SIMON STEVIN, A Quarterly Journal of Pure and Applied Mathematics Volume 58 (1984), Number 1 - 2 (January - April 1984)

#### σ-HOMOTOPY GROUPS OF COXETERCOMPLEXES

H. Van Maldeghem \*
communicated by J.A. Thas

The notion of a  $\sigma$ -homotopy group of an arbitrary chamber system has been introduced by J.Tits in his work on local characterisations of buildings [2]. A method is given to calculate some  $\sigma$ -homotopy groups for arbitrary Coxetercomplexes.

#### INTRODUCTION

Consider an arbitrary chamber system  $\Sigma$  of rank n (for definition see Tits [2] and Ronan [1]). If  $\Delta = \{1, 2, ..., n\}$  and  $\sigma \subseteq 2^{\Delta}$ , two galleries  $\gamma$  and  $\gamma'$  are called elementary  $\sigma$ -homotopic if and only if  $\gamma$  and  $\gamma'$  can be written as the juxtaposition of 3 galleries  $\gamma = \alpha \delta \beta$  and  $\gamma' = \alpha \delta' \beta$  respectively, where  $\alpha \delta$  and  $\alpha \delta'$  are both i-adjacent and  $\delta \beta$  and  $\delta' \beta$  are both j-adjacent (i,j $\in \Delta$ ; $\alpha$ , $\beta$  possibly empty) and where  $\delta$  and  $\delta'$  are both J-galleries with J $\in \sigma$ , and have both the same end chambers. We call two galleries  $\gamma$  and  $\gamma'$   $\sigma$ -homotopic if they can be connected by a sequence of elementary  $\sigma$ -homotopies and we define

<sup>\*</sup> The author's research was supported by I.W.O.N.L. grant No.82238

[ $\gamma$ ]  $_{\sigma}$  to be the  $\sigma$ -homotopy class of galleries containing  $\gamma$ . We define the  $\sigma$ -homotopy group of  $\Sigma:\pi^{\sigma}(\Sigma)$  as the group where elements are all  $\sigma$ -homotopy classes of galleries of  $\Sigma$  (who is supposed to be connected) with an arbitrary chamber c of  $\Sigma$  as end chambers, and with binary operation [ $\gamma$ ].[ $\delta$ ] =[ $\gamma\delta$ ] where  $\gamma\delta$  is the juxtaposition of  $\gamma$  and  $\delta$ . It has been proved by J.Tits that if  $\Sigma$  is a building and if  $\sigma$ = $\Delta \cup (\frac{\Delta}{2})$  that  $\pi^{\sigma}(\Sigma)$  is the trivial group of one element.

# 1. NUMBER OF FLAGS OF A GIVEN TYPE OF AN ARBITRARY COXETERCOMPLEX

We denote always the cardinality of a set A by |A|. If  $\Sigma_n$  is an arbitrary Coxetercomplex (reducible or not) of rank n and  $\Delta_n$ ={1,2,...,n},  $J\subseteq\Delta_n$  and  $i\in\Delta_n$ , then we denote by  $\Sigma_n^J$ ,  $\Sigma_n^i$  and  $\Sigma_n^{(i)}$  respective—the set of flags of type J of  $\Sigma_n$ , the set of varieties of type i of  $\Sigma_n$  and the set of flags of type J with |J|=i of  $\Sigma_n$ . Hence  $|\Sigma_n^{(n)}|=|\Sigma_n^{\Delta_n}|$  is the number of chambers of  $\Sigma_n$  and since the Weylgroup  $W(\Sigma_n)$  of  $\Sigma_n$  acts sharply 1-transitive on the set of chambers, this number is also the order of the Weylgroup. If J={i<sub>1</sub>,i<sub>2</sub>,...,i<sub>k</sub>} $\subseteq$  $\Delta_n$ , then the flags of type  $\Delta_n$ -J are in fact the left cosets of the parabolic subgroup  $W_J$  generated by the fundamental reflections { $w_{i_1}, w_{i_2}, \ldots, w_{i_k}$ }, and so  $|\Sigma_n^J|$  is the index of the parabolic subgroup  $W_{\Delta_n-J}$  in  $W(\Sigma_n)$ . Also

 $W_J$  is the Weylgroup of the Coxetercomplex with diagram J. Also if  $\Sigma_n$  is a reducible Coxetercomplex and if  $\sum_{n_1}, \Sigma_{n_2}, \ldots, \sum_{n_k}$  (with  $\sum_{i=1}^n n_i = n$ ) are its irreducible components, then  $W(\Sigma_n) = W(\Sigma_{n_1}) \oplus W(\Sigma_{n_2}) \oplus \ldots \oplus W(\Sigma_{n_k})$  and so  $|\Sigma_n^{(n)}| = \prod_{i=1}^k |\Sigma_{n_i}^{(n_i)}|$ .

Hence if  $\Sigma_n$  is an arbitrary Coxetercomplex and  $J=\{i_1,i_2,\ldots,i_k\}$  and if we denote the connected components of the diagram  $\Delta_n$ -J by  $B_1,B_2,\ldots,B_1$ , then

$$|W_{\Delta_{\mathbf{n}}-J}| = \prod_{t=1}^{1} |W_{\mathbf{B}_{t}}|$$

and so the number of flags of type J in  $\boldsymbol{\Sigma}_n$  is

$$\frac{\left| \mathbf{W}_{\Sigma_{\mathbf{n}}} \right|}{\prod_{t=1}^{1} \left| \mathbf{W}_{\mathbf{B}} \right|}.$$

For J={i} we have then the number of varieties of type i. Hence the number of varieties or of flags of given type of a given Coxetercomplex can be derived directly from the well known orders of the Weylgroups of the irreducible Coxetercomplexes.

REMARK. Since a Coxetercomplex  $\Sigma_n$  of rank n defines always a triangulation of the hypersphere  $S^{n-1}=\{(x_1,\ldots,x_n)\}$   $\in_R \prod_{i=1}^n \sum_{j=1}^n x_j^2=1\}$  we have by the Euler-Poincaré formula the following linear equation between the number of flags

of a given type of  $\Sigma_n$ :

$$\sum_{k=0}^{n} (-1)^{n-k} |\Sigma_{n}^{(k)}| = 1.$$

## 2. CHAMBER GRAPHS

The chamber graph  $Ch(\Sigma)$  of a chamber system  $\Sigma$  of rank n is the linear graf  $\Gamma \equiv (X,E)$  where X is the set of chambers of  $\Sigma$  and where  $\{c,c'\} \in E$  if and only if c and c' are adjacent chambers. If we denote the set of edges  $\{\{c,c'\} \mid c \text{ and } c' \text{ are } i\text{-adjacent}\}$  by  $E_i$ , then  $E=E_1 \sqcup E_2 \sqcup \dots \sqcup E_n$  is a natural partition of the set of edges E of  $Ch(\Sigma)$ . If  $\Delta = \{1,2,\dots,n\}$  and  $J \subseteq \Delta$ , then we denote  $E_J = \bigcup_{t \in J} E_t$ .

If  $\Sigma_n$  is a Coxetercomplex, then since there exist a 1-1 correspondence between  $\Sigma_n^{(n)}$  and  $W(\Sigma_n)$  we can take  $X=W(\Sigma_n)$  and two elements w and w' of the Weylgroup are then i-adjacent (or  $\{w,w'\}\in E_i$ ) if and only if  $w^{-1}w'$  is the fundamental reflection  $w_i$  (Hence  $Ch(\Sigma_n)$  is in fact the Cayley graph of the Weylgroup  $W(\Sigma_n)$  with the fundamental reflections  $\{w_1,w_2,\ldots,w_n\}$  as set of generators). If  $J=\{i,j\}\in (\frac{\Delta_n}{2})$ , then each connected component of  $(X,E_J)$  is the chamber graph of a Coxetercomplex of rank 2. If this Coxetercomplex is reducible or of type  $\circ$   $\circ$ , then a connected component of  $(X,E_j)$  is the Cayley graph of the four group of Klein or a square



If  $J=\{i,j\}$  is of type  $A_2$  or 0 then a connected component of  $(X,E_J)$  is the Cayley graph of Sym(3) or an hexagon



We can conceive this as the first barycentric subdivision of a triangle (the thin projective plane).

If  $J=\{i,j\}$  is of type  $C_2$  or 0 then a connected component of  $(X,E_J)$  is the Cayley graph of the dihedral group  $D_8$  of symmetries of the square or an octagon



Again, we can conceive this as the first barycentric subdivision of a square (a "thin generalized quadrangle"). In general if  $J=\{i,j\}$  is of type  $I_m$ , then each connected component of  $(X,E_J)$  is the Cayley graph of the dihedral

group  $D_{2m}$  of symmetries of a regular n-gon or the first barycentric subdivision of a n-gon and so a 2m-gon. (Hence in particular if  $J=\{i,j\}$  is of type  $G_2$ , then each component of  $(X,E_T)$  is a regular 12-gon).

Hence each Chamber graph  $Ch(\Sigma_n) = (X,E)$  of a Coxetercomplex  $\Sigma_n$  contains quadrangles, hexagons, octagons, 10-gons and so on, as "elementary {i,j}-subgraphs or {i,j}-cells.

REMARK 1. Since  $|X|=|\Sigma_n^{(n)}|$  and  $|E|=|\Sigma_n^{(n-1)}|$  is the cardinality of the set of flags of codimension 1 we have for the Euler-Poincaré characteristic of the linear graph  $Ch(\Sigma_n)$ :

 $\chi(Ch(\Sigma_n)) = |\Sigma_n^{(n-1)}| - |\Sigma_n^{(n)}| + 1 = \sum_{k=0}^{n-2} (-1)^{n-k} |\Sigma_n^{(k)}|$ 

REMARK 2. Of course each elementary {i,j}-subgraph is the chambergraph of the residu R(F) of some flag of type  $\Delta_n \text{-}\{i,j\} \text{. Hence the number of } \{i,j\}\text{-cells is in fact the number of flags of type } \Delta_n \text{-}\{i,j\} \text{ or } |\Sigma_n^{\Delta_n \text{-}\{i,j\}}| \text{.}$ 

EXAMPLE. If  $\Sigma_n \equiv A_3$ , then  $Ch(\Sigma_n)$  is the following linear graph which is the Cayley graph of Sym(4).



## 3. o-HOMOTOPY GROUPS

With each gallery of  $\Sigma_n$  corresponds a path in  $\operatorname{Ch}(\Sigma_n)$ . Moreover with each J-gallery  $(J \subseteq \Delta_n)$  corresponds a path in  $(X, E_J)$ . Two galleries of  $\Sigma_n$  are elementary  $\{i,j\}$  -homotopic equivalent if and only if the corresponding paths in  $\operatorname{Ch}(\Sigma_n)$  differ only in an  $\{i,j\}$ -cell. Also we know that each  $\{i,j\}$ -cell is a regular 2h-gon and if  $n \geqslant 3$ , then  $h \in \{2,3,4,5\}$ . We shall consider here only the

case that  $\Delta_n \subseteq \sigma \subseteq \Delta_n (\frac{n}{2})$  and so  $(\Delta_n, \sigma - \Delta_n)$  is a linear graph which we denote also by a

Consider now an arbitrary maximal tree K in  $\operatorname{Ch}(\Sigma_n)$ , an arbitrary orientation of the edges and  $\{i,j\}$ -cells of  $\operatorname{Ch}(\Sigma_n)$ ; and the group  $\operatorname{G}(\Sigma_n,\sigma)$  with the oriented edges of  $\operatorname{Ch}(\Sigma_n)$ -K as generators, and with the products of the generators which are edges of a  $\{i,j\}$ -cell with  $\{i,j\}$  or as relators. Hence  $\operatorname{G}(\Sigma_n,\sigma)=<(a_ua_v)\parallel(a_ua_v)$  is an oriented edge of  $\operatorname{Ch}(\Sigma_n)$ -K  $\mid (a_{i_1}a_{i_2})\cdot(a_{i_2}a_{i_3})\cdot \cdot \cdot \cdot \cdot (a_{i_2}a_{i_1})\parallel (a_{i_1}a_{i_2}\cdot \cdot \cdot a_{i_2})$  is an  $\{i,j\}$ -cell of  $\Sigma_n$  with  $\{i,j\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{i,j\}$ -cell of  $\Sigma_n$  with  $\{i,j\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{i,j\}$ -cell of  $\Sigma_n$  with  $\{i,j\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{i,j\}$ -cell of  $\Sigma_n$  with  $\{i,j\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{i,j\}$ -cell of  $\Sigma_n$  with  $\{i,j\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  is an  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$  or  $\{a_{i_1}a_{i_2},\ldots a_{i_2}\}$ 

LEMMA

$$\Pi^{\sigma}(\Sigma_{n}) = G(\Sigma_{n}, \sigma)$$

PROOF. Consider the simplicial complex with as vertices the chambers of  $\Sigma_n$ , the flags of codimension 1 in  $\Sigma_n$ , and the flags of cotype {i,j} with {i,j} $\in$ \sigma; and with as 2-dimensional simplexes the 3-subsets of flags{ $\alpha,\beta,\gamma$ } where cotyp  $\alpha=\phi$ , cotyp  $\beta=\{i\}$  for some  $i\in\Delta_n$ , cotyp $\gamma=\{i,j\}$ , for some {i,j} $\in$ \sigma and  $\gamma\subset\beta\subset\alpha$ . This is the Ronan-complex  $\Gamma_\sigma(\Sigma_n)$  and it has been proved by Ronan [1] that  $\Pi^\sigma(\Sigma_n)=\Pi_1[\Gamma_\sigma(\Sigma_n),p]$  for an arbitrary vertex  $P(\Sigma_n)$  is connected).

Hence in  $\Gamma_{\sigma}(\Sigma_n)$  in fact each {i,j}-cell which is a regular 2h-gon is triangulated in 4h triangles , and the 3 vertices of each triangle are : a vertex of  $\text{Ch}(\Sigma_n)$  (or a chamber of  $\Sigma_n$ ), a midpoint of an edge of  $\text{Ch}(\Sigma_n)$ 

(or a flag of codimension 1) and the center of an  $\{i,j\}$ cell with  $\{i,j\}\in\sigma$  as a regular 2h-gon (or a flag of
cotype  $\{i,j\}$ )[see figure [5]].

An other way to triangulate these {i,j}-cells is by taking an arbitrary point of it, and by joining this vertex to the other vertices (see figure [6]). We denote such simplicial complex  $\Gamma_{\sigma}^{*}(\Sigma_{n})$ 



Since each such simplicial complex is a triangulation of the same polyheder of which the Ronancomplex is also a triangulation they have all  $\Pi^{\sigma}(\Sigma_n)$  as fundamental group. But in the last triangulation no new vertices are added, and so if K is a maximal tree of  $\mathrm{Ch}(\Sigma_n)$ , then K is also a maximal tree of  $\Gamma_{\sigma}^*(\Sigma_n)$ . Hence we have as a set of generators of  $\Pi^{\sigma}(\Sigma_n)$  the set of generators of  $\mathrm{G}(\Sigma_n,\sigma)$  together with for each  $\{\mathrm{i},\mathrm{j}\}$ -cell where  $\{\mathrm{i},\mathrm{j}\}$ - $\sigma$  the set of oriented edges with the exceptional point as one

endpoint and the vertices of the {i,j}-cell not adjacent to it in  $Ch(\Sigma_n)$  as the other endpoints.

If we give now an arbitrary orientation to each such "interior" simplex of each  $\{i,j\}$ -cell with  $\{i,j\}$   $\in \sigma$ , then it is clear that each new generator can be expressed as a product of generators of  $G(\Sigma_n,\sigma)$  and that each  $\{i,j\}$ -cell with  $\{i,j\}$   $\in \sigma$ :  $(a_{i_1}a_{i_2}...a_{i_2}h)$  gives rise to only one relator  $(a_{i_1}a_{i_2})(a_{i_2}a_{i_3})...(a_{i_2}a_{i_2}h)(a_{i_2}a_{i_1}h)$ . No new relators are added and so we have  $\Pi^{\sigma}(\Sigma_n) = G(\Sigma_n,\sigma)$ .

THEOREM 1.If  $\Delta_n(\sigma)$  is a tree then  $\Pi^{\sigma}(\Sigma_n)$  is a free group with rank

$$\chi(\operatorname{Ch}(\Sigma_n)) - \sum_{\{i,j\} \in \sigma} |\Sigma_n^{\Delta_n - \{i,j\}}|$$

<u>PROOF</u>. If  $\sigma = \Delta_n \cup \{i,j\}$  then  $\Delta_n(\sigma)$  contains only one edge . Since the  $\{i,j\}$ -cells define a partition of the set of vertices of  $Ch(\Sigma_n)$  we can always construct a maximal tree K of  $Ch(\Sigma_n)$  by taking all but one edge of each  $\{i,j\}$ -cell and by joining these  $\{i,j\}$ -cells in a suitable way (one has first to construct a maximal tree of the linear graph where vertices are the  $\{i,j\}$ -cells and where two vertices are adjacent if and only if there exists an edge in  $Ch(\Sigma_n)$  joining them; this graph is connected since the  $\{i,j\}$ -cells define a partition of the set of vertices of  $Ch(\Sigma_n)$ ). Of course we can take in particulary as remaining edge in an  $\{i,j\}$ -cell, an edge that joins two j-adjacent chambers (or briefly: a j-edge). Let us denote such a

maximal tree by K(i,j). If  $\sigma' = \Delta_n$  then of course  $\Pi^{\sigma'}(\Sigma_n)$  is the free group with  $\chi(\text{Ch}(\Sigma_n))$  generators. But with this tree K(i,j) and by the lemma, exactly one edge of each {i,j}-cell will be a new relator in  $\Pi^{\sigma}(\Sigma_n)$  and no other relators are added. Hence  $\Pi^{\Delta_n \cup \{\,i\,,\,j\,\}}(\Sigma_n)$ is the free group with  $\chi(\operatorname{Ch}(\Sigma_n)) - \not \!\! \Sigma^{\Delta_n - \{i,j\}}|$  generators. We shall now prove inductively on  $p = |\sigma - \Delta_n|$ . Suppose p:  $|\sigma-\Delta_{n}|>1$  (in fact the case p=1 that we have just proved will follow directly by induction from the case p=0, where the statement is obvious). If  $\Delta_n^{\phantom{\dagger}}(\sigma)$  is a tree, then it has some endpoint  $j_0$ . Suppose  $\{i_0,j_0\}\in\sigma$ , then  $j_0\notin\cup((\sigma-\Delta_n)-\{i_0,j_0\})$ . Therefore the set of generators of the free group  $\Pi^{\sigma-\{i\ ,j\}}$   $(\Sigma_n)$ contains all oriented  $j_0$ -edges that are not in the maximal tree. If we take now as maximal tree a  $K(i_0, j_0)$ . It is clear that  $\Pi^{\sigma}(\Sigma_n)$  has the same generators as  $\Pi^{\sigma-\{i_0,j_0\}}(\Sigma_n)$  and by the lemma, each remaining oriented

 $j_0$ -edge becomes a relator and no other relators are added. If m is the rank of  $\Pi^{\sigma-\{i_0,j_0\}}(\Sigma_n)$  and since there are  $|\Sigma_n^{\{i_0,j_0\}}|$  remaining  $j_0$ -edges,  $\Pi^{\sigma}(\Sigma_n)$  is a free group of rank

$$m - |\Sigma_{n}^{\Delta_{n}^{-} - \{i_{0}, j_{0}\}}| = \chi(Ch(\Sigma_{n})) - \sum_{\{i, j\} \in \sigma} |\Sigma_{n}^{\Delta_{n}^{-} - \{i, j\}}|$$

Hence we have proved the theorem.

REMARK 1.If  $\sigma$  is not a tree, then in general  $\Pi^{\sigma}(\Sigma_n)$  is not a free group. If for instance n=4,

 $\sigma=\Delta_4\cup\{\{1,2\},\{2,3\},\{3,4\},\{1,4\}\}\$  (Thus  $\sigma$  is the linear graph: the square) and  $\Sigma_4=A_1\oplus A_1\oplus A_1\oplus A_1$ , the Coxetercomplex with diagram  $\circ$   $\circ$   $\circ$   $\circ$  then  $\pi^\sigma(\Sigma_4)\stackrel{\sim}{=} Z\oplus Z$  (see example 2)

EXAMPLE 1. Consider the Coxeter complex  $E_8$  and take for  $\sigma$  the Dynkindiagram of  $E_8$  which is itself a tree

$$\sigma = \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7}$$

Then  $\Pi^{\sigma}(E_8)$  is the free group with rank m=  $\chi(Ch(E_8)) - \sum_{\{i,j\} \in \sigma} |E_8^{\Delta_8 - \{i,j\}}| = 1.045.094.401 - 406.425.600$ 

=638.668.801 (using the results of paragraph 1)

THEOREM 2. If  $J\subseteq \Delta_n$ ,  $\sigma=\Delta_n\cup \binom{J}{2}$ , then  $\Pi^\sigma$   $(\Sigma_n)$  is the free group with rank :

$$X(\operatorname{Ch}(\Sigma_n)) - \sum_{\substack{L \in (2^J - J) \\ L \neq \phi}} (-1)^{|L|} |\Sigma_n^{\Delta_n - L}|$$

 $\begin{array}{ll} \underline{\text{PROOF}}: & \text{We examine first the case } J=\Delta_n. \text{ Since} \\ \Pi^\sigma(\Sigma_n)\widetilde{=}\Pi_1(\Gamma_\sigma(\Sigma_n)) \text{ and } \Gamma_\sigma(\Sigma_n) \text{ is a triangulation of the} \\ & \text{hypersphere } S^{n-1} \text{ in } \mathbb{R}^n, \text{ clearly } \Pi^\sigma(\Sigma_n)\widetilde{=}\{1\}, \text{ in con-} \end{array}$ 

formity with the results of J. Tits [2]: the universal 2-cover of a building is isomorphic to the building itself. In this case  $\chi(\text{Ch}(\Sigma_n)) = \sum\limits_{k=0}^{n-2} (-1)^{n-k} |\Sigma_n^{(k)}|$ 

= 
$$\sum_{\substack{L\subseteq\Delta\\|L|\geqslant 2}} (-1)^{|L|}|\sum_{n}^{\Delta}n^{-L}|$$
 and {1} is the free

group with rank 0.

If  $J \subset \Delta_n$ , consider the set of connected components of  $(X, E_J)$  which is a partition of the set of vertices of (X, E). The number of partition classes is clearly  $|\Sigma_n^{\Delta n^{-J}}|$  and each connected component is a copy of  $Ch(\Sigma_{|J|})$  where  $\Sigma_{|J|}$  is the Coxeter complex with diagram  $J \subset \Delta_n$ . Consider in each connected component of  $(X, E_J)$  a maximal tree. Joining this components in a suitable way in  $Ch(\Sigma_n)$ , we obtain a maximal tree in  $Ch(\Sigma_n)$  that we denote by K(J). By the first part of the proof, the result of the relators in a connected component of  $(X, E_j)$  is  $\{1\}$ . Since the sets of edges of these connected components are disjoint, the result of the relators in  $(X, E_j)$  is  $\{1\}$ . Hence  $\Pi^{\sigma}(\Sigma_n)$  is the free group with rank  $m = \bigcup_{i \in \Delta_n - J} E_i - K(J) \mid .$  By joining the connected components  $L \cap A_n = L$ 

 $m=\mid \ \sqcup \ E_i-K(J)\mid .$  By joining the connected components  $i\in \Delta_n-J$  of  $(X,E_j)$  in  $Ch(\Sigma_n)$  to obtain K(J), we needed exactly  $|\Sigma_n^{\Delta n}-J| -1 \text{ edges.}$  Hence.

$$\begin{split} & \underset{i \in \Delta_n - J}{\text{m}} | \Sigma_n^{n - \{i\}} | - | \Sigma_n^{n - J} | + 1 \\ & = \chi(\operatorname{Ch}(\Sigma_n)) + | \Sigma_n^{(n)} | - \sum_{i \in J} | \Sigma_n^{\Delta_n - \{i\}} | - | \Sigma_n^{\Delta_n - J} | \\ & = \chi(\operatorname{Ch}(\Sigma_n)) - | \Sigma_n^{\Delta_n - J} | [\sum_{i \in J} | \Sigma_{|J|}^{J - \{i\}} | - | \Sigma_{|J|}^{|J|} | + 1] \\ & = \chi(\operatorname{Ch}(\Sigma_n)) - \chi(\operatorname{Ch}(\Sigma_{|J|})) | \Sigma_n^{\Delta_n - J} | \\ & = \chi(\operatorname{Ch}(\Sigma_n)) - | \Sigma_n^{\Delta_n - J} | (\sum_{\substack{L \subseteq J \\ |L| \geqslant 2}} (-1)^{|L|} \sum_{|J|}^{J - L}) \\ & = \chi(\operatorname{Ch}(\Sigma_n)) - | \Sigma_n^{\Delta_n - J} | (\sum_{\substack{L \subseteq J \\ |L| \geqslant 2}} (-1)^{|L|} \sum_{|L| \geqslant 2}^{J - L}) \end{split}$$
 Since  $|\Sigma_{|J|}^{J - L}| |\Sigma_n^{\Delta_n - J}| = |\Sigma_n^{\Delta_n - L}| \text{ with } L \subseteq J \subseteq \Delta_n$ , the result follows.  $\blacksquare$ 

DEFINITIONS 1. Let  $\Gamma\equiv(V_n,E)$  be the chambergraph of a Coxetercomplex  $\Sigma_n$  of rank n ( $V_n$  is the set of vertices or the chambers of  $\Sigma_n$  and E is the set of edges or the pairs of adjacent chambers of  $\Sigma$ ). Let the points of  $V_n$  be in general position in  $\mathbb{R}^n$ , with the additional property that the points of the chambergraph of each element of  $\Sigma_n^{\Delta} n^{-\Delta} m$ ,  $\forall \Delta_m \subseteq \Delta_n$  lies in some  $\mathbb{R}^m \subseteq \mathbb{R}^n$ , where  $m = |\Delta_m|$ , and forms a convex set.

If  $\{x_1,x_2\}\in E$ , we write  $x_1\sim x_2$ , and then  $\{x\in R^n\|x=x_1+t(x_2-x_1), x_1\sim x_2, t\in I=[0,1]\}$  is the set of points of the Euclidean model  $EM(\Sigma_n)$  of  $Ch(\Sigma_n)$  in  $R^n$ .

Consider 
$$\Delta_n \subseteq \sigma \subseteq \Delta_n \cup {\binom{\Delta_n}{2}}$$
. We define 
$$\Omega = \{ \sigma \parallel \Delta_n \subseteq \sigma \subseteq \Delta_n \cup {\binom{\Delta_n}{2}}, n \in \mathbb{N} \}$$
 
$$\Omega^* = \{ \sigma \parallel \Delta_n \subseteq \sigma \subseteq 2^{\frac{\Delta_n}{n}}, n \in \mathbb{N} \}$$

 $*:\Omega \to \Omega^*:\sigma \to \sigma^*$ 

where  $\sigma^*$  has the property that if  $\Delta_m \subseteq \Delta_n$ , and  $\binom{\Delta_m}{2} \subseteq \sigma$ , then  $2^{\Delta_m} \subseteq \sigma^*$  And we define  $\mathrm{EM}_1(\Sigma_n,\sigma)$  by  $\mathrm{EM}(\Sigma_n) \subseteq \mathrm{EM}_1(\Sigma_n,\sigma) \subseteq R^n$  as the set  $\{x \in R^n | x \in C(V_J), \ \forall V_J \subseteq V \ \text{and} \ V_J \ \text{is the set of points that corresponds with } \Lambda \in \Sigma^{\Delta_n - J}, \ \forall \Lambda$ ,

 $\forall J \in \sigma$ ,  $|J| \ge 2$ } where C(W) is the convex hull of W in  $\mathbb{R}^n$  or the intersection of all convex sets  $W' \subseteq \mathbb{R}^n$ , with  $W \subseteq W'$ .

Finely we define  $EM(\Sigma_n, \sigma) = EM_1(\Sigma_n, \sigma^*)$ .

Since the homotopy type of  $s^{m-1}$ , the (m-1)-sphere in  $\mathbb{R}^m$  is the same of the homotopytype of  $\mathbb{E}^m$ , the m-ball in  $\mathbb{R}^m$ ,  $\mathbb{V}_m \in \mathbb{N}$ , m>2, we see that  $\mathrm{EM}(\Sigma_n,\sigma)$  en  $\mathrm{EM}_1(\Sigma_n,\sigma)$  have the same homotopy-type. From the definitions, it follows also that  $\Gamma_{\sigma}(\Sigma_n)$  is a triangulation of  $\mathrm{EM}_1(\Sigma_n,\sigma)$ . So we have

$$\pi^{\sigma}(\Sigma_{n}) = \pi_{1}(EM(\Sigma_{n}, \sigma))$$

If  $\operatorname{Ch}(\Sigma_{n_1})$  and  $\operatorname{Ch}(\Sigma_{n_2})$  are the chambergraphs of respective  $\Sigma_{n_1}$  and  $\Sigma_{n_2}$ , we define the graph  $\operatorname{G}\equiv(A,F)$  with set of vertices  $A=\{(t,u)\,|\, t$  is vertex of  $\operatorname{Ch}(\Sigma_{n_1})$ , u is vertex of  $\operatorname{Ch}(\Sigma_{n_2})\}$  and set of edges F.F is defined by :

$$\begin{cases} (t_1=t_2 \text{ and } u_1 \sim u_2) \\ \text{or} \\ (t_1 \sim t_2 \text{ and } u_1=u_2) \end{cases}$$
 (1)

If T and U are the maximal flags in respective  $\Sigma_{n_1}$  and  $\Sigma_{n_2}$  that correspond with respective t and u, then every maximal flag of  $\Sigma_{n_1}^{}+\Sigma_{n_2}^{}$  can be written as (T,U) and we can identify the flag (T,U) with the vertex (t,u) by the bijection :

$$b: \Sigma_{n_1} \oplus \Sigma_{n_2} \to G$$

$$(T, U) \to (t, u)$$

which transforms adjacent flags into adjacent vertices. If we define, for  $\Delta_n = \Delta_{n_1} \sqcup \Delta_{n_2}$ ,  $\Delta_{n_i} \subseteq \sigma_i \subseteq \Delta_{n_i} \cup \binom{\Delta_{n_i}}{2}$ , i=1,2,  $\sigma_1 \otimes \sigma_2 = \sigma_1 \cup \sigma_2 \cup \{\{i,j\} \| i \in \Delta_{n_1}, j \in \Delta_{n_2} \}, \text{ then since } C(W_1 \times W_2) = C(W_1) \times C(W_2) \text{ as product topology in } \mathbb{R}^n, W_i \subseteq \mathbb{R}^{n_i}, n_i = |\Delta_{n_i}|, n_1 + n_2 = n, \text{ and using (1), one sees that }$ 

$$\text{EM}(\boldsymbol{\Sigma}_{n_1} \oplus \boldsymbol{\Sigma}_{n_2}, \boldsymbol{\sigma}_1 \otimes \boldsymbol{\sigma}_2) = \text{EM}(\boldsymbol{\Sigma}_{n_1}, \boldsymbol{\sigma}_1) \times \text{EM}(\boldsymbol{\Sigma}_{n_2}, \boldsymbol{\sigma}_2)$$

THEOREM 3. If  $\Sigma_{n_i}$ , i=1,2 is the Coxetercomplex with diagram  $\Delta_{n_i} \quad \text{and if} \quad \Delta_{n_i} \subseteq \sigma_i \subseteq \Delta_{n_i} \cup (\stackrel{\Delta_{n_i}}{2}) , \quad \text{i=1,2, } \underline{\text{then we have}}$   $\pi^{\sigma_1 \otimes \sigma_2} (\Sigma_{n_1} \oplus \Sigma_{n_2}) = \pi^{\sigma_1} (\Sigma_{n_1}) \oplus \pi^{\sigma_2} (\Sigma_{n_2}).$ 

PROOF.

$$\begin{split} \pi^{\sigma_1 \otimes \sigma_2} \left( \boldsymbol{\Sigma_{n_1}} \oplus \boldsymbol{\Sigma_{n_2}} \right) &= \pi_1 \left( \mathrm{EM} (\boldsymbol{\Sigma_{n_1}} \oplus \boldsymbol{\Sigma_{n_2}}, \sigma_1 \otimes \sigma_2) \right) \\ &= \pi_1 \left( \mathrm{EM} (\boldsymbol{\Sigma_{n_1}}, \sigma_1) \times \mathrm{EM} (\boldsymbol{\Sigma_{n_2}}, \sigma_2) \right) \\ &= \pi_1 \left( \mathrm{EM} (\boldsymbol{\Sigma_{n_1}}, \sigma_1) \right) \oplus \pi_1 \left( \mathrm{EM} (\boldsymbol{\Sigma_{n_2}}, \sigma_2) \right) \\ &= \pi^{\sigma_1} \left( \boldsymbol{\Sigma_{n_1}} \right) \oplus \pi^{\sigma_2} \left( \boldsymbol{\Sigma_{n_2}} \right). \end{split}$$

#### EXAMPLE 2

Consider the Coxetercomplex  $A_1 \oplus A_2 = \Sigma_2$  with diagram  $\{1,2\}: \stackrel{1}{\circ} \stackrel{?}{\circ}$  and a copy of  $\Sigma_2$  with diagram  $\{3,4\}: \stackrel{3}{\circ} \stackrel{*}{\circ}$  Then  $\Sigma_2 \oplus \Sigma_2 = A_1 \oplus A$ 

$$\pi^{\sigma_1}(\Sigma_1) = \pi^{\sigma_2}(\Sigma_2) = Z$$

$$\sigma = \sigma_1 \otimes \sigma_2 =$$

So we have

and

$$\pi^{\circ}(\Sigma_1 \oplus \Sigma_2) \cong Z \oplus Z$$

and  $EM(\Sigma_2 \oplus \Sigma_2, \sigma)$  has the homotopytype of a torus.

## EXAMPLE 3

Suppose  $\Sigma_{2n} = (A_1 \oplus A_1) \oplus (A_1 \oplus A_1) \oplus \ldots \oplus (A_1 \oplus A_1)$  (n terms) and  $\sigma = \sigma_1 \oslash \sigma_2 \oslash \sigma_3 \oslash \ldots \oslash \sigma_n \oslash \sigma_i = \{\{2i-1\}, \{2i\}\}\}$ ,  $1 \le i \le n$  then  $\sigma = 2^{\Delta_2 n} - \{\{1,2\}, \{3,4\}, \ldots, \{2n-1,n\} \text{ with } \Delta_{2n} = \{1,2,\ldots,2n\}$  and using theorem 3 n-1 times we obtain:

$$\pi^{\sigma}(\Sigma_{2n}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \dots \oplus \mathbb{Z}$$
 (n terms)

# EXAMPLE 4

If  $\Sigma_n$  is a Coxetercomplex with diagram  $\Delta_n = \{1, 2, \ldots, n\}$  and  $\Delta_n \subseteq \sigma \subseteq \Delta_n \cup (\frac{\Delta_n}{2})$ ,  $\pi^{\sigma}(\Sigma_n) \cong G$ , then it follows with theorem 3 that for  $\Sigma_{n+1} = A_1 \oplus \Sigma_n$  and  $\sigma' = \{n+1\} \otimes \sigma$  that  $\pi^{\sigma'}(\Sigma_{n+1}) \cong \pi^{\sigma}(\Sigma_n) \cong G.$ 

#### DEFINITIONS 2

1. Let G and H be groups with respective presentation

$$G = \langle a_1, \ldots, a_n | R_1, \ldots, R_m \rangle$$

$$H = \langle b_1, ..., b_p | S_1, ..., S_q \rangle$$

Then we define the free product G\*H:

$$G*H=\langle a_1,\ldots,a_n,b_1,\ldots,b_p |\!| R_1,\ldots,R_m,S_1,\ldots,S_q \rangle$$
 One can easily see that  $(G*H)*K=G*(H*K)$ , so we denote  $G^n=G*G*\ldots*G$  (n faktors).

2. Let  $\Sigma_n$  be a Coxetercomplex of rank n, with diagram  $\Delta_n \text{=} \{\text{1,2,...,n}\}. \text{ Suppose}$ 

$$J_0 \subseteq J_1 \subseteq \dots \subseteq J_1 \subseteq \Delta_n = J_{1+1}$$
.

Let us denote the set of connected components of  $(X,E_J)$  by  $S_J$ , then we prove that there exists a maximal tree K in  $Ch(\Sigma_n)\equiv (X,E)$  so that the property (a) holds for  $i=0,1,\ldots,1$ .

(a)  $\forall s_j \in S_J$ ,  $s_J \cap K$  is a maximal tree in  $s_{J_1}$ . We construct first in each element of  $S_{J_0}$  a maximal tree. We denote this set of edges by  $K_0$ , so  $K_0 \subseteq E_J$  and (a) holds for i=0 if we replace K by  $K_0$ . We complete the proof by induction. Suppose we have a set of edges  $K_j$ ,  $K_j \subseteq E_{J_j}$  and (a) holds for i=0,1,...,j if we replace K by  $K_j$ . Then in each  $s_{J_j+1} \in S_{J_j+1}$ , there exists a subset  $P \subseteq S_{J_j}$  so that the union of vertices of all elements of P is exactly the set of vertices of  $s_{J_j+1}$ . By joining these subgraphs (the elements of P) for each  $s_{J_j+1}$  apartly, in a suitable way, we obtain a maximal tree

in each  $s_{Jj+1} \in S_{Jj+1}$ . The union of these trees , say  $K_{j+1}$ , satisfies (a) for  $i=0,1,\ldots,j,j+1$  if we replace K by  $K_{j+1}$ . If we denote  $K_{1+1}=K$ , we obtain (a) for  $i=1,\ldots,1$ . We denote such a tree K by  $K(J_0;J_1;\ldots;J_1)$ 

## THEOREM 4

Suppose  $F_1$  and  $F_2$  are flags of the Coxetercomplex  $\Sigma_n$ , with typ  $F_1 \cap \text{typ} F_2 = \phi$ .

Suppose

$$\begin{split} \cot \mathsf{ypF}_{\mathbf{i}} = & \Delta_{\mathbf{n}_{\mathbf{i}}} \quad |\Delta_{\mathbf{n}_{\mathbf{i}}}| = \mathbf{n}_{\mathbf{i}} \\ & J = \Delta_{\mathbf{n}_{\mathbf{i}}} \cap \Delta_{\mathbf{n}_{\mathbf{2}}} \\ & R(F_{\mathbf{i}}) = & \Sigma_{\mathbf{n}_{\mathbf{i}}} \quad \mathbf{i} = 1, 2. \\ & R(F_{\mathbf{i}} \cup F_{\mathbf{2}}) = & \Sigma_{\left| J \right|} \\ & \Delta_{\mathbf{n}_{\mathbf{i}}} \cup (\overset{J}{2}) \subseteq & \sigma_{\mathbf{i}} \subseteq \Delta_{\mathbf{n}_{\mathbf{i}}} \cup (\overset{\Delta_{\mathbf{n}}}{\mathbf{i}}) \quad \mathbf{i} = 1, 2. \end{split}$$
 If 
$$\pi^{\sigma_{\mathbf{1}}}(\Sigma_{\mathbf{n}_{\mathbf{1}}}) = & G \\ & \pi^{\sigma_{\mathbf{2}}}(\Sigma_{\mathbf{n}_{\mathbf{2}}}) = & H \\ & \sigma = & \sigma_{\mathbf{1}} \cup & \sigma_{\mathbf{2}} \\ \text{then } \pi^{\sigma}(\Sigma_{\mathbf{n}}) = & G & | \Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{\mathbf{1}}}}|_{*H} | \Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{\mathbf{2}}}}|_{*F_{\mathbf{k}}} \end{split}$$

with

$$k = \sum_{\mathbf{i} \in \Delta_{\mathbf{n}} - \mathbf{J}} | \sum_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \{\mathbf{i}\}} | - | \sum_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{1}}} | - | \sum_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{2}}} | + 2$$

$$- \mathbf{X} (\Sigma_{\mathbf{n}}) + \mathbf{X} (\Sigma_{|\mathbf{J}|}) \cdot | \sum_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \mathbf{J}}$$

where  $X(\Sigma)$  denotes the Euler-Poincaré characteristic of the Coxetercomplex  $\Sigma$ .

 $\begin{array}{l} \underline{PROOF} : \text{ We consider first the case } J=\phi \text{, } \sigma_2=\Delta_{n_2}\text{.} \\ \\ \text{Then we have } \Delta_n=\Delta_{n_1}\sqcup\Delta_{n_2}\text{. Consider in } Ch(\Sigma_n) \text{ a tree} \\ K(\Delta_{n_1})\text{. Then we have in each connected component of} \\ (X,E_{\Delta n_1}) \text{ the representation of the group G. There are} \\ \text{no other relators , but there are still} \\ k'=X(\Sigma_n)-|\Sigma_n^{\Delta}n^{-\Delta}n_1|\cdot X(\Sigma_{n_1}) \text{ generators left.} \\ \text{So } \pi^\sigma(\Sigma_n)=G^{-1}\Sigma_n^{\Delta}n^{-\Delta}n_1|*F_k... \end{array}$ 

In this case

$$H = \pi^{\sigma_2} (\Sigma_{n_2}) = F_{\chi} (\Sigma_{n_2})$$

and we write

$$F_{k'} = F \left| \sum_{n=0}^{\Delta_{n} - \Delta_{n_{2}}} \right| *F_{k}$$

with:

$$k = k' - |\Sigma_n^{\Delta_n - \Delta_{n_2}}| \cdot \chi(\Sigma_{n_2})$$

$$= \times (\Sigma_{n}) - [|\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}} . \times (\Sigma_{n_{1}}) + |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| . \times (\Sigma_{n_{2}})$$

Since 
$$X(\Sigma_{n_j}) = 1 + \sum_{\substack{i_j \in \Delta_{n_i} \\ j}} |\Sigma_{n_j}^{\Delta_{n_j} - \{i_j\}}| - |\Sigma_{n_j}^{\Delta_{n_j}}|$$
  $j = 1, 2,$ 

we have

$$k = \chi \left( \Sigma_{n} \right) - \left| \Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}} \right| - \sum_{\mathbf{i}_{1} \in \Delta_{n_{1}}} \left| \sum_{n}^{\Delta_{n} - \Delta_{n_{1}}} \right| \cdot \left| \Sigma_{n_{1}}^{\Delta_{n_{1}} - \left\{ \mathbf{i}_{1} \right\}} \right|$$

$$+ |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}}| \cdot |\Sigma_{n_{1}}^{\Delta_{n_{1}}}| - |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| - \sum_{\mathbf{i}_{2} \in \Delta_{n_{2}}} |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| \cdot |\Sigma_{n}^{\Delta_{n_{2}} - \{\mathbf{i}_{2}\}}|$$

$$+|\Sigma_{n}^{\Delta_{n}-\Delta_{n_{2}}}|.|\Sigma_{n_{2}}^{\Delta_{n_{2}}}|.$$

Since 
$$|\Sigma_{|\Delta_n|}^{\Delta_n-\Delta_m}| \cdot |\Sigma_{|\Delta_m|}^{\Delta_m-\Delta_p}| = \Sigma_{|\Delta_n|}^{\Delta_n-\Delta_p}|$$
 for  $\Delta_p \subseteq \Delta_m \subseteq \Delta_n$ 

and using  $\Delta_n = \Delta_{n_1} \sqcup \Delta_{n_2}$ , we have :

$$\begin{split} k &= \chi \left( \Sigma_{n} \right) - \left| \Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}} \right| - \left| \Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}} \right| - \sum_{i \in \Delta_{n}} \left| \Sigma_{n}^{\Delta_{n} - \left\{ i \right\}} \right| + 2 \left| \Sigma_{n}^{(n)} \right| \\ k &= \sum_{i \in \Delta_{n}} \left| \Sigma_{n}^{\Delta_{n} - \left\{ i \right\}} \right| - \left| \Sigma_{n}^{\Delta_{n}} - \Delta_{n_{1}} \right| - \left| \Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}} \right| + 2 \\ &- \left[ 2 \sum_{i \in \Delta_{n}} \left| \Sigma_{n}^{\Delta_{n} - \left\{ i \right\}} \right| - 2 \left| \Sigma_{n}^{(n)} \right| + 2 - \chi \left( \Sigma_{n} \right) \right] \end{split}$$

the sum between brackets is  $[2\chi(\Sigma_n)-\chi(\Sigma_n)]=\chi(\Sigma_n)$ , so the theorem follows in this particular case.

We consider now the general case. In  $\operatorname{Ch}(\Sigma_n)$ , we take a tree  $\operatorname{K}(J;\Delta_{n_1}-J)$ . Since  $\binom{J}{2}\subseteq\sigma$ , the calculation in each connected component of  $(X,E_j)$  will lead to the trivial group by theorem 2. So we have  $u=\phi$  (the empty word) for each generator u that corresponds with a j-edge,  $j\in J$ . Let us denote the set of generators that correspond with  $i_k$ -edges  $(i_k\in \Delta_{n_k}-J,k=1,2)$  by  $R_k$  and the set of relators that correspond with  $\{i_{k_1},i_{k_2}\}$ -subgraphs by  $\Omega_k$   $\forall \{i_{k_1},i_{k_2}\}\in \sigma_k$ , k=1,2. No other relators appear since  $\sigma=\sigma_1\cup\sigma_2$ . Since  $J=\Delta_{n_1}\cap\Delta_{n_2}$ , we have  $R_1\cap R_2=\phi$  and we can write formally

 $\Omega_1 \equiv \Omega_1(R_1)$ ;  $\Omega_2 \equiv \Omega_2(R_2)$  and we have

$$\pi^{\sigma}(\Sigma_{n}) = \langle R_{1}, R_{2} | \Omega_{1}, \Omega_{2} \rangle.$$

We compute  $<R_1,R_2 \parallel \Omega_1>$ . Since  $\Omega_2$  corresponds with  $\sigma_2-(_2)$ , we have  $<R_1,R_2 \parallel \Omega_1>=\Pi^{\sigma_1 \cup \Delta}n_2(\Sigma_n)$  and by the first part of the proof :

$$\langle R_1, R_2 \parallel \Omega_1 \rangle = G \left| \Sigma_n^{\Delta} n^{-\Delta} n_1 \right| * F_{k_1}$$

By the choice of the maximal tree,  $\langle R_1 || \Omega_1 \rangle = G |\Sigma_n^{\Delta} n^{-\Delta} n_1|$  and thus  $k_1 = |R_2|$  (notice that a tree  $K(J; \Delta_{n_1} - J)$  is also a tree  $K(\Delta_{n_1})$ ). So we have

$$k_{1} = |R_{1}| = \sum_{i \in \Delta_{n} - \Delta_{n_{1}}} |\sum_{n}^{\Delta_{n} - \{i\}} |-|\sum_{n}^{\Delta_{n} - \Delta_{n_{1}}}| + 1.$$

Similar

$$\langle R_1, R_2 \parallel \Omega_2 \rangle = H^{\sum_{n=1}^{\Delta} n^{-\Delta} n_2} \mid * F_{k_2}$$

with

$$k_2 = \sum_{\mathbf{i} \in \Delta_n - \Delta_{n_2}} |\Sigma_n^{\Delta} n^{-\{\mathbf{i}\}}| - |\Sigma_n^{\Delta_n - \Delta_{n_2}}| + 1$$

Among the  $k_2$  generators of  $F_{k_2}$  are all generators that correspond with  $i_1\text{-edges},\ i_1\text{\in}\Delta_{n_1}.$  Let us call them briefly  $n_1\text{-generators}.$  We have

$$|R_1| = k_2' = [X(\Sigma_{n_1}) - |\Sigma_{n_1}^{\Delta_{n_1}}] \cdot X(\Sigma_{|J|}] \cdot |\Sigma_{n}^{\Delta_{n}} - \Delta_{n_1}|$$

If we add now  $\Omega_1$  to  $<R_1,R_2\parallel\Omega_2>$ , these  $k_2^*$   $n_1$ -generators from together  $G^{\left|\sum_{n=1}^{\Delta}n^{-\Delta}n_1\right|}$  and  $k_2-k_2^*$  generators remain, which form the free group  $F_{k_2-k_2^*}=F_k$  with  $k=k_2-k_2^*$ . Hence

$$\pi^{\sigma}(\Sigma_{n}) = G \left| \Sigma_{n}^{\Delta} n^{-\Delta} n_{1} \right| * H^{\left| \Sigma_{n}^{\Delta} n^{-\Delta} n_{2} \right|} * F_{k}.$$

with 
$$k = k_{2} - k_{2}! = \sum_{\mathbf{i} \in \Delta_{n} - \Delta_{n_{2}}} | \Sigma_{n}^{\Delta_{n} - \{\mathbf{i}\}} | - |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| + 1 - \chi(\Sigma_{n}) \cdot |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}}|$$
 
$$+ |\Sigma_{n_{1}}^{\Delta_{n} - J}| \cdot |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}}| \cdot \chi(\Sigma_{|J|})$$
 
$$= \sum_{\mathbf{i} \in \Delta_{n} - \Delta_{n_{2}}} |\Sigma_{n}^{\Delta_{n} - \{\mathbf{i}\}} - \Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| + 1 - |\sum_{\mathbf{i} \in \Delta_{n_{1}}} |\Sigma_{n_{1}}^{\Delta_{n} - \{\mathbf{i}\}}| - |\Sigma_{n_{1}}^{(n_{1})}| + 1]$$
 
$$\cdot |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}}| + \chi(\Sigma_{|J|}) \cdot |\Sigma_{n}^{\Delta_{n} - J}|$$

$$= \sum_{i \in \Delta_{n} - \Delta_{n_{2}}} |\Sigma_{n}^{\Delta_{n} - \{i\}}| - |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{2}}}| + 1 - \sum_{i \in \Delta_{n_{1}}} |\Sigma_{n}^{\Delta_{n} - \{i\}}| + \Sigma_{n}^{(n)}|$$

$$- |\Sigma_{n}^{\Delta_{n} - \Delta_{n_{1}}}| + \chi(\Sigma_{|J|}) \cdot |\Sigma_{n}^{\Delta_{n} - J}|$$

Since 
$$\sum_{\mathbf{i} \in \Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{2}}} \mathbf{x}_{\mathbf{i}} = \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}_{1}}} |\mathbf{x}_{\mathbf{i}} |$$
 
$$= \sum_{\mathbf{i} \in \Delta_{\mathbf{n}} - \mathbf{J}} \mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}}} \mathbf{x}_{\mathbf{i}}$$
 
$$= \sum_{\mathbf{i} \in \Delta_{\mathbf{n}} - \mathbf{J}} \mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}}} \mathbf{x}_{\mathbf{i}}$$

we have

$$\begin{aligned} k &= \sum_{\mathbf{i} \in \Delta_{\mathbf{n}} - \mathbf{J}} |\Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \{\mathbf{i}\}}| - |\Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{1}}}| - |\Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \Delta_{\mathbf{n}_{2}}}| + 2 \\ &+ [\Sigma_{\mathbf{n}}^{(\mathbf{n})} - 1 - \sum_{\mathbf{i} \in \Delta_{\mathbf{n}}} |\Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \{\mathbf{i}\}}|] + \chi(\Sigma_{\mathbf{j}}) \cdot |\Sigma_{\mathbf{n}}^{\Delta_{\mathbf{n}} - \mathbf{J}}| \end{aligned}$$

Since  $\Sigma_n^{(n)}$ -1- $\sum_{i\in\Delta_n}|\Sigma_n^{\Delta_n^{-\{i\}}}|$ =- $\chi(\Sigma_n)$ , the result follows.

## REMARK 3

It is an easy exercise to prove that, if we can obtain  $\sigma$  by means of theorem 1,2 and 4, then  $\pi^\sigma$   $(\Sigma_n)$  is the free group with rank

$$\begin{array}{c|c} \chi(\Sigma_n) - \sum\limits_{\substack{J \in \sigma^* \\ |J| \geqslant 2}} (-1)^{|J|} |\Sigma_n^{\Delta_n - J}| \end{array}$$

### EXAMPLE 5

Let  $\Sigma_n$  be a Coxetercomplex with diagram  $\{1,2,\ldots,n\}=\Delta_n$ . Take for  $\sigma=2^{\Delta_n}-2^J$ ,  $J\subseteq \Delta_n$ . Then we have

$$\sigma = \bigcup_{i \in J} A_i$$
 with  $A_i = 2^{(\Delta_n - J)} \{i\}$ 

and  $(\bigcup_{i \in L} A_i) \cap A_j = 2^{\Delta_n - J}$  with  $j \notin L \subseteq J$  so we can use theorem

4 (|J|-1)-times and with theorem 2, we conclude that  $\pi^\sigma(\Sigma_n)$  is a free group with rank as in remark 3.

# EXAMPLE 6

Let  $\Sigma_9 = A_1 \oplus A_1 \oplus ... \oplus A_1$  (9 times)

and σ



then we can represent  $\sigma$  as follows

$$\sigma = {\overset{9}{\circ}} \otimes [[{\overset{2}{\circ}} {\overset{7}{\circ}}] \otimes ({\overset{5}{\circ}} {\overset{4}{\circ}})] \cup [{\overset{2}{\circ}} {\overset{3}{\circ}}] \cup [{\overset{1}{\circ}} {\overset{2}{\circ}}] \cup [{\overset{4}{\circ}} {\overset{5}{\circ}}] \cup [{\overset{5}{\circ}} {\overset{5}{\circ}}]]$$

and by using theorem 4 and 3, we have

$$\pi^{\circ}(\Sigma_{9}) = (Z \oplus Z)^{16} * F_{113}$$
.

The homotopy type of  $EM(\Sigma_9; \sigma)$  is a tree of 16 disjoint tori and one linear graph G with X(G)=113.

#### EXAMPLE 7

Let  $\Sigma_6 = \Sigma_3 \oplus \Sigma_3^!$  with  $\Sigma_3 = A_2 \oplus A_1$  and  $\Sigma_3^! = A_3$  and  $\Delta_6$  the diagram of  $\Sigma_6$ 

$$\Delta_6 = \{1, 2, 3, 4, 5, 6\},$$
 $12$ 
 $3$ 
 $4$ 
 $5$ 
 $6$ 

Suppose

$$\sigma_1 = \begin{array}{c} 1 & 2 & 3 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$$

then by use of theorem 1 we know  $\Pi^{\sigma_1}(\Sigma_3) = F_2$ and  $\Pi^{\sigma_2}(\Sigma_3') = F_3$ 

and if  $\sigma = \sigma_{\Omega} \sigma_{2} = {\Delta_{6} \choose 2} - {\{1,3\},\{5,6\}}$  we have

$$\Pi^{\sigma}(\Sigma_{6}) = F_{2} \oplus F_{3} = \langle a_{1}, a_{2}, b_{1}, b_{2}, b_{3} \| a_{i}b_{j}a_{i}^{-1}b_{j}^{-1} \rangle, \quad i=1,2; j=1,2,3 \rangle$$

 $\text{EM}(\Sigma_6,\sigma)$  has the homotopy type of the following surface :



#### EXAMPLE 8

If we take back the  $\sigma$  from example 6 and call in general for  $\Delta_n \subseteq \sigma_1 \subseteq \Delta_n \cup (\frac{\Delta_n}{2})$ ,  $co\sigma_1 = \Delta_n \cup [\frac{\Delta_n}{2}) - \sigma_1]$ , then



Now we take  $\sigma''=\sigma'-\{\{9\}\}$  and consider  $\Sigma_8=A_8$  with diagram  $\Delta_8=\{1,2,3,4,5,6,7,8\}$ 

We can represent 
$$\sigma''$$
 as follows
$$\sigma'' = \left[ \begin{pmatrix} \frac{1}{3} & \circ 2 & 0 & 0 \\ \frac{7}{3} & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} \frac{7}{3} & \frac{6}{8} & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{3} & \frac{6}{3} & 0 \\ \frac{1}{3} & 0 & 0 & 0 \end{pmatrix} \right]$$

and by using ,four times theorem 1, two times theorem 3 and one time theorem 4, we find

$$\pi^{\sigma''}(A_8) = (F_7 \oplus F_7)^{630} * (F_7 \oplus F_4)^{1260} * F_{20790}$$

# EXAMPLE 9

Consider  $\Sigma_5 = A_1 \oplus A_1 \oplus A_1 \oplus A_1 \oplus A_1$ 

and  $\sigma =$  5

It is impossible to calculate  $\pi^{\sigma}\left(\Sigma_{5}\right)$  only by using the previous theorems.

 $EM(\Sigma_5,\sigma)$  is a hypercube in  $\mathbb{R}^5$  where some faces are missing After a suitable triangulation, one finds

$$\pi^{\sigma}(\Sigma_{5}) = \langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10} |$$

$$a_{1} a_{2} a_{1}^{-1} a_{3} a_{4} a_{3}^{-1} a_{5} a_{4}^{-1} a_{6} a_{7} a_{6}^{-1} a_{7}^{-1} a_{8} a_{5}^{-1} a_{9} a_{10} a_{9}^{-1} a_{8}^{-1} a_{10}^{-1} a_{2}^{-1} >$$

which is the homotopy type of the surface below:



This is a surface with 5 handles. The fundamental group can be written as:

 $\{b_1,c_1,b_2,c_2,\ldots,b_5,c_5 \mid b_1c_1b_1^{-1}c_1^{-1}b_2c_2b_2^{-1}c_2^{-1}\ldots b_5c_5b_5^{-1}c_5^{-1}\}$ by the groupisomorphism :

$$b_{1} = a_{2}^{-1}$$

$$c_{1} = a_{1}$$

$$b_{2} = a_{5}$$

$$c_{2} = a_{5}^{-1} a_{3} a_{4} a_{3}^{-1} a_{5} a_{4}^{-1} a_{6} a_{7} a_{6}^{-1} a_{7}^{-1} a_{8}$$

$$b_3 = a_5^{-1} a_3$$

$$c_3 = a_4$$

$$b_4 = a_6$$

$$c_4 = a_7$$

$$b_5 = a_8 a_9$$

$$c_5 = a_{10}$$

and the inverse formula's are

$$a_1 = c_1$$

$$a_2 = b_1^{-1}$$

$$b_3 = b_2 b_3$$

$$a_4 = c_3$$

$$a_5 = b_2$$

$$a_6 = b_4$$

$$a_8 = c_4 b_4 c_4^{-1} b_4^{-1} c_3 b_3 c_3^{-1} b_3^{-1} c_2$$

$$a_9 = c_2^{-1}b_3c_3b_3^{-1}c_3^{-1}b_4c_4b_4^{-1}c_4^{-1}b_5$$

$$a_{10} = c_{5}$$

#### REFERENCES

- 1. M.A. Ronan: "Coverings and Automorphisms of Chamber Systems". Europ. J. Combinatorics (1980) 1, 259-269.
- 2. J. Tits: "A local Approach to Buildings".

  in "The Geometric Vein", The Coxeter Festschrift
  Ed. B. Grünbaurn e.a.

(received March 1982)

Seminarie voor Algebra en Functionaalanalyse Galglaan 2 9000 Gent (Belgium)

and a thing

. Transfiliot of Boren Longroup (1965)

a namé value de la modre valit de differente de la companya de la companya de la companya de la companya de la

in a madalită de la

13.894 Meant Carolinocal

Com/scrust room of government Comption authorization

l maninish

Carly Inda James 1989.