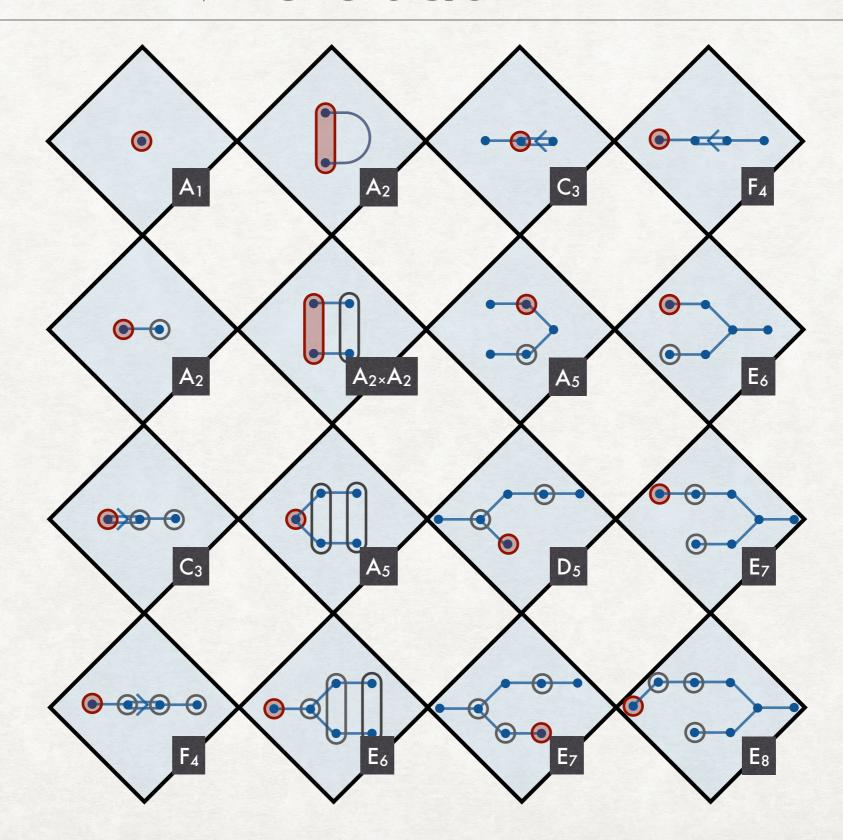


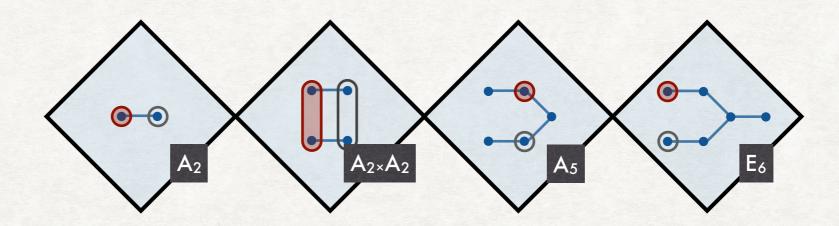
CHARACTERISING SINGULAR VERONESE VARIETIES

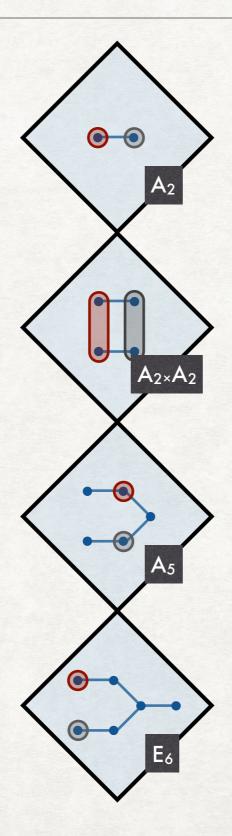
Buildings 2017

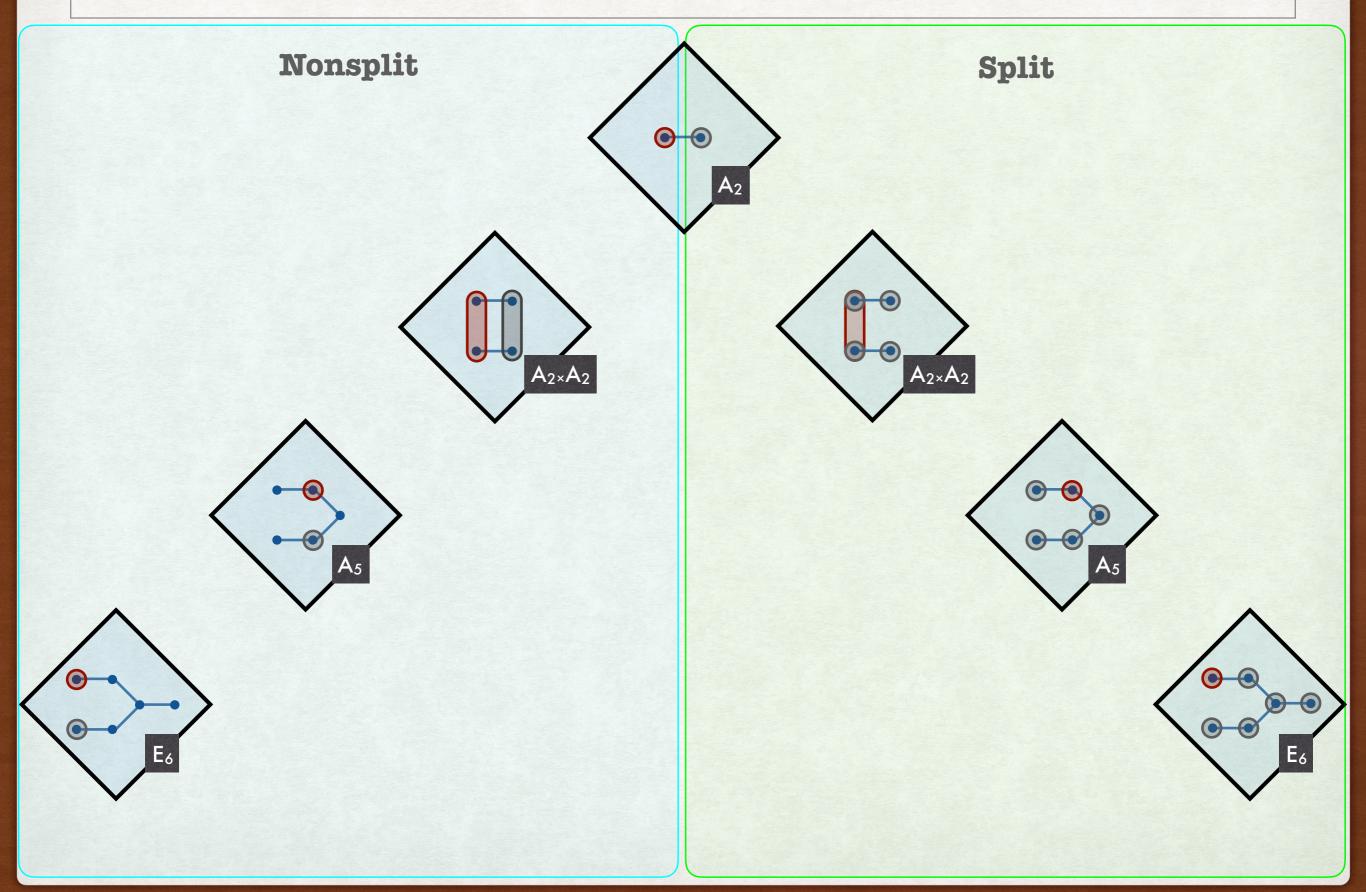
Origin

THE MAGIC SQUARE









Nonsplit

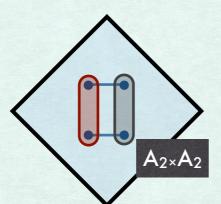
Moufang projective planes

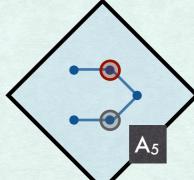
PG(2,K)

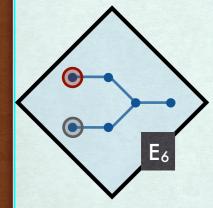
PG(2,L)

PG(2,H)

PG(2,O)







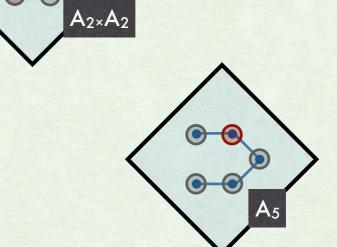
Severi varieties

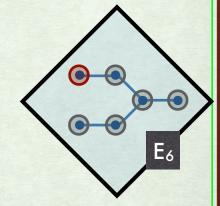
PG(2,K)

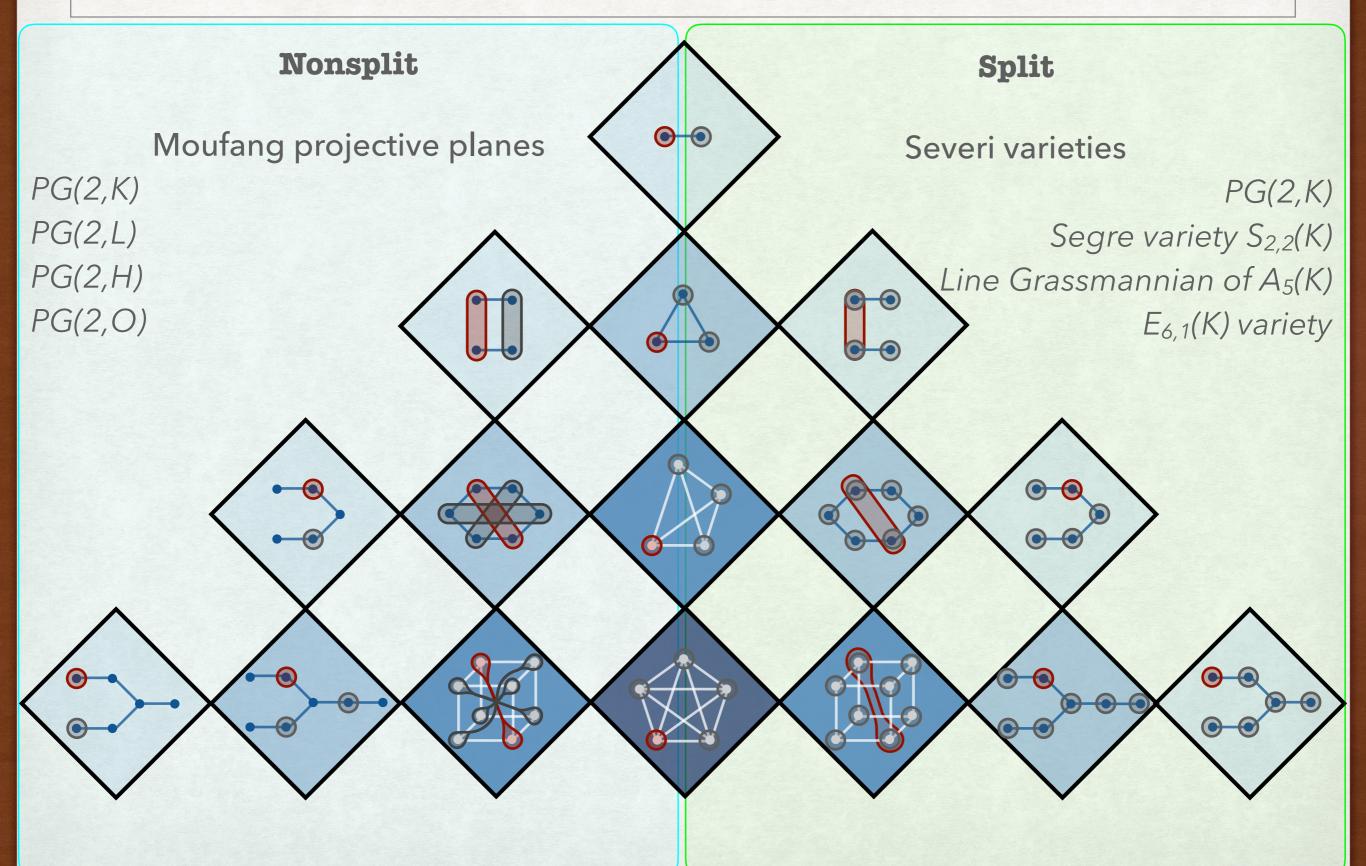
Segre variety $S_{2,2}(K)$

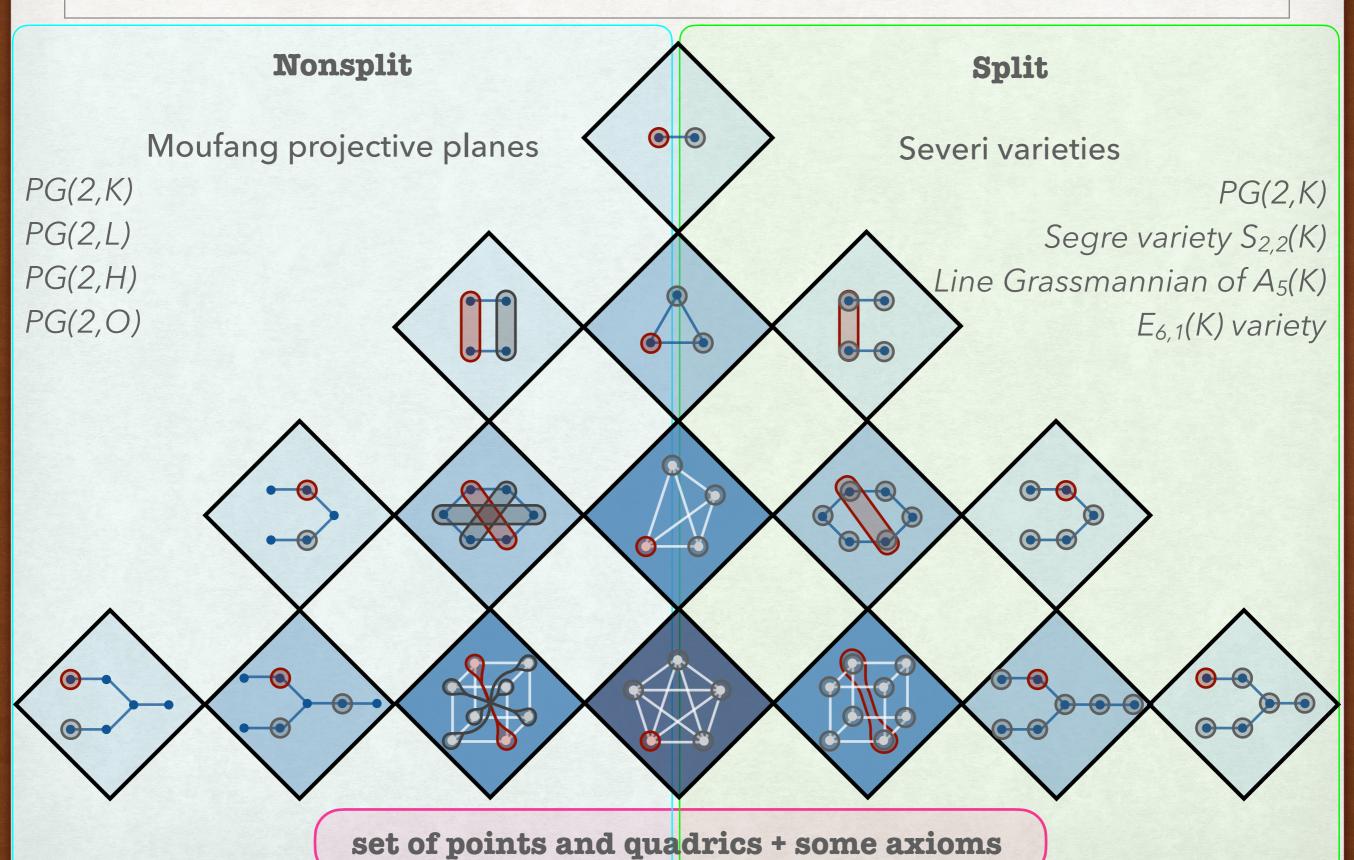
Line Grassmannian of $A_5(K)$

 $E_{6,1}(K)$ variety

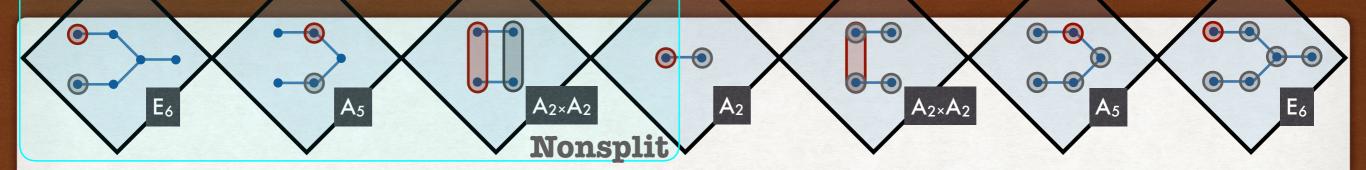




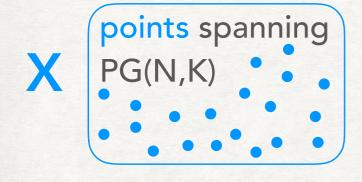




1 Axiomatisation



K field, $kar(K) \neq 2$ (for simplicity)

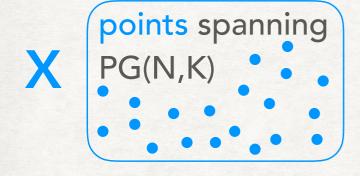


Ξ

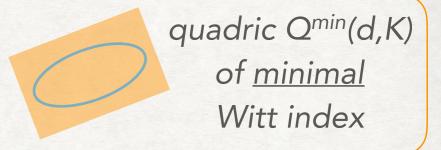
d-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

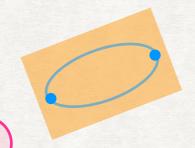
a quadric of minimal
Witt index

K field, $kar(K) \neq 2$ (for simplicity)



d-spaces ξ in PG(N,K) s.th. ξ ∩ X is:





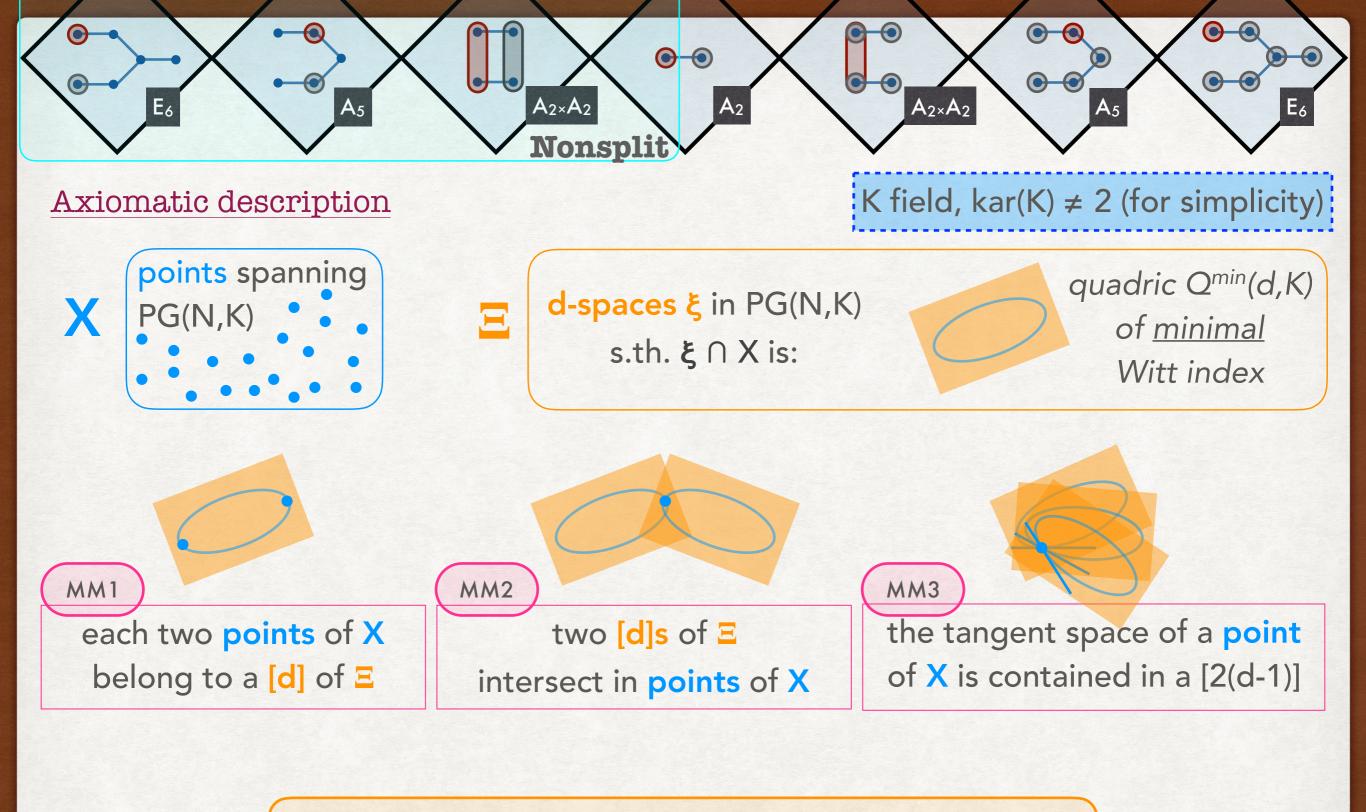
MM1

each two points of X belong to a [d] of Ξ

two [d]s of Ξ intersect in points of X

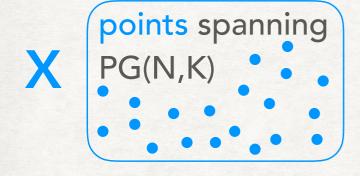
мм3

the tangent space of a point of X is contained in a [2(d-1)]

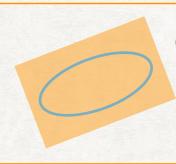


The pair (X, E) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics of minimal Witt index

K field, $kar(K) \neq 2$ (for simplicity)



d-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:



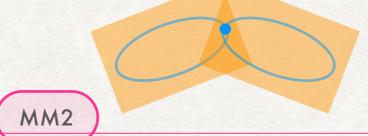
ммз

quadric Q^{min}(d,K) of <u>minimal</u> Witt index



MM1

each two points of X belong to a [d] of Ξ



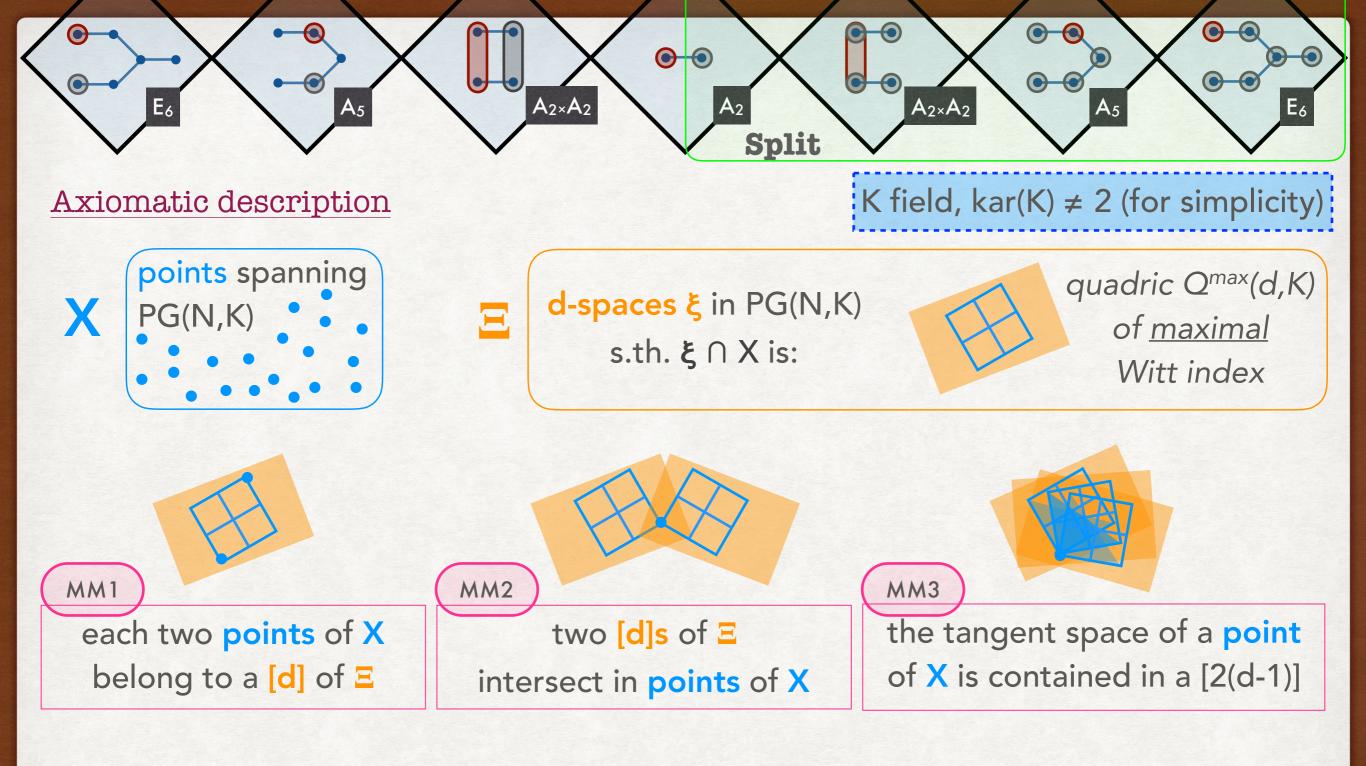
two [d]s of Ξ intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

Schillewaert, Van Maldeghem, Krauss (2015)

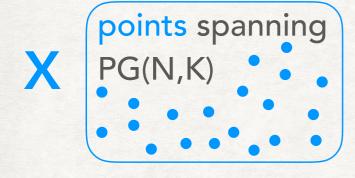
For any field K, $d \in \{2,3,5,9\}$ and, per d, (X, Ξ) is projectively unique.

d	2	3	5	9
(X, E) isomorphic to	PG(2,K)	PG(2,L)	PG(2,H)	PG(2,O)
geometry in PG(N,K)				



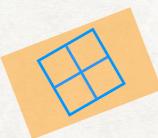
The pair (X, E) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics of maximal Witt index

K field, $kar(K) \neq 2$ (for simplicity)

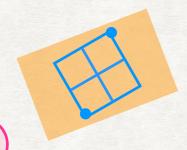


Ξ

d-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

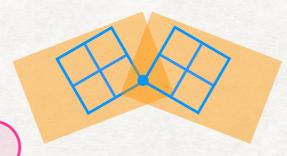


quadric Q^{max}(d,K) of <u>maximal</u> Witt index



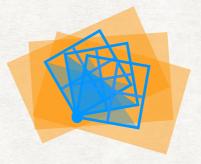
MM1

each two points of X belong to a [d] of Ξ



MM2

two [d]s of Ξ intersect in points of X



мм3

the tangent space of a **point** of X is contained in a [2(d-1)]

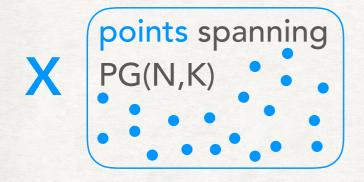
Schillewaert, Van Maldeghem (2015)

For any field K, if N > 3d +1, $d \in \{2,3,5,9\}$ and, per d, (X, Ξ) is projectively unique.

d	2	3	5	9
(X, E) isomorphic to	PG(2,K)	$A_2 \times A_2(K)$	A _{5,2} (K)	E _{6,1} (K)
geometry in PG(N,K)	V(K)'(5)	V(L)'(8)	V(H)' (14)	V(O)'(26)

MM SETS WITH OTHER QUADRICS

Axiomatic description



d-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

MM1

each two points of X belong to a [d] of Ξ

two [d]s of E

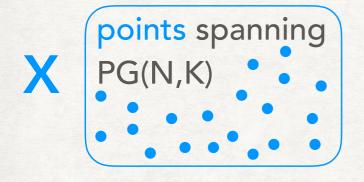
intersect in points of X

ммз

the tangent space of a **point** of X is contained in a [2(d-1)]

MM SETS WITH OTHER QUADRICS

Axiomatic description



d-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

some quadric

MM1

each two points of X belong to a [d] of Ξ

MM2

two [d]s of Ξ intersect in points of X

ммз

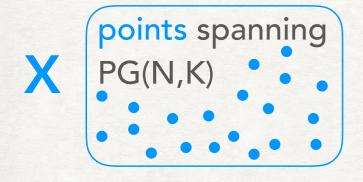
the tangent space of a point of X is contained in a [2(d-1)]

Conjecture:

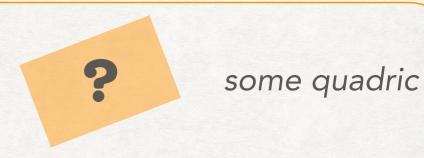
There are no MM sets with quadrics of intermediate Witt index

MM SETS WITH OTHER QUADRICS

Axiomatic description



d-spaces ξ in PG(N,K) s.th. ξ ∩ X is:



MM1

each two points of X belong to a [d] of Ξ

MM2

two [d]s of Ξ intersect in points of X

мм3

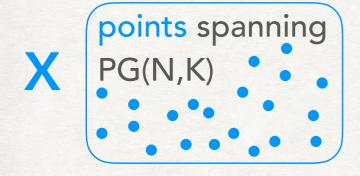
the tangent space of a point of X is contained in a [2(d-1)]

Yet

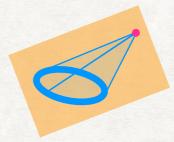
There are MM sets with singular quadrics

Axiomatic description

(2,0)-tube



3-spaces ξ in PG(N,K) s.th. ξ ∩ X is:

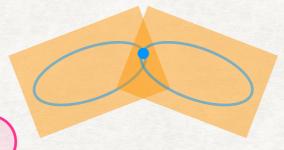


ммз

a point-cone over Q^{min}(2,K); without vertex

MM1

each two points of X belong to a [3] of E



MM2

two [3]s of Ξ intersect in points of X

the tangent space of a point of X is contained in a [2(3-1)]

Axiomatic description

points spanning PG(N,K)

Y vertices

((2,0)-tube

мм3

3-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

a point-cone over Q^{min}(2,K); <u>without</u> vertex

MM1

each two points of X belong to a [3] of E

MM2

two [3]s of Ξ

intersect in points of X

the tangent space of a point of X is contained in a [2(3-1)]

Axiomatic description

Points spanning
PG(N,K)

Y vertices

(2,0)-tube

3-spaces ξ in PG(N,K) s.th. ξ ∩ X is: a point over Q withou

a point-cone over Q^{min}(2,K); <u>without</u> vertex

MM1

each two points of X belong to a [3] of E

MM2'

two [3]s of E

intersect in points of XUY
but never in Y only

the tangent space of a point of X is contained in a [2(3-1)]

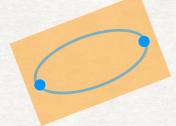
points spanning

Y PG(N,K)

Y (vertices

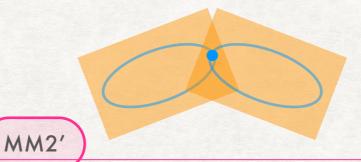
(2,0)-tube

3-spaces ξ in PG(N,K) s.th. ξ ∩ X is:



MM1

each two points of X belong to a [3] of E



two [3]s of Ξ intersect in points of XUY

but never in Y only

мм3

the tangent space of a point

of X is contained in a [2(3-1)]

The pair (X, Ξ) together with MM1, MM2' and MM3 is called a singular MM-set with (2,0)-tubes.

Axiomatic description

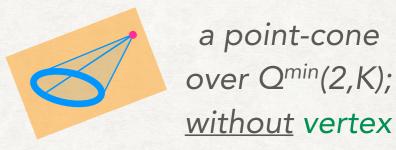
points spanning

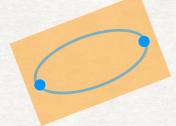
PG(N,K)

vertices

(2,0)-tube

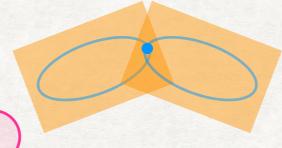
3-spaces ξ in PG(N,K) s.th. ξ ∩ X is:





MM1

each two points of X belong to a [3] of E



MM2

two [3]s of Ξ intersect in points of XUY
but never in Y only

мм3

the tangent space of a point of X is contained in a [2(3-1)]

Schillewaert, Van Maldeghem (2015)

If nontrivial, (X, Ξ) is <u>projectively unique</u> and <u>isomorphic</u> to a Hjelmslevian projective plane.

Schillewaert, Van Maldeghem (2015)

If nontrivial, (X, Ξ) is <u>projectively unique</u> and <u>isomorphic</u> to a Hjelmslevian projective plane.

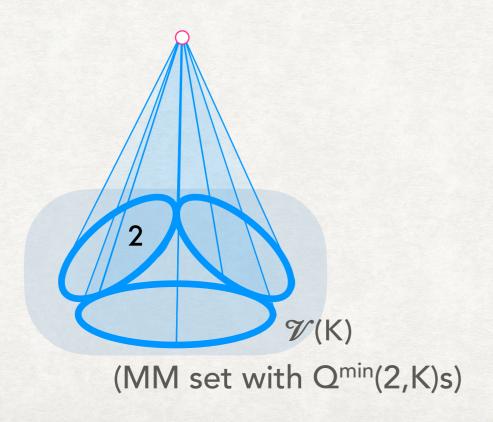
Trivial:

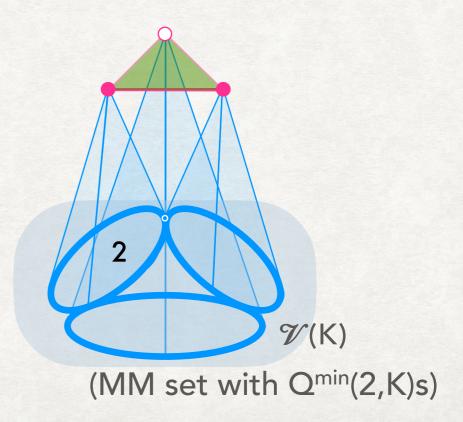
 (X, Ξ) is a <u>cone</u> with <u>vertex</u> a <u>point</u> and <u>base</u> $\mathcal{V}(K)$

A Hjelmslevian projective plane:

 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and <u>base</u> $\mathcal{V}(K)$

(to be continued)

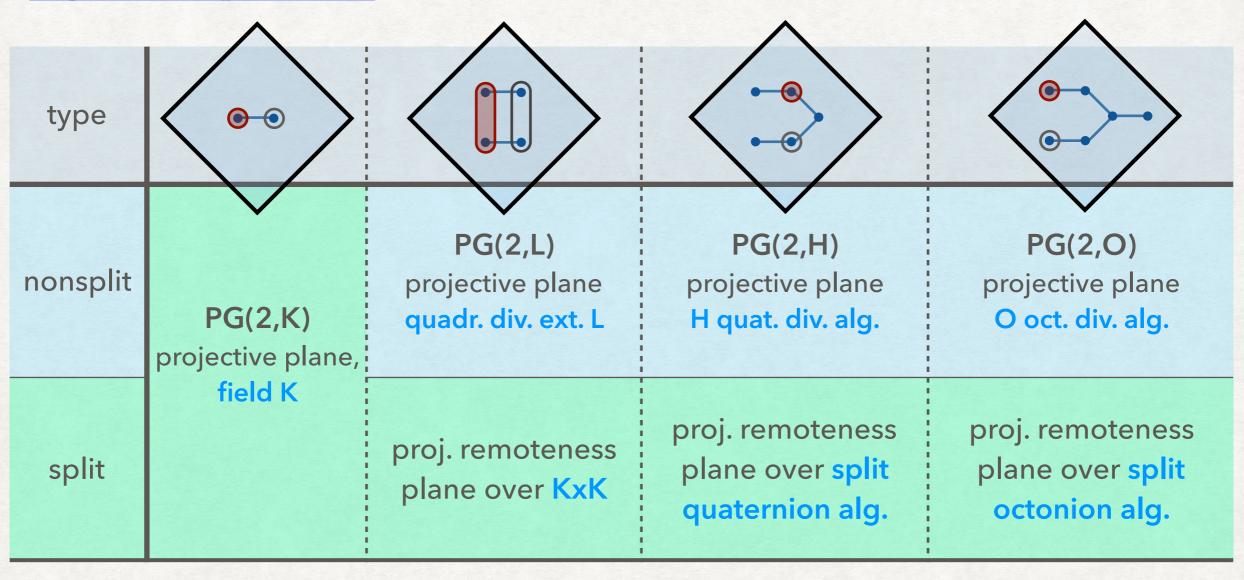




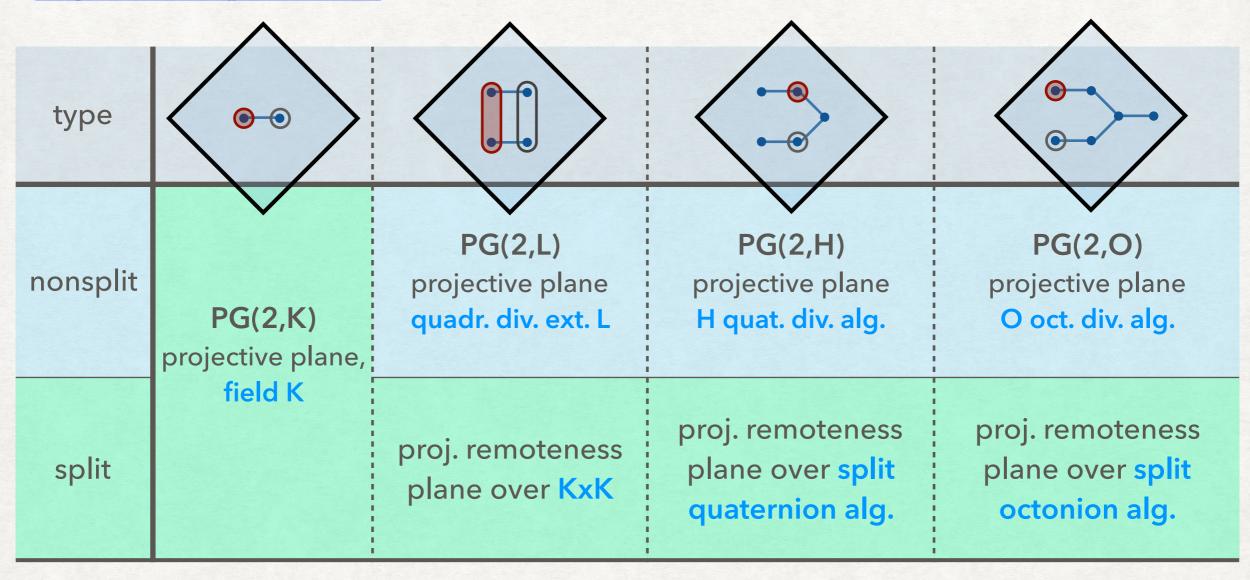
Algebraic explanation.

type				(e)
nonsplit	PG(2,K) projective plane,	PG(2,L) projective plane quadr. div. ext. L	PG(2,H) projective plane H quat. div. alg.	PG(2,0) projective plane O oct. div. alg.
split	field K	(A ₂ x A ₂)(K) Segre variety S _{2,2}	A _{5,2} (K) Iine Grassmannian	E _{6,1} (K)

Algebraic explanation.

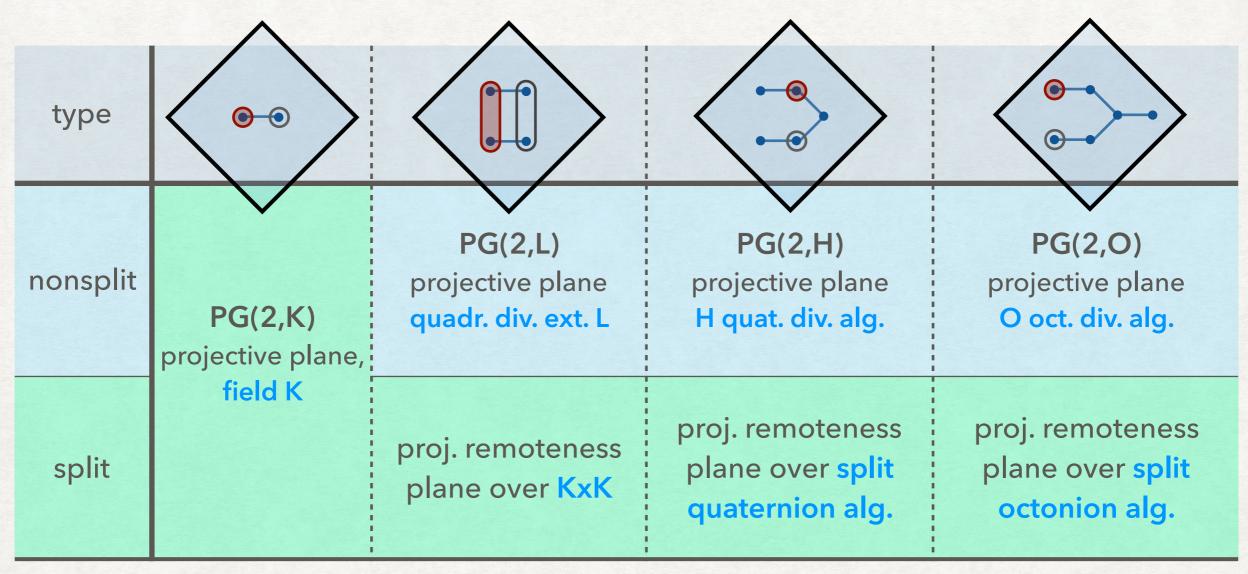


Algebraic explanation.



These are Cayley-Dickson algebras.

Algebraic explanation.



These are Cayley-Dickson algebras.

The Hjelmslevian projective plane is a proj. remoteness plane over the dual numbers over K, which can also be seen as a Cayley-Dickson algebra.

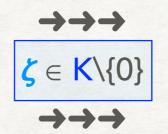
2

Cayley Dickson algebras

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$		
K	<u>x</u> = x		



L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K×K	(a+c, b+d)	(ac + ζ d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$	+- K/(0)	L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K	<u>x</u> = x	5 ∈ N ({0})	K×K	(a+c, b+d)	(ac + ζd <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow L: (a,b) \mapsto (a,b) \cdot_L (a,b)$$

$$(a,b) \cdot_{L} (a, b)$$

= $(aa - \zeta bb, 0)$
= $(n_{K}(a) - \zeta n_{K}(b), 0)$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A Involution $x \mapsto \underline{x}$	→→→ * - K\(0)	L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
Algebra A Involution $x \mapsto \underline{x}$ $K \qquad \underline{x} = x$	ζ ∈ K \{U}	K×K	(a+c, b+d)	(ac + ζ d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebr	a A Involution $x \mapsto \underline{x}$	→→→ * - K\(0)	L $(a,b) +_{L} (c,d)$ $(a,b) \cdot_{L} (c,d)$	<u>(a,b)</u>
K	<u>x</u> = x	ζ ∈ K \{0}	L $(a,b) +_{L} (c,d)$ $(a,b) \cdot_{L} (c,d)$ K × K $(a+c,b+d)$ $(ac + \zeta d\underline{b}, \underline{a}d + cb)$	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now (a,b) \neq (0,0) invertible \iff $n_L((a,b)) \neq 0$ (since $(a,b)^{-1} = (\underline{a,b}) / n_L(a,b)$)

THE CAYLEY-DICKSON PROCESS

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algel	ora A Involution $x \mapsto \underline{x}$	→→→ * - K\(0)	L $(a,b) +_{L} (c,d)$ $(a,b) \cdot_{L} (c,d)$	<u>(a,b)</u>
k	$\underline{\mathbf{x}} = \mathbf{x}$	5 ∈ K \{0}	L $(a,b) +_{L} (c,d)$ $(a,b) \cdot_{L} (c,d)$ K × K $(a+c,b+d)$ $(ac + \zeta d\underline{b}, \underline{a}d + cb)$	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now $(a,b) \neq (0,0)$ invertible $\iff n_k((a,b)) \neq 0 \iff n_k(a) \neq \zeta n_k(b) \iff n_k(ab^{-1}) \neq \zeta$

THE CAYLEY-DICKSON PROCESS

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$	+++	L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K	<u>x</u> = x	5 ∈ K \{0}	K×K	(a+c, b+d)	(a,b) ·∟ (c,d) (ac + ζ d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now $(a,b) \neq (0,0)$ invertible $\iff n_k((a,b)) \neq 0 \iff n_k(a) \neq \zeta n_k(b) \iff n_k(ab^{-1}) \neq \zeta$

This yields two possibilities for the algebra L:

THE CAYLEY-DICKSON PROCESS

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A Involution $x \mapsto \underline{x}$	→→→ * - K\(0)	L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	(<u>a</u> ,b)
Algebra A Involution $x \mapsto \underline{x}$ $K \qquad \underline{x} = x$	ζ ∈ K \{U}	K×K	(a+c, b+d)	(ac + <u>ζ</u> d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now $(a,b) \neq (0,0)$ invertible $\iff n_k((a,b)) \neq 0 \iff n_k(a) \neq \zeta n_k(b) \iff n_k(ab^{-1}) \neq \zeta$

This yields two possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L split algebra

$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$	→→→ * - K\(0)	L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K	$\underline{\mathbf{x}} = \mathbf{x}$	ζ ∈ K\{U} →→→	K×K	(a+c, b+d)	(ac + \(\zeta\)d\(\beta\), \(\alpha\) d + cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now $(a,b) \neq (0,0)$ invertible $\iff n_k((a,b)) \neq 0 \iff n_k(a) \neq \zeta n_k(b) \iff n_k(ab^{-1}) \neq \zeta$

This yields two possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L split algebra

$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$
K	<u>x</u> = x

$$\begin{array}{c} \rightarrow \rightarrow \rightarrow \\ \zeta = 0 \\ \rightarrow \rightarrow \rightarrow \end{array}$$

L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K×K	(a+c, b+d)	(ac + ζ d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a **norm function**

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - \zeta n_K(b)$$

Now $(a,b) \neq (0,0)$ invertible $\iff n_k((a,b)) \neq 0 \iff n_k(a) \neq \zeta n_k(b) \iff n_k(ab^{-1}) \neq \zeta$

This yields two possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L split algebra

$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$
K	<u>x</u> = x

$$\begin{array}{c} \rightarrow \rightarrow \rightarrow \\ \zeta = 0 \\ \rightarrow \rightarrow \rightarrow \end{array}$$

L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K×K	(a+c, b+d)	(ac + <u></u>	(<u>a</u> ,-b)

L comes with a degenerate norm function

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - On_K(b)$$

Now (a,b) \neq (0,0) invertible \iff $n_{L}((a,b)) \neq 0 \iff n_{K}(a) \neq \zeta n_{K}(b) \iff n_{K}(ab^{-1}) \neq \zeta$

This yields two possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L split algebra

$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$
K	<u>x</u> = x

$$\begin{array}{c} \rightarrow \rightarrow \rightarrow \\ \zeta = 0 \\ \rightarrow \rightarrow \rightarrow \end{array}$$

L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K×K	(a+c, b+d)	(ac + ζ d <u>b</u> , <u>a</u> d +cb)	(<u>a</u> ,-b)

L comes with a degenerate norm function

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - On_K(b)$$

Now (a,b) \neq (0,0) invertible \iff $n_L((a,b)) \neq 0 \iff n_K(a) \neq 0$

This yields two possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L split algebra

$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$

Let K be a field with $kar(K) \neq 2$ (for simplicity)

Algebra A	Involution $x \mapsto \underline{x}$
K	<u>x</u> = x

$$\begin{array}{c} \rightarrow \rightarrow \rightarrow \\ \zeta = 0 \\ \rightarrow \rightarrow \rightarrow \end{array}$$

L	(a,b) + _L (c,d)	(a,b) ·∟ (c,d)	<u>(a,b)</u>
K×K	(a+c, b+d)	(ac + <u></u>	(<u>a</u> ,-b)

L comes with a degenerate norm function

$$n_L: L \rightarrow K: (a,b) \mapsto n_K(a) - On_K(b)$$

Now (a,b) \neq (0,0) invertible \iff $n_L((a,b)) \neq 0 \iff n_K(a) \neq 0$

This yields three possibilities for the algebra L:

L division algebra

$$\zeta \notin n_K(K) = K^2$$

$$n_L((a,b)) = a^2 - \zeta b^2$$

n_L anisotropic

L singular algebra

$$\zeta = 0$$

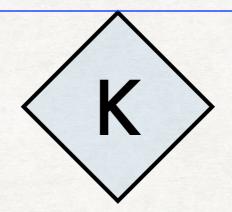
$$n_L((a,b)) = a^2$$

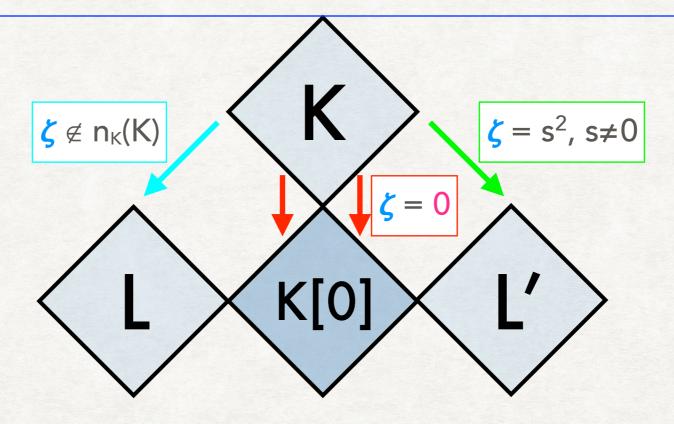
n_L degenerate

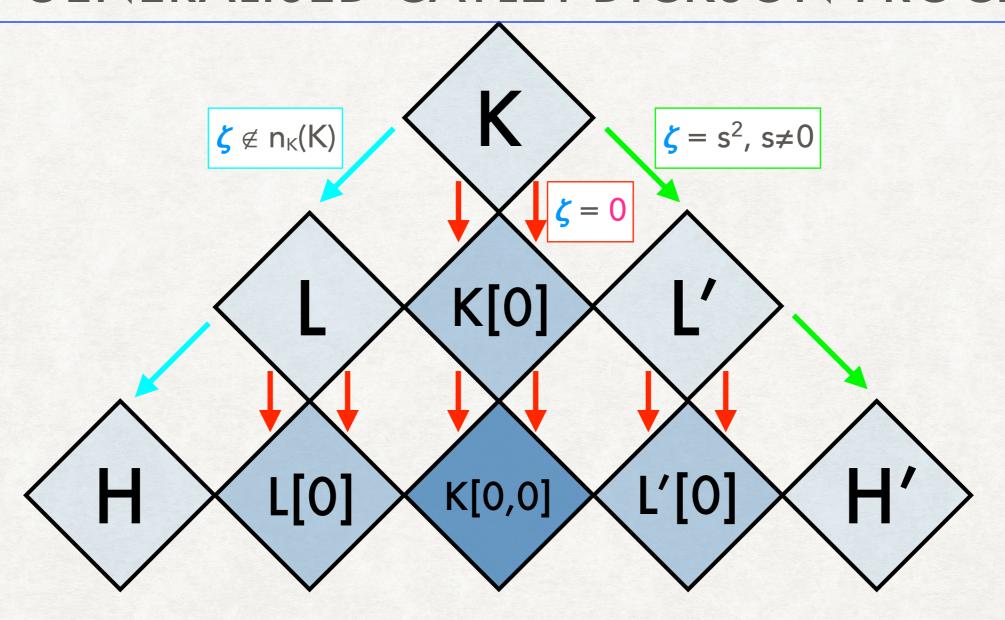
L split algebra

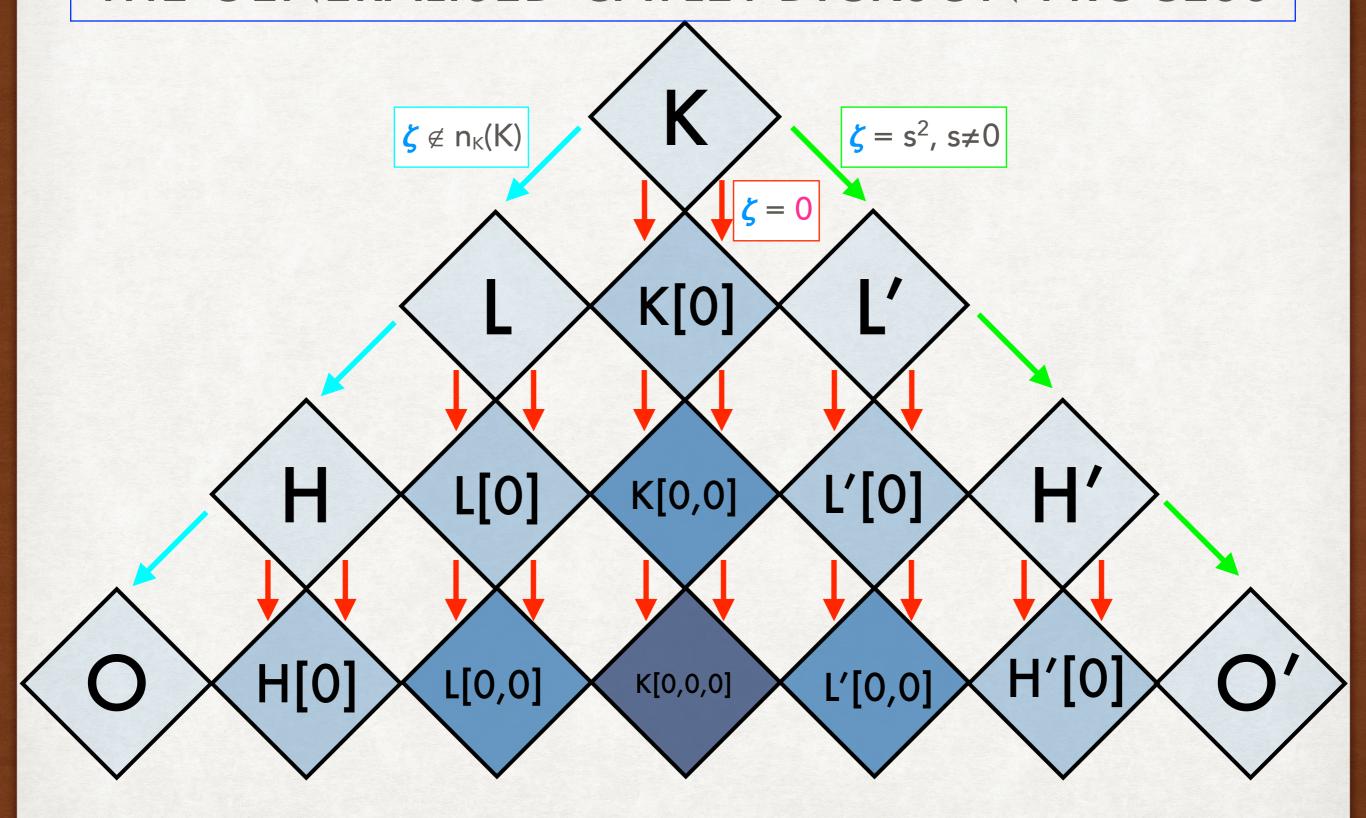
$$\zeta = s^2 (s \in K \setminus \{0\})$$

$$n_L((a,b)) = (a - sb)(a + sb)$$







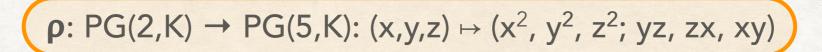


3

Veronese varieties

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

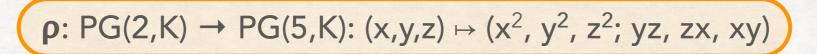



```
point → point
```

line \rightarrow conic in a plane (Q^{min}(2,K))

$$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0) \text{ satisfies } X_1X_2 = X_3^2, X_0 = X_4 = X_5 = 0$$

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows





point → point

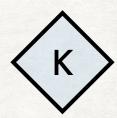
line \rightarrow conic in a plane (Q^{min}(2,K))

 $(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0) \text{ satisfies } X_1X_2 = X_3^2, X_0 = X_4 = X_5 = 0$

The variety $(X,\Xi) = (im(points), im(lines))$ satisfies (MM1) (MM2) (MM3) i.e., $\mathcal{V}(K)$ is a MM set with $Q^{min}(2,K)s$

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$ρ$$
: PG(2,K) → PG(5,K): (x,y,z) $→$ (x², y², z²; yz, zx, xy)

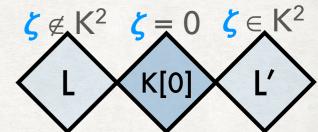


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

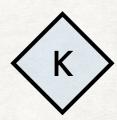
$$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0) \text{ satisfies } X_1X_2 = X_3^2, X_0 = X_4 = X_5 = 0$$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$



Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$ρ$$
: PG(2,K) → PG(5,K): (x,y,z) $→$ (x², y², z²; yz, zx, xy)



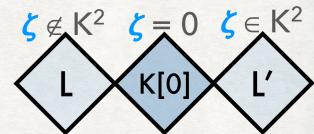
point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

$$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0) \text{ satisfies } X_1X_2 = X_3^2, X_0 = X_4 = X_5 = 0$$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$

 \rightarrow rewrite ρ , using that $x\underline{x} = x^2 = n(x)$ for $x \in K$



Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

 $\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$

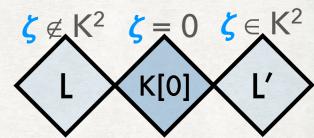
point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

 $(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$ satisfies $X_1X_2=n(X_3), X_0=X_4=X_5=0$

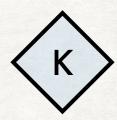
Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$

 \rightarrow rewrite ρ , using that $x\underline{x} = x^2 = n(x)$ for $x \in K$



Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

 $\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$

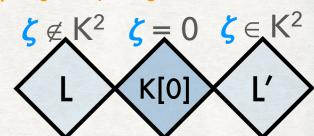


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

 $(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$ satisfies $X_1X_2=n(X_3)$, $X_0=X_4=X_5=0$

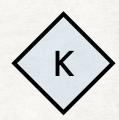
Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$



$$\rho$$
: PG(2,R) \rightarrow PG(8,K): (x,y,z) \mapsto (xx, yy, zz; yz , zx , xy)

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$$

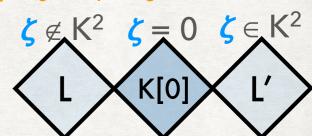


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

$$(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$$
 satisfies $X_1X_2=n(X_3)$, $X_0=X_4=X_5=0$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$

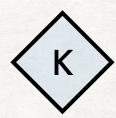


$$\rho$$
: PG(2,R) → PG(8,K): (x,y,z) \mapsto (xx, yy, zz; yz , zx , xy)
 $X_0 X_1 X_2 (X_3, X_4) (X_5, X_6) (X_7, X_8)$

Warning: if R = L' or K[0], there is no projective plane over it.

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$$

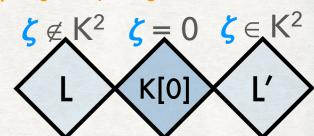


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

$$(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$$
 satisfies $X_1X_2=n(X_3), X_0=X_4=X_5=0$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$



$$\rho$$
: PG(2,R) → PG(8,K): (x,y,z) \mapsto (xx, yy, zz; yz , zx , xy)
 $X_0 X_1 X_2 (X_3, X_4) (X_5, X_6) (X_7, X_8)$

Warning: if R = L' or K[0], there is no projective plane over it.

→ take a ring geometry G(2,R) instead:

 $\underline{points}: \{(x,y,z)R^* \mid x, y, z \in R \ \& \ (x,y,z)r = 0 \ for \ r \in R \ implies \ r = 0\}$

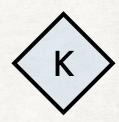
 $\underline{lines}: \{R^*[a,b,c] \mid a,b,c \in R \& r[a,b,c] = 0 \text{ for } r \in R \text{ implies } r = 0\}$

incidence: ax + by + cz = 0

If R = L, then G(2,L)=PG(2,L)

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

 $\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$

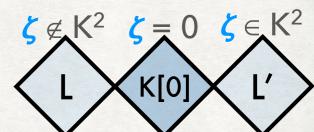


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

 $(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$ satisfies $X_1X_2=n(X_3)$, $X_0=X_4=X_5=0$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$

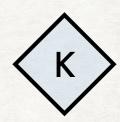


$$\rho: G(2,R) \rightarrow PG(8,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$$

$$X_0 \quad X_1 \quad X_2 \quad (X_3, X_4) \quad (X_5, X_6) \quad (X_7, X_8)$$

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

 $\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$

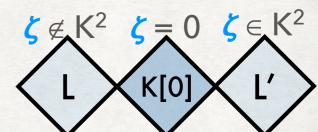


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

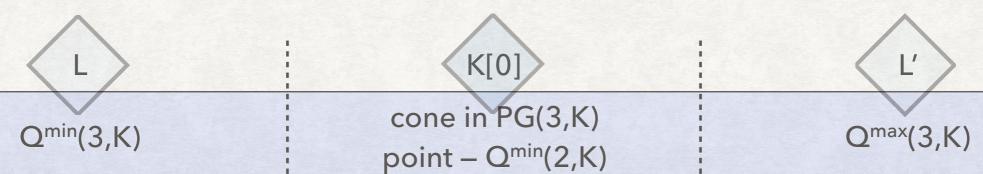
 $(0,y,z) \mapsto (0, y\underline{y}, z\underline{z}; y\underline{z}, 0, 0)$ satisfies $X_1X_2=n(X_3)$, $X_0=X_4=X_5=0$

Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$



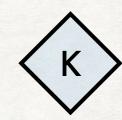
$$\rho \colon \mathsf{G}(2,\mathsf{R}) \to \mathsf{PG}(8,\mathsf{K}) \colon (\mathsf{x},\mathsf{y},\mathsf{z}) \mapsto (\mathsf{x}\underline{\mathsf{x}},\,\mathsf{y}\underline{\mathsf{y}},\,\mathsf{z}\underline{\mathsf{z}};\,\,\mathsf{y}\underline{\mathsf{z}}\,\,,\,\,\mathsf{z}\underline{\mathsf{x}}\,\,,\,\,\,\mathsf{x}\underline{\mathsf{y}}\,\,)$$

$$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$$
 satisfies $X_1X_2 = n(X_3, X_4) = X_3^2 - \zeta X_4^2$



Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (x\underline{x}, y\underline{y}, z\underline{z}; y\underline{z}, z\underline{x}, x\underline{y})$$

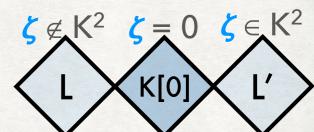


point → point

line \rightarrow conic in a plane (Q^{min}(2,K))

$$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$$
 satisfies $X_1X_2=n(X_3), X_0=X_4=X_5=0$

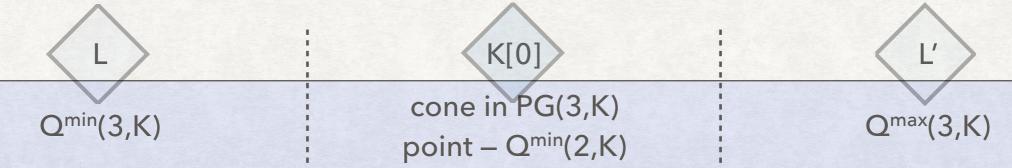
Similarly, for $\mathbb{R} = CD(K, \zeta)$ we have the Veronese variety $\mathscr{V}(\mathbb{R})$



$$\rho \colon \mathsf{G}(2,\mathsf{R}) \to \mathsf{PG}(8,\mathsf{K}) \colon (\mathsf{x},\mathsf{y},\mathsf{z}) \mapsto (\mathsf{x}\underline{\mathsf{x}},\,\mathsf{y}\underline{\mathsf{y}},\,\mathsf{z}\underline{\mathsf{z}};\,\,\mathsf{y}\underline{\mathsf{z}}\,\,,\,\,\mathsf{z}\underline{\mathsf{x}}\,\,,\,\,\mathsf{x}\underline{\mathsf{y}}\,\,)$$

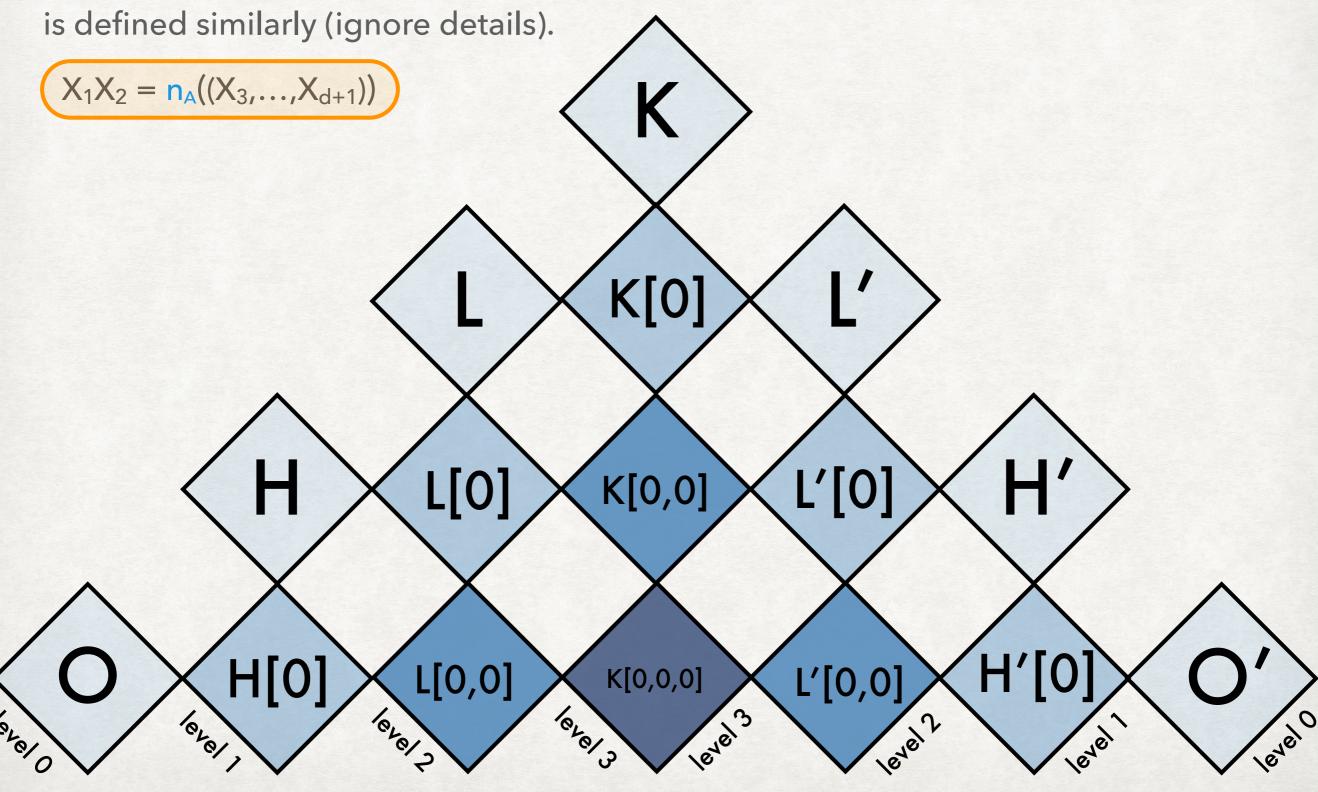
$$X_0 X_1 X_2 (X_3, X_4) (X_5, X_6) (X_7, X_8)$$

$$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$$
 satisfies $X_1X_2 = n(X_3, X_4) = X_3^2 - \zeta X_4^2$



Again, (im(points), im(lines)) satisfies the MM axioms so $\mathcal{V}(R)$ is an MM set.

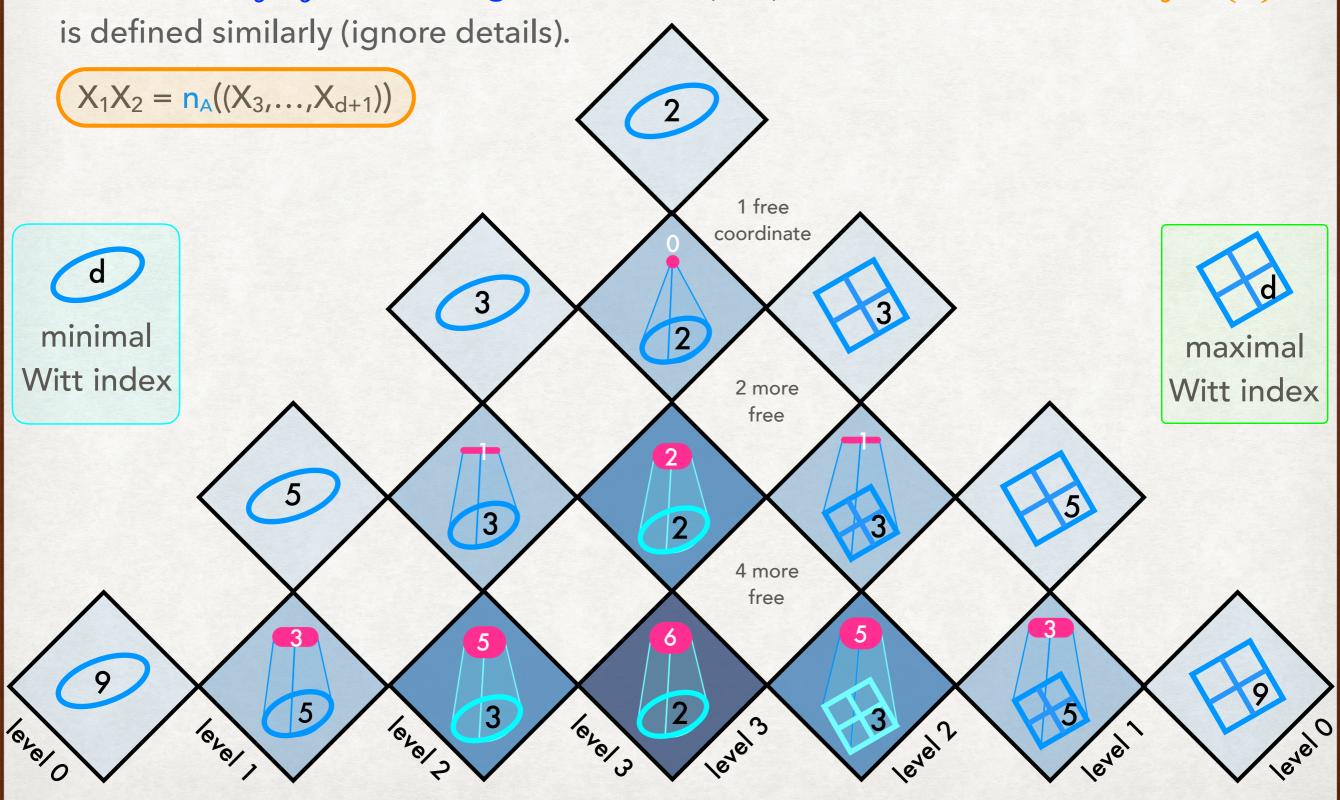
Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathscr{V}(A)$



Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). $X_1X_2 = n_A((X_3,...,X_{d+1}))$ 1 free coordinate minimal maximal Witt index Witt index L'[0] L[0] K[0,0] H'[0 H[0] 9 L[0,0] L'[0,0] K[0,0,0] 10/01

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). $X_1X_2 = n_A((X_3,...,X_{d+1}))$ 1 free coordinate minimal maximal Witt index 2 more Witt index free 3 H'[0 H[0] L[0,0] 9 L'[0,0] K[0,0,0] 10×01

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathscr{V}(A)$



Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). standard CD algebras MM sets with second row geometries MM sets with 1 free coordinate MM sets 2 more free 3 4 more free 9 5 1exe/3 levels 16/6/3 leve/ ,

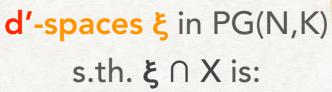
Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). generalised CD algebras MM sets with all second row geometries MM sets with 1 free coordinate modified MM sets MM set with 2 more free 3 4 more free 9 5 1ere/3 levels /exe/,

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). generalised CD algebras LEVEL 1 MM set with all second row geometries ((d,v) general) 1 free coordinate modified MM sets MM set with ((d,v) general) 2 more free 5 3 4 more free 9 5 /eve/3 10×01

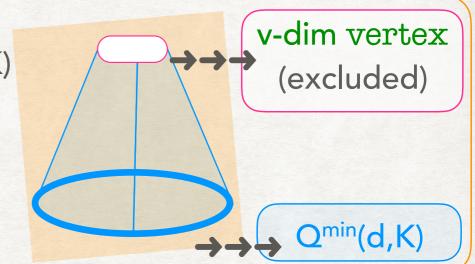
4
Results

MM SETS WITH (D,V)-TUBES

Axiomatic description



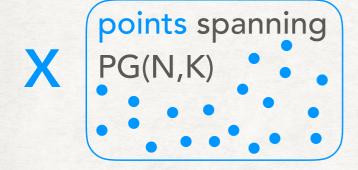
$$(d'=d+v+1)$$



MM SETS WITH (D,V)-TUBES

d

Axiomatic description



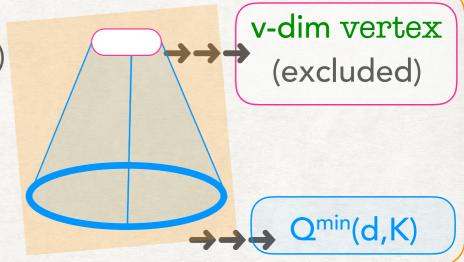
Ξ

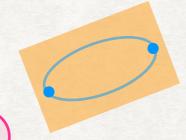
d'-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

(d'=d+v+1)

((d,v)-tube

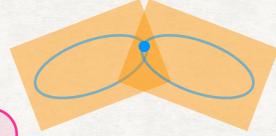
ммз





MM1

each two points of X belong to a [d'] of Ξ



MM2'

two [d']s of Ξ intersect in points of XUY
but never in Y only

the tangent space of a point of X is contained in a [2(d'-1)]

MM SETS WITH (D,V)-TUBES

d

Axiomatic description

y points spanning PG(N,K)

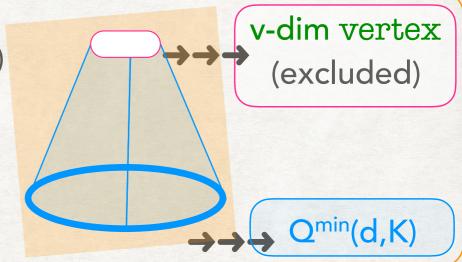
Ξ

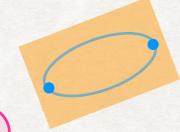
d'-spaces ξ in PG(N,K) s.th. $\xi \cap X$ is:

(d'=d+v+1)

((d,v)-tube

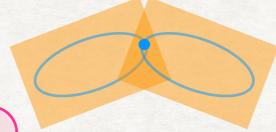
мм3





MM1

each two points of X belong to a [d'] of Ξ



MM2'

two [d']s of Ξ intersect in points of XUY
but never in Y only

the tangent space of a point of X is contained in a [2(d'-1)]

The pair (X, E) together with MM1, MM2' and MM3 is called a singular MM-set with (d,v)-tubes.

d

Case 1: the vertex is only a point (v=0)

For any field K, let (X, Ξ) be a singular MM-set with (d, 0)-tubes.

d

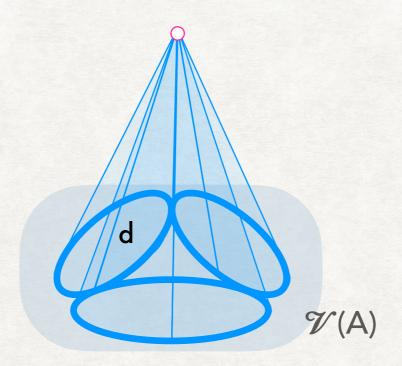
Case 1: the vertex is only a point (v=0)

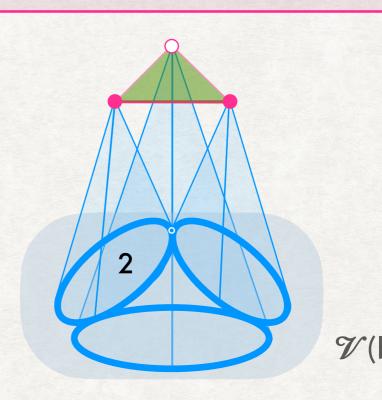
For any field K, let (X, Ξ) be a singular MM-set with (d, 0)-tubes.

d=2

Schillewaert, Van Maldeghem (2015)

If nontrivial, (X, Ξ) is <u>projectively unique</u> and <u>isomorphic</u> to a Hjelmslevian projective plane.





d

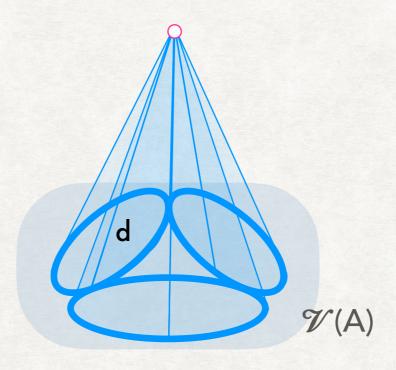
Case 1: the vertex is only a point (v=0)

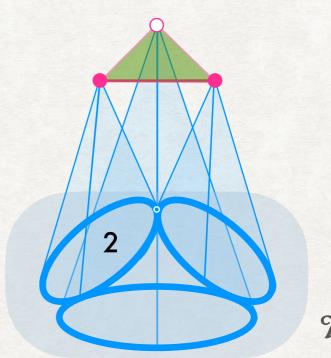
For any field K, let (X, Ξ) be a singular MM-set with (d, 0)-tubes.

d=2

Schillewaert, Van Maldeghem (2015)

If nontrivial, (X, Ξ) is <u>projectively unique</u> and <u>isomorphic</u> to a Hjelmslevian projective plane.





V(K)

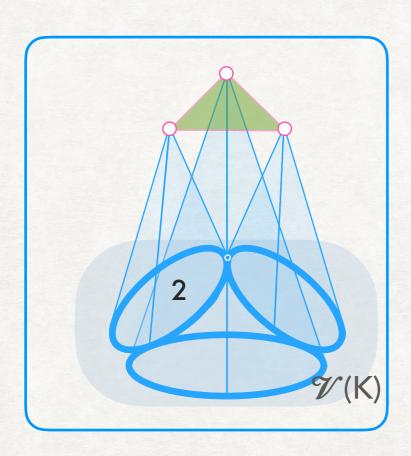
d>2

ADS, Van Maldeghem (2017)

 (X, Ξ) is always trivial.

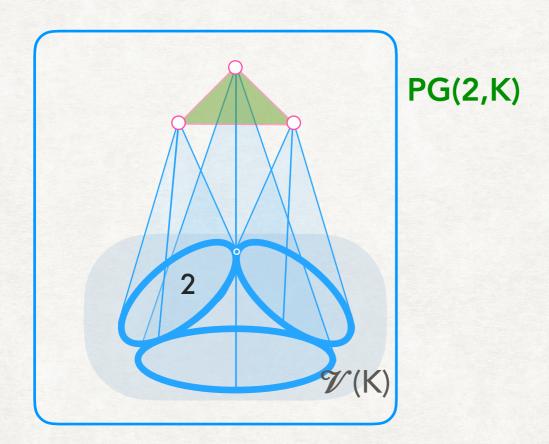
A Hjelmslevian projective plane:

 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and base an MM set with $Q^{min}(2,K)s$



A Hjelmslevian projective plane:

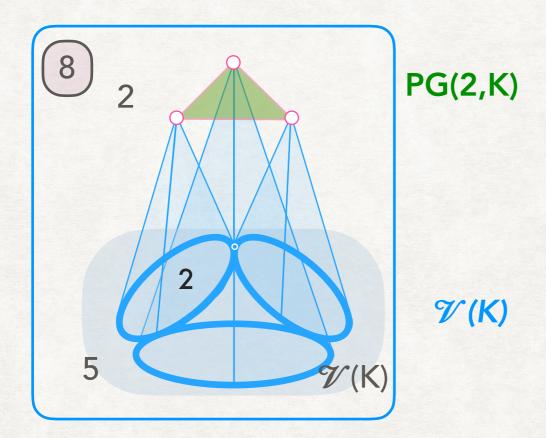
 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and base an MM set with $Q^{min}(2,K)s$



The vertices form a projective plane over K.

A Hjelmslevian projective plane:

 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and base an MM set with $Q^{min}(2,K)s$

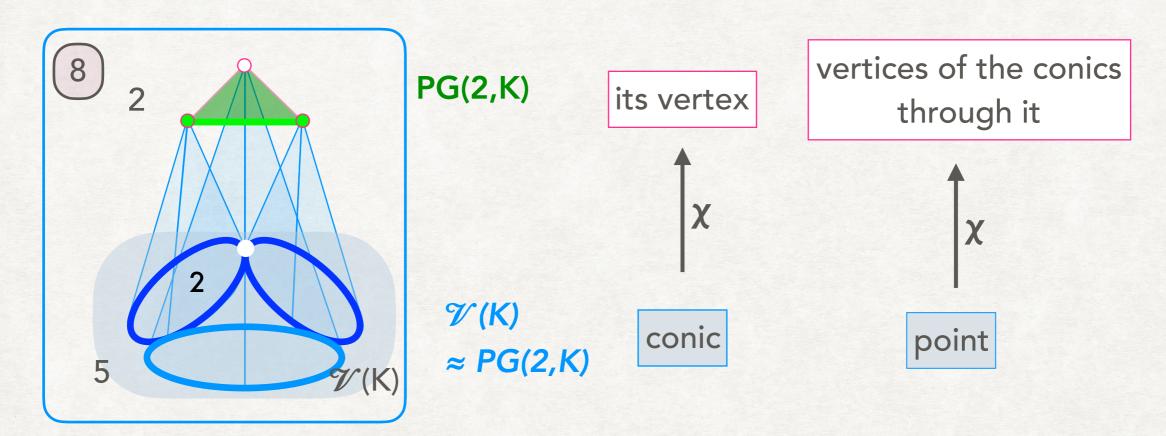


The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

A Hjelmslevian projective plane:

 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and base an MM set with $Q^{min}(2,K)s$



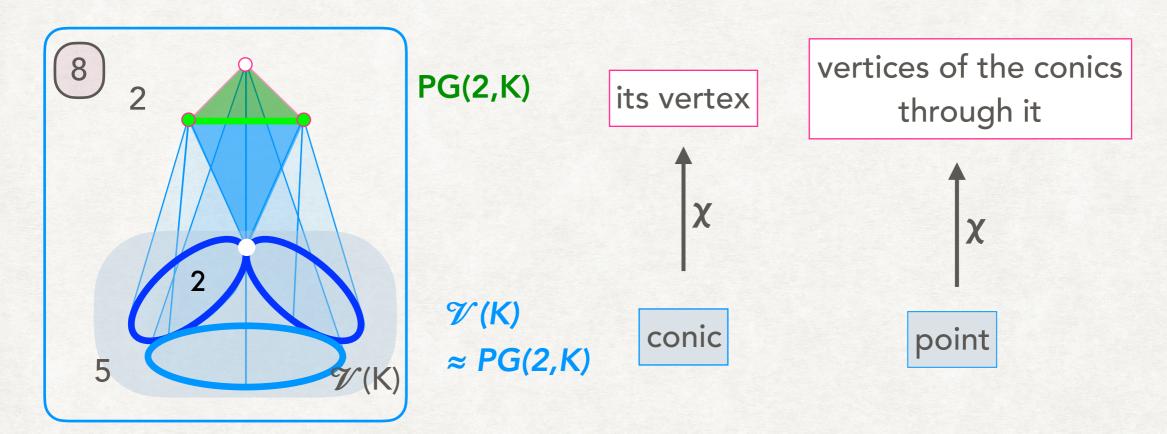
The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

The mapping χ is a linear duality between $\mathcal{V}(K)$ and PG(2,K).

A Hjelmslevian projective plane:

 (X, Ξ) is <u>something</u> with <u>vertices</u> in a plane and base an MM set with $Q^{min}(2,K)s$

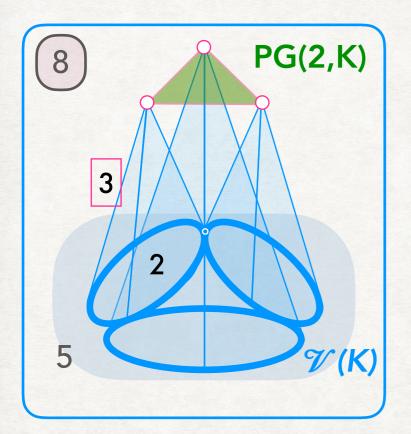


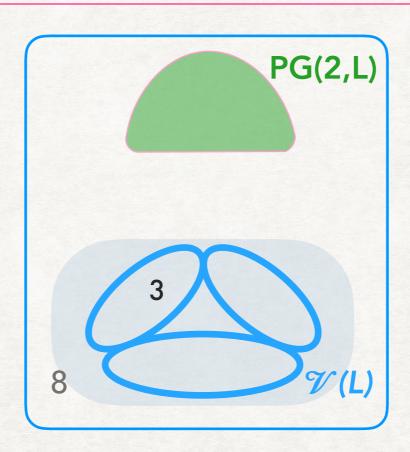
The vertices form a projective plane over K.

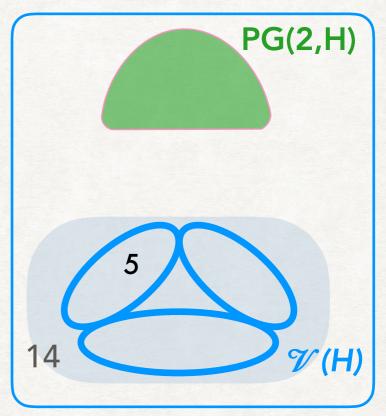
In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

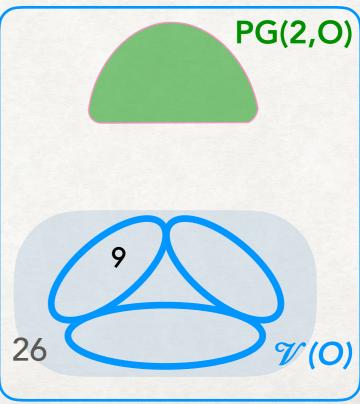
The mapping χ is a linear duality between $\mathcal{V}(K)$ and PG(2,K).

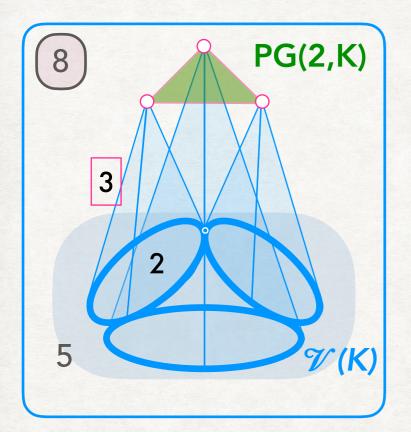
The union of the affine planes $x\chi(x)\backslash\chi(x)$, with x in $\mathcal{V}(K)$, equals X.

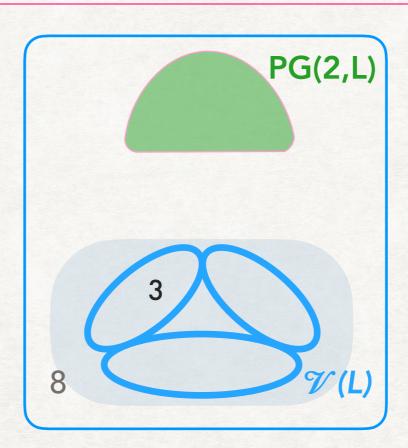


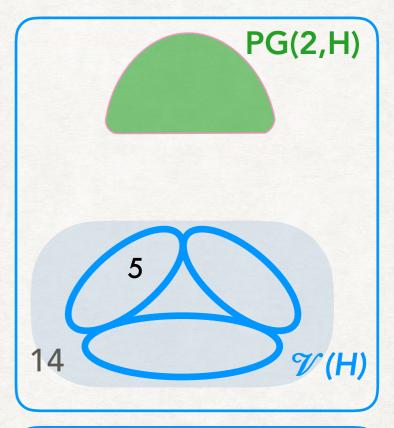




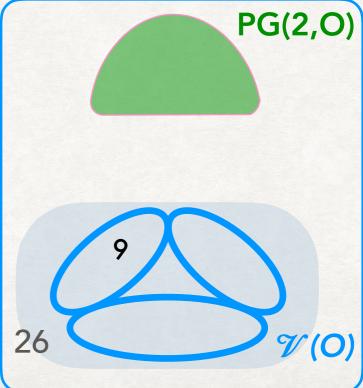


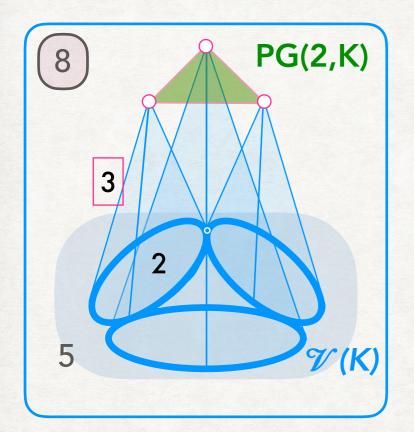


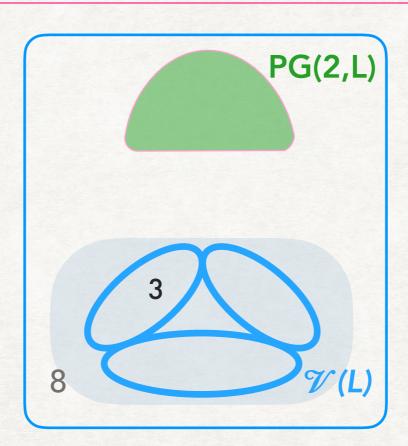


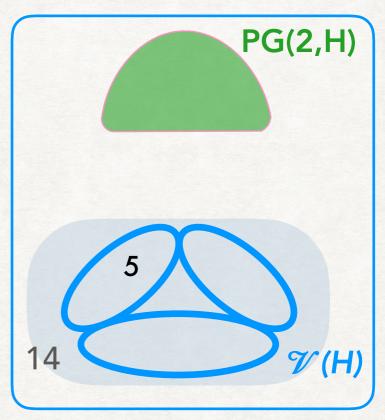


dim quadric	total dim
2	5
3	8
5	14
9	26
d=2a+1	3d-1

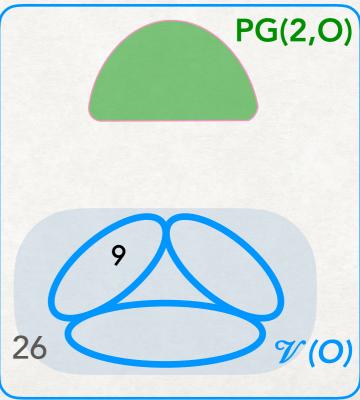


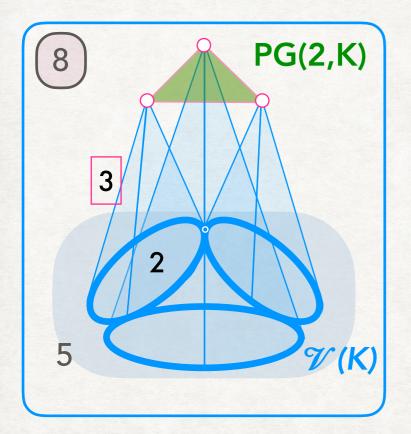


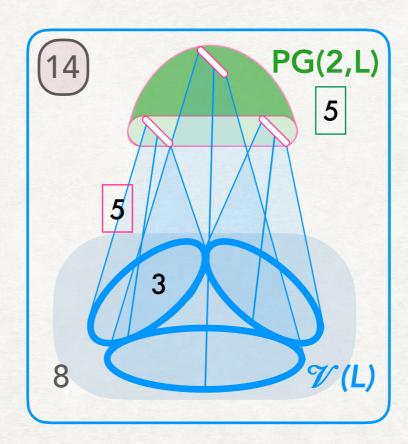


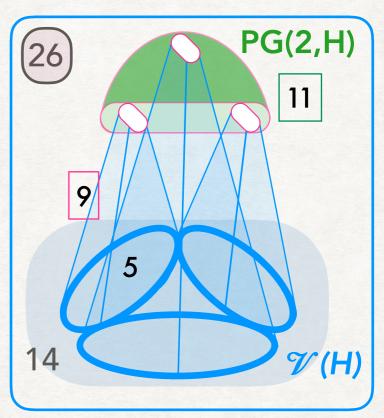


dim quadric	total dim
2	5
3	8
5	14
9	26
d=2°+1	3d-1

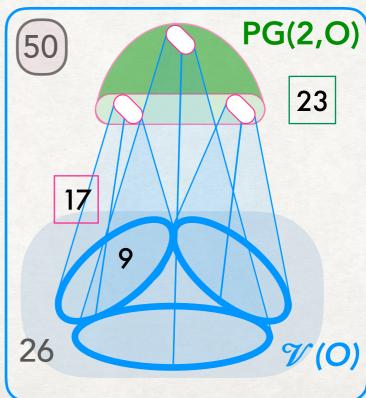


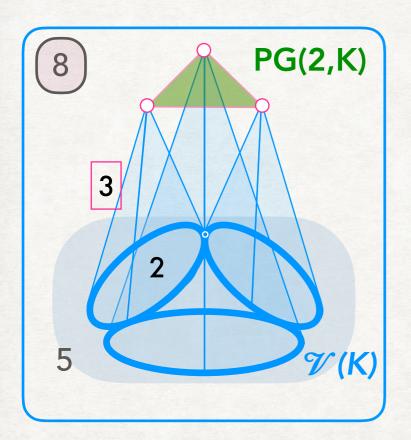




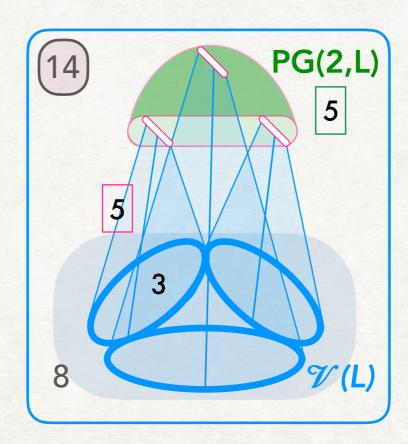


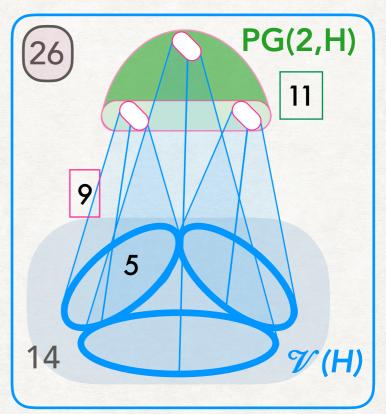
dim quadric	total dim
2	5
3	8
5	14
9	26
d=2a+1	3d-1

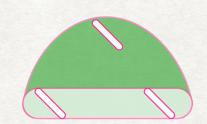




5





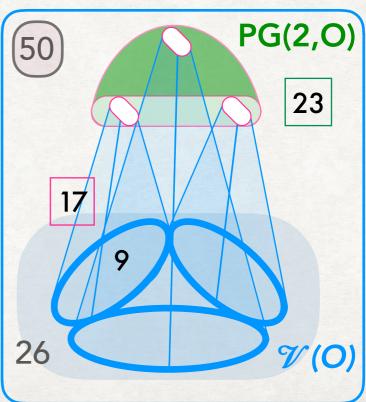


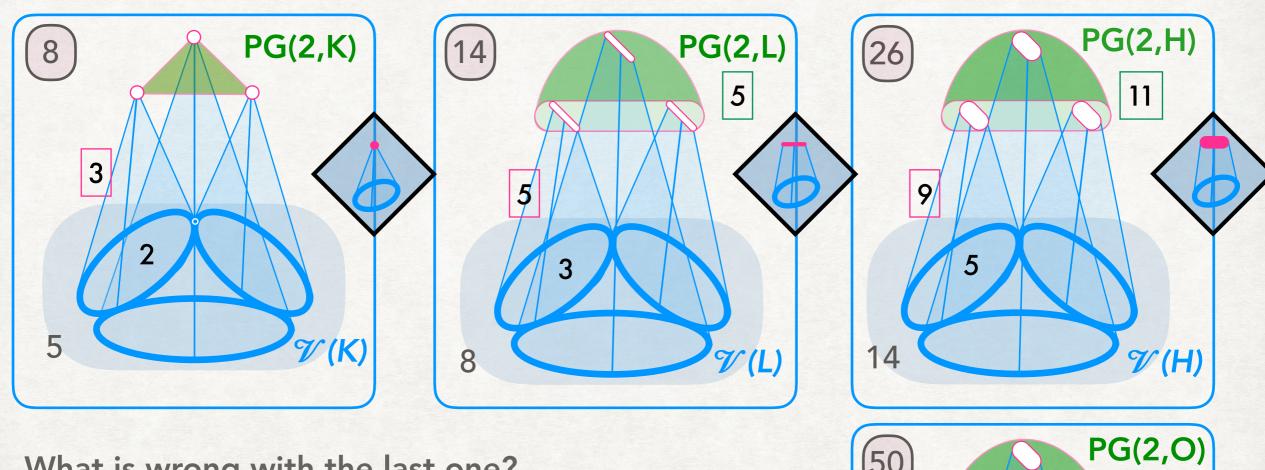
Why isomorphic to PG(2,L)?

PG(2,L) — V(3,L) — V(6,K) — PG(5,K)

point — vector line — vector plane — line

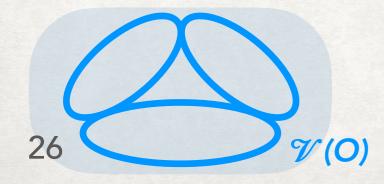
line — regular line-spread in 3-space



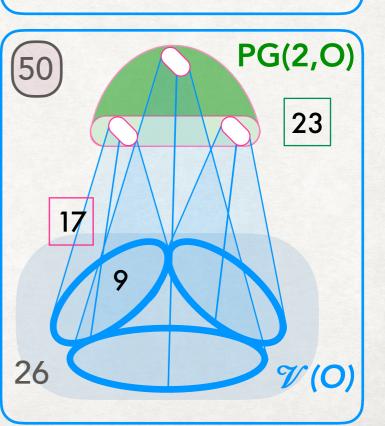


What is wrong with the last one?

The regular 7-spread defines a <u>Desarguesian</u> plane.



 $\mathcal{V}(O)$ is a representation of a <u>non-Desarguesian</u> plane.



Case 2: the vertex is higher dimensional (v > 0)

For any field K, let (X, Ξ) be a singular MM-set with (d,v)-tubes.

Case 2: the vertex is higher dimensional (v > 0)

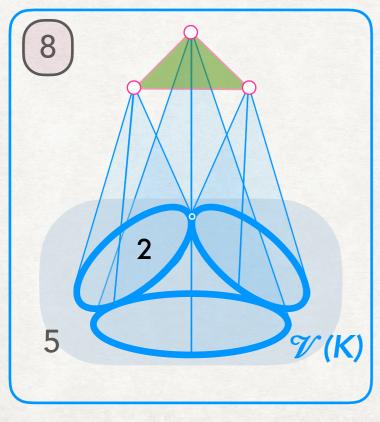
For any field K, let (X, Ξ) be a singular MM-set with (d,v)-tubes. We need to change MM2'

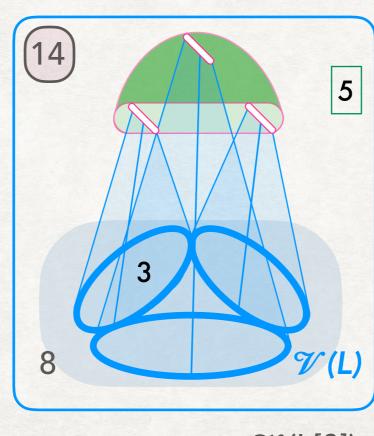
Case 2: the vertex is higher dimensional (v > 0)

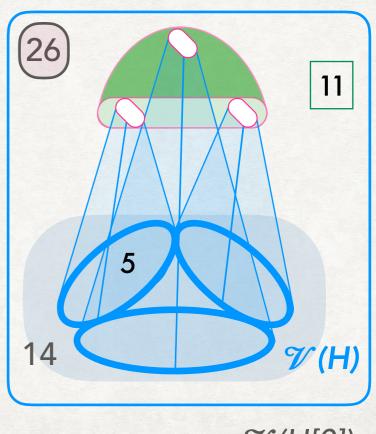
For any field K, let (X, Ξ) be a singular MM-set with (d,v)-tubes. With MM1, MM2* and MM3 we obtain:

ADS, Van Maldeghem (2017)

If nontrivial, (X, Ξ) is <u>projectively unique</u> and <u>isomorphic</u> to a Hjelmslevian projective plane:







V(K[0])

V(L[0])

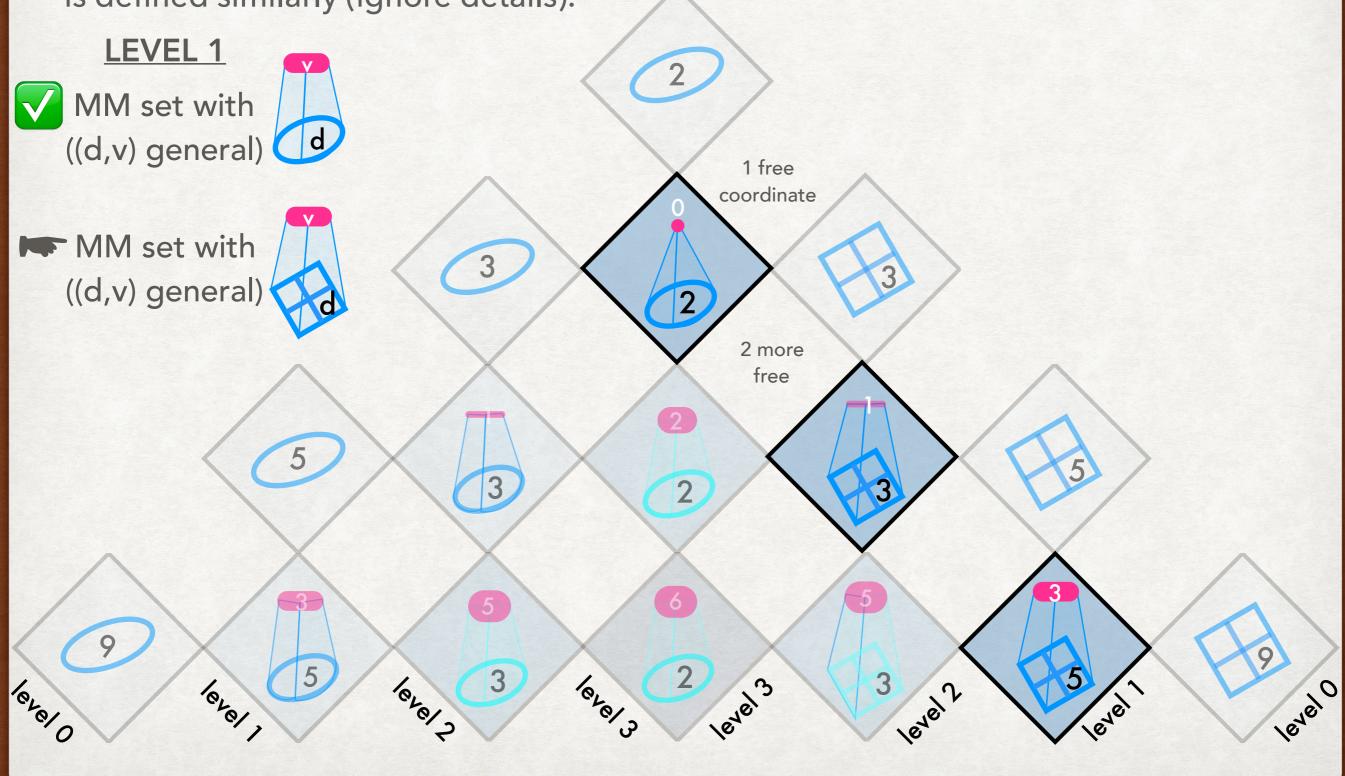
V(H[0])

CD ALGEBRA → VERONESE VAR

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). LEVEL 1 MM set with ((d,v) general) 1 free coordinate MM set with ((d,v) general) 2 more free 5 3 2 9 5 1exe/3 levels 10/0/2 10×01

CD ALGEBRA → VERONESE VAR

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathscr{V}(A)$ is defined similarly (ignore details).



CD ALGEBRA → VERONESE VAR

Let A be a Cayley Dickson algebra with $\dim(A/K) = d$. The Veronese variety $\mathcal{V}(A)$ is defined similarly (ignore details). Take this one as LEVEL 1 a test case MM set with ((d,v) general) 1 free coordinate MM set with ((d,v) general) 2 more free 5 3 2 5 10/0/3 level,

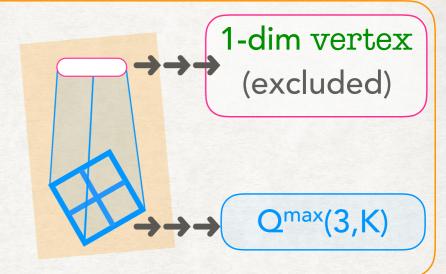


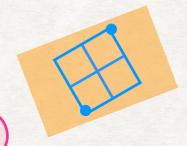
Axiomatic description

X points spanning PG(14,K)

(3,1)-symp

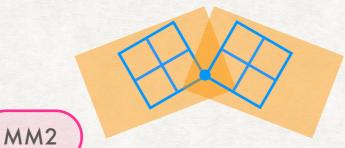
5-spaces ξ in PG(14,K) s.th. $\xi \cap X$ is:





MM1

each two points of X belong to a [5] of E



two [5]s of Ξ intersect in points of XUY
but never in Y only

мм3

the tangent space of a **point** of X is contained in a [2(5-1)]



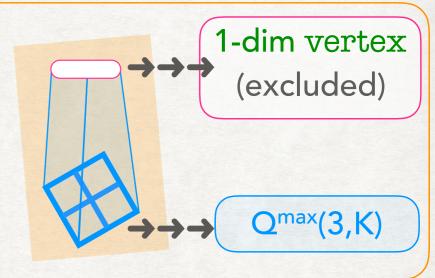
Axiomatic description

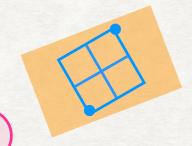
X points spanning PG(14,K)

Y vertices

(3,1)-symp

5-spaces ξ in PG(14,K) s.th. ξ ∩ X is:





each two points of X belong to a [5] of Ξ

MM1

MM2

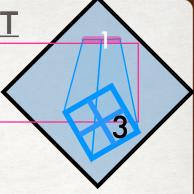
two [5]s of Ξ intersect in points of XUY
but never in Y only

мм3

the tangent space of a **point** of X is contained in a [2(5-1)]

(3,1)-symp

MM SETS WITH (3,1)-SYMPS



Axiomatic description

X points spanning PG(14,K)

Y vertices

Ξ

5-spaces ξ in PG(14,K) s.th. ξ ∩ X is:

1-dim vertex (excluded)

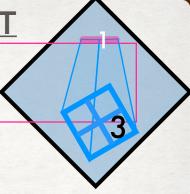
Qmax(3,K)

each two points of X belong to a [5] of Ξ

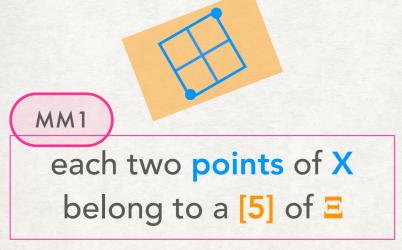
Yet, each two points not belonging to a [5] of E, belong to a supersymp:

1-dim vertex (excl.)

Q^{max}(5,K)
1 MSS `missing'

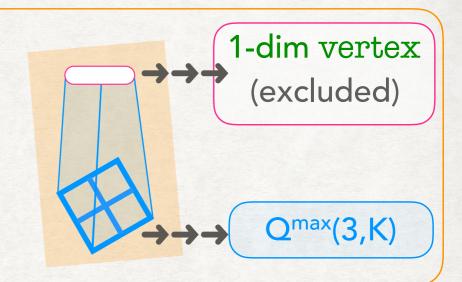


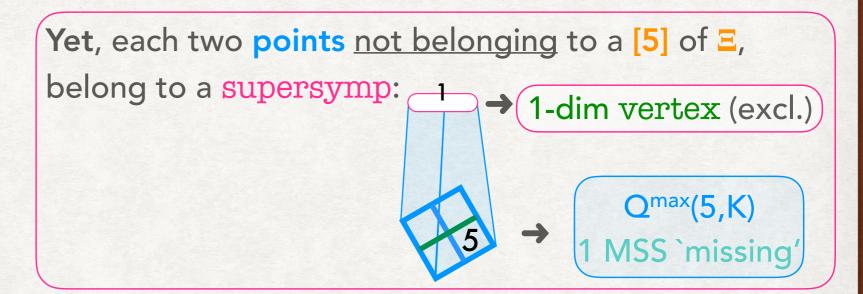
Axiomatic description

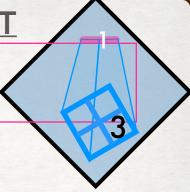


(3,1)-symp

5-spaces ξ in PG(14,K)
s.th. ξ ∩ X is:
7-spaces ξ' in PG(14,K)
s.th. ξ' ∩ X is
a supersymp

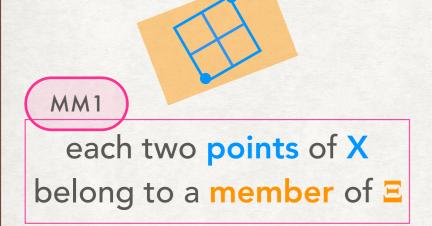






Axiomatic description

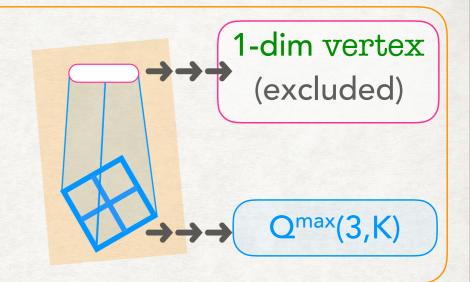
X points spanning PG(14,K)

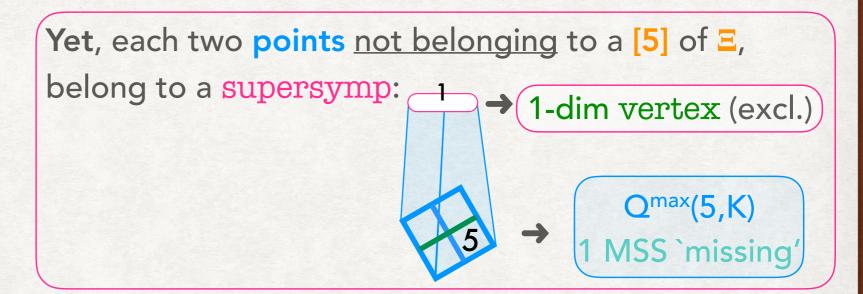


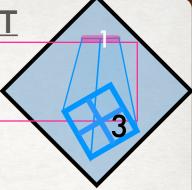
(3,1)-symp

5-spaces ξ in PG(14,K) s.th. ξ ∩ X is:

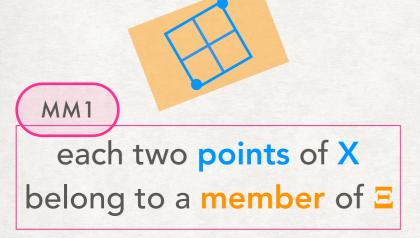
7-spaces ξ' in PG(14,K) s.th. ξ' ∩ X is a supersymp







Axiomatic description



((3,1)-symp

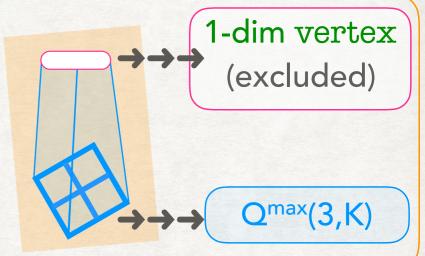
s.th. $\xi \cap X$ is:

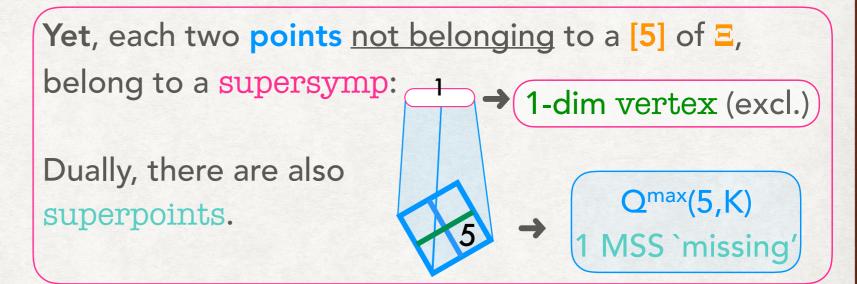
7-spaces ξ' in PG(14,K)

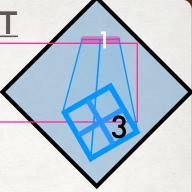
s.th. $\xi' \cap X$ is

a supersymp

5-spaces ξ in PG(14,K)







Axiomatic description

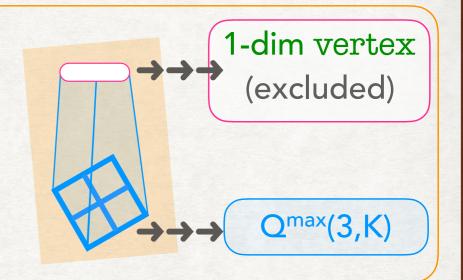
X points spanning PG(14,K) vertices

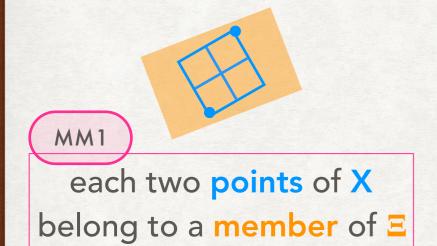
Ξ

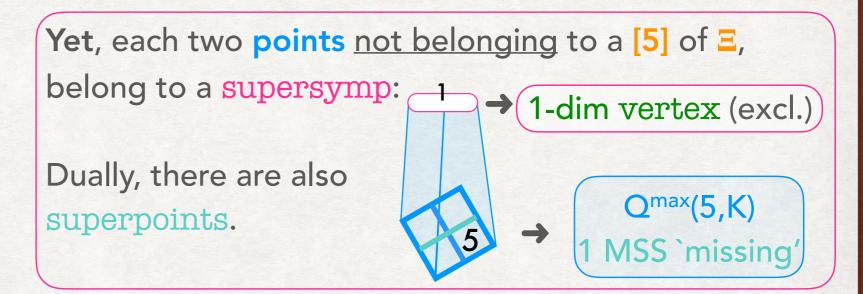
superpoints (3,1)-symp

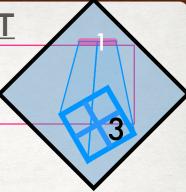
5-spaces ξ in PG(14,K) s.th. ξ ∩ X is:

7-spaces ξ' in PG(14,K) s.th. ξ' ∩ X is a supersymp



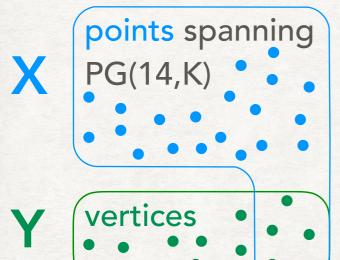






Axiomatic description

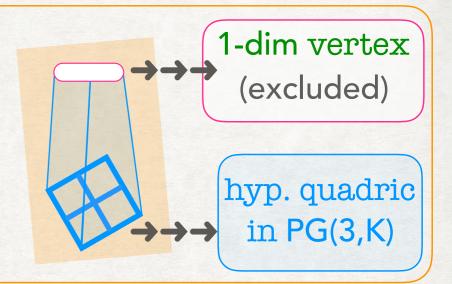
((3,1)-symp

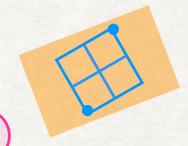


Ξ

superpoints 5-spaces ξ in PG(14,K) s.th. $\xi \cap X$ is:

7-spaces ξ' in PG(14,K) s.th. ξ' ∩ X is a supersymp





MM1'

each two points of X belong to a member of Ξ

MM2

two [5]s of E
intersect in points of XUY
but never in Y only

ММ3

the tangent space of a point of X is contained in a [2(5-1)]

Together with the superpoints and -symps, axioms MM1, MM2 and MM3 are satisfied.

MM SETS WITH (3,1)-SYMPS: RESULT

For any field K, let (X, Ξ) be a singular MM-set with (3,1)-symps and supersymps.

MM SETS WITH (3,1)-SYMPS: RESULT

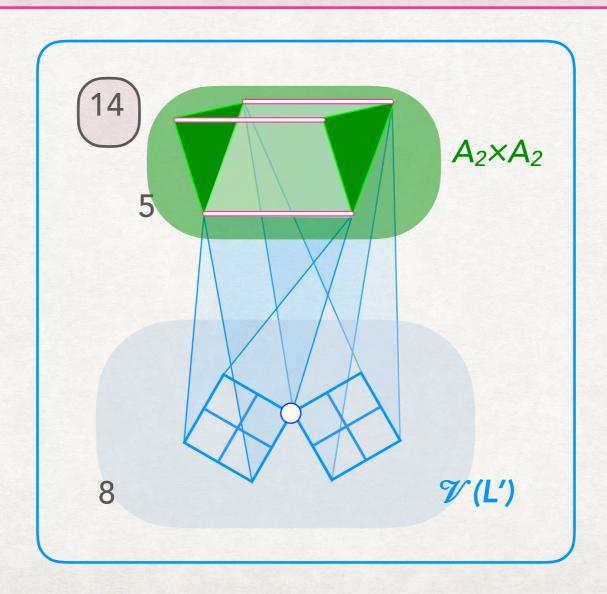
For any field K, let (X, Ξ) be a singular MM-set with (3,1)-symps and supersymps.

d=3

v=1

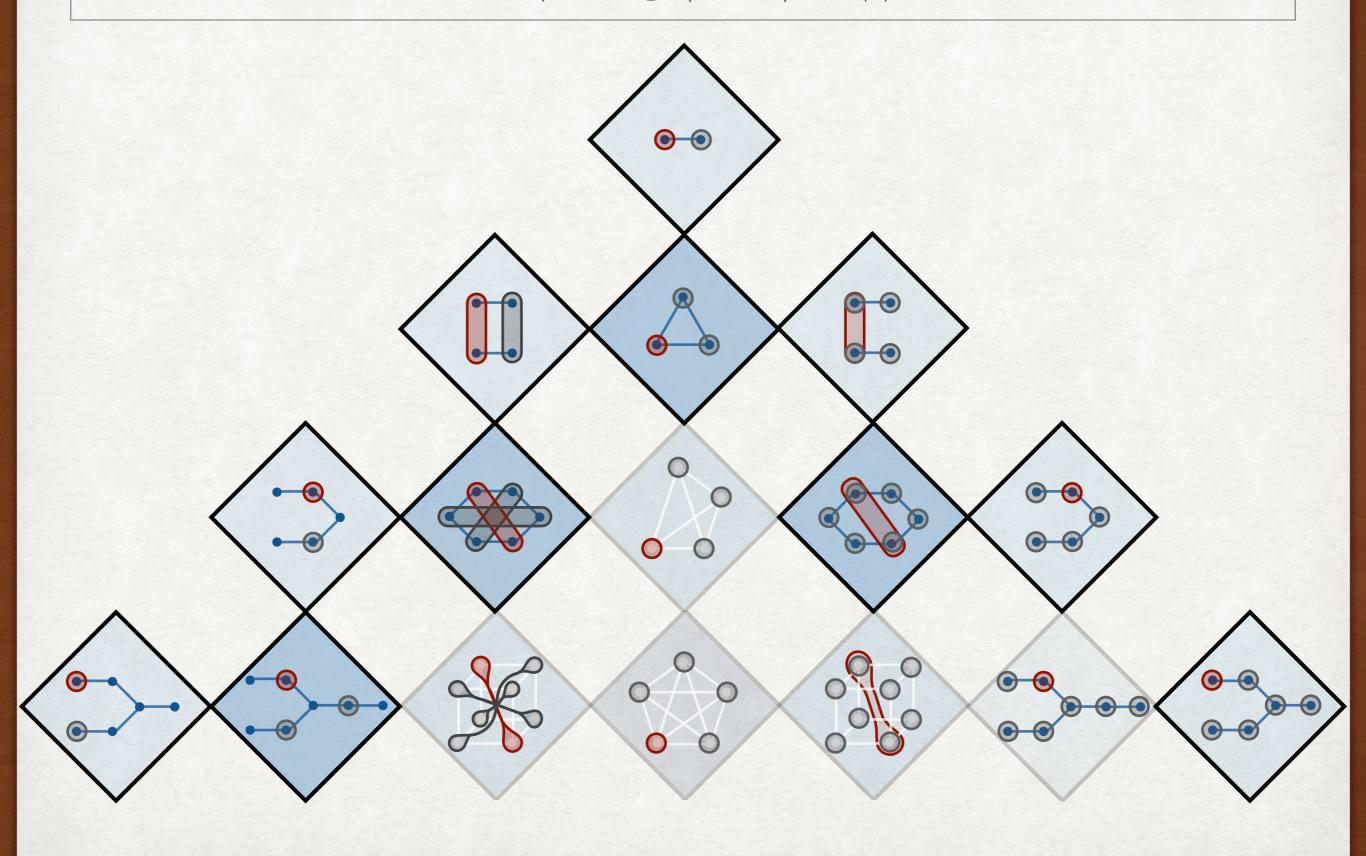
ADS, Van Maldeghem (2017)

If nontrivial, (X, Ξ) is projectively unique and hence isomorphic to $\mathcal{V}(L'[0])$

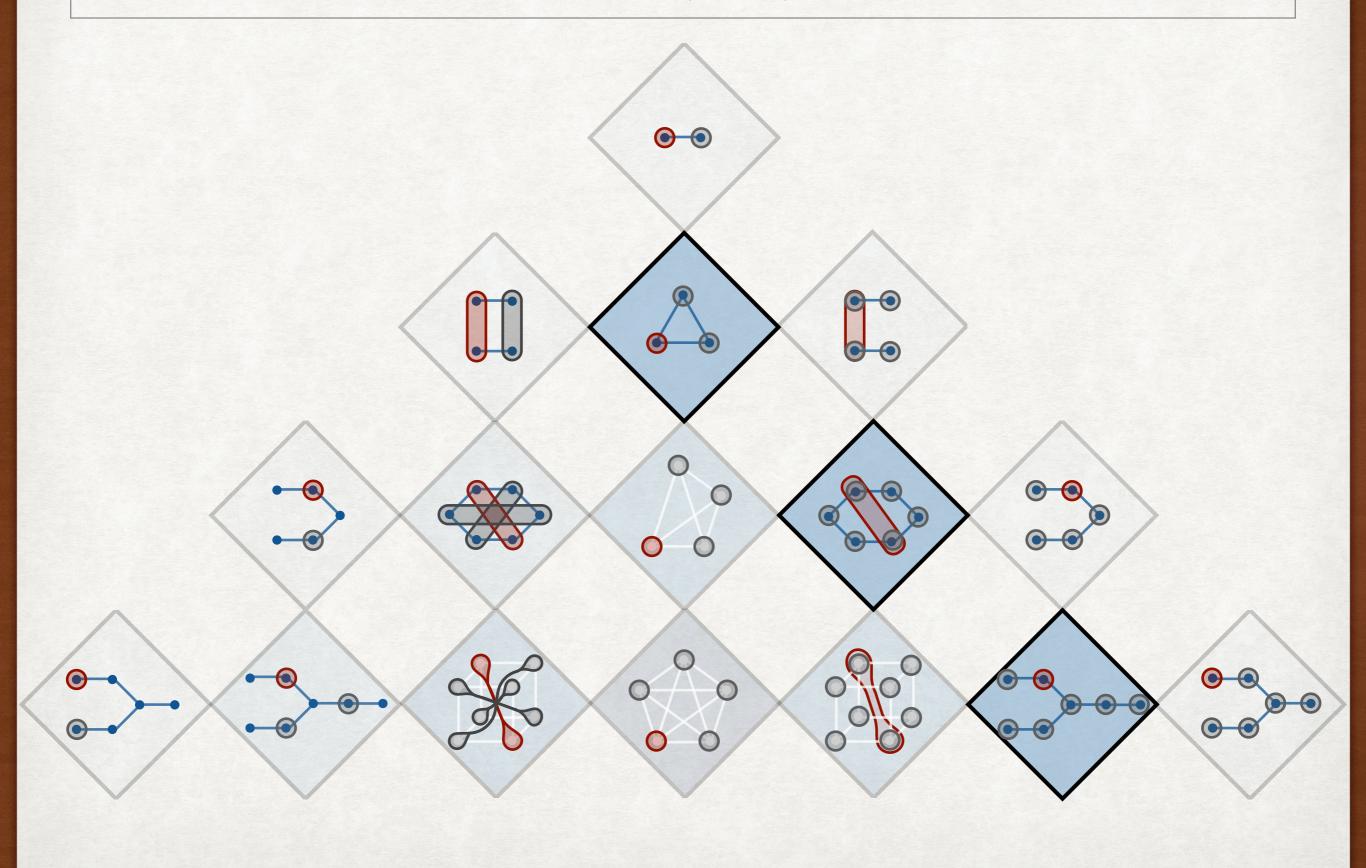


3

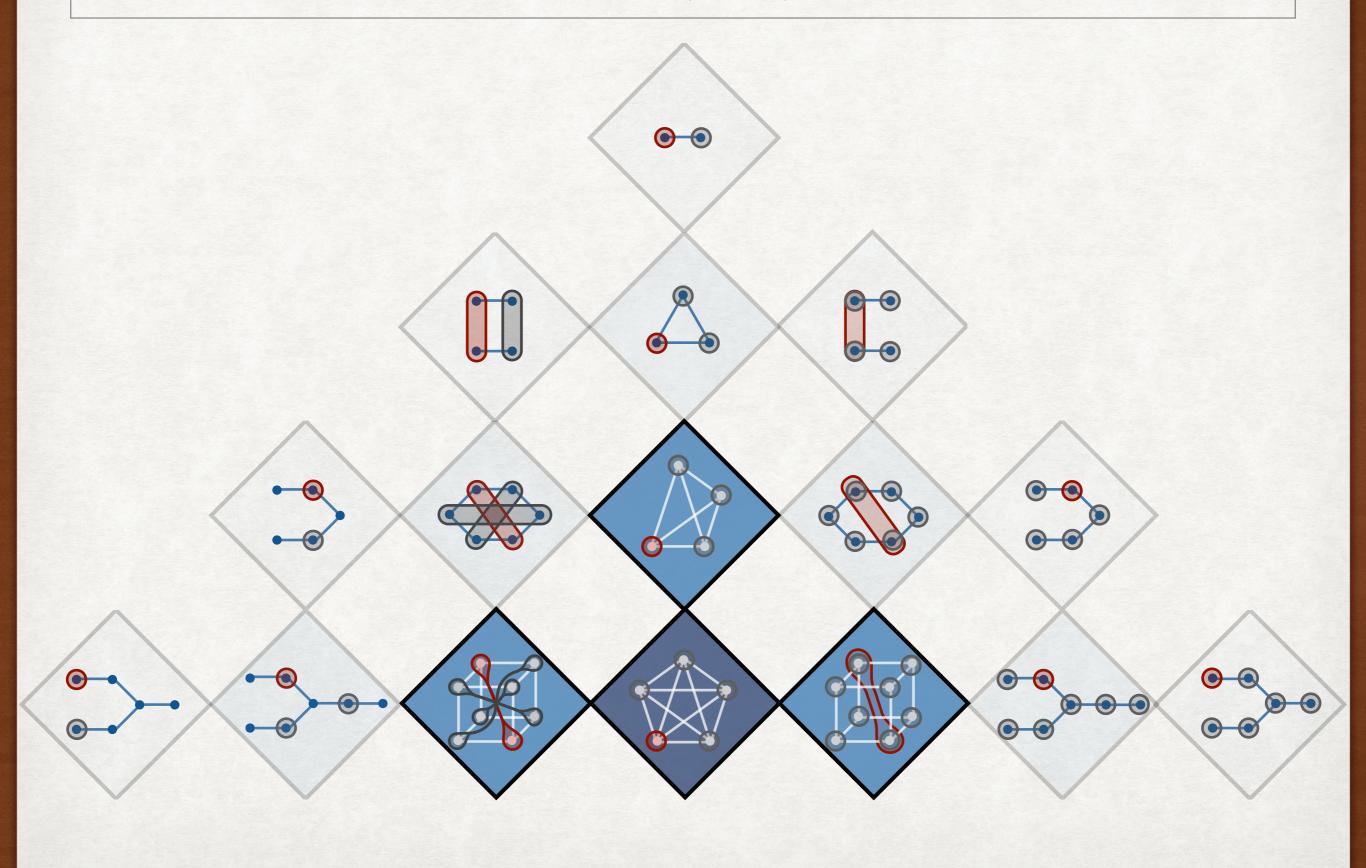
FINAL OVERVIEW



FINAL OVERVIEW



FINAL OVERVIEW



THANKS FOR YOUR ATTENTION

