

CHARACTERISING SINGULAR VERONESE VARIETIES

GHENT
UNIVERSITY
Buildings 2017

0

Orisin

THE MAGIC SQUARE

THE MAGIC SQUARE: 2ND ROW

THE MAGIC SQUARE: 2ND ROW

THE MAGIC SQUARE: 2ND ROW

Nonsplit

Split

THE MAGIC SQUARE: 2ND ROW

Nonsplit

Moufang projective planes
$P G(2, K)$
$P G(2, L)$
$P G(2, H)$
$P G(2, O)$

$P G(2, K)$
Segre variety $S_{2,2}(K)$ Line Grassmannian of $A_{5}(K)$
$E_{6,1}(K)$ variety

THE MAGIC SQUARE: 2ND ROW

Nonsplit

Moufang projective planes $P G(2, K)$ $P G(2, L)$ $P G(2, H)$ PG(2,O)

PG(2,K)
Segre variety $S_{2,2}(K)$ Line Grassmannian of $A_{5}(K)$ $E_{6,1}(K)$ variety

THE MAGIC SQUARE: 2ND ROW

Nonsplit
Moufang projective planes $P G(2, K)$ $P G(2, L)$ $P G(2, H)$ PG(2,O)

Split
Severi varieties
$P G(2, K)$
Segre variety $S_{2,2}(K)$ Line Grassmannian of $A_{5}(K)$ $E_{6,1}(K)$ variety

1
Axiomatisation

Axiomatic description

The pair (X, Ξ) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics of minimal Witt index

The pair (X, Ξ) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics of maximal Witt index

MM SETS WITH OTHER QUADRICS

Axiomatic description
 some quadric
each two points of X belong to a [d] of Ξ

MM3
the tangent space of a point of X is contained in a [2(d-1)]

MM SETS WITH OTHER QUADRICS

Axiomatic description

some quadric

Conjecture:

There are no MM sets with quadrics of intermediate Witt index

MM SETS WITH OTHER QUADRICS

Axiomatic description

some quadric

Yet
There are MM sets with
singular quadrics

SINGULAR MM SETS: A FIRST EXAMPLE

Axiomatic description

MM3
a point-cone over $Q^{\text {min }}(2, K)$; without vertex
the tangent space of a point of X is contained in a [2(3-1)]

SINGULAR MM SETS: A FIRST EXAMPLE

Axiomatic description

each two points of X belong to a [3] of Ξ

SINGULAR MM SETS: A FIRST EXAMPLE

Axiomatic description

each two points of X belong to a [3] of Ξ

SINGULAR MM SETS: A FIRST EXAMPLE

Axiomatic description

each two points of X belong to a [3] of Ξ

The pair (X, Ξ) together with MM1, MM2' and MM3 is called a singular MIM-set with (2,0)-tubes.

SINGULAR MM SETS: A FIRST EXAMPLE

Axiomatic description
$(2,0)$-tube

MMI

each two points of X belong to a [3] of Ξ

Schillewaert, Van Maldeghem (2015) If nontrivial, (X, Ξ) is projectively unique and isomorphic to
a Hjelmslevian projective plane.

SINGULAR MM SETS: A FIRST EXAMPLE

Schillewaert, Van Maldeghem (2015)
If nontrivial, (X, Ξ) is projectively unique and isomorphic to a Hjelmslevian projective plane.

Trivial:
(X, Ξ) is a cone with vertex a point and base $\mathscr{V}(\mathrm{K})$

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base $\mathscr{V}(\mathrm{K})$
(to be continued)

WHY DOES THIS WORK?

Algebraic explanation.

WHY DOES THIS WORK?

Algebraic explanation.

WHY DOES THIS WORK?

Algebraic explanation.

These are Cayley-Dickson algebras.

WHY DOES THIS WORK?

Algebraic explanation.

nonsplit | PG(2,K) |
| :---: |
| split |
| projective plane, |
| field K |

These are Cayley-Dickson algebras.

The Hjelmslevian projective plane is a proj. remoteness plane over the dual numbers over K, which can also be seen as a Cayley-Dickson algebra.

Cayley Dickson algebras

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

THE CAYLEY-DICKSON PROCESS
Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$		L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(a, b) \cdot L(c, d)$	(a, b)
K	$\underline{x}=x$		$K \times K$	$(a+c, b+d)$	$(\mathrm{ac}+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	($\mathrm{a},-\mathrm{b}$)

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

L comes with a norm function

$$
\begin{array}{ll}
\text { n } \\
n_{L}: L \rightarrow L:(a, b) \mapsto(a, b) \cdot L(a, b) & \begin{array}{l}
(a, b) \cdot L(a, b) \\
=(a \underline{a}-\zeta b \underline{b}, 0) \\
=\left(n_{k}(a)-\zeta n_{k}(b), 0\right)
\end{array}
\end{array}
$$

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{x} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$	$\zeta \in K \backslash\{0\}$	K \times K	$(a+c, b+d)$	$(\mathrm{ac}+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{a} \mathrm{~d}+\mathrm{cb})$	(a, -b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{k}(a)-\zeta n_{k}(b)
$$

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$		K \times K	$(a+c, b+d)$	(ac $+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	(a,-b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-\zeta n_{K}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0\left(\right.$ since $\left.(a, b)^{-1}=(a, b) / n_{L}(a, b)\right)$

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$		K \times K	$(a+c, b+d)$	(ac $+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	(a,-b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{k}(a)-\zeta n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$		K \times K	$(a+c, b+d)$	(ac $+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	(a,-b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-\zeta n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$
This yields two possibilities for the algebra L:

THE CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$		$K \times K$	$(a+c, b+d)$: $\mathrm{ac}+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	(a, -b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-\zeta n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$
This yields two possibilities for the algebra L:

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{L}((a, b))=a^{2}-\zeta b^{2} \\
n_{L} \text { anisotropic }
\end{gathered}
$$

L split algebra

$\zeta=s^{2}(s \in K \backslash\{0\})$
$n_{L}((a, b))=(a-s b)(a+s b)$
$n_{\llcorner }$splits

THE GENERALISED CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{X} \mapsto \underline{\mathrm{x}}$	$\rightarrow \rightarrow \rightarrow$	L	$(\mathrm{a}, \mathrm{b})+\mathrm{L}(\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$		K \times K	$(a+c, b+d)$: $\mathrm{ac}+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{\mathrm{a}} \mathrm{d}+\mathrm{cb})$	(a, -b)

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-\zeta n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$
This yields two possibilities for the algebra L:

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{L}((a, b))=a^{2}-\zeta b^{2} \\
n_{L} \text { anisotropic }
\end{gathered}
$$

L split algebra

$\zeta=s^{2}(s \in K \backslash\{0\})$
$n_{L}((a, b))=(a-s b)(a+s b)$
$n_{\llcorner }$splits

THE GENERALISED CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A: Involution $\mathrm{x} \mapsto \underline{\mathrm{x}}$ $\begin{array}{l:ll}\mathrm{K} & \underline{x}=x & \zeta=0 \\ \rightarrow \rightarrow \rightarrow\end{array}$

L	$(a, b)+L(c, d)$	$(a, b) \cdot L(c, d)$	(a, b)
$K \times K$	$(a+c, b+d)$	$(a c+\zeta d \underline{b}, \underline{a d} d+c b)$	$(\underline{a},-b)$

L comes with a norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-\zeta n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$
This yields two possibilities for the algebra L:

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{L}((a, b))=a^{2}-\zeta b^{2} \\
n_{\llcorner } \text {anisotropic }
\end{gathered}
$$

L split algebra

$\zeta=s^{2}(s \in K \backslash\{0\})$
$n_{L}((a, b))=(a-s b)(a+s b)$
$n_{\llcorner }$splits

THE GENERALISED CAYLEY-DICKSON PROCESS
Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A	Involution $\mathrm{x} \mapsto \underline{\mathrm{x}}$		L	(a,b) +L ($\mathrm{c}, \mathrm{d})$	$(\mathrm{a}, \mathrm{b}) \cdot \mathrm{L}(\mathrm{c}, \mathrm{d})$	(a, b)
K	$\underline{x}=x$	$\zeta=0$	K × K	$(a+c, b+d)$	$(\mathrm{ac}+\zeta \mathrm{d} \underline{\mathrm{b}}, \underline{a d}+\mathrm{cb})$	(a,-b)

L comes with a degenerate norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{k}(a)-O n_{k}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq \zeta n_{k}(b) \Longleftrightarrow n_{k}\left(a b^{-1}\right) \neq \zeta$
This yields two possibilities for the algebra L:

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{\llcorner }((a, b))=a^{2}-\zeta b^{2}
\end{gathered}
$$

n_{L} anisotropic

L split algebra

$$
\begin{aligned}
\zeta= & s^{2}(s \in K \backslash\{0\}) \\
n_{\llcorner }((a, b)) & =(a-s b)(a+s b) \\
& n_{\llcorner } \text {splits }
\end{aligned}
$$

THE GENERALISED CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)

Algebra A: Involution $\mathrm{x} \mapsto \underline{\mathrm{x}}$ $\begin{array}{l:l:l}K & \underline{x}=x & \begin{array}{ll}\zeta=0 \\ \rightarrow \rightarrow \rightarrow\end{array}\end{array}$

L	$(a, b)+L(c, d)$	$(a, b) \cdot L(c, d)$	(a, b)
$K \times K$	$(a+c, b+d)$	$(a c+\zeta d \underline{b}, \underline{a d} d+c b)$	$(\underline{a},-b)$

L comes with a degenerate norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-O n_{K}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq 0$

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{L}((a, b))=a^{2}-\zeta b^{2} \\
n_{\llcorner } \text {anisotropic }
\end{gathered}
$$

L split algebra
$\zeta=s^{2}(s \in K \backslash\{0\})$
$n_{L}((a, b))=(a-s b)(a+s b)$
$n_{\llcorner }$splits

THE GENERALISED CAYLEY-DICKSON PROCESS

Let K be a field with $\operatorname{kar}(\mathrm{K}) \neq 2$ (for simplicity)
Algebra A: Involution $\mathrm{x} \mapsto \underline{\mathrm{x}}$
$\begin{array}{l:ll}\mathrm{K} & \underline{x}=x & \zeta=0 \\ \rightarrow \rightarrow \rightarrow\end{array}$

L	$(a, b)+L(c, d)$	$(a, b) \cdot L(c, d)$	(a, b)
$K \times K$	$(a+c, b+d)$	$(a c+\zeta d \underline{b}, \underline{a d}+c b)$	$(\underline{a},-b)$

L comes with a degenerate norm function

$$
n_{L}: L \rightarrow K:(a, b) \mapsto n_{K}(a)-0 n_{K}(b)
$$

Now $(a, b) \neq(0,0)$ invertible $\Longleftrightarrow n_{L}((a, b)) \neq 0 \Longleftrightarrow n_{k}(a) \neq 0$
This yields three possibilities for the algebra L:

L division algebra

$$
\begin{gathered}
\zeta \notin n_{K}(K)=K^{2} \\
n_{\llcorner }((a, b))=a^{2}-\zeta b^{2} \\
n_{\llcorner } \text {anisotropic }
\end{gathered}
$$

L singular algebra

$$
\begin{gathered}
\zeta=0 \\
n_{\llcorner }((a, b))=a^{2} \\
n_{\llcorner } \text {degenerate }
\end{gathered}
$$

L split algebra

$\zeta=s^{2}(s \in K \backslash\{0\})$
$n_{L}((a, b))=(a-s b)(a+s b)$
$n_{\llcorner }$splits

THE GENERALISED CAYLEY-DICKSON PROCESS

THE GENERALISED CAYLEY-DICKSON PROCESS

THE GENERALISED CAYLEY-DICKSON PROCESS

THE GENERALISED CAYLEY-DICKSON PROCESS

3

Veronese varieties

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto\left(x^{2}, y^{2}, z^{2} ; y z, z x, x y\right)
$$

point \rightarrow point
line \rightarrow conic in a plane $\left(\mathrm{Q}^{\min }(2, K)\right)$
$(0, y, z) \mapsto\left(0, y^{2}, z^{2} ; y z, 0,0\right)$ satisfies $X_{1} X_{2}=X_{3}^{2}, X_{0}=X_{4}=X_{5}=0$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\begin{aligned}
\rho: P G(2, K) & \left.\rightarrow P G(5, K):(x, y, z) \mapsto\left(x^{2}, y^{2}, z^{2} ; y z, z x, x y\right)\right) \\
\text { point } & \rightarrow \text { point } \\
\text { line } & \rightarrow \text { conic in a plane }\left(Q^{\min }(2, K)\right) \\
(0, y, z) & \mapsto\left(0, y^{2}, z^{2} ; y z, 0,0\right) \text { satisfies } X_{1} X_{2}=X_{3}^{2}, X_{0}=X_{4}=X_{5}=0
\end{aligned}
$$

The variety $(X, \Xi)=($ im(points), $\mathrm{im}($ lines $))$ satisfies \square
ie., $\mathscr{V}(\mathrm{K})$ is a $\mathbb{M I M}$ set with $\mathrm{Q}^{\min }(2, \mathrm{~K})$ s

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\begin{aligned}
\rho: P G(2, K) & \left.\rightarrow P G(5, K):(x, y, z) \mapsto\left(x^{2}, y^{2}, z^{2} ; y z, z x, x y\right)\right) \\
\text { point } & \rightarrow \text { point } \\
\text { line } & \rightarrow \text { conic in a plane }\left(Q^{\min }(2, K)\right) \\
(0, y, z) & \mapsto\left(0, y^{2}, z^{2} ; y z, 0,0\right) \text { satisfies } X_{1} X_{2}=X_{3}^{2}, X_{0}=X_{4}=X_{5}=0
\end{aligned}
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\begin{aligned}
\rho: P G(2, K) & \left.\rightarrow P G(5, K):(x, y, z) \mapsto\left(x^{2}, y^{2}, z^{2} ; y z, z x, x y\right)\right) \\
\text { point } & \rightarrow \text { point } \\
\text { line } & \rightarrow \text { conic in a plane }\left(Q^{\min }(2, K)\right) \\
(0, y, z) & \mapsto\left(0, y^{2}, z^{2} ; y z, 0,0\right) \text { satisfies } X_{1} X_{2}=X_{3}^{2}, X_{0}=X_{4}=X_{5}=0
\end{aligned}
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$
\rightarrow rewrite ρ, using that $x \underline{x}=x^{2}=n(x)$ for $x \in K$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y y, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

$$
\begin{aligned}
& \text { point } \rightarrow \text { point } \\
& \text { line } \rightarrow \text { conic in a plane }\left(Q^{\min }(2, K)\right)
\end{aligned}
$$

$$
(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0) \text { satisfies } X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$
\rightarrow rewrite ρ, using that $x \underline{x}=x^{2}=n(x)$ for $x \in K$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

$$
\text { point } \rightarrow \text { point }
$$

$$
\text { line } \rightarrow \text { conic in a plane }\left(\mathrm{Q}^{\min }(2, K)\right)
$$

$$
(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0) \text { satisfies } X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

$$
\rho: P G(2, R) \rightarrow P G(8, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y)
$$

$$
X_{0} \quad X_{1} \quad X_{2} \quad\left(X_{3}, X_{4}\right)\left(X_{5}, X_{6}\right)\left(X_{7}, X_{8}\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y y, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

$$
\text { point } \rightarrow \text { point }
$$

$$
\text { line } \rightarrow \text { conic in a plane }\left(\mathrm{O}^{\min }(2, K)\right)
$$

$$
(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0) \text { satisfies } X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

$$
\begin{array}{r}
\rho: P G(2, R) \rightarrow P G(8, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; \quad y \underline{z}, \quad z \underline{x}, x y) \\
x_{0} \quad x_{1} \quad x_{2}\left(x_{3}, x_{4}\right)\left(x_{5}, x_{6)}\right)\left(x_{7}, x_{8}\right)
\end{array}
$$

Warning: if $R=L^{\prime}$ or $K[0]$, there is no projective plane over it.

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y)
$$

$$
\begin{aligned}
& \text { point } \rightarrow \text { point } \\
& \text { line } \rightarrow \text { conic in a plane }\left(Q^{\min }(2, K)\right) \\
& (0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0) \text { satisfies } X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0
\end{aligned}
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

Warning: if $R=L^{\prime}$ or $K[0]$, there is no projective plane over it.
\rightarrow take a ring geometry $\mathrm{G}(2, R)$ instead:
points : $\left\{(x, y, z) R^{*} \mid x, y, z \in R \&(x, y, z) r=0\right.$ for $r \in R$ implies $\left.r=0\right\}$
lines: $\left\{R^{*}[a, b, c] \mid a, b, c \in R \& r[a, b, c]=0\right.$ for $r \in R$ implies $\left.r=0\right\}$
incidence: $a x+b y+c z=0$
If $R=L$, then $G(2, L)=P G(2, L)$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

$$
\text { point } \rightarrow \text { point }
$$

$$
\text { line } \rightarrow \text { conic in a plane }\left(\mathrm{Q}^{\min }(2, \mathrm{~K})\right)
$$

$$
(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0) \text { satisfies } X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0
$$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

$$
\rho: G(2, R) \rightarrow P G(8, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, \quad z \underline{x}, x y)
$$

$$
X_{0} \quad X_{1} \quad X_{2} \quad\left(X_{3}, X_{4}\right)\left(X_{5}, X_{6}\right)\left(X_{7}, X_{8}\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

point \rightarrow point
line \rightarrow conic in a plane $\left(\mathrm{Q}^{\min }(2, K)\right)$
$(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0)$ satisfies $X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

$$
\begin{array}{r}
\rho: G(2, R) \rightarrow P G(8, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; \quad y \underline{z}, z \underline{x}, x y) \\
x_{0} \quad x_{1} \quad x_{2}\left(X_{3}, x_{4}\right)\left(X_{5}, X_{6}\right)\left(X_{7}, X_{8}\right)
\end{array}
$$

$(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0)$ satisfies $X_{1} X_{2}=n\left(X_{3}, X_{4}\right)=X_{3}^{2}-\zeta X_{4}^{2}$

CD ALGEBRA \rightarrow VERONESE VAR

Let K be a field. The Veronese variety $\mathscr{V}(\mathrm{K})$ is defined as follows

$$
\rho: P G(2, K) \rightarrow P G(5, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y))
$$

point \rightarrow point
line \rightarrow conic in a plane $\left(\mathrm{Q}^{\min }(2, K)\right)$
$(0, y, z) \mapsto(0, y \underline{y}, z \underline{z} ; y \underline{z}, 0,0)$ satisfies $X_{1} X_{2}=n\left(X_{3}\right), X_{0}=X_{4}=X_{5}=0$

Similarly, for $R=C D(K, \zeta)$ we have the Veronese variety $\mathscr{V}(R)$

$$
\begin{array}{r}
\rho: G(2, R) \rightarrow P G(8, K):(x, y, z) \mapsto(x \underline{x}, y \underline{y}, z \underline{z} ; y \underline{z}, z \underline{x}, x y) \\
x_{0} \quad x_{1} \quad x_{2}\left(x_{3}, x_{4}\right)\left(X_{5}, x_{6}\right)\left(X_{7}, x_{8}\right)
\end{array}
$$

$(0, y, z) \mapsto(0, y \underline{y}, z \underline{\underline{z}} ; y \underline{z}, 0,0)$ satisfies $X_{1} X_{2}=n\left(X_{3}, X_{4}\right)=X_{3}^{2}-\zeta X_{4}^{2}$
(Si sin

Again, (im(points),im(lines)) satisfies the MM axioms so $\mathscr{V}(R)$ is an MIM set.

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

$$
X_{1} X_{2}=n_{A}\left(\left(X_{3}, \ldots, X_{d+1}\right)\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

$$
X_{1} X_{2}=n_{A}\left(\left(X_{3}, \ldots, X_{d+1}\right)\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

$$
X_{1} X_{2}=n_{A}\left(\left(X_{3}, \ldots, X_{d+1}\right)\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

$$
X_{1} X_{2}=n_{A}\left(\left(X_{3}, \ldots, X_{d+1}\right)\right)
$$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details). MM sets with
\square

$\checkmark \mathrm{MM}$ sets with

-

2

standard CD algebras
$\downarrow \uparrow$
second row geometries $\downarrow \uparrow$ MM sets

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details). MM sets with

$\checkmark \mathrm{MM}$ sets with

$\checkmark \mathrm{MM}$ set with

(2) \checkmark MM sets with

2

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

LEVEL 1

1 free
coordinate
generalised CD algebras

\downarrow

all second row geometries $\downarrow \uparrow$
modified MM sets

4
Results

MM SETS WITH (D,V)-TUBES

Axiomatic description

$Y \quad \begin{array}{llll}\text { vertices } & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & & 0\end{array}$
(d,v)-tube

$$
\begin{gathered}
d^{\prime} \text {-spaces } \xi \text { in } P G(N, K) \\
\text { s.th. } \xi \cap X \text { is: } \\
\left(d^{\prime}=d+v+1\right)
\end{gathered}
$$

MM SETS WITH (D,V)-TUBES

Axiomatic description
(d,v)-tube

each two points of X belong to a [d'] of Ξ

MM SETS WITH (D,V)-TUBES

Axiomatic description

```
(d,v)-tube
```


$\left(d^{\prime}=d+v+1\right)$

each two points of X belong to a [d'] of Ξ

MM3

the tangent space of a point of X is contained in a [2(d'-1)]

The pair (X, Ξ) together with MM1, MM2' and MM3 is called a singular MIM-set with (d,v)-tubes.

MM SETS WITH (D,V)-TUBES: RESULTS

Case 1: the vertex is only a point $(v=0)$
For any field K, let (X, Ξ) be a singular MM-set with ($\mathrm{d}, 0$)-tubes.

MM SETS WITH (D,V)-TUBES: RESULTS

Case 1: the vertex is only a point $(v=0)$
For any field K, let (X, Ξ) be a singular MM-set with ($\mathrm{d}, 0$)-tubes.
Schillewaert, Van Maldeghem (2015)
$d=2$
If nontrivial, (X, E) is projectively unique and isomorphic to a Hjelmslevian projective plane.

MM SETS WITH (D,V)-TUBES: RESULTS

Case 1: the vertex is only a point $(v=0)$
For any field K, let (X, Ξ) be a singular MM-set with ($\mathrm{d}, 0$)-tubes.

ADS, Van Maldeghem (2017) (X, Ξ) is always trivial.

HJELMSLEVIAN PROJECTIVE PLANES

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base an MM set with $\mathrm{Q}^{\min }(2, K) \mathrm{s}$

HJELMSLEVIAN PROJECTIVE PLANES

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base an MM set with $\mathrm{Q}^{\min }(2, K) \mathrm{s}$

The vertices form a projective plane over K.

HJELMSLEVIAN PROJECTIVE PLANES

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base an MM set with $\mathrm{Q}^{\min }(2, K) \mathrm{s}$

The vertices form a projective plane over K.
In a complementary subspace, the points of X form the Veronese variety $\mathscr{V}(K)$.

HJELMSLEVIAN PROJECTIVE PLANES

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base an MM set with $\mathrm{Q}^{\min }(2, K) \mathrm{s}$

The vertices form a projective plane over K.
In a complementary subspace, the points of X form the Veronese variety $\mathscr{V}(K)$.
The mapping χ is a linear duality between $\mathscr{V}(K)$ and $P G(2, K)$.

HJELMSLEVIAN PROJECTIVE PLANES

A Hjelmslevian projective plane:

(X, Ξ) is something with vertices in a plane and base an MM set with $\mathrm{Q}^{\min }(2, K) \mathrm{s}$

The vertices form a projective plane over K.
In a complementary subspace, the points of X form the Veronese variety $\mathscr{V}(K)$.
The mapping χ is a linear duality between $\mathscr{V}(K)$ and $P G(2, K)$.
The union of the affine planes $x \chi(x) \backslash \chi(x)$, with x in $\mathscr{V}(K)$, equals X.

A SIMILAR CONSTRUCTION

A SIMILAR CONSTRUCTION

total dim
dim quadric

dim quadric	total dim
2	5
3	8
5	14
9	26
$d=2^{a}+1$	$3 d-1$

A SIMILAR CONSTRUCTION

total dim
dim quadric

dim quadric	total dim
2	5
3	8
5	14
9	26
$d=2^{a}+1$	$3 d-1$

A SIMILAR CONSTRUCTION

total dim
dim quadric

dim quadric	total dim
2	5
3	8
5	14
9	26
$d=2^{a}+1$	$3 d-1$

A SIMILAR CONSTRUCTION

Why isomorphic to $\mathrm{PG}(2, \mathrm{~L})$?
5
$P G(2, L)-V(3, L)-V(6, K)-P G(5, K)$ point - vector line - vector plane - line line \qquad regular line-spread in 3-space

A SIMILAR CONSTRUCTION

What is wrong with the last one?

The regular 7-spread defines a Desarguesian plane.

$\mathscr{V}(O)$ is a representation of a non-Desarguesian plane.

MM SETS WITH (D, V)-TUBES: RESULTS

Case 2: the vertex is higher dimensional ($\mathrm{v}>0$)
For any field K, let (X, Ξ) be a singular MM-set with (d, v)-tubes.

MM SETS WITH (D, V)-TUBES: RESULTS

Case 2: the vertex is higher dimensional ($\mathrm{v}>0$)
For any field K, let (X, Ξ) be a singular MM-set with (d,v)-tubes. We need to change MM2'

two [d']s of Ξ
intersect in points of $X \cup Y$ but never in Y only

MM SETS WITH (D, V)-TUBES: RESULTS

Case 2: the vertex is higher dimensional ($\mathrm{v}>0$)
For any field K, let (X, Ξ) be a singular MM-set with (d,v)-tubes.
With MM1, MM2* and MM3 we obtain:

ADS, Van Maldeghem (2017)

If nontrivial, (X, Ξ) is projectively unique and isomorphic to
a Hjelmslevian projective plane:

$\mathscr{V}(K[0])$

$\mathscr{V}(L[0])$

$\mathscr{V}(H[0])$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

LEVEL 1

$\sqrt{7}$

MM set with ((d,v) general)

2 more
free

9

3

2

2

5

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

LEVEL 1

MM set with ((d,v) general)

1 free
coordinate

9

o/e

6 5

3

$20^{10 e^{3}}$

CD ALGEBRA \rightarrow VERONESE VAR

Let A be a Cayley Dickson algebra with $\operatorname{dim}(\mathrm{A} / \mathrm{K})=\mathrm{d}$. The Veronese variety $\mathscr{V}(\mathrm{A})$ is defined similarly (ignore details).

LEVEL 1

v

MM set with ((d,v) general)

Take this one as a test case

1 free
coordinate

2

9

$\sigma_{6} / 0$

6. 5

3

2
3

9
$10^{-e^{80}}$

PS

Axiomatic description
(3,1)-symp

each two points of X belong to a [5] of Ξ

intersect in points of $X \cup Y$ but never in Y only
the tangent space of a point of X is contained in a [2(5-1)]

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

MMI
each two points of X belong to a [5] of Ξ

intersect in points of $X \cup Y$ but never in Y only
the tangent space of a point of X is contained in a [2(5-1)]

Surprise: The Veronese variety $\mathscr{V}\left(L^{\prime}[0]\right)$ does not satisfy axioms MM1 and MM2!

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

MMI

each two points of X belong to a [5] of Ξ

$$
\begin{gathered}
5 \text {-spaces } \xi \text { in } \mathrm{PG}(14, K) \\
\text { s.th. } \xi \cap X \text { is: }
\end{gathered}
$$

Yet, each two points not belonging to a [5] of Ξ, belong to a supersymp:

Surprise: The Veronese variety $\mathscr{V}(L$ '[O] $)$ does not satisfy axioms MM1 and MM2!

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

Yet, each two points not belonging to a [5] of Ξ, belong to a supersymp:

Surprise: The Veronese variety $\mathscr{V}(L$ '[O] $)$ does not satisfy axioms MM1 and MM2!

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

Yet, each two points not belonging to a [5] of Ξ, belong to a supersymp:

Surprise: The Veronese variety $\mathscr{V}\left(L^{\prime}[0]\right)$ does not satisfy axioms MM1 and MM2!

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

MM1

each two points of X belong to a member of Ξ

5-spaces ξ in PG(14,K) s.th. $\xi \cap \mathrm{X}$ is:

7-spaces ξ^{\prime} in $\mathrm{PG}(14, \mathrm{~K})$ s.th. $\xi^{\prime} \cap X$ is a supersymp

Yet, each two points not belonging to a [5] of Ξ, belong to a supersymp:

Dually, there are also superpoints.

Surprise: The Veronese variety $\mathscr{V}\left(L^{\prime}[0]\right)$ does not satisfy axioms MM1 and MM2!

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

Yet, each two points not belonging to a [5] of Ξ, belong to a supersymp:

Dually, there are also superpoints.

5-spaces ξ in PG(14,K) s.th. $\xi \cap \mathrm{X}$ is:

7-spaces ξ^{\prime} in $\mathrm{PG}(14, \mathrm{~K})$ s.th. $\xi^{\prime} \cap X$ is a supersymp

MM1

each two points of X belong to a member of Ξ
 beng to member of

MM SETS WITH $(3,1)$-SYMPS

LEVEL 1 SPLIT

Axiomatic description
(3,1)-symp

MM3
the tangent space of a point of X is contained in a [2(5-1)]

Together with the superpoints and -symps, axioms MM1, MM2 and MM3 are satisfied.

MM SETS WITH $(3,1)$-SYMPS: RESULT

For any field K, let (X, Ξ) be a singular MM-set with $(3,1)$-symps and supersymps.

MM SETS WITH (3,1)-SYMPS: RESULT

For any field K, let (X, Ξ) be a singular MM-set with $(3,1)$-symps and supersymps.
$d=3$
$\mathrm{v}=1$

ADS, Van Maldeghem (2017)

If nontrivial, (X, Ξ) is projectively unique and hence isomorphic to $\mathscr{V}\left(L^{\prime}[0]\right)$

FINAL OVERVIEW

FINAL OVERVIEW

FINAL OVERVIEW

$$
00
$$

THANKS FOR YOUR ATTENTION

