OVERVIEW

(generalised) Veronese varieties

a little bit of algebra

point-line geometries with 3 axioms
OVERVIEW

(generalised) Veronese varieties

description

a little bit of algebra

examples

point-line geometries with 3 axioms
EXAMPLE 1

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows.
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows:

$$\rho: \operatorname{PG}(2,K) \to \operatorname{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$
\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)
$$

point \rightarrow point
Let \mathbb{K} be a field. The Veronese variety $\mathcal{V}(\mathbb{K})$ is defined as follows

$$\rho: \text{PG}(2, \mathbb{K}) \to \text{PG}(5, \mathbb{K}): (x, y, z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

EXAMPLE 1
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$\varrho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$

point \to point

line \to ?

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows:

\[\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy) \]

- point \mapsto point
- line \mapsto conic in a plane

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows:

$$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

- **point** \mapsto **point**
- **line** \mapsto **conic in a plane**

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

Note: this plane contains no other points of $\text{im}(\rho)$.
EXAMPLE 1

Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

- point \mapsto point
- line \leadsto plane intersecting $\text{im}(\rho)$ in a conic ("conic-place")

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

Note: this plane contains no other points of $\text{im}(\rho)$.
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x, y, z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

point \mapsto point
line \leadsto plane intersecting $\text{im}(\rho)$ in a conic ("conic-place")

$(0, y, z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

This variety of points and conic-planes has the following properties.
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$ \rho: \text{PG}(2, K) \rightarrow \text{PG}(5, K): (x, y, z) \mapsto (x^2, y^2, z^2; yz, zx, xy) $$

- point \rightarrow point
- line \rightsquigarrow plane intersecting $\text{im}(\rho)$ in a conic ("conic-place")

$(0, y, z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2 = X_3^2$, $X_0 = X_4 = X_5 = 0$

This variety of points and conic-planes has the following properties.

Each two points of $\text{im}(\rho)$ belong to a conic-plane.
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows:

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

- point \mapsto point
- line \sim plane intersecting $\text{im}(\rho)$ in a conic (""conic-place"")

(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0) satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

This variety of points and conic-planes has the following properties.

- each two points of $\text{im}(\rho)$ belong to a conic-plane
- the conic-planes intersect in points of $\text{im}(\rho)$
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: \mathbb{P}G(2,K) \to \mathbb{P}G(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

point \mapsto point
line \leadsto plane intersecting $\text{im}(\rho)$ in a conic ("conic-place")

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

This variety of points and conic-planes has the following properties.

- Each two points of $\text{im}(\rho)$ belong to a conic-plane.
- The conic-planes intersect in points of $\text{im}(\rho)$.

EXAMPLE 1
Let K be a field. The Veronese variety $\mathcal{V}(K)$ is defined as follows

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

point \mapsto point
line \leadsto plane intersecting $\text{im}(\rho)$ in a conic ("conic-place")

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$, $X_0=X_4=X_5=0$

This variety of points and conic-planes has the following properties.

- each two points of $\text{im}(\rho)$ belong to a conic-plane
- the conic-planes intersect in points of $\text{im}(\rho)$
- the tangent space of a point is a plane

the span of all tangent lines through a point is the tangent space of that point
EXAMPLE 1

Axiomatic description of the Veronese variety $\mathcal{V}(K)$

$X = $ spanning point set of $\text{PG}(N,K)$

$\Xi = $ family of planes ξ in $\text{PG}(N,K)$ s.th. $\xi \cap X$ is an conic in ξ

such that the following properties are satisfied

- each two points of X belong to a plane of Ξ
- two planes of Ξ intersect in points of X
- the tangent space of a point of X is a plane
EXAMPLE 1

Axiomatic description of the Veronese variety $\mathcal{V}(K)$

$X = \text{spanning point set of } \text{PG}(N,K)$

$\Xi = \text{family of planes } \xi \text{ in } \text{PG}(N,K) \text{ s.th. } \xi \cap X \text{ is an conic in } \xi$

such that the following **properties** are satisfied

- Each two points of X belong to a plane of Ξ
- Two planes of Ξ intersect in points of X
- The tangent space of a point of X is a plane

Mazzocca, Melone (1984)

If $K=F(q)$ with q odd, and $N=5$:

(X, Ξ) is projectively unique and hence equivalent with $\mathcal{V}(K)$.
EXAMPLE 1

Axiomatic description of the Veronese variety $\mathcal{V}(K)$

$X = \text{spanning point set of } PG(N,K)$

$\Xi = \text{family of planes } \xi \text{ in } PG(N,K) \text{ s.th. } \xi \cap X \text{ is an conic in } \xi$

such that the following properties are satisfied

- each two points of X belong to a plane of Ξ
- two planes of Ξ intersect in points of X
- the tangent space of a point of X is a plane

Hirschfeld, Thas (1991)

If $K=F(q)$:

(X, Ξ) is projectively unique and hence equivalent with $\mathcal{V}(K)$.
EXAMPLE 1

Axiomatic description of the Veronese variety $\mathcal{V}(K)$

- $X = \text{spanning point set of } \text{PG}(N,K)$
- $\Xi = \text{family of planes } \xi \text{ in } \text{PG}(N,K) \text{ s.th. } \xi \cap X \text{ is an conic in } \xi$

such that the following **properties** are satisfied

- each two **points** of X belong to a **plane** of Ξ
- two **planes** of Ξ intersect in **points** of X
- the tangent space of a **point** of X is a plane

Thas, Van Maldeghem (2004)

If $K = F(q)$ and we use **ovals** instead of **conics**:

(X, Ξ) is **projectively unique** and hence equivalent with $\mathcal{V}(K)$.
EXAMPLE 1

Axiomatic description of the Veronese variety \(\mathcal{V}(K) \)

- \(X = \) spanning point set of \(\text{PG}(N,K) \)
- \(\mathcal{E} = \) family of planes \(\xi \) in \(\text{PG}(N,K) \) s.th. \(\xi \cap X \) is an conic in \(\xi \)

such that the following properties are satisfied

- each two points of \(X \) belong to a plane of \(\mathcal{E} \)
- two planes of \(\mathcal{E} \) intersect in points of \(X \)
- the tangent space of a point of \(X \) is a plane

Schillewaert, Van Maldeghem (2013)

For any field \(K \) (and still using ovals):

\((X, \mathcal{E}) \) is projectively unique and hence equivalent with \(\mathcal{V}(K) \).
EXAMPLE 1

Axiomatic description of the Veronese variety \(\mathcal{Y}(K) \)

\(X \) = spanning point set of \(\text{PG}(N,K) \)
\(\Xi \) = family of planes \(\xi \) in \(\text{PG}(N,K) \) s.th. \(\xi \cap X \) is an conic in \(\xi \)

such that the following properties are satisfied

MM1

each two points of \(X \) belong to a plane of \(\Xi \)

MM2

two planes of \(\Xi \) intersect in points of \(X \)

MM3

the tangent space of a point of \(X \) is a plane

Schillewaert, Van Maldeghem (2013)

For any field \(K \) (and still using ovals):

\((X, \Xi) \) is projectively unique and hence equivalent with \(\mathcal{Y}(K) \).
To each quadratic alternative algebra we associate a Veronese variety.
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

$x(xy) = (xx)y$ and $(xy)y = x(yy)$ for all x, y in A.

OTHER VERONESE VARIETIES
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).
To each quadratic alternative algebra we associate a Veronese variety.
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

Each elt. of A is the root of quadratic equation over K.
Let K be a field, char(K) $\neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

Each elt. of A is the root of quadratic equation over K.

∀$x \in A \setminus K$ there are (unique) $t_A(x)$, $n_A(x) \in K$ such that

$$x^2 - t_A(x) \cdot x + n_A(x) = 0$$
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

Each elt. of A is the root of quadratic equation over K.

$\forall x \in A \setminus K$ there are (unique) $t_A(x), n_A(x) \in K$ such that

$$x^2 - t_A(x) x + n_A(x) = 0$$

Denote the other root by \mathbf{x} and put $\mathbf{x} = x$ for $x \in K$.

OTHER VERONESE VARIETIES
OTHER VERONESE VARIETIES

Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).
To each **quadratic** alternative algebra we associate a **Veronese variety**.

Each elt. of A is the root of quadratic equation over K

∀$x \in A \setminus K$ there are (unique) $t_A(x), n_A(x) \in K$ such that

$$x^2 - t_A(x)x + n_A(x) = 0$$

Denote the other root by x and put $x = x$ for $x \in K$.

Then $x \mapsto x$ is an **involution**, inducing a **norm function** on A:

$$n_A : A \to K : x \mapsto xx$$
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

Each elt. of A is the root of quadratic equation over K.

$\forall x \in A \setminus K$ there are (unique) $t_A(x), n_A(x) \in K$ such that

$$x^2 - t_A(x)x + n_A(x) = 0$$

Denote the other root by x and put $x = x$ for $x \in K$.

Then $x \mapsto x$ is an involution, inducing a norm function on A:

$$n_A : A \to K : x \mapsto xx$$

Property: x is invertible iff $n_A(x) \neq 0$;
if so, $x^{-1} = n_A(x)^{-1}x$
OTHER VERONESE VARIETIES

Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each **quadratic alternative algebra** we associate a **Veronese variety**.

- each elt. of A is the root of quadratic equation over K

\[\forall x \in A \setminus K \text{ there are (unique) } t_A(x), n_A(x) \in K \text{ such that } x^2 - t_A(x) x + n_A(x) = 0 \]

Denote the other root by x and put $x = x$ for $x \in K$.

Then $x \mapsto x$ is an **involution**, inducing a **norm function** on A:

\[n_A : A \to K : x \mapsto xx \]

Property: x is invertible iff $n_A(x) \neq 0$;
- if so, $x^{-1} = n_A(x)^{-1} x$

If $n_A(x) = 0$ implies $x = 0$
A is a **division algebra**
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each \textbf{quadratic} alternative algebra we associate a \textbf{Veronese variety}.

Each elt. of A is the \textbf{root of quadratic equation over} K.

\[\forall x \in A \setminus K \text{ there are (unique) } t_A(x), n_A(x) \in K \text{ such that } x^2 - t_A(x) x + n_A(x) = 0 \]

Denote the other root by x and put $x = x$ for $x \in K$.

Then $x \mapsto x$ is an \textbf{involution}, inducing a \textbf{norm function} on A:

\[n_A : A \to K : x \mapsto xx \]

\textbf{Property}: x is \textbf{invertible} iff $n_A(x) \neq 0$;

if so, $x^{-1} = n_A(x)^{-1} x$

If $n_A(x) = 0$ implies $x = 0$ then A is a \textbf{division algebra}.

If not A is a \textbf{split algebra}.
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

Each elt. of A is the root of quadratic equation over K

$$\forall x \in A\setminus K \text{ there are (unique) } t_A(x), n_A(x) \in K \text{ such that }$$

$$x^2 - t_A(x) x + n_A(x) = 0$$

Denote the other root by x and put $x = x$ for $x \in K$.

Then $x \mapsto x$ is an involution, inducing a norm function on A:

$$n_A : A \to K : x \mapsto xx$$

Property: x is invertible iff $n_A(x) \neq 0$;
if so, $x^{-1} = n_A(x)^{-1}x$

If $n_A(x) = 0$ implies $x = 0$ A is a division algebra

If not A is a split algebra

Example split

$2x2$ matrices over K

$n(M) = \det(M)$

$M = \text{Adj}(M)$
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

$\dim(A/K) \in \{1,2,4,8\}$ and A is one of the following:
Let K be a field, char($K) \neq 2$ (for simplicity).

To each quadratic alternative algebra we associate a Veronese variety.

$\dim(A/K) \in \{1,2,4,8\}$ and A is one of the following:

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>peculiarities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>commutative field K</td>
<td></td>
<td>$x = x$, $n(x) = x^2$</td>
</tr>
<tr>
<td>2</td>
<td>L quadr. extension $K[\sqrt{a}]$ with $a \notin K^2$</td>
<td>L’ quadr. extension $K[\sqrt{a}]$ with $a \in K^2$</td>
<td>commutative ring</td>
</tr>
<tr>
<td>4</td>
<td>H quaternion division algebra over K</td>
<td>H’ split quaternions over K (2x2 matrices)</td>
<td>associative ring</td>
</tr>
<tr>
<td>8</td>
<td>O octonion division algebra over K</td>
<td>O’ split octonions over K</td>
<td>strictly alternative ring</td>
</tr>
</tbody>
</table>
Let K be a field, $\text{char}(K) \neq 2$ (for simplicity). To each quadratic alternative algebra we associate a Veronese variety.

Remark: If K is a finite field, there is no division quaternion algebra nor an octonion algebra over it.

Other Veronese Varieties

<table>
<thead>
<tr>
<th>dim(A/K)</th>
<th>division</th>
<th>split</th>
<th>peculiarities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>commutative field K</td>
<td></td>
<td>$x = x$, $n(x) = x^2$</td>
</tr>
<tr>
<td>2</td>
<td>L quadr. extension $K[\sqrt{a}]$ with $a \notin K^2$</td>
<td>L' quadr. extension $K[\sqrt{a}]$ with $a \in K^2$</td>
<td>commutative ring</td>
</tr>
<tr>
<td>4</td>
<td>H quaternion division algebra over K</td>
<td>H' split quaternions over K (2x2 matrices)</td>
<td>associative ring</td>
</tr>
<tr>
<td>8</td>
<td>O octonion division algebra over K</td>
<td>O' split octonions over K</td>
<td>strictly alternative ring</td>
</tr>
</tbody>
</table>
Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$
Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$

$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$ satisfies $X_1X_2=X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$
Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (x^2, y^2, z^2; yz, zx, xy)$$

$$(0,y,z) \mapsto (0, y^2, z^2; yz, 0, 0)$$ satisfies $X_1X_2=X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

\Rightarrow rewrite ρ, using that $xx = x^2 = n(x)$ for $x \in K$
Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

\Rightarrow rewrite ρ, using that $xx = x^2 = n(x)$ for $x \in K$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K) - K$ a field

$\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$

$(0, y, z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(\mathbb{R}) - \mathbb{R} = K[\sqrt{a}]$

$\rho: PG(2,\mathbb{R}) \rightarrow PG(8,\mathbb{K}): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$
Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

$\rho: \text{PG}(2,R) \rightarrow \text{PG}(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$

Warning: if $R = L'$ (split), then there is no projective plane over it.
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

$$\rho: \text{PG}(2,R) \rightarrow \text{PG}(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

Warning: if $R = L'$ (split), then there is no projective plane over it.

\Rightarrow take a ring geometry $G(2,R)$ as follows

- points: $\{(x,y,z)R^* \mid x, y, z \in R \land (x,y,z)r = 0 \text{ for } r \in R \text{ implies } r = 0\}$
- lines: $\{R^*[a,b,c] \mid a, b, c \in R \land r[a,b,c] = 0 \text{ for } r \in R \text{ implies } r = 0\}$
- incidence: $ax + by + cz = 0$

If $R = L$ (division algebra), then $G(2,L) = \text{PG}(2,L)$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

$$\rho: G(2,R) \to \text{PG}(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

Warning: if $R = L'$ (split), then there is no projective plane over it.

\Rightarrow take a ring geometry $G(2,R)$ as follows

- points: $\{(x,y,z)R^* \mid x, y, z \in R \& (x,y,z)r = 0 \text{ for } r \in R \text{ implies } r = 0\}$
- lines: $\{R^*[a,b,c] \mid a, b, c \in R \& r[a,b,c] = 0 \text{ for } r \in R \text{ implies } r = 0\}$
- incidence: $ax + by + cz = 0$

If $R = L$ (division algebra), then $G(2,L) = \text{PG}(2,L)$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

| ρ: $\text{PG}(2,K) \rightarrow \text{PG}(5,K)$: $(x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$ |

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

| ρ: $\text{G}(2,R) \rightarrow \text{PG}(8,K)$: $(x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$ |

$x_0 \ x_1 \ x_2 \ (x_3, x_4) \ (x_5, x_6) \ (x_7, x_8)$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: \text{PG}(2,K) \to \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

$$\rho: \text{G}(2,R) \to \text{PG}(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = n(X_3, X_4) = X_3^2 - aX_4^2$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: \text{PG}(2,K) \rightarrow \text{PG}(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R)$ - $R = K[\sqrt{a}]$

$$\rho: \text{PG}(2,R) \rightarrow \text{PG}(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = n(X_3, X_4) = X_3^2 - aX_4^2$

- If $a \not\in K^2$ (i.e., R division), we obtain an elliptic quadric in $\text{PG}(3,K)$
- If $a \in K^2$ (i.e., R split), we obtain a hyperbolic quadric in $\text{PG}(3,K)$
ASSOCIATED VERONESE VARIETIES

Example 1. The Veronese variety $\mathcal{V}(K)$ - K a field

$$\rho: PG(2,K) \rightarrow PG(5,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = X_3X_3 = n(X_3) = X_3^2$

Example 2. The Veronese variety $\mathcal{V}(R) - R = K[\sqrt{a}]$

$$\rho: G(2,R) \rightarrow PG(8,K): (x,y,z) \mapsto (xx, yy, zz; yz, zx, xy)$$

$(0,y,z) \mapsto (0, yy, zz; yz, 0, 0)$ satisfies $X_1X_2 = n(X_3, X_4) = X_3^2 - aX_4^2$

Axiomatic description of the Veronese variety $\mathcal{V}(R)$

X = spanning point set of $PG(N,K)$

Ξ = family of 3-spaces ξ in $PG(N,K)$ s.th. $\xi \cap X$ is an ell./hyp. quadric in ξ

Each two points of X belong to a [3] of Ξ

Two [3]s of Ξ intersect in points of X

The tangent space of a point is contained in a [4]
ASSOCIATED VERONESE VARIETIES

What do we obtain for the other **quadratic alternative algebras** over K?

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>peculiarities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>commutative field K</td>
<td></td>
<td>$x = x$, $n(x) = x^2$</td>
</tr>
<tr>
<td>2</td>
<td>L’ quadr. extension $K[\sqrt{a}]$ with $a \not\in K^2$</td>
<td>L’ quadr. extension $K[\sqrt{a}]$ with $a \in K^2$</td>
<td>commutative ring</td>
</tr>
<tr>
<td>4</td>
<td>H quaternion division algebra over K</td>
<td>H’ split quaternions over K (2x2 matrices)</td>
<td>associative ring</td>
</tr>
<tr>
<td>8</td>
<td>O octonion division algebra over K</td>
<td>O’ split octonions over K</td>
<td>strictly alternative ring</td>
</tr>
</tbody>
</table>
ASSOCIATED VERONESE VARIETIES

What do we obtain for the other **quadratic alternative algebras** over \mathbb{K}? The **quadrics** are the following.

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim$(\text{im}(\rho))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oval in $\text{PG}(2,\mathbb{K})$</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>elliptic quadric in $\text{PG}(3,\mathbb{K})$</td>
<td>hyperbolic quadric in $\text{PG}(3,\mathbb{K})$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>elliptic quadric in $\text{PG}(5,\mathbb{K})$</td>
<td>hyperbolic quadric in $\text{PG}(5,\mathbb{K})$</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>elliptic quadric in $\text{PG}(9,\mathbb{K})$</td>
<td>hyperbolic quadric in $\text{PG}(9,\mathbb{K})$</td>
<td>26</td>
</tr>
</tbody>
</table>
What do we obtain for the other \textit{quadratic alternative algebras} over \(K \)? The \textit{quadrics} are the following.

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim(\text{im}(\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oval in PG(2,K)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>elliptic quadric in PG(3,K)</td>
<td>hyperbolic quadric in PG(3,K)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>elliptic quadric in PG(5,K)</td>
<td>hyperbolic quadric in PG(5,K)</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>elliptic quadric in PG(9,K)</td>
<td>hyperbolic quadric in PG(9,K)</td>
<td>26</td>
</tr>
<tr>
<td>(d-1)</td>
<td>quadric of \textit{minimal} Witt index in PG((d,K))</td>
<td>quadric of \textit{maximal} Witt index in PG((d,K))</td>
<td>3(d-1)</td>
</tr>
</tbody>
</table>
What do we obtain for the other quadratic alternative algebras over K?

The Veronese varieties are isomorphic to:

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PG(2, K)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PG(2, L)</td>
<td>Segre variety $S_{2,2}(K)$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>PG(2, H)</td>
<td>Line Grassmannian of PG(5, K)</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>PG(2, O)</td>
<td>$E_6(K)$-variety</td>
<td>26</td>
</tr>
</tbody>
</table>
What do we obtain for the other *quadratic alternative algebras* over K? The Veronese varieties are isomorphic to:

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PG(2,K)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PG(2,L)</td>
<td>Segre variety $S_{2,2}(K)$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>PG(2,H)</td>
<td>Line Grassmannian of PG(5,K)</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>PG(2,O)</td>
<td>$E_6(K)$-variety</td>
<td>26</td>
</tr>
<tr>
<td>$d-1$</td>
<td>quadric of minimal Witt index in PG(d,K)</td>
<td>quadric of maximal Witt index in PG(d,K)</td>
<td>$3d-1$</td>
</tr>
</tbody>
</table>

These Veronese varieties are **MM-sets** with quadrics in PG($d-1,K$) of *min/max* Witt index.
ASSOCIATED VERONESE VARIETIES

What do we obtain for the other quadratic alternative algebras over K? The Veronese varieties are isomorphic to:

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PG(2,K)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PG(2,L)</td>
<td>Segre variety $S_{2,2}(K)$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>PG(2,H)</td>
<td>Line Grassmannian of $PG(5,K)$</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>PG(2,O)</td>
<td>$E_6(K)$-variety</td>
<td>26</td>
</tr>
<tr>
<td>$d-1$</td>
<td>quadric of minimal Witt index in $PG(d,K)$</td>
<td>quadric of maximal Witt index in $PG(d,K)$</td>
<td>$3d-1$</td>
</tr>
</tbody>
</table>

These Veronese varieties are MM-sets with quadrics in $PG(d-1,K)$ of min/max Witt index. Moreover, these are the only ones (up to a projectivity)
ASSOCIATED VERONESE VARIETIES

What do we obtain for the other *quadratic alternative algebras* over K?

The *Veronese varieties* are isomorphic to:

<table>
<thead>
<tr>
<th>dim</th>
<th>division</th>
<th>split</th>
<th>dim. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{PG}(2,K)$</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>$\text{PG}(2,L)$</td>
<td>Segre variety $S_{2,2}(K)$</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>$\text{PG}(2,H)$</td>
<td>Line Grassmannian</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>$\text{PG}(2,O)$</td>
<td>$E_6(K)$-variety</td>
<td>26</td>
</tr>
<tr>
<td>$d-1$</td>
<td>quadric of minimal Witt index in PG(d,K)</td>
<td>quadric of maximal Witt index in PG(d,K)</td>
<td>$3d-1$</td>
</tr>
</tbody>
</table>

These *Veronese varieties* are *MM-sets* with *quadrics* in $\text{PG}(d-1,K)$ of *min/max* Witt index.

Moreover, these are *the only ones* (up to a projectivity)

(unless if $N<3d-1$, then there also are 3 subvarieties when A is split).
These Veronese varieties are MM-sets with quadrics in PG(d-1,K) of min/max Witt index. Moreover, these are the only ones (up to a projectivity) (unless if N<3d-1, then there also are 3 subvarieties when A is split).

(Krauss), Schillewaert, Van Maldeghem (2015)
GENERALISATIONS
OTHER SUCH SETS?

Axiomatic description.

\[X = \text{spanning point set of } \text{PG}(N,K) \]
\[\Xi = \text{family of } d\text{-spaces } \xi \text{ in } \text{PG}(N,K) \]
\[\text{s.th. } \xi \cap X \text{ is a ???} \]

- **MM1**: each two points of \(X \) belong to a \([d]\) of \(\Xi \)
- **MM2**: two \([d]\)s of \(\Xi \) intersect in points of \(X \)
- **MM3**: the tangent space of a point of \(X \) is contained in a \([2(d-1)]\)
Axiomatic description.

\(X = \text{spanning point set of } \text{PG}(N,K) \)

\(\Xi = \text{family of d-spaces } \xi \text{ in } \text{PG}(N,K) \)

such that \(\xi \cap X \) is a

Quadrics of a Witt index which is not minimal nor maximal?

Singular quadrics: cones over quadrics of min/max Witt index
Axiomatic description.

\(X = \) spanning point set of \(\text{PG}(N,K) \)
\(\Xi = \) family of \(d \)-spaces \(\xi \) in \(\text{PG}(N,K) \)
\(\text{s.th. } \xi \cap X \text{ is a ???} \)

MM1

each two *points* of \(X \)
belong to a \([d]\) of \(\Xi \)

MM2

two \([d]\)s of \(\Xi \)
intersect in *points* of \(X \)

MM3

the tangent space of a *point* of \(X \)
is contained in a \([2(d-1)]\)

Quadrics of a Witt index
which is not minimal nor maximal?

Probably not!
(conj.)

Singular quadrics:
cones over quadrics of min/max Witt index
Axiomatic description.

\[X = \text{spanning point set of } PG(N,K) \]
\[\Xi = \text{family of } d\text{-spaces } \xi \text{ in } PG(N,K) \]
\[\text{s.th. } \xi \cap X \text{ is a ????} \]

Quadrics of a Witt index which is not minimal nor maximal?

Probably not!
(conj.)

Singular quadrics:
cones over quadrics of min/max Witt index

Yes!
SINGULAR QUADRRICS AS SYMPS

Axiomatic description.

\[X = \text{spanning point set of } \text{PG}(N,K) \]
\[\Xi = \text{family of } d'-\text{spaces } \xi \text{ in } \text{PG}(N,K) \]
\[d' = d + v + 1 \]
\[\text{s.th. } \xi \cap X \text{ is a } (d,v)-\text{tube} \]

\[\text{vertex of dim } v \]

\[\text{ovoid in } \text{PG}(d,K) \]
SINGULAR QUADRRICS AS SYMPS

Axiomatic description.

\[X = \text{spanning point set of } \text{PG}(N,K) \]
\[\Sigma = \text{family of } d'-\text{spaces } \xi \text{ in } \text{PG}(N,K) \]
\[d' = d + v + 1 \quad \text{s.th. } \xi \cap X \text{ is a } (d,v)\text{-tube} \]
\[Y = \text{set of vertices} \]

vertex of dim \(v \) (excluded!)

ovoid in \(\text{PG}(d,K) \)
SINGULAR QUADRICS AS SYMPS

Axiomatic description.

- \(X = \) spanning point set of \(\text{PG}(N,K) \)
- \(\Xi = \) family of \(d' \)-spaces \(\xi \) in \(\text{PG}(N,K) \)
- \(d' = d + v + 1 \) s.th. \(\xi \cap X \) is a \((d,v)\)-tube
- \(Y = \) set of vertices

- vertex of dim v (excluded!)
- ovoid in \(\text{PG}(d,K) \)

Each two points of \(X \) belong to a \([d']\) of \(\Xi \)

Two \([d']s\) of \(\Xi \) intersect in points of \(X \cup Y \)

The tangent space of a point of \(X \) is contained in a \([2(d'-1)]\)
X = spanning point set of PG(N,K)
Ξ = family of d'-spaces ξ in PG(N,K)
\[d' = d + v + 1 \] s.th. $\xi \cap X$ is a (d,v)-tube
Y = set of vertices
vertex of dim v
(excluded!)
ovoid in PG(d,K)
each two points of X
belong to a $[d']$ of Ξ
two $[d']$s of Ξ
intersect in points of $X \cup Y$
the tangent space of a point of X is contained in a $[2(d' - 1)]$

Warning: You might want to avoid that two quads intersect in points of Y only
SINGULAR QUADRRICS AS SYMPS

Axiomatic description.

\[X = \text{spanning point set of } \text{PG}(N,K) \]
\[\Xi = \text{family of } d'\text{-spaces } \xi \text{ in } \text{PG}(N,K) \]
\[d' = d + v + 1 \quad \text{s.th. } \xi \cap X \text{ is a } (d,v)\text{-tube} \]
\[Y = \text{set of vertices} \]

MM1

MM2'

MM3

Each two points of \(X \) belong to a \([d']\) of \(\Xi \)

Two \([d']\)s of \(\Xi \) intersect in points of \(X \cup Y \)

The tangent space of a point of \(X \) is contained in a \([2(d' - 1)]\)

Warning: You might want to avoid that two quads intersect in points of \(Y \) only
SINGULAR QUADRRICS AS SYMPS

Axiomatic description.

\(X = \) spanning point set of PG(\(N,K \))
\(\mathfrak{E} = \) family of \(d' \)-spaces \(\xi \) in PG(\(N,K \))
\(d' = d + v + 1 \)
\(\text{s.th. } \xi \cap X \text{ is a } (d,v)\text{-tube} \)
\(Y = \) set of vertices

The pair (\(X, \mathfrak{E} \)) together with MM1, MM2' and MM3
is called a singular MM-set.

- Each two points of \(X \) belong to a \([d']\) of \(\mathfrak{E} \)
- Two \([d']\)s of \(\mathfrak{E} \) intersect in points of \(X \cup Y \) but never in \(Y \) only
- The tangent space of a point of \(X \) is contained in a \([2(d'-1)]\)
CASE 1: ONE POINT AS A VERTEX

For any field K, let (X, Ξ) be a singular MM-set with $(d,0)$-tubes.
CASE 1: ONE POINT AS A VERTEX

For any field K, let (X, Ξ) be a singular MM-set with $(d,0)$-tubes.

$d=2$

Schillewaert, Van Maldeghem (2015)

(1) (X, Ξ) is projectively equivalent to a point-cone over $\mathcal{Y}(K)$
CASE 1: ONE POINT AS A VERTEX

For any field K, let (X, Ξ) be a singular MM-set with $(d,0)$-tubes.

Schillewaert, Van Maldeghem (2015)

1. (X, Ξ) is projectively equivalent to a point-cone over $\mathcal{V}(K)$
2. (X, Ξ) is projectively equivalent to a Hjelmslevian projective plane.
CASE 1: ONE POINT AS A VERTEX

For any field K, let (X, Ξ) be a singular MM-set with $(d,0)$-tubes.

d=2

Schillewaert, Van Maldeghem (2015)

1. (X, Ξ) is projectively equivalent to a point-cone over $\mathcal{V}(K)$
2. (X, Ξ) is projectively equivalent to a Hjelmslevian projective plane.

d>2

ADS, Van Maldeghem (2017)

(X, Ξ) is projectively equivalent to a cone over $\mathcal{V}(A)$, $A=K, L, H$ or O.

There are no non-trivial cases.
(X, ≡) is projectively equivalent to a Hjelmslevian projective plane.
\((X, \equiv)\) is projectively equivalent to a Hjelmslevian projective plane.

The vertices form a projective plane over \(K\).
(\(X, \equiv\)) is projectively equivalent to a Hjelmslevian projective plane.

The vertices form a projective plane over \(K\).

In a complementary subspace, the points of \(X\) form the Veronese variety \(\mathcal{V}(K)\).
HJELMSLEVIAN PROJECTIVE PLANES

\((X, \equiv)\) is projectively equivalent to a Hjelmslevian projective plane.

The vertices form a projective plane over \(K\).

In a complementary subspace, the points of \(X\) form the Veronese variety \(\mathcal{V}(K)\).
The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

HJELMSLEVIAN PROJECTIVE PLANES

(X, \equiv) is projectively equivalent to a Hjelmslevian projective plane.
The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

The mapping χ is a linear duality between $\mathcal{V}(K)$ and $\text{PG}(2,K)$.
The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(K)$.

The mapping χ is a linear duality between $\mathcal{V}(K)$ and $\text{PG}(2,K)$.
(X, ≡) is projectively equivalent to a Hjelmslevian projective plane.

The vertices form a projective plane over K.

In a complementary subspace, the points of X form the Veronese variety \(\mathcal{V}(K) \).

The mapping \(\chi \) is a linear duality between \(\mathcal{V}(K) \) and \(PG(2,K) \).

The affine planes obtained by joining \(x \) and \(\chi(x) \), (x of \(\mathcal{V}(K) \)) give us X.
SIMILAR CONSTRUCTIONS

<table>
<thead>
<tr>
<th></th>
<th>division</th>
<th>split</th>
<th>singular</th>
<th>dim(im((r)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-1</td>
<td>quadrics of minimal Witt index in PG(d,K)</td>
<td>quadrics of maximal Witt index in PG(d,K)</td>
<td>cones over quadrics of minimal Witt index</td>
<td>5, 8, 14, 26</td>
</tr>
</tbody>
</table>

\(\mathcal{V}(K)\)

\(\mathcal{V}(L)\)

\(\mathcal{V}(H)\)
Similar Constructions

<table>
<thead>
<tr>
<th>division</th>
<th>split</th>
<th>singular</th>
<th>dim(\text{im}(\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadrics of</td>
<td>quadrics of</td>
<td>cones over</td>
<td>5, 8, 14, 26</td>
</tr>
<tr>
<td>minimal Witt index</td>
<td>maximal Witt index</td>
<td>quadrics of</td>
<td></td>
</tr>
<tr>
<td>in PG(d,K)</td>
<td>in PG(d,K)</td>
<td>minimal Witt index</td>
<td></td>
</tr>
</tbody>
</table>

Quadrics:
- **d-1:** Division of minimal Witt index in PG(d,K)
- **5:** Split of maximal Witt index in PG(d,K)
- **8:** Singular cones over quadrics of minimal Witt index
- **14:** Quadrics of maximal Witt index
- **26:** Quadrics of minimal Witt index

Diagrams:
- 8 (K)
- 14 (L)
- 26 (H)
The vertices form a projective 5-space over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(L)$.

The mapping χ is a linear duality between $\mathcal{V}(L)$ and the top structure.
SIMILAR CONSTRUCTIONS

The vertices form a projective 5-space over K.

In a complementary subspace, the points of X form the Veronese variety $\mathcal{V}(L)$.

The mapping χ is a linear duality between $\mathcal{V}(L)$ and the top structure.

$\mathcal{V}(L) \cong \text{PG}(2,L) \Rightarrow$ represent PG(2,L) as a regular line spread in PG(5,K)
The \textbf{vertices} form a projective 5-space over K.

In a complementary subspace, the \textbf{points of X} form the Veronese variety $\mathcal{V}(L)$.

The mapping χ is a \textbf{linear duality} between $\mathcal{V}(L)$ and the \textbf{top structure}.

$\mathcal{V}(L) \approx \text{PG}(2,L) \implies$ represent $\text{PG}(2,L)$ as a \textbf{regular line spread} in $\text{PG}(5,K)$

points in $\text{PG}(2,K) = 1$-spaces in $V(3,K) \implies 2$-spaces in $V(6,K) = \text{lines in PG}(5,K)$
The **vertices** form a projective 5-space over K.

In a complementary subspace, the **points of X** form the Veronese variety $\mathcal{U}(L)$.

The mapping χ is a **linear duality** between $\mathcal{U}(L)$ and the **top structure**.

\[\mathcal{U}(L) \approx \text{PG}(2,L) \]

$\mathcal{U}(L)$ \approx **PG(2,L)** \rightarrow represent PG(2,L) as a **regular line spread** in PG(5,K)

points in PG(2,K) = 1-spaces in V(3,K) \rightarrow 2-spaces in V(6,K) = lines in PG(5,K)
SIMILAR CONSTRUCTIONS

\(\mathcal{Y}(H) \approx PG(2,H) \)

The vertices form a projective 11-space over \(K \).

In a complementary subspace, the points of \(X \) form the Veronese variety \(\mathcal{V}(H) \).

The mapping \(\chi \) is a linear duality between \(\mathcal{V}(H) \) and the top structure.

\(\mathcal{V}(H) \approx PG(2,H) \Rightarrow \text{represent } PG(2,H) \text{ as a regular [3] spread in } PG(11,K) \)

points in \(PG(2,K) = 1\)-spaces in \(V(3,K) \Rightarrow 4\)-spaces in \(V(12,K) = 3\)-spaces in \(PG(11,K) \)
SIMILAR CONSTRUCTIONS

\[v = d - 2 \]

\[50? \]

\[\mathcal{V}(O) \approx PG(2, O) \]

- **PG(23, K)**
 - its vertex (a [7])
 - vertices of the conics through it (regular [7] spread in 15-space)

\[\chi \]

- **\mathcal{V}(O)**
 - quadric
 - point

The **vertices** form a projective 23-space over K.

In a complementary subspace, the **points of X** form a the Veronese variety \(\mathcal{V}(O) \).

The mapping \(\chi \) is a linear duality between \(\mathcal{V}(O) \) and the top structure.

\(\mathcal{V}(O) \approx PG(2, O) \Rightarrow \) represent PG(2, O) as a regular [7] spread in PG(23, K)

points in PG(2, K) = 1-spaces in V(3, K) \(\Rightarrow \) 8-spaces in V(24, K) = 7-spaces in PG(23, K)
The vertices form a projective 23-space over K.

In a complementary subspace, the points of X form a the Veronese variety $\mathcal{V}(O)$.

The mapping χ is a linear duality between $\mathcal{V}(O)$ and the top structure.

\[
\mathcal{V}(O) \cong PG(2,O) \Rightarrow \text{represent } PG(2,O) \text{ as a regular [7] spread in } PG(23,K)
\]

Warning: The top plane is Desarguesian, whereas $PG(2,O)$ is not. This does not work!
CASE 2: A HIGHER-DIMENSIONAL VERTEX

For any field K, let (X, \exists) be a singular MM*-set with (d, v)-tubes, $v>0$.
CASE 2: A HIGHER-DIMENSIONAL VERTEX

For any field K, let (X, Ξ) be a singular MM*-set with (d,v)-tubes, $v>0$.

MM2' is replaced by MM2*:

...
CASE 2: A HIGHER-DIMENSIONAL VERTEX

For any field K, let \((X, \Xi)\) be a \textit{singular MM\(^*\)-set} with \((d,v)\)-tubes, \(v>0\).

\textbf{MM2}\(^'\) is replaced by \textbf{MM2\(^*\)}:

- Two \([d']\)s of \(\Xi\) intersect in \textbf{points} of \(X\).
- And always contain a point of \(X\).
For any field K, let (X, Ξ) be a singular MM*-set with (d,v)-tubes, $v>0$.

\[(1) \quad (X, \Xi) \text{ is projectively equivalent to one of the following} \]

CASE 2: A HIGHER-DIMENSIONAL VERTEX

ADS, Van Maldeghem (2017)
CASE 2: A HIGHER-DIMENSIONAL VERTEX

For any field K, let (X, Ξ) be a singular MM^*-set with (d,v)-tubes, $v > 0$.

- $v > 0$
- $d > 1$

ADS, Van Maldeghem (2017)

1. (X, Ξ) is projectively equivalent to one of the following
2. (X, Ξ) is trivial (a cone over $\mathcal{V}(A)$ or over $\mathcal{HV}(K), \mathcal{HV}(L), \mathcal{HV}(H)$)
Thanks for your attention!