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Tauberian Theory

Tauberian theory: Extracting asymptotic information from
integral transforms

Integral transforms
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Tauberian theory



The Ingham-Karamata theorem

Theorem (Ingham, Karamata, 1934)

Let 7 : Ry — R be such that 7(x) + Ax is non-decreasing for
certain A > 0. Suppose that

L{T;s} = /OOO e *r(u)du

converges for Res > 0 and admits an analytic continuation beyond
Res =0, then

7(x) = 0o(1), x — oo.




An application: short proof of the PNT

Ingredients:

@ ((s) =>_72, n—° admit an meromorphic extension beyond
Re s = 1 with a unique simple pole at s = 1 with residue 1.

o ((1+it)#0
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Ingredients:

@ ((s) =>_72, n—° admit an meromorphic extension beyond
Re s = 1 with a unique simple pole at s = 1 with residue 1.

o ((1+it)#0

Let

We aim to show that

P1(x) = logx — v+ o(1),

where ~y is the Euler-Mascheroni constant.



Proof PNT (continued)

We set

Its Laplace transform is

((s+1) 1  ~

sC(s+1) 2 s

From the ingredients, it follows that 7 satisfies all the hypotheses
for Ingham-Karamata, thus



@ Obtain quantified versions.



@ Obtain quantified versions.

o Consider flexible one-sided Tauberian conditions/Treat more
general singularities on the Laplace transform.



@ Obtain quantified versions.

o Consider flexible one-sided Tauberian conditions/Treat more
general singularities on the Laplace transform.

@ Establish optimality of the quantified rate.



@ Obtain quantified versions.

o Consider flexible one-sided Tauberian conditions/Treat more
general singularities on the Laplace transform.

@ Establish optimality of the quantified rate.

o Consider different types of boundary behavior of the Laplace
transform.



Treatment of one-sided Tauberian conditions

Sketch of proof of unquantified Ingham-Karamata theorem:
Laplace transform behavior implies via Riemann-Lebesgue lemma

(#(6),e™3(t)) = 04(1), h— o0,

for all ¢ € F(D(R)).



Treatment of one-sided Tauberian conditions

Sketch of proof of unquantified Ingham-Karamata theorem:
Laplace transform behavior implies via Riemann-Lebesgue lemma

(#(6),e™3(t)) = 04(1), h— o0,

for all ¢ € F(D(R)).
This translates to

/OO T(x + h)p(x)dx = 04(1), h — oo.

—00



Treatment of one-sided Tauberian conditions (continued)

The Tauberian condition implies
T(x)=7(x) +Ax —Ax <7(x+y)+ Ay, y>0
and

T(x)=7(x)+ Ax —Ax > 1(x +y)+ Ay, y<O0.



Treatment of one-sided Tauberian conditions (continued)

The Tauberian condition implies

T(xX)=7(x) + Ax —Ax < 7(x+y)+Ay, y=>0
and

T(x) =7(x) + Ax —Ax > 7(x+y)+ Ay, y<O0.

So, if ffooo ¢»=1, x¢(x) >0 and ffooo x¢(x)dx = C < oo,
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One-sided Tauberian conditions: Remarks

@ Selection of test functions cruciall One can show that
admissible test functions exist.

@ This proof of the Tauberian theorem in combination with the
above deduction of the PNT is one of the quickest proofs of
the prime number theorem available.

@ Technique also leads to simpler proofs for other one-sided
Tauberian theorems, such as the Berry-Esseen inequality.



Stahn's quantified theorem

Theorem (Stahn, 2018)

Let 7 : [0,00) — C be a Lipschitz continuous function. Let
M, K : R, — (0,00) be two continuous non-decreasing functions
for which there exists € € (0,1) such that

K(t) < exp (exp ((tM(t))'79)), t — oo
If L{T; s} admits an analytic extension to
Qu = {s = |Res| < 1/M(|Im s|)},
where |L{T;s}| < K(|s])/|s| as |s| — oo, then
T(x) < M,}jog(x)_l, X — 00,

where M,;llo is the inverse function of
Mk 1og(t) = M(t)(log t + loglog t + log K(t)).




Stahn's quantified theorem (continued)

Theorem

Furthermore, if K is of positive increase, that is, there exists
a, to > 0 such that t?K(t) < R?K(R) for all tp <t < R as
R — o0, then

T(x) < M (x)7h, x — oo,

with M,c! the inverse function of M (t) = M(t)(log t + log K(t)).

v




Our main quantified Tauberian theorem (simplified)

Theorem (D., 2024)

Let 7 :[0,00) — R be such that 7(x) + Ax is non-decreasing. Let
M, K be continuous non-decreasing functions on R, such that
L{7;s} admits an analytic extension to Qp; where it satisfies the
bound K(|s|)/|s| as |s| — oo. Then, for any ¢ < 1,

T(x) < M;jog(cx)_l, X — 00.

The above estimate holds with ¢ = 1 if, additionally, M jog is of
675M(0)~L-regular growth, that is, there exists C,ty > 0 such that

MK7|Og(Ct) > 14 675 E> 1.
MK,Iog(t) o /W(O)t‘7 B

If, additionally, K(t) is of positive increase or M(t)/log” t is
eventually non-decreasing for some (5 > 0, then

T(x) < M'(x)7h, x — o0
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@ We also have (sharp) quantified theorems under the flexible
one-sided Tauberian condition

7(x) + F(x) is non-decreasing,
where F : (0,00) — R is some functions satisfying
[F(x+y) = FO)I < f(X)lylexp([x[*),  x.y €R,

for some 0 < a < 1 and a function f : (0,00) — R.



@ The proof is a Fourier method and the improvements stem
from the choice of test functions.

@ We also have (sharp) quantified theorems under the flexible
one-sided Tauberian condition

7(x) + F(x) is non-decreasing,
where F : (0,00) — R is some functions satisfying
[F(x+y) = FO)I < f(X)lylexp([x[*),  x.y €R,

for some 0 < a < 1 and a function f : (0,00) — R.
o Different boundary assumptions are also treated.



Optimality: a quantified model theorem

Theorem

Let Ne N, M > —1 and 7 : Ry — R be such that 7(x) + Ax is
non-decreasing for certain A > 0. Suppose that

L{T;s} = /OOO e *r(u)du

converges for Res > 0 and admits an N times differentiable
extension g(t) := L{7; it} to Res = 0, satisfying

g™ (0| < @+, ter,

then

7(x) « x NMF2) - 5 o0,

Question: |s the decay rate optimal?



Structure of the optimality theorem

Theorem (D., 2018)

Suppose that all functions T satisfying the hypotheses of the model
theorem admit the decay rate

T(x) < X — 00,

L
V(x)’

then

V(x) < xNM+2) 5




The key proof idea

Collect the functions 7 who satisfy the (more restrictive)
hypotheses of the model theorem into a Banach space Xj,
topologized via

W)
7|1 = sup |7’ (x)| + su g
H ||1 X2%| ( )| tGIEK? (1 |t‘)

Collect the functions 7 which additionally satisfy the decay rate
1/V(x) in another Banach space X3, topologized via

ITll2 = Il + sup [r()V(x)I-



The key proof idea: open mapping theorem

Consider the canonical inclusion mapping ¢ : Xo — Xi, which is
clearly continuous.

If V(x) is an acceptable decay rate for the model theorem, then ¢
is surjective and therefore by the open mapping theorem an open
mapping, that is, ¢ =1 is also continuous:

g™ (1)
sup [T(x)V(x)| < sup |7/(x)| + su
SR ITVEIT < suplm Il + sup Ty

The rest of the proof consists in considering the families
Ty A(x) == K(A(x — y)) for a well-chosen function x and optimizing
the parameters y and A.



The unquantified Ingham-Karamata theorem

Theorem (D.-Vindas, 2018)

Let —1 < a < 0. Suppose every function who satisfies the
hypotheses of the unquantified Ingham-Karamata theorem with
even an analytic extension to the half-plane Re s > —a« satisfies
7(x) < V(x), then

V(x) < 1.

For a constructive proof (Broucke-D.-Vindas, 2021)



An optimality theorem for analytic extensions

Theorem (D., 2024)
Let M, K : R, — R be non-decreasing positive functions. Let

K(x) < exp(exp(CxM(x)))

for some C > 0. Suppose that for all functions T for which
7(x) + Ax is non-decreasing and whose Laplace transforms admit
analytic extensions to

QM:{U+it10'>— L }

M(tl)

where they satisfy the bound K(|t|)/(1 + |t|), satisfy the decay
estimate

7(x) < 1/V(x).

Then
V(x) < Mt(x).
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the choice of test functions is crucial. Responsible for the
superexponential restriction.
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Analytic extensions: conclusions

@ The proof is based on the open mapping theorem, and again
the choice of test functions is crucial. Responsible for the
superexponential restriction.

@ Generalizes a theorem by D. and Seifert where one had the
stronger restriction My (x) < exp(ax), for some a > 0.
@ Remaining open cases:

@ What if the superexponential hypothesis fails?

@ What if the bounds are so strong (M and K relatively close to
being constant) that the M, '-estimate is not reached in the
Tauberian theorem?

@ We also obtained optimality results under more general
flexible Tauberian conditions and other boundary behavior for
the Laplace transform.



