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Split 

Severi varieties 
PG(2,K) 

Segre variety S2,2(K) 
Line Grassmannian of A5(K) 

E6,1(K) variety

Nonsplit 

Moufang projective planes 
PG(2,K) 
PG(2,L) 
PG(2,H) 
PG(2,O)

set of points and quadrics + some axioms 

THE MAGIC SQUARE: 2ND ROW
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Axiomatisation



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 
Nonsplit 



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

Nonsplit 

K field, kar(K) ≠ 2 (for simplicity)

a quadric of 
minimal 

Witt index



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

Nonsplit 

K field, kar(K) ≠ 2 (for simplicity)

quadric Qmin(d,K) 
of minimal 
Witt index



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

Nonsplit 

K field, kar(K) ≠ 2 (for simplicity)

The pair (X, 𝚵) together with MM1, MM2 and MM3 
is called a Mazzocca Melone (MM) set with quadrics 

of minimal Witt index

quadric Qmin(d,K) 
of minimal 
Witt index



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

d 2 3 5 9
(X, 𝚵) isomorphic to PG(2,K) PG(2,L) PG(2,H) PG(2,O)
geometry in PG(N,K) 𝓥(K) (5) 𝓥(L) (8) 𝓥(H) (14) 𝓥(O) (26)

Schillewaert, Van Maldeghem, Krauss (2015) 
For any field K, d ∈ {2,3,5,9} and, per d, (X, 𝚵) is projectively unique.

Nonsplit 

K field, kar(K) ≠ 2 (for simplicity)

quadric Qmin(d,K) 
of minimal 
Witt index



The pair (X, 𝚵) together with MM1, MM2 and MM3 
is called a Mazzocca Melone (MM) set with quadrics 

of maximal Witt index

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

Split

quadric Qmax(d,K) 
of maximal 
Witt index

K field, kar(K) ≠ 2 (for simplicity)



A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:

d 2 3 5 9
(X, 𝚵) isomorphic to PG(2,K) A2×A2(K) A5,2(K) E6,1(K)
geometry in PG(N,K) 𝓥(K)’ (5) 𝓥(L)’ (8) 𝓥(H)’ (14) 𝓥(O)’ (26)

Schillewaert, Van Maldeghem (2015) 
For any field K, if N > 3d +1, d ∈ {2,3,5,9} and, per d, (X, 𝚵) is projectively unique.

Split

quadric Qmax(d,K) 
of maximal 
Witt index

K field, kar(K) ≠ 2 (for simplicity)
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each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
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Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is: ?

Conjecture: 
There are no MM sets with  

quadrics of intermediate Witt index

MM SETS WITH OTHER QUADRICS

some quadric

?? ??? ?



Axiomatic description 

each two points of X 
belong to a [d] of 𝚵  

two [d]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(d-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is: ?

Yet 
There are MM sets with 

singular quadrics

MM SETS WITH OTHER QUADRICS

some quadric

?? ??? ?



Axiomatic description 

each two points of X 
belong to a [3] of 𝚵  

two [3]s of 𝚵 
intersect in points of X

the tangent space of a point 
of X is contained in a [2(3-1)] 

MM1 MM2 MM3

points spanning 
PG(N,K) X 𝚵 3-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is:
a point-cone 

over Qmin(2,K); 
without vertex

SINGULAR MM SETS: A FIRST EXAMPLE

(2,0)-tube
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Axiomatic description 

each two points of X 
belong to a [3] of 𝚵  

the tangent space of a point 
of X is contained in a [2(3-1)] 

MM1 MM2’ MM3

𝚵 3-spaces 𝝽 in PG(N,K) 
s.th. 𝝽 ∩ X is:

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning 
PG(N,K) X
vertices Y

two [3]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

(2,0)-tube

a point-cone 
over Qmin(2,K); 
without vertex



Axiomatic description 

each two points of X 
belong to a [3] of 𝚵  

the tangent space of a point 
of X is contained in a [2(3-1)] 

MM1 MM2’ MM3

𝚵 3-spaces 𝝽 in PG(N,K) 
s.th. 𝝽 ∩ X is:

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning 
PG(N,K) X
vertices Y

two [3]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

The pair (X, 𝚵) together with MM1, MM2’ and MM3 
is called a singular MM-set with (2,0)-tubes.

(2,0)-tube

a point-cone 
over Qmin(2,K); 
without vertex



Axiomatic description 

𝚵 3-spaces 𝝽 in PG(N,K) 
s.th. 𝝽 ∩ X is:

Schillewaert, Van Maldeghem (2015) 
If nontrivial, (X, 𝚵) is projectively unique and isomorphic to 

a Hjelmslevian projective plane.

each two points of X 
belong to a [3] of 𝚵  

the tangent space of a point 
of X is contained in a [2(3-1)] 

MM1 MM2 MM3

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning 
PG(N,K) X
vertices Y

two [3]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

(2,0)-tube

a point-cone 
over Qmin(2,K); 
without vertex



2

Trivial: 
(X, 𝚵) is a cone with vertex a point 
and base 𝓥(K) 

2

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane 
and base 𝓥(K) 

(to be continued)

𝓥(K) 𝓥(K)

Schillewaert, Van Maldeghem (2015) 
If nontrivial, (X, 𝚵) is projectively unique and isomorphic to 

a Hjelmslevian projective plane.

SINGULAR MM SETS: A FIRST EXAMPLE

(MM set with Qmin(2,K)s) (MM set with Qmin(2,K)s)



type

nonsplit
PG(2,K) 

projective plane, 
field K 

PG(2,L) 
projective plane 
quadr. div. ext. L

PG(2,H) 
projective plane 
H quat. div. alg.

PG(2,O) 
projective plane 
O oct. div. alg.

split (A2 x A2)(K) 
Segre variety S2,2

 A5,2(K) 
line Grassmannian E6,1(K)

WHY DOES THIS WORK?
Algebraic explanation.



Algebraic explanation.
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projective plane, 
field K 
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projective plane 
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projective plane 
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PG(2,O) 
projective plane 
O oct. div. alg.

split proj. remoteness 
plane over KxK

proj. remoteness 
plane over split 
quaternion alg.

proj. remoteness 
plane over split 

octonion alg.
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Algebraic explanation.

type

nonsplit
PG(2,K) 

projective plane, 
field K 

PG(2,L) 
projective plane 
quadr. div. ext. L

PG(2,H) 
projective plane 
H quat. div. alg.

PG(2,O) 
projective plane 
O oct. div. alg.

split proj. remoteness 
plane over KxK

proj. remoteness 
plane over split 
quaternion alg.

proj. remoteness 
plane over split 

octonion alg.

These are Cayley-Dickson algebras. 

The Hjelmslevian projective plane is a proj. remoteness plane over the dual 
numbers over K, which can also be seen as a Cayley-Dickson algebra.

WHY DOES THIS WORK?
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Cayley Dickson algebras



THE CAYLEY-DICKSON PROCESS
Let K be a field with kar(K) ≠ 2 (for simplicity)



THE CAYLEY-DICKSON PROCESS
Let K be a field with kar(K) ≠ 2 (for simplicity)
Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜



THE CAYLEY-DICKSON PROCESS

L comes with a norm function 

nL : L→ L : (a,b) ↦ (a,b) ∙L (a, b)

Let K be a field with kar(K) ≠ 2 (for simplicity)
Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

(a,b) ∙L (a, b) 
= (aa - 𝞯bb, 0) 
= (nK(a) - 𝞯nK(b),0)



THE CAYLEY-DICKSON PROCESS

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)



THE CAYLEY-DICKSON PROCESS

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 (since (a,b)-1 = (a,b) / nL(a,b))

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)



THE CAYLEY-DICKSON PROCESS

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)



THE CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)



THE CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic



 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 ∈ K\{0}
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic



THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function 

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 = 0
➜➜➜

➜➜➜

 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic



THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a degenerate norm function 

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 = 0
➜➜➜

➜➜➜

 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic



THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a degenerate norm function 

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 0

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 = 0
➜➜➜

➜➜➜

 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic



 L split algebra 

𝞯 = s2 (s ∈ K\{0}) 

nL((a,b)) = (a - sb)(a + sb)  

nL splits 

 L singular algebra 

𝞯 = 0 
nL((a,b)) = a2  

nL degenerate

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields three possibilities for the algebra L:

L comes with a degenerate norm function 

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b) 

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 0

Algebra A Involution x ↦ x 

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)
𝞯 = 0
➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2  (for simplicity)

 L division algebra 

𝞯 ∉ nK(K) = K2 

nL((a,b)) = a2 - 𝞯 b2 

nL anisotropic
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THE GENERALISED CAYLEY-DICKSON PROCESS



K

K[0] L’L

𝞯 ∉ nK(K) 𝞯 = s2, s≠0

𝞯 = 0

THE GENERALISED CAYLEY-DICKSON PROCESS
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3 
Veronese varieties



Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
K
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Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

point  →   point  
line     →   conic in a plane (Qmin(2,K))
(0,y,z)  ↦  (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0   2
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Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

(0,y,z)  ↦  (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0   2

The variety (X,𝚵) = (im(points),im(lines)) satisfies 
i.e., 𝓥(K) is a MM set with Qmin(2,K)s

MM1 MM2 MM3

CD ALGEBRA ➜ VERONESE VAR

point  →   point  
line     →   conic in a plane (Qmin(2,K))



Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
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ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

(0,y,z)  ↦  (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0   2

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R) K[0] L’L

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point  →   point  
line     →   conic in a plane (Qmin(2,K))
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(0,y,z)  ↦  (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0   2

K[0] L’L
➜ rewrite ρ, using that xx = x2 = n(x) for x ∈ K

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point  →   point  
line     →   conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)
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Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
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➜ rewrite ρ, using that xx = x2 = n(x) for x ∈ K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)
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Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)



(0,y,z)  ↦  (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0
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ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

Warning: if R = L’ or K[0], there is no projective plane over it. 
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lines : {R*[a,b,c] | a, b, c ∈ R &  r[a,b,c] = 0 for r ∈ R implies r = 0} 
incidence: ax + by + cz = 0 

If R = L, then G(2,L)=PG(2,L)
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Let K be a field. The Veronese variety 𝓥(K) is defined as follows 
K

K[0] L’L
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CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

Again, (im(points),im(lines)) satisfies the MM axioms so 𝓥(R) is an MM set.

point  →   point  
line     →   conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)



Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details).
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is defined similarly (ignore details).
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Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details).
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Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details).
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Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details). standard CD algebras 
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Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details). generalised CD algebras 

⇵  
all second row geometries 

⇵ 
modified MM sets

MM set with 
((d,v) general)  d

v

LEVEL 1

☛

☛



4 
Results



Axiomatic description 

points spanning 
PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is: 

(d’=d+v+1)

MM SETS WITH (D,V)-TUBES

Qmin(d,K)

v-dim vertex 
(excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

d

vLEVEL 1 NONSPLIT



Axiomatic description 

each two points of X 
belong to a [d’] of 𝚵  

the tangent space of a point 
of X is contained in a [2(d’-1)] 

MM1 MM2’ MM3

points spanning 
PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is: 

(d’=d+v+1)

v-dim vertex 
(excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

two [d’]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

MM SETS WITH (D,V)-TUBES d
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Axiomatic description 

each two points of X 
belong to a [d’] of 𝚵  

the tangent space of a point 
of X is contained in a [2(d’-1)] 

MM1 MM2’ MM3

points spanning 
PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K) 

s.th. 𝝽 ∩ X is: 

(d’=d+v+1)

v-dim vertex 
(excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

two [d’]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

The pair (X, 𝚵) together with MM1, MM2’ and MM3 
is called a singular MM-set with (d,v)-tubes.

MM SETS WITH (D,V)-TUBES d

vLEVEL 1 NONSPLIT
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MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes. 
Case 1: the vertex is only a point (v=0)

d
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MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes. 

d=2

Case 1: the vertex is only a point (v=0)

Schillewaert, Van Maldeghem (2015) 
If nontrivial, (X, 𝚵) is projectively unique and isomorphic to 

a Hjelmslevian projective plane.

2

𝓥(K)

d

𝓥(A)
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MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes. 

d=2

Case 1: the vertex is only a point (v=0)

2

𝓥(K)

d

𝓥(A)

d>2
ADS, Van Maldeghem (2017) 

(X, 𝚵) is always trivial.

Schillewaert, Van Maldeghem (2015) 
If nontrivial, (X, 𝚵) is projectively unique and isomorphic to 

a Hjelmslevian projective plane.

d

vLEVEL 1 NONSPLIT



HJELMSLEVIAN PROJECTIVE PLANES

2

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s 

𝓥(K)
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PG(2,K)

The vertices form a projective plane over K.

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s 
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PG(2,K)

The vertices form a projective plane over K.
In a complementary subspace, the points of X form the Veronese variety 𝓥(K). 

HJELMSLEVIAN PROJECTIVE PLANES

8

𝓥(K)5
𝓥(K) 

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s 

2



2

The vertices form a projective plane over K.

conic

its vertex

𝞆

point

vertices of the conics 
through it

𝞆

PG(2,K)2
8

In a complementary subspace, the points of X form the Veronese variety 𝓥(K). 
The mapping 𝞆 is a linear duality between 𝓥(K) and PG(2,K).

𝓥(K) 
≈ PG(2,K)

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)5

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s 
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The vertices form a projective plane over K.

conic

its vertex

𝞆

point

vertices of the conics 
through it

𝞆

PG(2,K)2
8

In a complementary subspace, the points of X form the Veronese variety 𝓥(K). 
The mapping 𝞆 is a linear duality between 𝓥(K) and PG(2,K).

𝓥(K) 
≈ PG(2,K)

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)5

The union of the affine planes x𝞆(x)\𝞆(x), with x in 𝓥(K), equals X. 

A Hjelmslevian projective plane:  
(X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s 
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A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

3

𝓥(L)8

5

𝓥(H)14



9

𝓥(O)26
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3

𝓥(L)8
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𝓥(H)14

dim quadric total dim

2 5

3 8

5 14

9 26

d=2a+1 3d-1
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dim quadric total dim
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d=2a+1 3d-1
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𝓥(L)8

14

9

𝓥(O)

50

26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

5

𝓥(H)

26

14

5

5

9

11

17

23Why isomorphic to PG(2,L)?

5

PG(2,L)   —   V(3,L)   —  V(6,K)   —   PG(5,K) 
point —  vector line  —  vector plane  —  line 
line        —         regular line-spread in 3-space
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A SIMILAR CONSTRUCTION
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PG(2,L) PG(2,H)
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What is wrong with the last one?

PG(2,O)

23

The regular 7-spread defines 
 a Desarguesian plane.

𝓥(O)26

𝓥(O) is a representation of  
 a non-Desarguesian plane.



MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes. 
Case 2: the vertex is higher dimensional (v > 0)



MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes.  
We need to change MM2’ 

MM2*

two [d’]s of 𝚵 
intersect in points of X∪Y 

and always contain a point of X

MM2’

➜

➜

➜

➜

two [d’]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

Case 2: the vertex is higher dimensional (v > 0)
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MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes.  
With MM1, MM2* and MM3 we obtain:

ADS, Van Maldeghem (2017) 
If nontrivial, (X, 𝚵) is projectively unique and isomorphic to  

a Hjelmslevian projective plane:
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26

14

𝓥(K[0]) 𝓥(L[0]) 𝓥(H[0])

Case 2: the vertex is higher dimensional (v > 0)
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MM set with 
((d,v) general)  d

v

Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details).

MM set with 
((d,v) general)  d

v
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✅

CD ALGEBRA ➜ VERONESE VAR
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Take this one as 
a test case

MM set with 
((d,v) general)  d
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Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) 
is defined similarly (ignore details).
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MM SETS WITH (3,1)-SYMPS

Axiomatic description 

each two points of X 
belong to a [5] of 𝚵  

the tangent space of a point 
of X is contained in a [2(5-1)] 

MM1 MM2 MM3

points spanning 
PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K) 

s.th. 𝝽 ∩ X is:
1-dim vertex 

(excluded)

vertices Y

➜➜➜

➜➜➜

(3,1)-symp

3

1LEVEL 1 SPLIT

Qmax(3,K)

two [5]s of 𝚵 
intersect in points of X∪Y 

but never in Y only
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Axiomatic description 

each two points of X 
belong to a [5] of 𝚵  

the tangent space of a point 
of X is contained in a [2(5-1)] 

MM1 MM2 MM3

points spanning 
PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K) 

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex 
(excluded)

vertices Y

➜➜➜

(3,1)-symp

3
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Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

➜➜➜

LEVEL 1 SPLIT

two [5]s of 𝚵 
intersect in points of X∪Y 

but never in Y only



MM SETS WITH (3,1)-SYMPS

Axiomatic description 

each two points of X 
belong to a [5] of 𝚵  
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points spanning 
PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K) 
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(excluded)
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LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, 
belong to a supersymp:

5

1 1-dim vertex (excl.)➜

➜

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

Qmax(5,K) 
1 MSS `missing’
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s.th. 𝝽’ ∩ X is 
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Axiomatic description 

MM1

points spanning 
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Yet, each two points not belonging to a [5] of 𝚵, 
belong to a supersymp: 

Dually, there are also 
superpoints.

5

1 1-dim vertex (excl.)➜

➜
Qmax(5,K) 

1 MSS `missing’

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

7-spaces 𝝽’ in PG(14,K) 
s.th. 𝝽’ ∩ X is 
a supersymp

each two points of X 
belong to a member of 𝚵

Y super- 
points



MM SETS WITH (3,1)-SYMPS

Axiomatic description 

each two points of X 
belong to a member of 𝚵

MM1’

points spanning 
PG(14,K) X 𝚵

hyp. quadric  
in PG(3,K)

1-dim vertex 
(excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

Together with the superpoints and -symps, axioms MM1, MM2 and MM3 are satisfied.

the tangent space of a point 
of X is contained in a [2(5-1)] 

MM2 MM3

➜➜➜

LEVEL 1 SPLIT

super- 
points

two [5]s of 𝚵 
intersect in points of X∪Y 

but never in Y only

7-spaces 𝝽’ in PG(14,K) 
s.th. 𝝽’ ∩ X is 
a supersymp

5-spaces 𝝽 in PG(14,K) 
s.th. 𝝽 ∩ X is:



MM SETS WITH (3,1)-SYMPS: RESULT

For any field K, let (X, 𝚵) be a singular MM-set with (3,1)-symps and supersymps. 
3
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MM SETS WITH (3,1)-SYMPS: RESULT

ADS, Van Maldeghem (2017) 
If nontrivial, (X, 𝚵) is projectively unique and hence isomorphic to 𝓥(L’[0])

d=3 
v=1

For any field K, let (X, 𝚵) be a singular MM-set with (3,1)-symps and supersymps. 

𝓥(L’)8

14

5
A2×A2

3

1LEVEL 1 SPLIT
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