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Tauberian Theory

Tauberian theory: Extracting asymptotic information from
integral transforms

Integral transforms

Tauberian theory

τ(t)

∫ ∞
0

e−stτ(t)dt,

∫ ∞
−∞

τ(t)

t + z
dt, . . .



The Ingham-Karamata theorem

Theorem (Ingham, Karamata, 1934)

Let τ : R+ → R be such that τ(x) + Ax is non-decreasing for
certain A > 0. Suppose that

L{τ ; s} =

∫ ∞
0

e−suτ(u)du

converges for Re s > 0 and admits an analytic continuation beyond
Re s = 0, then

τ(x) = o(1), x →∞.



An application: short proof of the PNT

Ingredients:

ζ(s) =
∑∞

n=1 n
−s admit an meromorphic extension beyond

Re s = 1 with a unique simple pole at s = 1 with residue 1.

ζ(1 + it) 6= 0

Let

ψ1(x) :=
∑
n≤x

Λ(n)

n

We aim to show that

ψ1(x) = log x − γ + o(1),

where γ is the Euler-Mascheroni constant.
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Proof PNT (continued)

We set

τ(x) :=
∑
n≤ex

Λ(n)

n
− x + γ.

Its Laplace transform is

− ζ
′(s + 1)

sζ(s + 1)
− 1

s2
+
γ

s
.

From the ingredients, it follows that τ satisfies all the hypotheses
for Ingham-Karamata, thus

τ(x) = o(1).



Objectives

Obtain quantified versions.

Consider flexible one-sided Tauberian conditions/Treat more
general singularities on the Laplace transform.

Establish optimality of the quantified rate.

Consider different types of boundary behavior of the Laplace
transform.
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Treatment of one-sided Tauberian conditions

Sketch of proof of unquantified Ingham-Karamata theorem:
Laplace transform behavior implies via Riemann-Lebesgue lemma〈

τ̂(t), e iht φ̂(t)
〉

= oφ(1), h→∞,

for all φ ∈ F(D(R)).

This translates to∫ ∞
−∞

τ(x + h)φ(x)dx = oφ(1), h→∞.
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Treatment of one-sided Tauberian conditions (continued)

The Tauberian condition implies

τ(x) = τ(x) + Ax − Ax ≤ τ(x + y) + Ay , y ≥ 0

and

τ(x) = τ(x) + Ax − Ax ≥ τ(x + y) + Ay , y ≤ 0.

So, if
∫∞
−∞ φ = 1, xφ(x) ≥ 0 and

∫∞
−∞ xφ(x)dx = C <∞,

τ(y) =

∫ ∞
−∞

τ(y)φ(λx)λdx

≤
∫ ∞
−∞

τ(x + y)φ(λx)λdx + A

∫ ∞
λyφ(λy)dy

≤ oλ,φ(1) +
AC

λ
.
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One-sided Tauberian conditions: Remarks

Selection of test functions crucial! One can show that
admissible test functions exist.

This proof of the Tauberian theorem in combination with the
above deduction of the PNT is one of the quickest proofs of
the prime number theorem available.

Technique also leads to simpler proofs for other one-sided
Tauberian theorems, such as the Berry-Esseen inequality.



Stahn’s quantified theorem

Theorem (Stahn, 2018)

Let τ : [0,∞)→ C be a Lipschitz continuous function. Let
M,K : R+ → (0,∞) be two continuous non-decreasing functions
for which there exists ε ∈ (0, 1) such that

K (t)� exp
(

exp
(
(tM(t))1−ε

))
, t →∞.

If L{τ ; s} admits an analytic extension to

ΩM := {s := |Re s| ≤ 1/M(| Im s|)},

where |L{τ ; s}| � K (|s|)/|s| as |s| → ∞, then

τ(x)� M−1K ,log(x)−1, x →∞,

where M−1K ,log is the inverse function of
MK ,log(t) = M(t)(log t + log log t + logK (t)).



Stahn’s quantified theorem (continued)

Theorem

Furthermore, if K is of positive increase, that is, there exists
a, t0 > 0 such that t−aK (t)� R−aK (R) for all t0 ≤ t ≤ R as
R →∞, then

τ(x)� M−1K (x)−1, x →∞,

with M−1K the inverse function of MK (t) = M(t)(log t + logK (t)).



Our main quantified Tauberian theorem (simplified)

Theorem (D., 2024)

Let τ : [0,∞)→ R be such that τ(x) + Ax is non-decreasing. Let
M,K be continuous non-decreasing functions on R+ such that
L{τ ; s} admits an analytic extension to ΩM where it satisfies the
bound K (|s|)/|s| as |s| → ∞. Then, for any c < 1,

τ(x)� M−1K ,log(cx)−1, x →∞.

The above estimate holds with c = 1 if, additionally, MK ,log is of
675M(0)−1-regular growth, that is, there exists C , t0 > 0 such that

MK ,log(Ct)

MK ,log(t)
≥ 1 +

675

M(0)t
, t ≥ t0.

If, additionally, K (t) is of positive increase or M(t)/ logβ t is
eventually non-decreasing for some β > 0, then

τ(x)� M−1K (x)−1, x →∞.



Remarks

The proof is a Fourier method and the improvements stem
from the choice of test functions.

We also have (sharp) quantified theorems under the flexible
one-sided Tauberian condition

τ(x) + F (x) is non-decreasing,

where F : (0,∞)→ R is some functions satisfying

|F (x + y)− F (x)| � f (x)|y | exp(|x |α), x , y ∈ R,

for some 0 < α < 1 and a function f : (0,∞)→ R.

Different boundary assumptions are also treated.
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Optimality: a quantified model theorem

Theorem

Let N ∈ N, M > −1 and τ : R+ → R be such that τ(x) + Ax is
non-decreasing for certain A > 0. Suppose that

L{τ ; s} =

∫ ∞
0

e−suτ(u)du

converges for Re s > 0 and admits an N times differentiable
extension g(t) := L{τ ; it} to Re s = 0, satisfying∣∣∣g (N)(t)

∣∣∣� (1 + |t|)M , t ∈ R,

then
τ(x)� x−N/(M+2), x →∞.

Question: Is the decay rate optimal?



Structure of the optimality theorem

Theorem (D., 2018)

Suppose that all functions τ satisfying the hypotheses of the model
theorem admit the decay rate

τ(x)� 1

V (x)
, x →∞,

then
V (x)� xN/(M+2), x →∞.



The key proof idea

Collect the functions τ who satisfy the (more restrictive)
hypotheses of the model theorem into a Banach space X1,
topologized via

‖τ‖1 = sup
x≥0
|τ ′(x)|+ sup

t∈R

|g (N)(t)|
(1 + |t|)M

.

Collect the functions τ which additionally satisfy the decay rate
1/V (x) in another Banach space X2, topologized via

‖τ‖2 = ‖τ‖1 + sup
x≥0
|τ(x)V (x)|.



The key proof idea: open mapping theorem

Consider the canonical inclusion mapping ι : X2 → X1, which is
clearly continuous.
If V (x) is an acceptable decay rate for the model theorem, then ι
is surjective and therefore by the open mapping theorem an open
mapping, that is, ι−1 is also continuous:

sup
x≥0
|τ(x)V (x)| � sup

x≥0
|τ ′(x)|+ sup

t∈R

|g (N)(t)|
(1 + |t|)M

.

The rest of the proof consists in considering the families
τy ,λ(x) := κ(λ(x − y)) for a well-chosen function κ and optimizing
the parameters y and λ.



The unquantified Ingham-Karamata theorem

Theorem (D.-Vindas, 2018)

Let −1 < α < 0. Suppose every function who satisfies the
hypotheses of the unquantified Ingham-Karamata theorem with
even an analytic extension to the half-plane Re s > −α satisfies
τ(x)� V (x), then

V (x)� 1.

For a constructive proof (Broucke-D.-Vindas, 2021)



An optimality theorem for analytic extensions

Theorem (D., 2024)

Let M,K : R+ → R be non-decreasing positive functions. Let

K (x)� exp(exp(CxM(x)))

for some C > 0. Suppose that for all functions τ for which
τ(x) + Ax is non-decreasing and whose Laplace transforms admit
analytic extensions to

ΩM =

{
σ + it : σ > − 1

M(|t|)

}
.

where they satisfy the bound K (|t|)/(1 + |t|), satisfy the decay
estimate

τ(x)� 1/V (x).

Then
V (x)� M−1K (x).



Analytic extensions: conclusions

The proof is based on the open mapping theorem, and again
the choice of test functions is crucial. Responsible for the
superexponential restriction.

Generalizes a theorem by D. and Seifert where one had the
stronger restriction MK (x)� exp(αx), for some α > 0.

Remaining open cases:
1 What if the superexponential hypothesis fails?
2 What if the bounds are so strong (M and K relatively close to

being constant) that the M−1
K -estimate is not reached in the

Tauberian theorem?

We also obtained optimality results under more general
flexible Tauberian conditions and other boundary behavior for
the Laplace transform.
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