Projective planes **with** polar spaces

Joint work with:
J. Schillewaert (Auckland), H. Van Maldeghem (Gent) and M. Victoor (Gent)
Projective planes with polar spaces
Projective planes with polar spaces
Projective planes with polar spaces

Hyperbolic quadric

Symp = convex closure of two non-collinear points
INTRODUCTORY EXAMPLE

Projective planes with polar spaces

Hyperbolic quadric

Symp = convex closure of two non-collinear points
Projective planes with polar spaces

(Point, sym) is a projective plane.
Through each two points there is a unique sym.

(Point, symp) is a projective plane.

Hyperbolic quadric

Symp = convex closure of two non-collinear points
(Points, symps) is a projective plane.

Through each two points there is a unique symp.

Each two symps meet in at least one point.
Projective planes with polar spaces

Through each two points there is a unique symp.

Each two symps meet in at least one point.

There is a frame (four points, no three on a symp).
Through each two **points** there is a unique **symp**.

Each two **symps** meet in at least one **point**.

Not all **points** are on one **symp**.

Hyperbolic quadric

Symp = convex closure of two non-collinear points

(Points, symps) is a projective plane.
Projective planes with polar spaces

Through each two points there is a unique symp.

Each two symps meet in at least one point.

Not all points are on one symp.

Direct product of any projective plane π and any projective line L (Segre variety $S_{1,2}(K)$)

Symp = convex closure of two non-collinear points

Hyperbolic quadric

(Points, symps) is a projective plane.
INTRODUCTORY EXAMPLE

Projective planes with polar spaces

Through each two points there is a unique symp.

Each two symps meet in at least one point.

Not all points are on one symp.

Direct product of any projective n-space π and any projective line L (Segre variety $S_{1,n}(K)$)

π-space

n-space

Hyberbolic quadric

Symp = convex closure of two non-collinear points

(Point, symps) is a projective plane.
Projective planes with polar spaces

Through each two points there is a unique symp.

Each two symps meet in at least one point.

Not all points are on one symp.

This is not true if $n > 2$!

Direct product of any projective n-space π and any projective line L (Segre variety $S_{1,n}(K)$)

(Points, symps) is a projective plane.

Hyperbolic quadric

$\text{Symp} =$ convex closure of two non-collinear points
INTRODUCTORY EXAMPLE

Projective planes with polar spaces

Through each two points there is a unique symp.

Each two symps meet in at least one point.

Not all points are on one symp.

Direct product of any projective plane π and any projective plane π' (Segre variety $S_{2,2}(K)$)

$\textbf{Points, symps}$ is a projective plane.

$\textbf{Symp} = \text{convex closure of two non-collinear points}$

Hyperbolic quadric
THE QUESTION

Which point-symp-geometries are such that:

1. Through each two points there is a unique symp.
2. Each two symps meet in at least one point.
3. Not all points are on one symp.

Symps are convex in point-line geometry.
THE QUESTION

Which \textbf{point-symp}-geometries are such that:

- \textit{Symps} are convex in \textbf{point-line} geometry
- Through each two \textit{points} there is a unique \textit{symp}.
- Each two \textit{symps} meet in at least one \textit{point}.
- Not all \textit{points} are on one \textit{symp}.

\textbf{symps} can be of any kind, and need not be isomorphic or of same rank.
Which **point-symp**-geometries are such that:

- Each two **symps** meet in at least one **point**.
- Through each two **points** there is a **unique** **symp**.
- Not all **points** are on one **symp**.

Symps are convex in **point-line** geometry.

Symps can be of any kind, and need not be isomorphic or of same rank
Which **point-symp**-geometries are such that:

- **Symps** are convex in **point-line** geometry
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- Not all **points** are on one **symp**.

If there is a symp of rank 2:

- only the **direct products** $L \times \pi$ and $\pi \times \pi'$

Symps can be of any kind, and need not be isomorphic or of same rank.
Which point-symp-geometries are such that:

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- Not all points are on one symp.

Symps are convex in point-line geometry.

If there is a symp of rank 2:

- only the direct products \(L \times \pi \) and \(\pi \times \pi' \)

Both examples share that some lines are contained in a unique symp. This we want to avoid if there are no symps of rank 2.
THE QUESTION

Which **point-symp**-geometries are such that:

- **Symps** are convex in **point-line** geometry
- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- Not all points are on one symp.

If there is a symp of rank 2:

only the direct products $L \times \pi$ and $\pi \times \pi'$

Both examples share that some lines are contained in a unique symp. This we want to avoid if there are no symps of rank 2.

Symps can be of any kind, and need not be isomorphic or of same rank.
Which point-symp-geometries are such that:

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- Not all points are on one symp.

Symps are convex in point-line geometry.

If there is a symp of rank 2:
- only the direct products $L \times \pi$ and $\pi \times \pi'$

Both examples share that some lines are contained in a unique symp. This we want to avoid if there are no symps of rank 2.

IF all symps have rank >2, there is a line contained in at least two symps.
Which point-symp-geometries are such that:

Symps are convex in point-line geometry

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- Not all points are on one symp.

If there is a symp of rank 2:

- only the direct products $L \times \pi$ and $\pi \times \pi'$

Both examples share that some lines are contained in a unique symp. This we want to avoid if there are no symps of rank 2.

IF all symps have rank >2, there is a line contained in at least two symps.

Only the line Grassmannian $A_{n,2}(L)$ of a projective n-space with $n \in \{4,5\}$ and the exceptional $E_{6,1}(K)$-variety.
EXAMPLE: THE LINE GRASSMANNIANS

Consider the line Grassmannian of a projective n-space. We verify the axioms:

- Symps are convex in point-line geometry

 - Through each two points there is a unique symp.
 - Each two symps meet in at least one point.
 - If all symps have rank >2, there is a line contained in at least two symps.
Consider the **line Grassmannian** of a projective n-space. We verify the **axioms**:

- **Symps** are convex in point-line geometry
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- **IF** all **symps** have rank >2, there is a **line** contained in at least two **symps**.

(new) **lines**: planar point pencils

distance 1
Consider the **line Grassmannian** of a projective n-space. We verify the **axioms**:

Symps are convex in **point-line** geometry

- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- **IF** all **symps** have rank > 2, there is a **line** contained in at least two **symps**.

(new) **lines**:
- Planar point pencils
 - Distance 1

Symp:
- Convex closure of L_1, L_2
 - All **lines** in $<L_1, L_2>$
 - Klein quadric $Q^+(5, K)$
 - Distance 2
EXAMPLE: THE LINE GRASSMANNIANS

Consider the line Grassmannian of a projective n-space. We verify the axioms:

- Symps are convex in point-line geometry

 - Through each two points there is a unique symp.
 - Each two symps meet in at least one point.
 - IF all symps have rank >2, there is a line contained in at least two symps.

- (new) lines: planar point pencils
 - distance 1

- Symp: convex closure of L_1, L_2
 - all lines in $<L_1, L_2>$
 - Klein quadric $Q^+(5,K)$
 - distance 2

- $n=2$: projective plane (no symps)
EXAMPLE: THE LINE GRASSMANNIANS

Consider the line Grassmannian of a projective n-space. We verify the axioms:

- **Symps** are convex in point-line geometry.

 - Through each two points there is a unique symp. ✓
 - Each two symps meet in at least one point.
 - IF all symps have rank >2, there is a line contained in at least two symps.

(n) lines: planar point pencils

- distance 1

- distance 2

$\text{n}=2$: projective plane (no symps)
$\text{n}=3$: Klein quadric (one symp)

Symp: convex closure of L_1, L_2

\rightarrow all lines in $\langle L_1, L_2 \rangle$

\rightarrow Klein quadric $Q^+(5,K)$
EXAMPLE: THE LINE GRASSMANNIANS

Consider the **line Grassmannian** of a projective n-space. We verify the **axioms**:

- **Symps are convex in point-line geometry**
 - Through each two **points** there is a unique **symp**.
 - Each two **symps** meet in at least one **point**.
 - **IF** all **symps** have rank >2, **there is a line contained in at least two symps**.

n=2: projective plane (no **symps**)

n=3: Klein quadric (one **symp**)

3 < n < 6: each two **3-spaces** share a **line**

一大批: each two **symps** share a **point**

(new) **lines**: planar point pencils

- distance 1
- distance 2

Symp: convex closure of L_1, L_2

- all **lines** in $\langle L_1, L_2 \rangle$
- Klein quadric $Q^+(5,K)$
EXAMPLE: THE LINE GRASSMANNIANS

Consider the **line Grassmannian** of a projective \(n \)-space. We verify the **axioms**:

- **Symps** are convex in **point-line** geometry

 - Through each two **points** there is a unique **symp**.
 - Each two **symps** meet in at least one **point**.
 - IF all **symps** have rank >2, there is a **line** contained in at least two **symps**.

\(n > 2 \)
\(n < 6 \)
\(n > 3 \)

- **Distance 1**: (new) **lines**:
 - planar point pencils

- **Distance 2**: **Symp**: convex closure of \(L_1, L_2 \)
 - \(\Rightarrow \) all **lines** in \(<L_1, L_2> \)
 - \(\Rightarrow \) Klein quadric \(Q^+(5,K) \)

\(n=2 \): projective plane (no **symps**)
\(n=3 \): Klein quadric (one **symp**)

\(3 < n < 6 \): each two **3-spaces** share a **line**
 - \(\Rightarrow \) each two **symps** share a **point**
Consider a **variety** consisting of the following types of **objects**:

- **points**
- **lines**
- **planes**
- **4-spaces**
- **5-spaces**
- **symps $Q^+(9,K)$**
- 4'-spaces ($5 \cap Q$),
- 3-spaces ($4 \cap 4'$)
Consider a variety consisting of the following types of objects:

Then this is the exceptional $E_{6,1}$-variety over K if:

4'-spaces ($5 \cap Q$),
3-spaces ($4 \cap 4'$)

and
THE EXCEPTIONAL E$_{6,1}$-VARIETY

Consider a **variety** consisting of the following types of **objects**:

- **points**
- **lines**
- **planes**
- **4-spaces**
- **5-spaces**
- **symps** $Q^+(9,K)$

4'-spaces ($5 \cap Q$),

3-spaces ($4 \cap 4'$)

Then this is the **exceptional E$_{6,1}$-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**. *(both occur)*
- Two distinct **symps** meet in a **point** or a 4-dim space. *(both occur)*
THE EXCEPTIONAL $E_{6,1}$-VARIETY

Consider a variety consisting of the following types of objects:

points
lines
planes
4-spaces
5-spaces
symps $Q^+(9,K)$

and

4'-spaces ($5 \cap 0$),
3-spaces ($4 \cap 4'$)

Then this is the exceptional $E_{6,1}$-variety over K if:

Two distinct points are on a line or their convex closure is a symp.
(both occur)

Two distinct symps meet in a point or a 4-dim space.
(both occur)

We verify the axioms:
Consider a **variety** consisting of the following types of **objects**:

- Points
- Lines
- Planes
- 4-spaces
- 5-spaces
- Symps
- $Q^+(9,K)$

4'-spaces ($5 \cap Q$), 3-spaces ($4 \cap 4'$)

Then this is the **exceptional $E_{6,1}$-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**.
- Two distinct **symps** meet in a **point** or a 4-dim space.

We verify the **axioms**:

Symps are convex in **point-line** geometry
Consider a variety consisting of the following types of objects:

- Points
- Lines
- Planes
- 4-spaces
- Symps $Q^+(9,K)$
- 5-spaces
- $4'$-spaces ($5 \cap Q$)
- 3-spaces ($4 \cap 4'$)

Then this is the exceptional $E_{6,1}$-variety over K if:

- Two distinct points are on a line or their convex closure is a symp. (both occur)
- Two distinct symps meet in a point or a 4-dim space. (both occur)

We verify the axioms:

Symps are convex in point-line geometry
THE EXCEPTIONAL $E_{6,1}$-VARIETY

Consider a **variety** consisting of the following types of **objects**:

- **points**
- **lines**
- **planes**
- **4-spaces**
- **5-spaces**
- **symps** $Q^+(9, K)$
- **4'-spaces** $(5 \cap Q)$
- **3-spaces** $(4 \cap 4')$

Then this is the **exceptional $E_{6,1}$-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**. (both occur)
- Two distinct **symps** meet in a **point** or a 4-dim space. (both occur)

We verify the **axioms**:

- **Symps** are convex in **point-line** geometry

 - Through each two **points** there is a unique **symp**.
Consider a **variety** consisting of the following types of objects:

- Points
- Lines
- Planes
- 4-spaces
- 5-spaces
- Symps
- \(Q^+(9,K)\)
- 4'-spaces (5 \(\cap\) Q)
- 3-spaces (4 \(\cap\) 4')

Then this is the **exceptional \(E_{6,1}\)-variety** over \(K\) if:

- Two distinct points are on a **line** or their convex closure is a **symp**. (both occur)
- Two distinct **symps** meet in a **point** or a 4-dim space. (both occur)

We verify the **axioms**:

- **Symps** are convex in **point-line** geometry

Exercise: show that each line is contained in a symp.
Consider a **variety** consisting of the following types of **objects**:

- Points
- Lines
- Planes
- 4-spaces
- 5-spaces
- Symps
- \(Q^+(9,K) \)

4'-spaces \((5 \cap Q)\),
3-spaces \((4 \cap 4')\)

Then this is the **exceptional \(E_{6,1}\)-variety** over \(K\) if:

- Two distinct points are on a **line** or their convex closure is a **symp**.
- Two distinct **symps** meet in a **point** or a 4-dim space.

We verify the **axioms**:

- **Symps** are convex in **point-line** geometry

Exercise: show that each line is contained in a symp
THE EXCEPTIONAL $E_{6,1}$-VARIETY

Consider a **variety** consisting of the following types of objects:

![Diagram of objects: points, lines, planes, symps, Q⁺(9,K), 4'-spaces, 3-spaces]

Then this is the **exceptional $E_{6,1}$-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**.
- Two distinct **symps** meet in a **point** or a 4-dim space. (both occur)

We verify the axioms:

- **Symps** are convex in **point-line** geometry.
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.

Exercise: show that each line is contained in a symp.
THE EXCEPTIONAL $E_{6,1}$-VARIETY

Consider a **variety** consisting of the following types of **objects**:

- points
- lines
- planes
- 4-spaces
- 5-spaces
- $\text{symps } Q^+(9,K)$

Then this is the **exceptional $E_{6,1}$-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**.
- Two distinct **symps** meet in a **point** or a 4-dim space.

We verify the **axioms**:

- **Symps** are convex in **point-line** geometry
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.

Exercise: show that each line is contained in a symp.
THE EXCEPTIONAL E\textsubscript{6,1}-VARIETY

Consider a **variety** consisting of the following types of objects:

![Diagram](image.png)

Then this is the **exceptional E\textsubscript{6,1}-variety** over K if:

- Two distinct points are on a **line** or their convex closure is a **symp**.
- Two distinct **symps** meet in a **point** or a 4-dim space.

We verify the **axioms**:

- **Symps** are convex in **point-line** geometry
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- There is a **line** contained in at least two **symps**.

Exercise: show that each line is contained in a symp

4'-spaces (5 \cap Q), 3-spaces (4 \cap 4')
Consider a variety consisting of the following types of objects:

- Points
- Lines
- 4-spaces
- 5-spaces
- Symps
- 4'-spaces ($5 \cap Q$)
- 3-spaces ($4 \cap 4'$)

Then this is the exceptional $E_{6,1}$-variety over K if:

- Two distinct points are on a line or their convex closure is a symp.
- Two distinct symps meet in a point or a 4-dim space.

We verify the axioms:

- Symps are convex in point-line geometry
- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- There is a line contained in at least two symps.

Exercise: show that each line is contained in a symp.
Which **point-symp**-geometries are such that:

- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- **IF** all **symps** have rank >2, there is a **line** contained in at least two **symps**.

Symps are convex in **point-line** geometry.
PARAPOLAR SPACES

Which **point-symp**-geometries are such that:

- **Symps** are convex in **point-line** geometry

 - Through each two **points** there is a unique **symp**.
 - Each two **symps** meet in at least one **point**.
 - **IF** all **symps** have rank >2, there is a **line** contained in at least two **symps**.

These geometries are **parapolar spaces**: connected **point-line** geometries such that:
Which point-symp-geometries are such that:

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- If all symps have rank > 2, there is a line contained in at least two symps.

Symps are convex in point-line geometry.

These geometries are parapolar spaces: connected point-line geometries such that:
- For each non-incident point-line pair: 0, 1 or all (and 0 occurs)

PARAPOLAR SPACES
Which point-symp-geometries are such that:

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- If all symps have rank >2, there is a line contained in at least two symps.

Symps are convex in point-line geometry.

These geometries are parapolar spaces: connected point-line geometries such that:

- For each non-incident point-line pair: 0, 1 or all (and 0 occurs)
- For points at distance 2: either there is a unique path (i) or the convex closure is a symp (ii)

Or

(i) 1 path
(ii) >1 path
Which \textbf{point-symp}-geometries are such that:

- Through each two \textbf{points} there is a unique \textbf{symp}.
- Each two \textbf{symps} meet in at least one \textbf{point}.
- \textbf{IF} all \textbf{symps} have rank >2, there is a \textbf{line} contained in at least two \textbf{symps}.

\textbf{Symps} are convex in \textbf{point-line} geometry.

These geometries are \textbf{parapolar spaces}: connected \textbf{point-line} geometries such that:

- For each non-incident \textbf{point-line} pair: 0, 1 or all (and 0 occurs)
- For \textbf{points} at \textbf{distance 2}: either there is a unique path (i) or the convex closure is a \textbf{symp} (ii)
- Each \textbf{line} is contained in a \textbf{symp}
Which **point**-**symp**-geometries are such that:

- **Symps** are convex in **point**-**line** geometry
- Through each two **points** there is a unique **symp**.
- Each two **symps** meet in at least one **point**.
- **IF** all **symps** have rank >2, there is a **line** contained in at least two **symps**.

These geometries are **parapolar spaces**: connected **point**-**line** geometries such that:

- For each non-incident **point**-**line** pair: 0, 1 or all (and 0 occurs)
- For **points** at **distance** 2: either there is a unique path (i) or the convex closure is a **symp** (ii)
- Each **line** is contained in a **symp**

satisfying the following **additional requirements**:
Through each two points there is a unique symp.

Each two symps meet in at least one point.

IF all symps have rank >2, there is a line contained in at least two symps.

Symps are convex in point-line geometry.

Which point-symp-geometries are such that:

These geometries are parapolar spaces: connected point-line geometries such that:

- For each non-incident point-line pair: 0, 1 or all (and 0 occurs)
- For points at distance 2: either there is a unique path (i) or the convex closure is a symp (ii)
- Each line is contained in a symp

satisfying the following additional requirements:

strong: always option (ii) and diameter 2

parapolar spaces
Which point-symp-geometries are such that:

- **Symps** are convex in point-line geometry
 - Through each two points there is a unique symp.
 - Each two symps meet in at least one point.
 - **IF** all symps have rank >2, there is a line contained in at least two symps.

These geometries are **parapolar spaces**: connected point-line geometries such that:

- For each non-incident point-line pair: 0, 1 or all (and 0 occurs)
- For points at distance 2: either there is a unique path (i) or the convex closure is a symp (ii)
- Each line is contained in a symp

satisfying the following **additional requirements**:

- **strong**: always option (ii) and diameter 2
- Each two symps meet in at least one point.
Which point-symp-geometries are such that:

Symps are convex in point-line geometry

- Through each two points there is a unique symp.
- Each two symps meet in at least one point.
- **IF** all symps have rank >2, there is a line contained in at least two symps.

These geometries are parapolar spaces: connected point-line geometries such that:

- For each non-incident point-line pair: 0, 1 or all (and 0 occurs)
- For points at distance 2: either there is a unique path (i) or the convex closure is a symp (ii)
- Each line is contained in a symp

Satisfying the following additional requirements:

- **Strong**: always option (ii) and **diameter 2**
- **IF** all symps have rank >2, there is a line contained in at least two symps.
The only **parapolar spaces** which satisfy the **additional properties**

strong: always option (ii) and **diameter 2**

Each two **symps** meet in at least one **point**.

IF all **symps** have rank >2, there is a **line** contained in at least two **symps**.

are

- the **direct products** of a projective **line/plane** with a projective **plane**
- the **line Grassmannian** of a projective 4- or 5-space over a skew field L
- the **exceptional E$_{6,1}$-variety** over a field K
The only **parapolar spaces** which satisfy the additional properties

Strong: always option (ii) and **diameter** 2

Each two **symps** meet in at least one **point**.

IF all **symps** have rank >2, there is a **line** contained in at least two **symps**.

are

- the **direct products** of a projective **line/plane** with a projective **plane**
- the **line Grassmannian** of a projective 4- or 5-space over a skew field **L**
- the **exceptional E_{6,1}-variety** over a field **K**

We can do better!
The only parapolar spaces which satisfy the additional properties

- strong: always option (ii) and diameter 2
- Each two symps meet in at least one point.
- IF all symps have rank >2, there is a line contained in at least two symps.

are

- the direct products of a projective line/plane with a projective plane
- the line Grassmannian of a projective 4- or 5-space over a skew field L
- the exceptional $E_{6,1}$-variety over a field K

We can do better!
The only **parapolar spaces** which satisfy the **additional properties**

IF there is a **symp** of rank 2

strong: always option (ii) and diameter 2

IF all **symps** have rank >2, there is a **line** contained in at least two **symps**.

Each two **symps** meet in at least one **point**.

are

- the **direct products** of a projective **line/plane** with a projective **plane**
- the **line Grassmannian** of a projective 4- or 5-space over a skew field L
- the **exceptional E_{6,1}-variety** over a field K

We can do better!
The only **parapolar spaces** which satisfy the **additional properties**

- IF there is a **symp** of rank 2
 - **strong**: always option (ii) and diameter 2
- IF all **symps** have rank >2, there is a **line** contained in at least two **symps**.
- Each two **symps** meet in at least one **point**.

are

1. the **direct products** of a projective **line/plane** with a projective **plane**
2. the **line Grassmannian** of a projective 4- or 5-space over a skew field \(\mathbb{L} \)
3. the **exceptional** **E\(_{6,1}\)-variety** over a field \(\mathbb{K} \)

We can do better!

The Next Step
The only **parapolar spaces** which satisfy the **additional properties**

- **IF** there is a **symp** of rank 2 **strong**: always option (ii) and diameter 2
- **IF** all **symps** have rank >2, there is a **line** contained in at least two **symps**.
- Each two **symps** meet in at least one **point**.

The only parapolar spaces which satisfy the additional properties are

- the **direct products** of a projective **line/plane** with a projective **plane**
- the **line Grassmannian** of a projective 4- or 5-space over a skew field L
- the **exceptional E_{6,1}-variety** over a field K

THE NEXT STEP

We can generalise this result!
The only parapolar spaces which satisfy the additional properties are

- **IF** there is a *symp* of rank 2
 - **strong**: always option (ii) and diameter 2
- **IF** all *symps* have rank >2, there is a line contained in at least two *symps.*
- No two *symps* share exactly a (-1)-dimensional subspace.

are

- the direct products of a projective line/plane with a projective plane
- the line Grassmannian of a projective 4- or 5-space over a skew field L
- the exceptional $E_{6,1}$-variety over a field K

We can generalise this result!
The only **parapolar spaces** which satisfy the **additional properties**

- **IF** there is a **symp** of rank 2
 - strong: always option (ii)
 - and diameter 2
- No two **symps** share exactly a **k-dimensional** subspace.
- **IF** all **symps** have rank >2,
 - there is a **line** contained in at least two **symps**.

are

- the **direct products** of a projective **line/plane** with a projective **plane**
- the **line Grassmannian** of a projective 4- or 5-space over a skew field **L**
- the **exceptional** **E**\(_{6,1}\)-**variety** over a field **K**

We can generalise this result!

Take **any** integer \(k \geq 0 \)
The only **parapolar spaces** which satisfy the **additional properties**

- Each symp has rank at least \(k+3 \)
- No two symps share exactly a \(k \)-dimensional subspace.
- If all symps have rank >2, there is a line contained in at least two symps.

The only parapolar spaces which satisfy the additional properties

- The direct products of a projective line/plane with a projective plane
- The line Grassmannian of a projective 4- or 5-space over a skew field \(L \)
- The exceptional \(E_{6,1} \)-variety over a field \(K \)

THE NEXT STEP

We can generalise this result!

Take any integer \(k \geq 0 \)
The only **parapolar spaces** which satisfy the **additional properties**

- Each *symp* has rank at least \(k+3 \)
- No two *symps* share exactly a *k*-dimensional subspace.
- **locally connected**

are

- the direct products of a projective line/plane with a projective plane
- the line Grassmannian of a projective 4- or 5-space over a skew field \(L \)
- the exceptional \(E_{6,1} \)-variety over a field \(K \)

We can generalise this result!

Take **any** integer \(k \geq 0 \)
The only parapolar spaces which satisfy

- Each symp has rank at least $k+3$
- No two symps share exactly a k-dimensional subspace.
- Locally connected

are

<table>
<thead>
<tr>
<th>$k=-1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{1,2}(K)$</td>
<td>$A_{4,2}(K)$</td>
<td>$D_{5,5}(K)$</td>
<td>$E_{6,1}(K)$</td>
<td>$E_{7,7}(K)$</td>
<td>$E_{8,8}(K)$</td>
</tr>
<tr>
<td>$A_{4,2}(K)$</td>
<td>$D_{5,5}(K)$</td>
<td>$E_{6,1}(K)$</td>
<td>$E_{7,7}(K)$</td>
<td>$E_{8,8}(K)$</td>
<td></td>
</tr>
<tr>
<td>$E_{6,1}(K)$</td>
<td>$E_{7,7}(K)$</td>
<td>$E_{8,8}(K)$</td>
<td>$A_{5,2}(K)$</td>
<td>$D_{6,6}(K)$</td>
<td></td>
</tr>
<tr>
<td>$A_{5,2}(K)$</td>
<td>$D_{6,6}(K)$</td>
<td>$E_{7,1}(K)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{2,2}(K)$</td>
<td>$A_{5,3}(K)$</td>
<td>$E_{6,2}(K)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The only parapolar spaces which satisfy

Each symp has rank at least $k+3$

No two symps share exactly a k-dimensional subspace.

are

<table>
<thead>
<tr>
<th>$k=-1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S$_{1,2}(K)$</td>
<td>A$_{4,2}(K)$</td>
<td>D$_{5,5}(K)$</td>
<td>E$_{6,1}(K)$</td>
<td>E$_{8,8}(K)$</td>
</tr>
<tr>
<td></td>
<td>A$_{4,2}(K)$</td>
<td>D$_{5,5}(K)$</td>
<td>E$_{6,1}(K)$</td>
<td>E$_{7,7}(K)$</td>
<td>E$_{8,8}(K)$</td>
</tr>
<tr>
<td></td>
<td>E$_{6,1}(K)$</td>
<td>E$_{7,7}(K)$</td>
<td>E$_{8,8}(K)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A$_{5,2}(K)$</td>
<td>D$_{6,6}(K)$</td>
<td>E$_{7,1}(K)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S$_{2,2}(K)$</td>
<td>A$_{5,3}(K)$</td>
<td>E$_{6,2}(K)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The point-residue is a locally connected strong parapolar space, in which no two symps share a $(k-1)$-space.
The only **parapolar spaces** which satisfy

- Each symp has rank at least $k+3$
- No two symps share exactly a k-dimensional subspace.
- locally connected

are

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k=-1$</td>
<td>$S_{1,2}(K)$</td>
<td>$A_{4,2}(K)$</td>
<td>$D_{5,5}(K)$</td>
<td>$E_{6,1}(K)$</td>
<td>$E_{8,1}(K)$</td>
</tr>
<tr>
<td></td>
<td>$A_{4,2}(K)$</td>
<td>$D_{5,5}(K)$</td>
<td>$E_{6,1}(K)$</td>
<td>$E_{7,7}(K)$</td>
<td>$E_{8,8}(K)$</td>
</tr>
<tr>
<td></td>
<td>$E_{6,1}(K)$</td>
<td>$E_{7,7}(K)$</td>
<td>$E_{8,8}(K)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_{5,2}(K)$</td>
<td>$D_{6,6}(K)$</td>
<td>$E_{7,1}(K)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$S_{2,2}(K)$</td>
<td>$A_{5,3}(K)$</td>
<td>$E_{6,2}(K)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **point-residue** is a locally connected strong parapolar space, in which no two symps share a $(k-1)$-space.

THE NEXT STEP

Freudenthal-Tits magic square
Thank you for your attention!