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Abstract

Let Ωi and Ωj be the sets of elements of respective types i and j of a polar space ∆
of rank at least 3. We show that a permutation ρ of Ωi ∪ Ωj with the property that, for
each I ∈ Ωi and J ∈ Ωj , I and J generate a maximal singular subspace in ∆ if and only if
ρ(I) and ρ(J) generate a maximal singular subspace in ∆, is induced by an automorphism
of ∆. Building-theoretically, this means that if ρ preserves a certain Weyl distance in the
Tits-building corresponding to ∆, then it preserves all Weyl-distances.
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1 Introduction

The following situation is the central theme of some recent papers [3, 4, 5, 6, 7, 8, 10, 11, 12]:
Given a polar space ∆ of rank n ≥ 3 of a certain kind (for instance unitary or symplectic),
define some natural (adjacency) relation ∼ on the set Ωs of singular subspaces of dimension
s with 0 ≤ s ≤ n − 1, and determine the automorphism group of the corresponding graph
(Ωs,∼), hoping for the automorphism group of ∆, and in case an exception occurs, determine
the automorphism group. For a more detailed overview of possibilities for s and ∼ and the polar
spaces ∆ that were considered, we refer to [2]. In [2], an overarching theorem is proven (see
Theorem 1.1 below), treating any polar space ∆ of (finite) rank n ≥ 3, any dimension s (more
generally, type s, in the hyperbolic case) and with ∼ corresponding to almost any Weyl distance
in the building ∆b related to ∆. The Weyl distances that were left out correspond to ‘extremal’
Weyl distances in some sense (see below for a more precise statement) and these more wild cases
could not be dealt with using the techniques of [2]. In the current paper we partially fill this
gap by treating a subcase of these remaining cases. In order to phrase our main theorem we
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explain this in more detail (preliminaries and terminology regarding polar spaces can be found
in Section 2).

The building ∆b — If ∆ is not hyperbolic, then ∆b (viewed as a simplicial complex) has
as vertex set the set of all singular subspaces of ∆, where the type of a subspace corresponds
to its dimension. If ∆ is a hyperbolic polar space of rank n (in which each singular subspace of
dimension n − 2 is contained in exactly two maximal singular subspaces, yielding two natural
families of maximal singular subspaces), then the vertex set of ∆b is the set of singular subspaces
of the oriflamme complex of ∆, which consists of subspaces of types {0, ..., n−3, (n−1)′, (n−1)′′},
where the subspaces of type d with 0 ≤ d ≤ n−3 are the singular subspaces of ∆ of dimension d
and the subspaces of types (n−1)′ and (n−1)′′ are the subspaces of the two families of maximal
singular subspaces of ∆, respectively. To indicate the difference between type and dimension,
we sometime denote the dimension of a subspace of type t by |t|. We denote the type set of ∆b

by T.

Automorphisms of ∆ and ∆b — An automorphism ρ of ∆ is a permutation of the point
set that preserves collinearity and non-collinearity (ρ and ρ−1 preserve singular subspaces). An
automorphism ρ of ∆b is a permutation of all vertices of ∆b such that ρ and ρ−1 preserve
incidence. Each automorphism ρ of ∆ induces an automorphism of ∆b. The latter is type-
preserving unless ∆ is a hyperbolic polar space and ρ is a duality (switching the two natural
families of maximal singular subspaces). Only when ∆ is a triality quadric, that is, a hyperbolic
polar space of rank 4 (so ∆b has Dynkin type D4), the building ∆b has automorphisms (trialities
and trialities composed with dualities) which do not correspond to an automorphism of ∆ (since
points are mapped to 3-dimensional subspaces).

The Weyl distance in ∆b — In [1], maps between buildings preserving a single Weyl
distance between the chambers were studies. In [2], the induced Weyl distance on the vertices
of ∆b is considered. Two such vertices of ∆b are at a certain Weyl distance precisely if there are
i, j, k, ` ∈ T∪ {−1} such that the vertices correspond to singular subspaces U, V of ∆ of types i
and j, and such that the intersection U ∩V has type k (with k = −1 if the intersection is empty)
and the subspace generated by U and the projection of U on V (in symbols: 〈U,U⊥ ∩ V 〉) has
type ` (cf. Lemma 2.1 of [2]).

Consider the graph which has as vertices all vertices of ∆b with adjacency given by being at
a certain Weyl distance (which we can label with (i, j; k, `) in view of the above). When deleting
the vertices without neighbors (i.e., those corresponding to vertices of types distinct from i, j),
we obtain a bipartite graph if i 6= j, which we denote by Γn

i,j;k,`(∆); if i = j, we obtain a graph
on Ωj , which we denote by Γn

j;k,`(∆). For reasons of uniformity, we also consider a bipartite
version of the latter graph, denoted by Γn

j,j;k,`(∆), whose bipartition classes are given by two
copies of Ωj , and adjacency between those biparts is given by the Weyl distance (j, j; k, `) as
before. Note that each automorphism of Γn

j;k,`(∆) induces an automorphism of Γn
j,j;k,`(∆). If

Γn
i,j;k,`(∆) or its bipartite complement (changing edges and non-edges between the biparts) is
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either empty or a matching, then we call it trivial. A brief version of the main result of [2] reads
as follows:

Theorem 1.1 (Theorem 3.5 of [2], informal statement) Let ∆ be a polar space of rank
n ≥ 3 with type set T. Suppose i, j, ` ∈ T and k ∈ T ∪ {−1} are such that if |`| = n − 1, then
also |i| = |j| = n− 1. If Γ = Γn

i,j;k,`(∆) is non-trivial, then each automorphism of Γ is induced

by a (not necessarily type-preserving) automorphism of the building ∆b related to ∆, up to two
classes of exceptions where there are also automorphisms of a building naturally containing ∆b

(cf. Examples 3.2 and 3.3 of [2]).

The above condition ‘if |`| = n − 1, then also |i| = |j| = n − 1’, we believe, is merely there
because the proof requires a different method. Small as this case might seem, compared to the
number of other cases, it is not trivial to get rid of this case, even with alternative methods. In
the current paper, we tackle one of the remaining cases where |`| = n− 1, requiring additionally
that |k| = |i| + |j| − n + 1. Geometrically, this means that I ∈ Ωi and J ∈ Ωj are adjacent if
they generate a maximal singular subspace of ∆, where the latter is of a certain type in case ∆
is hyperbolic. We called this an ‘extremal’ Weyl distance because the projection of I on J is
maximal when |`| = n− 1. We show that, also here, if Γ := Γn

i,j;k,`(∆) is non-trivial, then each

of its automorphisms is induced by an automorphism of ∆b (without exceptions).

Denote by Autc(Γ) the automorphisms of Γ preserving the biparts of Γ. We show that:

Theorem 1.2 Let ∆ be a polar space of rank n ≥ 3 with type set T. Suppose i, j, ` ∈ T and
k ∈ T ∪ {−1} are such that |i| + |j| − |k| = n − 1 = |`|. Then Γ := Γn

i,j;k,`(∆) is non-trivial if
min{|i|, |j|} < n− 1 and in that case, each element ρ of Autc(Γ) is induced by an automorphism
ρ̃ of the building ∆b related to ∆, i.e., ρ(X) = ρ̃(X) for each X ∈ Ωi ∪ Ωj. More specifically:

(i) If ∆ is not hyperbolic or max{|i|, |j|} < n− 1, then ρ̃ is an automorphism of ∆ (including
dualities, if any, but excluding trialities, if any), and conversely, each automorphism of ∆
induces an element of Autc(Γ);

(ii) If ∆ is hyperbolic and max{|i|, |j|} = n− 1 ≥ 3, with {|i|, |j|} = {0, 3} if n = 4, then ρ̃ is
type-preserving, i.e., it is an automorphism of ∆ which is not a duality. Conversely, each
type-preserving automorphism of ∆b induces an element of Autc(Γ);

(iii) If ∆ is the triality quadric (i.e., ∆ is hyperbolic and n = 4) and {|i|, |j|} = {1, 3}, then ρ̃ is
type-preserving, or it switches types 0 and t but preserves types i and j, with {0, t, i, j} =
{0, 1, 3′, 3′′}. Conversely, each such ρ̃ induces an element of Autc(Γ).

If i = j, or, if i 6= j but ∆b has an automorphism switching the biparts (which is the case only
if ∆ is the triality quadric and {|i|, |j|} = {0, 3}), then Aut(Γ) = Autc(Γ)× 2.
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The geometric nature of our arguments allows to also consider the graphs on Ωi ∪ Ωj in
which I ∈ Ωi and J ∈ Ωj are adjacent if they generate just any maximal singular subspace
in case ∆ is hyperbolic, a relation which does not correspond to a certain Weyl distance but
which fits in the same framework nonetheless. It goes without saying that in this case we use
T = {0, 1, ..., n− 2, n− 1} instead of T = {0, 1, ..., n− 3, (n− 1)′, (n− 1)′′}, and hence ` = n− 1
instead of ` ∈ {(n− 1)′, (n− 1)′′}. This gives us the following theorem:

Theorem 1.3 Let ∆ be a hyperbolic polar space of rank n ≥ 3. Suppose i, j, ` ∈ {0, 1, ..., n− 1}
and k ∈ T ∪ {−1} are such that i + j − k = ` = n − 1. Then Γ := Γn

i,j;k,`(∆) is non-trivial if
min{i, j} < n− 1 and in that case, each element ρ of Autc(Γ) is induced by an automorphism ρ̃
of the building ∆b related to ∆. If i = j, then Aut(Γ) = Autc(Γ)× 2.

Theorems 1.2 and 1.3 imply the following result for the non-bipartite counterparts of Γn
i,j;k,`(∆)

in the case where i = j (where we also include ` = n− 1 in the hyperbolic case, just like in the
above theorem).

Corollary 1.4 Let ∆ be a polar space of rank n ≥ 3 with type set T. Suppose j, ` ∈ T and
k ∈ T ∪ {−1} are such that 2|j| − |k| = n − 1 = |`|. Then Γ := Γn

j;k,`(∆) is non-trivial if
|j| < n− 1 and in that case, each element ρ of Aut(Γ) is induced by an automorphism ρ̃ of the
building ∆b related to ∆.

Proof. Taking two isomorphic copies of Ωj , it is easily seen that there is a canonical isomorphism
between Aut(Γ) and Autc(Γ

n
j,j;k,`(∆)), and hence the result follows from Theorems 1.2 and 1.3.

2

Remark 1.5 Note that, if |i| = |j| = n− 1, then |i|+ |j| − |k| = n− 1 = |`| implies |k| = n− 1,
so adjacency in Γn

i,j;k,`(∆) is given by equality, and hence the graph is trivial. So the case where
|i| = |j| = |`|, which was covered by Theorem 1.1 in more generality, is naturally excluded here.
If max{|i|, |j|} = n − 1, then |i| + |j| − |k| = n − 1 = |`| implies that I ∈ Ωi and J ∈ Ωj are
adjacent vertices of Γn

i,j;k,`(∆) precisely if I∩J is either I or J , i.e., the adjacency relation is given
by (symmetrized) containment. This case is covered by Proposition 7.4. of [2]; nevertheless we
mention it in our statement for clarity. For the sequel, we hence assume max{|i|, |j|} < n − 1.
Observe that this implies that |k| < min{|i|, |j|}, and that we may omit the ‘absolute value
signs’ for |k|, |i|, |j| as dimension and type coincide now.

Proof strategy — Denote by C1 and C2 the two biparts of Γ = Γn
i,j;k,`(∆). For any

X ∈ C1 ∪ C2, we write N(X) for the set of its neighbors in Γ (note that X /∈ N(X)). If
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X1, X2 ∈ C1 ∪ C2 then N(X1, X2) denotes N(X1) ∩ N(X2), i.e., it is the set of all common
neighbors of X1 and X2. Our strategy consists of investigating pairs X1, X2 in C1 or in C2 with
N(N(X1, X2)) = {X1, X2}. It turns out that this is only the case when either X1 and X2 are
contained in a common singular subspace, or, for some specific polar spaces ∆, also if X1∩X2 is
a hyperplane of both X1 and X2 (cf. Lemma 3.10). With some additional work, we can in most
cases determine whether or not two subspaces of the same bipart are collinear, which will then
allow us to express the maximal singular subspaces in terms of the i-spaces or j-spaces they
contain. This leads to a graph from which the automorphism group is known. In the remaining
cases, we deduce a Grassmann graph from Γ, the automorphism group of which is also known.

In this approach, but also in view of the statement that no automorphism of Γ can switch the
biparts if i 6= j, it is important that we can tell the biparts apart. In most cases this can be done
geometrically, except for the case where s = 2, where we need to rely on further calculations.
For this we rely on [9], a note concerning the graphs occurring in this paper, but containing the
calculations for any finite order (s, t).

2 Preliminaries

Below we list all the notions and terminology used throughout the paper.

A pair ∆ = (X,L) is a point-line geometry if X is a set and L is a set of subsets of X of size
at least 2 covering X; the elements of X are called points and those of L lines. Two points p, q
of X which are on a common line L are called collinear, denoted p ⊥ q; the set of points collinear
to p is denoted by p⊥. A subspace S of ∆ is a subset of X such that the lines joining any two
collinear points of S are contained in S. Moreover, if all pairs of points in S are collinear, the
subspace is called singular.

A polar space is either a set of points X of size at least 3, or a point-line geometry ∆ = (X,L)
with the properties that, each line has at least three points, no point is collinear to all other
points, every nested sequence of singular subspaces is finite, and, finally, for each point x and
any line L ∈ L either one or all points of L are collinear to x.

A polar space as considered above has a well-defined finite rank n ≥ 1, which is one more
than the dimension of any maximal singular subspace of ∆ (so it is 1 if the line set is empty).
Since we assume n ≥ 3, ∆ has an order (s, t), which means that each line of ∆ contains s + 1
points (possibly s =∞) and through each singular subspace of dimension n− 2, there are t+ 1
singular subspaces of dimension n−1 (possibly t =∞). If t = 1, then we say that ∆ is hyperbolic
or thin. In this case there are two natural families of maximal singular subspaces, which we will
refer to as the (n−1)′-spaces and the (n−1)′′-spaces, as mentioned in the introduction. Finally,
we note that it follows from the classification of polar spaces of rank n ≥ 3 that if s < ∞ then
also t <∞.
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Two singular subspaces U, V of ∆ are called collinear (denoted U ⊥ V ) if they are contained
in a common singular subspace and the smallest such subspace is denoted by 〈U, V 〉 and referred
to as the singular subspace generated or spanned by U and V (with obvious generalization to
a higher number of pairwise collinear singular subspaces). The set of all points collinear to
(all points of) U is denoted by U⊥. The projection projV (U) of a singular subspace U on a
singular subspace V is V ∩U⊥. We have projV (U) contains U ∩ V and dimU − dim projU (V ) =
dimV − dim projV (U). We say that U and V are opposite if projV (U) = projU (V ) = ∅, in which
case dimU = dimV . In particular, two non-collinear points of X are opposite. The subspace
spanned by U and projV (U) is denoted by UV (note that dim(UV ) = dim(V U )).

If p, q are opposite points, then the set of points in (p⊥ ∩ q⊥)⊥ is called the hyperbolic line
containing p and q. All hyperbolic lines of ∆ have the same size, say h(∆), called the hyperbolic
order. Clearly, p, q ∈ (p⊥ ∩ q⊥)⊥ and hence h(∆) ≥ 2. If h(∆) > 2, we call the hyperbolic line
proper. Note that if ∆ is a hyperbolic polar space, then h(∆) = 2.

Let Ω be the set of singular subspaces of ∆ and consider a K ∈ Ω with dim(K) = k ≤ n− 2.
Put XK = {U ∈ Ω | K ⊂ U,dim(U) = k+1}. First suppose k < n−2. Then, if M is an element
of Ω of dimension k + 2 containing K, we let M/K represent the elements of XK contained in
M . We define LK as {M/K | K ⊆ M ∈ Ω, dim(M) = k + 2} and Res∆(K) = (XK ,LK) is the
residue of ∆ in K. This is a polar space of rank n − k − 1 of the same “kind” as ∆, e.g. the
residue of a parabolic polar space is parabolic too, and likewise for hyperbolic, unitary, mixed
and so on. If dim(K) = n− 2, then Res∆(K) is just the set XK , which is a polar space of rank
1. It contains at least 2 points and it contains precisely 2 if and only if ∆ is hyperbolic.

3 Pairs J1, J2 ∈ C2 with N(N(J1, J2)) = {J1, J2}

Let J1, J2 be distinct members of Ωj . We write S := J1 ∩ J2 and D := JJ2
1 ∩ J2

J1 , and let λ1 be
the type of JJ2

1 and λ2 the type of JJ1
2 (note that |λ1| = |λ2|), α := |λ1| − j − 1, s := dimS and

β := j − (α + s + 1) − 1. Let N1 denote the set of all singular subspaces of type ` containing
JJ2

1 , likewise we define N2. For N1 ∈ N1 arbitrary, note that N2 = JN1
2 is the unique element of

N2 such that N1 ∩N2 is maximal (N1 ∩ JN1
2 has dimension n− β − 2).

The following lemma describes the composition of an element in N(J1, J2), if non-empty, see
also Figure 1.

Lemma 3.1 The set N(J1, J2) is non-empty if and only if k ≤ s + α + 1 and, in case ∆
is hyperbolic and ` ∈ {(n − 1)′, (n − 1)′′}, also if β is odd and either dim(J1

J2) < n − 1 or
J1

J2 ∈ N1.If non-empty, then each I ∈ N(J1, J2) is generated by singular subspaces K0,K1 and
K2 as follows. The subspaces K1 and K2 are any k-subspaces in J1∩D and J2∩D, respectively,
with K1 ∩S = K2 ∩S. The subspace K0 is any subspace complementary to both 〈projJ1(J2),K2〉
and 〈projJ2(J1),K1〉 in the (n− β − 2)-space N1 ∩ JN1

2 , where N1 is any element of N1.
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J1 J2JJ1
2JJ2

1

S

D

N1 N2

K1 K2

K0

Figure 1: An element 〈K0,K1,K2〉 of N(J1, J2)

Proof. Suppose I ∈ N(J1, J2). Then for c ∈ {1, 2}, the subspace I ∩ Jc is a k-space Kc, and
I and Jc generate an `-space Nc. Obviously, K1 ∩ S = K2 ∩ S. Now J1 ⊥ I ⊥ J2 implies
that K1 ⊆ projJ1(J2) = J1 ∩ D and K2 ⊆ projJ2(J1) = J2 ∩ D. As such, k ≤ dim projJ1(J2) =

dim projJ2(J1) = s + α + 1. Since N1 = 〈J1, I〉 has dimension n − 1 and JJ2
1 is collinear to J1

and I, and thus to N1, we have JJ2
1 ⊆ N1 and hence N1 ∈ N1; likewise, N2 = 〈I, J2〉 ∈ N2.

From I ⊆ N1 ∩ J⊥2 we deduce N2 = 〈I, J2〉 ⊆ 〈N1 ∩ J⊥2 , J2〉, and since the dimensions coincide,
N2 = JN1

2 . Noting that dim(N1 ∩ N2) = dim(N1 ∩ J⊥2 ) = n − β − 2 and that N1 and N2 are
both of type ` if ∆ is hyperbolic and ` ∈ {(n − 1)′, (n − 1)′′}, we obtain that β is odd in this
case and moreover, if dim(J1

J2) = n− 1, then N1 = N2 = J1
J2 ∈ N1.

Recall that I ⊆ N1 ∩ JN1
2 = JN2

1 ∩N2 = N1 ∩N2. Let K0 be a complement of 〈K1,K2〉 in
I and, for {c, c′} = {1, 2}, let K ′c ⊆ Kc be a complement of Kc′ in 〈K1,K2〉. Then 〈K0,K

′
c〉

is a complement of Jc′ in Nc′ , hence it is also a complement of projJc′ (Jc) in N1 ∩ N2, as one
can see by checking that dimensions fit with these claims. Consequently K0 is a complement of
〈projJc′ (Jc),Kc〉 in N1 ∩N2.
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Conversely, suppose k ≤ s+α+1 and β is odd in case ∆ is hyperbolic. We takeN1,K0,K1,K2

as described in the statement of this lemma and N2 = JN1
2 (note that this is possible because

of the conditions: K1 and K2 fit into J1 ∩D and J2 ∩D, respectively, and N1 and N2 are of the
same type). By choice of K1 and K2 we have that 〈K1,K2〉∩Jc is the k-space Kc for c ∈ {1, 2}.
Since dimD ≤ dim(N1 ∩ N2), it follows that dim(〈K1,K2〉) ≤ i. By choice of K0, we have
〈K0,K1,K2, Jc〉 = Nc with {c, c′} = {1, 2}; moreover, K0 is complementary to 〈projJc(Jc′),Kc′〉
in Nc and hence 〈K0,K1,K2〉 ∩ Jc = 〈K1,K2〉 ∩ Jc = Kc. So 〈K0,K1,K2〉 ∈ N(J1, J2) indeed.
The lemma follows. 2

In view of the above, we say that J1 and J2 are `-collinear (denoted J1⊥̂J2) if there is an
element N ∈ N1 (so a subspace of type `) with J1 ∪ J2 ⊆ N . If ` = n − 1, this coincides with
ordinary collinearity between J1 and J2, but if ∆ is hyperbolic and ` ∈ {(n − 1)′, (n − 1)′′}
then there exist collinear j-spaces J1, J2 with J1 ⊥ J2 which are not `-collinear (if the singular
subspace they generate has type `′, where {`, `′} = {(n− 1)′, (n− 1)′′}.

Next, we study N(N(J1, J2)) in case J1 and J2 are `-collinear. Note that N(J1, J2) is non-
empty in this case since β = −1 is odd, J1⊥̂J2 and k ≤ j = s+α+ 1, so N(N(J1, J2)) is a subset
of Ωj (whereas N(∅) = Ωi ∪ Ωj). Clearly, J1, J2 ∈ N(N(J1, J2)). Our first goal is to show that
N(N(J1, J2)) = {J1, J2} provided that J1 ⊥ J2. We do this in a couple of lemmas.

Lemma 3.2 Let J1, J2 be j-spaces with J1⊥̂J2. Then each J ∈ N(N(J1, J2)) belongs to 〈J1, J2〉.

Proof. In this case, N1 = N2 is the set of all `-spaces containing 〈J1, J2〉. By Lemma 3.1, each
I ∈ N(J1, J2) generates a member of N1 together with J1 or J2. Take any N ∈ N1. Let p be a
point contained in N \ (J1 ∪ J2). Lemma 3.1 implies that there is an I ∈ N(J1, J2) with p ∈ I
(either by choosing K1 and K2 such that p ∈ 〈K1,K2〉 or by choosing K0 such that p ∈ K0).
So, if J ∈ N(N(J1, J2)), then J ⊥ I, in particular J ⊥ p. Therefore, J ⊥ 〈N \ (J1 ∪ J2)〉 = N ,
and by maximality of N , we obtain J ⊆ N . As N ∈ N1 was arbitrary, J ⊆ 〈J1, J2〉. 2

Lemma 3.3 Let J1, J2 be j-spaces with J1⊥̂J2. Then each J ∈ N(N(J1, J2)) \ {J1, J2} strictly
contains 〈J ∩ J1, J ∩ J2〉.

Proof. Suppose for a contradiction that there is a j-space J ∈ N(N(J1, J2)) \ {J1, J2} with
J = 〈J ∩J1, J ∩J2〉. Put Sc := J ∩Jc, c ∈ {1, 2}. Since J1, J2 generate 〈J1, J2〉 and J ⊆ 〈J1, J2〉,
necessarily dimS ≤ Sc for c = {1, 2}. Possibly by switching the roles of J1 and J2, we have
dimS ≤ dimS1 ≤ dimS2, since J = 〈S1, S2〉 ⊆ 〈J1, J2〉. Note that S ∩ J = S ∩ S1 = S ∩ S2

is a strict subspace of Sc, c = 1, 2, since J1 6= J 6= J2. We use Lemma 3.1 to find an i-space
I = 〈K1,K2,K0〉 ∈ N(J1, J2) with I /∈ N(J), distinguishing three cases:
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� Case 1: dimS2 ≤ k. Choose Kc such that it contains Sc, c = 1, 2. Then 〈K1,K2〉 ∩ J = J
and hence dim(I ∩ J) ≥ j > k, regardless of the choice of K0.

� Case 2: dimS2 > k ≥ 0. Take K2 such that it is contained in S2 but not contained in S
and K1 such that it shares at least a point with S1 \ S (which is possible since k ≥ 0). As
above, dim(I ∩ J) ≥ dim(〈K1,K2〉 ∩ J) ≥ k + 1.

� Case 3: dimS2 > k = −1. Since k = −1, dim I = dimK0 ≥ 0. So we can select
K0 such that it shares at least a point with J \ (J1 ∪ J2) = 〈S1, S2〉 \ (S1 ∪ S2). Then
dim(I ∩ J) ≥ 0 > k.

In each case, we obtained an I ∈ N(J1, J2) with I /∈ N(J), so the hypothesis J = 〈S1, S2〉 must
be false. 2

Proposition 3.4 Let J1, J2 be j-spaces with J1⊥̂J2. Then N(N(J1, J2)) = {J1, J2}.

Firstly, as noted before, J1, J2 ∈ N(N(J1, J2)). We prove the other direction of this propo-
sition in a series of lemmas. Henceforth we suppose for a contradiction that J is a j-space in
N(N(J1, J2)) \ {J1, J2}. Our aim is to find an i-space I ∈ N(J1, J2) with dim(I ∩ J) 6= k and
hence I /∈ N(J). We use the construction of I = 〈K1,K2,K0〉 ∈ N(J1, J2) as given in Lemma 3.1.
By Lemma 3.2 however, we know J ⊆ 〈J1, J2〉, so we first prove a refinement of Lemma 3.1 to
show that we can restrict our attention to 〈J1, J2〉.

Lemma 3.5 Let J1, J2 be j-spaces with J1⊥̂J2, and M = 〈J1, J2〉. Then, for any pair of k-
spaces K1,K2 in J1, J2 with K1 ∩ S = K2 ∩ S and any subspace K ′0 in M complementary to
〈J1,K2〉 and 〈J2,K2〉 in M , the subspace 〈K1,K2,K

′
0〉 is contained in at least one member of

N(J1, J2). Conversely, for each I ∈ N(J1, J2), IM := I ∩M can be decomposed in this way and
dim(IM ∩ Jc) = k and 〈IM , Jc〉 = M .

Proof. By Lemma 3.1, each member I of (the non-empty set) N(J1, J2) is given as 〈K1,K2,K0〉,
where K1,K2 are as described in the statement of this lemma, and given any `-space N1 con-
taining M , K0 is a subspace in N1 complementary to 〈J1,K2〉 and 〈J2,K1〉 in N1. Hence
K ′0 := K0∩M is a subspace complementary to 〈J1,K2〉 and 〈J2,K1〉 in M . Since Jc ∼ I implies
dim(Jc ∩ I) = k and 〈Jc, I〉 = N1, for c ∈ {1, 2} and Jc ⊆M , this implies that Jc ∩ I = Jc ∩ IM
and a dimension argument gives 〈Jc, IM 〉 = M . Conversely, each subspace K ′0 in M comple-
mentary to 〈J1,K2〉 and 〈J2,K1〉 in M can be extended to a subspace K0 complementary to
〈J1,K2〉 and 〈J2,K1〉 in N1. 2

Notation. We keep using the notation M = 〈J1, J2〉 and IM = 〈K1,K2,K
′
0〉, with notation

as above. Recall that we assume that J ∈ N(N(J1, J2)) \ {J1, J2}. Put Sc := Jc ∩ J , c ∈ {1, 2}
and let SJ be a subspace in J complementary to 〈S1, S2〉 in J .
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By Lemma 3.3, SJ is non-empty. Possibly by switching the roles of J1 and J2, we again have
dimS ≤ dimS1 ≤ dimS2. We first treat the case where dimS2 ≥ k.

Lemma 3.6 If dimS2 ≥ k, then N(N(J1, J2)) = {J1, J2}.

Proof. Suppose first that dim(S ∩ J) ≥ k (with J as above). Choose K1 = K2 ⊆ S ∩ J .
Then K ′0 is non-empty and can be chosen to share at least a point with SJ , implying that
dim(IM ∩ J) ≥ k+ 1. Lemma 3.5 implies that there is an I ∈ N(J1, J2) with IM ⊆ I, and hence
dim(I ∩ J) > k. Therefore, J � I, a contradiction.

Next, suppose dim(S ∩ J) < k. Then we choose K2 in S2 such that it (strictly) contains
S ∩ J . If S1 * S then we choose K1 such that it shares at least a point with S1 \ S (note that
k ≥ 0 in this case) and then again dim(IM ∩J) ≥ dim(〈K1,K2〉∩J) ≥ k+ 1. So we additionally
suppose that S1 ⊆ S, and since dimS ≤ dimS1, this means that S = S1 ⊆ S2. In particular,
S ∩ J = S and, as dim(S ∩ J) < k ≤ dimS2 by assumption, S is strictly contained in S2 and
hence 〈J, J2〉 ∩ J1 ( J1. Therefore, and since k < j, we can choose K1 as any k-space of J1

containing S but not containing 〈J, J2〉 ∩ J1. This choice implies that SJ * 〈K1, J2〉 (indeed,
otherwise J ⊆ 〈K1, J2〉 and hence 〈J, J2〉 ∩ J1 ⊆ 〈K1, J2〉 ∩ J1 = K1). On the other hand, since
S = S1, we have 〈J, J1〉 = M , so SJ is not contained in 〈J1,K2〉 (otherwise J ⊆ 〈J1,K2〉 and so
M = 〈J, J1〉 ⊆ 〈J1,K2〉 ( M , the latter because S ∩ J = S ( K2 ( J2). So, by the foregoing,
the subspace K ′0 is non-empty and can be chosen such that it intersects SJ \(〈K1, J2〉∪〈J1,K2〉)
non-trivially. We conclude that dim(IM ∩ J) > k and obtain the same contradiction as in the
previous paragraph. 2

Next, we treat the case where dimS2 < k.

Lemma 3.7 If dimS2 < k and J ∈ N(N(J1, J2)) \ {J1, J2}, then dim〈S1, S2〉 ≤ k. Moreover,
there are k-spaces K1,K2 in J1, J2, respectively, with 〈S, Si〉 ⊆ Ki, and for such k-spaces,
dim(〈K1,K2〉 ∩ J) ≤ k.

Proof. Since dimS1 ≤ dimS2 < k, we may choose Kc ⊃ Sc for c = 1, 2. If dim〈S1, S2〉 > k
then dim(IM ∩ J) > k regardless of the choice of K ′0, contradicting J ∈ N(J1, J2). Therefore,
dim〈S1, S2〉 ≤ k. Then also dim〈S, Sc〉 ≤ k, since dimS ≤ dimSc and S ∩ Sc = S1 ∩ S2. Accord-
ingly, for c = 1, 2 we can indeed chooseKc in such a way thatKc ⊇ 〈S, Sc〉. If dim(〈K1,K2〉∩J) >
k for at least one such choice, then again we obtain an IM with dim(IM ∩ J) > k, contradicting
J ∈ N(J1, J2) once more. We conclude that dim(〈K1,K2〉 ∩ J) ≤ k for any pair of such k-spaces
K1 and K2. 2

Henceforth, we suppose that Kc contains 〈S, Sc〉, and we write X := J ∩ 〈K1,K2〉 for short.
We show that, under our assumptions, dimX = k.

10



Lemma 3.8 If dimS2 < k and J ∈ N(N(J1, J2)) \ {J1, J2}, then dimX = k.

Proof. By Lemma 3.7, dimX ≤ k, so suppose for a contradiction that dimX < k. Put
x = dimX. Take any I ∈ N(J1, J2) containing 〈K1,K2〉 and consider IM = 〈K1,K2,K

′
0〉 (cf.

Lemmas 3.1 and 3.5). Since I ∼ J by assumption, dim(IM ∩ J) = k. As K ′0 is just any
complement of 〈K1,K2〉 in IM , it does not affect IM if we choose K ′0 such that K ′0 ∩ J is a
complement of X (in which case IM ∩ J = 〈X,K ′0 ∩ J〉 and dim(K ′0 ∩ J) = k − x − 1). Note
that, since S = K1 ∩K2, we also know that dimK ′0 = j − k − 1. The fact that I ∼ J implies
that IM and J generate the (2j − s)-space M , and hence

dim(K ′0 ∩ 〈J,K1,K2〉) = (j − k − 1) + (j + (2k − s)− x)− (2j − s) = k − x− 1.

Comparing this to dim(K ′0 ∩ J), we obtain K ′0 ∩ 〈J,K1,K2〉 = K ′0 ∩ J .

We claim that K ′0 ∩J = K ′0. So suppose for a contradiction that K ′0 ∩J ( K ′0. A dimension
argument yields that the subspace 〈K1,K2,K

′
0∩J〉 (which has dimension (2k−s)+(k−x−1)+1)

is strictly contained in 〈K1,K2, J〉 (which has dimension j + (2k − s) − x), because k < j.
Therefore we can form K ′0 by adding to K ′0∩J a suitable (non-empty) subspace K ′′0 of IM which
meets 〈K1,K2,K

′
0 ∩ J〉 trivially but 〈K1,K2, J〉 non-trivially. With such a choice of K ′0 (which

does not affect the previous choice of K ′0 ∩ J) we get K ′0 ∩ 〈J,K1,K2〉 ) K ′0 ∩ J , a contradiction
with the above. The claim follows.

The above implies that dim(K ′0∩J) = dim(K ′0), and hence k−x−1 = j−k−1, so 2k−x = j.
Using this, it follows that IM = 〈K1,K2,K

′
0〉 has dimension (2k−s)+(k−x−1)+1 = 3k−s−x =

j+ k− s > j. We claim that we can choose a subspace I ′M with dim I ′M = dim IM such that I ′M
contains J and such that 〈Jc, I ′M 〉 = M for c = 1, 2 (and hence dim(Jc ∩ I ′M ) = k).

Recall that dimS1 ≤ dimS2 < k. Take a subspace S′1 of dimension dimS2 with S1 ⊆ S′1 ⊆ K1

such that S1 ∩ S = S2 ∩ S (this is possible since S1 ∩ S = S2 ∩ S). Consider ResM 〈S′1, S2〉, in
which J1 and J2 correspond to subspaces J ′1 and J ′2 of equal dimension, and 〈J, S′1〉 corresponds
to a subspace J ′ which is disjoint from both J ′1 and J ′2. Let Y be any subspace of ResM 〈S′1, S2〉
which contains J ′ and is complementary to J ′1 and J ′2. Back in M , let Ỹ be the subspace
containing 〈S′1, S2〉 which corresponds to Y in ResM 〈S′1, S2〉. Then, by choice of Ỹ , we have:
J ⊆ Ỹ , 〈J1, Ỹ 〉 = 〈J2, Ỹ 〉 = M , J1 ∩ Ỹ = S′1, J2 ∩ Ỹ = S2, and since dimS′1 = dimS2 < k by
assumption, we also know dim Ỹ < dim IM . Now let I ′M be any subspace of dimension dim IM
containing Ỹ (and hence also J). Then M = 〈Jc, Ỹ 〉 ⊆ 〈Jc, I ′M 〉 and hence I ′M is as claimed.

Lemma 3.5 implies that there is a member I ′ ∈ N(J1, J2) with I ′M ⊆ I ′. However, I ′ � J
since dim(I ′ ∩ J) = dim(I ′M ∩ J) = j > k, contradicting our assumption J ∈ N(N(J1, J2)). This
shows the lemma. 2

Lemma 3.9 If dimS2 < k then N(N(J1, J2)) = {J1, J2}.
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Proof. Suppose for a contradiction that there is a J ∈ N(N(J1, J2)) \ {J1, J2}. By Lemma 3.8,
we know that X = 〈K1,K2〉∩J has dimension k, for any choice of K1 ⊇ 〈S, S1〉 and K2 ⊇ 〈S, S2〉.
Note that X ( J since k < j. If neither 〈J1,K2〉 nor 〈J2,K1〉 contains J , then we can choose
the (j − k − 1)-space K ′0 in such a way that K ′0 ∩ (J \X) 6= ∅. With K ′0 chosen in this way we
get dim(IM ∩ J) > k and we are done.

Suppose now that, for every choice of K1 and K2, either 〈J1,K2〉 or 〈J2,K1〉 contains J . We
claim that either 〈J1,K2〉 ⊇ J for every k-subspace K2 of J2 containing 〈S, S2〉 or 〈J2,K1〉 ⊇ J
for every k-subspace K1 of J1 containing 〈S, S1〉. Indeed, suppose that J 6⊆ 〈J2,K1〉 for at
least one choice of K1 ⊇ 〈S, S1〉, to fix ideas. Then, with K1 chosen in that way, necessarily
J ⊆ 〈J1,K2〉 for every k-subspace K2 of J2 containing 〈S, S2〉. It follows that 〈J1, S2〉 contains J .
Hence 〈J1, S2〉 ∩ J = J . However 〈J1, S2〉 ∩ J = 〈S1, S2〉. Therefore J = 〈S1, S2〉, contradicting
Lemma 3.3. We conclude that N(N(J1, J2)) = {J1, J2}. 2

This finishes the proof of Proposition 3.4.

We can now prove a criterion for J1⊥̂J2 (keep in mind that ⊥̂ =⊥ if ` = n − 1, but we
will sometimes use the more general relation ⊥̂ to avoid unnecessary case distinctions). We also
introduce the notation ≈ to indicate that two j-spaces share a subspace of dimension j − 1.

Lemma 3.10 If h(∆) > 2 or, if ∆ is hyperbolic and ` ∈ {(n−1)′, (n−1)′′}, then N(N(J1, J2)) =
{J1, J2} if and only if J1⊥̂J2. If h(∆) = 2 and, if ∆ is hyperbolic, ` = n−1, then N(N(J1, J2)) =
{J1, J2} if and only if J1⊥̂J2 or if J1 ≈ J2 (with notation as above).

Proof. First note that if N(J1, J2) is empty, then N(N(J1, J2)) = Ωi ∪ Ωj . So if N(N(J1, J2)) =
{J1, J2}, then N(J1, J2) 6= ∅ and hence, by Lemma 3.1, k ≤ s+α+ 1 and in case ∆ is hyperbolic
and ` ∈ {(n− 1)′, (n− 1)′′}, we also have that β odd, and if β = −1 then 〈J1, J2〉 has type `.

Case 1: Suppose α ≥ 0. Suppose first that β = −1. Then by the above, J1⊥̂J2, and hence
N(N(J1, J2)) = {J1, J2} by Lemma 3.4. So assume β ≥ 0. Then D is strictly contained in JJ2

1

and hence there is a j-space J distinct from J1 which is contained in JJ2
1 and with J∩D = J1∩D

(recall that J1 ∩D = projJ1(J2)). By Lemma 3.1, each I ∈ N(J1, J2) is collinear with JJ2
1 and

I ∩ JJ2
1 ⊆ D. Therefore, J ⊥ I and I ∩ J = I ∩ J ∩ D = I ∩ J1 ∩ D = K1, i.e., I ∼ J . We

conclude that J ∈ N(N(J1, J2)).

Case 2: Suppose α = −1. First note that this implies that β ≥ 0, moreover k ≤ s by the first
paragraph. Lemma 3.1 implies that, for each I ∈ N(J1, J2), K1 = K2 ⊆ S. Consider a j-space J
containing S such that, in Res∆(S), the β-spaces B1, B2, B corresponding to J1, J2, J are such
that B ⊆ (B⊥1 ∩ B⊥2 )⊥. Note that B1 and B2 are opposite and that B⊥1 ∩ B⊥2 is disjoint from
(B⊥1 ∩B⊥2 )⊥. Since the subspace I ′ in Res∆(S) corresponding to I is contained in B⊥1 ∩B⊥2 , we
hence have I ⊥ J and J ∩ I = K1, so I ∼ J . Now, (B⊥1 ∩B⊥2 )⊥ contains β-spaces other than B1
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and B2 if and only if either β > 0, or, if β = 0 and B1 and B2 determine a proper hyperbolic
line, i.e., h(∆) > 2. If ∆ is hyperbolic and ` ∈ {(n − 1)′, (n − 1)′′}, then β needs to be odd in
order for N(J1, J2) 6= ∅, so the second option does not occur in this case. The lemma follows. 2

4 Reduction to known graphs

Using the above, we define two new graphs on Ωj and Ωi, respectively.

Definition 4.1 Let Γ′j = (Ωj ,∼j) be the graph with vertex set Ωj , where two vertices J1, J2 ∈
Ωj are adjacent precisely if N(N(J1, J2)) = {J1, J2}. Likewise, we define the graph Γ′i := (Ωi,∼i).

According to Lemma 3.10, ∼j= ⊥̂ (in case h(∆) > 2 or if ∆ is hyperbolic and ` ∈ {(n −
1)′, (n− 1)′′}), or, ∼j=⊥ ∪ ≈ (if h(∆) = 2 and, if ∆ is hyperbolic, ` = n− 1; hence ⊥̂ =⊥). In
the latter case, the difficulty is that the two distinct adjacency relations ⊥ and ≈ are somehow
fused in Γ′j . We will reduce this case to the former case by distinguishing the two types of
adjacency relations.

We first show a general lemma for later purposes.

Lemma 4.2 Suppose J1, J2 ∈ Ωj are `-collinear subspaces. Then N(J1, J2) is a (non-empty)
clique in Γ′i if and only if J1 and J2 generate a maximal singular subspace.

Proof. Let M be the singular subspace generated by J1 and J2. By Lemma 3.1, each I ∈
N(J1, J2) is contained in a member of N1 = N2, the set of `-spaces containing M . In particular,
that lemma ensures us that N(J1, J2) is non-empty.

Suppose first that dimM = n− 1 (so M ∈ N1 since J1⊥̂J2). Then all members of N(J1, J2)
are contained in M and therefore pairwise collinear and hence adjacent in Γ′i. Next, suppose
dimM < n− 1. Then we claim that N(J1, J2) is not a clique in Γ′i. Suppose N,N ′ are distinct
members of N1 and let I, I ′ ∈ N(J1, J2) be such that I ⊆ N and I ′ ⊆ N ′ with I * N ′ and
I ′ * N (in particular, I nor I ′ belongs to M). It is clear that I 6⊥ I ′, so if I ∼i I

′ nonetheless
then this means that ∼i represents ⊥ ∪ ≈. So suppose I ∩ I ′ ⊆ N ∩N ′ has dimension i− 1. If
dim(N ∩N ′) < n − 2, then I has at least a line in N \N ′ (as N = 〈J1, I〉 = 〈N ∩N ′, I〉) and
hence dim(I ∩ I ′) < i− 1, a contradiction. So dim(N ∩N ′) = n− 2 for all choices of N and N ′,
and hence M = N ∩N ′. Then dim(I ∩ I ′) = i− 1 only if the (i− 1)-spaces I ∩M and I ′ ∩M
coincide. If k ≥ 0 then we can choose the k-spaces K1 = I ∩ J1 and K ′1 = I ′ ∩ J1 distinct, so
assume k = −1. In that case, I ∩M and I ′ ∩M can be any common complements of J1 and J2,
which do not necessarily coincide. The claim follows. 2
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4.1 Distinguishing the adjacency relations

Throughout this subsection we assume that adjacency in Γ′i is given by ⊥̂∪ ≈, in other words,
we suppose that h(∆) = 2 and, if ∆ is hyperbolic, also that ` = n− 1. In particular, ⊥̂ =⊥.

Lemma 4.3 Under the above assumptions, the following are equivalent for J1, J2 ∈ Ωj.

(i) J1 ∼j J2 and N(J1, J2) is a (non-empty) clique in Γ′i

(ii) Either J1 and J2 generate a maximal singular subspace, or, J1 6⊥ J2 and J1 ≈ J2, j = n−2
and (k, i) ∈ {(−1, 0), (n− 3, n− 2)}.

Proof. Recall that, according to Lemma 3.10, J1 ∼j J2 if either J1 ⊥ J2 or J1 6⊥ J2 but
J1 ≈ J2. Suppose first that J1 and J2 are collinear subspaces. Then clearly J1 ∼j J2, and
(i)⇔ (ii) follows immediately from Lemma 4.2.

So suppose that J1 and J2 are not collinear. We show (i)⇒ (ii). Now J1 ∼j J2 implies that
J1 and J2 share a (j − 1)-space. Note that Lemma 3.1 guarantees that N(J1, J2) is non-empty.
Let I, I ′ ∈ N(J1, J2) be arbitrary. Then I = 〈K1,K0〉 with K1 = J1 ∩ I and K0 a subspace of
I complementary to K1 as usual, likewise I ′ = 〈K ′1,K ′0〉. Recall from Lemma 3.1 that K1 and
K ′1 belong to S and that in Res∆(S), K0 and K ′0 correspond to (i − k − 1)-spaces in p⊥1 ∩ p⊥2 ,
where p1, p2 are the (opposite) points corresponding to J1, J2, respectively (recall that k < i
and j < n − 1). If we choose K0 and K ′0 distinct and non-collinear, then I and I ′ can only
be adjacent in Γ′i if K1 = K ′1 and dim(K0 ∩K ′0) = i − k − 2. Given that N(J1, J2) is a clique
in Γ′i, the first fact implies that either k = −1 or k = dimS = j − 1; the second fact, since it
in particular has to hold for opposite subspaces K0 and K ′0, implies that i − k − 2 = −1, or
equivalently, j = n− 2. We conclude that (k, i, j) ∈ {(−1, 0, n− 2), (n− 3, n− 2, n− 2)}.

Next, we show (ii) ⇒ (i). Firstly, dim(J1 ∩ J2) = j − 1 implies that J1 ∼j J2. Secondly,
(k, i, j) ∈ {(−1, 0, n − 2), (n − 3, n − 2, n − 2)}, implies that all pairs of members in N(J1, J2)
share a common (i − 1)-space, namely the empty set or S, and are hence adjacent in Γ′i. The
lemma follows. 2

Remark 4.4 If j < n−2
2 , then no two j-spaces can generate a maximal singular subspace and

hence Lemma 4.2 tells us N(J1, J2) will never be a clique for J1, J2 ∈ Ωj with J1 ⊥ J2. However,
by assumption we have i + j − k = n − 1, so max{i, j} ≥ n−2

2 . For ease of notation we will
assume that i ≤ j. However, a priori we do not know which bipart of Γ contains the i-spaces
and which one the j-spaces if i 6= j. Note that so far, in all we did, the roles of i and j are
interchangeable.
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Lemma 4.3 hints at a different method for the cases where (k, i, j) is either (−1, 0, n − 2)
or (n − 3, n − 2, n − 2). We treat these cases in the following more general cases, which have
in common that j = n − 2 and that we are able to recognize the bipart of Γ containing the
(n− 2)-spaces.

Case A. Suppose j = n− 2 and either i < n−2
2 or i = n− 2 or ∆ is a polar space of order

(s, t) with s = 2.

First, if i < n−2
2 then, as mentioned in Remark 4.4, two i-spaces cannot generate a maximal

singular subspace. So Lemma 4.3 implies that there are no adjacent vertices I1, I2 in Γ′i such
that N(I1, I2) is a clique in Γ′j (clearly, the second possibility in (ii) of that lemma is impossible,

given that i < n−2
2 < n− 2). This allows us to detect which bipart contains the (n− 2)-spaces.

Second, if i = n − 2 then both biparts contain (n − 2)-spaces so either choice is fine. Third, if
the order (s, t) of ∆ is such that s = 2 and if n−2

2 ≤ i < n− 2, then we want to tell the biparts
apart by counting. Let χi be the degree of a vertex in Γ′i, likewise we define χn−2. It follows
from Proposition 3.6 of [9] that χi > χn−2, enabling us to distinguish the biparts. Worthwhile
mentioning is that |∆i| 6= |∆n−2|, and in most cases even |∆i| > |∆n−2| unless if n = 5, i = 2
and t = 2, as then |∆i| = |∆n−2| and possibly if i is very close to n

2 , it could happen that
|∆i| < |∆n−2|. For more details we refer to [9] (in particular, Proposition 2.9).

We conclude that in all three cases we are indeed able to select a bipart of Γ containing
(n− 2)-spaces and hence we know which of the two graphs introduced in Definition 4.1 is Γ′n−2.

We now determine the automorphisms of Γ′n−2 (of course, still under the assumption that
the adjacency is given by ⊥ ∪ ≈). To that end, we use the Grassmann graph Gn−2(∆) associated
to ∆, which has the (n− 2)-spaces as vertices, and two such vertices are adjacent whenever the
(n−2)-spaces intersect in an (n−3)-space and are collinear (or equivalently, when they generate
a maximal singular subspace).

Lemma 4.5 Each automorphism of Γ′n−2 = (Ωn−2,⊥ ∪ ≈) is induced by an automorphism of
∆ and vice versa.

Proof. Suppose that J1 ∼n−2 J2. Then J1 ⊥ J2 or dim(J1 ∩ J2) = n− 3, but in the first case,
j = n− 2 implies that dim(J1 ∩ J2) = n− 3 too. So Γ′n−2 is the graph (say G′n−2(∆)) in which
adjacency is given by ‘intersecting in a subspace of dimension n− 3’. By Lemma 5.2 of [2], we
can construct the (n− 2)-Grassmann graph Gn−2(∆) from G′n−2(∆). It is well known (we refer
to Corollary 5.4 and Lemma 5.5 in [2] for further reading, but this is not the first occurrence by
far) that the (n− 2)-Grassmann graph Gn−2(∆) uniquely determines ∆ if ∆ is not hyperbolic,
and up to duality if ∆ is hyperbolic (no trialities occur if n = 4 since j = 2, so the planes are
preserved). The result follows. 2
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Next, we treat the remaining cases.

Case B. Suppose that i ≤ j ≤ n− 2 and that, if j = n− 2, then n−2
2 ≤ i < n− 2 and ∆ is

a polar space of order (s, t) with s > 2.

We want to show a counterpart for Lemma 4.3 in order to recognize which i-spaces or j-spaces
are collinear. There are two subcases, but the approach we use for them has an overlap.

� If i < n−2
2 , then just like in the previous case, we can tell the biparts apart using Lemma 4.3

again (there are no adjacent I1, I2 in Γ′i such that N(I1, I2) is a clique in Γ′j). Note that
in this case, our assumptions imply that j < n− 2. We will apply the next lemma to the
i-spaces only.

� If i ≥ n−2
2 , then we cannot (yet) tell the biparts apart and hence we apply the next lemma

to both biparts, i.e., it is phrased for the i-spaces but we will also apply it to the j-spaces.

Note that in the following, we interchange the roles of the i-spaces and the j-spaces, but of
course keep assuming i ≤ j (otherwise we are only changing names).

Lemma 4.6 Suppose the conditions of Case B hold. Then I1, I2 ∈ Ωi are collinear if and only
if there are J1, J2 in Ωj such that N(J1, J2) is a clique in Γ′i containing I1, I2. Moreover, if
i ≥ n−2

2 , then also J1, J2 ∈ Ωj are collinear if and only if there are I1, I2 ∈ Ωi such that N(I1, I2)
is a clique in Γ′j containing J1, J2.

Proof. We focus on the first case and, if i ≥ n−2
2 , we also incorporate the second case by putting

additional argument in italics, not to break with the flow of the argument too much.

Suppose that I1 and I2 are collinear. We apply Lemma 3.1 to I1, I2. Let N ∈ N1 be a
maximal singular subspace containing 〈I1, I2〉. We show that we can select J1, J2 ∈ N(I1, I2)
such that 〈J1, J2〉 = N . If J1 and J2 are just any j-spaces generating N , then 2j−dim(J1∩J2) =
n − 1 = j + i − k and hence dim(J1 ∩ J2) = j − i + k. So if we can choose J1 and J2 in N
such that J1 \ J2 contains a subspace of dimension j − (j − i + k) − 1 = i − k − 1, we are
done. Observe that this will also work with i-spaces and j-spaces interchanged, provided that
i ≥ n−2

2 , because we only use that two j-spaces can generate a maximal singular subspace. We
write J1 = 〈K1,K2,K

′
0,K

′′
0 〉, with notation as before: Kc = J1 ∩ Ic, c = {1, 2}, K ′0 is a common

complementary subspace of 〈I1,K2〉 and 〈I2,K1〉 inside 〈I1, I2〉 and finally K ′′0 is a subspace of

N complementary to 〈I1, I2〉; likewise, J2 = 〈K1,K2,K
′
0,K

′′
0〉.

Suppose first that dim(I1 ∩ I2) ≤ k and let K1 = K1, K2 = K2 be such that they contain

I1 ∩ I2. Then dimK ′0 = dimK
′
0 = i − k − 1 because 〈K ′0,K1〉 = 〈I1, I2〉 = 〈K ′0,K1〉. Put

K := 〈K1,K2〉 and I := 〈I1, I2〉. We claim that we can choose K ′0 and K
′
0 such that in ResI(K)
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they correspond to (i − k − 1)-spaces which are disjoint from each other and from the two
(i− k − 1)-spaces corresponding to 〈I1,K2〉 and 〈I2,K1〉. Indeed, if i− k − 1 > 0 this is clearly
possible; If i − k − 1 = 0, then ResI(K) is a line containing s points. Since i = k + 1 implies

j = n− 2, our assumption implies that s > 2 and K ′0 and K
′
0 (which are points in this case) can

be chosen as required. Note that, when interchanging the i- and j-spaces, then i = n − 2 also
implies j = n − 2 and therefore the rest of the argument remains the same. The claim follows.
Therefore J1 \ J2 contains K ′0, and hence 〈J1, J2〉 = N and J1, J2 ∈ N(I1, I2) .

Next, suppose that d := dim(I1 ∩ I2) > k. We choose K1 = K2 and K1 = K2 such that
K1 ∩K1 is minimal, so if d ≤ 2k + 1, then 〈K1,K1〉 = I1 ∩ I2 and if d > 2k + 1, then K1 and
K1 are disjoint. Let X be a subspace of K1 complementary to K1 ∩ K1 in K1 and let X be
defined likewise. Put x := dimX = dimX and note that if d ≤ 2k + 1, then x = d − k − 1,
if d > 2k + 1, then x = k. Now dimK ′0 = dimK

′
0 = i − d − 1 since K ′0 is complementary to

〈I1,K2〉 = I1 in 〈I1, I2〉. Therefore dim〈X,K ′0〉 = dim〈X,K ′0〉 equals i− k− 1 if d ≤ 2k+ 1 and

i−d+k if d > 2k+1. This time we try to choose K ′0 and K
′
0 so that they correspond to disjoint

(i − d − 1)-spaces in ResI(I1 ∩ I2) (again I = 〈I1, I2〉), and also disjoint from the (i − d − 1)-
spaces corresponding to I1 and I2. As above, if i−d−1 > 0 then this always works. So suppose
i = d + 1. Then we run into trouble only if s = 2, as then the points corresponding to K ′0 and

K
′
0 in ResI(I1 ∩ I2) necessarily coincide. Therefore, the (i− d+ x)-spaces 〈X,K ′0〉 and 〈X,K ′0〉

belong to a (d+ 1)-space containing I1 ∩ I2. If disjoint, they generate a subspace of dimension
2(i− d+ x) + 1 = 2x+ 3, which only exceeds d+ 1 if 2x+ 1 ≥ d, which is only the case if x = k

and 2k + 1 = d. So if d 6= 2k + 1, we can make sure that 〈X,K ′0〉 and 〈X,K ′0〉 are disjoint. If
d = 2k+ 1 however, i.e., if K1 and K1 are disjoint subspaces generating I1∩ I2, then each choice
of K ′0 and K

′
0 is such that 〈X,K ′0〉 and 〈X,K ′0〉 share a point. In the latter case (J1 \ J2) ∩ I

just contains X = K1, one dimension short of what we need (note that i− k − 1 = k + 1 under
these assumptions). By our assumption, s = 2 implies that both i, j < n − 2, and hence I
(which has dimension i + 1 < n− 1) is strictly contained in the maximal singular subspace N .

In this case 〈K1,K
′
0,K1,K

′
0〉 is an i-space in the (i + 1)-space I, and in N there are at least

two (i+ 1)-spaces through 〈K1,K
′
0,K1,K

′
0〉 distinct from I, so we can take points p0 and p0 in

these respective (i+ 1)-spaces and select K ′′0 3 p0 and K
′′
0 3 p0 and the remaining part (if any)

of K ′′0 and K
′′
0 can be chosen as coinciding subspaces in N outside the (i + 2)-space 〈I, p0, p0〉.

So, in conclusion, the have constructed (parts of the) j-spaces J1, J2 such that J1 \ J2 contains
the (i − d + x)-space 〈X,K ′0〉. If d ≤ 2k + 1 then i − d + x = i − k − 1 then, as explained
above, this suffices to obtain J1, J2 ∈ N(I1, I2) with 〈J1, J2〉 = N . Therefore, if d ≤ 2k + 1
we are done. If d > 2k + 1, then then we still need a subspace of dimension d − 2k − 2 in J1,
disjoint from 〈X,K ′0〉, to obtain a subspace of dimension (i − k − 1) in J1 \ J2. The inequality
dimN−dim〈I1, I2〉−1 = (j+i−k)−(2i−d)−1 ≥ d−2k−2 is equivalent with k ≥ i−j−1, which

is trivially true since i ≤ j. So we can choose K ′′0 and K
′′
0 in N \〈I1, I2〉 such that 〈I1, I2,K

′′
0 〉 and

〈I1, I2,K
′′
0〉 intersect in 〈I1, I2〉 only. The resulting j-spaces will then generate N , as required.
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Only the one but last sentence requires some changes if we interchange the i- and j-spaces: then
the inequality dimN −dim〈J1, J2〉− 1 = (j+ i− k)− (2j− d)− 1 ≥ d− 2k− 2 is equivalent with
k ≥ j − i− 1. Since we assume i ≤ n−2

2 in this case, we obtain that n− 1 = i+ j − k ≤ 2i+ 1
and hence j − i− 1 ≤ k indeed.

Lemma 3.1 readily gives that each I ∈ N(J1, J2) belongs to 〈J1, J2〉 = N and hence N(J1, J2)
is a clique in Γ′i, containing I1, I2 by construction.

Conversely, suppose N(J1, J2) is a clique in Γ′i containing I1, I2. Given that j = n − 2, our
assumptions imply that n−2

2 ≤ i < n− 2, so in particular, i /∈ {0, n− 2} and hence Lemma 4.3
implies that J1 and J2 generate a maximal singular subspace, say N . Again, by Lemma 3.1,
I1, I2 ⊆ N and hence I1 ⊥ I2. If i ≥ n−2

2 and we interchange the i- and j=spaces, then i = n−2
would imply j = n − 2, contrary to our assumptions. So also here, Lemma 4.3 implies that I1

and I2 generate a maximal singular subspace. 2

So in Case (B), if i < n−2
2 , we can determine which bipart contains the i-spaces and the

previous lemma allows us to deduce the graph (Ωi,⊥) from Γ′i; and if i ≥ n−2
2 we cannot

distinguish the biparts but the previous lemma allows us to deduce (Ωi,⊥) from Γ′i and (Ωj ,⊥)
from Γ′j .

We treat the non-bipartite graphs with `-collinearity as adjacency relation in the next sub-
section.

4.2 The graphs (Ωx, ⊥̂) with x ∈ {i, j}

Consider the graph on Ωx, with x ∈ {i, j}, where adjacency between two x-spaces X1 and X2 in
Ωx is given by `-collinearity. In case h(∆) > 2, or if ∆ is hyperbolic and ` ∈ {(n− 1)′, (n− 1)′′},
this graph coincides with the graph Γ′x defined above and we obtain it for both x = i and
x = j; and otherwise, in Case (B) of the previous subsection, we constructed this graph from
Γ′x (cf. Lemma 4.6) for at least one of {i, j}. In Case (A) we do not need this graph, because of
Lemma 4.5. In case we have both graphs (Ωi, ⊥̂) and (Ωj , ⊥̂), we want to use these to distinguish
between the biparts of Γ after all (at least if i 6= j).

Lemma 4.7 Each automorphism of (Ωx, ⊥̂) is induced by an automorphism of ∆ (possibly a
duality if ∆ is hyperbolic) and vice versa. Moreover, if both (Ωi, ⊥̂) and (Ωj , ⊥̂) are given, then
we can recognize which one is which if i 6= j.

Proof. It is easily seen that a maximal clique of (Ωx, ⊥̂) consists of all x-spaces contained in
a maximal singular subspace of type `. So, from (Ωx, ⊥̂), we can construct the bipartite graph
having Ωx as one bipartition class and the set M of maximal cliques of (Ωx, ⊥̂) as the other
bipartition class, where X ∈ Ωx is adjacent to CM ∈ M if X ∈ CM . This graph is isomorphic
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to the graph Cn
x,`(∆), consisting of x-spaces and `-spaces of ∆ where adjacency is containment

made symmetric. Proposition 7.4 from [2] now implies that each automorphism of Cn
x,`(∆) and

hence also of (Ωx, ⊥̂) is induced by an automorphism of ∆ (possibly a duality) and vice versa.

Now suppose we are given both (Ωi, ⊥̂) and (Ωj , ⊥̂) and that i 6= j. Let Cj
M be any maximal

clique in Ωj . As mentioned above, Cj
M corresponds to a maximal singular subspace M of type `.

By Lemma 4.2, J1, J2 ∈ Cj
M generate M if and only if N(J1, J2) is a clique in Γ′i, and moreover,

such a pair of j-spaces exists since j ≥ n−2
2 by Remark 4.4. So if i < n−2

2 , this already suffices
to distinguish the biparts, so suppose that i ≥ n−2

2 . By Lemma 3.1, we also know that each
I ∈ N(J1, J2) is contained in M . Conversely, one deduces from Lemma 3.1 that each point
of M \ (J1 ∪ J2), and even each point of M provided that k ≥ 0, is contained in a member of
I ∈ N(J1, J2). Unless s = 2 and j = n−2, the only subspace containing the points M \(J1∪J2) is
M . So unless k = −1, s = 2 and j = n−2, we obtain that the members of N(J1, J2) generate M
and hence Ci

M in (Ωi, ⊥̂) corresponding to M is the unique maximal clique containing N(J1, J2).
However, if k = −1 and j = n − 2, then i = 0 ≥ n−2

2 violates our assumption that n ≥ 3. We
conclude that each maximal singular subspace of ∆ of type ` can be expressed both in terms
of the i-spaces and in terms of the j-spaces it contains (or, phrased more accurately, we can
identify the maximal cliques in (Ωi, ⊥̂) and (Ωj , ⊥̂) that correspond to the same `-space of ∆).
Now, for any I ∈ Ωi, let MI be the set of maximal singular subspaces of type ` containing I,
and likewise we defineMJ for any J ∈ Ωj . Then it is clear that I ( J if and only ifMJ (MI .
This way, if i 6= j, we can recognize the biparts, as required. 2

5 Conclusion

We have all it takes to complete the proofs of Theorem 1.2 and 1.3. In accordance with Re-
mark 1.5, we may assume i, j < n− 1.

Proposition 5.1 Let ρ be any automorphism of Γn
i,j;k,`(∆), where i, j < n− 1 and i+ j − k =

n − 1. Then there is an automorphism ρ̃ of ∆ (possibly a duality if ∆ is hyperbolic) such that
ρ(X) = ρ̃(X) for each X ∈ Ωi ∪Ωj, where possibly, if i = j, ρ switches the biparts. Conversely,
each automorphism of ∆ induces an automorphism of Γn

i,j;k,`(∆).

Proof. Clearly, each automorphism of ∆ induces an automorphism of Γ := Γn
i,j;k,`(∆), and if

i = j, it induces two automorphisms: one that switches the biparts, and one which does not
(observe that i, j < n− 1 implies that there are only automorphisms of ∆ switching the biparts
if i = j).

Conversely, let ρ be an automorphism of Γ that does not switch the biparts. Recall that
Lemma 3.10 leads us to Γ′i and Γ′j , where adjacency either coincides with ⊥̂ or ⊥ ∩ ≈. In the
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latter case we obtained in Section 4.1 either the (n−2)-Grassmann graph (Case A) or the graph
(Ωx,⊥) for at least one x in {i, j} (Case B). In each of these cases, Lemmas 4.5 or 4.7 yields
an automorphism ρ̃ of ∆ such that ρ̃ and ρ coincide on one of the biparts, say C1, of Γ. We
claim that ρ̃ and ρ also coincide on the other bipart of Γ. Indeed, consider the composition τ
of ρ−1 and the automorphism of Γ induced by ρ̃. Then τ is an automorphism of Γ which is the
identity on C1. If τ is not the identity on C2, the other bipart, then there are X and τ(X) in
C2 with X 6= τ(X), and for such X we have N(X) = N(τ(X)). It is easily seen that this implies
that X⊥ = τ(X)⊥, which is only possible if X = τ(X), a contradiction. So τ is the identity on
Γ and hence ρ̃ and ρ coincide on Ωi ∪ Ωj indeed.

Finally, suppose that ρ is an automorphism of Γ which switches the biparts. We claim that
this is only possible if i = j. Suppose again for ease of notation that i ≤ j. Lemma 4.7 says
that, if (Ωi, ⊥̂) and (Ωj , ⊥̂) are given, we can recognize the biparts of Γ if i < j, so in that case,
no automorphism of Γ can interchange the biparts. We summarize the cases we distinguished
in the previous section.

� Suppose h(∆) > 2 or, if ∆ is hyperbolic, ` ∈ {(n − 1)′, (n − 1)′′}. Then Γ′i = (Ωi, ⊥̂) and
Γ′j = (Ωj , ⊥̂) and hence the claim follows in this case from Lemma 4.7.

� Suppose that h(∆) = 2 and that ` = n − 1 in case ∆ is hyperbolic. We considered two
cases.

– Case (A): if j = n− 2 and either i < n−2
2 or i = n− 2 or ∆ is a polar space of order

(s, t) with s = 2. As explained when Case (A) was introduced, we can recognize the
biparts unless i = j = n− 2.

– Case (B): Suppose that i ≤ j ≤ n − 2 and that, if j = n − 2, then n−2
2 ≤ i ≤ n − 2

and ∆ is a polar space of order (s, t) with s > 2. Recall that ⊥̂ =⊥ here. In this case,
we constructed (Ωi,⊥) and (Ωj ,⊥) provided that n−2

2 ≤ i; and we explained that, if
i < n−2

2 , we are able to tell the biparts apart.

In both cases, the claim follows.

Now, if i = j, then consider the bipart-switching automorphism s of Γ induced by the identity
on ∆. Then ρ ◦ s is an automorphism of Γ which does not switch the biparts, and hence by the
above, ρ ◦ s is induced by an automorphism of ∆. It follows that ρ itself is also induced by an
automorphism of ∆. 2
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