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BN-pairs with projective or affine lines

By Katrin Tent" at Wiirzburg and Hendrik Van Maldeghem® at Gent

Abstract. Let G be a simple group with an irreducible BN-pair of (Tits-) rank 2. If
the groups induced by G on the panels are permutation equivalent to groups of type PSL,
or AGL, over arbitrary fields with at least 4 elements, then the associated polygon satisfies
the Moufang condition and G contains its little projective group. This result is applied to
groups of finite Morley rank.

1. Introduction

The first author’s interest in the question considered here is motivated by the Cherlin-
Zil’ber Conjecture, which states that an infinite simple group of finite Morley rank is an
algebraic group over an algebraically closed field. In this paper, we prove a group theoretic
result on BN-pairs of (Tits-) rank 2 and show how it can be applied to groups of finite
Morely rank.

One main obstacle in the classification of the infinite simple groups of finite Morley
rank is a missing classification of all BN-pairs belonging to such groups. The conjecture has
been proved to hold for several major classes of groups, such as groups with Moufang BN-
pairs of Tits rank at least 2 [KTVM] or groups of k-rational points of isotropic linear al-
gebraic groups [KRT]. Since BN-pairs of Tits rank at least 3 are automatically Moufang, it
remains to classify BN-pairs of Tits rank 2 (corresponding exactly to generalized polygons)
and of finite Morley rank, not assuming the Moufang condition, and BN-pairs of Tits rank
1, i.e. the 2-transitive permutation groups. These problems seem to be rather hopeless for
the moment, so one needs additional assumptions.

In the Tits rank 1 case, Hrushovski [Hr]| classified 2-transitive permutation groups
acting on strongly minimal sets, proving that they are isomorphic to either PSL,(K) or
AGL;(K) in their natural action, for K an algebraically closed field. Hence we may apply
Theorem 1.1 to extend the classification to all BN-pairs of finite Morley rank which have
panels of Morley rank 1. A panel of the building associated to a BN-pair can be identified
with the coset space P/B for a minimal proper parabolic subgroup P. We will also call this

D Supported by the Bayerischer Habilitationsforderpreis.
2) The second author is a Research Director of the Fund for Scientific Research—Flanders (Belgium).



224 Tent and Van Maldeghem, BN-pairs

a panel of the BN-pair. Since algebraic groups over algebraically closed fields always con-
tain a BN-pair with projective lines as panels, the Cherlin-Zil’ber conjecture implies in par-
ticular that any infinite simple group of finite Morley rank has a BN-pair whose panels in
the pure group structure have Morley rank 1. Thus we obtain a natural characterization of
all known simple groups of finite Morley rank.

One approach towards a proof of the Cherlin-Zil’ber conjecture is modeled on the
revision of the classification of the finite simple groups. Hence one tries to disprove the
existence of a counterexample of minimal Morley rank. In this setting (the so-called K*-
case), all proper definable simple sections of a given group of finite Morley rank and of
Tits rank 2 are algebraic groups over an algebraically closed field. One consequence of the
K*-assumption should be that the groups induced on the panels are isomorphic to either
PSL,(K) or AGL,(K) for an algebraically closed field K (with possibly different K’s for the
two types of panels). Hence our result will then also apply in the K*-case.

Taking a geometric approach we prove the following result:

1.1. Theorem. Let G be a simple group with an irreducible BN-pair of (Tits-) rank 2.
If the groups induced by G on the panels are permutation equivalent to groups of type PSL, or
AGLy over arbitrary fields with at least 4 elements, then the associated polygon satisfies the
Moufang condition and G contains its little projective group.

Using [Hr] we then apply this result to groups of finite Morley rank:

1.2. Corollary. Let G be a simple group of finite Morley rank with a definable irre
ducible BN-pair of (Tits-) rank 2. If all panels have Morley rank 1, then G is definably iso-
morphic to PSL3(K), PSp,(K), or G,(K) for some algebraically closed field K.

Note that we do not have to assume that the BN-pair is spherical. If G is not assumed
to be simple or even connected then the corresponding conclusions hold for G/R where R is
the kernel of the action of G on the associated polygon (see Section 2). The case where the
associated building is reducible is rather less interesting and easy to classify, see the ap-
pendix.

Note also, that in all known examples of simple groups of finite Morley rank, the
panels do indeed have Morley rank 1 (considered in the pure group structure). In particu-
lar, all Moufang BN-pairs of finite Morley rank automatically have Morley rank 1 panels
as shown in [KTVM]. However, the construction in [Te2] yields ‘wild’ groups having
spherical BN-pairs of Tits rank 2 with panels of Morley rank 1. So the assumption of G
having finite Morley rank is crucial in Corollary 1.2.

We Wlll show in Section 2 that Corollary 1.2 translates into the lauguage of polygons
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\

A P RSAN Y S | R A
ACOICin winiCii W& Wil provyo UCIUW

=
3
=+
=
§

A A =
alda Wlll\.«li lb buguuy morc gUllCldl}

1.3. Theorem. (i) If B is a generalized n-gon with strongly minimal point rows and line
pencils, n = 3, and G < Aut(B) is a group of finite Morley rank which acts transitively and
definably on the set of ordered ordinary n-gons contained in B, then one of the following holds:

(n=3) G is definably isomorphic to PSL3(K) for some algebraically closed field K,
and B is the projective plane over K.
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(n=4) G is definably isomorphic to PSp,(K) and B is the symplectic quadrangle
over K.

(n = 6) G is definably isomorphic to G,(K) and B is the split Cayley hexagon over K.

(i) Let B be as in (1) and let G be a group of automorphisms of the incidence graph
of B (so G possibly contains dualities which interchange points and lines). If G acts transi-
tively and definably on the set of ordered ordinary n-gons contained in B, then G is as in (i) or
is definably isomorphic to PSL3(K) X 2 for some algebraically closed field K.

In contrast, for any » there are many generalized n-gons with strongly minimal point
rows and line pencils (not interpreting any infinite groups) the automorphism groups of
which act transitively on ordered ordinary n + 1-gons. Thus the situation is completely dif-
ferent if we do not assume that the group G in Theorem 1.3 has finite Morley rank. Note
also that all known examples of generalized n-gons of finite Morley rank have strongly
minimal point rows and line pencils and are indeed almost strongly minimal.

While by the results in [KTVM] it would suffice to prove that any generalized poly-
gon satisfying the assumptions of Theorem 1.3 is a Moufang polygon, we here give a full
independent proof. We would like to stress the fact that our approach here does not need
the full classification of Moufang polygons (in particular the yet unpublished parts about
quadrangles can be avoided).

As a corollary we obtain:

1.4. Corollary. If G is an infinite group of finite Morley rank with an irreducible de-
finable BN-pair whose panels have Morley rank 1, then G satisfies the Cherlin-Zil’ber Con-
jecture.

The first author wishes to thank Linus Kramer for many valuable discussions.

2. Background on polygons

Buildings were introduced by Tits in the early 60s to give a geometric interpretation
of simple groups of (exceptional) Lie-type. Group-theoretically, the groups of Lie-type were
characterized by Tits as groups with a so-called spherical BN-pair (spherical means that the
associated Weyl group is finite). For more information about BN-pairs the reader might
look at [Hu], Section 29.

The buildings belonging to irreducible spherical BN-pairs of (Tits-) rank 2 (which
means that there are exactly two proper parabolic subgroups containing B) are exactly the
generalized polygons, introduced by Tits already in 1959 (see [ Ti1]). We briefly recall some of
the definitions we will use. A detailed account can be found in [VM1] or for the model theo-
retic point of view in [KTVM].

2.1. Incidence structures. An incidence structure is a triple P = (2, ¥, F ) consisting
of a set Z of points, a set £ of lines, and a set # < 2 x £ of flags. We always assume that
2 and % are disjoint nonempty sets. If (a, /) is a flag, then we say that the point ¢ and the
line 7 are incident.
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A k-chain is a sequence (xg, x1, . . ., x;) of elements x; € 2 U ¥ with the property that
x; 1s incident with x; | for i = 1,..., k. In this case, we say that the distance of xo and xy is
d(xo,xx) < k, and we say that d(xo, xx) = k if there is no j-chain joining xy and x; for
J < k. Note that d(xg, xx) is necessarily even if xy and x; are of the same sort, i.e. if xo and
Xy are both points or both lines.

2.2. Polygons. Let n =2 be an integer. An incidence structure B = (2, %, F) is
called a generalized n-gon, if it satisfies the following three axioms:

(1) For ali elements x,y € # U ¥ we have d(x,y) < n.

(1) If d(x,y) = k < n, then there is a unique k-chain (xp = x,x1,...,X; = ) joining
x and y (and we denote x; = proj, »).

(i) B is thick, i.e. every element x € 2 U ¥ is incident with at least three other ele-
ments.

An ordered ordinary n-gon is a 2n-chain (xy,..., X2, = xo) of distinct elements, i.e.
instead of (iii) above we require that every element is incident with exactly two elements.

The case n =2 (the so-called generalized digons), gives rise to a trivial geometry
(2, 4,2 x &) where every point is incident with every line. As we will need them in our
appendix, we include them in most of our definitions or properties. Note also that for tri-
angles (3-gons) the axioms translate precisely into the axioms of projective planes. By ex-
changing the sets of lines and points of a generalized n-gon, we obtain the dual n-gon.

If B = (2, &, %) is a generalized n-gon, then Aut(‘B) denotes the group of automor-
phisms of the first order structure B = (£, ¥, % ). A map which preserves the incidence but
exchanges points and lines is called a duality. A duality of order 2 is a polarity. (Caution: in
[Ti2], Aut(‘B) denotes the graph automorphisms, the type preserving automorphisms are
denoted by Spe(B).)

Forxe 20 % weput Di(x) ={ye 20 L |d(x,y) =k}. If a is a point, then D;(a)
is called a /ine pencil; if / is a line, then D; (/) is called a point row.

2.3. Levi-factors. If G' < Aut(‘B) acts n-gon transitively, the stabilizer G, of x for
x€eZu ¥ induces on Di(x) a 2-transitive permutation group, which is called the Levi-
factor of G. Note that since G acts transitively on the set of points (and on the set of lines,
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2.4. Projectivities. If d(x,y) = n, then there is a bijection [y;x]: Di(x) — Dy(»),
mapping each w € D;(x) to the unique z € D; () at distance n — 2 from w; a concatenation
of such maps is called a projectivity, and we put

[x33x2) 0 [x2; x1] = [x33x2; x1]: Di(x1) — Di(x3)
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etc. For n > 2, the set I1(x) of all projectivities from x to x is a 2-transitive permutation
group on Dj(x), see [Kn], Lemma 1.2.

2.5. Coordinatization. Generalized n-gons, n = 2, can be coordinatized analogously
to projective planes ([VM1], see also [KTVM]). This coordinatization says in particular that
the whole polygon is in the definable closure of the set

D1 (X()) U D1 (xl) U {XO, .. 7X2n—1}

for any ordinary n-gon (xo, . .., X2,—1, X2, ). Note also that x,,,1, ..., x2,_2 are determined by
(X24-1, X0, - - - , Xy ), SO any automorphism which fixes each element of

(x0, .-, Xn) U Dy(x0) U Di(x1)
must be the identity.

Example. Let K be any field. The symplectic quadrangle over K can be described
with coordinates as follows. Put, with the above notation, xy equal to (c0) and x; equal
to [oo] (it is convenient to denote the labels (= coordinates) of points with parentheses
and those of lines with square brackets). We put D;(xg) = {[oo]} U {[k]|k € K} and
Di(x1) = {(0)} u{(a)|a e K}. The lines incident with (a), a € K, distinct from [o0] have
coordinates [a,/], / € K. Dually, the points on [k], k € K, different from (o0) are (k,b),
b e K. The lines through (k,b), k,b € K, distinct from [k] are the lines [k, b, k'], k' € K, and,
dually, the points on [a,/], a,! € K, different from (a) are (a,l,a’), a’ € K. Finally, a point
(a,l,a’) is incident with the line [k, b, k'] if and only if ak + b = a’ and @’k + k' + 2ab = 1'.
This is a very explicit description of the symplectic quadrangle over K. A similar description
exists for the split Cayley hexagon over K, see [VM1], 3.5.1.

2.6. Connection between groups and polygons. Let G be a group with a spherical ir-
reducible BN-pair of rank 2, and suppose that the associated Weyl group has order 2n, for
n = 3. Let G, and G, be the proper parabolic subgroups of G containing B. We define
an incidence structure—which is a generalized n-gon—on the coset spaces 2 = G/G, and
& = G/Gy by defining p = gG, to be incident with / = ¢’G/, if and only if ¢G, N ¢'G, + 0.
Hence, the panels of the BN-pair (as defined in the introduction) exactly correspond to the
point rows and line pencils of the polygon, which are the (geometric) panels of the asso-
ciated building.

For the converse direction, i.e. for getting from a polygon to the group, let
P =(2,2,7) be a generalized n-gon and let (a,/) be a flag. Suppose that a group
G < Aut(®P) acts transitively on the set of ordered ordinary n-gons. Then a BN-pair of G
(which is not necessarily unique) can be seen as follows: Let (a,/) be a flag, and I" an
ordinary n-gon containing (a, /). Then B is the stabilizer of (a,/), N is the setwise stabilizer
of I, and P is isomorphic to the coset geometry (G/G,, G/Gr,{(9G.,g9G/) | g € G}), where
G, and G, denote the stabilizer in G of the elements a and /, respectively.

2.7. Definable BN-pairs. By a definable BN-pair of G we mean that there are
definable subgroups B and N satifying the axioms of a BN-pair (see e.g. [Hu], 29.1).
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Note that the BN-pair property is not a first order property unless the Weyl group (and the
(Tits-)rank) is finite. However, for stable groups, the Weyl group and the (Tits-)rank are
necessarily finite:

2.8. Proposition. Let G be a stable group with a definable BN-pair. Then the Weyl-
group W = N /(N n B), and thus the (Tits-) rank are finite.

Proof. Clearly, W is interpretable. Suppose towards a contradiction that W is infi-
nite. We will obtain a formula ¢(x, y) and a sequence a;, i < w of elements in W such that
¢(a;, a;) holds if and only if i < j, contradicting stability.

Let S be the set of distinguished involutions generating . By the axioms of a BN-
pair, we always have

(T1) sBw< BswBuUBwBforseS, we W.
Furthermore by [Hu], 29.3A, forse S, we W,
(x)  £(sw) > Z(w) if and only if sBw < BswB.

So it follows from (T1) that Z(sw) < /(w) if and only if sBw N BwB is non-empty. We
use this to show the following

Claim. Let u,w e W with /(uw) = /(u) + /(w). Then
uBw < BuwB and u 'Buw & BwB.

Proof of Claim. First assume that /(uw) = Z(u) + /(w). To see that uBw = BuwB,
or equivalently, BuBwB = BuwB we use (*) applied to a reduced presentation for uw which
allows us to move B stepwise across u.

Now suppose that ! Buw = BwB and write u = s ... s, reduced. Applying (x) and
(T1) k times, it follows that u~! Buw contains an element of BiuwB for some subexpression
 of u with /(%) < £(u). But BiuwB and BwB are disjoint, yielding a contradiction.

Let a;, i < w be elements in W such that a;,; = si,a; for some s, € S is reduced. (Such
elements always exist.)

Thus /(a;) < /(a;) if and only if i <j. Using the claim, we obtain a formula
¢(x,y) given by yx~'Bx < ByB. Then ¢(a;,a;) holds if and only if i <, contradicting
stability. [

Under the additional assumptions that the group G has finite Morley rank and finite
(Tits-) rank a different proof can be found in [BN], 12.39. (However, the proofs of the theo-
rems claimed in loc. cit. 12.39 and 12.40 are not correct, a correct proof and an explanation
of the problems arising there can be found in [KTVM].)
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2.9. Reduction of Corollary 1.2 to 1.3. If G is a group of finite Morley rank with a
definable irreducible BN-pair of (Tits-) rank 2 (in fact it suffices that B is definable), then
the BN-pair 1s automatically spherical by Proposition 2.8 and the parabolic subgroups are
definable (see [KTVM], proof of Thm. 5.3) Clearly, the generalized n-gon B on the coset
geometry is definable in the structure (G, G,, G/, 1, -) and thus has finite Morley rank. If 8
1s a polygon defined in this way from a group of finite Morley rank, then by [Tel] the point
rows and line pencils of P have Morley degree 1 and thus are strongly minimal by assump-
tion on G. (Alternatively, by 4.2 this follows from the fact that the Levi-factors are inter-
pretable groups which act 2-transitively on the point rows and line pencils.)

Note that G is contained in a natural way in Aut(*B) (thus preserves lines and points)
and acts transitively on the set of ordered n-gons contained in B. So the first part of The-
orem 1.3 is sufficient to prove Corollary 1.2.

2.10. Examples. In particular, starting with some standard BN-pair of the simple al-
gebraic groups PSL3(K), PSp,(K) =~ PSOs(K), G2(K) over some algebraically closed field
K, the associated Pappian polygons, namely the projective plane, the symplectic quadrangle,
and the split Cayley hexagon over K, have finite Morley rank and all point rows and line
pencils are strongly minimal and the Levi-factors are all permutation equivalent to PSL, (K)
acting naturally on the projective line. (They are called Pappian because all derived geo-
metries in these polygons are Pappian projective planes, see e.g. [VM1], 3.5.2.) It was shown
in [KTVM] that these are exactly the Moufang polygons of finite Morley rank.

2.11. Root groups and the little projective group. Let 8 be a generalized n-gon, n > 2.
Let G = Aut(*p) if n > 2, and G < Aut(B) if n = 2. A root in B is an n-chain y = (x, ..., x,)
with x;_1 # x;41, 1 =1,2,...,n— 1. The root group U, of y (with respect to G if n = 2) is

n—1
the subgroup of G which fixes the set |J D;(x;) elementwise. Note that, for n > 2, the
i=1

coordinatization implies that the root group acts freely on D;(x;). The root y is a Moufang
root (with respect to G if n = 2) if its root group acts transitively (and thus regularly for
n > 2) on the set Dy (x,)\{x,—1}. The generalized n-gon satisfies the Moufang condition if all
roots are Moufang.

The little projective group of B (with respect to G if n = 2) is the subgroup of G gen-
erated by the root groups. An element of the root group of y is called a root elation for y. If
Xo 1s a line (respectively a point) then a corresponding root elation for y will also be called a
point elation (respectively line elation). If n is odd, then point elations are line elations, but if
n 1s even, then the set of elations is the disjoint union of the set of point elations and the set
of line elations.

Note that if B is a Moufang polygon which is defined as in 2.6 from a group of finite
Morley rank, then the root groups are connected since the line pencils and point rows are,
and hence the little projective group is definable by Zil’ber’s Indecomposability Theorem.

Moufang n-gons for n > 2 have been completely classified by Tits and Weiss [TW],
they exist only for » = 3,4, 6 and 8.

For more background on groups of finite Morley rank the reader is referred to [BN].
However, Chapter 12 of loc. cit., which deals with geometries and BN-pairs, contains a
number of inaccuracies and mistakes. Background for this area can be found in [KTVM].
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3. Proof of Theorem 1.1 and Corollary 1.2

Let G be a simple group with an irreducible BN-pair of (Tits-) rank 2 and let ‘B be the
associated polygon. For any x € 3, the group G induces a 2-transitive group H, on the
panels D;(x), the Levi factor of the parabolic subgroup G,. Assume that these Levi factors
are isomorphic to groups of type PSL, or AGL, over arbitrary fields with at least 4 ele-
ments. We now aim at showing that B is a Moufang polygon and that G contains the little
projective group of L.
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Proof. There are three cases to consider depending on whether the Levi-factors are
isomorphic to groups of type PSL, or AGL;:

Case 1:  All the Levi-factors H, are of type AGL,;.

Let y = (xo,...,X,) be a root. Since G acts transitively on ordered ordinary n-gons,
the subgroup G, of G fixing y elementwise acts transitively on D;(x,)\{x,—1} and must fix
all of Dy(x;),i=1,...,n — 1 elementwise showing that % is Moufang with G containing all

root elations.

Case 2: All the Levi-factors H, are permutation equivalent to some PSL,(K),
PSL,(K’) for fields K and K’ with at least 4 elements.

In this case Corollary 2.4 in [Te3] implies that 8 is Moufang and that G contains all
root elations.

Case 3: 1Tt is left to consider the case where H, =~ PSL,(K) for xe ¥ and
ry ! | b PN 77
H, =K X K" for xe 2.

Clearly, this cannot happen for odd 7 since in that case any elation is at the same time
a point elation and a line elation, i.e.; the root groups are the same.

So we may assume that 7 is even.

Claim. G contains all root elations on point rows.
Let y = (xo,...,X,) be a root with xo, x, € &. Then since H, for x € Z is sharply 2-
transitive, the subgroup G, of G fixing y pointwise fixes Dy(xy) U Dy(x3) U -+ U Dy(x, 1)

pointwise. It now follows exactly as in [Te3] that the commutator subgroup [G,, G,] is a
group of root elations for y inducing the additive group of K on D;(xo)\{x;}.

We want to show that G also contains all root elations on line pencils.

For quadrangles, this follows from

3.2. Proposition (cf. [BTVM]). Suppose B = (2, ¥, F) is a generalized quadrangle
which is half-Moufang, i.e. all point rows have transitive root groups. If for all (p,1) € #, and
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roots y = (xo, X1, X2, p, l) the group induced by U, on Di(I)\{p} does not depend on the root
v, then B is Moufang.

Proof.  Lety = (po,lo,p1,11,p2) be a root with pg, p; € 2 and complete y in two dis-
tinct ways (pa, b, p3, 3, po) and (p2, 15, p4, I}, po) to an ordinary quadrangle. We have to show
that there is a line elation for y mapping 5 to /3.

Let p be a point on /, distinct from ps, ps, let (p,/,q,/;) be the (well-defined) path
from p to /5 and let (p1,1’,4’, 1) be the path from p; to /. We will now compose three point
elations: one mapping the point p3 to p, a second from there to ¢ and the last from there to

ps-

Let a1 be the point elation fixing (%, p2, 1, p1, /) and mapping p; to p, let a, be the
point elation fixing (I, p1,/’,¢’, 1) and mapping p to g, and let a3 be the point elation fixing
(13,10, 1o, p1,11) and mapping ¢ to pj. Since by assumption all these elations do not depend
on the different roots and the composition o = aj0p03 fixes pg, p1 and p», it follows that /,
and /; stay pointwise fixed and so does the line pencil in p;. Thus « is the required line
elation. []

n =4. We know that all root groups induce the additive group of the field K on the
point rows. Hence we can apply Proposition 3.2 to see that P and G are as claimed.

n = 6. Putn =2m. We fix two lines 7 and /" at distance n. Then the group G, , fixing
{¢,¢'} induces a 2-transitively subgroup of PSL,(K) on . Since PSL,(K) does not contain
2-transitive proper subgroups (see e.g. [KTVM], 4.9) and since the groups H, are sharply 2-
transitive for x € 2, it follows from the coordinatization that G, ,» acts effectively on /. So
Gy 4 1s definably isomorphic to PSL,(K).

We now consider an element g € G, ,» having exactly two fixpoints x,y on 7. Then g
fixes an ordinary n-gon I'" through #, #’, x, y. Moreover, since ¢ fixes two lines through every
point of T, it fixes every line through any point of I'. By (the dual of ) 4.4.2(iii) of [VM1],
the set of fixed elements of g forms a weak non-thick ideal subpolygon B’ (i.e., a structure
satisfying conditions (i) and (ii) of Definition 2.2, but instead of (iii), we have exactly two
points on each line, and at least three lines through each point; ideal means that all lines in
B incident with a point of P’ belong to B’). By Theorem 1.6.2 of [VM1], B’ arises in a
canonical (and definable) way from a (thick) generalized m-gon B*. Since P’ is ideal in P,
it also arises from a BN-pair, and since B’ has a group transitive on the points, it is easy to
see that $” is isomorphic to its dual. Moreover, the BN-pair associated with T* satisfies
the assumptions of Case 1 of the present proof. Hence B is a Moufang m-gon and we have
m=3,4,6,8 (see e.g. [Ti4], [W]). For Moufang polygons Knarr [Kn| proved that the
group of even projectivities coincides with the group induced by the little projective group.
Hence the groups of even projectivities are sharply 2-transitive. This already rules out the
case m = 3 as in projective planes the projectivity groups are always 3-transitive. The case
m = 4 is likewise eliminated by [VM2]. If m = 6, then we know from [Ro] that, up to du-
ality, ®p” contains an ideal split Cayley subhexagon, and [VM1] (Table 8.1) implies that the
group of projectivities of a line pencil is 3-transitive (namely, containing PGL;(k), for some
field k), a contradiction. Finally, if m = 8, then the Moufang polygon can never be self-
dual, as shown by Weiss in [W].
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Hence Case 3 cannot occur for n = 6.

Thus, B is Moufang and G contains the little projective group. This finishes the proof
of Proposition 3.1 and of Theorem 1.1. []

Now the first part of Theorem 1.3 and Corollary 1.2 follows from [KTVM], 3.14. and
the following result where as usual we denote the Morley rank of the group G by RM(G):

3.3. Theorem ([Hr|). If G is a group of finite Morley rank which acts definably, effec-
tively and transitively on a strongly minimal set X, then one of the following occurs:

(i) RM(G) = 1 and the connected component G° of G acts regularly on X;
(1) RM(G) = 2 and the action of Gon X is deﬁnably permutatton equwal
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(ili) RM(G) = 3 and the action of G on X is definably permutation equivalent to the
simple algebraic group PSL,(K) acting on the projective line of K for some algebraically
closed field K.

Now let B be a generalized n-gon whose point rows and line pencils are strongly min-
imal, n > 3, and let G be a group of automorphisms of the incidence graph of B of finite
Morley rank acting transitively and definably on the (definable) set of ordered ordinary n-
gons contained in ‘B.

In order to prove Theorem 1.3, first we assume that G < Aut(‘B), i.e., G preserves
lines and points. By 3.3, for any x € B the Levi factor H, (which clearly is interpretable) is
definably isomorphic to either PSL,(K) or K+ > K* for some algebraically closed field K.

Theorem 1.1 together with 3.3 immediately implies the first part of Corollary 1.2 and
the rest now follows from [KTVM], 3.14. However, especially for quadrangles the argu-
ments in [KTVM] were quite involved, and it is worth giving a short geometric proof of the
fact that G is isomorphic to one of the groups PSL3(K), PSp,(K) or G»(K) which does not
need the full classification of Moufang polygons.

As noted above, Knarr [Kn] proved for Moufang polygons that the group of even
projectivities coincides with the group induced by the little projective group. The little pro-
jective group also acts transitively on ordinary n-gons, hence it induces 2-transitive groups
on line pencils and point rows. Since PSL,(K) (in its action on the projective line of K') and
K > K* have no 2-transitive proper subgroups (see [KTVM], 4.9), the little projective group
induces the same group on the line pencils and point rows as G.

For projective planes all projectivities are even, and the projectivity groups are always
3-transitive. Hence it follows immediately from von Staudt’s Theorem that ¥ is the Pap-
pian plane over K.

Let now ‘B be a Moufang quadrangle. Suppose first that at least one Levi-factor of G
is sharply 2-transitive. Then it follows from [VM?2] that ‘B is finite, which is a contradiction.
If both Levi factors are isomorphic to PSL,(K) (for possibly different fields K), then it fol-
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lows from Case 2 of the proof above that G is transitive on ordinary pentagons contained
in B. Since any Moufang quadrangle contains central elations (up to duality), see 5.4.7 of
[VM1], it follows easily that all elations are central. Hence the points of the quadrangle
are regular. But the projectivity groups on the line pencils are permutation equivalent to
PSL,(K), so by Thm. 1 of [BTVM], B is the symplectic quadrangle over K. In this case it is
well-known that both Levi factors are isomorphic to PSL,(K) for the same field K.

The Moufang hexagons are quickly classified, as they belong to certain kinds of Jor-
dan algebras, see Faulkner [Fau]. Over algebraically closed fields only the field itself is pos-
sible, showing that any infinite Moufang hexagon of finite Morley rank is the split Cayley
hexagon over an algebraically closed field.

The Moufang octagons can be excluded right away, since, up to duality, the little pro-
jective group of the point rows induces neither PSL,(K) nor K+ > K* (cf. [VM1], Table 8.1).

Thus B is Pappian, namely isomorphic to the projective plane, the symplectic quad-
rangle or the split Cayley hexagon over some algebraically closed field, and the classifi-
cation shows that G acts transitively and thus regularly on ordered n + 1-gons. Since the set
of ordered n + 1-gons has Morley degree 1 (see [KTVM], 1.9), it follows that G is con-
nected and that RM(G) = 2n + 2 (see [KTVM], 2.8). By Proposition 3.1 and the remarks
in 2.11, the little projective group G(K) of P is a definable subgroup of G. For the Pap-
pian n-gons, G(K) is a simple linear algebraic group over an algebraically closed field with
RM (G(K)) = 2n+ 2. Hence RM(G) = RM(G(K)) and since G is connected, we must have
G = G(K). Thus, G is isomorphic to one of the groups PSL3(K), PSp,(K) or G,(K) over
an algebraically closed field K and as in [KTVM], 3.14 it follows that the isomorphism is
definable.

This finishes the first part of Theorem 1.3 which suffices to prove Corollary 1.2.

To finish the proof of Theorem 1.3 now suppose that G contains a duality. Then the
subgroup G* of G of automorphisms of B preserving the points (and hence the lines) is a
definable group of finite Morley rank acting transitively and definably on the set of ordered
ordinary n-gons contained in 3. By the first part of Theorem 1.3, we know that n € {3,4,6}
and B is Pappian over some algebraically closed field K. Let n = 4,6 and let p be any de-
finable duality. Then we must have char(K) = 2 if n = 4 and char(K) = 3 if n = 6 (see 7.3.5
of [VM1]). By composing p with an element of G* if necessary, we may assume that p sta-
bilizes (but not pointwise) an ordinary n-gon (xo, . . ., X2,_1, X2,) and switches xo and x;. By
choosing coordinates suitably (xo as (c0) and x; as [o0]), we see that p induces two field
automorphisms ¢ and y (one related to the point rows and the other related to the line
pencils). Similarly as in [VM1] (4.6.1 and 4.6.6), one shows easily that ¢! is the Frobe-
nius. Let us sketch the calculations for n = 4, the case n = 6 being completely similar. We
use the coordinatization of the symplectic quadrangle over K as given in 2.5. By the tran-
sitivity on ordinary 5-gons, we may assume that p also interchanges (1) and [1]. Hence there
are permutations ¥, ¢,,V, ,, for a,/ e K, and g, Vi, Ok > Tor k,b e K, such that p maps
(a,1,a") to [a¥,1%,a"«!] and [k, b, k'] to (k?,bYx, k'%+) (and all these permutations map 0
to 0). Noting that the characteristic of K is 2, we obtain by expressing that incidence is
preserved by p:

a’ (k?)* + b¥ = (ak + b)V«!,
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and
aVk? + 19 = (a*k + 1) %,

forall a, b, k,l € K. Putting a = 0 respectively k = 0, we deduce immediately that y, = ¥, ,
foralla,/ k € K and that ¢, = ¢, ,, for all a, b, k € K. Furthermore, puttingk =1 and b =0
in the first equation and a = 1 and / = 0 in the second, we see that iy = Y, and ¢ = ¢,. Sim-
ilarly, we see that a¥ = (a?)?, for all a € K, hence ¢! is the Frobenius. It is now easy to
see that both y and ¢ are field automorphisms.

If we denote by 0 the field automorphism associated to the semi-linear transformation

correspondip;g to p?, then § = a,,/;vp (indeed, in the symplectic example above, (@) is mapped
by p? onto ((a¥)?)). Clearly p* € G*, hence § = 1 by the first part, implying that  is a
square root of the Frobenius automorphism. But this does not exist in algebraically closed

Now let n =3 and consider a standard coordinatization of the Pappian projective
plane over the algebraically closed field K. If G contains some duality p, then as before
p? € G*, so the automorphism of K induced by p? is the identity. This implies that the field
automorphism induced by p has order 1 or 2. On the other hand, the polarity 7 defined by
interchanging the points and lines with same coordinates is also definable and the auto-
morphism of K induced by  is the identity. If p # 7, then pr is a definable automorphism of
the projective plane over K which induces a definable involutive field automorphism. But
this is impossible in a structure of finite Morley rank. Hence 7 is the only duality in G and G
is isomorphic to PSL3(K) > 2.

This completes the proof of Theorem 1.3. [

Proof of Corollary 1.4. By Proposition 2.8 the BN-pair of G is spherical and of finite
(Tits-) rank. If G has a BN-pair of rank 1, then 1.4 follows from Theorem 3.3, for BN-pairs
of rank 2, this follows from Theorem 1.1. For BN-pairs of higher rank this follows either
directly from [KTVM], Thm. 5.3 or as in loc. cit. from the fact that buildings of rank at
least 3 are determined by their diagram and the corresponding rank 2 residues. []

As an alternative version of Theorem 1.2 we can state

3.4. Theorem. Let G be an infinite group of finite Morley rank with an irreducible
definable BN-pair of (Tits-) rank 2. If the Levi-factors have Morley rank at most 3, then
G =~ PSL;(K), PSp,(K) or Go(K) for some algebraically closed field K.

Proof. If G has infinite Levi-factors of Morley rank at most 3, it follows immedi-
ately from the 2-transitivity of the Levi-factors that the panels have Morley rank 1. Con-
versely, it follows from Theorem 3.3 that the Levi-factors have Morley rank at most 3, if
the panels have Morley rank 1. [J

4. Appendix

In this section we treat the reducible case of finite Morley rank. Note that the con-
nection 2.6 between groups and polygons now gives that a reducible BN-pair of Tits rank
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2 is equivalent to a generalized digon with an automorphism group acting transitively on
ordinary ordered digons.

4.1. Theorem. (i) If G is an infinite group of finite Morley rank with a definable re-
ducible BN-pair of (Tits-) rank 2, such that all panels of the associated building have Morley
rank 1, then

G = PSLy(K) x PSLy(K'), (K™ > K*) x (K'* > K")

or

(K" > K*) x PSLy(K")
for some algebraically closed fields K and K'.

(i) If'*B is a generalized digon with strongly minimal point row and line pencil and G is
a group of automorphisms of the incidence graph of B (which is a complete bipartite graph) of
finite Morley rank which acts transitively on the set of ordered ordinary 2-gons contained in
B, then G is one of the groups above, or isomorphic to PSLy(K)wr 2 or (K™ > K*) wr 2.

We need the following

4.2. Lemma. Let G be a group of finite Morley rank acting definably and definably
primitively on a definable set X. Then deg(X) = 1.

Proof. By definable primitivity it is easy to see that the connected component G° of
G acts transitively on X. Hence X has Morley degree 1 as otherwise the setwise stabilizer in
G of a proper generic subset of X would be a proper subgroup of G° of finite index. []

Proof.  As for the irreducible case, it suffices to prove (ii) assuming G does not contain
elements interchanging points and lines. There are only two panels here—the set of points,
and the set of lines. Since the Levi-factors are interpretable and act 2-transitively on the
panels, the panels have Morley degree 1 and are thus strongly minimal. Let B = (2, %, )
be the associated generalized digon. Let y = (p, L, ¢) be a root with p, g points, and L a line.
Let r be any point distinct from both p, g. By the BN-pair property, the action of group
Gp,q on Z is 2-transitive. Since G, , < G and since PSLy(K) (for K algebraically closed)
does not have a sharply 2-transitive subgroup, it follows from Theorem 3.3 that the re-
striction of the action of G to % coincides with the restriction of the action of G, , to £.
Consequently, {p, L, q} is a Moufang panel whenever the action of G on 2 is sharply 2-
transitive. Hence if G acts sharply 2-transitively on both 2 and %, then B is a Moufang
digon with respect to G. Suppose now that G acts 3-transitively on both 2 and %. As in
the proof of Proposition 3.1, we see that G, , , 1 acts transitively on #\{L}. But, by The-
orem 3.3, this group fixes 2 pointwise. Hence we again conclude (using the observation
that PSL,(K) does not have a sharply 2-transitive subgroup) that B is Moufang with re-
spect to G. Now suppose that G acts sharply 2-transitively on 2 and sharply 3-transitively
on . As above, we can still conclude that the panel {p, L, ¢} is a Moufang panel. Hence
the pointwise stabilizer in G of 2 acts as PSL,(K) on %, for some algebraically closed field
K. In order to show that ‘B is Moufang with respect to G, it suffices to prove that the
pointwise stabilizer of % in G acts 2-transitively on 2. By the BN-pair property, there ex-
ists g € G mapping p,q to any desired p’,q’ € 2, p’ # ¢q'. The action of g on % can be
identified with an element of PSL,(K). But now we consider an element ¢’ € G fixing 2
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pointwise and inducing the same action on % as g does. Then gg’ -1 fixes % elementwise
and maps p,q to p’,¢q". So B is Moufang with respect to G.

It is now easy to see that G is a direct product of 2-transitive groups of finite Morley
rank acting on strongly minimal sets. So we obtain the possibilities mentioned in the theo-
rem. []

Finally, we remark that similarly to the previous theorem, one can classify all groups
of finite Morley rank acting definably, effectively and transitively on the set of all apart-
ments of any (not necessarily irreducible) spherical building with strongly minimal rank 1
residues. One obtains direct products of split simple algebraic groups over algebraically
closed fields and groups as in Theorem 3.3(ii), possibly extended with some dualities or
trialities, and possibly further extended by standard wreath products.
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