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o-HOMOTOPY GROUPS OF COXETERCOMPLEXES

H. Van Maldeghem :

communicated by J.A. Thas

The notion of a o-homotopy group of an arbitrary
chamber system has been introduced by J.Tits in

his work on local characterisations of buildings

[ 2] . A method is given to calculate some o-homotopy
groups for arbitrary Coxetercomplexes.

INTRODUCTION

Consider an arbitrary chamber systemX of rank n (for
definition see Tits [ 2] and Ronan [1]). If A={1,2,...,n}
and OEZA, two galleries y and y' are called elementary
o-homotopic if and only if y and y' can be written as the
juxtaposition of 3 galleries y=adp and y'=ad'B respecti-
vely, where a8 and o8' are both i-adjacent and 8B and

§'B are both j-adjacent (i,j€A;a,B possibly empty) and

where 6§ and §' are both J-galleries with J€g, and have
both the same end chambers. We call two galleries vy and
y' o-homotopic if they can be connected by a sequence

of elementary o-homotopies and we define

* The author's research was supported by I.W.O.N.L.
grant No.82238

35



[ Y] . to be the o-homotopy class of galleries containing

o
Y. We define the o-homotopy group of s:19(g) as the
group where elements are all o-homotopy classes of
galleries of ¥ (who is supposed to be connected) with
an arbitrary chamber c¢c of ¥ as end chambers, and with
binary operation [vy] .[ 8] =[y8] where y§ is the juxta-
position of y and §. It has been proved by J.Tits that
if £ is a building and if o=AU () that 79(z) is the

trivial group of one element.

1. NUMBER OF FLAGS OF A GIVEN TYPE OF AN ARBITRARY

COXETERCOMPLEX

We denote always the cardinality of a set A by |A].

If b is an arbitrary Coxetercomplex (reducible or not)

of rank n and An={1,2,...,n}, JeA and iEAn, then we
denote by Zi, Z; and Zgl) respective the set of flags

of type J of T the set of varieties of type i of z
and the set of flags of type J with |J|=i of ¥ . Hence
|Z£n)l=lzﬁn| is the number of chambers of I and since
the Weylgroup W(Zn) of r, acts sharply 1-transitive

on the set of chambers, this number is also the order
of the Weylgroup. If J={i1,i2,...,ik}gAn, then the
flags of type An—J are in fact the left cosets of the

parabolic subgroup Wy generated by the fundamental

. J .
reflections {Wil’wiz""’wik} , and so |Zn| is the
index of the parabolic subgroup WA -3 in W(Zn). Also

n
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WJ is the Weylgroup of the Coxetercomplex with diagram

J. Also if . is a reducible Coxetercomplex and if

k
an,znz,...,znk (with iElni=n) are 1ts irreducible
components, then W(Z )=W(zZ_ )eW(x_ )e...®W(Z_ ) and
n n, lo n

(nji) .

. k
(n)_
so [z> |—.Hllzni |.

1:

Hence 1if z is an arbitrary Coxetercomplex and

J={i1,iz,...,ik} and if we denote the connected compo-
nents of the diagram An—J by Bi,Bz,...,Bq, then
Wy gl=n g
W =M |w
An_J t=1 Bt

and so the number of flags of type J in . is

n |Wg_|

t=1 Bt
For J={i} we have then the number of varieties of type 1i.
Hence the number of varieties or of flags of given type
of a given Coxetercomplex can be derived directly from
the well known orders of the Weylgroups of the irreducible

Coxetercomplexes.

REMARK. Since a Coxetercomplex X, of rank n defines

always a triangulation of the hypersphere S™'={(x1,...,Xn)

n
n

ep I .- x§=1} we have by the Euler-Poincaré formula the
1=

1

following linear equation between the number of flags
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of a given type of b

-1 K2,

MBS

k

0

2. CHAMBER GRAPHS

The chamber graph Ch(z) of a chamber system ¥ of rank
n is the linear graf I'=(X,E) where X is the set of cham-
bers of £ and where_{c,c'}EE if and only if ¢ and c'
- are adjacent chambers. If we denote the set of edges
{{c,c'}lc and c' are i-adjacent} by Ei’ then E=E,UE,U...UE

is a natural partition of the set of edges E of Ch(x). If

A={1,2,...,n} and JCA, then we denote Ey= U Et'
tedJ

1f b is a Coxetercomplex, then since there exist a
1-1 correspondence between Zén) and W(Zn) we can take
X=W(zn) and two elements w and w' of the Weylgroup are
then i-adjacent (or {w,w'}EEi) if and only if wolw' is
the fundamental reflection Wy (Hence Ch(zn) is in fact the
Cayley graph of the Weylgroup W(Zn) with the fundamental
reflections {wl,wz,...,wn} as set of generators).If
J={i,j}€(%? ), then each connected component of (X,EJ)
is the chamber graph of a Coxetercomplex of rank 2. If this
Coxetercomplex is reducible or of type ; o , then a

connected component of (X,Ej) is the Cayley graph of the

four group of Klein or a square
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Fig.[ 1]

If J={i,j} is of type A, or o——o then a connected com-
1]
ponent of (X,EJ) is the Cayley graph of Sym(3) or an

hexagon

We can conceive this as the first barycentric subdivision
of a triangle (the thin projective plane).

If J={i,j} is of type C, or ;==§ then a connected compo-
nent of (X,EJ) is the Cayley griph of the dihedral group

Dg of symmetries of the square or an octagon

Again, we can conceive this as the first barycentric sub-
division of a square (a '"thin generalized quadrangle').
In general if J={i,j} is of type Im’ then each connected

component of (X,EJ) is the Cayley graph of the dihedral
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group D2m of symmetries of a regular n-gon or the first
barycentric subdivision of a n-gon and so a 2m-gon. (Hence
in particular if J={i,j} is of type G,, then each compo-
nent of (X,EJ) is a 7regular 12-gon).

Hence each Chamber graph Ch(zn)=(X,E) of a Coxetercom-
plex . contains quadrangles, hexagons, octagons, 10-gons

and so on, as '"elementary {i,j} - subgraphs or {i,j}-cells.

REMARK 1. Since ]XF]ZEH)I and ]E|=]Z£n_1)l is the cardi-
nality of the set of flags of codimension 1 we have for
the Euler-Poincaré characteristic of the linear graph
Ch(zn)
T CEIDRENTC) PSSP T S ES

X(Ch(z)) =[5, -y 1= 2 1T
REMARK 2. Of course each elementary {i,jl}-subgraph is the
chambergraph of the residu R(F) of some flag of type

An—{i,j}. Hence the number of {i,j}-cells is in fact the
An‘{i,j}|

8!

number of flags of type A _-{i,j} or |z

EXAMPLE. If Zn£A3, then Ch(Zn) is the following linear

graph which is the Cayley graph of Sym(4)).
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3. o-HOMOTOPY GROUPS

With each gallery of T corresponds a path in Ch(zn).

Moreover with each J-gallery (JQAH) corresponds a path

in (X,Ej). Two galleries of z, are elementary {i,j} -

homotopic equivalent if and only if the corresponding

paths in Ch(zn) differ only in an {i,j}-cell. Also we

know that each {i,j}-cell is a regular 2h-gon and if

n>3, then he{2,3,4,5}. We shall consider here only the
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case thatAﬁ;ﬁﬁn(;) and so (An,o—An) is a linear graph
which we denote also by a
Consider now an arbitrary maximal tree K in Ch(Zn),

an arbitrary orientation of the édges and {i,j}-cells
of Ch(zn); and the group G(Zn,c) with the oriented edges
of Ch(zn)—K as generators, and with the products of the

generators which are edges of a {i,j}-cell with {i,j}€o

as relators. Hence G(Zn,0)=<(auav)ﬂ(auav) is an oriented

edge of Ch(zn)'Kl(ailaiz)'(aizaig)' e .(aiZh ail)ﬂ
(aiFiz"'aizh) is an {i,j}-cell of b with {i,jl€o>
LEMMA

m° (zn)ZG (£,50)

PROOF. Consider the simplicial complex with as vertices

the chambers of o the flags of codimension 1 in X,
and the flags of cotype {i,j} with {i,jl}€o; and with as
2-dimensional simplexes the 3-subsets of flags{a,B,v}
where cotyp a=¢, cotyp B ={i}for some iEAn, cotypy={i,j},
for some {i,j}€c and yCRCo . This is the Ronan-complex
FO(Zn) and it has been proved by Ronan [ 1] that
HO(ZH)Zﬂl[FO (Zn),p] for an arbitrary vertex p (Zn is
connected).

Hence in Fo(zn) in fact each {i,jl}-cell which is a
regular 2h-gon is triangulated in 4h triangles , and the
3 vertices of each triangle are : a vertex of Ch(zn)

(or a chamber of Zn), a midpoint of an edge of Ch(Zn)
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izh

(or a flag of codimension 1) and the center of an {i,j}-
cell with {i,j}€oc as a regular 2h-gon (or a flag of
cotype {i,j})[see figure [5]].

An other way to triangulate these {i,j}-cells is by
taking an arbitrary point of it, and by joining this
vertex to the other vertices (see figure [6]). We

%
denote such simplicial complex FU(Zn)

i i, 1 1s

Fig.[5] | Fig.[ 6]

Since each such simplicial complex is a triangulation of
the same polyheder of which the Ronancomplex is also a
triangulation they have all HO(ZH) as fundamental group.
But in the last triangulation no new vertices are added,
and so if K is a maximal tree of Ch(zn), then K is

also a maximal tree of F:(Zn). Hence we have as a set

of generators of HO(ZH) the set of generators of G(Zn,c)
together with for each {i,j}-cell where {i,jl}€o0 the

set of oriented edges with the exceptional point as one
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endpoint and the vertices of the {i,j}-cell not adjacent
to it in Ch(zn) as the other endpoints.

If we give now an arbitrary orientation to each such
"interior" simplex of each {i,j}-cell with {i,j}€c,then
1t 1s clear that each new generator can be expressed as
a product of generators of G(Zn,o) and that each {i,j}-
cell with {i,j}Ec:(ailaiz,..aizh) gives rise to only one
relator (ailaiz)(aizais)..,(aiZh_1 i;h)(a ).

No new relators are added and so we have HG(Zn):G(Zn,U). -

a ;2
2h 1

THEOREM 1.I1f An(o) is a tree then HO(Zn) is a free group

with rank

An-{i,j}

X(Ch(z J))- = [znﬂv

{i,jleo

PROOF. If G=Anu{i,j} then An(c) contains only one edge

Since the {i,j}-cells define a partition of the set of

vertices of Ch(zn) we can always construct a maximal tree

and by joining these {i,j}-cells in a suitable way (one
has first to construct a maximal tree of the linear graph
where vertices are the {i,jl}-cells and where two vertices
are adjacent if and only if there exists an edge in
Ch(zn) joining them; this graph is connected since the
{i,j}~cells define a partition of the set of vertices of
Ch(zn)). Of course we can take in particulary as remaining
edge in an {i,jl}-cell, an edge that joins two j-adjacent

chambers (or briefly : a j-edge). Let us denote such a
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maximal tree by K(i,j). If o'=An then of course

HG

'(Zn) is the free group with x(Ch(zn)) generators.

But with this tree K(i,j) and by the lemma , exactly

one edge of each {i,j}-cell will be a new relator in

HO(Zn) and no other relators are added. Hence HAnU{i’j}(Zn)
is the free group with x(Ch(Zn))—tAn—{i’j}| generators.
We shall now prove inductively on p=|c-An|. Suppose p
Ic—An|>1 (in fact the case p=1 that we have just proved
will follow directly by induction from the case p=0,
where the statement is obvious). If An(c) is a tree,
then it has some endpoint jo.

Suppose {ig,jo}€0, then j0¢U((o—An)—{io,jo}). Therefore
the set of generators of the free group HO—{i 33 (Zn)
contains all oriented j,-edges that are not in the
maximalltree. If we take now as maximal tree a K(ig,Jjo)-.
It is clear that HO(Zn) has the same generators as

HO-{1°’J°}(Zn) and by the lemma, each remaining oriented

jo-edge becomes a relator and no other relators are added.
If m is the rank of Ho_{1°’J°}(Zn) and since there are

Izilo,30}| remaining j,-edges, HO(Zn) is a free group of

rank

Ap-{io,Jjo} An'{i’j}
m-fzn | = x(Ch(Zn))— Z |z

i,jlec ™

Hence we have proved the theorem. =

REMARK 1.If o is not a tree, then in general HO(ZH) is not

a free group. If for instance n=4,
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o=A, U {{1,2},{2,3},{3,4},{1,4}} (Thus ¢ is the linear graph
the square) and TZ,=A,;®A;®A;®A,, the Coxetercomplex with

diagram o o o o

then HO(Zq) 787 (see example 2)

EXAMPLE 1. Consider the Coxeter complex Eg and take for o

the Dynkindiagram of Eg which is itself a tree

2

D 4>
P L1
D N

~J

1
o

O:

0 OO0 (N

Then 1I°(Eg) is the free group with rank m=

x(Ch(Es))- = |EAe~11:3)129 045.094.401-406.425.600
{i,jleo

=638.668.801 (using the results
of paragraph 1)

¢)

THEOREM 2. 1f JCA_, o=A U(J), then 1° (£) is the free

group with rank

X(Ch(z))- = 5 (-0 It sbacLy
Le(27-J)
L#4
PROOF : We examine first the case J=An. Since

g :4 - o .
I (Zn)—Hl(PO(Zn)) and TO(ZH) is a triangulation of the

hypersphere sh=t ip R", clearly HO(Zn)§{1}, in con-
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formity with the results of J. Tits [2] : the univer-
sal 2-cover of a building is isomorphic to the building

n-2 _
itself. In this case X(Ch(z.))= £ (-1" k]z(k)l
n’C 2, n

= x (—1)|L”§ﬁn_L| and {1} is the free
LCA_

|L|>2

group with rank 0.

If JCA_ consider the set of connected components of
(X,EJ) which is a partition of the set of vertices of
(X;E). The number of partition classes is clearly |Zﬁn-J|
and each connected component is a copy of Ch(z]J|) where
ZlJI is the Coxeter complex with diagram JCAn. Consider
in each connected component of (X,EJ) a maximal tree.
Joining this components in a suitable way in Ch(zn),
we obtain a maximal tree in Ch(zn) that we denote by
K(J). By the first part of the proof, the result
of the relators in a connected component of (X,Ej) is
{1}. Since the sets of edges of these connected components
are disjoint, the result of the relators in (X,Ej) is
{1}. Hence HG(Zn) is the free group with rank
m=| U Ei-K(J)l. By joining the connected components

1€An-J
of (X,Ej) in Ch(zn) to obtain K(J), we needed exactly
Jzﬁn-J | -1 edges.

Hence,
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R T A L B P Y

. n
1EAn-J

X))z - x fepn et
i

=X (Ch(z_))-]=on77|p = lzJ'{i}l-lZ‘j‘l+1l
1

J-L
CAn-Jd L )
= h(z_))-|z2% ° T (-1)'Tix
X(Ch(z ))-|=z; I(LCJ( ) 17
|L|>2
Since [Zﬁ}%[ [Zﬁn_J|=lZﬁn_L] with LCJCA_, the result

follows. =

REMARK 2. from this, it follows that if JgAn, (g)gc,

_ J o] _.0!
o'=0U2" then I (Zn)—H (Zn).

DEFINITIONS 1. Let r=(Vp,E) be the chambergraph of a

Coxetercomplex z, of rank n (Vp is the set of vertices or

the chambers of T2 and E is the set of edges or the pairs
of adjacent chambers of ). Let the points of V, be in
general position in R", with the additional property that
the points of the chambergraph of each element of

A_-A

) ) m__n _
I, n m, ¥ ACA lies in some R CrR , where m—lAmI,

and forms a convex set.

If {x,,x,}€E, we write x;~X,, and then {xeRon=x1+t(x2~x1),
X1~X2, t€I=[0,1]}is the set of points of the Euclidean
model EM(Zn) of Ch(zn) in g™,
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A
. N r .
Consider AnQGQAnU( 2). We define

A
_ n
Q—{ouAngogAnu(z ) ,NEN}

n

R*={olla_coc2 ", new}

sk
wQ»Qﬁc->0

A
where ¢* has the property that if ALEh S and (:?)QG, then
\ T
2 "co* And we define EM,(r_,0) by EM(ZH)QEMl(Zn,U)an

as the set {xer"IxeC(V ¥V;CV and V; is the set of

J

By

. A - .
points that corresponds with Aex I , YA,

VJeo, |J|>2} where C(W) is the convex hull of W in R" or

the intersection of all convex sets W'an, with WCW',
Finely we define EM(Zn,0)=EM1(Zn,o*).

Since the homotopy type of sm‘l, the (m-1)-sphere in R"
is the same of the homotopytype of E™, the m-ball in Rm,
¥m<n, m>2, we see that EM(Zn,o) en EMl(Zn,o) have the same
homotopy-type. From the definitions, it follows also that

FO(Zn) is a triangulation of EMl(Zn,O). So we have
Y =~
n (£) 31 (FM(Z,0))

If Ch(an) and Ch(an) are the chambergraphs of respective
an and an, we define the graph G=(A,F) with set of

vertices A={(t,u) |t is vertex of Ch(an), u is vertex

of Ch(an)} and set of edges F.F is defined by

(t;=t, and u,~uj;)
(tl,ul) ~ (tZ’UZ) == or (1)

(t1~t2 and u;=u,)
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If T and U are the maximal flags in respective an

and I that correspond with respective t and u, then
2

every maximal flag of zn1+zn can be written as (T,U)
2

and we can identify the flag (T,U) with the vertex

(t,u) by the bijection

b:anein2-+G

(T,U0) = (t,u)

which transforms adjacent flags into adjacent vertices.
A

for é = A ! A o~ r‘ﬁ il n‘i\ A =1
L UL - - v AL 1
= n b un'_._ i~ K \ 2 J s

Ll 2
? n “n, -

If we define A
JAY b b

01Q0,=01Uc,U{{1,j}li€an, , jEA, }, then since
n, n,

n -
C(W,xW,)=C(W,)xC(W,) as product topology in Rn, Wicr 1,

|, n;+n,=n, and using (1), one sees that

ni=ldn.

EM(z, ®X, ,0:00; )=EM(Zn1,ol)xEM(Zn2,02)

THEOREM 3. If Znis i=1,2 is the Coxetercomplex with diagram

Ani and if AnigcigAn_u(Agi) , 1=1,2, then we have
— i

791992 (5 gy y=4%1(x_ Jer
n; n, n, n,

PROOF.

0190, _ -
T (an@znz) = Wl(hM(an@an,Ul@Oz))
=T (EM(ZHI ,OI)XEM(ZHZ ’02))
=ﬂ1(EM(ZnI,GI))€m1(EM(an,Uz))

=01 02
T (znl)em (znz).
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EXAMPLE 2

Consider the Coxetercomplex A;®A,=Y, with diagram
{1,2}:% % and a copy of ¥, with diagram {3,4}:% ¢
Then s,®x,=A,®A;®A,®A; and EM(5,®r,) is the hypercube
in R*. Take o:={{1},{2}}, 0,={{3},{4}} . Then it is

trivial that

191(zy) = 7%2(5,) = 2

and 1 4
3 4

So we have

WG(Z1@22) . 7®7

and EM(Z,®X,,0) has the homotopytype of a torus.

EXAMPLE 3

Suppose Zzn=(A1@A1)®(A1®A1)®...@(Al@Al) (n terms)
and 0=0,90,9039Q...Q0,@0;={{2i-1,{2i}}, 1<i<n
then 0=2%?1-{{1,2},{3,4},...,{2n-1,n} with A, ={1,2,...,2n}

and using theorem 3 n-1 times we obtain

ﬂG(Zzn) = 77O, . .07 (n terms)

EXAMPLE 4

If N i1s a Coxetercomplex with diagram AL,={1,2,...,n} and
A

AHQGQAHU( ;J , ﬂO(Zn) = G, then it follows with theorem

3 that for 1 , =A,9%) and o'={n+1}@ that

17 (Zhe,) T 10(Z) T 6.
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DEFINITIONS 2

1.

[§)
*

Let G and H be groups with respective presentation
G=<al 5 s e .,an"Rl 5 o o .,Rm>
H=<b1,...,prSI,...,Sq>

Then we define the free product GxH
G*H=<al,...,an,bl,...,prRI,...,Rm,Sl,...,Sq>

One can easily see that (GxH)*K = Gx(HxK), so we

denote GM=GxG*...*xG (n faktors).

g1+h A3
Let = be a Coxetercomplex of rank n, with diagram

n

A

0 {1,2,...,n}. Suppose

Jo_g_J l—g-' - ._C_JlgAn=J1+1 .

Let us denote the set of connected components of (X,EJ)
by Sy» then we prove that there exists a maximal tree
K in Ch(zn)E(X,E) so that the property (a) holds for
1=0,1,...,1.

(a) VSjGSJ, syjNK i1s a maximal tree in SJ; -
Ve construct first in each element of Sy, a maximal tree.
We denote this set of edges by K,, so KoCEj and (a)
holds for i=0 if we replace K by K,. We complete the
proof by induction. Suppose we have a set of edges
Kj, KngJj and (a) holds for i=0,1,...,j if we replace

K by K Then in each SJj+1€SJ

J° j+1, there exists a sub-
set PQSJj so that the union of vertices of all elements
of P is exactly the set of vertices of st+1. By joilning

these subgraphs (the elements of P) for each st+1

apartly, in a suitable way, we obtain a maximal tree

52



in each st+leSJj+1. The union of these trees , say
Kj+1, satisfies (a) for i=0,1,...,j,j+1 if we replace
K by Kj+1. If we denote Kj4+,=K, we obtain (a) for

i=1,...,1. We denote such a tree K by K(J¢;J1;...5J7)

THEOREM 4

Suppose F; and F, are flags of the Coxetercomplex X,

with typ F;ntypF,=¢.

Suppose
cotypF =Apn; |An1|=ni i=1,2.
J=bpn Nby,
R(Fj)=X i=1, 2.
(Fi) nj
R(F,VEF,) =X
( 1 Y?.) IJ! An
Ap V(3)€0:€8, V0 D) i1, 2.
1f 79 (5, )=6
172 (xp,)=H
0=0,Y0,
A_-A
o > |20, |z 7 n2|
then n (£ _)=G ™M *H n i
n k
with
k= = | a7l sttty o 2 in i)
ien_-J
n
A-J

_X(Zn)+X(Z]J|)'l z,

where X(X) denotes the Euler-Poincaré characteristic of

the Coxetercomplex I.
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PROOF : We consider first the case J=¢, 02=An2.

Then we have Ap=Ap UAnz' Consider in Ch(zZ,) a tree
1
K(Ap ). Then we have in each connected component of
1 .
(X,Epp ) the representation of the group G. There are
1
no other relators , but there are still
k'=X(Zn)ﬂZﬁn_§n1|.X(Zn ) generators left.
o Jiﬁn_Anll ;
So (Zn)=G *Fk,.

In this case

H=72 =F
m (an) X(

Zn,)
and we write
A A
P
Fy . =F n *F
X(an)
with
A=A
= '- n nz
k=k'-|z |.x(zn2)
A, -A A_-A
= - n m n n;
X(z -] =, RICID RSP | Xy,
An-_{ij} An.
Since X (&, )=1+ I |z3 -1z, j=1,2,
] i. €A . j J
J nj
we have
A=A A=A A -{i,}
k=x(z )-|=. ™ M- = | g™ Pz ™
n n . n ni
lleA
n,
A=A A A_~A A=A A ={iy}
n n n n n n n n
P N P B P S P P
! i, €A
R )
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n “m Bp=d Ap=d
Since IZlAnl | = A $]=Z N ?] for ApgAmQAn
m n

and using An=A UAn , we have

n, 2
A=A A=A A_-{i}
- - n
k=x(zn)—|1nn nl] -[znn n2|—_z ]znn |+2|zn( )l
1€An
A -{i} A=A, A_-A
k=x |z ® A B P R
. n n n
1€A
n
A -{i}
-[2 = lznn [ -2[z£n3|+2-x(zn)]
i€

the sum between brackets 1is [ZX(Zn)-X(Zn)]=X(Zn), so the
theorem follows in this particular case.

We consider now the general case. In Ch{zn), we take

a tree K(J;Anl—J). Since (g)gc, the calculation in each
connected component of (X,Ej) will lead to the trivial

group by theorem 2. So we have u=¢ (the empty word)

for each generator u that corresponds with a j-edge,

j€J. Let us denote the set of generators that correspond
with ik—edges (ikEAnk—J,k=1,2) by Rk and the set of relators
that correspond with {iy, ,iy,}-subgraphs by Q1 V{ikl,ik%eck,
k=1,2. No other relators appear since o=0,Uc, . Since

J=An1ﬂAn2, we have R;NR,=¢ and we can write formally

21201 (R1); 92,20, (R,) and we have

WO(Zn)=<R1,R2l91,Qz>-
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We compute <R;,R,I Q;> . Since Q, corresponds with
o2-(,), we have <R1}R2"91>=”01UAHZ(Zn) and by the
first part of the proof

~ IZIAln-Anll
<R1,R2"Q1>=G *Fk
1

A_
|z n

A
n1|

By the choice of the maximal tree, <R1ﬂ91>:G
and thus k;=|R,| (notice that a tree K(J;Ay -J) is also
1

a tree K(Anl)). So we have
PAn—{lh An—A

kelRal=x [ HE M
1€EA_-A
n n,
Similar
Zﬁn—Angl
<R1,R2"92>=H * sz
with
. A_-A
, — A “{1} _ n 1)
kz— z [Znn I tn ]+1

1eAn—An2

Among the k, generators of sz are all generators that

correspond with i;-edges, iIEAn . Let us call them briefly
1

n;-generators. We have

-J A_-A

A
n n ny

IRy [ =k =I X(z, - !znll

If we add now ©; to <R;,R lIQ,>, these ki n;-generators
A_-A
nt 0|

from together GIZ and k,-k} generators remain,

which form the free group sz—k; =Fx with k=k,-k;. Hence
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g ~ |Zﬁn—An1| ]ZIAln- n2]
T (Zn)=G * H *Fk.
with "y
A -{1 A=A A=A
k=k,-kj= I | = " B b EL B TC D I A
IEAH_AHZ
A_-J A_-A
n n n
+[}:n1 l.'Zn II.X(ZlJl)
A_-{1i} A=A A_-{i}
= b2 lznn - znn n2|+1—[_z | zn?l l—lznfnl)}+1]
1€An-An2 1€An1
n “n, An-J,
= |+X(ZIJI)'|ZH ,
A -{i} A -A A_-{i}
S L B AL Y PY B U L -
1€An—A , 1€:An1
An—An An—J
-lZn 11+X‘~Z|J|)'|Zn |
Since
z Ix - 2 X = z X;- % Ixi— z X3
iedh -A 1 1eAn 1eAn i€A . UA , 1eAnlnA ,
== L X
jieJ 1
= z xi— b3 Xi
1€An—J 1E€A
we have
A -{1} A_- -A
k= ¥ |z 1 R RS EY P S R
jieh -3 B
n
A_-{1}
n n A_=-J
+[zn( ) 1 )X lzn |1+X (X !JI). |z n |
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An-{i}

Since ¥. ™1~ 1 |z
n n

|=-X(£), the result follows. a
iEAn

REMARK 3
It is an easy exercise to prove that, if we can obtain

o by means of theorem 1,2 and 4, then m° (Zn) is the

free group with rank

A -J
X(z)- = -1y 171 P
Jeg*

| J|=>2

n

EXAMPLE 5
Let b be a Coxetercomplex with diagram {1,2,...,n}=A
Take for o=22n-2J

n-
5 JgAn. Then we have

o= U A. with A.=2(An'J) {i}
ieg * 1
A -J
and ( U Ai)mAj=2 N with j¢LCI so we can use theorem

i1€L
4 (|J|-1)-times and with theorem 2, we conclude that

WO(Zn) is a free group with rank as in remark 3.

EXAMPLE 6

Let Zngl@Al@...@Al (9 timeS)

and then we can represent o

as follows

9 2 7 5 4 2 3 1 2 4 5
o= el (® ) @ (e JVIPUIpPIVE NI Y [ 1]
5 L 6 7 7 8
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and by using theorem 4 and 3, we have

ﬂ0(29)=(Z®Z)16*F113.

The homotopy type of EM(Zg;0) is a tree of 16 disjoint

tori and one linear graph G with X(G)=113.

EXAMPLE 7

Let Zg=X;®} with £;=A,®A; and T}=A; and Ag the diagram

of 26
A6={1:2’3’4’536}’ L-Z' Z) i—-%—-?
Suppose
_ 123
01 9—o—o
_ 5146
02 o—o—0o

then by use of theorem 1 we know ﬂ01(23):F2

o s
and "2 (x})=F,

and if 0=01@02=(A26)—{{1,3},{5,6}} we have

mg(zs):F2®F3=<alaaZ ’bl,bz 9b3"aibja£1b51>’ l=1’2a3=1 ’2’3>

EM(Z¢,0) has the homotopy type of the following surface

b b2 b

4y 4 % ay A ay
by b | b

a, a, 1 a, A Na,
by b, b,
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EXAMPLE 8

If we take back the o from example 6 and call in general

A A
for AngolgAnU( ;J, cool=AnU[( ;J—ol] , then
5

ﬂ\
1-\ 6
o' =coo= \/

AN
// N
3T 8

&
L

Now we fake o"=g'-{{9}} and consider 28=A8

with diagram Ag={1,2,3,4,5,6,7,8}

1 2 3

5 8
o—O—C < <

7

We can Eepresent o' as follows
J -

6
on=[ (g o2 )@(Z 18 ] U [(O_O)SD( o )]
3 8 4

and by using ,four times theorem 1, two times theorem 3

and one time theorem 4, we find

° (Ag)=(F,®F;)830 x(F,®F,)1260%F, .4,

EXAMPLE 9

Consider Is=A;®A0A,6A,0A,
2
and o= It is impossible to cal-
P3 culate ﬂo(zs) only by using
5 the previous theorems.
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EM(Zs5,0) is a hypercube in R® where some faces are missing

After a suitable triangulation, one finds
o p n
m (ZS)_<a1,(12>a3’aH,aS’aB,a7saB’aS,a10

a;a,ajlazasajlasajlagasaglazlagazlaga;pagltaglajazl>

which is the homotopy type of the surface below

This 1s a surface with 5 handles. The fundamental group
can be written as
<b1,C1,b2,C2,++.,bs5,c5 I bycybT c1'bacybslcs .. bscsbslcsls
by the groupisomorphism
b1=a51
ci=a,
bo=as

_ _ _ .1
cr=asl'asa,azlasazlagasaglaju,
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_1
bs=as ay

C3=dy
quas
Cy=agy
b5=a8a9
Cs=aio

and the inverse formula's are

ad1=C

82=b31

b3=b2b3

a,=Cj3

85=b2

a5=b4

a7=Cy
a8=cthczlb:1c3b3c§1b§1c2
ag=C3'bicsb3ilc3itbyc,bilciibs

d30%Cs
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