
Graphs, defined by Weyl distance or incidence, that
determine a vector space

Anneleen De Schepper1 Hendrik Van Maldeghem2

1,2 Department of Mathematics,
Ghent University,

Krijgslaan 281-S22, B-9000 Ghent,
BELGIUM

1 Anneleen.DeSchepper@UGent.be
2 Hendrik.VanMaldeghem@UGent.be

2 Corresponding author, tel. +32 9 264 49 11

Abstract

We study to which extent the family of pairs of subspaces of a vector space
related to each other via intersection properties determines the vector space. In
another language, we study to which extent the family of vertices of the building
of a projective space related to each other via several natural respective conditions
involving the Weyl distance and incidence determines the building. These results
can be seen as generalizations of and variations on the Fundamental Theorem of
Projective Geometry.
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1 Introduction

Let PG(n,L) be an n-dimensional projective space over the skew field L, i.e., the geom-
etry of all nontrivial subspaces of an (n + 1)-dimensional vector space Vn+1(L) over L.
The Fundamental Theorem of Projective Geometry (see e.g. [5]) states that, in graph-
theoretical terms, every automorphism of the incidence graph of the point-line geometry
associated to PG(n,L), n ≥ 2, is induced by a semi-linear permutation of the underlying
vector space, or a duality (if n = 2). In other words, every permutation of the 1-spaces of
Vn+1(L) inducing a permutation of the 2-spaces of Vn+1(L) is induced by a vector space
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(anti)automorphism. In fact, all information of PG(n,L) is already contained in the graph
with the lines of PG(n,L), or equivalently, the 2-spaces of Vn+1(L), as vertices, where two
vertices are adjacent if the corresponding subspaces intersect nontrivially. This is the
collinearity graph of the line Grassmannian of the projective space. More generally, every
automorphism of the collinearity graph of any Grassmannian of PG(n,L) is induced by a
semi-linear permutation of the underlyin g vector space Vn+1(L), or a duality thereof, by
a fundamental result of Chow [6].

In the present paper, we generalize this by considering the subspaces of other arbitrary
dimensions. Since we will only use subspaces of Vn+1(L), and not the vectors themselves,
we prefer to work in the projective setting and hence use projective dimensions of the
subspaces (1-spaces of Vn+1(L) are points or 0-spaces of PG(n,L), 2-spaces of Vn+1(L) are
lines or 1-spaces of PG(n,L), 3-spaces of Vn+1(L) are planes or 2-spaces of PG(n,L), . . . ,
k-spaces of Vn+1(L) are (k−1)-spaces of PG(n,L), 0 ≤ k ≤ n+1; note that the 0-space of
Vn+1(L) is a −1-space of PG(n,L)). So we consider the bipartite graph Γni,j;k(L) of i- and
j-spaces of PG(n,L), where an i-space is adjacent to a j-space if their intersection is a
k-space, −1 ≤ k ≤ i ≤ j ≤ n. This is a metric generalization of the set-up in the previous
paragraph, because “intersecting in a k-space” is a well-defined Weyl di stance (a double
coset in the Weyl group, which is the symmetric group on n+ 1 letters) between i-spaces
and j-spaces, when PG(n,L) be viewed as a building, and its subspaces as vertices. From
the incidence geometric point of view, however, the general set-up is the graph Γni,j;≥k(L)
of i-spaces and j-spaces of PG(n,L), where an i-space is adjacent to a j-space if they
are both incident or equal to a common k-space. This means that their intersection has
dimension at least k, whence the notation.

We show that, if Γni,j;k(L) or Γni,j;≥k(L) are not trivial (meaning not complete bipartite,
nonempty, not a matching and not the complement of a matching), then they completely
determine the structure of PG(n,L). In particular, every automorphism is induced by a
semi-linear permutation of the underlying vector space, in some cases possibly a duality.
Moreover, we will see that, apart from obvious isomorphisms, all these graphs are pairwise
non-isomorphic, i.e., the values n, i, j, k and the skew field L are essentially determined
by the respective graphs (“essentially” here means “up to certain dualities” which will be
explained below).

The metric point of view fits into the framework of the classical Theorem of Beckman
and Quarles [3] which states that the preservation of one single distance guarantees an
isometry of the Euclidean plane, or more generally, the n-dimensional Euclidean space.
Here we show that the preservation of one single Weyl distance between vertices on a
building of type An guarantees an automorphism of the building. A similar result exists
for distances between chambers in any building [2]. For vertices, only partial results exist,
mainly treating the special case of largest distance (see below), or buildings in low rank
(see [7]).
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The main consequence concerns the graphs Γnj;k(L) and Γnj;≥k(L) of j-spaces of PG(n,L)
where two vertices are adjacent if they intersect in a k-space and if their intersection
contains a k-space, respectively. Indeed, since the (possibly extended) bipartite doubles
of these graphs are Γnj,j;k(L) and Γnj,j;≥k(L), respectively, every graph automorphism of
Γnj;k(L) or of Γnj;≥k(L) is induced by a semi-linear permutation or a duality of the un-
derlying vector space, as soon as these graphs are not trivial (meaning not empty and
not complete). For the graphs Γnj;≥k(L), this has been shown by Lim [9] with a beautiful
geometric argument. In fact, Lim considers adjacency preserving (in both directions) sur-
jections of the graphs. This slightly weaker hypothesis also suffices in our setting, but we
find it more convenient to work with bijections and afterwards d educe th is slightly more
general result, see Remark 3.17. We will not need to use Lim’s results and thus provide
an alternative approach to Lim’s theorem.

The proof in the case of Γni,j;≥k(L) uses the idea of a round-up triple introduced in [8],
where opposition is handled (and “opposition” is just the maximal Weyl distance, using
the “longest word”). In fact the idea of a round-up triple is a more conceptual way to
formulate Lim’s proof, and it allows to treat more general situations. But basically, Lim’s
proof and ours are very alike, when applied to Γnj;≥k(L). Our results can also be seen as
the completion of Lim’s results in the most general case.

But the method of round-up triples does not work anymore for the graphs Γni,j;k(L). This
is rather surprising since a similar idea for opposite chambers, see [1] carried over to
single Weyl distance between chambers, see [2]. For Γni,j;k(L), we have to use “round-up
quadruples”, which considerably complicates things, and excludes |L| = 2. Here, Lim’s
approach does not work anymore.

This brings us to the special case of finite L, where our results can be proved using the
classification of maximal subgroups of the symmetric and alternating groups in [10]. But
that proof does not give much insight into the problem, of course. In the finite case, we
will denote the graphs Γni,j;k(L) and Γni,j;≥k(L) by Γni,j;k(|L|) and Γni,j;≥k(|L|), respectively,
since a finite field is determined by its order.

Apart from the results of Lim and Chow mentioned above, another special case of our
results concerns the case Γni,j;−1(L) (or the bipartite complement Γni,j;≥0(L)). This has
been treated by Blunck and Havlicek [4]. We are not aware of other special cases in the
literature. However, for polar spaces, a lot of similar problems have been solved, but
thus far not in such a full generality as we do for projective spaces in the present paper
(see the references in [9]). This is our main motivation: settle the problem for projective
spaces and polar spaces in the most general way. In the present paper, we deal with the
projective spaces, and the analogue for polar spaces is work in progress.

This research is part of a larger programme to determine all situations for spherical
buildings [11] where the family of pairs of vertices at certain fixed Weyl distance, or
connected by an incidence condition, uniquely defines the building in question. Note
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that this is not always true (so the projective spaces are, in this respect, a nice class of
spherical buildings), see for instance [8], where the maximal distance between maximal
singular subspaces in certain parabolic quadrics is a counter example, or [7], where again
the maximal distance between points of a generalized hexagon is a counter example. In
the present paper we will find other such examples, be it in the thin case (but one of the
examples is strongly related to the smallest thick generalized quadrangle).

Indeed, in the last section of the present paper, we also prove the analogue of our main
results for the thin case, i.e., for vector spaces or projective spaces over the field of order
1, hence just sets. For finite sets, everything will follow, with some additional work, from
a group-theoretic result of Liebeck, Praeger and Saxl [10], but we also consider infinite
sets. As mentioned in the previous paragraph, it is interesting to note that for finite sets,
there are counter examples, i.e., there are situations where not all graph automorphisms
are induced by a permutation of the starting set. For more details, see Section 4.2

2 Statements of the results

We now provide the exact statements alluded to in the introduction. Let Vn+1(L) be
an (n + 1)-dimensional right vector space over the skew field L, and let PG(n,L) be the
associated projective space, i.e., the points of PG(n,L) are the 1-spaces of Vn+1(L), and
a k-space of PG(n,L), 0 ≤ k ≤ n − 1, consists of the 1-spaces contained in subspace of
dimension k + 1 of Vn(L). The empty subspace of PG(n,L) corresponds to the trivial
subspace of Vn(L) and has project dimension −1.

We define the graphs Γni,j;k(L) = Γnj,i;k(L) and Γni,j;≥k(L) = Γnj,i;≥k(L) as above. The
bipartite complement of a bipartite graph Γ is the graph obtained from Γ by interchanging
edges and non-edges between the biparts, while keeping no edges within the biparts.

Main Result 2.1 Let L and L′ be two skew fields, and let −1 ≤ k ≤ i ≤ j ≤ n − 1,
−1 ≤ k′ ≤ i′ ≤ j′ ≤ n′ − 1 be integers, with −1 /∈ {i, i′} and n ≥ 2.

(i) If i = j = k ≥ 0, then Γni,j;k(L) is a matching.

(ii) If i = j = n− 1 = k + 1 or i = j = 0 = k + 1, then Γni,j;k(L) is the complement of a
matching.

(iii) If n+k < i+j, then Γni,j;k(L) is an empty graph (a graph with vertices but no edges).

(iv) If L ∼= L′, n = n′, i′ = n − 1 − j, j′ = n − 1 − i and k′ = n − 1 + k − i − j, then
Γni,j;k(L) ∼= Γn

′

i′,j′;k′(L′).
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(v) If i + j ≤ n − 1, (i, j) 6= (0, 0), k < j and i′ + j′ ≤ n′ − 1, then Γni,j;k(L) ∼=
Γn
′

i′,j′;k′(L′) if and only if L ∼= L′ and (i, j, k, n) = (i′, j′, k′, n′). In this case every
graph isomorphism is induced by a semi-linear bijection from Vn(L) to Vn′(L′), or
possibly to V ∗n′(L′) (the dual of Vn′(L′)) if i+ j = n− 1 and L′ ∼= (L′)∗ (the latter is
the opposite skew field).

Note that the restrictions in (v) are justified by (iv), so that we really cover all possible
cases. The same thing holds for the next result, where the restrictions in (iv) are justified
by (iii).

Main Result 2.2 Let L and L′ be two skew fields, and let −1 ≤ k ≤ i ≤ j ≤ n − 1,
−1 ≤ k′ ≤ i′ ≤ j′ ≤ n′ − 1 be integers, with −1 /∈ {i, i′} and n ≥ 2.

(i) If n+ k ≤ i+ j or k = −1, then Γni,j;≥k(L) is a complete bipartite graph.

(ii) If k = i + j + 1 − n, then Γni,j;≥k(L) is the bipartite complement of Γni,j;k−1(L); if
i = k, then Γni,j;≥k(L) ∼= Γni,j;k(L).

(iii) If L ∼= L′, n = n′, i′ = n − 1 − j, j′ = n − 1 − i and k′ = n − 1 + k − i − j, then
Γni,j;≥k(L) ∼= Γn

′

i′,j′;≥k′(L′).

(iv) If i+j ≤ n−1, −1 6= k < j and i′+j′ ≤ n′−1, then Γni,j;≥k(L) ∼= Γn
′

i′,j′;≥k′(L′) if and
only if L ∼= L′ and (i, j, k, n) = (i′, j′, k′, n′). In this case every graph isomorphism
is induced by a semi-linear bijection from Vn(L) to Vn′(L′), or possibly to V ∗n′(L′)
(the dual of Vn′(L′)) if i+ j = n− 1 and L′ ∼= (L′)∗ (the latter is the opposite skew
field).

We will also show that all graphs in (v) of Main Result 2.1 are distinct from those in (iv)
of Main Result 2.2, except for k = min{i, j} in both.

A special case worth mentioning is the graph Γni,j;i(L), with 0 ≤ i < j ≤ n−1. This is the
bipartite graph consisting of i-subspaces and j-subspaces, where adjacency is just defined
by containment. It leads to the most straightforward generalization of the Fundamental
Theorem of Projective Geometry, and, as we will see, we will need to prove it separately
in advance.

Another special case occurs when i = j; in this case one can define the non-bipartite
graphs Γnj;k(L) and Γnj;≥k(L) (see above), see Corollaries 3.12 and 3.16.

Notation. The incidence graph of PG(n,L) is an n-partite graph denoted by Γn[0,n−1](L).
If we restrict this graph to the subspaces of dimensions i, i+1, . . . , j−1, j, then we denote
the resulting (j − i + 1)-partite graph by Γn[i,j](L). In such a graph, the k-neighbor of a
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vertex v, with i ≤ k ≤ j and with dim(v) 6= k, are the subspaces of dimension k incident
with v. The k-neighborhood of v is the set of k-neighbors of v.

For 0 ≤ j ≤ n − 1, the j-Grassmann graph is the graph with vertices the j-spaces of
PG(n,L), where two j-spaces are adjacent if they intersect in a (j − 1)-space. This is the
collinearity graph of the so-called j-Grassmannian geometry, which is defined as follows.
The points are the j-spaces and the lines are the sets of j-spaces containing a fixed (j−1)-
space J− and being contained in a fixed (j+ 1)-space J+, with J− ⊆ J+. If j /∈ {0, n− 1},
then the j-Grassmann graph uniquely determines the j-Grassmannian geometry. In any
case, the j-Grassmannian geometry completely determines PG(n,L) in the sense that the
automorphism groups of both structures coincide (possibly up to the dualities).

For a set S of subspaces (possibly just points), we define 〈S〉 to be the subspace generated
by all members of S. If S consists of two distinct points p1, p2, then we also denote the
unique line passing through these points by p1p2. Finally, for a k-subspace K, we denote
by Res(K) the projective space of dimension n−k−1 obtained from the underlying vector
space by factoring out K, and we call it the residue of K. Hence the i-spaces of Res(K),
−1 ≤ i ≤ n− k− 1, are the quotients W/K, where W is an (i+ k+ 1)-space of PG(n,L)
containing K.

3 Proofs

3.1 Generalities and the case k = 0

The assertions (i) to (iv) of Main Result 2.1 and (i) to (iii) of Main Result 2.2 are easy
to verify. Hence we concentrate on showing (v) of Main Result 2.1 and (iv) of Main
Result 2.2.

So let there be given a graph Γ ∼= Γni,j;k(L) (with n, i, j, k,L as in (v) of Main Result 2.1)
or Γ ∼= Γni,j;≥k(L) (with n, i, j, k,L as in (iv) of Main Result 2.2), except that we do not
assume that i ≤ j. We provide an algorithmic proof, determining the parameters as we
go along. An exception is the family of graphs Γ ∼= Γni,j;k(2), k < min{i, j}, which we
must handle separately. Hence we will assume that Γ is not isomorphic to such a graph.

In the course of the proof, we will have to pick at certain moments a subspace of certain
dimension satisfying different incidence conditions. We first prove a lemma that will imply
that we can do so in the most restrictive case (which will take care of all other cases, too,
that we will encounter).

Lemma 3.1 Let a ≥ 2 and let 0 ≤ b < a be natural numbers. Let B be b-space in
PG(a,L), let B1, B2 be two subspaces of PG(a,L) of dimension at most b− 1, and let B3
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be a subspace of PG(a,L) of dimension at most b − 2 (if b = 0, then B3 is the empty
space). Then there exists an (a− b− 1)-space C disjoint from B ∪B1 ∪B2 ∪B3.

Proof We assume a ≥ 3, as the case a = 2 is easy (there is always a point not incident
with a given line and distinct from two other given points, and there is always a line not
incident with a given point). By possibly extending the spaces B1, B2, B3, we may assume
that they have precisely dimension b− 1, b− 1, b− 2, respectively.

We claim that B ∪ B1 ∪ B2 ∪ B3 is nonempty. Indeed, if |L| is infinite, then this follows
from the fact that PG(a,L) is not the union of a finite number of (proper) subspaces.
Now let |L| = q be finite. We may extend the subspaces B,B1, B2, B3 in such a way that
they have maximal dimension, i.e., we may assume that b = a − 1. Then, taking into
account that B ∩B1 is at least (a− 2)-dimensional, and similarly for B ∩B2 and B ∩B3,
we count at most

qa − 1

q − 1
+
qa−1 − 1

q − 1
− qa−2 − 1

q − 1︸ ︷︷ ︸
B∪B1

+
qa−1 − 1

q − 1
− qa−2 − 1

q − 1︸ ︷︷ ︸
B2\B

+
qa−2 − 1

q − 1
− qa−3 − 1

q − 1︸ ︷︷ ︸
B3\B

points in B ∪B1 ∪B2 ∪B3. The claim follows if we show that this number is strictly less
than qa+1−1

q−1
, which follows immediately from the obvious inequality

qa+1 > qa + 2qa−1 − qa−2 − aq−3,

for all a ≥ 3 and all q ≥ 2.

Now we continue by induction on a ≥ b+1. The case a = b+1 follows from the claim above
(then C is just a point outside B ∪B1 ∪B2 ∪B3). Let a > b+ 1. Let x be a point outside
B ∪B1 ∪B2 ∪B3. Then by the induction hypothesis we obtain an (a− b− 2)-space C ′ in
Res(x) disjoint from 〈B, x〉/x, 〈B1, x〉/x〈B2, x〉/x, 〈B3, x〉/x. The corresponding subspace
C in PG(a,L) intersects each of B,B1, B2, B3 exactly in the point x. Hence C is disjoint
from B ∪B1 ∪B2 ∪B3 and the lemma is proved. �

Now we start by isolating the case k = min{i, j}, (i, j) /∈ {(0, n−1), (n−1, 0)}, |j−i| > 1.
For a vertex v of Γ, we denote by Γ(v) the set of neighbors of v. Also, V (Γ) is the set of
vertices of Γ, and V v(Γ) is the set of vertices in the bipart of v.

Proposition 3.2 For the graph Γ the parameter k equals min{i, j} with (i, j) /∈ {(0, n−
1), (n− 1, 0)} and |j − i| > 1, if and only if Γ satisfies the following property (min)

(min) For some vertex v, the family F(v) = {Γ(v) ∩ Γ(w) : w ∈ V v(Γ)} forms a poset
under inclusion with the property that, if two elements have a greatest common lower
bound, then it is obtained by intersecting the two elements. Also, every two maximal
elements have a greatest common lower bound and every element is contained in a
maximal element.
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Proof If k = min{i, j}, say i = k, and v is a j-space, then F(v) is the poset of all
subspaces of dimension at least max{i, 2j−n}, viewed as sets of the i-spaces they contain,
of a projective space of dimension j. It is clear that this poset satisfies (min) as soon as
i < j − 1 and 2j − n < j − 1. The first condition is equivalent with |j − i| > 1 and the
second with j < n− 1, so with (i, j) 6= (0, n− 1) in view of i+ j ≤ n− 1.

Now suppose 0 ≤ k < min{i, j} (we cease to assume i ≤ j as we did in the previous
paragraph). Let J1 and J2 be two j-spaces intersecting in a (j − 1)-space J ′. Let J3 be
such that Γ(J1) ∩ Γ(J3) is maximal in F(J1) and contains Γ(J1) ∩ Γ(J2). We claim first
that J1 ∩ J2 ⊆ J3. Indeed, suppose not. Then we can select a k-subspace K contained
in J1 ∩ J2 but not in J3. Applying Lemma 3.1 in Res(K), we see that there exists an
i-space I intersecting both J1 and J2 in K, and intersecting J3 in J1 ∩ J2 ∩K, which has
dimension strictly less than k. Hence I ∈ Γ(J1) ∩ Γ(J2) \ Γ(J3), a contradiction. Now
there are two possibilities.

Assume that J3 /∈ 〈J1, J2〉. Then there is a (k+ 1)-space K in 〈J1, J2〉 intersecting J1 ∩J2

in a (k−1)-space. We can now pick an i-space I through K not intersecting J3\K. Hence
I is adjacent to both J1, J2, but not to J3, contradicting the maximality of Γ(J1) ∩ Γ(J3)
in F(J1).

Hence we may assume J3 ∈ 〈J1, J2〉. If Γ(J1) ∩ Γ(J2) = Γ(J1) ∩ Γ(J3), then Γ(J1) ∩ Γ(J2)
was already maximal in the first place. If Γ(J1)∩Γ(J2) 6= Γ(J1)∩Γ(J3), then, since there
exists a collineation fixing J1 and interchanging J2 and J3, there is a vertex in Γ(J1)∩Γ(J2)
that does not belong to Γ(J1) ∩ Γ(J3), again a contradiction.

We conclude that Γ(J1) ∩ Γ(J2) is maximal itself. Now consider any j-space J4 not
contained in 〈J1, J2〉 and such that J1∩J2 ⊆ J4. As above, we know that Γ(J1)∩Γ(J2) 6=
Γ(J1) ∩ Γ(J4). Hence, by (min), there exists a j-space J5 with Γ(J1) ∩ Γ(J5) = Γ(J1) ∩
Γ(J2)∩Γ(J4). But, also as above, if J5 does not contain J1∩J2, then we can select a k-space
K in J1 ∩ J2 not contained in J5, and an i-space I through K such that I ∩ J5 = I ∩K,
I∩Ji = K, for i ∈ {1, 2, 4}. Then I belongs to Γ(J1)∩Γ(J2)∩Γ(J4)\Γ(J5), a contradiction.
Hence J1 ∩ J2 ⊆ J5. But then Γ(J1) ∩ Γ(J5) is maximal, the final contradiction. Hence
(min) is not satisfied.

Now let k = −1. Let J1, J2, J3 be three different j-spaces. It is easy to see that through
any point of J3 \ (J1 ∪ J2) one can find an i-space disjoint from both J1 and J2. Hence
every element of F(J1) is maximal and so (min) cannot be satisfied. �

Proposition 3.3 The parameters i, j, n,L are uniquely determined by the graph Γni,j;i(L),
for i ≤ j ≤ n − i − 1. Moreover, every graph automorphism is induced by a semi-linear
permutation of the underlying vector space.

Proof Fix any vertex v. Then we consider the poset Pv = {Γ(v) ∩ Γ(w1) ∩ . . .Γ(wt) :
w1, . . . , wt ∈ V v(Γ), t ∈ N}. The length of a maximal chain in Pv is precisely j − i. We
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define a new graph Γ′ as follows. The vertices are the intersections of a finite number
of neighborhoods of vertices of V v(Γ). Adjacency is containment made symmetric. It is
clear that Γ′ is isomorphic to Γn[i,j](L). Now we can extend this graph “at both ends”

as follows. We define a new graph Γi where the vertices are the i-spaces, adjacent when
they are adjacent in Γ′ to a common vertex representing an (i + 1)-space. The graph
Γi is the i-Grassmann graph and hence it has two kinds of maximal cliques: all i-spaces
contained in an (i + 1)-space (these maximal cliques are visible in Γ′), and all i-space
contained in an (i − 1)-space. We add the latter maximal cliques to the graph Γ′ with
natura l adjace ncy between the new vertices and the i-spaces, and a new vertex I ′ is
adjacent to a vertex L representing an `-space, i + 1 ≤ ` ≤ j, if I ′ and L are adjacent
to a common i-space. We do the same “at the other end” (with j-spaces) and obtain the
graph Γni−1,j+1(L), we keep doing this until every pair of the new vertices is adjacent to a
common old vertex introduces at the previous step “next to it”. Then we have Γn[0,j+i](L).

This uniquely determines i (and hence j, since we already knew j − i). But now we can
extend this graph “at the right” n − i − j − 1 times to obtain Γn[0,n−1](L), uncovering n.
The Fundamental Theorem of Projective Geometry now applies, L follows and so does
the proposition. �

So we are left with the graphs Γni,j;i(F), i+ 1 = j ≤ n− i− 1 or (i, j) = (0, n− 1), which
we call of type I; graphs Γni,j;≥k(F) with 0 ≤ k < min{i, j} and i + j ≤ n − 1, which we
call of type II; graphs Γni,j;k(F) with −1 ≤ k < min{i, j} and i+ j ≤ n− 1, which we call
of type III.

Now we characterize the graphs Γni,j;i(F) with i+ 1 = j ≤ n− i− 1, among these.

Lemma 3.4 Let Γ be a graph of type I,II or III. Then Γ ∼= Γni,j;i(F) with i + 1 = j ≤
n − i − 1 if and only if every vertex is the intersection Γ(v) ∩ Γ(w) of the neighborhoods
of two vertices v, w.

Proof Clearly the property holds if Γ ∼= Γni,j;i(F), with i+1 = j ≤ n−i−1. Now suppose
Γ satisfies the stated property. Then Γ is not of type II or III since through any given k-
space K contained in two j-spaces J1, J2, one can select at least two i-spaces intersecting
two given j-spaces only in K (indeed, projecting from K, this amounts to choose two
(i − k − 1)-spaces disjoint from two given (j − k − 1)-spaces in (n − k − 1)-dimensional
space, which can clearly be done). �

By Proposition 3.3, every automorphism of Γni,i+1;i(F) is induced by a semi-linear mapping
of the underlying vector space, or a duality (which happens if 2i+ 2 = n).

¿From now on, we do not call a graph Γni,i+1;i(F) of type I anymore, since we already
characterized it.

Let Γ be a graph of type I, type II or type III. We introduce a property of triples and
quadruples, respectively, of vertices in the same bipart.
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Suppose one of the biparts of Γ are the j-spaces, and the other consists of the i-spaces.
Let J1, J2, J3 be three j-spaces. Then we say that {J1, J2, J3} is a Γ-round-up triple if no
i-space is Γ-adjacent to exactly two of J1, J2, J3 and some i-space is Γ-adjacent to all of
J1, J2, J3. Also, {J1, J2, J3} is a regular round-up triple if J1 ∩ J2 ∩ J3 is a (j − 1)-space
and if 〈J1, J2, J3〉 is a (j + 1)-space.

Now let J1, J2, J3, J4 be four j-spaces in PG(n,L). Then we say that {J1, J2, J3, J4} is a
Γ-round-up quadruple if every vertex that is Γ-adjacent to at least two among J1, J2, J3, J4

is adjacent to at least three of them, and some vertex is adjacent to at least three of them.
Also, {J1, J2, J3, J4} is called a regular round-up quadruple if the four j-spaces all contain
a fixed (j − 1)-space and are themselves contained in a fixed (j + 1)-space.

We first investigate when Γ contains Γ-round-up triples, then prove that, when they do,
these are precisely the regular round-up triples. Using these regular round-up triples, we
determine the parameters of the graph in a canonical way and show that Γ determines
PG(n,L).

Then we go on doing the same with Γ-round-up quadruples for the remaining graphs.

3.2 Γ-round-up triples

We start with a characterization of regular round-up triples and quadruples.

Lemma 3.5 Let J1, J2, J3, J4 be (not necessarily different) j-spaces such that the intersec-
tion of the distinct pairs is a fixed subspace D, say of dimension d ≥ −1. Then d = j − 1
and dim〈J1, J2, J3, J4〉 = j+1 if and only if every line intersecting two different members of
{J1, J2, J3, J4}, say J`1 , J`2, also intersects one of J`3 , J`4, with {`1, `2, `3, `4} = {1, 2, 3, 4}.

Proof The lemma is trivial if |{J1, J2, J3, J4}| ≤ 2. So we may assume that all of
J1, J2, J3 are distinct, and that either J4 is distinct from all of J1, J2, J3, or J3 = J4. Also,
if d = j− 1 and dim〈J1, J2, J3, J4〉 = j+ 1, then it is easy to see that the stated condition
is satisfied.

Suppose now the stated condition is satisfied. If j = 0, then the assertion is easy. Suppose
now j ≥ 1 and assume for a contradiction that d < j − 1. Then there is some line L
contained in J2 \ D. Consider any point p1 in J1 \ D and let p2, p

′
2, p
′′
2 be three points

on L. Two of the lines p1p2, p1p
′
2, p1p

′′
2 must then intersect either J3 or J4, say J3, by the

condition. Hence the plane 〈p1, L〉 intersects J3 in a line L′. But then the point L ∩ L′
belongs to J2 ∩ J3, hence to D, a contradiction. Hence d = j − 1.

The line joining a point of J1 \ D with a point of J2 \ D intersects J3 ∪ J4, clearly in a
point not belonging to D. Hence at most one of J3, J4, say J4, does not belong to 〈J1, J2〉.
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Similarly, one of J1, J2 belongs to 〈J3, J4〉, say J1. But then J4 and J2 belong to 〈J1, J3〉,
which implies dim〈J1, J2, J3, J4〉 = dim〈J1, J3〉 = j + 1. �

If Γ is of type I, then it is easy to verify that a Γ-round-up triple is either a set of three
collinear points or a set of three hyperplanes containing the same (n− 2)-space.

Now suppose that Γ is of type II, with Γ ∼= Γni,j;≥k(L), k > −1 (we do not assume
i ≤ j) or Γ is of type III, with Γ ∼= Γni,j;k(L), k ≥ −1. In these cases, we note the
following equivalent more manageable condition for being a Γ-round-up triple. For type
II, it follows immediately from the fact that, if U, V are two subspaces of PG(n,L), with
dimV ≤ i, dimU = j and dim(U ∩V ) < k, then there is an i-space W containing V with
W ∩U = V ∩U . Note that we will only state things for one choice of (i, j); interchanging
i and j usually results in another property, which we assume tacitly.

Observation 3.6 A triple {J1, J2, J3} of j-spaces is a Γ-round-up triple, with Γ of type
II, if and only if every subspace of dimension at most i spanned by two k-spaces contained
in two respective members of {J1, J2, J3} intersects the third member in a subspace of
dimension at least k.

Lemma 3.7 A triple {J1, J2, J3} of j-spaces is a Γ-round-up triple, with Γ of type III, if
and only if every subspace L of dimension at most i spanned by two k-spaces contained in
two respective members of {J1, J2, J3} and intersecting these subspaces in the respective
k-spaces, intersects the third member in a subspace of dimension precisely k.

Proof The proof is a simplified version of the proof of Lemma 3.13 (see below).

Assume for a contradiction that the assertion is false. By renumbering if necessary we
may then assume that K1 and K2 are k-spaces contained in J1, J2, respectively, and that
〈K1, K2〉∩J3 is not k-dimensional. Our goal is to construct an (i− 1)-space I ′ containing
〈K1, K2〉 and intersecting J3 in a (k − 1)-space.

We consider an arbitrary i-space I intersecting J1 in K1 and J2 in K2 (it is easy to see
that such a subspace exists). Since {J1, J2, J3} is a Γ-round-up triple, we know that I
intersects J3 in a k-space K3. Since K3 6⊆ 〈K1, K2〉 by our assumption, we can consider a
hyperplane I ′ of I containing 〈K1, K2〉 and not containing K3.

In Res(I ′), the spaces 〈J1, I
′〉/I ′, 〈J2, I

′〉/I ′ and 〈J3, I
′〉/I ′ have dimension j − k − 1,

j − k − 1 and j − k, respectively. By Lemma 3.1, we can find a point in Res(I ′) which
avoids these three subspaces. This point corresponds to an i-space I∗ intersecting J1 and
J2 in k-spaces and intersecting J3 in a (k−1)-space. This clearly contradicts the fact that
{J1, J2, J3} is a Γ-round-up triple. �

Suppose now {J1, J2, J3} is a Γ-round-up triple. In the next statements, the arguments are
usually independent of the type of Γ; however, if they differ, then we write the argument
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for type II in the ordinary way, whereas the argument for type III will be written in square
brackets. It will be clear which part of the argument for type II it replaces.

Lemma 3.8 The Γ-round-up triple {J1, J2, J3} satisfies J1 ∩ J2 = J3 ∩ J1 = J2 ∩ J3.

Proof Choose the subscripts such that dim(J1∩J2) be maximal among {dim(J`∩J`′) :
` ∈ {1, 2, 3}, `′ ∈ {1, 2, 3} \ {`}}. For a contradiction, we may hence suppose that there
exists a point p ∈ (J1 ∩ J2) \ J3. There are two cases to distinguish.

1. Suppose dim(J1 ∩ J2) ≥ k. Consider a k-space K in J1 ∩ J2 containing p. Observa-
tion 3.6 implies that K intersects J3 in a subspace of dimension at least [exactly] k,
which is absurd.

2. Suppose dim(J1 ∩ J2) = ` < k. Let Ka be any k-space in Ja containing J1 ∩ J2,
a = 1, 2. By Observation 3.6, the subspace 〈K1, K2〉 intersects J3 in a subspace K3

of dimension at least [exactly] k. Since dim〈K1, K2〉 = 2k− ` and 〈K1, K2〉 contains
K3, a dimension argument implies dimK1 ∩K3 ≥ `, By maximality of `, we have
equality. Moreover, this also implies J1 ∩ J3 = K1 ∩K3, and so K1 ∩K3 6= J1 ∩ J2.
Replacing K1 by a k-space K ′1 in J1 containing J1 ∩ J2 but not K1 ∩K3, the same
argument implies J1 ∩ J3 ⊆ K ′1, a contradiction.

The lemma is proved. �

Lemma 3.9 Every Γ-round-up triple {J1, J2, J3} is a regular round-up triple.

Proof By Lemma 3.8, we know J1 ∩ J2 = J3 ∩ J1 = J2 ∩ J3. Define ` = dim J1 ∩ J2.
Again, we distinguish two cases.

1. Suppose ` ≥ k. Let pa ∈ Ja \ J3 be arbitrary, a = 1, 2. For a = 1, 2, choose
a k-space Ka containing pa and intersecting J1 ∩ J2 in a (k − 1)-space, with the
latter independent of a. Observation 3.6 [Lemma 3.7] and the fact that k < i imply
that the (k + 1)-space 〈K1, K2〉 intersects J3 in at least [precisely] a k-space K3

intersecting J1 ∩ J2 in K1 ∩K2, hence in precisely a k-space. Consequently, the line
p1p2 intersects K3, and hence J3, in a point. Lemma 3.5 shows the assertion.

2. Suppose ` < k. We claim this situation cannot occur. Indeed, let Ka be a k-space
through J1 ∩ J2 inside Ja, a = 1, 2. Observation 3.6 [Lemma 3.1] and Lemma 3.8
together imply that 〈K1, K2〉 ∩ J3 =: K3 is k-dimensional. Now let K ′1 be a k-space
in J1 through J1∩J2 such that 〈K1, K

′
1〉 is (k+1)-dimensional (this is possible since

k < j). Then 〈K ′1, K2〉∩J3 =: K ′3 is again k-dimensional. Since 〈K2, K3〉 = 〈K1, K2〉
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and K ′1 6⊆ 〈K1, K2〉, we conclude K ′3 6= K3. Now dim〈K1, K
′
1, K2〉 = 2k − `+ 1 and

〈K3, K
′
3〉 ⊆ 〈K1, K

′
1, K2〉. A dimension argument (the Grassmann identity) implies

now that 〈K1, K
′
1〉∩〈K3, K

′
3〉 has dimension at least (k+1)+(k+1)−(2k−`+1) =

`+ 1. Since 〈K1, K
′
1〉 ∩ 〈K3, K

′
3〉 is contained in J1 ∩ J3, this is a contradiction. Our

claim is proved. �

Lemma 3.10 A regular round-up triple is a Γ-round-up triple if and only if Γ has type I
or II.

Proof The assertion is clear for graphs of type I and II. Now let Γ ∼= Γni,j;k(L) be of
type III. Let {J1, J2, J3} be a regular round-up triple of j-spaces. Since k < j, we can
select a k-space K in J1 ∩ J2. Since k < i, we can select an i-space I intersecting J1 ∩ J2

in K, and intersecting 〈J1, J2〉 in a (k + 1)-space contained in J1 (hence not in J1 ∩ J2).
Then I is adjacent with both J2 and J3, but not with J1, a contradiction. Note that this
argument also works for k = −1. �

So we can distinguish graphs of type I and II from those of type III.

We now make two further simplifications.

First we split off the case k = −1 in type III graphs and forget about them, since their
bipartite complements belong to type II.

Lemma 3.11 Let Γ = Γni,j;k(L) be a graph of type III. Then k = −1 if and only if the
bipartite complement Γ∗ of Γ admits Γ∗-round-up triples.

Proof Clearly the bipartite complement of Γni,j;0(L) is Γni,j;≥0(L) and this admits Γni,j;≥0(L)-
round-up triples, namely, regular round-up triples.

Now suppose k ≥ 0. A Γ∗-round-up triple is, without loss, a triple {J1, J2, J3} of j-spaces
such that no i-space intersects exactly one of J1, J2, J3 in a k-space. We show that such a
triple does not exist. Indeed, suppose for a contradiction that {J1, J2, J3} is such a triple.
Then we select a point p ∈ J3 \ (J1 ∪ J2) (this is possible since J3 cannot be covered by
the union of J1 and J2), and a k-space K in J3 containing p. It is easy to see that we can
find an i-space I intersecting J3 in K and intersecting Ja, a = 1, 2, in K ∩ Ja. Indeed, it
suffices to find in Res(K) an (i − k − 1) space avoiding the three subspaces 〈J1, K〉/K,
〈J2, K〉/K and J3/K, which have dimension at most j, at most j, exactly j − k − 1,
respectively. �

Hence, from now on, we assume that type III graphs have k 6= −1.

Now we distinguish type I from type II graphs. So let Γ be a graph of type I or type II.
Notice that it suffices to recognize when i, j ∈ {0, n− 1}, since for type II graphs neither
i nor j belongs to {0, n− 1} (since 0 ≤ k < min{i, j}).
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We define a new graph Γ1 with vertex set, without loss, the set of j-spaces, with two
j-spaces adjacent if they are contained in a Γ-round-up triple. This is the j-Grassmann
graph of PG(n,L), and so two j-spaces are contained in a unique maximal clique if and
only if j ∈ {0, n − 1}. Hence, if in Γ1 every pair of distinct vertices is contained in a
unique maximal clique, then Γ has type I, and otherwise it has type II. If it has type I,
then we can apply Proposition 3.3. Hence from now on, we only have to deal with graphs
of type II and III.

We first handle the case of graphs of type II, thus finishing the proof of Main Result 2.2.

3.3 Proof of Main Result 2.2

The graph Γ1 above determines n, j,L, and likewise we can determine i. It does not
directly determine k, although this can be proved indirectly. Nevertheless, we prefer to
give a rather elegant algorithm to determine the parameters of Γ.

Remember that Γ ∼= Γni,j;≥k(L), with 0 ≤ k < min{i, j} ≤ n−max{i, j} − 1.

We define another graph Γ2 with vertex set the set of j-spaces together with the set of
maximal cliques of Γ1. A j-space is adjacent to a maximal clique if it is contained in
it, and two maximal cliques are adjacent if their intersection contains at least two Γ1-
adjacent j-spaces. This way, the tripartite graph isomorphic to Γn[j−1,j+1](L) of (j − 1)-,

j- and (j + 1)-spaces arises with natural adjacency (namely, incidence). But we do not
know yet from our data which classes precisely correspond to (j − 1)-spaces, and which
to (j + 1)-spaces.

ommon (i+1)-space. This way, we can construct the (i−1)-spaces as the maximal cliques
which do not coincide with the i-neighborhood of an (i + 1)-space in Γn[i,j+1](L). Adding

these maximal cliques with natural adjacency (containment) we obtain Γn[i−1,j+1](L). If

every pair of (i−1)-spaces have a common i-neighbor, then i−1 = 0. If not, then we con-
tinue until this happens. The number of steps we have to do this defines i uniquely. Sim-
ilarly we can extend the graph Γn[0,j+1](L) at the other side to gradually build Γn[0,j+2](L),

Γn[0,j+3](L), etc., until we obtain Γn[0,n−1](L). The number of steps this takes determines

(n − 1) − (j + 1) uniquely. Hence we have determined all parameters and reconstructed
the entire projective space.

We note that, since k < i, every i-space is Γ-adjacent to all members of maximal cliques
of both kinds. We define four different bipartite graphs ΓεX , with ε ∈ {−1,+1} and
X ∈ {∃, ∀}, with one class of vertices each time the set of i-spaces. The other class of
vertices of the two graphs Γ−1

X , X ∈ {∃,∀}, is one class of Γ2 distinct from the class
corresponding to the j-spaces, and for the other two graphs we take the other class of Γ2

distinct from the class of j-spaces. An i-space is Γε∃-adjacent to a clique of j-spaces if it
is adjacent to some member of the clique, ε ∈ {−1,+1}, and an i-space is Γε∀-adjacent to
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a clique of j-spaces if it is adjacent to all members of the clique, ε ∈ {−1,+1}. To fix the
ideas, we can choose the notation in such a way that the superscript −1 corresponds to
cliques of j-spaces containing a fixed (j − 1)-space, and the superscript +1 to cliques of
j-spaces contained in a f ixed (j + 1)-space (but this can for the moment not directly be
derived from the graph Γ and the information we have up to now).

One easily checks the following isomorphisms:

Γ−∃
∼= Γni,j−1;≥k−1(L), Γ+

∃
∼= Γni,j+1,≥k(L),

Γ−∀
∼= Γni,j−1,≥k(L), Γ+

∀
∼= Γni,j+1,≥k+1(L).

Notice that we can repeat each of these four constructions for each of the four cases.
But, starting from a minus graph, the appropriate plus graph brings us back to the
original graph, and similarly for starting from a plus graph. Hence we can define with
self-explaining notation the following graphs:

Γ−m∃
∼= Γni,j−m;≥k−m(L), Γ+m

∃
∼= Γni,j+m,≥k(L),

Γ−m∀
∼= Γni,j−m,≥k(L), Γ+m

∀
∼= Γni,j+m,≥k+m(L),

for all natural m for which the right hand side makes sense. It is clear that the smallest m
for which Γ−m∃ becomes complete bipartite is m = k + 1. Also, the smallest m for which
Γ+m
∃ becomes complete bipartite is m = n+ k− i− j. Since k+ 1 ≤ n+ k− i− j, we can

deduce k and n− i− j from this information.

It is also clear that the smallest m for which Γ−m∀ becomes an empty graph is j − k + 1,
and the smallest m for which Γ+m

∀ becomes an empty graph is i − k + 1. Form this, we
deduce j and i.

If we would have started with looking for Γ-round-up triples of i-spaces, then we would
also have found first k, then n− i− j − 1, and then i− k + 1 and j − k + 1, which also
determines all parameters uniquely.

Hence, in both cases, our method reveals i, j, k and n and Main Result 2.2 follows from
this and the fact that Γn[j−1,j+1](L) determines PG(n,L) completely.

We mention the following special case of Main Result 2.2. Suppose −1 ≤ k ≤ j ≤ n− 1,
j 6= −1, and let Γnj;≥k(L) be the graph of j-spaces of PG(n,L) where two j-spaces are
adjacent if their intersection contains a k-space, and let Γnj;k(L) be the graph of j-spaces
of PG(n,L) where two j-spaces are adjacent if they intersect in a k-space.

Corollary 3.12 Let L and L′ be two skew fields, and let −1 ≤ k ≤ j ≤ n− 1, −1 ≤ k′ ≤
j′ ≤ n′ − 1 be integers, with −1 /∈ {j, j′} and n ≥ 2.

(i) If n+ k ≤ 2j or k = −1, then Γnj;≥k(L) is a complete graph.
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(ii) If j = k, then Γnj;≥k(L) is an empty graph.

(iii) If L ∼= L′, n = n′, j′ = n−1− j and k′ = n−1+k−2j, then Γnj;≥k(L) ∼= Γn
′

j′;≥k′(L′).

(iv) If k = 2j + 1− n, then Γnj;≥k(L) is the complement of Γnj;k−1(L).

(v) If 2j ≤ n− 1, −1 < k < j and 2j′ ≤ n′ − 1, then Γnj;≥k(L) ∼= Γn
′

j′;≥k′(L′) if and only
if L ∼= L′ and (j, k, n) = (j′, k′, n′). In this case every graph isomorphism is induced
by a semi-linear bijection from Vn(L) to Vn′(L′), or possibly to V ∗n′(L′) (the dual of
Vn′(L′)) if 2j = n− 1 and L′ ∼= (L′)∗ (the latter is the opposite skew field).

Proof Recall that the (extended) bipartite double 2Γ (2Γ) of a given graph Γ is obtained
by taking two copies of the vertex set Γ (without the edges) and defining a vertex of one
copy to be incident with a vertex of the other copy if the corresponding vertices of Γ are
(equal or) adjacent in Γ.

Then the corollary follows easily from Main Result 2.2 and the observation that 2Γnj;≥k(L) ∼=
Γnj,j;≥k(L) and 2Γnj;k(L) ∼= Γnj,j;k(L) (the latter is needed for (iv)). �

We now go on with graphs of type III.

3.4 Proof of Main Result 2.1

Now we prove Main Result 2.1. So Γ ∼= Γni,j;k(L), with i+j ≤ n−1 and 0 ≤ k < min{i, j}.
Remember that k 6= −1 because of Lemma 3.11.

Our proof is again symmetric in i and j. Hence throughout one can interchange i and j.
The method used in the previous subsection with round-up triples does not work because
of Lemmas 3.9 and 3.10. But we now use the idea of the Γ-round-up quadruples and show
that every such quadruple is a regular round-up quadruple. This proof is considerably
more involved, although the main structure is kept, and some results can be proved using
a slight generalization.

It is easy to show that every regular round-up quadruple is a Γ-round-up quadruple.
Hence we show the converse.

We start with a lemma which can be seen as the counterpart to Observation 3.6.

Lemma 3.13 Let {J1, J2, J3, J4} be a Γ-round-up quadruple. Then the following holds
for arbitrary `1, `2, `3, `4 with {`1, `2, `3, `4} = {1, 2, 3, 4}. Whenever K1 and K2 are k-
spaces in J`1 and J`2, respectively, with 〈K1, K2〉 ∩ J`a = Ka, for a ∈ {1, 2}, and with
dim〈K1, K2〉 ≤ i, then the subspace 〈K1, K2〉 intersects at least one of J`3 , J`4 in precisely
a k-space.
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Proof Assume for a contradiction that the assertion is false. By renumbering if neces-
sary we may then assume that K1 and K2 are k-spaces contained in J1, J2, respectively,
and that none of 〈K1, K2〉 ∩ J3 and 〈K1, K2〉 ∩ J4 is k-dimensional.

Our main goal is to construct an (i − 1)-space I ′ containing 〈K1, K2〉 and intersecting,
say, J3 in a (k − 1)-space, while dim(I ′ ∩ J4) 6= k.

We consider an arbitrary i-space I intersecting J1 in K1 and J2 in K2 (which exists by
applying Lemma 3.1 in Res(〈K1, K2〉)). Since {J1, J2, J3, J4} is a Γ-round-up quadruple,
we know that I intersects, say, J3 in a k-space K3. We will construct I ′ as a hyperplane
of I. Our construction depends on dim(I ∩ J4).

First case: dim(I ∩ J4) /∈ {k, k + 1}.
This is an easy case. Indeed, first note that K3 6⊆ 〈K1, K2〉 by our main assumption. We
can thus consider a hyperplane I ′ of I containing 〈K1, K2〉 and not containing K3.

Second case: I ∩ J4 = K4 is k-dimensional.
In this case we know that none of K3, K4 is contained in 〈K1, K2〉, and hence 〈K1, K2〉
is not a hyperplane of I, as otherwise I ′ = 〈K1, K2〉 satisfies our needs. So we can first
choose an (i−2)-space I ′′ through 〈K1, K2〉 neither containing K3, nor K4. If 〈I ′′, K3, K4〉
has dimension i − 1, then a hyperplane of I through I ′′ distinct from 〈I ′′, K3, K4〉 does
the job. If 〈I ′′, K3, K4〉 = I, then we can consider a line L intersecting K3 and K4 in
respective distinct points and not intersecting I ′′. Now the space 〈I ′′, p〉, with p a point
on L not in K3 ∪K4 is an (i− 1)-space meeting our conditions.

Third case: dim(I ∩ J4) = k + 1.
Put R4 = I ∩ J4. If K3 is not contained in 〈K1, K2, R4〉, then we find a hyperplane I ′

of I through 〈K1, K2, R4〉 not containing K3 and we are done. So we may assume that
K3 is contained in 〈K1, K2, R4〉. As in the previous case (for instance, considering a k-
space in R4), it is easy to see that we can find a hyperplane I1 of I containing K1, K2,
not containing K3 and intersecting R4 in a k-space K4. Notice that K4 is not contained
in 〈K1, K2〉 by assumption, so we can find an (i − 2)-space I ′1 containing 〈K1, K2〉 and
intersecting K4 in a (k−1)-space K ′4. Hence I ′1∩J1 = K1, I ′1∩J2 = K2, dim(I ′1∩J3) ≤ k−1
and dim(I ′1 ∩ J4) = k − 1. In Res(I ′1), the spaces 〈J1, I

′
1〉/I ′1, 〈J2, I

′
1〉/I ′1 and 〈J4, I

′
1〉/I ′1

have dimension j − k − 1, j − k − 1 and j − k, respectively. Since j − k < n− i, we can
find a point in <s(I ′1) , which avoids these three subspaces, and also avoids 〈J3, I

′
1〉/I ′1 in

case dim(I ′1 ∩ J3) = k− 1 (the union of two hyperplanes and two subhyperplanes is never
the entire space for |L| > 2). That point corresponds to an (i − 1)-space I ′, which does
the trick, interchanging the roles of J3 and J4.

So in all three cases, we found an (i − 1)-space I ′, and in Res(I ′), the spaces 〈J1, I
′〉/I ′,

〈J2, I
′〉/I ′ and 〈J3, I

′〉/I ′ have dimension j − k − 1, j − k − 1 and j − k, respectively.
As in the third case above, we can find a point in Res(I ′) which avoids these three
subspaces, and which also avoids 〈J4, I

′〉/I ′ in case dim(I ′ ∩ J4) = k − 1. This point
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corresponds to an i-space I∗ intersecting J1 and J2 in k-spaces, intersecting J3 in a (k−1)-
space, and intersecting J4 in a space of dimension distinct from k. This contradiction to
{J1, J2, J3, J4} being a Γ-round-up quadruple concludes the proof of the lemma. �

We now show that the Ja, a ∈ {1, 2, 3, 4}, pairwise intersect in a common space. This is
the analogue of Lemma 3.8.

Lemma 3.14 If {J1, J2, J3, J4} is a Γ-round-up quadruple, then J1 ∩ J2 = J2 ∩ J3 =
J3 ∩ J4 = J1 ∩ J3 = J2 ∩ J4 = J1 ∩ J4.

Proof Let the maximum dimension of Ja ∩ Jb, {a, b} ⊆ {1, 2, 3, 4}, a 6= b, be `. There
are two possibilities.

1. Suppose ` ≥ k. We may assume dim(J1 ∩ J2) = `. By Lemma 3.13, every k-
space contained in J1 ∩ J2 is also contained in J3 ∪ J4. Since J1 ∩ J2 cannot be the
union of J1 ∩ J2 ∩ J3 and J1 ∩ J2 ∩ J4 unless one of the latter two spaces coincides
with J1 ∩ J2, we may assume that J1 ∩ J2 ⊆ J3. By maximality of `, we already
have J1 ∩ J2 = J3 ∩ J1 = J2 ∩ J3. Now we choose a k-space K in J1 ∩ J2 and
a point p ∈ J3 \ J1. Applying Lemma 3.1 in Res(〈K, p〉), we find an i-space Ip
containing 〈K, p〉, intersecting J1 and J2 precisely in K, intersecting J3 in 〈K, p〉,
and disjoint from J4 \J3 (note that dim Res(〈K, p〉) = n−k−2, dim〈J1, p〉/〈K, p〉 =
dim〈J2, 〉/〈K, p〉 = j − k − 1, dim J3/〈K, p〉 = j − k − 2, dim〈K, J4, p〉/〈K, p〉 ≤ j,
and dim Ip/〈K, p〉 = i− k − 2).

It follows that Ip∩J4 is a k-space. But Ip∩J4 ⊆ 〈K, p〉, by construction. So J4∩J3

contains a k-space contained in 〈K, p〉. If J2 ∩ J3 ∩ J4 has dimension ≤ `− 2, then
we can choose K such that K ∩ J4 is at most (k − 2)-dimensional, a contradiction.
Hence J2∩J3∩J4 has dimension `−1 (if it had dimension `, the lemma was proved).
So 〈J2∩J3, J3∩J4〉 has dimension at most `+1. If dim〈J2∩J3, J3∩J4〉 < j, then by
picking p outside 〈J2∩J3, J3∩J4〉, we again obtain a contradiction. Hence `+1 = j
and so dim(J3 ∩ J4) = `. By maximality of ` we can repeat the argument of the
previous paragraph, and conclude that either J1 or J2 must contain J3 ∩ J4, clearly
a contradiction. Hence J2 ∩ J3 ∩ J4 is `-dimensional after all, proving the lemma in
this case.

2. Suppose ` < k. Let m ≤ ` be the maximal dimension of J1 ∩ Ja, a = 2, 3, 4
and suppose dim(J1 ∩ J2) = m. Let Kb be any k-space in Jb containing J1 ∩ J2,
b = 1, 2. By Lemma 3.13, the subspace 〈K1, K2〉 intersects one of J3, J4, say J3,
in a k-subspace K3. As in the second part of the proof of Lemma 3.8, we deduce
J1 ∩ J3 = K1 ∩K3. If this equals J1 ∩ J2, then fine. Otherwise we choose another k-
space K ′1 in J1 containing J1∩J2 and not containing K1∩K3. Then either the space
〈K ′1, K2〉 intersects J3 in a k-space (and then the same argument as in the second
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part of the proof of Lemma 3.8 leads to J1 ∩ J2 = J2 ∩ J3 = J3 ∩ J1), or 〈K ′1, K2〉
intersects J4 in a k-space K4. Then J1 ∩ J4 = K ′1 ∩K4. If the latter equals J1 ∩ J2,
then fine again. Otherwise we choose a k-space K ′′1 in J1 containing J1 ∩ J2 and
neither containi ng K1∩K3 nor K ′1∩K4. Then 〈K ′′1 , K2〉 intersects one of J3, J4, say
J3, in a k-space, and the same argument as above leads to J1∩J2 = J2∩J3 = J3∩J1.

Hence in any case we may assume that J1 ∩ J2 = J2 ∩ J3 = J3 ∩ J1 (possibly by
interchanging the roles of J3 and J4). Now let f be the maximal dimension of
J4 ∩ Jc, c = 1, 2, 3. If f = −1 and m ≥ 0, then the second part of the proof of
Lemma 3.9 can be copied and applied to J1, J2, J3 and thus yields a contradiction.
If f = m = −1 = `, then the lemma is proved. Hence we may assume that f ≥ 0
and m ≥ 0 by symmetry. By the arguments above (interchanging J1 and J4, and f
and m), we may assume that J2 ∩ J3 = J3 ∩ J4 = J4 ∩ J2. But then m = f = ` and
by maximality of `, J1 ∩ J4 is not bigger than J1 ∩ J2, hence coincides with it.

The lemma is proved. �

We can modify the proof of Lemma 3.9 to prove the following lemma.

Lemma 3.15 Every Γ-round-up quadruple {J1, J2, J3, J4} is a regular round-up quadru-
ple.

Proof By Lemma 3.14, we know Ja ∩ Jb = Jc ∩ Jd, for all a, b, c, d ∈ {1, 2, 3, 4}, a 6= b
and c 6= d. Put ` = dim(J1 ∩ J2). There again are two possibilities to consider separately.

1. Assume ` ≥ k. Let pa ∈ Ja \ J3 be arbitrary, a = 1, 2. For a = 1, 2, choose a
k-space Ka containing pa and intersecting J1 ∩ J2 in a (k− 1)-space, with the latter
independent of a. Lemma 3.13 implies that the (k + 1)-space 〈K1, K2〉 intersects
either J3 or J4 in k-space K intersecting J1 ∩ J2 in K1 ∩ K2. Hence the line p1p2

intersects K, and hence either J3 or J4, in a point. Lemma 3.5 shows the assertion.

2. As in the proof of Lemma 3.9, we prove that the situation ` < k leads to a contradic-
tion. Indeed, the argument is similar to the argument in the second part of the proof
of Lemma 3.9, but we consider three k-subspaces K1, K

′
1, K

′′
1 in J1 through J1 ∩ J2

contained in a common (k + 1)-space, choose a k-space K2 ⊆ J2 with J1 ∩ J2 ⊆ K2

and note that at least two of 〈K1, K2〉, 〈K ′1, K2〉, 〈K ′′1 , K2〉 intersect the same sub-
space among J3, J4 in k-spaces. Then we argue as in the second part of the proof
of Lemma 3.9 and derive a contradiction.

This completes the proof of the lemma. �
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As in the previous subsection, we can now again define Γ1 with vertex set the set of
j-spaces, and adjacency being contained in a common Γ-round-up quadruple. The graph
Γ1 has two distinguishable kinds of maximal cliques which we use to define the graph Γ2,
isomorphic to Γn[j−1,j+1](L). Recall that Γ2 is tripartite and that the triparts correspond
to j-subspaces and the two kinds of maximal cliques in Γ1. We define a j-Grassmann
line as the set of j-spaces contained in a given Γ-round-up quadruple Q, or forming such
a quadruple with any three members of Q. Alternatively, these are the intersections of
a member of one class with a member of the other class of maximal cliques of Γ1 if this
intersection contains at least two elements.

Let I be an i-space intersecting some j-space J of a given maximal clique Q in a k-space
K. There are four possibilities.

(1) The clique Q consists of all j-spaces through a given (j − 1)-space J ′ and K ⊆ J ′.
Then I is Γ-adjacent to either none, all, or all but one members of an arbitrary
j-Grassmann line in Q.

(2) The clique Q consists of all j-spaces through a given (j−1)-space J ′ and K ∩J ′ has
dimension k − 1. Then I is Γ-adjacent to either none, exactly one, or all members
of an arbitrary j-Grassmann line in Q.

(3) The clique Q consists of all j-spaces in a given (j + 1)-space J ′′ and dim(I ∩ J ′′) =
k+1. Then I is Γ-adjacent to either none, all, or all but one members of an arbitrary
j-Grassmann line in Q.

(4) The clique Q consists of all j-spaces in a given (j + 1)-space J ′′ and I ∩ J ′′ = K.
Then I is Γ-adjacent to either none, exactly one, or all members of an arbitrary
j-Grassmann line in Q.

If we define the bipartite graph with vertices at the one hand the i-spaces and at the
other hand the maximal cliques of fixed type, and we define an i-space I and a clique Q
to be adjacent if I is Γ-adjacent to either none, all, or all but one members of an arbitrary
j-Grassmann line in Q, then in Case (1) we denote the graph Γ−1

∀−1
and it is isomorphic

to Γni,j−1;k(L); in Case (3) we denote it by Γ+1
∀−1

and it is isomorphic to Γni,j+1;k+1(L).

If we now define an i-space I and a clique Q to be adjacent if I is Γ-adjacent to either
none, exactly one, or all members of an arbitrary j-Grassmann line in Q, then in Case
(2) we denote the graph Γ−1

∃1 and it is isomorphic to Γni,j−1;k−1(L); in Case (4) we denote

it by Γ+1
∃1 and it is isomorphic to Γni,j+1;k(L).

We can again repeat these four constructions to the appropriate graphs and obtain, with
self-explaining notation, the following isomorphisms.

Γ−m∃1
∼= Γni,j−m;k−m(L), Γ+m

∃1
∼= Γni,j+m,k(L),

Γ−m∀−1

∼= Γni,j−m,k(L), Γ+m
∀−1

∼= Γni,j+m,k+m(L),
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for all natural m for which these make sense.

The smallest m for which the next graph in the series Γ−m
′

∃1 cannot be defined (since
every i-space adjacent to at least one member of the appropriate maximal clique, is
always adjacent to all but one members of a (j −m− 1)-Grassmann line), is m = k + 1.
Similarly, the smallest m for which the next graph in the series Γ+m′

∃1 becomes void is
m = n+ k− i− j, since an i-space and an (n+ k− i+ 1)-space inside an n-space always
meet in at least a (k+ 1)-space (and this does not hold for the previous step!). As in the
previous section, this determines k and n− i− j uniquely.

Now completely similar to the previous section, the smallest value of m for which Γ−m∀−1

becomes an empty graph is j−k+ 1, and the smallest value of m for which Γ+m
∀−1

becomes
empty is i− k + 1. This determines i and j, and so we determined all values i, j, k, n.

The proofs of the Main Results are complete now.

We mention the following special case of Main Result 2.1. Suppose −1 ≤ k ≤ j ≤ n− 1,
j 6= −1 and recall that Γnj;k(L) denotes the graph of j-spaces of PG(n,L) where two
j-spaces are adjacent if they intersect in a k-space.

Corollary 3.16 Let L and L′ be two skew fields, and let −1 ≤ k ≤ j ≤ n− 1, −1 ≤ k′ ≤
j′ ≤ n′ − 1 be integers, with −1 /∈ {j, j′} and n ≥ 2.

(i) If j = n− 1 and k = n− 2, or j = 0 and k = −1, then Γnj;k(L) is a complete graph.

(ii) If n+ k < 2j or j = k, then Γnj;k(L) is an empty graph.

(iii) If L ∼= L′, n = n′, j′ = n− 1− j and k′ = n− 1 + k − 2j, then Γnj;k(L) ∼= Γn
′

j′;k′(L′).

(iv) If 2j ≤ n−1, −1 ≤ k < j, (k, j) 6= (−1, 0) and 2j′ ≤ n′−1, then Γnj;k(L) ∼= Γn
′

j′;k′(L′)
if and only if L ∼= L′ and (j, k, n) = (j′, k′, n′). In this case every graph isomorphism
is induced by a semi-linear bijection from Vn(L) to Vn′(L′), or possibly to V ∗n′(L′)
(the dual of Vn′(L′)) if 2j = n − 1 and L′ ∼= (L′)∗ (the latter is the opposite skew
field).

Proof Again by taking bipartite double of the graphs in question and then applying
Main Result 2.1. �

Remark 3.17 In the statements of all our results, we may substitute “graph isomor-
phism” by “graph epimorphism”, where epimorphism means a surjective mapping on the
vertices such that two vertices in the source graph are adjacent if and only if their images
are adjacent. Indeed, if there would exist a non-bijective graph epimorphism, then there
are two vertices in the source graph with exactly the same neighborhood set. But it is
trivial to see that this is impossible for all the graphs we defined, as soon as they are
nontrivial.
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4 The finite and the thin case

4.1 The finite case

In the finite case, there is a shortcut to prove our main results, though very un-algorithmic,
but rather efficient.

It follows from the main result and Table VI in [10] that PΓL(n + 1, q), extended with a
duality whenever possible, is a maximal subgroup of the symmetric or alternating group
Sym(N),Alt(N), where N is the number of j-spaces of PG(n, q), except possibly when
q ∈ {2, 3} and N = qm−1(qm− 1)/(2, q− 1). But in this case, N can never be the number
of j-spaces of PG(n, q), for any j, since this number is never divisible by q. Hence, if the
automorphism group of the graph Γni,j;k(q) or Γni,j;≥k(q), with the appropriate restrictions
to make the graph nontrivial, were larger than the corresponding group induced by semi-
linear permutations, then the full symmetric or alternating group would act on at least
one of the bipartition classes. We now claim that this implies that the graph is complete
bipartite, which is a contradiction. Indeed, we have the following lemma.

Lemma 4.1 Let v1, v2 be two distinct vertices of one of the nontrivial graphs Γni,j;k(q) or
Γni,j;≥k(q) in the same bipart, then there are at least two neighbors of v1 not adjacent to
v2.

Proof For Γni,j;k(q), k > −1, and Γni,j;≥k(q), with i+ j ≤ n+ 1, this follows immediately
from the easy fact that, for every pair v1, v2of j-spaces (i-spaces) there exists a pair w1, w2

of k-spaces contained in v1 but not in v2. For Γni,j;−1(q), this follows from the previous
fact for Γni,j;0(q) and with the roles of v1 and v2 interchanged. �

Now let v be a vertex of Γni,j;k(q) or Γni,j;≥k(q). Let w be a neighbor of v, and let w′ be an
arbitrary vertex in the same bipart as w, but not adjacent to v. Let θ be an automorphism
of the graph stabilizing the set of neighbors of v distinct from w, and mapping w onto w′

(which exists since the alternating group acts as an automorphism group on each bipart).
By the previous lemma, v is fixed, and so v is adjacent to w′. Varying v and w′, we see
that the graph is complete bipartite, proving our claim.

This in particular proves Main Result 2.1 for |L| = q = 2. The graphs Γni,j;k(2) and
Γni,j;≥k(2), with the appropriate restrictions, are not isomorphic to any other graph of
type III because it has a different automorphism group. These graphs are mutually non-
isomorphic because they pairwise have different orders (cardinalities of the biparts) and
bi-valences (we leave the details to the reader).
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4.2 The finite thin case

The same argument works in the thin case, except that Sym(2n−1) acting on all (n−1)-
subsets of a (2n− 1)-set is not maximal in Sym(1

2

(
2n
n

)
) (indeed, it is contained in Sym(2n)

acting on partitions of sizes n, n of a 2n-set), giving rise to a counter example, and there
are three other small exceptions, one of which also gives rise to a counter example. We
now provide the details.

Let Ω(n) be an n-set and let Ωj be the set of all j-subsets of Ω, 0 ≤ j ≤ n. Suppose i, j, k
are integers with 0 ≤ k ≤ i ≤ j ≤ n− 1 and let Γni,j;≥k and Γni,j;k be the bipartite graphs
with biparts Ωj and Ωi, where a j-subset is adjacent to an i-subset if their intersection is
of size at least k and precisely k, respectively. For convenience, we also denote Γni,j;k by
Γnj,i;k and Γni,j;≥k by Γnj,i;≥k, 0 ≤ k ≤ i ≤ j ≤ n− 1.

Theorem 4.2 Let 0 ≤ k ≤ i ≤ j ≤ n− 1 and 0 ≤ k′ ≤ i′ ≤ j′ ≤ n′ − 1 be integers with
0 /∈ {i, i′} and n ≥ 2.

(i) If i = j = k ≥ 1, then Γni,j;k and Γni,j;≥k are matchings; if i+ j = n and k = 0, then
Γni,j;k is a matching.

(ii) If i = j = n − 1 = k + 1 or i = j = 1 = k + 1, then Γni,j;k is the complement of a
matching.

(iii) If n+ k < i+ j, then Γni,j;k is an empty graph; if n+ k ≤ i+ j or k = 0, then Γni,j;≥k
is a complete bipartite graph.

(iv) If k = i+ j+ 1−n, then Γni,j;≥k is the bipartite complement of Γni,j;k−1; if i = k, then
Γni,j;≥k

∼= Γni,j;k.

(v) If n = n′, j′ = n− j and k′ = i− k, then Γni,j;k
∼= Γn

′

i,j′;k′ and Γni,j;≥k is the bipartite

complement of Γn
′

i,j′;≥k′+1.

(vi) If i, j ≤ n/2, k < j, k ≤ i/2 if j = n/2, i′, j′ ≤ n′/2, k ≤ i′/2 if j′ = n′/2,
then Γni,j;k

∼= Γn
′

i′,j′;k′ if and only if (i, j, k, n) = (i′, j′, k′, n′). In this case every graph

isomorphism is induced by a bijection from Ω(n) to Ω(n′) (this is also trivially true
for (i, j, k) = (i′, j′, k′) = (1, 1, 1)), except if (n, i, j, k) = (6, 2, 2, 1), where one can
compose with an arbitrary collineation belonging to L4(2) acting on the points of
PG(3, 2), and except if (n, i, j, k) = (4n∗ − 1, 2n∗ − 1, 2n∗ − 1, n∗ − 1), with n∗ ≥ 2
an integer, where the full automorphism group is Sym(4n∗) acting on the (2n∗, 2n∗)-
partitions of a 4n∗-set.
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(vii) If i, j ≤ n/2, 0 6= k < j, k ≤ (i + 1)/2 if j = n/2, i′, j′ ≤ n′/2, and k ≤ (i′ + 1)/2
if j′ = n′/2, then Γni,j;≥k

∼= Γn
′

i′,j′;≥k′ if and only if (i, j, k, n) = (i′, j′, k′, n′). In this

case every graph isomorphism is induced by a bijection from Ω(n) to Ω(n′) (the latter
is also trivially true for (i, j, k) = (i′, j′, k′) = (1, 1, 1)).

Proof The assertions (i) up to (v) are easy to check. We now prove (vi) and (vii). As
before, it suffices, under the given conditions, to reconstruct (i, j, k, n) from the graphs
Γni,j;k and Γni,j;≥k.

Suppose we know that the automorphism group of Γni,j;k or Γni,j;≥k is Sym(n). Then we
already know n. From the sizes of the biparts we deduce i and j, and then the bi-valence
of the graph reveals k. Hence it suffices to show that the automorphism group of Γni,j;k
and Γni,j;≥k is Sym(n).

Noting that no two vertices of Γni,j;k or Γni,j;≥k have exactly the same set of neighbors, it
suffices to show that the automorphism group induced on one of the biparts is Sym(n).
This follows immediately if Sym(n) is a maximal subgroup of the symmetric group acting
on
(
n
j

)
or
(
n
i

)
letters. Now according to [10], this is the case, except possibly in the

following cases (under the restrictions of (vi) and (vii) of Theorem 4.2):

(n, i, j) ∈ {(6, 2, 2), (10, 3, 3), (12, 4, 4), (2`− 1, `− 1, `− 1) : ` ∈ N, ` ≥ 3}.

• (n, i, j) = (6, 2, 2).

This is an easy case, as up to taking bipartite complement, we may suppose we
have Γ6

2,2;0 or Γ6
2,2;1 (and we can distinguish these by their valences, which are 6 and

8, respectively). For Γ6
2,2;0, two vertices of the same bipart correspond to disjoint

pairs if they have exactly one neighbor, and to intersecting pairs if they have three
common neighbors. If we define a graph on one bipart by declaring two vertices
adjacent if they have three common neighbors in Γ6

2,2;0, then we can recover the
3-subsets as the maximal cliques of size 3 of that graph. Hence we can derive Γ6

2,3;2,
which is not in our list of exceptions, and the result follows. For Γ6

2,2;1, we note that
the vertices of one bipart adjacent to a vertex of the other bipart can be considered
as the points of the unique generalized quadrangle of order 2 opposite (non-collinear
to) a given point. In PG(3, 2), these sets are just all complements of planes, hence
L4(2) acts on Γ6

2,2;1, and Sym(6) is contained in it as Sp4(2).

• (n, i, j) = (10, 3, 3).

In the case there are essentially four different cases: Γ10
3,3;k, for k = 0, 1, 2, and

Γ10
3,3;≥2. These graphs can again be distinguished by their valences (these are 35, 63,

21 and 22, respectively). In the cases k = 0, 2, the number of common neighbors of
two triples in the same bipart is equal to 4, 10 or 20, and to 0, 4 or 8, respectively,
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according to whether the triples have exactly no, exactly one, or exactly two points
in common. Hence on each bipart the structure of Γ10

3;2 can be recovered. The
maximal cliques of size 8 in that graph correspond with pairs of Ω(10), and so we
can uniquely build Γ10

3,2;2, which is not in our list of possible exceptions.

If k = 1, an interesting phenomenon occurs: the graph on any bipart where two
vertices are adjacent when they have exactly 30 neighbors is a strongly regular graph
(120, 63, 30, 36). Hence we can only recover Γ10

3;1. But the maximal cliques of size
7 of that graph clearly correspond to 7-sets of Ω(10) (where they induce a Fano
plane), and there is one vertex not adjacent to any seven of these vertices. Such
a vertex corresponds to a triple which is disjoint from all triples in the maximal
clique. So we can recover when two triples are disjoint, after all, and hence when
they share 2 elements, too. The argument of the previous paragraph now applies.

Concerning Γ10
3,3;≥2, the number of common neighbors of two triples in the same

bipart is equal to 0, 4 or 10, respectively, according to whether the triples have
exactly no, exactly one, or exactly two points in common. The same argument as
above now applies.

• (n, i, j) = (12, 4, 4).

Here are essentially six possibilities, namely Γ12
4,4;k, k = 0, 1, 2, 3, and Γ12

4,4;≥`, ` = 2, 3.
The valences again tell us these cases apart (the valences are 70, 224, 168, 32, 201
and 33, respectively). In the following table, where the rows and columns of the
upper 4 × 4 square are numbered from 0 to 3, the (i, j)-entry is the number of
common neighbors of two vertices of the same bipart in Γ12

4,4;i which correspond
to 4-sets of Ω(12) intersecting in a j-set. The two bottom rows tell us in the jth
position exactly the same for the graphs Γ12

4,4;≥`, ` = 2, 3. The labels are written on
the left and the top and are self-explaining.

0 1 2 3
0 1 5 15 35
1 96 100 100 126
2 36 54 64 84
3 0 0 4 10
≥ 2 36 72 102 138
≥ 3 0 0 4 12

It follows from the last column of this table that in each bipart we can uniquely
and unambiguously construct Γ12

4;3 (the vertices are the 4-sets of Ω(12) and two 4-sets
are adjacent if they intersect in a 3-set). It is easy to see that we can identify the
3-subsets with the maximal cliques of Γ12

4;3 consisting of 9 vertices. Hence we can
build Γ12

3,4;3, which is not in the list of possible exceptions.
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• (n, i, j) = (2`− 1, `− 1, `− 1), ` ∈ N, ` ≥ 3.

In this case, it follows from Table III of [10] that the only way in which Sym(2`− 1)
is not the full automorphism group of Γni,j;k or Γni,j;≥k is when Sym(2`) is the full
automorphism group and we can represent the vertices of our graph as the (`, `)-
partitions of Ω(2`), with “induced” adjacency. We now take a closer look at this
induced adjacency. Suppose two (` − 1)-sets of Ω(2`−1) intersect in a set of size m.
Then the partition classes of the corresponding (`, `)-partitions of Ω(2`) intersect
in sets of sizes m + 1 and ` − m − 1. Conversely, if the partition classes of two
(`, `)-partitions of Ω(2`) intersect in sets of sizes m + 1 and ` − m − 1, then the
corresponding (`− 1)-sets of Ω(2`−1) intersect in a set of size either m or `−m− 2.

From this we easily deduce that the automorphism group of a graph Γni,j;k or Γni,j;≥k
is Sym(2`) if and only if whenever two vertices are adjacent as soon as the corre-
sponding subsets intersect in a set of size m, then the two vertices corresponding to
subsets intersecting in a set of size ` −m − 2 are also adjacent. This is never the
case for Γni,j;≥k and only the case for Γni,j;k if k = `− k − 2; hence if k = (`− 2)/2.

This completes the proof of the theorem. �

Similarly to Corollaries 3.12 and 3.16, one has also a corollary to Theorem 4.2. We will not
explicitly mention it, but the reader can easily state it for himself. We content ourselves
by mentioning that all automorphisms of the graphs Γnj;≥k where vertices are the j-subsets

of Ω(n), adjacent if they share at least k elements (1 ≤ k < j ≤ n − 1) and Γnj;k with
same vertex set but adjacency now defined as the intersection exactly being a k-subset,
are induced by ordinary permutations of Ω(n), except that the automorphism group of
Γ

(4n∗−1)
2n∗−1;n∗−1 is Sym(4n∗). The graph Γ6

2;1 is not an exception here because we can consider
the extended bipartite double, which is the bipartite complement of Γ6

2,2;0, and the latter
has no exceptional behavior. Note, however, that the ordinary bipartite double of Γ6

2;1 is
Γ6

2,2;1, and this pai r consti tutes an example of a connected non-bipartite graph whose
automorphism group is much smaller than that of its bipartite double (usually the size
of the automorphism group of the bipartite double is just twice the size of the original
graph).

4.3 The infinite thin case

Finally, we take a look at the analogue of the thin case for an infinite set. Let 0 ≤ k ≤ i ≤
j, with k < j be integers and let Ω be any infinite set. Let the graph ΓΩ

i,j;k be the bipartite
graph with vertices the i-subsets and the j-subsets of Ω, where an i-set is adjacent to a
j-set if they intersect in a k-set. Similarly we define ΓΩ

i,j;≥k in the obvious way, and also
ΓΩ
j;k and ΓΩ

j;≥k.

We first show the following.
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Proposition 4.3 The elements of Ω are recoverable from ΓΩ
j;k, 0 < k < j. In particular,

every graph automorphism is induced by a permutation of Ω.

Proof We first reconstruct the k-subsets of Ω. We claim that an infinite clique in the
graph corresponds to an infinite number of j-subsets containing a fixed k-subset.

Indeed, let C be an infinite clique and suppose by way of contradiction that there are
three members of the clique, say J1, J2, J3 with J1 ∩ J2 6= J2 ∩ J3. Let J be an arbitrary
member of the clique distinct from J1, J2, J3. If |J ∩ (J1 ∪ J2 ∪ J3)| = k, then clearly this
k-subset must be contained in J1∩J2∩J3, a contradiction. Hence |J ∩ (J1∪J2∪J3)| > k.
We now have infinitely many choices for J and only a finite number of choices (bounded
by 23j) for the intersection J∩(J1∪J2∪J3). It follows that there are two j-subsets J, J ′ in
the clique intersecting J1∩J2∩J3 in the same set. But then |J ∩J ′| > k, a contradiction.

Now the transitive closure of the relation “shares at least two members” among the infinite
cliques of the graph defines an equivalence relation whose classes are in natural bijective
correspondence with the k-subsets. Hence we can reconstruct the bipartite graph ΓΩ

k,j

of k-sets and j-sets, where adjacency is given by symmetrized inclusion. Note that the
valence of a vertex corresponding to a j-subset is

(
j
k

)
.

We can recognize the (k + 1)-subsets as the sets with minimal > 1 number of common
neighbors of two j-subsets (and then they have exactly k + 1 common neighbors). This
way we determine k, and since we know

(
j
k

)
already, we also know j. But we also recognize

ΓΩ
k+1,k. Now, two vertices representing (k+1)-subsets are at distance 2k from one another

if and only if they intersect in a single element. This relation defines ΓΩ
k+1;1. As in the

beginning of this proof, we can now reconstruct ΓΩ
k+1,1, telling us exactly which elements

are contained in each (k + 1)-set.

This proves the proposition. �

Now let 0 ≤ k ≤ i ≤ j, with k < j and let Γ be either isomorphic to ΓΩ
i,j;k or isomorphic

to ΓΩ
i,j;≥k (where Ω is an infinite set of any cardinality). Let A be an infinite set of vertices

belonging to the same bipart of Γ. Then we say that A is an `-star, ` ∈ N \ {0}, if it
satisfies the following properties.

(S1) If v is a vertex belonging to the other bipart, then v is either adjacent to exactly
` + 1 members of A, or not adjacent to exactly ` members of A, or adjacent to no
members of A.

(S2) For every subset A ⊂ A containing exactly ` + 1 elements, there exists a finite
nonzero number of vertices v of Γ such that v is adjacent to every member of A and
not adjacent to every member of A \ A.

(S3) For every subset B ⊂ A containing exactly ` elements, there exists a finite nonzero
number of vertices v of Γ such that v is not adjacent to every member of B and
adjacent to every member of A \B.
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Also, we say that A is an `-flower, ` ∈ N \ {0}, if it satisfies the following properties.

(F1) If v is a vertex belonging to the other bipart, then v is either adjacent to exactly
`+ 1 members of A, or adjacent to all members of A, or adjacent to no members of
A.

(F2) For every subset A ⊂ A containing exactly ` + 1 elements, there exists a finite
nonzero number of vertices v of Γ such that v is adjacent to every member of A and
not adjacent to every member of A \ A.

(F3) There are infinitely many vertices adjacent to all members of A.

Finally, A will be called an i-regular star if it consists of the vertices corresponding to all
i-sets of Ω containing a fixed (i− 1)-set. Similarly for a j-regular star. If i = 1, then an
i-regular star coincides with Ω.

Basically, we want to show that the graphs ΓΩ
i,j;k contain unique `-stars, with ` ∈ {j−k, i−

k}, which are either i-regular or j-regular stars. Moreover these graphs do not contain
any `-flowers. Also, we want to show that the graphs ΓΩ

i,j;≥k contain unique `-flowers, with
` ∈ {j − k, i− k}, which are either i-regular or j-regular stars. Moreover these graphs do
not contain any `-stars. But first we isolate some more-or-less trivial cases.

Given Γ (with k ≤ i ≤ j, k < j), we can easily decide whether k = i or not; indeed,
k = i if and only if the valence of the vertices of one bipart is finite. In this case, we
make a new graph by throwing away the bipart with infinite valence and declare two
remaining vertices adjacent when they have a unique common neighbor in Γ. The graph
thus obtained is clearly isomorphic to ΓΩ

j;i, and we can apply Proposition 4.3. Hence every
graph automorphism of ΓΩ

i,j;≥i
∼= ΓΩ

i,j;i is induced by a permutation of Ω.

Also, one checks that the only cases in which there are vertices with finite covalence
(meaning that there are only a finite number of vertices of the other bipart not adjacent
to a vertex of one bipart) are the cases of the graphs ΓΩ

1,j;0, j ≥ 1. But in these cases, clearly
every graph automorphism of the bipartite complement is induced by a permutation of
Ω.

So from now on, we may assume that no vertex has finite valence nor finite covalence.

Finally, we can isolate the graphs Γ ∼= ΓΩ
i,j;0 (case k = 0) from the rest as follows.

Lemma 4.4 In each of the graphs ΓΩ
i,j;k and ΓΩ

i,j;≥k with k > 0, there exists in each bipart
a finite set of vertices not adjacent with a common vertex. But in the graph ΓΩ

i,j;0 each
finite set of vertices contained in one of the biparts is adjacent to some vertex.
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Proof In the bipart of the i-subsets one can consider a set S of j+ 1 disjoint i-subsets.
Then an arbitrary j-subset can intersect at most j members of S nontrivially. Hence, if
k > 0, no vertex is adjacent to all members of S. The same thing is true for i and j
interchanged. However, if we consider any finite number of i-subsets, then we can always
find a j-subset disjoint from all these i-subsets. And the same thing holds for i and j
interchanged. This proves the lemma. �

If k = 0, then we consider the complement of the graph ΓΩ
i,j;0, which is ΓΩ

i,j;≥1. So we may
assume k > 0 from now on.

Proposition 4.5 If Γ ∼= ΓΩ
i,j;k, with 1 ≤ k < i ≤ j, then every `-star, ` ≥ 0, is either a j-

regular star, or an i-regular star (and both occur), and ` = i−k or ` = j−k, respectively.
Also, Γ does not contain `-flowers, for any natural `.

Proof To fix the ideas, we assume that A is an `-star or `-flower contained in the bipart
corresponding to the j-sets. We will cease to assume i ≤ j in order to treat the case of
i-sets at the same time (but we do assume k < j).

By assumptions (S3) and (F3), there is an i-set I adjacent to every member of an infinite
subset A0 of A. Since k > 0, since every member of A0 intersects I in exactly k elements
of Ω, and since I contains a finite number of k-subsets, there must be some k-subset
K ⊆ I contained in every member of an infinite subset AK ⊆ A0. Let X ⊇ K be a set
with the property that the set AX of elements of AK that contain X has infinitely many
elements. Clearly |X| ≤ j − 1, and K has this property. Hence we can pick a maximal
set X with that property. It follows that for any p ∈ Ω \ X, the number of elements
of AX containing p is a finite number np. An easy consequence of that fact is that for
every finite subset C ⊆ Ω \ X, there exist infinitely many members of AX missing C,
and only a finite number of members of AX meet C nontrivially. Hence a str aightfor
ward inductive argument implies that for any positive integer m, we can find a subset
Am ⊆ AX of cardinality m such that no member of AX intersects two members of Am
nontrivially outside X, and such that Am contains an arbitrary given member of AX .

fine na as nx for all x ∈ Ja, a = 1, 2, . . . , i. Now, since i > 1, we can remove from I
the element in J2 and add a second element of J1. The obtained i-set I ′ is not adjacent
to at most ` − n2 + (n1 − 1) members of A; hence n2 ≤ n1 − 1. Likewise n1 ≤ n2 − 1,
a contradiction. Hence there exists some element x ∈ Ω contained in infinitely many
members of A. A similar argument as in the previous paragraph leads to the existence
of a finite set X ⊆ Ω contained in all members of an infinite subset AX of A such that
every point p outside X is contained in finitely many (say, np) members of AX .

implies that I is adjacent to exactly i + 1 members of A. We then consider any (i + 1)-
subset A of AX . By (S2) there is an i-set I ′ disjoint from the union of A and intersecting
all other members of AX . Since I ′ ∩ X = ∅, this clearly contradicts the fact that I ′ is
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finite and AX is infinite. Hence A = AX . If np = 0 for some p ∈ Ω \X, then we consider
an i-set I ′′ containing p and disjoint from X and obtain that I ′′ is not adjacent to exactly
|{q ∈ I ′′ : nq = 1}| < i elements, a contradiction. Hence A is an i-star.

We consider Ai−k+1 and consider an i-set I such that |I ∩X| = k− 1 and |I ∩ J | = k, for
every J ∈ A. Then clearly, I is not adjacent with infinitely many members of AX , and
adjacent with at least i− k+ 1 6= 0 members of AX . It follows from (S1) and (F1) that I
is adjacent with exactly ` + 1 members of A, hence with at most ` + 1 members of AX .
This implies i− k ≤ `.

Now we consider Ai−k and consider an i-set I ′ such that |I ′ ∩X| = k and |I ′ ∩J | = k+ 1,
for every J ∈ A. Then clearly, I ′ is adjacent with infinitely many members of AX , and
not adjacent with at least i − k 6= 0 members of AX . This contradicts (F1), hence Γ
cannot contain an `-flower.

Consider A`. Then, by (S3), there is an i-set I ′′ not adjacent to all members of A` and
adjacent to everything else. It is easy to see that the latter implies |I ′′ ∩ X| = k. The
former implies that we can distribute the i−k elements of I ′′\X among the members of A`
such that every member gets at least one element. Hence i−k ≥ `, which yields i−k = `.
Also, it now follows that I ′′ contains exactly one element in J \ X, for each J ∈ A`.
Varying this element over J \ X (leading to different i-sets not adjacent with exactly
the same set of members of A), we see that for each point p ∈ J \ X, we have np = 1.
Since we could choose one of the elements of A` completely arbitrarily, we conclude that
np ∈ {0, 1}, for all p ∈ Ω \X.

If np = 1, for all p ∈ Ω \ X, then AX is an (i − k)-star and a j-regular star, and this
implies easily A = AX , which proves the assertion.

So we may assume that there exists a point p ∈ Ω\X with np = 0. Then clearly A 6= AX
as we can easily produce an i-set intersecting X in a (k−1)-set, containing a point p with
np = 0; and containing a point q with nq = 1 (this is possible since i ≥ k + 1); this i-set
is adjacent to at least one and at most i− k vertices of AX .

So let J ∈ A\AX . Then there is a point x ∈ X \J . We choose a k-set K in X containing
x. Then we choose i − k members of AX disjoint from J . In each of these members,
we choose a point not in X. The union of these points with K is an i-set I∗ which is
not adjacent with exactly i − k members of AX ; but I∗ is not adjacent with J , too, a
contradiction.

The assertion is proved. �

Proposition 4.6 If Γ ∼= ΓΩ
i,j;≥k, with 1 ≤ k < i ≤ j, then every `-flower, ` ≥ 1, is

either a j-regular star, or an i-regular star (and both occur), and ` = i− k or ` = j − k,
respectively. Also, Γ does not contain `-stars, for any natural `.
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Proof Let A be an `-flower or `-star in Γ. As before we assume that it consists of
j-sets, and we drop the assumption i ≤ j. Similarly as in the proof of Proposition 4.5,
there exists a set X ⊆ Ω, with k ≤ |X| ≤ j − 1, such that the set AX of members of
A containing X is infinite, and every element p ∈ Ω \ X is contained in finitely many
members of A.

Select ` members of AX arbitrarily. If A is an `-star, then by (S3), there exists an i-set I
adjacent to every member of AX except for the selected ` members. It is easily seen that
the fact that I is adjacent with infinitely members of AX implies that |I ∩X| ≥ k. But
then I is adjacent with every member of AX , a contradiction to ` ≥ 1. Hence A is an
`-flower.

Suppose now that there exists J ∈ A\AX . Then we can close a k-subset in X intersecting
J in less than k elements. We add i−k elements of Ω\(X∪J) and obtain an i-set adjacent
to every element of AX , but not to J , contradicting (F1). Hence A = AX .

Now we again define np as the number of members of A containing p, p ∈ Ω\X. Similarly
as in the proof of Proposition 4.5 (case k ≥ 1), one shows i− k ≤ `. Also, we can select
a set A of ` + 1 members of A pairwise intersecting in only X. Then (F2) implies that
there is some i-set I ′ adjacent to all members of A, and to no member of A \ A. The
latter implies that |I ′ ∩X| ≤ k− 1. Since every member of A must intersect I ′ in at least
k elements, the maximum value for ` + 1 is i − (k − 1); hence ` = i − k. Also, since we
can choose one member of A completely arbitrarily in A, we deduce that np = 1 as soon
as np 6= 0, for every p ∈ Ω \X. By deleting from I ′ an element outside X and replacing
it with some element q, also outside X, but with nq = 0, we obtain a contradiction and
have hence shown that np = 1, for all p ∈ Ω \X.

We now claim |X| = j − 1. Indeed, assume |X| ≤ j − 2. Let J ∈ A. We choose an i-set
I ′′ with exactly k − 1 elements in X and k + 1 elements in J . Then I ′′ is adjacent to at
least one, but at most i− (k − 2) members of A, a contradiction.

This completes the proof of the proposition. �

We can now show the following theorems.

Theorem 4.7 Let 0 ≤ k ≤ i ≤ j, with k < j and let Γ be either isomorphic to ΓΩ
i,j;k or

isomorphic to ΓΩ
i,j;≥k, k > 0 (where Ω is an infinite set of any cardinality). Then every

graph automorphism of Γ is induced by a permutation of Ω. Also, all graphs ΓΩ
i,j;k and

ΓΩ
i,j;≥k (with the given restrictions on the parameters) are pairwise non-isomorphic.

Proof We already discussed the cases in which there are vertices with either finite
valence or finite covalence. Hence we may assume that no vertex has finite valence or
finite covalence. Also, if for every finite set of one of the biparts, there exists a vertex
adjacent to all members of that set, then we know by Lemma 4.4 that k = 0, and we go on
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with the bipartite complement. Then Propositions 4.5 and 4.6 imply that the only `-stars
and `-flowers of Γ are j-regular stars and i-regular stars, which are (i−k)-stars or -flowers
and (j − k)-stars or -flowers, respectively. This determines i− k and j − k (if we went on
with the bipartite complement then this already determines all parameters of the original
graph ΓΩ

i,j;0). We consider one bipart B, say containing the vertices of the (i−k)-flowers or
-stars, and define a new bipartite graph Γi with B as one bipart, and the (i−k)-stars or -
flowers as o ther bip art. Adjacency is containment made symmetric. Then Γ′ ∼= ΓΩ

j−1,j;j−1

and the finite valence reveals j. Also, the assertion about the automorphism group now
follows from the discussion preceding Proposition 4.5. �

Theorem 4.8 Let 0 ≤ k < i and let Γ be either isomorphic to ΓΩ
i;k or isomorphic to

ΓΩ
i;≥k, k > 0 if i > 1 (where Ω is an infinite set of any cardinality). Then every graph

automorphism of Γ is induced by a permutation of Ω. Also, all graphs ΓΩ
i;k and ΓΩ

i;≥k (with
the given restrictions on the parameters) are pairwise non-isomorphic.

Proof If i = 1, this is trivial (and we also have trivial graphs). In the other cases,
the graphs are not trivial, and the theorem follows from the previous one by taking the
bipartite double. �

Again, in the above results, we may assume graph-epimorphisms instead of automor-
phisms, see also Remark 3.17.
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