and $v^{\prime}=-1$. According to Proposition 6.16, X_{x} contains a legal projection Ω of the Segre variety $\mathcal{S}_{r^{\prime}-1, k_{x}}(\mathbb{K})$. By the same proposition, containment gives a bijection between the ($r^{\prime}-1$)-spaces of Ω and the members of Θ_{x}, which at their turn correspond
bijectively with the members of Θ containing x. Let I be an index set such that $\left\{\theta_{i} \in \Theta \mid i \in I\right\}$ ranges over all members of Θ containing x. Let $i \in I$ be arbitrary. Consider the $\left(r^{\prime}-1\right)$-space S_{i} of Ω contained in θ_{i}. By Lemma 7.1, θ_{i} contains Y_{x}, and according to Lemma 6.2, $\operatorname{dim} Y_{x}=r^{\prime}-1$. Since $v^{\prime}=-1$ by Lemma 7.1, we have that $Y\left(\theta_{i}\right)$ is an r^{\prime}-space contained in Z by Definition 3.2. The subspaces Y_{x} and S_{i} of θ_{i} are opposite $r^{\prime}-1$-spaces, and hence the properties of the quadric $X Y\left(\theta_{i}\right)$ imply that $Y\left(\theta_{i}\right)$ contains a unique point $z_{i} \in Z$ collinear to S_{i}. Clearly, $z_{i} \notin Y_{x}$, so z_{i} corresponds to the unique point $\left\langle Y_{x}, z_{i}\right\rangle$ of $\operatorname{Res}_{Y}\left(Y_{x}\right)$. Conversely, suppose we are given a point $z \in Z \backslash Y_{x}$. As x and z are not collinear, Lemma 4.1 yields $[x, z] \in \Theta$, and hence $[x, z]$ contains a subspace S_{i} of Ω for a unique $i \in I$. Therefore, $\left\langle Y_{x}, z_{i}\right\rangle=\left\langle Y_{x}, z\right\rangle$ for a unique $i \in I$. We conclude that the map $S_{i} \mapsto\left\langle Y_{x}, z_{i}\right\rangle$ as defined above is a bijection between the set of $\left(r^{\prime}-1\right)$-spaces of Ω and the set $M:=\left\{\left\langle Y_{x}, z\right\rangle|z \in Z\rangle\right.$, which is a subset of the point set of $\operatorname{Res}_{Y}\left(Y_{x}\right)$. We show that this bijection is an isomorphism.
Let S be any k_{x}-space of Ω. Each point of S is contained in a unique member of Θ_{x} and hence corresponds to a unique point of M. We show that a line L of S corresponds to a (full) line of $M \subseteq \operatorname{Res}_{Y}\left(Y_{x}\right)$. Let J be the subset of I such that $\left\{S_{j} \mid j \in J\right\}$ corresponds to the members of Θ through x meeting L in a point. Consider the unique member θ of Θ containing the X-line L. Again, by Lemma $7.1, \theta$ contains $Y_{x_{j}}$ for any $j \in J$, so in particular $z_{j} \in \theta$. On the other hand, as L is contained in S, and S is contained in a unique member of Π of $\operatorname{Res}_{X}(x)$ (see Proposition 6.16 and Definition 6.4), there is an $\left(r^{\prime}-2\right)$-space Y_{L} in Y_{x} collinear to all points of L. Viewed in the quadric $X Y(\theta)$, the map $p_{j} \mapsto Y_{p_{j}}$ from the points of L to the $\left(r^{\prime}-1\right)$-spaces containing Y_{L} is a bijection. For each $j \in J, z_{j} \in \theta$ is collinear to a unique point p_{j} from L and hence $z_{j} \in Y_{p_{j}}$. Projecting $Y(\theta)$ from Y_{L} gives a full line which is in bijective correspondence with $\left\{z_{j} \mid j \in J\right\}$. When projecting from $Y \supseteq Y_{x}$, we henco also obtain that $\left\{z_{j} \mid j \in J\right\}$ a full line of $\operatorname{Res}_{Y}\left(Y_{x}\right)$. We conclude that M is a subspace, isomorphic to S, and hence $\operatorname{dim} M=k_{x}$.

Since M contains all points of the form $\left\langle Y_{x}, z\right\rangle$ with $z \in Z$, as explained above, we obtain that M coincides with $\operatorname{Res}_{Y}\left(Y_{x}\right)$ since $Y=\langle Z\rangle$. So $\operatorname{dim} Y=\operatorname{dim} Y_{x}+k_{x}+1=r^{\prime}+k_{x}$ indeed. Take any $y \in Y$. Then by the above, $y \in\left\langle Y_{x}, z_{i}\right\rangle$ for some $i \in I$, and since $Z\left(\theta_{i}\right)=Y\left(\theta_{i}\right)=\left\langle Y_{x}, z_{i}\right\rangle$ we obtain that $y \in Z$. So also $Y=Z$ follows.

Henceforth, we write k instead of k_{x} since the latter does not depend on $x \in X$. Next, we show that the mutual position of two points $x_{1}, x_{2} \in X$ is reflected in the mutual position of $Y_{x_{1}}$ and $Y_{x_{2}}$. This will in particular allow us to prove later on that $k=1$.

Lemma 7.3 Take two distinct points $x_{1}, x_{2} \in X$. Then
(i) $x_{1} x_{2}$ is a singular line with a unique point in $Y \Leftrightarrow Y_{x_{1}}=Y_{x_{2}}$;
(ii) x_{1}, x_{2} are non-collinear with $\left[x_{1}, x_{2}\right] \in \Theta$ or $x_{1} x_{2}$ is an X-line $\Leftrightarrow \operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-2$;
(iii) x_{1} and x_{2} are non-collinear with $\left[x_{1}, x_{2}\right] \in \Xi \Leftrightarrow \operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-3$.

Proof Clearly, the possibilities for x_{1}, x_{2} described in (i), (ii) and (iii) exhaust the mutual positions between x_{1} and x_{2}, so it suffices to verify the " \Rightarrow "s.
$(i) \Rightarrow$: This is clear.
$(i i), \Rightarrow$: In both cases, there is a unique $\theta \in \Theta$ containing x_{1}, x_{2} since each X-line is contained in a unique member of Θ by the standing hypothesis. Recall that the r^{\prime}-space $Y(\theta)$ contains both $Y_{x_{1}}$ and $Y_{x_{2}}$ (cf. Lemma 7.1). Therefore either $\operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-2$ or $Y_{x_{1}}=Y_{x_{2}}$. Suppose for a contradiction that $Y_{x_{1}}=Y_{x_{2}}$. Since $X Y(\theta)$ is a hyperbolic quadric, there are only two r^{\prime}-spaces containing $Y_{x_{1}}$, namely $\left\langle x_{1}, Y_{x_{1}}\right\rangle$ and $Y(\theta)$. This means that $x_{2} \in\left\langle x_{1}, Y_{x_{1}}\right\rangle$ and hence $x_{1} x_{2}$ is a singular line with a unique point in Y, a contradiction.
$(i i i), \Rightarrow$: If $\left[x_{1}, x_{2}\right]=\xi \in \Xi$, then its vertex $Y(\xi)$ is exactly $Y_{x_{1}} \cap Y_{x_{2}}$. By Lemma $7.1 v=r^{\prime}-3$, and hence $\operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-3$.
We record an obvious but important consequence.

Corollary 7.4 For all $x_{1}, x_{2} \in X$, we have $Y_{x_{1}}=Y_{x_{2}} \Leftrightarrow \rho\left(x_{1}\right)=\rho\left(x_{2}\right)$.

Proof By the previous lemma, $Y_{x_{1}}=Y_{x_{2}}$ is equivalent with $x_{1} x_{2}$ being a singular line with a unique point in Y, i.e., with $x_{2} \in\left\langle x_{1}, Y_{x_{1}}\right\rangle$. By Lemma 4.18, this is at its turn equivalent with $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)$.

Lemma 7.3 becomes a powerful tool if we can show that each $\left(r^{\prime}-1\right)$-space of Y occurs as Y_{x} for some $x \in X$:

Lemma 7.5 For each $\left(r^{\prime}-1\right)$-space H in Y, there is a point $x \in X$ such that $Y_{x}=H$, and all X-points collinear to H are precisely the points in $\langle x, H\rangle \backslash H$.

Proof Take $x \in X$ arbitrary. Recall that $\operatorname{dim} Y=r^{\prime}+k$ by Lemma 7.2, so in particular $\operatorname{dim} Y<\infty$. This implies that it suffices to show that, for each $\left(r^{\prime}-1\right)$-space H^{\prime} of Y with $\operatorname{dim}\left(Y_{x} \cap H^{\prime}\right)=r^{\prime}-2$, we have $H^{\prime}=Y_{x^{\prime}}$ for some $x^{\prime} \in X$, as then connectivity argument finishes the proof. So without loss of generality, $\operatorname{dim}\left(Y_{x} \cap H\right)=r^{\prime}-2$. Let $z \in H \backslash Y_{x}$ be arbitrary. Recall that $z \in Z$ by Lemma 7.2. So by Lemma $4.1,[z, x] \in \Theta$. By Lemma $7.1,[x, z]$ contains Y_{x}. Since it also contains z, also $H \subseteq[x, z]$. As such, $[x, z]$ contains an X-point x^{\prime} collinear to H, i.e., $Y_{x^{\prime}}=H$. The second part of the assertion follows from Lemma 7.3(i).

As promised, the above leads us to $k=1$:

Corollary 7.6 We have $k=1$.

Proof Let H_{1} and H_{2} be a pair of $\left(r^{\prime}-1\right)$-spaces of Y with $\operatorname{dim}\left(H_{1} \cap H_{2}\right)$ minimal, i.e., H_{1} and H_{2} generate Y. By Lemma 7.5 , there are points $x_{1}, x_{2} \in H$ with $H_{1}=Y_{x_{1}}$ and $H_{2}=Y_{x_{2}}$. According to Lemma 7.3, $\operatorname{dim}\left(H_{1} \cap H_{2}\right) \geq r^{\prime}-3$ and hence $Y=\left\langle H_{1}, H_{2}\right\rangle$ has dimension at most $2\left(r^{\prime}-1\right)-\left(r^{\prime}-3\right)=r^{\prime}+1$. Since there are points $x_{1}^{\prime}, x_{2}^{\prime} \in X$ with $\operatorname{dim}\left(Y_{x_{1}^{\prime}} \cap Y_{x_{2}^{\prime}}\right)=r^{\prime}-3$ (because $|\Xi| \geq 1$), we obtain $\operatorname{dim} Y=r^{\prime}+1$. However, we already know from Lemma 7.2 that $\operatorname{dim} Y=r^{\prime}+k$, so we conclude that $k=1$.

Another corollary is the following.

Corollary 7.7 For each r^{\prime}-space Y^{\prime} in Y, there is a unique $\theta \in \Theta$ with $Y(\theta)=Y^{\prime}$. Moreover, if $x \in X$ has $Y_{x} \subseteq Y^{\prime}$, then $x \in \theta$.

Proof Take any $\left(r^{\prime}-1\right)$-space H in Y^{\prime}. By Lemma 7.5, we know that $H=Y_{x}$ for some $x \in X$. Take any point $z \in Y^{\prime} \backslash H$. Then $\theta:=[x, z]$ is a member of Θ with $Y(\theta)=Y^{\prime}$. Let $x^{\prime} \in X$ be such that $Y_{x^{\prime}} \subseteq Y^{\prime}$. Then $X(\theta)$ contains a point $x^{\prime \prime}$ with $Y_{x^{\prime \prime}}=Y_{x^{\prime}}$, so by Corollary 7.4, $x^{\prime} \in\left\langle x^{\prime \prime}, Y_{x^{\prime \prime}}\right\rangle \subseteq \theta$. This also shows that θ is the unique member of Θ containing Y^{\prime}.

We proceed similarly as in Section 6 and nail down the structure of (X, Z, Ξ, θ), using the projection $\rho:=\rho_{Y}$ from (X, Z, Ξ, Θ) from Y onto a complementary subspace F, and the connection map χ (cf. Definitions 4.13 and 4.17).

Lemma 7.8 Suppose $\rho\left(x_{1}\right)$ and $\rho\left(x_{2}\right)$ determine a singular line of $\rho(X)$, for $x_{1}, x_{2} \in X$. Let $x_{i}^{\prime} \in \rho^{-1}\left(\rho\left(x_{i}\right)\right)$ be arbitrary, for $i=1,2$. Then:
(i) there is a unique $\theta \in \Theta$ containing $x_{1}^{\prime} \cup x_{2}^{\prime}$, and $\rho^{-1}\left(\rho\left(x_{1}\right)\right) \cup \rho^{-1}\left(\rho\left(x_{2}\right)\right) \subseteq \theta$;
(ii) there is an $x_{2}^{\prime \prime} \in \rho^{-1}\left(\rho\left(x_{2}\right)\right)$ such that $\left\langle x_{1}^{\prime}, x_{2}^{\prime \prime}\right\rangle$ is an X-line.
(iii) $\left\{Y_{x} \mid \rho(x) \in\left\langle\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right\rangle\right\}$ is the set of all $\left(r^{\prime}-1\right)$-spaces through the $\left(r^{\prime}-2\right)$-space $Y_{x_{1}} \cap Y_{x_{2}}$ inside the r^{\prime}-space $Y(\theta)$.

Proof Recall that $\rho^{-1}\left(x_{i}\right)=\left\langle x_{i}, Y_{x_{i}}\right\rangle \cap X$ by Lemma 4.18. Corollary 7.4 implies that $Y_{x_{1}} \neq Y_{x_{2}}$ because $\rho\left(x_{1}\right) \neq \rho\left(x_{2}\right)$. So $Y_{x_{1}} \neq Y_{x_{2}}$. Note that $\operatorname{dim} Y=r^{\prime}+k=r^{\prime}+1$ by Lemmas 7.2 and 7.6 ; and $\operatorname{dim} Y_{x_{1}}=\operatorname{dim} Y_{x_{2}}=r^{\prime}-1$. We claim that $\operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-2$. Indeed, if so, then by Lemma 7.3 and the fact that each X-line is contained in a unique member of Θ, there is a unique $\theta \in \Theta$ containing x_{1}, x_{2}, and θ also contains $\left\langle x_{i}, Y_{x_{i}}\right\rangle \supseteq \rho^{-1}\left(x_{i}\right)$ for $i=1,2$ by Lemma 7.1. Suppose for a contradiction that $\operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right) \neq r^{\prime}-2$. Then by the above and Lemma 7.3, $\operatorname{dim}\left(Y_{x_{1}} \cap Y_{x_{2}}\right)=r^{\prime}-3$ and hence $\left\langle Y_{x_{1}}, Y_{x_{2}}\right\rangle=Y$. We can now use a similar dimension argument as used in the third paragraph of the proof of Lemma 6.8 to show that there is an X-line containing a point $x_{1}^{*} \in \rho^{-1}\left(x_{1}\right)$ and a point $x_{2}^{*} \in \rho^{-1}\left(x_{2}\right)$. By our standing hypthesis, there is a member of Θ containing $x_{1}^{*} x_{2}^{*}$, which hence also contains x_{1}, x_{2}, a contradiction to $\left[x_{1}, x_{2}\right] \in \Xi$ (see Lemma 7.3). The claim follows, and assertion (i) is proven.
Assertion (ii) and (iii) can easily be verified inside the quadric $X Y(\theta)$ containing $\rho^{-1}\left(\rho\left(x_{1}\right)\right) \cup$ $\rho^{-1}\left(\rho\left(x_{2}\right)\right)$ (see also the last paragraph of the proof of Lemma 6.8).

Lemma 7.9 Suppose $x_{1}, x_{2} \in X$ are non-collinear points with $\xi=\left[x_{1}, x_{2}\right] \in \Xi$ and put $V=Y(\xi)$. Let $x_{i}^{\prime} \in \rho^{-1}\left(\rho\left(x_{i}\right)\right)$ for $i=1,2$. Then x_{1}^{\prime} and x_{2}^{\prime} are non-collinear and $\xi^{\prime}:=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ has vertex V and $\rho\left(X\left(\xi^{\prime}\right)\right)=\rho(X(\xi))$.

Proof For $i=1,2, \rho\left(x_{i}\right)=\rho\left(x_{i}^{\prime}\right)$ implies, by Lemma 7.4, that $Y_{x_{i}}=Y_{x_{i}^{\prime}}$. In particular, $V=Y_{x_{1}} \cap Y_{x_{2}}=Y_{x_{1}^{\prime}} \cap Y_{x_{2}^{\prime}}$. Lemma 7.3 tells us that x_{1}^{\prime} and x_{2}^{\prime} are non-collinear points indeed, with $\xi^{\prime}:=\left[x_{1}^{\prime}, x_{2}^{\prime}\right] \in \Xi$, and $Y\left(\xi^{\prime}\right)=V$ by the foregoing. To show that $\rho(X(\xi))=\rho\left(X\left(\xi^{\prime}\right)\right)$, we use the $\operatorname{map} \sigma_{\xi}: \rho(X(\xi)) \rightarrow\left\{H \mid V \subseteq H \subseteq Y, \operatorname{dim} H=r^{\prime}-1\right\}: \rho(x) \mapsto Y_{x}$. We claim that it is an isomorphism.
First of all, note that σ_{ξ} is well-defined by Lemma 4.18. We consider the residue $\operatorname{Res}_{Y}(V)$. Since $\operatorname{dim}(V)=r^{\prime}-3$ and $\operatorname{dim}(Y)=r^{\prime}+1$, the residue $\operatorname{Res}_{Y}(T)$ is isomorphic to a projective 3 -space over \mathbb{K}, say $\Pi_{V}(\mathbb{K})$, in which Y_{x} corresponds to a line $L(x)$. Let x, x^{\prime} be two points of $X(\xi)$. By Lemma 7.3, $L(x)=L\left(x^{\prime}\right)$ if and only if x and x^{\prime} belong to the same generator of $X(\xi)$, i.e., if and only if $\rho(x)=\rho\left(x^{\prime}\right) ; L(x)$ and $L\left(x^{\prime}\right)$ intersect in precisely a point if and only if $x x^{\prime}$ is an X-line in $X(\xi)$ and $L(x)$ and $L\left(x^{\prime}\right)$ are disjoint if and only if x and x^{\prime} are non-collinear. Moreover, Lemma 7.8 implies that each X-line of $X(\xi)$ corresponds to a full planar point pencil in $\Pi_{V}(\mathbb{K})$. On the other hand, the Klein correspondence yields that the point-line geometry whose point set is the set of all lines of $\Pi_{T}(\mathbb{K})$ and whose lines are the planar line pencils of $\Pi_{V}(\mathbb{K})$, is isomorphic to the point-line geometry associated to a hyperbolic quadric Q of rank 3 in $\mathbb{P}^{5}(\mathbb{K})$. Since $\rho(X(\xi))$ is a quadric of the same kind (recall $r=2$), we obtain that $\sigma(\rho(X(\xi))$) is embedded isometrically into Q. Since both are defined over the field \mathbb{K}, they actually coincide, i..e, $\sigma(\rho(X(\xi)))=Q$. The claim follows. Since ξ^{\prime} also has vertex V, we then have that $\operatorname{im} \sigma_{\xi}=\operatorname{im} \sigma_{\xi^{\prime}}$ and hence $\rho(X(\xi))=\rho\left(X\left(\xi^{\prime}\right)\right)$.
We use Y to define the following point-line geometry $(\mathrm{P}, \mathrm{B})_{Y}$.

Definition 7.10 Let P denote the set of $\left(r^{\prime}-1\right)$-dimensional subspaces of Y. For subspaces $S_{-} \subseteq$ $S_{+} \subseteq Y$ with $\operatorname{dim} S_{-}=r^{\prime}-1$ and $\operatorname{dim} S_{+}=r^{\prime}$, we define the pencil $P\left(S_{-}, S_{+}\right)$as the set $\{P \in \mathrm{P} \mid$ $\left.S_{-} \subseteq P \subseteq S_{+}\right\}$. Then we denote by B the set $\left\{P\left(S_{1}, S_{2}\right) \mid S_{1} \subseteq S_{2} \subseteq Y\right.$, $\left.\operatorname{dim} S_{ \pm}=r^{\prime}-1 \pm 1\right\}$.

Lemma 7.11 The point-line geometry $(\mathrm{P}, \mathrm{B})_{Y}$ is isomorphic to the (point-line truncation of the) line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$.

Proof Since a projective space is self-dual and $\operatorname{dim} Y=r^{\prime}+1$, the point-line geometry $(\mathrm{P}, \mathrm{B})_{Y}$ (with natural incidence relation) is by definition isomorphic to the (point-line truncation of the) line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$; see also Subsection 3.2.2.

Proposition 7.12 The point-line geometry $\mathcal{G}:=(\rho(X), \rho(\mathrm{L}))$ is an injective projection of the line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$. Moreover, we have:
(i) for each singular r^{\prime}-space S in \mathcal{G}, there is a unique $\theta_{S} \in \Theta$ with $\rho\left(X\left(\theta_{S}\right)\right)=S$.
(ii) for each symp Q of \mathcal{G} (viewing the latter as a parapolar space), there is a unique v-space V in Y such that there is a $\xi \in \Xi$ with vertex V such that $\rho(X(\xi))=Q$.

Proof We claim that χ induces an isomorphism between the abstract point-line geometries $(\rho(X), \rho(\mathrm{L}))$ and $(\mathrm{P}, \mathrm{B})_{Y}$. Indeed, the fact that $\chi: \rho(X) \rightarrow \mathrm{P}: x \mapsto \chi(x)=Y_{x}$ is a bijection between $\rho(X)$ and P follows immediately from Corollary 7.4 (injectivity) and Lemma 7.5 (surjectivity). The fact that a member of $\rho(\mathrm{L})$ is mapped by χ to a member of B follows from Lemma 7.8(iii). This shows the claim. So, by Lemma 7.11, $(\rho(X), \rho(\mathrm{L}))$ is as a point-line geometry isomorphic to a geometry of type $\mathrm{A}_{r^{\prime}+1,2}(\mathbb{K})$. Since the latter's absolutelety universal embedding is given by the line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$, the geometry $(\rho(X), \rho(\mathrm{L}))$ is an injective projection of $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$.
(i) Let S be a maximal singular subspace of $\rho(X)$ of dimension r^{\prime} and take a line L in S. By Lemma $7.8(i)$, there is a unique $\theta \in \Theta$ such that $L \subseteq \rho(X(\theta))$. The properties of the line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$ imply that there is a unique r^{\prime}-space through L; as such, the r^{\prime}-space $\rho(X(\theta))$ coincides with S.
(ii) Let Q be any symp of \mathcal{G} (so Q is a hyperbolic quadric in $\mathbb{P}^{5}(\mathbb{K})$ since $r=2$). By Lemma 7.9, it suffices to show that Q coincides with $\rho(X(\xi))$ for some $\xi \in \Xi$. Let p_{1} and p_{2} be non-collinear points of Q and take points $x_{1}, x_{2} \in X$ with $\rho\left(x_{i}\right)=p_{i}$. Then, since p_{1} and p_{2} are distinct and non-collinear, $\xi:=\left[x_{1}, x_{2}\right] \in \Xi$. Now, $\rho(X(\xi))$ is a hyperbolic quadric of rank 3 in $\rho(X)$ containing the points p_{1} and p_{2}, and since two non-collinear points determine a unique symp in $\rho(X)$, we obtain $\rho(X(\xi))=Q$.

7.1 Mutants of the dual line Grassmannian variety

Just like in subsection 6.4 , we will show that (X, Z, Ξ, Θ) is a tweaked version a dual Line Grassmannian variety (a mutant, see Definition 7.14). For now, recall the notion of a legal projection from Definition 6.13.

Lemma 7.13 The set X contains a subset X^{*} such that, with induced line set L^{*}, the geometry $\Omega:=\left(X^{*}, L^{*}\right)$ is a legal projection of $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$, where containment gives a bijection between the r^{\prime}-spaces of Ω and the set Θ. For any hyperbolic quadric Q of rank 3 of Ω, there is a unique $\xi \in \Xi$ with $\xi \cap X^{*}=Q$. Morever, if $F^{*}=\left\langle X^{*}\right\rangle$, then
(i) $\bigsqcup_{x \in X^{*}}\left\langle x, Y_{x}\right\rangle \backslash Y_{x}=X$ and hence $\left\langle F^{*}, Y\right\rangle=\mathbb{P}^{N}(\mathbb{K})$;
(ii) Re-choose F such that $F^{*} \subseteq F$. Then $F^{*} \cap Y$ and F are complementary in F^{*}, and the projection ρ^{*} of $F^{*} \cap X$ from $F^{*} \cap Y$ on F coincides with the projection of ρ restricted to $F^{*} \cap X$. In particular, if $F^{*} \cap Y=\emptyset$, then $X^{*}=X \cap F^{*}$ and ρ is the identity on X^{*}.
(iii) If $r^{\prime}=4$, then $F^{*} \cap Y=\emptyset$.

Proof We construct a legal projection of $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$ inside X, by choosing a set of points $X^{*} \subseteq X$ such that $\left\{Y_{x} \mid x \in X^{*}\right\}=\mathrm{P}$ (cf. Definition 7.10). To that end, let $\mathcal{B}:=\left\{p_{0}, \ldots, p_{r^{\prime}+1}\right\}$ be the set of points of a basis of Y. Put $A=\left\{(i, j) \mid 0 \leq i<j \leq r^{\prime}+1\right\}$. For each pair $(i, j) \in A$, let $H_{i, j}$ be the ($r^{\prime}-1$)-space generated by the points of $\mathcal{B} \backslash\left\{p_{i}, p_{j}\right\}$. By Lemma 7.5 and Corollary 7.4, the X-points collinear to $H_{i, j}$ are contained in the r^{\prime}-space $\bar{H}_{i, j}:=\left\langle x_{i, j}^{\prime}, H_{i, j}\right\rangle$ for some $x_{i, j}^{\prime} \in X$ with $Y_{x_{i, j}^{\prime}}=H_{i, j}$. For each $i \in\left\{0, \ldots, r^{\prime}+1\right\}$, Lemma 7.7 yields a unique $\theta_{i} \in \Theta$ with $Y\left(\theta_{i}\right) \xlongequal{=}\left\langle\mathcal{B} \backslash\left\{p_{i}\right\}\right\rangle$, and by the same lemma, θ_{i} contains $\bar{H}_{i, j}$ for all $j \in\left\{0, \ldots, r^{\prime}+1\right\}$. In a similar fashion as in the proof of Lemma 6.16, we can consecutively choose points $x_{i, j} \in \bar{H}_{i, j} \cap X$, using the lexicographic
order on the pairs in A, in such a way that $x_{i, j}$ is collinear to $x_{i, j^{\prime}}$ for each $j^{\prime}<j$ and to $x_{i^{\prime}, j}$ for each $i^{\prime}<i$. For each $i \in\left\{0, \ldots, r^{\prime}+1\right\}$, we define $R_{i}^{\prime}:=\left\langle x_{i, j} \mid 0 \leq j \leq r^{\prime}\right\rangle$. By construction, R_{i}^{\prime} is a singular subspace of θ_{i} and no point of Y is collinear to R_{i}^{\prime}, so R_{i}^{\prime} is an X-space of dimension r^{\prime}. Observe that points $x_{i, j}$ and $x_{k, \ell}$ with $\mid\{i, j, k, \ell\}=4$ are non-collinear and determine a member of Ξ because $\operatorname{dim}\left(H_{i, j} \cap H_{k, \ell}\right)=r^{\prime}-3$.
Claim: Each $\theta \in \Theta$ contains a unique r^{\prime}-space R_{θ}^{\prime} generated by the points $\left\{\theta \cap R_{i}^{\prime} \mid 0 \leq i \leq r^{\prime}+1\right\}$. Recall that, for each r^{\prime}-space H in Y, there is a unique member $\theta_{Y^{\prime}}$ of Θ with $Y\left(\theta_{Y^{\prime}}\right)=H$ (cf. Corollary 7.7). Firstly, suppose θ is such that $H:=Y(\theta)$ contains $H_{0,1}$. Then H meets the line $p_{0} p_{1}$ in a point p. If $p=p_{i}$, for $i \in\{0,1\}$, then $\theta_{H}=\theta_{i}$ and hence $R_{\theta}^{\prime}=R_{i}^{\prime}$; so suppose $p \notin\left\{p_{0}, p_{1}\right\}$. Take any $j \in\left\{2, \ldots, r^{\prime}+1\right\}$ and consider θ_{j}. By definition, θ_{j} contains the lines $p_{0} p_{1}$ and $x_{0, j} x_{1 j}$. It is easily verified in the quadric $X Y\left(\theta_{j}\right)$ that the lines $p_{0} p_{1}$ and $x_{0, j} x_{1, j}$ are opposite, and hence there is a unique point q_{j} on $x_{0, j} x_{1, j}$ collinear to p. Then $Y_{q_{j}}$ is a hyperplane of H, namely the one generated by the point p and the ($r^{\prime}-1$)-space $x_{0, j}^{\perp} \cap x_{1, j}^{\perp} \cap H_{0,1}$. So $q_{j} \in \theta$ by Corollary 7.7. Observe that q_{j} is exactly the intersection of R_{j} and θ. Put $R_{\theta}^{\prime}:=\left\langle x_{0,1}, q_{2}, \ldots, q_{r^{\prime}+1}\right\rangle$. We claim that R_{θ}^{\prime} is indeed an X-space of dimension r^{\prime} in θ. To see that it is singular, take $j, j^{\prime} \in\left\{2, \ldots, r^{\prime}+1\right\}$ with $j \neq j^{\prime}$ and consider the points $x_{0, j}$ and $x_{1, j^{\prime}}$, which determine a member of Ξ since $\operatorname{dim}\left(H_{0, j} \cap H_{1, j^{\prime}}\right)=r^{\prime}-3$ (cf. Lemma 7.3). By Lemma 4.7, the points $x_{0 j^{\prime}}$ and $x_{1 j}$ also belong to $\left[x_{0, j}, x_{1, j^{\prime}}\right]$. Therefore, $q_{j}, q_{j}^{\prime} \in \theta \cap\left[x_{0, j}, x_{1, j^{\prime}}\right]$, so by (S2), $q_{j} q_{j}^{\prime}$ is a singular line. This line is contained in X as otherwise $Y_{q_{j}}=Y_{q_{j^{\prime}}}$ (contradicting Lemma 7.3). The fact that $\operatorname{dim} R_{\theta}^{\prime}=r^{\prime}$ follows as usual: no point of Y is collinear to a point of R_{θ}^{\prime}. Continuing like this with other r^{\prime}-spaces H, the claim follows.

We define X^{*} as $\bigcup_{\theta \in \Theta} R_{\theta}^{\prime}$. Let $x_{1}, x_{2} \in X^{*}$ be distinct points. One can verify that, by the above procedure, $Y_{x_{1}} \neq Y_{x_{2}}$. This means that, if $\theta \neq \theta^{\prime}$, then $R_{\theta}^{\prime} \cap R_{\theta^{\prime}}^{\prime}$ is the unique point x^{*} in X^{*} with $Y_{x^{*}}=Y(\theta) \cap Y\left(\theta^{\prime}\right)$. Conversely, each point x is contained in some $\theta \in \Theta$ and hence R_{θ}^{\prime} contains a (unique, by the foregoing) point \tilde{x} with $Y_{x}=Y_{\tilde{x}}$ and hence $x \in\left\langle\tilde{x}, Y_{\tilde{x}}\right\rangle$. This already shows (i), ánd it shows that the map $x^{*} \mapsto Y_{x^{*}}$ is a bijection between X^{*} and P . We show that this extends to an isomorphims. To that end, suppose $x_{1}, x_{2} \in X^{*}$ are on an X-line L. Let θ be the unique member of Θ containing L. Then by the beginning of this paragraph $x_{1}, x_{2} \subseteq R_{\theta}^{\prime}$ and hence $L \subseteq R_{\theta}^{\prime}$, so $L \subseteq X^{*}$. Looking inside the quadric $X Y(\theta)$, we see that the points of L correspond to the ($r^{\prime}-1$)-space in $Y(\theta)$ containing the ($r^{\prime}-2$)-space $Y_{x_{1}} \cap Y_{x_{2}}$. Moreover, if $x_{1}, x_{2} \in X^{*}$ belong to the same $\theta \in \Theta$, then they are necessarily collinear: by the beginning of this paragraph, x_{1}, x_{2} belong to the X^{*}-space R_{θ}^{\prime} and hence they are on an X-line (even an X^{*}-line). We have shown that X^{*}, equipped with the set L^{*} of X-lines it contains, is isomorphic to $(\mathrm{P}, \mathrm{B})_{Y}$. Therefore $\left(X^{*}, \mathrm{~L}^{*}\right)$ is already an injective projection of the line Grassmannian $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$. Since each line of L^{*} is hence contained in a unique r^{\prime}-space, it follows that each r^{\prime}-space of X^{*} is given by R_{θ}^{\prime} for some $\theta \in \Theta$. Next, consider a hyperbolic quadric Q of rank 3 in X^{*}. Take two of its non-collinear points x_{1}, x_{2}. As noted just above, $\left[x_{1}, x_{2}\right] \in \Xi$ (if $\left[x_{1}, x_{2}\right] \in \Theta$ then $x_{1} x_{2}$ is an X^{*}-line after all). By Lemma 4.7, $Q \subseteq\left[x_{1}, x_{2}\right]$. As in the proof of Proposition 6.16, we naturally obtain a pair (X^{*}, Ξ^{*}), which is a pre-DSV, so that $\left(X^{*}, L^{*}\right)$ is a legal projection of $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$.
(i) - (ii) Same as in the proof of Proposition 6.16.
(iii) Finally, suppose $r^{\prime}=4$. As a consequence of the main result of [12], $\mathcal{G}_{6,2}(\mathbb{K})$ has no proper legal projections, and hence $\operatorname{dim} F^{*}=14$. Suppose for a contradiction that $F^{*} \cap Y$ contains a point y. Set $X_{y}^{*}:=\left\{x \in X^{*} \mid y \in Y_{x}\right\}$. Then X_{y}^{*} induces a subgeometry of Ω is isomorphic to $\mathcal{G}_{5,2}(\mathbb{K})$ (cf. Lemma 7.11); in particular $\operatorname{dim}\left\langle X_{y}^{*}\right\rangle=9$. We first claim that $\left\langle X_{y}^{*}\right\rangle \cap X=X_{y}^{*}$. Suppose for a contradiction that $x \in\left\langle X_{y}^{*}\right\rangle \backslash X_{y}^{*}$. It is a well known property of $\mathcal{G}_{5,2}(\mathbb{K})$ that x then lies on a secant, i.e., there are (non-collinear) points $x_{1}, x_{2} \in X_{y}^{*}$ with $x \in x_{1} x_{2}$. As noted above, noncollinear points of X^{*} determine a member of Ξ, so $\left[x_{1}, x_{2}\right] \in \Xi$. But then $x \in x_{1} x_{2} \subseteq X\left(\left[x_{1}, x_{2}\right]\right)$, violating Definition 3.2. The claim follows. Consequently, $y \notin\left\langle X_{y}^{*}\right\rangle$, because otherwise, for any point $x^{*} \in X_{y}^{*}$, we would have that $x^{*} y \subseteq\left\langle X_{y}^{*}\right\rangle$, whereas $x^{*} y$ contains points of $X \backslash X^{*}$ (since $\left\langle x^{*}, Y_{x}\right\rangle \cap X^{*}=\left\{x^{*}\right\}$ by $\left.(i)\right)$, contradicting the claim. So $\operatorname{dim}\left\langle y, X_{y}^{*}\right\rangle=10$. Let $\theta \in \Theta$ be such that $y \notin Y(\theta)$. Then R_{θ}^{\prime} is a 4 -space of X^{*} disjoint from X_{y}^{*}. By dimension, R_{θ}^{\prime} shares a point p
with $\left\langle y, X_{y}^{*}\right\rangle$. Let q be the unique point of $y p$ in $\left\langle X_{y}^{*}\right\rangle$. Note that $q \notin X$ since the line $y p$ is not singular (since $y \notin Y_{p} \subseteq Y(\theta)$). As in the previous claim, $q \in\left[x_{1}, x_{2}\right] \in \Xi$ for two non-collinear points $x_{1}, x_{2} \in X_{y}^{*}$. Since $y \in Y_{x_{1}} \cap Y_{x_{2}}=Y\left(\left[x_{1}, x_{2}\right]\right)$, it follows that $p \in X\left(\left[x_{1}, x_{2}\right]\right)$, the same contradiction as before. We conclude that $Y \cap F^{*}$ is empty if $r^{\prime}=4$.

Finally, we will show that X is, up to projection from a subspace in Y, a mutant of the dual line Grassmannian variety $\mathcal{D} \mathcal{G}_{n+1,2}(\mathbb{K})$, which we define below. Recall that in Section 3.2.2 we constructed the dual line Grassmannian variety $\mathcal{D} \mathcal{G}_{n+1,2}(\mathbb{K})$ by means of an n-space Y and a line Grassmannian variety $\mathrm{G}:=\mathcal{G}_{n+1,2}(\mathbb{K})$ with Y and G complementary, but the construction for X, Z and Ξ, Θ do not depend on the fact that Y and G are disjoint.

Definition 7.14 Consider the dual line Grassmannian variety $\mathcal{D}_{n+1,2}(\mathbb{K})=(X, Z, \Xi, \Theta)$ associated to the Segre variety $G:=\mathcal{G}_{n+1,2}(\mathbb{K})$. Then:

- we may replace G by a legal projection of $\mathcal{G}_{n+1,2}(\mathbb{K})$
- we may choose $Y=Z$ in such a way that the projection of $\langle\mathrm{G}\rangle \cap X$ from $\langle\mathrm{G}\rangle \cap Y$ (onto a subspace of $\langle\mathrm{G}\rangle$ complementary to $\langle\mathrm{G}\rangle \cap Y$) yields an injective projection of G ; the ambient projective space is afterwards restricted to $\langle\mathrm{G}, Y\rangle$.

The resulting structure is called a mutant of $\mathrm{DG}_{n+1,2}(\mathbb{K})$.

7.2 Conclusion

Putting everything together, we obtain the following rather general classification result. We phrase the conclusion without the standing hypothesis, to deal with the situation in full generality. Again, only now we use axiom (S3).

Theorem 7.15 Let (X, Z, Ξ, Θ) be a pre-DSV with parameters $\left(r, v, r^{\prime}, v^{\prime}\right)$ with $r \geq 2$, such that there is an X-line L with $\left|\Theta_{L}\right|=1$. Then $r=2, v=r^{\prime}-3$ and:
(i) Up to projection from a v^{\prime}-space $V \subseteq Y$ collinear to all points of X, we obtain that X is the point set of a mutant of the dual line Grassmannian $\mathcal{D} \mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$ with Z as $\left(r^{\prime}+1\right)$-space at infinity and $\Xi \cup \Theta$ as its symps;
(ii) if additionally (X, Z, Ξ, Θ) satisfies (S3), then X is the point set of a dual line Greassmannian $\mathcal{D} \mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$ with $r^{\prime}=4$ and X is projectively unique.

Proof (i) By Lemma 7.1 it follows that there is a v^{\prime}-space V in Y collinear to all points of X, and Lemma 4.14 allows us to project from V, so henceforth we assume $v^{\prime}=-1$. Lemma 7.1 also shows that $r=2$ and $v=r^{\prime}-3$.

By Proposition $7.13, X$ contains a subset X^{*} such that X^{*}, with induced line set L^{*}, is a legal projection of $\mathcal{G}_{r^{\prime}+2,2}(\mathbb{K})$, and $X=\bigsqcup_{x \in X^{*}}\left\langle x, Y_{x}\right\rangle \backslash Y_{x}$. Therefore it suffices to show that the connection map $\chi: \Omega \rightarrow Y: x \mapsto Y_{x}$ satisfies the properties mentioned in the definition of the dual Line Grassmannians varieties (cf. Subsection 3.2.1). Let \mathbb{P} be a projective space of dimension $r^{\prime}+1$, such that $\left(X^{*}, L^{*}\right)$ is isomorphic to the image of \mathbb{P} under the Plücker map pl (cf. Subsection 3.2.2). Consider the map $\chi^{\prime}: \mathbb{P} \rightarrow Y$, taking a line $L \in \mathbb{P}$ to $\chi\left(\mathrm{pl}^{-1}(L)\right)=Y_{\mathrm{pl}^{-1}(L)}$. For ease of notation, we denote the point $\mathrm{pl}^{-1}(L)$ by x_{L}.
Claim: χ^{\prime} induces a linear duality between \mathbb{P} and Y.
Let p be any point of \mathbb{P}. Then $R_{p}^{\prime}:=\left\{x_{L} \mid L\right.$ line of \mathbb{P} with $\left.p \in L\right\}$ is the set of points of a singular r^{\prime}-space of X^{*}. By Lemma 7.13, there is a unique member $\theta_{p} \in \Theta$ containing R_{p}^{\prime}. Then χ^{\prime} induces a linear duality $x_{L} \mapsto Y_{x_{L}}=\chi^{\prime}(L)$ inside θ_{p}, meaning in particular that $Y_{x_{L}} \subseteq Y\left(\theta_{p}\right)$ for each $x_{L} \in R_{p}^{\prime}$ and that each $\left(r^{\prime}-1\right)$-space in $Y\left(\theta_{p}\right)$ is given as $Y_{x_{L}}$ for some $x_{L} \in R_{p}^{\prime}$. Conversely, each hyperplane H of Y is contained in a unique member of Θ by Lemma 7.7. It follows that the map
$p \mapsto Y\left(\theta_{p}\right)$ is a bijection between the point set of \mathbb{P} and the hyperplanes of Y (i.e., the point set of the dual of Y), preserving incidence. This means that it is a linear duality indeed: a line L of \mathbb{P} goes to the r^{\prime}-spaces through the $\left(r^{\prime}-1\right)$-space $Y_{x_{L}}$ and vice versa. The claim follows.
For each pair of non-collinear points p_{1}, p_{2} of X, Lemmas 4.1 and 4.7 imply that the convex closure of p_{1}, p_{2} (via lines containing X-points) coincides with $X Y\left(\left[p_{1}, p_{2}\right]\right)$. The assertion follows.
(ii) Let $x \in X$ be arbitrary. By Axiom (S3), there are $\xi_{1}, \xi_{2} \in \Xi$ through x such that $T_{x}=$ $\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$. As in the proof of Theorem 6.18 and with the same notation, we have that this is equivalent to $Y_{x}=\left\langle Y\left(\xi_{1}\right), Y\left(\xi_{2}\right)\right\rangle$ and $T_{\rho(x)}^{F}=\left\langle T_{\rho(x)}^{F}\left(\xi_{1}\right), T_{\rho(x)}^{F}\left(\xi_{2}\right)\right\rangle$. This time, we know $\operatorname{dim} T_{\rho(x)}^{F}=2 r^{\prime}-1$ as $\operatorname{Res}_{X}(x)$ is isomorphic to $\mathcal{S}_{r^{\prime}-1,1}(\mathbb{K})$. Furthermore, since $r=2, T_{\rho(x)}^{F}\left(\xi_{1}\right)$ and $T_{\rho(x)}^{F}\left(\xi_{2}\right)$ are just 4 -spaces, and so $2 r^{\prime}-1 \leq 8$. Recalling that $r^{\prime}>r \geq 2$ by assumption, we deduce that $r^{\prime} \in\{3,4\}$. Since $v=r^{\prime}-3$, the $\left(r^{\prime}-1\right)$-space Y_{x} can only be generated by the two v-spaces $Y\left(\xi_{1}\right)$ and $Y\left(\xi_{2}\right)$ if $r^{\prime}=4$ (and if $Y\left(\xi_{1}\right) \cap Y\left(\xi_{2}\right)=\emptyset$). So $r^{\prime}=4$. The variety $\mathcal{G}_{4+2,2}(\mathbb{K})$ does not admit legal projections (this follows from the main result of [12]) and $F^{*} \cap Y=\emptyset$ by Proposition 7.13(iii). The conclusion follows as in the proof of Theorem 6.18.
The case where $r=2$ and $\left|\Theta_{L}\right|=1$ for each X-line L hence leads us to the conclusion of Main Result 3.6(ii).

8 The remaining cases

Four of the cases that occur in Table 1 remain, namely the red ones (which have in common that each X-line is contained in at least two members of Θ) and the $r=1$ case of column 2 . In Subsection 8.1, we will treat the latter case, leading to a dual Segre variety; in Subsection 8.2, we will show that the other cases do not lead to examples of DSVs.

8.1 Dual Segre variety

In this section, we deal with the $r=1$ case of column 2 of Table 1 . Due to the high similarity with the half dual Segre varieties (see Section 6, where also $r=1$), and since this case turns out not occur as the residue of a DSV (see Proposition 8.6), we will be brief and refer to [1] for the proofs.

Standing hypothesis. Throughout this section, (X, Z, Ξ, Θ) is a pre-DSV with parameters $\left(1, v, r^{\prime}, v^{\prime}\right)$ with $\langle X, Z\rangle=\mathbb{P}^{N}(\mathbb{K})$ for an arbitrary field $|\mathbb{K}|>2$ and such that $\left|\Theta_{x}\right| \geq 2$ for each $x \in X$ and $\left|\Theta_{L}\right| \in\{0,1\}$ for each X-line L.

We only give the elements of the proof which add to the insight of the (local) structure of both the geometry and the proof. Note that we left out the phrase "no point of Y is collinear to all points of X " in the standing hypthesis, as in this case, we can prove this now.

Proposition 8.1 Let $x \in X$ be arbitrary. Then there are precisely two members θ_{1}^{x} and θ_{2}^{x} of Θ containing x, and their respective vertices V_{1}^{x} and V_{2}^{x} are disjoint ang generate Y_{x}. Moreover, $\theta_{1}^{x} \cap \theta_{2}^{x}=\left\langle x, Y_{x}\right\rangle$. Each X-line through x is contained in either θ_{1}^{x} or θ_{2}^{x} and $L_{1} \subseteq \theta_{1}^{x}$ and $L_{2} \subseteq \theta_{2}^{x}$ are X-lines containing x, then L_{1} and L_{2} are non-collinear and $\left[L_{1}, L_{2}\right] \in \Xi$. Finally, $v=2 v^{\prime}-1=2 r^{\prime}-3$.

Proof This is proven on pages 139-140 of [1], Proposition 7.5.14 until Lemma 7.5.18, first for a point x contained in a 1 -line (i.e., contained in a unique member of Θ), and in the end it follows by connectivity that each line is a 1 -line.

Compare θ_{1}^{x} and θ_{2}^{x} with $\pi^{x} \in \Pi$ and $\theta^{x} \in \Theta$ in Corollary 6.6. Let R_{1}^{x} be the r^{\prime}-space $Z\left(\theta_{1}^{x}\right)$ and note that V_{2}^{x} (which is contained in Y_{x} and hence in θ_{1}^{x}) is hence contained in R_{1}^{x}. Likewise, $V_{1}^{x} \subseteq R_{2}^{x}$. An important lemma of [1] is:

Lemma 8.2 (Lemma 7.5.19 of [1]) For any point $x \in X$, we have $Z=R_{1}^{x} \cup R_{2}^{x}$ and hence $Y=$ $\left\langle Y\left(\theta_{1}^{x}\right), Y\left(\theta_{2}^{x}\right)\right\rangle$; moreover, given any point $x \in X$ and renumbering for x^{\prime} if necessary, $R_{1}^{x}=R_{1}^{x^{\prime}}$ and $R_{2}^{x}=R_{2}^{x^{\prime}}$. In particular, $\operatorname{dim} Y=2 r^{\prime}+1$.

Put $R_{1}:=R_{1}^{x}$ for any $x \in X$, likewise define R_{2}. The set Θ is divided in two classes: Θ_{1} is the subset of Θ with $R_{1} \subseteq Z(\theta)$, likewise, Θ_{2} is defined (and $\Theta=\Theta_{1} \cup \Theta_{2}$). Pages 140-142 of [1] further investigate the structure of Y. We only mention the analogue of Lemma 7.3, as this gives information about the mutual position of two X-points in terms of Y :

Lemma 8.3 (Lemma 7.5.25 of [1]) Take two distinct points $x_{1}, x_{2} \in X$. Putting $V_{x}^{1}=x^{\perp} \cap R_{2}$ and $V_{x}^{2}=x^{\perp} \cap R_{2}$ for each $x \in X$:

1. $x_{1} x_{2}$ is a singular line with a unique point in $Y \Leftrightarrow V_{i}^{x_{1}}=V_{i}^{x_{2}}$ for all $i \in\{1,2\}$;
2. x_{1}, x_{2} belong to a member of $\Theta \Leftrightarrow V_{i}^{x_{1}}=V_{i}^{x_{2}}$ for one $i \in\{1,2\}$;
3. x_{1}, x_{2} are non-collinear points with $\left[x_{1}, x_{2}\right] \in \Xi Y \Leftrightarrow V_{i}^{x_{1}} \neq V_{i}^{x_{2}}$ for all $i \in\{1,2\}$.

We already know form Proposition 8.1 that for $x \in X$, the subspace Y_{x} is generated by a v^{\prime}-space in R_{1} and a v^{\prime}-space in R_{2}, but Lemma 7.5 .22 of [1] shows that the subspace generated by any two such v^{\prime}-spaces occurs as Y_{x} for some $x \in X$, moreover, if $Y_{x}=Y_{x^{\prime}}$ then $x^{\prime} \in\left\langle x, Y_{x}\right\rangle$. Also, Corollary 7.5.24 says that for each v^{\prime}-space V of R_{i}, there is a unique member of Θ_{j}, with $\{i, j\}=\{1,2\}$, such that V is the vertex of Θ_{j}. One can verify that the latter implies that each point $y \in Y$ can be put in a $\theta \in \Theta$, but not in its vertex, and hence there is a point of $X(\theta)$ not collinear to y. This confirms that we did not need to include this as an assumption in the standing hypothesis.

The analogues of Lemmas 7.9, 6.8, 7.12 and 7.13 can be found in Lemmas 7.5.26, 7.5.27, 7.5.28, 7.5.30 of [1]. We copy the conclusion (with a correction in its statement):

Theorem 8.4 (Theorem 7.5 .31 of $[1]) \operatorname{Let}(X, Z, \Xi, \Theta)$ be a pre-DSV with with parameters $\left(1, v, r^{\prime}, v^{\prime}\right)$ such that $\left|\Theta_{x}\right| \geq 2$ for each $x \in X$ and $\left|\Theta_{L}\right| \in\{0,1\}$ of each X-line L. Then:
(i) X is the point set of a mutant of the dual Segre variety $\mathcal{D} \mathcal{S}_{r^{\prime}, r^{\prime}}(\mathbb{K})$ with $\langle Z\rangle$ as subspace at infinity and whose symps are given by $\Xi \cup \Theta$;
(ii) if additionally (X, Z, Ξ, Θ) satisfies (S3), then X is the point set of a dual Segre variety $\mathcal{D} \mathcal{S}_{2,2}(\mathbb{K})\left(\right.$ so $\left.r^{\prime}=2\right)$ and X is projectively unique.

The case where $r=1$ and $\left|\Theta_{x}\right| \geq 2$ for each $x \in X$ and $\left|\Theta_{L}\right| \in\{0,1\}$ for each X-line L hence leads us to the conclusion of Main Result 3.6(iii). To finish the proof, all we have to do is show that the remaining cases mentioned in Table 1 do not occur.

8.2 Non-examples

Note that for the non-examples, we consider DSVs instead of pre-DSVs, so we do use Axiom (S3). We start with the first column of Table 1.

Proposition 8.5 There is no $\operatorname{DSV}(X, Z, \Xi, \Theta)$ with parameters $\left(3, v, r^{\prime}, v^{\prime}\right)$.

Proof Suppose for a contradiction that such a $\operatorname{DSV}(X, Z, \Xi, \Theta)$ exists. By Lemma 4.14 we may suppose that there is no point of Y collinear to all points of X. Take any $x \in X$. By Proposition 5.16, the point-residue $\operatorname{Res}_{X}(x)$ is a pre-DSV $\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ with parameters $\left(2, v, r^{\prime}-\right.$ $\left.1, v^{\prime}\right)$, where $v=\left(r^{\prime}-1\right)-3$, containing no Y_{x}-points collinear to all points of X_{x} and such that each X_{x}-line is contained in a unique member of Θ_{x}. It follows from Proposition 7.15(i) that X_{x} is the point-set of a mutant of the dual line Grassmannian $\mathcal{D G}_{r^{\prime}+1,2}(\mathbb{K})$.
Axiom (S3) yields two members $\xi_{1}, \xi_{2} \in \Xi$ such that $T_{x}=\left\langle T_{x}\left(\xi_{1}\right), T_{x}\left(\xi_{2}\right)\right\rangle$. Recalling Definition 5.7, this is equivalent to saying that $\left\langle X_{x}, Y_{x}\right\rangle$ is generated by two members $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ of Ξ_{x} (where $\tilde{\xi}_{i}$ is the residue of ξ_{i} from $\left.x, i \in\{1,2\}\right)$. As noted above, $v=r^{\prime}-4$, so since $r-1=2$, we obtain $\operatorname{dim}\left(\tilde{\xi}_{i}\right)=\left(r^{\prime}-4\right)+5+1=r^{\prime}+2$ for $i=1,2$, and hence $\operatorname{dim}\left\langle X_{x}, Y_{x}\right\rangle \leq 2 r^{\prime}+5$. Moreover, projected from Y_{x}, we get an injective projection Ω of $\mathcal{G}_{r^{\prime}+1,2}(\mathbb{K})$ (cf. Proposition 7.12), and we put $B:=\operatorname{dim}\langle\Omega\rangle$. So $\operatorname{dim}\left\langle X_{x}, Y_{x}\right\rangle=B+\operatorname{dim} Y_{x}+1 \leq 25^{\prime}+5$. Since $\operatorname{dim} Y_{x}=\left(r^{\prime}-1\right)+1$, we obtain $B \leq r^{\prime}+4$. On the other hand, Ω contains ($r^{\prime}-1$)-spaces which meet in exactly a point, so $B \geq 2 r^{\prime}-2$. So $2 r^{\prime}-2 \leq r^{\prime}+4$, meaning that $r^{\prime} \leq 6$. Recalling that $r^{\prime}>r=3$, we get $r^{\prime} \in\{4,5,6\}$. If $r^{\prime}=4$, then $\mathcal{G}_{5,2}(\mathbb{K})$ does not admit legal projections, hence $B=9$, contradicting $B \leq r^{\prime}+4=8$. Likewise, if $r^{\prime} \in\{5,6\}$, then Ω contains $\mathcal{G}_{6,2}(\mathbb{K})$ and since the latter contains no legal projection, we have $B \geq 14$, contradicting $B \leq r^{\prime}+4 \leq 10$. This shows the proposition.

We proceed to the second column of Table 1, which relies on the dual Segre varieties and hence is not treated in full detail, but we give some hints for the proof though.

Proposition 8.6 (Lemma 7.7.7 in [1]) There is no $\operatorname{DSV}(X, Z, \Xi, \Theta)$ with parameters ($\left.2, v, r^{\prime}, v^{\prime}\right)$ in which $\left|\Theta_{L}\right| \geq 2$ for each X-line L.

Proof (For a complete proof, we refer to [1]). Suppose for a contradiction that such a DSV (X, Z, Ξ, Θ) exists. Take any $x \in X$. By Proposition 5.16, the point-reside $\operatorname{Res}_{X}(x)=\left(X_{x}, Z_{x}, \Xi_{x}, \Theta_{x}\right)$ is isomorphic to a mutant of the dual Segre variety $\mathcal{D} \mathcal{S}_{r^{\prime}-1, r^{\prime}-1}(\mathbb{K})$. A dimension argument as in the previous proof then shows that $\operatorname{dim}\left\langle X_{x}, Y_{x}\right\rangle \leq 2 r^{\prime}+7$. Since X_{x} contains a legal projection of $\mathcal{S}_{r^{\prime}-1, r^{\prime}-1}(\mathbb{K})$ (cf. Lemma 7.5.30 in[1]) and since $r^{\prime}>r=2$, we obtain that X_{x} contains a copy Ω^{\prime} of $\mathcal{S}_{2,2}(\mathbb{K})$ (cf. Lemma 6.15). Now, since $\operatorname{dim}\left\langle\Omega^{\prime}\right\rangle=8$ and $\operatorname{dim} Y_{x}=2 r^{\prime}-1$, and $\operatorname{dim}\left\langle\Omega^{\prime}, Y_{x}\right\rangle \leq 2 r^{\prime}-7$, we obtain that there is a point $y \in Y \cap\left\langle\Omega^{\prime}\right\rangle$. A similar argument as used in the last paragraph of the proof of Lemma 6.16 leads to a contradiction to (S2).
Finally, the third column of Table 1. Also here, we refer to [1].
Proposition 8.7 There is no $\operatorname{DSV}(X, Z, \Xi, \Theta)$ with parameters $\left(1, v, r^{\prime}, v^{\prime}\right)$ in which $\left|\Theta_{x}\right| \geq 2$ for each $x \in X$ and such that there is an X-line L for which $\left|\Theta_{L}\right| \geq 2$.

Proof Subsection 7.5 .1 of [1] (pages 132-138) deals with a DSV with parameters ($1, v, r^{\prime}, v^{\prime}$) in which each X-point is contained in at least two members of Θ and where, for each X-line is either contained in no member of Θ or in at least 2 , and leads to a contradiction. Hence (X, Z, Ξ, Θ) contains an X-line which is contained in a unique member of Θ. However, Proposition 7.5.14 of [1] (shown in a series of lemmas on pages 139-140 of [1], without using (S3) actually) then implies that each X-line is contained in a unique member of Θ, contradicting our assumption.
Conclusion. We treated all cases of Table 1 (see Proposition 5.16).
Acknowledgement. Many thanks to the referee, who's helpful comments increased the readabilty of this paper.

References

[1] A. De Schepper, Characterisations and classifications in the theory of parapolar spaces, doctoral dissertation (accessible on https://cage.ugent.be/~ads/links/PhD.pdf).
[2] A. De Schepper, J. Schillewaert, H. Van Maldeghem, A uniform characterisation of the varieties of the second row of the Freudenthal-Tits Magic Square over arbitrary fields, submitted (accessible on https://cage.ugent.be/~ads/links/8.pdf).
[3] A. De Schepper, J. Schillewaert, H. Van Maldeghem, M. Victoor, Constructions and characterisation of the varieties of the third row of the Freudenthal-Tits Magic Square, in progress.
[4] A. De Schepper, H. Van Maldegem, Veronese representation of Hjelmslev planes of level 2 over Cayley-Dickson algebras, to appear in Res. Math.
[5] I. Kaplansky, Infinite-dimensional forms admitting composition, Proc. Amer. Math. Soc. 4 (1953), 956-960.
[6] O. Krauss, J. Schillewaert and H. Van Maldeghem, Veronesean representations of Moufang planes, Michigan Math. J. 64 (2015), 819-847.
[7] R.A. Kunze and S. Scheinberg, Alternative algebras having scalar involutions, Pac. Journal of Math 124 (1986), 159-172.
[8] J.M. Landsberg and L. Manivel, The sextonions and $E_{7 \frac{1}{2}}$, Adv. Math. 201 (2006), 143-179.
[9] K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, New York (2004), xxv +563 pp.
[10] K. McCrimmon, pre-book on alternative algebras, https://mysite.science.uottawa.ca/neher/Papers/alternative/.
[11] J. Schillewaert and H. Van Maldeghem, Projective planes over 2-dimensional quadratic algebras, Adv. Math. 262 (2014), 784-822.
[12] J. Schillewaert and H. Van Maldeghem, On the varieties of the second row of the split Freudenthal-Tits Magic Square, Ann. Inst. Fourier 67 (2017), 2265-2305.
[13] E. E. Shult, Points and Lines, Characterizing the Classical Geometries, Universitext, SpringerVerlag, Berlin Heidelberg (2011), xxii+676 pp.
[14] J. Tits, Sur certaines classes d'espaces homogenes de groupes de Lie, Acad. Roy. Belg. Cl. Sci Mém. Collect. $8^{\circ}(2) \mathbf{2 9 (3) ~ (1 9 5 5) , ~} 268$ pp.
[15] Veldkamp F.D., Geometry over rings, chapter 19 in Handbook of Incidence Geometry: Buildings and Foundations. Edited by F. Buekenhout, Elsevier, Amsterdam, 1420 pp. (1995)
[16] A.L. Wells Jr., Universal projective embeddings of the Grassmann half-spinor and dual orthogonal geometries Quart. J. Math. Oxford Ser. (2), 34 (1983), 375-386.
[17] B.W. Westbury, Sextonions and the magic square, J. of the London Math. Soc. 73 (2006), 455-474.
[18] C. Zanella, Universal properties of the Corrado Segre embedding, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 65-79.

[^0]: *Supported by the Fund for Scientific Research - Flanders (FWO - Vlaanderen)

[^1]: ${ }^{1}$ The difference between Z and Y is only apparent in the dual Segre varieties.

