A proof of the linearity conjecture for \(k \)-blocking sets in \(\text{PG}(n, p^3) \), \(p \) prime

M. Lavrauw \(^*\) L. Storme G. Van de Voorde \(^*\)

Abstract

In this paper, we show that a small minimal \(k \)-blocking set in \(\text{PG}(n, q^h) \), \(q = p^h \), \(h \geq 1 \), \(p \) prime, \(p \geq 7 \), intersecting every \((n-k)\)-space in \(1 \) (mod \(q \)) points, is linear. As a corollary, this result shows that all small minimal \(k \)-blocking sets in \(\text{PG}(n, p^3) \), \(p \) prime, \(p \geq 7 \), are \(\mathbb{F}_p \)-linear, proving the linearity conjecture (see [7]) in the case \(\text{PG}(n, p^3) \), \(p \) prime, \(p \geq 7 \).

1 Introduction and preliminaries

Throughout this paper \(q = p^h \), \(p \) prime, \(h \geq 1 \) and \(\text{PG}(n, q) \) denotes the \(n \)-dimensional projective space over the finite field \(\mathbb{F}_q \) of order \(q \). A \(k \)-blocking set \(B \) in \(\text{PG}(n, q) \) is a set of points such that any \((n-k)\)-dimensional subspace intersects \(B \). A \(k \)-blocking set \(B \) is called trivial when a \((n-k)\)-dimensional subspace is contained in \(B \). If an \((n-k)\)-dimensional space contains exactly one point of a \(k \)-blocking set \(B \) in \(\text{PG}(n, q) \), it is called a tangent \((n-k)\)-space to \(B \). A \(k \)-blocking set \(B \) is called minimal when no proper subset of \(B \) is a \(k \)-blocking set. A \(k \)-blocking set \(B \) is called small when \(|B| < 3(q^k + 1)/2 \).

Linear blocking sets were first introduced by Lunardon [3] and can be defined in several equivalent ways.

In this paper, we follow the approach described in [1]. In order to define a linear \(k \)-blocking set in this way, we introduce the notion of a Desarguesian spread. Suppose \(q = q_0^t \), with \(t \geq 1 \). By "field reduction", the points of \(\text{PG}(n, q) \) correspond to \((t-1)\)-dimensional subspaces of \(\text{PG}((n+1)t-1, q_0) \), since a point of \(\text{PG}(n, q) \) is a 1-dimensional vector space over \(\mathbb{F}_q \), and so a \(t \)-dimensional vector space over \(\mathbb{F}_{q_0} \). In this way, we obtain a partition \(\mathcal{D} \) of the pointset of \(\text{PG}((n+1)t-1, q_0) \) by \((t-1)\)-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension \(d \) is called a spread, or a \(d \)-spread if we want to specify the dimension. The spread obtained by field reduction is called a Desarguesian spread. Note that the Desarguesian spread satisfies the property that each subspace spanned by spread elements is partitioned by spread elements.

Let \(\mathcal{D} \) be the Desarguesian \((t-1)\)-spread of \(\text{PG}((n+1)t-1, q_0) \). If \(U \) is a subset of \(\text{PG}((n+1)t-1, q_0) \), then we define \(B(U) := \{ R \in \mathcal{D} | U \cap R \neq \emptyset \} \), and we identify the elements of \(B(U) \) with the corresponding points of \(\text{PG}(n, q_0^t) \). If \(U \) is subspace of \(\text{PG}((n+1)t-1, q_0) \), then we call \(B(U) \) a linear set or an \(\mathbb{F}_{q_0^t} \)-linear

\(^*\)This author’s research was supported by the Fund for Scientific Research - Flanders (FWO)
set if we want to specify the underlying field. Note that through every point in $\mathcal{B}(U)$, there is a subspace U' such that $\mathcal{B}(U') = \mathcal{B}(U)$ since the elementwise stabiliser of the Desarguesian spread \mathcal{D} acts transitively on the points of a spread element of \mathcal{D}. If U intersects the elements of \mathcal{D} in at most a point, i.e. $|\mathcal{B}(U)|$ is maximal, then we say that U is scattered with respect to \mathcal{D}; in this case $\mathcal{B}(U)$ is called a scattered linear set. We denote the element of \mathcal{D} corresponding to a point P of $\text{PG}(n, q_0^h)$ by $\mathcal{S}(P)$. If U is a subset of $\text{PG}(n, q)$, then we define $\mathcal{S}(U) := \{\mathcal{S}(P) | P \in U\}$. Analogously to the correspondence between the lines of $\text{PG}(n, q)$ and the $(2t-1)$-dimensional subspaces of $\text{PG}((n+1)t-1, q_0)$ spanned by two elements of \mathcal{D}, and in general, we obtain the correspondence between the $(n-k)$-spaces of $\text{PG}(n, q)$ and the $((n-k+1)t-1)$-dimensional subspaces of $\text{PG}((n+1)t-1, q_0)$ spanned by $n-k+1$ elements of \mathcal{D}. With this in mind, it is clear that any tk-dimensional subspace U of $\text{PG}(t(n+1)-1, q_0)$ defines a k-blocking set $\mathcal{B}(U)$ in $\text{PG}(n, q)$. A (k)-blocking set constructed in this way is called a linear (k)-blocking set, or an \mathbb{F}_{q_0}-linear (k)-blocking set if we want to specify the underlying field.

By far the most challenging problem concerning blocking sets is the so-called linearity conjecture. Since 1998 it has been conjectured by many mathematicians working in the field. The conjecture was explicitly stated in the literature by Sziklai in [7].

(LC) All small minimal k-blocking sets in $\text{PG}(n, q)$ are linear.

Various instances of the conjecture have been proved; for an overview we refer to [7]. In this paper we prove the linearity conjecture for small minimal k-blocking sets in $\text{PG}(n, p^h)$, $p \geq 7$, as a corollary of the following main theorem:

Theorem 1. A small minimal k-blocking set in $\text{PG}(n, q^3)$, $q = p^h$, p prime, $h \geq 1$, $p \geq 7$, intersecting every $(n-k)$-space in $1 \mod q$ points is linear.

1.1 Known characterisation results

In this section we mention a few results, that we will rely on in the sequel of this paper. First of all, observe that a subspace intersects a linear set of $\text{PG}((n+1)t-1, q_0)$ in $1 \mod p$ or zero points. The following result of Szőnyi and Weiner shows that this property holds for all small minimal blocking sets.

Result 2. [8, Theorem 2.7] If B is a small minimal k-blocking set of $\text{PG}(n, q)$, $p > 2$, then every subspace intersects B in $1 \mod p$ or zero points.

Result 2 answers the linearity conjecture in the affirmative for $\text{PG}(n, p^2)$. For $\text{PG}(n, p^3)$, the linearity conjecture was proved by Weiner (see [9]). For 1-blocking sets in $\text{PG}(n, q^3)$, we have the following theorem of Polverino $(n = 2)$ and Storme and Weiner $(n \geq 3)$.

Result 3. [5/6] A minimal 1-blocking set in $\text{PG}(n, q^3)$, $q = p^h$, $h \geq 1$, p prime, $p \geq 7$, $n \geq 2$, of size at most $q^3 + q^2 + q + 1$, is linear.

In Theorem 8 we show that this implies the linearity conjecture for small minimal 1-blocking sets $\text{PG}(n, q^3)$, $p \geq 7$, that intersect every hyperplane in $1 \mod q$ points.

The following Result by Szőnyi and Weiner gives a sufficient condition for a blocking set to be minimal.

2
Result 4. [8, Lemma 3.1] Let B be a k-blocking set of $\text{PG}(n, q)$, and suppose that $|B| \leq 2q^k$. If each $(n - k)$-dimensional subspace of $\text{PG}(n, q)$ intersects B in $1 \pmod{p}$ points, then B is minimal.

1.2 The intersection of a subline and an \mathbb{F}_q-linear set

The possibilities for an \mathbb{F}_q-linear set of $\text{PG}(1, q^3)$, other than the empty set, a point, and the set $\text{PG}(1, q^3)$ itself are the following: a subline $\text{PG}(1, q)$ of $\text{PG}(1, q^3)$, corresponding to the a line of $\text{PG}(5, q)$ not contained in an element of \mathcal{D}; a set of $q^2 + 1$ points of $\text{PG}(1, q^3)$, corresponding to a plane of $\text{PG}(5, q)$ that intersects an element of \mathcal{D} in a line; a set of $q^2 + q + 1$ points of $\text{PG}(1, q^3)$, corresponding to a plane of $\text{PG}(5, q)$ that is scattered w.r.t. \mathcal{D}.

The following results describe the possibilities for the intersection of a subline with an \mathbb{F}_q-linear set in $\text{PG}(1, q^3)$, and will play an important role in this paper.

Result 5. [2] A subline $\cong \text{PG}(1, q)$ intersects an \mathbb{F}_q-linear set of $\text{PG}(1, q^3)$ in $0, 1, 2, 3$, or $q + 1$ points.

Result 6. [4, Lemma 4.4, 4.5, 4.6] Let q be a square. A subline $\text{PG}(1, q)$ and a Baer subline $\text{PG}(1, q\sqrt{q})$ of $\text{PG}(1, q^3)$ share at most a subline $\text{PG}(1, \sqrt{q})$. A Baer subline $\text{PG}(1, q\sqrt{q})$ and an \mathbb{F}_q-linear set of $q^2 + 1$ or $q^2 + q + 1$ points in $\text{PG}(1, q^3)$ share at most $q + \sqrt{q} + 1$ points.

2 Some bounds and the case $k = 1$

The Gaussian coefficient $\binom{n}{k}_q$ denotes the number of $(k - 1)$-subspaces in $\text{PG}(n - 1, q)$, i.e.,

$$\binom{n}{k}_q = \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)}.$$

Lemma 7. If B is a subset of $\text{PG}(n, q^3)$, $q \geq 7$, intersecting every $(n - k)$-space, $k \geq 1$, in $1 \pmod{q}$ points, and π is an $(n - k + s)$-space, $s \leq k$, then either

$$|B \cap \pi| < q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}$$

or

$$|B \cap \pi| > q^{3s+1} - q^{3s-1} - q^{3s-2} - 3q^{3s-3}.$$

Proof. Let π be an $(n - k + s)$-space of $\text{PG}(n, q^3)$, and put $B_\pi := B \cap \pi$. Let x_i denote the number of $(n - k)$-spaces of π intersecting B_π in i points. Counting the number of $(n - k)$-spaces, the number of incident pairs (P, π) with $P \in B_\pi$, $P \in \sigma, \pi$ an $(n - k)$-space, and the number of triples (P_1, P_2, σ), with $P_1, P_2 \in B_\pi$, $P_1 \neq P_2$, $P_1, P_2 \in \sigma, \pi$ an $(n - k)$-space yields:

$$\sum_i x_i = \binom{n - k + s + 1}{n - k + 1}_q, \quad (1)$$

$$\sum_i ix_i = |B_\pi| \binom{n - k + s}{n - k}_q, \quad (2)$$

$$\sum i(i - 1)x_i = |B_\pi|(|B_\pi| - 1) \binom{n - k + s - 1}{n - k - 1}_q. \quad (3)$$
Since we assume that every \((n - k)\)-space intersects \(B\) in \(1 \pmod{q}\), it follows that every \((n - k)\)-space of \(\pi\) intersect \(B_{\pi}\) in \(1 \pmod{q}\) points, and hence
\[
\sum_i (i - 1)(i - 1 - q)x_i \geq 0.
\]
Using Equations (1), (2), and (3), this yields that
\[
|B_{\pi}|((B_{\pi} - 1)(q^{3(n - 3k)} - 1)(q^{3n - 3k + 3} - 1) - (q + 1))B_{\pi}((q^{3n - 3k + 3} - 1)(q^{3n - 3k + 3} - 1) + (q + 1)(q^{3n - 3k + 3} - 1)(q^{3n - 3k + 3} - 1) - (q + 1))B_{\pi}((q^{3n - 3k + 3} - 1)(q^{3n - 3k + 3} - 1) + (q + 1)(q^{3n - 3k + 3} - 1)(q^{3n - 3k + 3} - 1) \geq 0.
\]
Putting \(|B_{\pi}| = q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}\) or \(|B_{\pi}| = q^{3s+1} + q^{3s-2} - 3q^{3s-3}\) in this inequality, with \(q \geq 7\), gives a contradiction. Hence the statement follows.

Theorem 8. A small minimal 1-blocking set in \(PG(n, q^3)\), \(p \geq 7\), intersecting every hyperplane in \(1 \pmod{q}\) points, is linear.

Proof. Lemma 7 implies that a small minimal 1-blocking set \(B\) in \(PG(n, q^3)\), intersecting every hyperplane in \(1 \pmod{q}\) points, has at most \(q^3 + q^2 + q + 3\) points. Since every hyperplane intersects \(B\) in \(1 \pmod{q}\) points, it is easy to see that \(|B| \equiv 1 \pmod{q}\). This implies that \(|B| \leq q^3 + q^2 + q + 1\). Result 3 shows that \(B\) is linear.

Corollary 9. A small minimal 1-blocking set in \(PG(n, p^3)\), \(p\) prime, \(p \geq 7\), is \(F_p\)-linear.

Proof. This follows from Result 2 and Theorem 8.

For the remaining of this section, we use the following assumption:

(B) \(B\) is small minimal \(k\)-blocking set in \(PG(n, q^3)\), \(p \geq 7\), intersecting every \((n - k)\)-space in \(1 \pmod{q}\) points.

For convenience let us introduce the following terminology. A full line of \(B\) is a line which is contained in \(B\). An \((n - k + s)\)-space \(S\), \(s < k\), is called large if \(S\) contains more than \(q^{3s+1} - q^{3s-1} - q^{3s-2} - 3q^{3s-3}\) points of \(B\), and \(S\) is called small if it contains less than \(q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}\) points of \(B\).

Lemma 10. Let \(L\) be a line such that \(1 < |B \cap L| < q^3 + 1\).

1. For all \(i \in \{1, \ldots, n - k\}\) there exists an \(i\)-space \(\pi_i\) on \(L\) such that \(B \cap \pi_i = B \cap L\).

2. Let \(N\) be a line, skew to \(L\). For all \(j \in \{1, \ldots, k - 2\}\), there exists a small \((n - k + j)\)-space \(\pi_j\) on \(L\), skew to \(N\).

Proof. (1) It follows from Result 2 that every subspace on \(L\) intersects \(B \setminus L\) in zero or at least \(p\) points. We proceed by induction on the dimension \(i\). The statement obviously holds for \(i = 1\). Suppose there exists an \(i\)-space \(\pi_i\) on \(L\) such that \(\pi_i \cap B = L \cap B\), with \(i \leq n - k - 1\). If there is no \((i + 1)\)-space intersecting \(B\) only on \(L\), then the number of points of \(B\) is at least
\[
|B \cap L| + p(q^{3(n-i)-3} + q^{3(n-i)-6} + \ldots + q^3 + 1),
\]
but by Lemma 7 \(|B| \leq q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}\). If \(i < n - k - 1\) this is a contradiction. If \(i = n - k - 1\) then in the above count we may replace the factor \(p\) by a factor \(q\), using the hypothesis (B), and hence also in this case we get a contradiction. We may conclude that there exists an \(i\)-space \(\pi_i\) on \(L\) such that \(B \cap L = B \cap \pi_i\), \(\forall i \in \{1, \ldots, n - k\}\).
Part (1) shows that there is an \((n - k - 1)\)-space \(\pi_{n-k-1}\) on \(L\), skew to \(N\), such that \(B \cap L = B \cap \pi_{n-k-1}\). If an \((n - k)\)-space through \(\pi_{n-k-1}\) contains an extra element of \(B\), it contains at least \(q^2\) extra elements of \(B\), since a line containing 2 points of \(B\) contains at least \(q + 1\) points of \(B\). This implies that there is an \((n - k)\)-space \(\pi_{n-k}\) through \(\pi_{n-k-1}\) with no extra points of \(B\), and skew to \(N\).

We proceed by induction on the dimension \(i\). Lemma 12(1) shows that there are at least \((q^{3k} - 1)/(q^3 - 1 - q^{3k-5} - 5q^{3k-6} + 1 > q^3 + 1\) small \((n - k + 1)\)-spaces through \(\pi_{n-k}\) which proves the statement for \(i = 1\).

Suppose that there are \((n - k + t)\)-space \(\pi_{n-k+t}\) on \(L\), skew to \(N\), such that \(B \cap \pi_{n-k+t}\) is a small minimal \(t\)-blocking set of \(\pi_{n-k+t}\). An \((n - k + t + 1)\)-space through \(\pi_{n-k+t}\) contains at most \((q^{3t+4} - 1)(q - 1)\) or more than \(q^{3t+4} - q^{3t+2} - q^{3t+1} - 3q^{3t}\) points of \(B\) (see Lemmas 7 and 13).

Suppose all \((q^{3k+3} - 1)(q^3 - 1 - q^3 - 1)\) \((n - k + t)\)-spaces through \(\pi_{n-k+t-1}\), skew to \(N\), contain more than \(q^{3t+4} - q^{3t+2} - q^{3t+1} - 3q^{3t}\) points of \(B\). Then the number of points in \(B\) is larger than \(q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}\) if \(t \leq k - 3\), a contradiction.

We may conclude that there exists an \((n - k + j)\)-space \(\pi_j\) on \(L\) such that \(B \cap \pi_j\) is a small minimal \(t\)-blocking set, skew to \(N\), \(\forall j \in \{1, \ldots, k - 2\}\).

Theorem 11. A line \(L\) intersects \(B\) in a linear set.

Proof. Note that it is enough to show that \(L\) is contained in a subspace of \(\text{PG}(n, q^3)\) intersecting \(B\) in a linear set. If \(k = 1\), then \(B\) is linear by Theorem 8, and the statement follows. Let \(k > 1\), let \(L\) be a line, not contained in \(B\), intersecting \(B\) in at least two points. It follows from Lemma 10 that there exists an \((n - k)\)-space \(\pi_j\) such that \(B \cap L = B \cap \pi_j\). Then each of the \((q^{3k} - 1)/(q^3 - 1)\) \((n - k + 1)\)-spaces through \(\pi_j\) is large, then the number of points in \(B\) is at least

\[
\frac{q^{3k} - 1}{q^3 - 1} (q^4 - q^2 - q - 3 - q^3) + q^3 > q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3},
\]

a contradiction. Hence, there is a small \((n - k + 1)\)-space \(\pi\) through \(L\), so \(B \cap \pi\) is a small 1-blocking set which is linear by Theorem 8. This concludes the proof.

Lemma 12. Let \(\pi\) be an \((n - k)\)-space of \(\text{PG}(n, q^3), k > 1\).

1. If \(B \cap \pi\) is a point, then there are at most \(q^{3k-5} + 4q^{3k-6} - 1\) large \((n - k + 1)\)-spaces through \(\pi\).

2. If \(\pi\) intersects \(B\) in \((q\sqrt{q} + 1), q^2 + 1\) or \(q^2 + q + 1\) collinear points, then there are at most \(q^{3k-5} + 5q^{3k-6} - 1\) large \((n - k + 1)\)-spaces through \(\pi\).

3. If \(\pi\) intersects \(B\) in \(q + 1\) collinear points, then there are at most \(3q^{3k-6} - q^{3k-7} - 1\) large \((n - k + 1)\)-spaces through \(\pi\).

Proof. Suppose there are \(y\) large \((n - k + 1)\)-spaces through \(\pi\). Then the number of points in \(B\) is at least

\[
y(q^4 - q^2 - q - 3 - |B \cap \pi|) + ((q^{3k} - 1)/(q^3 - 1) - y)x + |B \cap \pi|, \quad (*)
\]

where \(x\) depends on the intersection \(B \cap \pi\).
(1) In this case, \(x = q^3 \) and \(|B \cap \pi| = 1 \). If \(y = q^{3k-5} + 4q^{3k-6} \), then (*) is larger than \(q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3} \), a contradiction.

(2) In this case \(x = q^3 \) and \(|B \cap \pi| \leq q^2 + q + 1 \). If \(y = q^{3k-5} + 5q^{3k-6} \), then (*) is larger than \(q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3} \), a contradiction.

(3) By Result 3 we know that an \((n-k+1)\)-space \(\pi' \) through \(\pi \) intersects \(B \) in at least \(q^3 + q^2 + 1 \) points, since a \((q+1)\)-secant in \(\pi' \) implies that the intersection of \(\pi' \) with \(B \) is non-trivial and not a Baer subplane, hence \(x = q^3 + q^2 - q \), and \(|B \cap \pi| = q + 1 \). If \(3q^{3k-6} - q^{3k-7} \), then (*) is larger than \(q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3} \), a contradiction. □

3 The proof of Theorem 1

In the proof of the main theorem, we distinguish two cases. In both cases we need the following two lemmas.

We continue with the following assumption

(B) \(B \) is small minimal \(k \)-blocking set in \(\text{PG}(n, q^3) \), \(p \geq 7 \), intersecting every \((n-k)\)-space in \(1 \) \((\bmod\ q)\) points;

and we consider the following properties:

\((H_1)\) \(\forall s < k \): every small minimal \(s \)-blocking set, intersecting every \((n-s)\)-space in \(1 \) \((\bmod\ q)\) points, not containing a \((q\sqrt{q} + 1)\)-secant, is \(\mathbb{F}_q \)-linear;

\((H_2)\) \(\forall s < k \): every small minimal \(s \)-blocking set, intersecting every \((n-s)\)-space in \(1 \) \((\bmod\ q)\) points, containing a \((q\sqrt{q} + 1)\)-secant, is \(\mathbb{F}_q\sqrt{q} \)-linear.

Lemma 13. If \((H_1)\) or \((H_2)\), and \(S \) is a small \((n-k+s)\)-space, \(0 < s < k \), then \(B \cap S \) is a small minimal linear \(s \)-blocking set in \(S \), and hence \(|B \cap S| \leq (q^{3s+1} - 1)/(q - 1) \).

Proof. Clearly \(B \cap S \) is an \(s \)-blocking set in \(S \). Result 2 implies that \(B \cap S \) intersects every \((n-k+s-s)\)-space of \(S \) in \(1 \) \((\bmod\ q)\) points, and it follows from Result 4 that \(B \cap S \) is minimal. Now apply \((H_1)\) or \((H_2)\).

Lemma 14. Suppose \((H_1)\) or \((H_2)\). Let \(k > 2 \) and let \(\pi_{n-2} \) be an \((n-2)\)-space such that \(B \cap \pi_{n-2} \) is a non-trivial small linear \((k-2)\)-blocking set, then there are at least \(q^3 - q + 6 \) small hyperplanes through \(\pi_{n-2} \).

Proof. Applying Lemma 13 with \(s = k - 2 \), it follows that \(B \cap \pi_{n-2} \) contains at most \((q^{3k-3} - 1)/(q - 1) \) points. On the other hand, from Lemmas 7 and 13 with \(s = k - 1 \), we know that a hyperplane intersects \(B \) in at most \(q^{3k-2} - q^{3k-4} - q^{3k-5} - 3q^{3k-6} \) points. In the first case, a hyperplane \(H \) intersects \(B \) in at least \(q^{3k-3} + 1 + (q^{3k-3} + q)/(q + 1) \) points, using a result of Szönyi and Weiner [8, Corollary 3.7] for the \((k-1)\)-blocking set \(H \cap B \). If there are at least \(q - 4 \) large hyperplanes, then the number of points in \(B \) is at least

\[
(q - 4)(q^{3k-2} - q^{3k-4} - q^{3k-5} - 3q^{3k-6} - \frac{q^{3k-5} - 1}{q - 1}) +
\]

\[
(q^3 - q + 5)(q^{3k-3} + 1 + \frac{q^{3k-3} + q}{q + 1} - \frac{q^{3k-5} - 1}{q - 1}) + \frac{q^{3k-5} - 1}{q - 1},
\]

which is larger than \(q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3} \) if \(q \geq 7 \), a contradiction. Hence, there are at most \(q - 5 \) large hyperplanes through \(\pi_{n-2} \). □
3.1 Case 1: there are no $q\sqrt{q}+1$-secants

In this subsection, we will use induction on k to prove that small minimal k-blocking sets in $\text{PG}(n, q^3)$, intersecting every $(n-k)$-space in $1 \pmod{q}$ points and not containing a $(q\sqrt{q}+1)$-secant, are F_q-linear. The induction basis is Theorem 8. We continue with assumptions (H_1) and

$$(B_1) \text{ } B \text{ is small minimal } k\text{-blocking set in } \text{PG}(n, q^3), \text{ p } \geq 7, \text{ intersecting every (n-k)-space in 1 } \pmod{q} \text{ points, not containing a } (q\sqrt{q}+1)\text{-secant.}$$

Lemma 15. If B is non-trivial, there exist a point $P \in B$, a tangent $(n-k)$-space π at the point P and small $(n-k+1)$-spaces H_i, through π, such that there is a $(q+1)$-secant through P in H_i, $i = 1, \ldots, q^{3k-3} - 2q^{3k-4}$.

Proof. Since B is non-trivial, there is at least one line N with $1 < |N \cap B| < q^3 + 1$. Lemma 10 shows that there is an $(n-k)$-space π_N through N such that $B \cap N = B \cap \pi_N$. It follows from Theorem 11 and Lemma 12 that there is at least one $(n-k+1)$-space H through π_N such that $H \cap B$ is a small minimal linear 1-blocking set of H. In this non-trivial small minimal linear 1-blocking set, there are $(q+1)$-secants (see Result 3). Let M be one of those $(q+1)$-secants of B. Again using Lemma 10, we find an $(n-k)$-space π_M through M such that $B \cap M = B \cap \pi_M$.

Lemma 12(3) shows that through π_M, there are at least $\frac{q^3k}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1$ small $(n-k+1)$-spaces. Let P be a point of M. Since in each of these intersections, P lies on at least $q^2 - 1$ other $(q+1)$-secants, a point P of M lies in total on at least $(q^2 - 1)(\frac{q^3k}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1)$ other $(q+1)$-secants. Since each of the $\frac{q^3k}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1$ small $(n-k+1)$-spaces contains at least $q^3 + q^2 - q$ points of B not on M, and $|B| < q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$ (see Lemma 7), there are less than $2q^{3k-2} + 6q^{3k-3}$ points of B left in the large $(n-k+1)$-spaces. Hence, P lies on less than $2q^{3k-5} + 6q^{3k-6}$ full lines.

Since B is minimal, P lies on a tangent $(n-k)$-space π. There are at most $q^{3k-5} + 4q^{3k-6} - 1$ large $(n-k+1)$-spaces through π (Lemma 12(1)). Moreover, since at least $\frac{q^3k}{q^3-1} - (q^{3k-5} + 4q^{3k-6} - 1) - (2q^{3k-5} + 6q^{3k-6}) (n-k+1)$-spaces through π contain at least $q^3 + q^2$ points of B, and at most $2q^{3k-5} + 6q^{3k-6}$ of the small $(n-k+1)$-spaces through π contain exactly $q^3 + q^2$ points of B, there are at most $2q^{3k-2} + 23q^{3k-3}$ points of B left. Hence, P lies on at most $2q^{3k-3} + 23q^{3k-4}(q+1)$-secants of the large $(n-k+1)$-spaces through π. This implies that there are at least $(q^2 - 1)(\frac{q^{3k}}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1) - (2q^{3k-3} + 23q^{3k-4}) (q+1)$-secants through P left in small $(n-k+1)$-spaces through π. Since in a small $(n-k+1)$-space through π, there can lie at most $q^2 + q + 1$ $(q+1)$-secants through P, this implies that there are at least $q^{3k-3} - 2q^{3k-4} (n-k+1)$-spaces H_i through π such that P lies on a $(q+1)$-secant in H_i. \hfill \Box

Lemma 16. Let π be an $(n-k)$-dimensional tangent space of B at the point P. Let H_1 and H_2 be two $(n-k+1)$-spaces through π for which $B \cap H_i = B(\pi_i)$, for some 3-space π_i through $x \in S(P), B(x) \cap \pi_i = \{x\}$ $(i = 1, 2)$ and $B(\pi_i)$ not contained in a line of $\text{PG}(n, q^3)$. Then $B(\langle \pi_1, \pi_2 \rangle) \subseteq B$.

Proof. Since $(B(\pi_i))$ is not contained in a line of $\text{PG}(n, q^3)$, there is at most one element Q of $B(\pi_i)$ such that $(S(P), Q)$ intersects π_i in a plane. If there is such a plane, then we denote its pointset by μ_i, otherwise we put $\mu_i = \emptyset$.
Let M be a line through x in $\pi_1 \setminus \mu_1$, let $s \neq x$ be a point of $\pi_2 \setminus \mu_2$, and note that $B(s) \cap \pi_2 = \{s\}$.

We claim that there is a line T through s in π_2 and an $(n-2)$-space π_M through $(B(M))$ such that there are at least 4 points $t_i \in T$, $t_i \notin \mu_2$, such that $(\pi_M, B(t_i))$ is small and hence has a linear intersection with B, with $B \cap \pi_M = M$ if $k = 2$ and $B \cap \pi_M$ is a small minimal $(k-2)$-blocking set if $k > 2$.

If $k = 2$, the existence of π_M follows from Lemma 10(1), and we know from Lemma 12(1) that there are at most $q + 3$ large hyperplanes through π_M. Denote the set of points of $B(\pi_2)$, contained in one of those hyperplanes by F. Hence, if Q is a point of $B(\pi_2) \setminus F$, (Q, π_M) is a small hyperplane.

Let T_1 be a line through s in $\pi_2 \setminus \mu_2$ and not through x, and suppose that $B(T_1)$ contains at least $q - 3$ points of F.

Let T_2 be a line in $\pi_2 \setminus \mu_2$, through s, not in (x, T_1), and through x. There are at most $q + 3 - (q - 3)$ reguli through x of $S(F)$, not in (x, T_1), and if $\mu \neq \emptyset$ one element of $B(\mu_2)$ is contained $B(T_2)$. Since it is possible that $B(s)$ is an element of F, this gives in total at most 8 points of $B(T_2)$ that are contained in F. This implies, if $q > 11$, that at least 5 of the hyperplanes $(\pi_M, B(t))|t \in T_2$ are small.

If $q = 11$, it is possible that $B(T_2)$ contains at least 8 points of F. If T_3 is a line in $\pi_2 \setminus \mu_2$, through s, (x, T_1), (x, T_2) and not through x, then there are at least 5 points $t \in T_3$ such that $(\pi_M, B(t))$ is a small hyperplane.

If $q = 7$ and if $B(s) \in B(F)$, it is possible that $B(T_2), B(T_3), B(T_4)$, with T_i a line through s in $\pi_2 \setminus \mu_2$, not in (x, T_i), $j < i$, not through x, and contain 4 points of F. A fifth line T_5 through s in $\pi_2 \setminus \mu_2$, not in (x, T_i), $j < i$, not through x, contains at least 5 points such that $(\pi_M, B(t))$ is a small hyperplane.

If $k > 2$, let T be a line through s in $\pi_2 \setminus \mu_2$, not through x. It follows from Lemma 10(2) that there is an $(n-2)$-space π_M through $(B(M))$ such that $B \cap \pi_M$ is a small minimal $(k-2)$-blocking set of $\text{PG}(n, q^3)$, skew to $B(T)$. Lemma 14 shows that at most $q - 5$ of the hyperplanes through π_M are large. This implies that at least 5 of the hyperplanes $(\pi_M, B(t))|t \in B(T)$ are small. This proves our claim.

Since $B \cap (B(t_i), \pi_M)$ is linear, also the intersection of $(B(t_i), B(M))$ with B is linear, i.e., there exist subspaces $\tau_i, \tau_i \cap S(P) = \{x\}$, such that $B(\tau_i) = (B(t_i), B(M)) \cap B$. Since $\tau_i \cap (B(M))$ and M are both transversals through x to the same regulus $B(M)$, they coincide, hence $M \subseteq \tau_i$. The same holds for $\tau_i \cap (B(t_i), S(P))$, implying $t_i \in \tau_i$. We conclude that $B(M, t_i) \subseteq B(\tau_i) \subseteq B$.

We show that $B((M, T)) \subseteq B$. Let L' be a line of (M, T), not intersecting M. The line L' intersects the planes (M, t_i) in points p_i such that $B(p_i) \in B$. Since $B(L')$ is a subline intersecting B in at least 4 points, Result 5 shows that $B(L') \subseteq B$. Since every point of the space (M, T) lies on such a line L', $B((M, T)) \subseteq B$.

Hence, $B((M, s)) \subseteq B$ for all lines M through x, x in $\pi_1 \setminus \mu_1$, and all points $s \neq x \in \pi_2 \setminus \mu_2$, so $B((\pi_1, \pi_2) \setminus (\mu_1, \pi_2) \cup (\mu_2, \pi_1)) \subseteq B$. Since every point of $(\mu_1, \pi_2) \cup (\mu_2, \pi_1)$ lies on a line N with $q - 1$ points of $(\pi_1, \pi_2) \setminus (\mu_1, \pi_2) \cup (\mu_2, \pi_1)$, Result 5 shows that $B(N) \subseteq B$. We conclude that $B((\pi_1, \pi_2)) \subseteq B$.

Theorem 17. The set B is F_q-linear.

Proof. If B is a k-space, then B is F_q-linear. If B is non-trivial small minimal k-blocking set, Lemma 15 shows that there exists a point P of B, a tangent $(n-k)$-space π at the point P and at least $q^{k-3} - 2q^{k-4} (n-k+1)$-spaces H_i through
\(\pi \) for which \(B \cap H_i \) is small and linear, where \(P \) lies on at least one \((q+1)\)-secant of \(B \cap H_i \). \(i = 1, \ldots, s \), \(s \geq q^{3k-3} - 2q^{3k-4} \). Let \(B \cap H_i = B(\pi_i) \), \(i = 1, \ldots, s \), with \(\pi_i \) a 3-dimensional space.

Lemma 16 shows that \(B((\pi_i, \pi_j)) \subseteq B \), \(0 \leq i \neq j \leq s \).

If \(k = 2 \), the set \(B((\pi_1, \pi_2)) \) corresponds to a linear 2-blocking set \(B' \) in \(\text{PG}(n, q^3) \). Since \(B \) is minimal, \(B = B' \), and the Theorem is proven.

Let \(k > 2 \). Denote the \((n-k+1)\)-spaces through \(\pi \), different from \(H_i \), by \(K_{j}, j = 1, \ldots, z \). It follows from Lemma 15 that \(z \leq 2q^{3k-4} + (q^{3k-3} - 1)/(q^3 - 1) \).

There are at most \((q^{3k-3} - 2q^{3k-4} - 1)/q^3 \) different \((n-k+2)\)-spaces \((H_1, H_2) \), \(1 < j \leq s \). If all \((n-k+2)\)-spaces \((H_1, H_2) \), contain at least \(5q^2 - 49 \) of the spaces \(K_i \), then \(z \geq (5q^2 - 49)(q^{3k-3} - 2q^{3k-4} - 1)/q^3 \), a contradiction if \(q \geq 7 \). Let \((H_1, \ldots, H_{k+1}) \) be an \((n-k+i+1)\)-space containing less than \(5q^{3i-1} - 49q^{3i-6} \) of the spaces \(K_i \). Suppose by induction that for any \(1 < i < k \), there is \((n-k+i)\)-space \((H_1, H_2, \ldots, H_{i}) \) containing at most \(5q^{3i-4} - 49q^{3i-6} \) of the spaces \(K_i \), such that \(B(\langle \pi_1, \ldots, \pi_{i} \rangle) \subseteq B \).

There are at least \(q^{3k-3} - 2q^{3k-4} - (q^{3i-1} - 1)/(q^3 - 1) \) different \((n-k+i+1)\)-spaces \((H_1, H_2, \ldots, H_{i+1}, H) \), \(H \not\subseteq \langle H_1, H_2, \ldots, H_i \rangle \). If all of these contain at least \(5q^{3i-1} - 49q^{3i-6} \) of the spaces \(K_i \), then

\[
\begin{align*}
z \geq & \quad (5q^{3i-1} - 49q^{3i-3} - 5q^{3i-4} + 49q^{3i-6})^{\frac{q^{3k-3} - 2q^{3k-4} - (q^{3i-1} - 1)/(q^3 - 1)}{q^3}} \\
& + 5q^{3i-4} - 49q^{3i-6},
\end{align*}
\]

a contradiction if \(q \geq 7 \). Let \((H_1, \ldots, H_{k+1}) \) be an \((n-k+i+1)\)-space containing less than \(5q^{3i-1} - 49q^{3i-3} \) spaces \(K_i \). We still need to prove that \(B(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B \). Since \(B(\langle \pi_{i+1}, \pi \rangle) \subseteq B \), with \(\pi \) a 3-space in \(\langle \pi_1, \ldots, \pi_{i} \rangle \) for which \(B(\pi) \) is not contained in one of the spaces \(K_i \), there are at most \(5q^{3i-1} - 49q^{3i-6} \) 6-dimensional spaces \(\langle \pi_1, \mu \rangle \) for which \(B(\langle \pi_{i+1}, \mu \rangle) \) is not necessarily contained in \(B \), giving rise to at most \((5q^{3i-4} - 49q^{3i-6})(q^6 + q^5 + q^4) \) points \(t \) for which \(B(t) \) is not necessarily contained in \(B \). Let \(u \) be a point of such a space \(\langle \pi_{i+1}, \mu \rangle \). Suppose that each of the \((q^{3i+3} - 1)/(q - 1) \) lines through \(u \) in \(\langle \pi_1, \ldots, \pi_{i+1} \rangle \) contains at least \(q - 2 \) of the points \(t \) for which \(B(t) \) is not in \(B \). Then there are at least \((q - 3)(q^{3i+3} - 1)/(q - 1) + 1 > (5q^{3i-4} - 49q^{3i-6})(q^6 + q^5 + q^4) \) such points \(t \), if \(q \geq 7 \), a contradiction. Hence, there is a line \(N \) through \(t \) for which for at least 4 points \(v \in N \), \(B(v) \in B \).

Result 5 yields that \(B(t) \in B \). This implies that \(B(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B \).

Hence, the space \(\langle H_1, H_2, \ldots, H_{k} \rangle \), which spans the space \(\text{PG}(n, q^3) \), is such that \(B(\langle \pi_1, \ldots, \pi_k \rangle) \subseteq B \). But \(B(\langle \pi_1, \ldots, \pi_k \rangle) \) corresponds to a linear \(k \)-blocking set \(B' \) in \(\text{PG}(n, q^3) \). Since \(B \) is minimal, \(B = B' \).

\[\square \]

Corollary 18. A small minimal \(k \)-blocking set in \(\text{PG}(n, q^3) \), \(p \) prime, \(p \geq 7 \), is \(F_p \)-linear.

\[\square \]

Proof. This follows from Results 2 and Theorem 17.

\[\square \]

3.2 Case 2: there are \((q \sqrt{q} + 1)\)-secants to \(B \)

In this subsection, we will use induction on \(k \) to prove that small minimal \(k \)-blocking sets in \(\text{PG}(n, q^3) \), intersecting every \((n-k)\)-space in 1 (mod \(q \)) points and containing a \(q \sqrt{q} + 1 \)-secant, are \(F_{q \sqrt{q}} \)-linear. The induction basis is Theorem 8. We continue with assumptions \((H_2)\) and
(B₂) B is small minimal k-blocking set in PG(n, q³) intersecting every (n − k)-space in 1 (mod q) points, containing a (q√q + 1)-secant.

In this case, S maps PG(n, q³) onto PG(2n + 1, q√q) and the Desarguesian spread consists of lines.

Lemma 19. If B is non-trivial, there exist a point P ∈ B, a tangent (n − k)-space π at P and small (n − k + 1)-spaces Hᵢ through π, such that there is a (q√q + 1)-secant through P in Hᵢ, i = 1, ..., q³k−3 − q³k−4 − 2√q³k−5.

Proof. There is a (q√q + 1)-secant M. Lemma 10(1) shows that there is an (n − k)-space πᵢ through M such that B ∩ M = P ∩ πᵢ.

Lemma 12(3) shows that there are at least \(\frac{q³k−1}{q−1} - q³k−5 - 5q³k−6 + 1 \) small (n − k + 1)-spaces through πᵢ. Moreover, the intersections of these small (n − k + 1)-spaces with B are Baer subplanes PG(2, q√q), since there is a (q√q + 1)-secant M. Let P be a point of M ∩ B.

Since in any of these intersections, P lies on q√q other (q√q + 1)-secants, a point P of M ∩ B lies in total on at least \(q³k−1 - q³k−5 - 5q³k−6 + 1 \) other (q√q + 1)-secants. Since any of the \(\frac{q³k−1}{q−1} - q³k−5 - 5q³k−6 + 1 \) small (n − k + 1)-spaces through πᵢ contains q³ points of B not in πᵢ, and |B| < q³k + q³k−1 + q³k−2 + 3q³k−3 (see Lemma 7), there are less than q³k−4 + 4q³k−2 points of B left in the other (n − k + 1)-spaces through πᵢ. Hence, P lies on less than q³k−4 + 4q³k−5 full lines.

Since B is minimal, there is a tangent (n − k)-space π through P. There are at most q³k−5 + 4q³k−6 − 1 large (n − k + 1)-spaces through π (Lemma 12(1)). Moreover, since at least \(\frac{q³k−1}{q−1} - q³k−5 - 4q³k−6 + 1 \) small (n − k + 1)-spaces through π contain q³ + q√q + 1 points of B, and at most q³k−4 + 4q³k−5 of the small (n − k + 1)-spaces through π contain exactly q³ + 1 points of B, there are at most \(q³k−1 - q³k−2 - q³k−5 + 4q³k−2 \) points of B left. Hence, P lies on at most \(q³k−1 - q³k−2 - q³k−5 + 4q³k−2 \) different (q√q + 1)-secants of the large (n − k + 1)-spaces through π. This implies that there are at least \(q³k−1 - q³k−5 - 5q³k−6 + 1 \) different (q√q + 1)-secants through P in small (n − k + 1)-spaces through π. Since in a small (n − k + 1)-space through π, there lie q√q + 1 different (q√q + 1)-secants, we have at least q³k−3 − q³k−4 − 2q³k−5 small (n − k + 1)-spaces Hᵢ through π such that P lies on a (q√q + 1)-secant in Hᵢ.

Lemma 20. Let π be an (n − k)-dimensional tangent space of B at the point P. Let H₁ and H₂ be two (n − k + 1)-spaces through π for which B ∩ Hᵢ = B(πᵢ), for some plane πᵢ through x ∈ S(P), B(x) ∩ πᵢ = \{x\} (i = 1, 2) and B(πᵢ) not contained in a line of PG(n, q³). Then B(⟨π₁, π₂⟩) ⊆ B.

Proof. Let M be a line through x in π₁, let s ≠ x be a point of π₂.

We claim that there is a line T through s, not through x, in π₂ and an (n − 2)-space πᵢ through (B(M)) such that there are at least q√q − q − 2 points tᵢ ∈ T, such that ⟨πᵢ, B(tᵢ)⟩ is small and hence has a linear intersection with B, with B ∩ πᵢ = M if k = 2 and B ∩ πᵢ is a small minimal (k − 2)-blocking set if k > 2. From Lemma 12(1), we know that there are at most q + 3 large hyperplanes through πᵢ if k = 2, and at most q − 5 if k > 2 (see Lemma 14).
Let T be a line through s in π_2, not through x. The existence of π_M follows from Lemma 10(1) if $k = 2$, and Lemma 10(2) if $k > 2$. Since $B(T)$ contains $q\sqrt{q} + 1$ spread elements, there are at least $q\sqrt{q} - q - 2$ points $t_i \in T$ such that $(\pi_M, B(t_i))$ is small. This proves our claim.

Since $B \cap (B(t_i), \pi_M)$ is linear, also the intersection of $(B(t_i), B(M))$ with B is linear, i.e., there exist subspaces τ_i, $\tau_i \cap S(P) = \{x\}$, such that $B(\tau_i) = (B(t_i), B(M)) \cap B$. Since $\tau_i \cap (B(M))$ and M are both transversals through x to the same regulus $B(M)$, they coincide, hence $M \subseteq \tau_i$. The same holds for $\tau_i \cap (B(t_i), S(P))$, implying $t_i \in \tau_i$. We conclude that $B(\langle M, t_i \rangle) \subseteq B(\tau_i) \subseteq B$.

We show that $B(\langle M, T \rangle) \subseteq B$. Let L' be a line of $\langle M, T \rangle$, not intersecting M. The line L' intersects the planes $\langle M, t_i \rangle$ in points p_i such that $B(p_i) \subseteq B$. Since $B(L')$ is a subline intersecting B in at least $q\sqrt{q} - q - 2$ points, Result 6 shows that $B(L') \subseteq B$. Since every point of the space $\langle M, T \rangle$ lies on such a line L', $B(\langle M, T \rangle) \subseteq B$.

Hence, $B(\langle M, s \rangle) \subseteq B$ for all lines M through x in π_2, and all points $s \neq x \in \pi_2$. We conclude that $B(\langle \pi_1, \pi_2 \rangle) \subseteq B$.

Theorem 21. The set B is $\mathbb{F}_q\sqrt{q}$-linear.

Proof. Lemma 19 shows that there exists a point P of B, a tangent $(n - k)$-space π at the point P and at least $q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - (n - k + 1)$-spaces H_i through π for which $B \cap H_i$ is a Baer subplane, $i = 1, \ldots, s$, $s \geq q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5}$. Let $B \cap H_i = B(\pi_i), i = 1, \ldots, s$, with π_i a plane.

Lemma 20 shows that $B(\langle \pi_i, \pi_j \rangle) \subseteq B$, $0 \leq i \neq j \leq s$. If $k = 2$, the set $B(\langle \pi_1, \pi_2 \rangle)$ corresponds to a linear 2-blocking set B' in $\text{PG}(n, q^3)$. Since B is minimal, $B = B'$, and the Theorem is proven.

Let $k > 2$. Denote the $(n - k + 1)$-spaces trough π different from H_i by $K_j, j = 1, \ldots, z$. There are at least $(q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - 1)/q^3$ different $(n - k + 2)$-spaces $\langle H_1, H_j \rangle, 1 < j \leq s$. If all $(n - k + 2)$-spaces $\langle H_1, H_j \rangle$, contain at least $2q^2$ of the spaces K_i, then $z \geq 2q^2(q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - 1)/q^3$, a contradiction if $q \geq 49$. Let $\langle H_1, H_2 \rangle$ be an $(n - k + 2)$-spaces containing less than $2q^2$ spaces K_i.

Suppose, by induction, that for any $1 < i < k$, there is an $(n - k + i)$-space $\langle H_1, H_2, \ldots, H_i \rangle$ containing at most $2q^{3i-4}$ of the spaces K_i, such that $B(\langle \pi_1, \pi_i \rangle) \subseteq B$.

There are at least $q^{3i-3} - q^{3i-4} - 2\sqrt{q}q^{3i-5} - (q^{3i-1} - 1)/q^3$ different $(n - k + i + 1)$-spaces $\langle H_1, H_2, \ldots, H_i, H \rangle, H \not\subseteq \langle H_1, H_2, \ldots, H_i \rangle$.

If all of these contain at least $2q^{3i-1}$ of the spaces K_i, then $z \geq 2q^{3i-1} - 2q^{3i-4}q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - (q^{3i-1} - 1)/q^3 + 2q^{3i-4}$, a contradiction if $q \geq 49$. Let $\langle H_1, \ldots, H_{i+1} \rangle$ be an $(n - k + i + 1)$-space containing less than $2q^{3i-1}$ spaces K_i. We still need to prove that $B(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B$.

Since $B(\langle \pi_{i+1}, \pi \rangle) \subseteq B$, with π a plane in $\langle \pi_1, \ldots, \pi_i \rangle$ for which $B(\pi)$ is not contained in one of the spaces K_i, there are at most $2q^{3i-4}$ 4-dimensional spaces $\langle \pi_{i+1}, \mu \rangle$ for which $B(\pi_{i+1}, \mu)$ is not necessarily contained in B, giving rise to at most $2q^{3i-4}(q^6 + q^4\sqrt{q})$ points Q_i, for which $B(Q_i)$ is not necessarily in B.

Let Q be a point of such a space $\langle \pi_{i+1}, \mu \rangle$.

There are $(q\sqrt{q})^{2i+2} - 1)/(q\sqrt{q} - 1)$ lines through Q in $\langle \pi_1, \ldots, \pi_{i+1} \rangle \cong \text{PG}(2i + 2, q\sqrt{q})$, and there are at most $2q^{3i-4}(q^6 + q^4\sqrt{q})$ points Q_i for which
$B(Q_i)$ is not necessarily in B. Suppose all lines through Q in $(\pi_1, \ldots, \pi_{i+1}) \cong \text{PG}(2i + 2, q\sqrt{q})$ contain at least $q\sqrt{q} - q - \sqrt{q}$ points Q_i for which $B(Q_i)$ is not necessarily in B, then there are at least $(q\sqrt{q} - q - \sqrt{q} - 1)((q\sqrt{q})^{2i+2} - 1)/(q\sqrt{q} - 1) + 1 > 2q^{3i-4}(q^6 + q^4\sqrt{q})$ points Q_i for which $B(Q_i)$ is not necessarily in B, a contradiction.

Hence, there is a line N through Q in $(\pi_1, \ldots, \pi_{i+1})$ with at most $q\sqrt{q} - q - \sqrt{q} - 1$ points Q_i for which $B(Q_i)$ is not necessarily contained in B, hence, for at least $q + \sqrt{q} + 2$ points $R \in N$, $B(R) \subseteq B$. Result 6 yields that $B(Q) \subseteq B$.

This implies that $B((\pi_1, \ldots, \pi_{i+1})) \subseteq B$.

Hence, the space $B((H_1, H_2, \ldots, H_k))$ is such that $B((\pi_1, \ldots, \pi_k)) \subseteq B$. But $B((\pi_1, \ldots, \pi_k))$ corresponds to a linear k-blocking set B' in $\text{PG}(n, q^3)$. Since B is minimal, $B = B'$.

References