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AUTOMORPHISMS OF NON-CLASSICAL TRIANGLE BUILDINGS

H. Van Maldeghem *

We study the relation between the automorphism
group of a triangle building and those of its
spherical building at infinity. As an application
we exhibit a (locally finite) triangle building
with non-classical residues and vertex—transitive
automorphism group.

LNTRODUCTION.

A triangle building is an affine building of type EZ and has Buekenhout

{4 ] diagram

A triangle building is said to be classical if it arises from an algebraic
group over a local field (see Bruhat-Tits [3 ]). in fact, all affine
buildings of rank >4 are classical in this sense (see Tits [10]). Non-
classical examples of triangle buildings exist in large classes (see e.g.
Ronan [ 8] and the author [11]). In [10], Tits introduces the
(spherical) building at infinity for any affine building. In case of a
triangle building A, this is the building associated to a pair of mutually
dual projective planes. Denoting one of them (by an arbitrary choice} by
PG(A), the latter iz Moufang if A iz classical. In
general, PG(A) can be viewed as the inverse limit of an infinite sequence
of epimorphic projective Hjelmslev planes (Vn,ﬁ

(where Vn is of

level n). In these planes, there is a notion of (Pn,Ln}—perspectivity and
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1.1.

(Pn,Ln)—transitivity for point-line pairs (Pn,Ln) of Vn. We study the
relation between these perspectivities and those of PG(A). We show that
every perspectivity T in PG(A) defines a unique automorphism 1 in A
inducing 7_ in PG(A). We investigate the action of t on the set of
vertices of A. Then we will be able to prove that the auvtomorphism group

of the triangle building A_ associated to the division ring D((t)) of

D

formal Laurent series over an arbitrary division ring D acts vertex

transitively on AD.

1. TRIANGLE BUILDINGS.

The standard apartment.

Denote by A the real Buclidean plane provided with a tessellation T of
congruent regular triangles. Suppose typA is a type map from the set of
vertices of all these triangles to the set {1,2,3} such that each triangle
has vertices of each type (up to permutation of {1,2,3}, there is a unique
way of doing this). Now let T be an arbitrary such triangle with vertices

Pl'Pz’PB and suppose typA(Pi) = 1, i=1,2,3. We consider T as the convex

closure (in the usual Euclidean sense) of {Pl’P2’p3}' Denote by hl (resp.
h2) the closed half line bounded by P3 and containing Pl (resp. PE)' Let

Ll (resp. L2) be the affins line supporting hy (resp. hz). Let Hl (resp.

HZ) be the closed half plane bounded by L. (resp. L2) and containing T.

1

Denote by W the group of all orthogonal transformations of A stabilizing

7. Let wé W be arbitrary. We call w(P.} (resp. w([Pl,P

1 17, W(T),W(hz),

2

W(Ll),w(H H ),w(Hl) a vertex (resp. a panel, a chamber, a panel of a

1 2

quarter (with source w(Pl)), a wall, a quarter (with source w(Pl)), a
half apartment). A face is a common name for vertex, panel and chamber.
We abbreviate "panel of a quarter" to pennel, as in [13].

The tessellation T defines a triangulation T{A) of the topological space

A in the natural way. The vertices of T(A)} are the vertices of T, a 1-



gimplex is any set of vertices on a common panel and a Z-simplex is any

set of vertices on a common chamber. In this manner, we obtain the

Coxeter complex I of irreducible type ﬁz. A panel (resp. a chamber, a
pennel {(with source P), a wall, a quarter (with source P), a half apartment,
a face) of Z is by definition the set of vertices lying on some panel (resp.
chamber, etc...) in A. The corresponding type map is now denoted by typz.
Most of the above definitions are standard concepts (see N.Bourbaki [ 2]).
Buildings of type ﬁe.
Suppose A is a simplicial complex and supposet4 is a set of subcomplexes
of A, Suppose all elements oft% are isomorphic coplies of E. Then (Agé)

is called a building of type Kz {or a triangle building) and the elements

ofl% are cailed apartments if (ﬁ,&) satisfies (B.1), (B.2) and (B.3).
{B.1) A is thick, i.e. every panel is contained in at least
three distinct chambers.
(B.2) Every two simplices of A belong to a common apartment.
(B.3) If E,E‘eu4, there exists an isomorphism of I onto I
which fixes In I' elementwise. (see Tits [9]).
Let (A,i) be a triangle building. We callué a maximal set of apartments
for & if (B.4) holds.

(B.4) 1If (A,%') is also a triangle building, thenué‘édé.

Every building admits a maximal set of apartments and this maximal set of
apartments is uniquely determined by & (see Tits [10],Theoré&me 1). This
Justifies the notation A for a triangle building with a maximal set of

apartments.

Let (A,&) be any triangle building. A panel (resp. a chamber, a pennel



(with source x), a quarter (with source x), a wall, a half apartment, a
face) in {Aﬁé) is the set of vertices S of A such that S is a panel (resp.

a chamber, etc...) in some apartment of (Ag%)-

Notation.

Throughout this paper, A denotes a triangle building with a maximal set
of apartments. If b is a vertex of 4, the we will use the following

notation (see [131).

Vela) = get of vertices of a,

Pe(a) = set of pennels of 4,

Qu(a) = set of gquarters of a,

Ap(A) = set of apartments of a,

Pe(A,b} = set of pennels of A with source b,

Qu(a,b) set of quarters of A with source b.

If x,y& Ve(A), then d(x,y) denotes the minimal number of panels joining
, . 2
x to ¥y {the graph distance). The map d : Ve(A) + N iz a metric.

Two vertices are called adjacent if they lie on a common panel.

The geometry at infinity.

Let £eAp(a). A type map tE on & 1s any mapping from the set of vertices

of ¢ onto {1,2,3} such that tE corresponds to typz for at least one

isomorphism ¢ + Z. Obviously, there are six distinct type maps on . Also,

there exists a type map typA : Ve(A) - {1,2,3} such that the restriction

to any apartment I of A is a type map in I. In fact, there are again six
possible type maps, but we fix one of them for once and for all (and denote
it by typﬁ as above). The type map typA turns A into a rank 3 geometry

with Buekenhout diagram

in the classical way (see Bourbaki [2 ]). So the residue {see Buekenhout



[4 ], we will also define this later on) of any vertex of A is a projective
plane. All residues have the same order and if they are finite, then we

call A locally finite.

Let b be a vertex of A and consider the type of the vertices modulc 3.

. . . C b b b
We define the point-line incidence geometry V- = (P(V },L(V ),I) as
follows., Denote for pé& Pe(a,b) by xp the unique vertex on p adjacent to

b. We define

jav)
<
0

{pe Pe(a,b) | typa(xp) tYDA(b)+l}:

=
<
]

{9 € Pe(A,b) | typﬂ(xg) typa(b)—l}.

b
Eiements of P(V ) are called point-pennels {for every b) and elements
3]
of 1L(V') are called line pennels (for every b). By definition, a point-
pennel p is'incident with a line-pennel ¢ if there is a quarter @ with source

b containing pv 2 as a subset.

Two pennels p,q are parallel if they are on bounded distance from one
another (see Tits [10]). A germ of pennels (resp. quarters) is a class

of pennels (resp. guarters) with respect to the following equivalence
relation : X is eguivalent to ¥ if XA Y contains a pennel (resp. a
quarter). Two pemmels of the same germ are parallel, but there are pennels
in distinct germs which are nevertheless parallel (for all of this, see

Tits [10]). Note that "being parallel" is an egquivalence relation.
We now state some known resulis on triangle buildings.

PROPOSITION 1 (Tits [10],proposition 5). For any vertex b &Ve(d) and
any pennel p (resp. quarter Q) of A, there exists a unique pennel pb
(resp. quarter Qb) with source h and parallel to p (resp. in the same germ

of Q).

LEMMA 1. A point-pennel is never parallel to some line-pennel.



PROOF. Suppose b,c & VelA), €fP(Vb), P, EPe(h,c} and Py, is parallel to

Py
P.- It suffices to show that 1 is a point-pennel., By symmetry, the
lemma will then follow. By Tits [10],17.3, there exists an apartment I
containing pennels pég;pb anad péé&pc. 50 regarding I as a Euclidean plane
pé and pé have paraliel supporters. Now denote by xn the vertex on pb on
distance n from b and Yo the vertex on = at distance n from ¢, defined
for all non-negative integers n. But looking in any apartment containing
P,s One sees typa(xn) = n{mod 3) + typA(b). Assume for a moment P &

L(V®), then similarly typﬂ(yn) = -n{mod 3) + typA(c). But if m is such

) o= k(mod 3) & typA(ym)

I . . .
that ymc pc, then locking in I, we obtain typA(ym+k

(gince this is alse true for pé and pé is parallel to pé). This contadicts

the former formula for typA(yn). Q.E.D

LEMMA 2. Suppose b,ce Ve(A), Q€ QuiA,b), Qcé.Qu(A,c), pbé Pe(A,b), pcﬁ
A < . i
Pe(4,c), pb“'Qb If Py and p_ are parallel and Qb and QC are in the same

Ca .
germ, then pc“'Qc

PROOF. This is implicitly in Tits [10}, but we provide a short proof.
Without loss of generality, we can assume pbfiP(Vb). Let Q@€ Qu{d) be such
that Q& Qbﬂ QC and suppose @ has source d€Ve(d)., Let pdeP(Vd) be parallel
to both Py and P {possible since parallellism is an equivalence relation).

Clearly (looking in any apartment through Qb) p,€qQ . Similarly pcngc

d

by looking in any apartment containing QC. Q.E.D

PROPOSITION 2. If b,ceVe(A}, then Vb is isomorphic %o v©,

PROCF. Defining the isomorphism as the map which sends every pennel with
source b to the unique parallel pennel with gsource c, the proposition

follows directly from proposition 1 and lemma 2. Q.E.D

. . b . . X .
It is easily seen that V is in fact isomorphic to one of the two



projective planes corresponding to the building at infinity of 4, as
defined in Tits [ 10]. We denote that projective plane by PG(A). Note
that PG(A) depends on the type map typA. Other type maps may give rise

to the dual of PG(A). Recalling the definition by Tits [10], the points
of PG(A) are the parallel classes of point-pennels and the lines of PG{a)
are the parallel classes of line-pennels of A. If p€& Pe(A), then the
unique parallel class containing p can be regarded as either a point or a
line of PG(A) and is called the trace at infinity of p (see Tits [10]).

If w is a wall in A, then there are exactly two parallel classes of pennels
having representatives contained in w. The set of these two parallel
classes is called the trace at infinity of wo It is a non-incident point-

line pair in PG(a).

Let Z€Ap{A). Then the six germs of quarters of I define a unique triangle
I in PG(A), i.e. a set of three points and three lines {all distinct from
one another) forming a triangle. Any triangle is determined by its set of

points (resp. lines).

PROPOSITION 3 (Tits [10],proposition 1). The map £ + I_ above is a

bijection from Ap(A) onto the set of all triangles of PG(4).
We denote that bijection by g and call D the trace at infinity of I.

PROPOSITION 4 (Van Maldeghem [13],lemma 4.1.5). Suppose P 'Pys Py, P, are

1

four points in PG(A)} such that no three of them are collinear. Consider

the subscripts of the above points module 4 and dencte by Ti’ i=1,2,3,

4(mod 4) the triangle in PG(a) determined by Pi+1’Pi+2’Pi+3' Then
B_i(Tl)ﬁ B_l(TE)r\B_l(TS)f\Bwl(Td) is a unique vertex which we denote by
S(Pl’PZ’PS’P4)'

PROPOSITION & (Van Maldeghem [13],4.3.6). Suppose Z& Ap(4) and denobe by



1.5.1.

1.5.2.

Ve(r) the set of vertices of L. Suppose I_ is the trace at infinity of I
and let I_ be determined by the set of points {Pl,Pz,PB}. Suppese s € Ve(a)
and piﬁ Pe(p,s) has Pi as trace at infinity, i=1,2,3. Then plnp2 = pgr)pa

= PgNP; = {s} if and only if sé& Ve(I).

3

t
The n h floor of A with basement b & Ve(A).

We fix bé& Ve{s) and define for every non-negative integer n a point-line

b

b b .
n},I), where P(Vn) (resp. L(Vn)) is the

L b b
incidence geometry V = (P(Vn).L(V

point- (resp. line—) set and I is the symmetric incidence relation.

) (p'e P IIJEP(Vb) and d(P",b)=n},

)

(v.1) PV

(V.2) L(V (iMe s | 2 ern(v®) and (1", b)=nl,

il

o I - s T

(V.3) For every PnEiP(VE) and every LnE.L(VE}, we define
PnI Ln if and only if there is some gquarter Q& QuiA,b)

containing both p" and Ln.

b . .
For n=1, incidence is adjacency and we call Vl the residue of b in &. It
. . . b . th .
is & projective plane. The gecometry Vn is called the n floor of A with

basement b.

Properties,.

There is a natural surjective map Hg,j : VE - V?, 0<j<n, mapping a point P
{resp. line Ln) to the point Pje P(V?) (resp. the line Lje L(V?)) defined

by a(b,P1) = j = n-a(P™,Pd) (resp. d(b,LY) = j = n-a(t™,19)). This is well
defined by a general convexity property of (affine) buildings, see [o].

In fact, Pj lies on the interval [b,Pn]. The map Hg,j preserves incidence
and is therefore an epimorphism of incidence geometries (since it is clearly
surjective). To shorten the notation slightly, we denote by ﬁ? the union

of all the maps ng i for n>j. Note that H? can be extended to PG(A) via

T

Vb in the obvious way. We denote that extension also by H?. S0, 1f p &



b , ,
Pe(&,b), then Hn(ch}) {where c{p) is the parallel class of p) is the

unique vertex on p at distance n from b and we call it the n-trace of p.

b
We now define a "partial valuation map" u, on Vn as follows {see also [13]).
Let P07 e P(VE)' Ln,M“'EL(vg).

b

Ty = suplj | H?(Pn)= H.{Qn)};

(PV.1) ub(Pn,Q

)

(PV.2) (L™, M)

. b..n b, . n
Uy sup{j | ﬁj(L ) = HH(M 1,

(PV.3) ub(Pn,Ln)

suplj | ﬁ?(Pn) I HE(LH)}.

Again, we can extend u,_ to PG(4A) and keep the same notation.

b
O : PO . ags -
The neighbourhood of a point PnE P(Vn) igs by definition the set of points
n b n ._n . . .
{Q € P(Vn} | ub(P ,Q)>0}., Similarly for the neighbourhood of a line.

A point P and a line L” in VE are called neighbouring if ub(Pn,Ln)>O.

n o_n
P

n _n ) )
(P,,P.) 2 1nf{ub(Pl, 2),

b
LEMMA 3. If b€ vVe(a) and P;,Pn,PnélP(V ), then u (P,P]

2’73 n b

n n . 1 n Il n . . .
ub(Pg,PB}}and if ub(Pl’p2) £ ub(PE’PB)' then equality holds. Similarly

for lines.

PROOF. This is obvious by definition. R.E.D.

PROPOSITION 6 (Van Maldeghem [13],4.3.4). Suppose Pn,QnE_P(VE}, M one

b
L(V") and k
n

I

. n n n n
inf{u (@ ,L ),u (P ,L ),u (Pn,Mn)}, then
b b b
(i) there exists a point incident with both L" and M and
there exists a line incident with both P and 97,

(", + u (LT,M) > K,

(11) w (@,17) 2 k <> u .

{(for all beVe{A)).

b
This property allows us to conciude that Vn is a projective Hjelmslev

plane, as shown in [ 6 |.
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PROPOSITION 7 (Van Maldeghem [ 13],theorem 4.4,1). The inverse limit of
b
)

- . . . b
n'ne IS canonically isomorphic to V= and hence also to PG(A).

the system (Vﬁ,n

The cancnical isomorphism of proposition 7 maps (Xn)nem'to the unique pennel

with source b having {Xn | ne N} as its set of vertices. The sequence

b b
(Vn,Hn)nE|N is called the Artmann-~sequence related to b, This name is

dedicated to B. Artmann, who was the first to study such sequences, although

not in connection with buildings {see [1]) !

b b
Proposition 7 allows us now to treat V as V_. In the next two lemmas, n

is any natural number or =.

b n

LEMMA 4 (Van Maldeghem {13],lemma 4.3.4). If beVe(a}, ple P(Vn), L €

b
L{V_) and ub(Pn,Ln)ij, j<n, then there exists Q€ P(VE) such that Q° I L”

and ub(Qn,Pnlij.

b
LEMMA 5. If bevVe(a) and L ,M € L(V_), then

n n

S i S - A

&4

ub(Ln,Mn) inf{sup{ub(Pn,Qn) | @

inf{supfu_(P",@") | P* 117} | 9" 1 w1,

PROOF,., Let k = inf{sup{ub(Pn,Qn) { " T vy | PP T ™. Let Pg be any

point incident with L. By assumption, there exists a point Qg I M such

b, n

b
that u (PS,QE);ﬁ. Hence T (Pn) I T (M) and since Pg was arbitrary,

b k' 0 k
b
ML) = HZ(MH), so u (L",M")2k. Now let P} I L be such that k =

. b . .

sup{u LPn,Qn) | Qn I Mn}. By lemma 4, I (Pn) is not incident with

b1 kel 1
b n n _n
Hk+1(M ) and hence ub(L MY = k. Q.E.D.

REMARK. Also the dual of lemmas 4 and 5 holds.
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2. LOCAL PLANAR TERNARY RINGS.

Planar ternary rings.
This subsection is a brief summary of [7 ],Chapter V.

Suppose R is a set not containing the symbol « and suppose T is a ternary
operation on R. Then we call (R,T) a planar ternary ring, or PTR for

short, if it satisfies {0),{a),(B),(C),(D),(E} below for all a,b,c,d in R,

(0) ©,lL€R,
(p) T{a,0,c) = T{(O,b,c) = c,
(B) T{a,1,0) = T{1,a,0) = a,

(C) If a#ec, there exists a unique x& R such that

T(x,a,b) = T(x,c,d),
(D) There exists a unique x €& R such that T(a,b,x) = ¢,
(E) If afc, there exists a unique (x,y)E& R2 such that

T(a,X,Y) = b and T(C,X,y) = d.

PROPOSITION 8 (Hughes-Piper [ 7],theorem 5.2). If (R,T) is a PTR, the
structure PG{R,T) defined as follows is a projective plane. The points of
PG(R,T) are the ordered pairs (x,y) where x,y € R together with elements of
the form (x) where x¢R and (=). Lines are represented by ordered pairs
[m,kc] where m,k € R together with elements of the form [m], where me&R and

[«]. Incidence is defined in the following manner.

(x,y) is on [m,k] <=> T(m,x,y) = k,
(x,y) is on [k] <& x
(x) is on [m,k] <o X o= m,

l,

(x) is on {w] for all x¢R and (=) is on [k] for all kéR,

(w) is on =],
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Note that we introduced the notation PG(R,T) for any PTR (R,T). Now,
consider PG{R,T) and denote ¢ =(0,0}, X = (0), ¥ = (»} and E = (1,1), then
(0,X,Y,E) is a non-degenerate quadrangle in PG(R,T)}. We call (R,T) a
coordinatizing PIR of PG(R,T) with respect to (0,X,Y¥,E) and we also say
that PG(R,T) is coordinatized by (R,T)} with respect to (0,X,Y,E). By
Hughes-Piper [ 7 ],theorem 5.1, every projective plane —-up to isomorphism—
can be coordinatized by a PTR with respect to any non-degenarate quadrangle
in the above way. However, distinct guadrangles may give rise to non-

isomorphic PTRs. We now introduce some further notation.

Let V = {(P(V),L(V),I) be a projective plane with point-set P(V}, line-set
L{V) and incidence relation I, If P and Q are distinct points, then we
denote by PQ the unique line incident with both P and Q. Duazlly, for every
distinet L,ME€ L{V), we denote by LAM the unique point incident with both

L and M {a line is viewed as the set of points incident with it).

2.1.2. If (R,T) is a PTR, one defines a multiplication in R by a.b = T{a,bh,0) and

an addition a+b = T(1l,a,b), for all a,béR. Recall that (denoting R* = R-{0Q})

* (R,T) is called linear if T{a,b,c) = (a.b)+c,

* {R,T) is a quasifield if (R,T) is linear, (R,+) is a group
and the left distributive law holds in (R,+,.). In this
case, (R,+) is also abelian,

* (R,T) is a nearfield if (R,T) is a quasifield and (R¥,.) iz a
group,

* (R,T) is a division ring if (R,T) is a quasifield and also
the right distributive law holds in (R,+,.),

* (R,T) is a skewfield if (R,T) is both a nearfield and a
division ring,

#* (R,T) is a field if (R,T) is a skewfield and (R*,.) iz abelian.

(see Hughes—Piper [ 71])
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2.2. Local PTRs.

) 2
2.2.1. Suppose {R,T) is a PTR. If v : R+ Zvi+=} is a map satisfying (L.1),(L.2),

{..3) and (L.4) below, then we call {(R,T,v) a local PTR., The map v is

called the valuation map.

we call (R,T,v) a PTR with valuation.

+® = (+®)+z, z<{+=), for all ze Z,

We usualy write v(x,0) as v(x).

{L.1) v is onto and v(a,b) = +«= < a=b, for all a,beR,

If (R,T,v) satisfies only (L.1),{L.2) and (L.3),

In what follows, we assume z+(+=) =

(L.2) v(a,b) 2 infiv{a,c),v(b,c)}, and if v(a,c)#v(b,c), then

equality holds, for all a,b,c €R,

RN [ = ) 1 T = 1 r ¥

{(L.3) If T(a1 bl,cl) T(al b2 c2) and (a2’b1’cl) T(a2 b2 03)
then v(al,ag) + v(bl,bg) = v(cg,cg), for all al,az,bl,bz,
cl,cg,cae R,

(L.4) R is complete as a metric space with respect to the

2

metric 6§ : B + MR : (a,b) + 6(a,b) = 27"

vi(x,0) = v{0,x%).

PROPOSITION 9 (Van Maldeghem [11],properties 2.1).

(a,b)

By {v2) of the next proposition, v(x)

If (R,T,v) is a PTR

with valuation, then (vl) through (vi6) hold for all a,b,c,al,ag,...e.ﬁ.

For

(vl)
(v2)
(v3)
(va)
(v5)
(v6)
(v6)
(v7)
(ve)

(va)

v is onto,

via,b} = v(b,a),

If v(a,bi<v(b,c}, then v{a,c)=v{a,b),
via,b)=t=& a=h,

v(1)=0 and v{0)= +=,

through (vl1l), we suppose T(ai,bi,ci):di, i=1,2.

If a,=a, and blzbg, then v(cl,cg) = v(d

If a,=a_ and c¢._=c

;=8 1=Ca0 then vkbl,b2)+v(a )

1

If a,=a, and dl=d2’ then v(bl,b2)+V(al)

If by=by and cy=c,, then V(a1,32)+v(bl)

1772

),
V(dl’dz)’
V(Cl’c2)’

V(dlydg)’
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(v1Q) If blmb and d_=d_, then v(al,a 1,

2 1% Jrviby) = vl

2 C11Cp

Y+via.)

(vil) If ¢ =C, and dl=d2’ then v(al,a 5 5

1 )+v(bl) = v(bl,b

2

and v(al,a )+v(b2) = v(bl,b2)+v(a )

2 1

Yrv(bh,)

and in particular v(al)+v(bl) = v(a2 o)

(vl2} If T{a,b,c) = d, then v{a)+v(b) = v(c,d),

For (v13) through (v18), we suppose T(al,bl,cl) = dl = T(al,bg,cg),
T(a2,bl,cl) = d, and T(a3,b3,c3) = dg.
(vl3) If a2=a3,b2=b3 and C,=Cqy then v(al,a2)+v(b1,b2) = V(d2,d3),
{v14) If a2=a3,b2=b3 and d2=d3, then v(al,a2)+v(bl,b2) = V(C2’c3)’
(v15) If 8,=a.,C,=C and d2=d3, then v(al,a2)+v(bl,b2) = v(bg,b3)+v(a2)
and v(al,a2)+v(bl,b3) = V(bg'b3)+v<al)'

{vlg) If b_=b_,c.=c_ and d2=d3, then v(al,a2)+v(b

2™ P31%57C; 1b,) = viag,a)wv(b,)

1

and V(al’a3)+v(b1,b2} = v(ag,aa]+v(bl}.

2.2.2. REMARK.* If (R,T) is a PTR and v : Rz + Zu {+w)l is a map satisfying (v3)
and {(vl13) (or (v3) and (v14)) and if there is at least ons pair (a,b)E.R2
such that v(a,b) = 1, then one can show that {(R,T,v) is a PTR with valuation.
* If (R,T) is a quasifield, then (L.3) can be replaced by

(@) via,.b - az.b) = v(a

1 - ag} + v(b).

1
# If (R,T) is a division ring, then (L.3) can be replaced by

(DR) v(a.b) = vi{a)+v(b).
For examples, we refer to [11].

o
2.2.3. THEOREM 2 (Van Maldeghem [13]). Suppose L is a projective plane, then the

following statements are equivalent.

fp]
(i) J s isomorphic to the geometry at infinity of a triangle
building A.

33

(ii) can be coordinatized by a local PTR (R,T,v).

&
(iii) Every coordinatizing PTR of J is a local PTR.
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In that case, v is completely determined by 4, the choice of the non-

degenerate quadrangle (Q,X,Y,E) and the coordinates of the points on the

line 0Y. Also, A is unique and for a given local PTR (R,T,v), we denote

this corresponding triangle building by A(R,T,v).

NOTATION.* If (R,T,v) is a local PTR, then we write

If re RS, then

just r leaves the possibility open,

THEOREM 3 (Van Maldeghem [13],5.1.3).

PTR,

c) as T{z,x,y) = 0 (resp. T(c,a,b) = 0).

g =

+
R
0

R

il

+
R - RO.

. +
we write r .

Similarly, if ré R , we write r .

{re R | v(r) > 0} (this includes 0 !},

* For a,be R, we denote w(a,b} = v(a,b)-v(a)-v(b}.

Let %x,v,a,b,m,k,p,q€ R.

u((x",y"),a",6"))
u((x",y"), (a7,b%))

ul(x ,y7),(a",57))

s(0,X,Y,E) € Ve(A) and let u = U

for short.

infiv{x,a),v(y,b)}
inf{v{z,c),wix,a)}

inflw(z,c),wl{y,b)}

Supposge A =

A(R,T,v)

Then we have

Writing

if no hypotheses were made before.

Suppose that (R,T,v) is a local
If x#£0 (resp. z#£0), then we define z (resp.

and denote

u((0,y ),(0,b7}) = wly,b)

wl((x ,y ),(a b)) = influ(z,c),w(y,b)} if v(y)<vix) & v(by<v{a)
ul{x ,y ),{a ,b)) = infiv(z,c),wix,a)} if v(y)zvix) & v(b)zvia)
u((x"), (a")) = v(x,a)

u{(x"),(a)) = w(x,a)

ul(x ,y ), {a ,b7)) = infiv(z,c),w(x,a)l if v(b)>v(a)
u((x7,y"), ")) = inflv(z,a), |vix) ]}

w((x,y7),00,87)) = inflwly,b),|viz)]|}

w((x",y7),(a",b7)) = influlz,c),w(y,b)} if v(b)<via)
W(xT,y),@)) = influ(z,a), |viy) |}

ul(x",y7), (=) = inf{|v(z) ], |v(y) |1

u((0,y ),(a ,b )) = infl|v(c)|,wiy,b)} if vib)<v(a)



Let

1

u({o,y ), (a))
u((0,y7), (=)

u({x ,y ),(a))
u((x 5 ), (=))
u((x,y7), (&)

u((x ), (=)

In all other cases u(P,Q)=0 for

and

p#0. Then we have :

w([m, k], 00" 0" 1)
al)

u([m" " 1,0p ,a 1)

u([m ,k7],[p

u([o,k 1,[0,a 1)

U([mmak“] ![p_:q“])

16

inf{{v(a)|,[viy)[}
|v(y)]

infiw(z,a),|viy)|}
inf{|v(z}|,|v(y) ]}
inf{v(z,a),|v(x}|}

[vi{x)]

infiv{m,p),v(k,q)}
inf{w{m,p),v(1l,r)}
inflw{k,q),w(l,r)?
wik,q)

inflw(k,q),w(l,r)}
inf{w(m,p),v{1l,r)}
v(k,q)

wik,q)

inflw(m,p),v(l,r}}
inf{v(l,a),]|v{m)|}
inflw(k,q), |v(1) ]}
infl{w{k,q),w(l,r)}
infiw(l,q),iv(k)|}
inf{|v(1)], |v(k) [}
inf{w(k,q),[v(r)|}
inf{|v(a)]|,[v(x)[}
|v (k) |

inf{|v(k}|,w(l,q9)}
infi|v(k}|,|v(1)|}

inf{|v(m)j,v(l,q)}

if

if

if

P,Q points of PG(A}.

if

if v(k)<v{m) &

if v(k)zv(m) &

if

if

if

if
if

if

viy)<v(x)
v(y)<vix)

viy)zvix)

r be defined as T(m,1,0)=k , resp. T(p,r,0)=q if m#0, resp.

m£0 & p#£0

v{g)«v{p)

v(q)zvip)

v(igizv(p)

vigl<v(p)

v(g)<v(p)

vik)<v(m)
v(k)<v(m)

v(k)>v(m)
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u([k 1,[=1) = (k)]

In all other cases, u{L,M)=0 for L,M lines of PG{A).

2.2.6. Suppose A is a triangle building and I € Ap{A). We concieve I as a

Euclidean plane isomecrphic to A (see 1.1). Suppose that s ,s and s are

0% 1% %,
vertices of A in . Then we can define the barycentric ccordinates

,8.) as follows,., Concieve

3 i .
(rl.rg,ra)e R™ of s with respect to (s,i5,,8,,8,

7 as the vector plane with origin s (calied the barycenter), then

Sl > -+ ‘ th -0
5 = I‘lSl + I‘2 o -+ ].”353 Wi I‘1+I‘2+I‘3 = .

2.2.7. THEOREM 4 (Van Maldeghem [13],4.5.5). Suppose (R,T,v) is a local PTR and
suppose E* is a point of PG(R,T) such that (0,X,Y,E*) is a non-degenerate
quadrangle. Suppose we coordinatize PG(R,T) with respect to {0,X,Y,E*) by
some local PFTR (R¥*,T*,v*}, where v* is the natural valuation on (R¥*,T*)

induced by A(R,T,v). There are three maps b_, bi' b§ : R + R* such that

T(m,a,b) = k & T*(bm(m),bi(a),by(b)) = b?(k),

and [bm(m),b§(k)} (resp. (bi

(resp. (a,b)). Denote s = s(0,%,Y,E) and s* = s(0,X,Y,E*) and let ﬁi(ﬂ) =

(a),b§(b))are the new coordinates of [m,k]

Q H?(X) =X HT(Y) = Y. . Let £ be the apartment of A(R,T,v) of which

1’ 1

the trace at infinity contains the points 0,X,¥Y. Then Ol,Xl,Yl and s* are

l!

vertices in z. Let (ko,zo,mo) be the barycentric coordinates of s% in I,

then we have (for all x,yé& R}

vi(b (x),b_(¥)) = vix,y) + Ny = %g
vi(bz(x),bp(y) ) = vixy) + 2y - kg,
v*(b§(x),h§(y)) = v{x,y) + My = ko.

This completes the list of all known results that we will need to prove

our assertions.



18

3, AUTOMORPHISMS OF TRIANGLE BUILDINGS.

In this section, we prove two general results about the relation between
the automorphism group of a triangle building and the automorphism group

of its building at infinity.

DEFINITION. An automorphism ¥ of a triangle building A is a bijection

¥ 1 Ve{A)} + Ve(a) preserving adjacency. BSo any automorphism preserves

the distance d and it is also readily seen that, since we have a maximal
set of apartments and this set is completely determined by A, an auto-
morphism maps apartments to apartments, pennels to pennels, quarters to
quarters, etc... Note that with that definition, an automorphism does not
necessarily preserve the type of a vertex, but it interchanges the types.
Hence, if an automorphism preserves the types of the vertices of one
chamber, then it preserves the type of all vertices. The set of all auto-

morphisms of A is denoted by Aut(a).

An autemorphism ¢ of a projective plane V = {P(V]),L{V),I) is
a bijection ¥ : P(VI)UL(V) + P(V)dJ L(V) mapping either P(V) (resp. L(V))
onto P(V) {(resp. L(V)) or P(V) (resp. L{V)) onto L(V) (resp. P(V)) and
preserving incidence. So with that definition, both collineations and
correlations (in the sense of Hughes—Piper [7 ]) are automorphisms. The

set of all autemorphisms of V is denoted by Aut(V).

The following theorem is well known, but since there seems
to be no proof of it in the liturature by our knowledge, we thought a

short proof would suite here. Note that this result holds for every affine

building!

THEOREM 5. For every triangle building A, Aut(4) is isomorphic to some

subgroup of Aut{P&(a)).
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PROOF, Suppose ¥ € Aut{a). Since ¥ preserves the distance, it maps
parallel pennels tc parallel pennels and germs of quarters to germs of
quarters. Hence ¥ defines an automorphism ¥_ of PG(4) in the obvious way.
There remains to show that, if v is the identity map, then ¥ is the
identity map. But if‘%)is the identity map, then ¥ must stabilize every
apartment. But every vertex of A iz the intersection of four apartments

{as in proposition 4). Hence every vertex is fixed and ¥ is the identity
map. Q.8.D.

If ve Aut(a), then we denote by ¥ the unigue automorphism of PG(A} defined

as in the above proof.

THEOREM 6. Suppose #eAut{PG(A)), then the following statements are

equivalent.
{i) There exists ¥ € Aut{a) such that ¥ s,
(ii) For all s € Ve(a), there exists s*e Ve{A) such that
uS(P,Q) = us*(Pw,Qw), for all points P and § of PG(4).
(ii') TFor all se Vela), there exists s*e Ve{a) such that
u_(L,) = u_ (t",1"), for all lines L and M of PG(a).
{iii) There exist s,s*& Ve(a) such that uS(P,Q) = us*(Pw,Qw),
for all points P and @ of PG(A).
(1ii') There exist s,s"eVe(s) such that u_(L,M) = us*(L$,Mw),
for all lines L and M of PG(A).
In that case, ¥{g) = g* and conseguently if s = s(Pl,PZ,P3,P4), for some
. B oo Vb
points Pl’Pg’Ps’P4 of PG(A), then s* = s(Pl,PZ,PS,P4 .

PROOF. (i} = (ii). Evidently, since an automorphism of A preserves the

distance.
(ii) = (iii). Trivial.

(iii)=>(i). Let s,s"%g Ve(A) be as in the statement (iii).
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n . . =] .
Suppose that P is an arbitrary point of Vn. We define (Pn)‘ij as follows.

Let p be any pennel through Pr1 with source s. Let P be the trace at

3
infinity of p and let (PH)W be the n~trace of p* in Vi , where p* is the

unique pennel with source s* having P‘]J as trace at infinity. A similar
definition holds for (L™)' with L"e L(Vi). We show that this definition
is independent of the pennel p. So suppose p' is another pennel with
source s containing Pn. Suppose P' is the trace at infinity of p'. Then

uS(P,P‘) > n. Hence by assumption, us%(P$,P‘m) > n and hence the n-trace

v
of p'* €& Pe(a,s*) (having PV as trace at infinity) is exactly (P™)*. Now

W LS

by lemma 4 or its dual, u (LY,M¥) = inf{sup{us*(P¢,Qm) | o¥z ¥y | p¥1 LYy

o

. . kS
= 1nf{sup{us(P,Q) lQiM | PILY = uS(L,M). Hence also (L") is well
defined. Suppose P 1 " in V:. By lemma 4, we can choose pennels p,bt €

Pe(A,s) containing resp. Pn and Ln and being incident in Vs. Hence their

W
respective traces at infinity P and 1 are incident in PG(A), and so (Pn)

4%
ig incident with (Ln)IP in Vi . Hence ¥ is an isomorphism from Vi onto

#*
Vi or its dual. From the reconstruction of A from the nth floors in

[11], it follows easily that v extends to all vertices of A (since they

£
are all defined in terms of points and lines of Vi, resp. Vi ) and

preserves adjacency, hence ¥ becomes an automorphism of A. By the
definition of ¥, clearly Y¥_=y.

Similarly {and dually) one shows (i) =% (ii')=s (iii')=» (i). Q.E.D.

DEFINITION. Suppose ¥& Aut(PG{d)), s,s*e Ve(4) and ne N. Then we say

#*
that ¥ induces an isomorphism ¥ : vi + vi if the map ¥, defined as in

the proof above, is well-defined on Vi and we set W/Vi = $n.

COROLLARY 1. Let be Ve(A) and suppose Ve Aut(PG{A)), then ¥ induces an
b
automorphism in Vn for all ne™ if and only if ¥ preserves the partial

valuation map u_ on the pairs of points if and only if ¥ preserves the

b

partial wvaluation u_ on pairs of lines.

b
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PROOF. Setting s=s* in the proof of theorsm 6, the result follows directly

from that proof. Q.E.D.

4, PERSPECTIVITIES OF PG(A).

b b
DEFINITIONS. Let beVe(A). Suppose ple P(Vn), Lne.L(Vn), then we call
. ) b n._n A c s . n . .

an automorphism u of Vn a (P,L )-perspectivity, if it fixes L pointwise
and if it stabilizes all lines through P, 1fP" T Ln, then dn is aliso

n n . n n . . . .
called a (P ,L }-elation. If P and L are neighbouring, but not incident,
then o is alsoe called a central quasi elation. If p" and L7 are not
neighbouring, then an is also called a (Pn,Ln)—homology. Similiar definitions
hold in projective planes, replacing "neighbouring" by "incident" (so no
central quasi elations are defined in projective planes}. Suppose now
Pn,Qg,Q?éP(VE), L"e L(VE) with QI; and L" (resp. P7} not neighbouring
(resp. not in the same neighbourhood),i=0,1 and Pn,Qg,Qi collinear. If

)

for all such pairs (QE,Q?} and for fixed Pn,Ln, there exists a (Pn,Ln

perspectivity mapping Qg to Qz, then Vg is said to be (Pn,Ln)—transitive.

Similar definition again for projective planes. Note that these definitions
. b . .

are standard ones in the literature, thinking of Vn as a projective

Hjelmslev plane of level n.

s

n n s} .
PROPOSITION 10, Let b €Ve(A). Suppose P €P(V ), L E.L(Vn) and @ is a

n
n n n n b . n _n
(P ,Ln)—perspectivity mapping QO to Ql, QiEiP(Vn), i=0,1. If ub(Qi,P ) =0
n _n . A . n n
= ub(Qi’L ), i=0,1, then a_is completely determined by un(QO)=Ql.

PROOF. This is completely similar to the projective plane case (ssze e.g.

Hughes-Piper [ 7 ]). Q.E.D

LEMMA 6. Suppose o€ Aut{PG(a)) is a (P,L)-elation for some point-line
pair (P,L). Suppose there exist se& Ve{A) and a peoint § of PG(A) such

that uS(Q,L) = uS(Qu,L) = 0. Then @ preserves the partial valuation U



22

on pairs of points.

PROO¥. Let Ql and Q2 be two arbitrary points of PG(A). We have to show

(o) (33 . . . -
that us(Ql’QE) = uS(Ql,QE). There are several possibilities now.

(1l). Suppose us(Ql,L) = uS(QE,L) = 0. We coordinatize PG(A) with respect
to the non-degenerate quadrangle (Q,X,Y,E) by a local PTR (R,T,v), where

0=Q , Y=P , X I L and X and E are chosen such that (ni(o),nf(x),nS(Y),H?(E))

1
is non-degenerate in Vi {this is possible since uS(Q,L) = 0 and Vi is a
non-degenerate projective plane). As a consequence of proposition 5, s =
+
s(0,X,Y,E). Suppose Ql a (xl,yl) and Q2 = (xz,yg), then xl,xg,yl,yaé RO

(follows from the definition of v in [13], but can also be gotten by
theorem 3 and lemmz 4)., By theorem 3, Q& = (0,q) with qE.HS. Now one can
check that (xi,yi)“ = (x.,T{y,,1,q)), i=1,2 and since v(T(y,,1,a),T(y,,1,q))
= v(yl,y2) by (v5) and (v9), the result follows from v(T(yi,l,q)) > 0 and

theorem 3.

> M = =
(2). Suppose uS(Ql,L)>O and us(QE’L) 0 ; uS(Ql,P) us(Qg,P} 0, We
now ccoordinatize PG(A) with respect to the quadrangle (and we forget the

notation of (1)) (0,X,Y,E) by a local PTR (R,T,v), where Y=P , ¥=Q, 0 I L
s
(

and @ and E are such that (Hl

0),H?(X),HT(Y),HT(E)) is non-degenerate in
Vi. Again we have s = s(0,X,Y,E). Suppose Qi = (xi,yi), i=1,2. By
theorem 3, V(xi)>0 and v(yi);p, i=1,2. Also Q" = (a) with v(g)20, From

now on, we assume throughout this proof i=1,2. One can easily check that

(Xi!yi)u = (Xi,T(xi’q’yi))

(xi,y;),

(epoy)” = (e T auy,)) =2 Gouy),

where f(a,m,k) = h is defined as the unique b& R such that T(m,a,b) = k
{(well defined by (D) for all a,m,k€ R). By (v3) and (v1l), v(yi}ip and

v(y)>0. Hence by theorem 3,

u (xl,yl),(xz,yz)) = inf{v(xl,xg),V(yl,yg)},

o
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o o s I *
u (g oy ) ,(xz,yg) ) = 1nf{v{x1,x2),V(yl,y2)}-
Now V(y{:yg):; inf{v(yi,y),v(y,yg)} and by resp. (v8) and (v6),

vyl = V(xl.xg) + v(q},

V(y,yg) = V(yl,yg)-

There are two possibilities.

(i) 1If v(yl,yg) < v(xl,xe) + v(qg), then by EVS}, v(yi,yg} = V(yl,ye)

and the result follows.

- > ’ > d
(ii) If v(yl,y2)== v(xl,xz) + vi(q), then v(yl,yg) m=v(x1,x2) an

[ (81
,xg) and henCELE(Ql’Qz) = vix_,x_ ) = us(Ql’QE)'

TS
viyyeyg) 2 vix 17 %2

1

(3). Suppose uS(Ql,P}>O and US(QE’P)>O' We recoordinatize PG{A) (and
forget the notation above) by a local PTR (R,T,v) with respect to the
quadrangle (0,X,Y,E), where now 0=P , X=Q , Y I L and Y and E are such
s s, 8 s ) , g
that (Hl(O),Hl(X),Hl(Y),Hl(E)) is a non-degenerate quadrangle in Vl'
Again we have s = 5(0,X,Y,E). Suppose Qi = (xi,yi), then by theorem 3,
v(xi)>0 and v(yi)>0. We also have Qu = (q,0) with v(q)<0. One can easily
check that both Ql and Qg are not incident with XY and that the first

coordinate of (x,y)" is independent of y, for all x,y€ R, We again

consider some possibilities.

: i o *oart i
(3.I) Suppose first XirO and yi#O. Let (Xi’yi) (xi,yi). Since

(xi'yi)’(xi’yi)d and (0,0) are collinear, there exists m. €& R, such that

0 (1.1)

T(mi,xi,yi)

0 (2.1i)

o oxrn
T(m ,x¥,v%)
o .
Let [O,yi] = {m;,yi] with m¥€ R, then

T(m;,q,o) = ;Yi (3.1)

# 3 I — j
T(mi,xi,yi) =¥ (4.1)

Similarly considering (xg,y ) and (xz,yl)OL = (x;,y{*), we obtain ré& R such

1
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that

T(r,x = 0 {5)

0¥y
T(r,xg,y{*) =0 (6)

and since (xg,yl) I [O,yl], we also have

T(m{,xg,yi*) =¥, (7)
By (1.1},{(5) and (v1l1), v(r,ml) = V(xl'XE) + v(ml) - v(xg). (8)
By (4.1),(7) and (v8), v(y{,yg} = v(xi,xg} + v(mi). (9)
By (3.1} and (vl12), v(yi) = v(mg) + v(q). (10.1i)
By (1.i),(2.1) and (vl12), v(xi) - v(yi) = v(xi} - v(yE). (11.1)

By (1.i),(3.i) and (vl2), v(mi) + v(ki) = v(yi) = V(mi) + v(q)

< v(mi). Since v(xi) > 0, v(mi) < v(mi) and hence by {v3}, v(mi)

= v(mi,m;), S0 v(mi,mi) + v(xi) = v(yi). (12,1i)
By (2.i),(4.i) and (v8), v{mi,mi) + v(x;) = v(yi) and by (12.i),

v(xi) = v(x?). Hence by (11.1), v(yi) = v(y;). (13.i)
By (2.2),(6) and (v8), v(r,mg} = v(yg,yg*) - v(xg). (14)
By (1.2),(5) and (v9), v(yl,yg} = v(r,mz) + v{xz) and so by (13.1)

— L
and (14}, viy,,y,) = v(y8.y3%). (18)
By {(2.1),(4.1),(8),(7}) and (V16), v{ml,r) = v(ml,m§)+v(xf,xg)uv(x§)
and hence by (8) and (12.1), v(xi,xg) = v(xi,xz). (16}

#* +* > 'l It e LI 4#* N i . 3 ko i =
Now v(yl,y2);ﬁ inflv(yl,yi*),viyi*,y5)t. By (9) and (12.1), viyi vy )

V(x*

l,xz) + v(yl) - v(g}. So by (15), v(y%,yz) i;inf{v(yl,yz), V(XI’XE)+

1

v(yl)—v(q)}. There are two possibilities.

(3.7.1) If v(yl,ya) < V(XI’XE)+V(Y1)_V(Q)’ then V(yi,yg) = v(ylyyz)
by (v3) and the result follows by theorem 3.

{3.I.2) If v(yl,yz) ;,V(X*,X*)+v(yl}-v(q), then, since v(y1}>0 and

12

# it} = # arEY) >

v(q)<0, v(yl,yz) > v(xl,xz) v(xl,xg) (by (16)} and also v(yl,yg) >
[ 1t a* —_ > 4 *) = . = =
v(xl,x2)+v(yl) v(q) v(xl,xg) v(xl,xg} So us(Ql’Qz) v(xl,xg)
o [}
i k3 —

v(xl,xz) = us(Ql'QE)'
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o , .
(3.I1) Suppose X, = 0 and X5 Y 11Y 5 £ 0. Let (xz,yg} = Lxg,yg) as in

(3.I). We still have v(xz) = v(xEJ and we can assume the equalities (1.2},

(2.2),(3.2) and (4.2) of (3.I). We have

H

u (Q_,Q.) = us((O,yl),(xz,yz)) inf{v(xz},v(yl,yz)},

AW =N

(Q.,Q.) = us((O.yl),(xg,y*))

5 inf{v(xz),v(yl,yg)}.

]
o

1

s 1

< = .
(3.1I.1) Suppose v(yl,yz) £ v(xz), then us(Ql’QZ) v(yl,yz) Now by

(3.2) and (vi2), v(m;) = v(y,)-v(g) > 0 and hence by (4.2) and (V12),

2

V(yg,yg) > V(xg) = v(xg) z V(yz’yz)' So by (v3), V(yl,yg) = V(yl,yg)
v
1

, (64
vix,) = v(xg} and thus u_(Q ,02} = V(yi,yg) = V(yl,ye) = US(Ql’QQ)'

2

. > ( = . i
(3.11.2) suppose v(yl,yz) v(xa), then uSLQl,QE) v(xz) We still

H

)y > 3 ’ L = ¥*
have v(yg,yz) v(xg) v[xg), hence by (L.2), v(yl,yg) v(xg) v(xz)

and uS(Qi,Q;) = V(KE) V(Xz) = us(Ql'QE)'

O
— = — W ar =
{3.III) Suppose X 7, C. Let (xa,yz) (xg,y ). If X, 0, then the

result is trivial. If x2#0, then as in (3.1), v(x2)=v(x5) and v(y2)=v(y§).

But then u_(0Q,,0,) = infiv(x,),v(y,)} = inflv(x%),v(y5)} = us(Qz,Q;).

o
(3.1v) If xl:xg—O, then Qi = Qi,

{3.V) Suppose x1=y220. Let (xz,O)ﬂ = (XE,O). It x2=0, the assertion

is trivial, so suppose XE#O. Considering (xg,xg)u = (xg,xg*), for some

):V(XE). Hence uS(Ql'QZ)

XE*’ we can use the results of (3.I) and getx v(x2

a . . _ 8 o4
= 1nf{v(x2),v(y1)} = 1nf{v(xé),v(yl)} = uS(Ql,QZ)-

y¥_,¥ #0, then we apply the same trick as in

(3.v1I) If y1=0 and Xl 2Y o

) = vixt,xg) and v(y,) = v(yg), where (x,,0)" = (x¥,0)

(3.V) and get v(xl,x2 1 5 3

and (Xg’yg)& = {xz,yg). The result follows immediately.

o
—_ —_ 1 — I+ Eid —
(3.VII) If yl_yg_O, then again v(xl,xz) = v(xl,xg), where (xi,O) =
(x;,O), and the result follows.

(3.VIII) All other cases can be obtained by interchanging the rdles

of Ql and Q2.
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il
o

, , . o
{4). Suppose us(Ql,P) = 0 and us(QE’P) > 0, By (1) and (2), us(Ql,P)

s} a3 ]
and by (3), us(QE'P) > (¢, hence us(Ql’Q2) =0 = us(Ql’QZ) by lemma 3.

a
0 and uS(QE,L) > 0. By (1), uS(Ql,L) = 0 and by

(5). Suppose us(Ql,L)

(s . s 3
{(2) and (3), uS(Qg,L) > 0, hence uS(Ql,QE) = 0 = us(Ql’QE) by lemmas 3 and 5.

(6). All other cases can be obtained by interchanging Ql and Q2 in (4)

or (5). 0.E.D

THECREM 7. If o€ Aut(PG(a)) is a (P,L)-elation for some incident point-
line pair (p,L) in PG(A), there exists Ve Aut(A) such that V_su and V has

at least one fixed vertex in A.

PROOF. Suppose @ is a point of PG(A) not incident with L. We coordinatize
PG(A) with respect to a non-degenerate quadrangle {0,X,Y,E) by a local PTR
(R,T,v), where we choose 0=Q, (C,1) = Q&, ¥=P and L=XY. By

theorem 3, u_(Q,L) = uS(Q“,L) = 0 for s=s(0,X,Y,E). The result follows

from lemma 6 and theorem 8. Q.E.D.

COROLLARY 2, Suppose V& Aut(4) and V_ is a (P,L)-elation of PG(A) for
some incident peint-line pair (P,L) of PG(A)., Then V acts type-preserving.
For any positive integer n and any vertex s fixed by ¥, Vv induces a

(15(P),n%(L))—elation in V.
n n n

PROOF. The last assertion follows from the reconstruction of V fronlvm as
in the proof of theorem 6. Now, if s is such a fixed vertex, then {s,Hi(P),

BT(L)} is a fixed chamber and hence v acts type-preserving on A. 0.E.D

LEMMA 7. Suppose X € Aut(PG(a)) is a (P,L)-homology for some non-incident
point-line pair (P,L) of PG(A). Let S:S(P,Pl,Pa,Q), where Pl and P2 are
both incident with L and 0 is such that s is well-defined. If s* =

A _ A .
s{P,Pl,PZ,Q ), then us(Ql,QZ) = us(Ql,QE), for all points Ql,Q2 of PG{A).
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PROOF. The proof is similar to that of lemma 6, using additionally
theorem 4 if s#s*. Since the proof is uninformative, we restrict
ourselves to show one particular case, which is representative for all
cases. We coordinatize PG(p) by a local PTR (R,T,v) (resp. (R*,T#*, v*))

with respect to (P,Pl,Pg,Q) {resp. (P,Pl,PZ,QA). We will always use

(R,T,v)~coordinates. So let Ql = (ql,qa), then, since Q@ = (1,1), there
exists g€ R such that T(qg,1,1) = 0 = T(q,ql,qg). By (v12), v{q)+v(1l) =

v(1l) (hence v(q) = 0) and v(q)+v(ql) = v(qg), hence v(ql) = v(qg). We

3 —_ A P * ik :
will assume V(ql) > 0. Suppose Qi = (Xi’yi) and Qi = (xi,yi), i=1,2 {and

throughout this proof we will always assume i=1,2), and uS(Ql,L) = US(QE'L)'
We show the assertion in this particular case. We already deduce v(xi) z

0 and v(yi) > 0. We now use the same notation bf and b? as in theorem 4.

By that theorem, v(x,y) - v*(bi(x),bf(y)) is a constant for variable x,y e R.
Putting x=q, and y=0, we get v(ql)mv*(l) = v(ql) = V(x,y)—v*(bi(x),bi(y)),
for all x,y € R. Similarly v(qz) = v(x,y)—v*(b§(x),b?(y)), for all x,yeR.

S0 we must show

inf{v(xl,xg),v(yl,yz)} = inf{v*(bi(xf).bf(xg)},v*(b?(yi),b¥(y§))}

It

inf{v(x{,x*)—V(ql),V(YX,YE)—V(QQ)}-

2
We will actually show v(xl,xz) = v(xI,xS)—v(ql) and the same equality for
yl,y2 will follow similarly. Note first that x; is independent on yi, 80
A
(x,,0)* )
i

= (XE,O) and (0,1 = (O'QZ)' since similarly, the second

coordinate of (x,y)l is independent on %, for all x,y&€ R. Hence there

exists miﬁ R such that

T(m,,x,,0) =1 {(1.1i)
i’
4 —_ 3
T(mi,xi,O) = q, (2.1)
By (1.1),(1.2) and {v1l), v(xl,xz) = v(ml,m2)+v(x2)—v(ml) and by (2.1},
[~ 3 i* . (it Y .. .
(2.2) and (vi11), vtxl,xg) = v(ml,m2)+vtx2) v(ml). Hence, eliminating

— kg i3 - ki
v(ml,mz), we get v(xl,xz) = v(xl,xé)+v(x2) v(xé). By (1.2),{(2.2) and (v12),

- . it = = = e .
v(xg) = v(mg) and v(xg) v(m2)+v(q2) v(m2)+v(ql) Hence the result

fellows. Q.E.D
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THEOREM 8. If r€ AulPG(A)) is a (PF,L)-homology for socme non-incident

point-line pair (P,L) of PG(4), then there exists A& Aut(d) such that &_=i.

PROOF, This follows directly from lemma 7 and theorem 6. Q.E.D

COROLLARY 3. Suppose he Aut(d) and A_ is a (P,L)~homology of PG(4) for
some non-—incident point-line pair (P,L) of PG(A). For every positive
integer n and every vertex s fixed by A, A induces a (Hi(P},Hi(L))—

I . s
perspectivity in Vn'

PRCOOF, BSimilarly to coroliary 2. RN.E.D,

In section 6, we will see that & (where &_ is a homology) does not
necessarily fix any vertex and that & is not necessarily type-preserving.

We will construct examples of this in section 7.

DEFINITION. Suppose ¢& Aut(PG(A)). We say that ¢ is induced by a PTR-
automorphism if there exists a coordinatizing PTR (R,T) for PG(A) and a
PTR—automorphism p such that (x,y)¢ = (x°,v%), (x)¢ = (x"), (m)¢ = (=},

[m,k1" = [0°, k1, [K1% = [°], [=]® = [=] for all x,y,m,keR. An

automorphism of (R,T) is a permutation of R preserving T.

THEOREM 9. Suppose ¢e Aut{PG(A)) is induced by a PTR-automorphism p
R + R for some local PTR (R,T,v). There exists ¢ & Aut(4) such that o_=z¢

if and only if p preserves the valiluation.

PROOF, If p preserves the valuation, then the result follows from
theorems 3 and 6. Suppose now there exists ¢€ Aut(A} such that ¢WE¢.
Consider the quadrangle (&,%,Y,E) {see 2.1.1). Since all of the four
points ¢,X,Y,E are fixed by ¢, the vertex s(0,X,Y,E) is fixed by &.

Hence ¢ preserves the partial valuation u by theorem 6. It is

s(0,X,Y,E)

now straight forward to check (in view of theorem 3) that p preserves

the valuation v. Q.E.D.
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H
5. PERSPECTIVITIES TN THE nT FLOORS OF A.

We now relate the (P,L)-transitivity of PG(A) to the (Pn,Ln)utransitivity

of the nth floors of A.

DEFINITIONS. Suppose bé Ve(A) and nem. If LT,M"e L(VE}, then we call
VE (M, 1Y) —transitive if v: is (P",1")—transitive for all P" I M%. A
similar definition helds in PG(A) {in fact the classical definition, see
Hughes—Piper [ 7]). If VE is (L™, L")—transitive, then 1" is called a
translation line and VE is called a translation floor. Dually, one can
define translation point and dual translation floor. A division ring floor
is an nth floor having a translation line L"and a translation point P T L.
If every line of VE is a translation line, then Vi ig called a Moufang

b

floor. If Vn is (Pn,Ln)—transitive for all points P and all lines L' of

Vg, then V: is called Desarguesian.
. th . - . ) -
Since the n floor of A with basement b is a projective Hjelmslev plane

of level n, we have the following well known resuls.

b
THEOREM 10 (Dugas [ 5]). If be Ve(d), nem* , vﬁ is Moufang and v, is

a finite projective plane not of order 2, then Vg is Desarguesian.

We also have

PROPOSITION 11 (Van Maldeghem [12]). If & is locally finite and PG(A) is

Moufang, then PG(A) is Desarguesian and hence A& is classical.

The effect of (P,L)~transitivity of PG(4A) on the floors.

PROPOSITION 12, Suppose PG(4) is {(P,L)-transitive and let be Ve(ad) and
b, b b, s

ne W*,  Then Vn is (Hn(P),En(L))—tran51t1ve.

PROOF. If P I L, the result follows from lemmas 4,6 and theorem 6. So
b
suppose P I L. First assume ub(P,L) = 0. Let QE,QT&&P(Vn) be such that

n n n _b . n _n n._n R
QD,Ql and P :HH(P) are collinear and ub(Qi,P ) = ub(Qi,L ) =0, i=0,1.



30

Let PT,P ELP(VE) be incident with Ln:HE(L) and such that ub(Pi,Qn) -

- N3

n
ub(Pz,Qn = 0, where Qn is the intersection point of Qgpn and Ln, well

defined by proposition 6. By lemma 4, there exist points Pl,PE,QO,Ql of
PG(A) such that Pl and P2 are incident with L; QO,Ql and P are collinear
b n b n b n b n
d T°(P_)=P ]! =P , 1 = It =R . C tily b =
an n( l) 1 n(PZ) 5 n(QO) Qs n(Ql) Q onsequently

s(P,P ’pE’QO) = s(P,P_,P_,0.). Let » be the (P,L)-homology of PG(A)

1 121

napping QO to Ql and let f€Aut(A) be such that A_=X., By theorem 6, bA = h
and the result follows from corollary 3 (and the construction of A in the
proof of theorem 6). Now suppose ub(P,L) > 0, then the result will follow
by an analogous argument if we show that, for every two points QO,Ql in
PG(4) satisfying ub(QO,L) = ub(Ql,L) = 0 and QG,QI,P collinear, the (P,L)-
homology in PG(A) mapping QO to Ql induces an automorphism of A fixing b.
Well, since ub(QO,L) = 0, one can find Pl I L and P2 I L and a point E such
that b = S(QO’Pl’Pg'E)' Let p be the (P,L}-homology of PG(4) mapping QO to

@,+ Then it is a consequence of propositions 5 and 6 (for n=*) and the

1

) " uo_ _ H
construction of E" from QO = Ql that b = S(Ql’Pl'PE'E ). 0.E.D.

COROLLARY 4. Suppose b€ Ve(4) and ne IN. If PG(2) is a translation (resp.
dual translation, division ring, Mouf'ang, Desarguesian) plane, then Vn is
a translation (resp. dual translation, division ring, Moufang, Desargussian)

floor.

PROOF. Follows directly from proposition 1i2. Q.5.D.
The effect of (Pn,Ln)—transitivity of floors on PG(A).

PROPOSITION 13. Suppose (P,L) is some point-line pair in PG(A) and be Ve{f).

Suppose QO and Ql are two points collinear with P and ub(Qi,P) = ub(Qi’L) = 0,

b b b b b
_ . : X 1 0 o . )
i=0,1 Suppose mn Vn - Vn is a ( n(P), n(L)) perspectivity mapping Bn(QO)

to HE(Ql), for all neN*. Then there exists a (P,L)-perspectivity Y& Aut{PG(a))
mapping QO to Ql.

n+1l " Hb
+1,H(X 1) = m»l,n(lp

o b 1
PROOF. By proposition 10, $n(nn (I )), for all

n+l
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b . .
¥ le P(VEH)U L(V_ ). The result follows by taking the inverse limit.

1
Q.E.D.
THEOREM 1l1. Suppose {P,L) is an incident point-line pair of PG(A) and let
p (resp. &) be any pennel having P (resp. L) as trace at infinity. If Vg
is {HE(P),HE(L))—transitive for all neM* and all b on p (resp. &), then

PG{A} is (P,L)-%transitive.

PROOF. Let bo be the source of p. Choose X I L, G and E such that bO =
s(0,X,P,E} and denote by I the apartment of A corresponding to the triangle
{0,X,P} in PG{A). Let O0* I QP be arbitrary. If we show that there exists

a (P,L)-elation mapping O to 0%, then we are done. If Uy (g*,L) = 0, then

]
the result follows from proposition 13. Suppeose now Uy (g*,L) > 0. By
0
“theorems 3 and 4, there exists a vertex b on p such that ub(O*,L) =0
. . 1-]k 1=k 1 .
(namely, b has barycentric coordinates (k _,1_,m_) = ( {, , +2k) with
b b b 0700 3 3 3
respect to (b ;I O(O),II O(X),H O(P)) in , where k = u_ (0*,L) = u (0¥%,P)).
0’1 1 1 bo bo
Hence, the result again follows from proposition 13. Dually for L and &,
R.E.D.

COROLLARY 5, Suppose % (resp. p) is a pennel of A with trace at infinity
. . b b . ,
a line L (resp. point P) of PG(aA). If Hn(L) (resp. Hn(P)) is a translation
. b
line (resp. point) of Vn for all nelN* and for all vertices b on & (resp. p),

then L (resp. P) is a translation line (resp. point) of PG{A).

COROLLARY 6. * Suppose % {(resp. p) is a pennel of A with trace at infinity
a line L (resp. point P) of PG(A). Then PG(A) is a translation plane (resp.
duzl translation plane) with translation line L (resp. point P) if and only
if VE is a translation floor (resp. dual translation floor) with translation

b .
line Hn(L) (resp. point HE(P}) for all b on & {(resp. p) and all ne N*,

* Suppose Q is a guarter with trace at infinity {P,L}. Then
PG(2) is a division ring plane with translation line L and translation point
. 3 . b
P if and only if VE is a division ring floor with translation line Hn(L)

and translation peint HE{P) for all b on the bounding pennels of Q@ and all ne N¥,
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* Buppose p is an arbitrary pennel of 4. Then PG(A) is

b
Moufang if and only if Vn is Moufang for all b on p and all ne I*,

FROOF. The first two statements follow directly from corollary 5. We show
now the last assertion. If PG(A} is Moufang, then VE is Moufang for all
vertices b by corolliary 4. Suppose now VE is Moufang for all b on p and
all nelN*, By corollary 5, the trace at infinity X of pis a translation
line or a translation point. But by proposition 13, Aut(PG(A)} contains
elations not fixing X. Hence PG(A) has at least two translation lines

or points and therefore it is Moufang (see Hughes—Piper [ 7 ],§VI,6).
R.E.D.

It is an open question wether VE Moufang for all ne ilN* and fixed be Ve(a)

implies PG{A) Moufang.

The following result is well known although we could not find a precise
reference, One can prove it by taking the inverse limit of local rings

coordinatizing projective Hjelmslev planes.

THEOREM 12, GBSuppose be Ve(4). Then PG(4) is Desarguesian if and only if

VE i5 Desarguesian for all ne *,

COROLLARY 7. Suppose be Ve(A), A is locally finite and the residues do

net have order 2. If- VE is Moufang for all ne N*, then PG(4) is Desarguesian.

6. A THEOREM OF FIXED VERTICES.

THEOREM 13. (1). BSuppose V& Aut(4) with V_ an elation of PG(A). Tor
every ne lN*, there exists a vertex beg Ve{A) such that all vertices at

distance at most n from b are fixed by V.

(2). Suppose ¢eAut(d), ® is induced by a PTR-automorphism
p : (R,T,v) + (R,T,v) and (R,T,v) coordinatizes PG(A4) with respect to
(0,X,Y,E). Then ® fixes all vertices of the apartments of A corresponding

to every triangle in the set {0,X,Y,E,(1,0),(0,1),(1)}.
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(3). There exists a building I' and an automorphism A (resp.
A%*) of T such that A (resp. £*) is a homology in PG(I') and A has (resp.

A* has no) fixed vertices in T.

(1),
PROOF. VY Suppose v is a (P,L)-elation, P I L and ne[N*., Choose any

apartment £ in A such that the trace at infinity of ¥ contains P and L.
Suppose I contains furthermore the points 0 I L and X I L, X#P. One can
choose a point E such that uS(O,OVm) =n for s = s(0,X,P,E)& £ (cp.

theorem 4). But by lemma 6, V_ preserves uS and by theorem 6, sv=s. By
corollary 2 and proposition 10, Vv acts trivially on V? for all j £ n. Hence
vV fixes all vertices of A corresponding to V?, J<n. But these are exactly

the vertices at distance j<n from s (see the construction of A [17]).

(2). We show e.g. ¢ fixes all vertices of I, where Zm is
determined by {0,X,Y}, pointwise. By theorem 6, ¢ fixes s(0,X,Y,E) in I,
Hence also all pennels o,x,y with trace at infinity resp. 0,X,Y and

source s{(0,X,Y,E} are fixed pointwise. Hence I is Tixed pointwise.

{3). We consider any classical building I'. Suppose PG(T) is
coordinatized by a local field F,+,.,v with respect to the quadrangle
{(0,X,Y,E). Let A_ be the (0C,XY)-homology of PG(I') mapping (1,1) to (t,t),
with v(t) = 0, t#l. Then s(0,X,Y,E) = s(O,X,Y,EAw) and hence by theorem 6,
s{(0,X,Y,E) is a fixed vertex. Let A* he the (0,XY)~homology of PG(T)

mapping (1,1) to (t*,t*), with v(t*) > 0., Since u (0, (t*,t*)) > 0,

s(0,X,Y,E)
s(0,X,Y,E) £ S(O,X,Y,Eﬂg), and hence s(0,X,Y,E) is not fixed. Suppose some
vertex b is fixed by A. Then A induces a (HE(P),HZ(L))—perspectivity in
VE, for all ne W*, This perspectivity fixes HE(X) and HE(L) and hence A
fixes the quarter ¢ with source b and trace at infinity {X,L}. If we denote
by I the apartment of I' determined by {0,X,Y} in PG(T), then clearly A
stabilizes E. But since In{Q contains a quarter fixed by A, A must

fix ¥ pointwise, contradicting the fact that A does not fix 2(0,X,Y,E).

Q.E.D.



7. A CLASS OF TRIANGLE BUILDINGS WITH NON-CLASSICAL RESIDUES
AND VERTEX-TRANSITIVE AUTOMORPHISM GROUP.

DEFINITION. In this section, we denote by (R,+,.) a fixed division ring

(finite or infinite). We define the set of formal Laurent series over R

h=)

as R((t)) = {.Za.tl | ke Z, a.€ R and a, £0}.
i=k i i k

We extend the addition and multiplication of R to R((%}) in the usual way

[=:] o

by i ath s 2 bt - 2 _ (a.+b )t~
1zkl i i=k i 1:1nf{k1,k2} i i

(where a.=0 if i<k, and b,=0 if i<k ) and
i 1 i 2

R _ o i-k .
7_2 ath . Zk b " = '—ft:m (25%ab,_ Ot
=5y =g TR TR IR 3

Defining V(Z;?aitl)zk {for ak#O) and v(a-b)=v(a,b),for all a,be R{(%)), one
easily verifies that (R((t)),+,.,v) is a local division ring., We denote

the corresponding triangle building by A(R).

THEOREM 14. Aut(a{R)) acts vertex-transitivily on A(R).

PROGF. We coordinatize PG{A(R}) by means of R((t)) with respect to

some quadrangle (0,X,Y,T) and denote & = s{(0,X,Y,E)e Ve(A(R))., Let be Ve(A{R))
be arbitrary. We show that there ewists Y€ Aut(A(R)) such that h‘P = S,

Note that L=XY is a translation line for PG(A(R)). Suppose ﬁbﬁ Pe{A(R),b)

has L as trace at infinity. Considering any apartment containing Lh, we

obtain a wall W containing & Suppose {P,L} is the trace at infinity of

b
W. Let (Wl)m be the elation (fixing L pointwise) mapping P to 0. Then

i
W'l is a wall lying in some apartment I' where L! is determined by {0,Y,P'},
P' I L (by Tits [10],proposition 4 and 17.3). Hence b is mapped by Wl to

a vertex bl lying in I'. Since R{(t)) is a division ring, there exists a

(Y,0Y)-elation (‘{'2)m mapping P' to X. Hence W2 maps L' to the apartment

I, where E_ is determined by {0,X,Y}, and it maps bl to a vertex b2 in L.

l+k+m 1+k—-2m l—2k+m)

Suppose b2 has barycentric coordinates ( 3 3 I n I with
respect to (s;Hi(O},Hi(X),Hi(Y)) (one easily verifies that every vertex
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of Z has barycentric ccordinates of that form). Consider the following

automorphism (‘?a)m of PG(A(R)), given by the action on the coordinates.

R wlr —m

(x,y) + (t x,t y),
;L ke—

(x) =+ (£ "x},

(=) & (=),
[x,y] =+ [tk_mx,t_my},
[x] - [t7%%],

This is well defined since multiplication by a power of t is commutative

and associative in R((t)). Now, WS is well defined since (‘1‘3)co is the

Jjuxtaposition of a (0,XY)-homology and a (X,0Y)-homology. Note that (‘i’s)m
L kom k . m . .
maps (t ,t ) to E=(1,1). By theorem 4, s(0,X,Y,(t ,t )) = b2 {(since with

the notation of theorem 4, the barycentric coordinates of s(O,X,Y,(tk,tm))

must satisfy mo—lo=—k and 1 =-m because recoordinatizing PG{A(R)) with

00
respect to (O,X,Y,(tk,tm)), the new point (1,0) has old coordinates (tk,o)
and the new point (0,1) has old coordinates (D,tm)). But (‘4’3)m fixes Q,X,

Y, hence ?3 maps b2 to s. Q.E.D.

REMARK. The map ¥_, in the above proof is a concrete example of an auto-

3
morphism not preserving the types of the vertices, if typA(ba)#typA(s).

COROLLARY 8. Every residue in 4(R} is isomorphic to the projective plane

coordinatized by the division ring (R,+,.).

PROOF, The projective plane Vi (where sé Ve(A(R)) is as above) is

coordinatized by (R,+,.) by [11],2.7.2. The result follows from theorem 14,
Q.E.D.
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