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Abstract

We provide a combinatorial characterization of LG(3, 6)(K) using an axiom set
which is the natural continuation of the Mazzocca-Melone set we used to characterize
Severi varieties over arbitrary fields [10]. This fits within a large project aiming at
constructing and characterizing the varieties related to the Freudenthal-Tits magic
square.

1 Introduction

Classical varieties such as Veronese varieties, Segre varieties and Grassmann varieties
are intensively studied in algebraic geometry, but are also important in combinatorial
geometry, in particular in the area where groups and geometries meet and where the
Tits buildings play a central role. However, in combinatorial geometry, the underlying
field, if any, is arbitrary, and in this case a variety of tools from algebraic geometry can
no longer be used. In 1984, Mazzocca & Melone suggested an axiom system for the
Veronesean varieties over finite fields that was based on the very basic properties of these
varieties as smooth complex varieties, but which can be phrased over any field (and they
restricted to finite fields). The main property of such varieties responsible for allowing
such an approach is the fact that they are the union of maximal quadratic varieties whose
corresponding subspaces pairwise meet on the variety. This makes it possible to define
the dimension of the variety via a condition on the tangent spaces to these quadrics—over
an arbitrary field, the variety is just a set of points, whereas tangent spaces to quadrics
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are defined over any field. The success of such an approach is illustrated in [10], where the
authors generalize Zak’s classification of complex Severi varieties [15] to their analogues
over an arbitrary field, just using a straightforward extension of the axioms of Mazzocca &
Melone. Another example is the recent characterization of the Veronese representation of
projective planes over non-associative alternative division rings (Cayley-Dickson algebras)
by Krauss [7]. Also his axioms are based on the Mazzocca-Melone approach.

The Mazzocca-Melone approach, however, was, up to now, only applied when it concerned
geometries with point-line diameter 2, and then the first axiom says that every pair of
points is contained in a quadric. The types of the geometries thus characterized mainly
belong to the second row of the so-called Freudenthal-Tits magic square. The latter is
an arrangement of sixteen Dynkin diagrams in a four-by-four square symmetric along the
main diagonal. Chosen a field, the i-th column is parametrized by a (split or nonsplit,
depending on the point of view) quadratic alternative algebra of dimension 2i−1, whereas
the j-th row is parametrized by a Jordan algebra over a quadratic alternative algebra
of dimension 2j−1. Each cell thus corresponds with an ordered pair of algebras, in a
non symmetric way, and a general construction method of Tits [12] associates to this
pair a Lie algebra of the type indicated by the magic square. To each Lie algebra in
the square can be associated a variety, which turns out to be a point-line geometry of
a building with corresponding Dynkin type. The geometries of the second row all have
diameter at most 2 (these comprise projective planes, products of two projective planes,
line Grassmannians of projective 5-space, and the exceptional E6,1-geometry). In the
present paper, we start to apply this approach to geometries of larger diameter. The
first natural choice is the Lagrangian Grassmannian LG(3, 6)(K), which is the geometry
of totally singular planes of a symplectic space in 5-dimensional projective space P5(K).
Not coincidently, it corresponds to the first cell of the third row of the Freudenthal-
Tits magic square. The first cell of the third row is intimately related to the first cell
of the second row, which contains the ordinary quadratic Veronesean representations of
projective planes. To prove our main result, we strenghten the Mazzocca-Melone approach
to these geometries: we basically show that the third axiom can be deleted, if one assumes
the right bound on the dimension of the ambient space (the third axiom expresses the
dimension of the variety by means of the tangents). This assumption cannot further be
weakened as there exist counterexamples for higher dimensions.

Notation. In this paper, we will use the following notation: the subspace spanned by a
set S of points will be denoted by 〈S〉. The finite field of q elements will be denoted by
Fq. The n-dimensional affine (projective) space over the skew field K will be denoted by
An(K) (by Pn(K)).
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2 Statement of the Main Results

Let us first recall the Mazzocca-Melone axioms for the quadratic Veronesean of the stan-
dard projective plane P2(K) over any field K. First note that an oval O in any projective
plane is a set of points no three collinear and such that through every point o ∈ O exactly
one line does not intersect the set in two points. Examples are conics, if K is commutative.

Let X be a spanning point set of PN(K), N ∈ N ∪ {∞}, with K any skew field, and let
Ξ be a collection of 2-spaces of PN(K) containing at least two elements and such that for
any ξ ∈ Ξ the intersection ξ ∩ X =: X(ξ) is an oval in ξ (and then, for x ∈ X(ξ), we
denote the tangent line at x to X(ξ) by Tx(X(ξ)) or sometimes simply by Tx(ξ)). Then
(X,Ξ) a called a Veronesean cap if (VC1), (VC2) and (VC3) below hold. It is called a
pre-Veronesean cap if (VC1) and (VC2) hold.

(VC1) Any pair of points x and y of X is contained in an element of Ξ, denoted by [x, y]
(its uniqueness follows straight from (VC2)).

(VC2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

(VC3) If x ∈ X, then all tangent lines Tx(ξ), x ∈ ξ ∈ Ξ, are contained in a plane.

It is proved in [9] that such a Veronesean cap is always the Veronesean representation
of the standard projective plane over K, and K is a field. Recall that the Veronesean
representation of P2(K) is the image V2(K) of K3 \ {(0, 0, 0)} under the Veronesean map
(x, y, z) 7→ (x2, y2, z2, yz, zx, xy), where the latter is conceived as a point of P5(K). Writ-
ing (x2, y2, z2, yz, zx, xy) as (x, y, z)T (x, y, z) (where T means “transposed”) it is obvious
that the points of the Veronesean representation of PG(2,K) can be seen as the points cor-
responding to the rank 1 symmetric (3×3)-matrices in the projective space corresponding
to the vector space of all symmetric (3× 3)-matrices over K. In the proof, Axiom (VC3)
seems to play an important, if not crucial, role. However, we will show below that, if
|K| > 2 and N ≤ 5, then we can delete Axiom (VC3)! This is our first Main Result.

Main Result 1. If (X,Ξ) is a pre-Veronesean cap in PN(K), N ≤ 5, with K any skew
field distinct from F2, then K is commutative, (X,Ξ) is a Veronesean cap, and hence
X is projectively equivalent with V2(K), the Veronesean representation of the standard
projective plane over K.

We also classify the pre-Veronesean caps if K ∼= F2, see Proposition 4.4; there is essentially
one more example besides the Veronesean cap. Furthermore, we also provide a further
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weakening of the axioms by allowing X to contain lines. For the motivation and precise
statements, see Subsection 4.2.

Now we turn to the Lagrangian Grassmannian LG(3, 6)(K). As a point set, this is the set
of points of P19(K) on the plane Grassmannian of P5(K), restricted to the planes totally
isotropic with respect to a nondegenerate alternating bilinear form, which forces this
point set into a 13-dimensional subspace P13(K). As natural point-line geometry (lines
are those from P13(K) completely contained in LG(3, 6)(K)), LG(3, 6)(K) has diameter
3, but we want to leave the diameter open in the axioms (even infinite diameter will in
principle be possible). Also, in the real case, LG(3, 6)(R) has dimension 6; in the finite
case LG(3, 6)(Fq) has (q3 + 1)(q2 + 1)(q + 1) points, confirming the 6-dimensionality. All
this leads to the following definition (noting that quadrics only exist in projective spaces
over fields, hence there is no point in starting from a skew field).

Let X be a spanning point set of PN(K), N ∈ N ∪ {∞}, with K any field, and let Ξ be
a collection of at least two 4-spaces of PN(K) (called the quadratic spaces) such that, for
any ξ ∈ Ξ, the intersection ξ ∩ X =: X(ξ) is a non-singular parabolic quadric Q(4,K)
(which we will call a symp, inspired by the theory of parapolar spaces, see [11]) in ξ. For
x ∈ X(ξ), we denote the tangent space at x to X(ξ) by Tx(X(ξ)) or sometimes simply by
Tx(ξ). A line of PN(K) all of whose points are contained in X is called a singular line, and
the set of singular lines is denoted by S. Also,we denote by G(X) the geometry (X,S) of
points and singular lines, and with Γ(X) we denote the point graph of G(X) (two points
being adjacent if they are collinear in G(X)). We call (X,Ξ) a Lagrangian set if (LS1),
(LS2) and (LS3) below hold.

(LS1) G(X) is connected and any pair of points x and y of X such that the distance
between x and y in Γ(X) is at most 2 is contained in at least one element of Ξ,
denoted by [x, y] if unique.

(LS2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

(LS3) If x ∈ X, then all 3-spaces Tx(ξ), x ∈ ξ ∈ Ξ, generate a subspace Tx of PN(K) of
dimension at most 6.

Our second Main Result says that LG(3, 6)(K) is the only Lagrangian set. More precisely:

Main Result 2. If (X,Ξ) is a Lagrangian set in PN(K), N ∈ N ∪ {∞}, then N = 13
and X is projectively equivalent to the Lagrangian Grassmannian LG(3, 6)(K).

The rest of the paper is devoted to proving Main Results 1 and 2. In the next section, we
show that LG(3, 6)(K) is a Lagrangian set. Then, in Section 4 we show Main Result 1. In
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Section 5 we show Main Result 2. This proof consists of two major parts. In the first part,
we show that the diameter of G(X) cannot be equal to 2. In the second part, we show
that this implies that the diameter is equal to 3 and that X is projectively equivalent to
the Lagrangian Grassmannian LG(3, 6)(K).

3 The Lagrangian Grassmannian LG(3, 6)(K)

In this section we give an explicit description of LG(3, 6)(K) and show that it is a Lan-
grangian set. As already mentioned, LG(3, 6)(K) is the plane Grassmannian of P5(K)
restricted to the planes totally isotropic with respect to a nondegenerate alternating form.
As a geometry, consequently, it is isomorphic to the dual polar space denoted by DW(5,K);
the points are the planes of the symplectic polar space W(5,K) and the lines correspond
to the sets of planes of W(5,K) containing a common line of W(5,K). In this setting,
a symp is the set of points corresponding to the planes of the polar space W(5,K) con-
taining a common point. It is naturally isomorphic to an orthogonal polar space of rank
2, the so-called orthogonal generalized quadrangle Q(4,K) (which is a parabolic quadric;
note that every parabolic quadric over a field of characteristic 2 admits a nucleus, which
is a point through which no secant line passes). The following construction is taken from
[2] (see also [4]).

We define certain types of points in P13(K).

Type I. A point denoted by [∞] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Type II. For k ∈ K, a point denoted by [k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, k).

Type III. For k, x ∈ K, a point denoted by [x; k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, x2, 1,−x, 0, 0, k).

Type IV. For k1, k2, x ∈ K, a point denoted by [x; k1, k2] has coordinates

(0, 1, 0, 0, 0, 0, 0, 0, k1, k2, x, 0, 0, k1k2 − x2).
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Type V. For k, x1, x2 ∈ K, a point denoted by [x1, x2; k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 1, x21, x
2
2,−x1x2, x2, x1, k).

Type VI. For k1, k2, x1, x2, a point denoted by [x1, x2; k1, k2] has coordinates

(0, x22, 0, 1, 0, x2, 0, k1, k2, k1x
2
2,−x1x2, k1x2, x1, k1k2 − x21).

Type VII. For k1, k2, x1, x2, x3 ∈ K, a point denoted by [x1, x2, x3; k1, k2] has coordinates

(0, x23, 1, x
2
1,−x1,−x3x1, x3, k1, k2x21 + k1x

2
3 + x2(x1x3) + (x3x1)x2, k2,

−x3x2 − k1x1, x2, x2x1 + k1x3, k1k2 − x22).

Type VIII. For k1, k2, k3, x1, x2, x3 ∈ K, a point denoted by [x1, x2, x3; k1, k2, k3] has
coordinates

(1, k1, k2, k3, x1, x2, x3, k2k3−x21, k3k1−x22, k1k2−x23, k1x1−x3x2, k2x2−x3x1, k3x3−x2x1,

k1k2k3 + 2x1x2x3 − k1x21 − k2x22 − k3x23).

The set X of all these points, together with the lines of P13(K) contained in it is the dual
polar space DW(5,K) and defines the Lagrangian Grassmannian variety LG(3, 6)(K). An
example of a symp is given by all points of Type I, II, III and IV. These points all lie in the
subspace U defined by X1 = X3 = X4 = · · · = X8 = X12 = X13 = 0 and their (other) co-
ordinates satisfy the equation X2X14 = X9X10−X2

11. Conversely, every point in U whose
coordinates satisfy this equation lies on LG(3, 6)(K). Now it is shown in Corollary 1.2 (ii)
of [6] that, if |K| > 2, this is the absolutely universal embedding of DW(5,K), i.e., every
other (full) embedding arises as a quotient (i.e., a projection from a suitable subspace)
from this one. If |K| = 2, then the universal embedding happens in a 14-dimensional pro-
jective space P14(F2) [1, 8], and the Lagrangian Grassmannian is a projection of it. Also,
for arbitrary K, the absolutely universal embedding (and for K ∼= F2 also the Lagrangian
Grassmannian) is homogeneous, i.e., the group of collineations of the ambient projective
space stabilizing the embedding induces the full group of automorphisms of the dual polar
space. In particular, this group is transitive on the family of pairs of symps that intersect
non-trivially, and also on the family of pairs of symps that have empty intersection; this
group is also transitive on the set of points of the embedded dual polar space.

First we want to check that the intersection of a quadratic space with the point set
X is a symp. We can take, by the transitivity properties mentioned in the previous

6



paragraph, the symp Σ1 consisting of the points of Types I, II, III and IV. Put nU =
{1, 3, 4, . . . , 8, 12, 13} and note that U = 〈Σ1〉 is determined by the equations Xi = 0,
for all i ∈ nU . Since points of Type V, VI, VII and VIII have a nonzero coordinate in
position 8, 4, 3 and 1, respectively, and all these numbers belong to nU , we deduce that
X ∩ U = Σ1, which completes the proof.

We now verify the axioms (LS1), (LS2) and (LS3).

Axiom (LS1) follows from the fact that DW(5,K) is a strong parapolar space, see Exam-
ple 2 of Section 13.4.2 in [11].

For (LS2), we introduce the following two symps:

• Σ2 consists of the points of Type I, II, V (with x2 = 0) and VI (with x2 = 0).
This symp spans the subspace U2 with equations X1 = X2 = X3 = X5 = X6 =
X7 = X10 = X11 = X12 = 0, which is indeed 4-dimensional. Clearly U∩U1 is the line
spanned by (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), which
is a line contained in both symps (namely, the line consisting of all points of Types
I and II).

• Σ3 consists of the points of Type V (with x1 = x2 = k = 0), VI (with x1 = x2 =
k1 = 0), VII (with x2 = x3 = k2 = 0) and VIII (with x2 = x3 = k1 = 0). This symp
spans the subspace U3 with equations X2 = X6 = X7 = X9 = X10 = · · · = X14 = 0,
which is clearly disjoint from U .

The transitivity properties of the automorphism group of the Lagrangian Grassmannian
variety mentioned before conclude the proof of (LS2).

Finally (LS3) follows by (1) of Theorem 1.3 of [2].

Let x ∈ X be a point of the variety LG(3, 6)(K). Then we denote by ηx the subspace of
P13(K) generated by all points of X collinear to x in DW(5,K), and by ζx the subspace
of P13(K) generated by all points of X contained in a common symp with x in DW(5,K).
Obviously we have ηx ⊆ ζx, and it follows by (1) of Theorem 1.3 of [2] that dim ηx = 6
and dim ζx = 12, for all x ∈ X.

Lemma 3.1 Let x ∈ X. Then every 7-dimensional subspace U containing ηx and not
contained in ζx contains a unique point y ∈ X not in a common symp with x.

Proof By homogeneity, we may take x = [∞]. It follows from the definition of X in
[2] (see also [4]) that ηx is generated by the points of Types I, II, III and V, whereas
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ζx is generated by the points of Types I, II, III, IV, V, VI and VII. It is easy to see
that ζx has equation X1 = 0. Hence an arbitrary point z outside 〈ζx〉 can be written
as (1, `1, `2, `3, y1, y2, y3, . . .). Then one also calculates that ηx has equations X1 = X2 =
· · · = X7 = 0. Now there is a unique point y of Type VIII in X sharing the same initial
seven coordinates with z, we see that y ∈ 〈ηx, z〉 and the lemma is proved. �

We now want to show that no nontrivial projection of the Lagrangian Grassmannian is a
Lagrangian set. We first need a lemma.

Lemma 3.2 Let Y be a point set of P5(K) isomorphic to V2(K), and let p be a point
in P5(K) not belonging to Y . Then there exists a point y ∈ Y such that some plane
containing a conic on Y shares a point with 〈p, y〉 distinct from y.

Proof We identify Y with the rank 1 symmetric 3× 3-matrices over K, up to a scalar
nonzero multiple. Those of rank 2 correspond to points contained in a plane of one of
the conics of V2(K), and those of rank 3 correspond to points not contained in any such
plane. Clearly we may assume that p corresponds to a rank 3 symmetric matrix M . Let
y ∈ Y correspond to the matrix with a 1 in one place somewhere on the diagonal and
0 elsewhere. Then clearly the line 〈p, y〉 contains a point t corresponding to a rank ≤ 2
matrix (in which case the assertion easily follows) if and only if the corresponding cofactor
is nonzero. Hence we may assume that all diagonal cofactors vanish. If the characteristic
of K is 2, then this implies that M is singular, a contradiction.

If the characteristic of K is not 2, then we play the same game with the point z ∈ Y
corresponding with the rank 1 matrix all entries of which are 0 except for the entries in
the north-west 2× 2-square which are all 1. Since M is nonsingular, an easy calculation
implies that 〈p, z〉 must contain a point distinct from z corresponding to a rank ≤ 2
matrix. �

Proposition 3.3 No nontrivial projection of the Lagrangian Grassmannian is a La-
grangian set.

Proof Since (LS3) holds for the Lagrangian Grassmannian, it will hold for all its
projections. Hence we have to find a contradiction against (LS1) or (LS2), and it suffices
to do so for the projection X ′ of LG(3, 6)(K) from an arbitrary point p.

Suppose first that p is contained in ζx, for each x ∈ X. By [2] we have char(K) = 2, p
is contained in a unique quadratic space and it is the nucleus of the corresponding symp.
Hence the projection of this symp reduces to a 3-space, violating (LS1).
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Hence we may assume that there is some x ∈ X with p /∈ ζx. In that case the 7-space
〈p, ηx〉 contains by Lemma 3.1 a point y of X outside ηx and at distance 3 from x in
Γ(X). So, in the projection from p the subspace generated by ηx contains the projection
of y. Hence, our assertion boils down to showing that ηx cannot contain a point of X ′ at
distance 3 from x. Let, for a contradiction, q be such a point. Lemma 3.2 implies that
there is some line L ⊆ X ′ through x such that the plane 〈q, L〉 contains a line L′ 6= L
through x which is also contained in a symp through x. Now, since some point u on L is
at distance 2 from q in Γ(X), (LS2) yields 〈q, u〉 ⊆ X ′ and so the distance from q to x is
at most 2, a contradiction. �

4 Proof of Main Result 1

4.1 Pre-Veronesean caps

Let X be a spanning point set of PN(K), N ≤ 5, with K any skew field, which for the
moment we allow to be isomorphic to F2, and let Ξ be a collection of at least two 2-spaces
of PN(K) such that for any ξ ∈ Ξ the intersection ξ∩X is an oval in ξ. Suppose that (X,Ξ)
satisfies (VC1) and (VC2) above, in other words, suppose (X,Ξ) is a pre-Veronesean cap.

With “oval”, we will in this section always refer to the intersection of X with a member
of Ξ. If K ∼= F2, then an oval has only three points x, y, z not on a common line. In this
case, there is a unique line L in 〈x, y, z〉 disjoint from {x, y, z}, and the unique point in
〈x, y, z〉 not on that line and not on the oval will be denoted by x + y + z; it is usually
called the nucleus of the oval. The points of L will be denoted by x+y, y+z, z+x, where
{x, y, x+ y} is a line, etc.

Lemma 4.1 Under the above assumptions, let π ∈ Ξ and let U be a subspace of PN(K)
complementary to π. Then the projection of X \X(π) from π onto U is injective.

Proof If x1, x2 are two points of X\X(π) projected onto the same point, then 〈π, x1.x2〉
is a 3-space. Hence [x1, x2] intersects π in a point of 〈x1, x2〉, which belongs to X by (VC2),
contradicting the fact that X([x1, x2]) is an oval. �

Lemma 4.2 Under the above assumptions, we have N = 5.
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Proof Suppose for a contradiction that N ≤ 4.

First suppose K ∼= F2. In this case, X contains an odd number of points. Indeed, if there
are ` ovals containing a point x ∈ X, then (VC1) implies that there are 2`+1 points in X.
Since there are at least 2 ovals, we have a point x and an oval C = {x1, x2, x3} 63 x. The
ovals X([x, xi]), i ∈ {1, 2, 3} are distinct, hence |X| ≥ 7. On the other hand, Lemma 4.1
implies that there are at most 6 points in X (3 in the plane π and 3 projected onto the
at most 1-dimensional subspace U), a contradiction.

Now suppose K 6∼= F2. Clearly (VC2) implies that N ≥ 4, since |Ξ| ≥ 2. Now suppose
N = 4. Consider two intersecting ovals C,C1, then the intersection x1 of 〈C〉 and 〈C1〉
belongs to X by (VC2). Let x2 ∈ C \ {x1}. Let C2 be an oval containing x2 and some
point y ∈ C1 \ {x1}. We project (C1 ∪ C2) \ {x1, x2} from 〈C〉 onto a line L skew to C.
It is clear that the images of both these sets comprise all points of the line L, except one,
say p1 and p2, respectively (then pi, i = 1, 2 corresponds to the tangent line in xi at Ci).
Since |K| > 2, there is a point z on L in the image of both C1 \ {x1, y} and C2 \ {x2, y},
contradicting Lemma 4.1. �

Lemma 4.3 Every pair of ovals intersects nontrivially.

Proof Suppose, by way of contradiction, that two ovals C and D do not meet. We
consider the projection of X \ C from 〈C〉 onto 〈D〉, which is injective by Lemma 4.1.

Again, we first suppose that K ∼= F2. Since 〈D〉 contains 7 points, and since |X| is
odd, we have |X| ∈ {7, 9}. Hence the geometry induced by the ovals on X is either
a 2 − (7, 3, 1) design or a 2 − (9, 3, 1) design, which are both unique and isomorphic to
P2(F2) and A2(F3), respectively. In the former case, every pair of ovals intersects; in the
latter case there exist three pairwise disjoint ovals C,D,E. Since 〈C〉 and 〈D〉 are also
disjoint (by (VC2)), every point zi of E = {z1, z2, z3} is contained in a unique line Li

that intersects both 〈C〉 and 〈D〉 nontrivially; put C = {x1, x2, x3} and D = {y1, y2, y3}.
Since the projection from 〈C〉 onto 〈D〉 is injective, we clearly have Li ∩ 〈D〉 /∈ D, for
all i ∈ {1, 2, 3}. Similarly Li ∩ 〈C〉 /∈ C, for all i ∈ {1, 2, 3}. At most one of L1, L2, L3

contains x1 + x2 + x3 (by Lemma 4.1 projecting from 〈D〉), and likewise at most one
y1 +y2 +y3. Hence there is at least one line, say L1 containing a point x2 +x3 and a point
y2 + y3 (without loss of generality). The oval X([x1, z1]) contains at most one of {y2, y3},
hence we find an oval F containing, without loss of generality, the points z1, y2, x3. Then
F is contained in the 3-space 〈x2, x3, y2, y3〉 and so 〈F 〉 and 〈x2, y3〉 meet nontrivially,
implying by (VC2) that X([x2, y3]) contains three collinear points, a contradiction.

So we may assume that K 6∼= F2. Let x ∈ D be arbitrary. By the injectivity of the
projection, and since |K| > 2, the projections of the planes generated by the conics
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containing x and a point varying on C are distinct lines through x. Consequently, there
is a conic E such that the projection E ′ is not contained in the tangent line to D at x.
By injectivity, if t is the projection of the tangent line to E at E ∩ C, then E ′ ∪ {t} is a
full projective line, and t ∈ D. Let u ∈ E \ (C ∪ {x}) be arbitrary. Since the projection
is injective, the projection of Cu := X([t, u]) does not coincide with 〈x, t〉, and so the
projection C ′u of Cu is an oval through t.

Now let v be an arbitrary point of C and let Cv = X([t, v]). Let C ′v be the projection
of Cv. Then, by injectivity, C ′v is not contained in 〈x, t〉. For finite K 6∼= F2, this is a
contradiction, as there are precisely |K|+ 1 choices for v and exactly as many lines in 〈D〉
through p. So we may assume that K is infinite. But then we consider two choices for
u, say u1 and u2, and we can choose v such that C ′v is neither contained in the tangent
line to C ′u1

at t, nor in the tangent line to C ′u2
at t. By injectivity of the projection, C ′v is

contained in a line minus two points (the latter are points in C ′u1
∪C ′u2

, which are distinct,
again by injectivity of the projection), a contradiction.

The proof of the lemma is complete. �

We can now finish the proof of Main Result 1. Since two distinct ovals always meet, the
geometry of points of X and ovals is a projective plane. Now Theorem 2.3 of [9] completes
the proof.

We now briefly study the case |K| = 2. In this case, we have 7 points in P5(F2) and
the geometry of ovals determines a projective plane of order 2 (a so-called Fano plane).
Consider arbitrarily five points of X. In a Fano plane, every set of five points is the union
of two lines, hence, by (VC2), the corresponding ovals generate a 4-space. Hence every
set of five points in X generates a 4-space. If every set of six points of X generates a
5-space, then X consists of a skeleton, and this is isomorphic to V2(F2). Hence we may
assume that there is a 6-subset of X forming a skeleton in some 4-subspace U of P5(F2).
Since the seventh point must lie outside U , and every point in the Fano plane plays the
same role, this gives rise to a projectively unique situation, and the resulting point set
will be called a disturbed Veronesean cap. Hence we have the following result.

Proposition 4.4 Let X be a pre-Veronesean cap in PN(F2), N ≤ 5, then it is either a
Veronesean cap, and hence X is projectively equivalent with V2(F2), or it is a disturbed
Veronesean cap.
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4.2 Singular pre-Veronesean caps

Motivated by the proof of Main Result 2, we will now extend Main Result 1 in case the
ambient space has dimension at most 5. We will weaken the hypotheses to again end up
with a Veronesean cap in case K 6∼= F2. For K ∼= F2, some more possibilities will turn
up. The idea is to also allow degenerate conics, i.e., lines. However, we will only need
to deal with the situation where the degenerate conic is a line with multiplicity 2 (and
not a point, or a pair of distinct lines). These lines will be called singular lines, and,
although a set containing lines is not a cap in the technical sense, we will call the new
objects singular pre-Veronesean caps. This is harmless, as we will show that a singular
pre-Veronesean cap is a Veronesean cap after all, at least when the underlying field is not
the smallest field. In the latter case a few more possibilities occur, see below.

Let X be a point set of P5(K), with K any skew field, and let Ξ be a collection of 2-spaces
(called the quadratic planes) of P5(K) containing at least two elements and such that for
any ξ ∈ Ξ the intersection ξ ∩X =: X(ξ) is an oval in ξ. Then (X,Ξ) a called a singular
pre-Veronesean cap if (VC1′) and (VC2) below hold.

(VC1′) If x, y ∈ X, then either all points of 〈x, y〉 belong to X, or there exists a unique
member [x, y] of Ξ containing both x and y.

(VC2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

Clearly, every Veronesean cap is a singular pre-Veronesean cap. The converse is not true
for K ∼= F2, and there are some counter examples.

Example 1 (The projected Veronesean cap). If we project one conic of the Verone-
sean cap V2(F2) from its nucleus onto a secant, then we obtain a singular pre-Veronesean
cap, as one checks easily. If {e1, . . . , e6} is a basis of P5(F2), then such a set is projectively
equivalent with {e1, e2, e3, e4, e5, e6, e4 + e5}. The corresponding set of quadratic planes
contains 6 elements, namely those corresponding with the conics {e1, e2, e4}, {e2, e3, e5},
{e3, e4, e6}, {e1, e5, e6}, {e2.e6, e4 + e5} and {e1, e3, e4 + e5}.
Example 2 (The biaffine singular cap). Let {e1, . . . , e6} again be a basis for P5(F2)
and let Ξ be the set of planes generated by the triples of points corresponding to the
lines of a biaffine plane of order 3 (i.e., an affine plane with three points per line and
one parallel class of lines removed, giving rise to parallel classes of points) with point
set X := {e1, e2, e1 + e2, e3, e4, e3 + e4, e5, e6, e5 + e6}, where the triples {e1, e2, e1 + e2},
{e3, e4, e3 + e4} and {e5, e6, e5 + e6} are point parallel classes. Then (X,Ξ) is a singular
pre-Veronesean cap.

In a series of lemmas, we will show the following classification.
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Proposition 4.5 Every singular pre-Veronesean cap in P5(K) is a Veronesean cap, except
if K ∼= F2, in which case it could also be isomorphic to either a disturbed Veronesean cap,
or a projected Veronesean cap, or a biaffine singular cap.

So let (X,Ξ) be a singular pre-Veronesean cap, which we may assume to contain at least
one singular line by Main Result 1. If all points of a certain subspace are contained in X,
then we call that subspace singular. In the sequel, an oval is the intersection of X with
a member of Ξ. We start with proving a lemma similar to Lemma 4.1 now using (VC1′)
and (VC2) instead of (VC1) and (VC2).

Lemma 4.6 Let π ∈ Ξ and let U be a complementary subspace to π in Up. Then the
projection from π onto U is injective when restricted to the points of X \ π which are not
on a singular line that intersects π.

Proof Suppose two points x, y ∈ Xp \ π have the same image. Then 〈x, y〉 intersects π
and so, if 〈x, y〉 is not singular, then the conic through x, y contains three collinear points,
a contradiction. �

We now rule out singular subspaces of dimension at least 2. We denote by k the dimension
of 〈X〉. First we note that distinct maximal singular subspaces must be disjoint.

Lemma 4.7 Two singular subspaces U and V sharing a point z generate a singular sub-
space.

Proof Since every point in the span 〈U, V 〉 is contained in the span of two lines con-
taining z, one in U and one in V , it suffices to assume that both U and V are lines. Let
p be arbitrary in 〈U, V 〉 \ {z} and assume p /∈ X. Choose points x1, x2 ∈ U \ {z} and
y1, y2 ∈ V \ {z} such that p = 〈x1, y1〉 ∩ 〈x2, y2〉. Since p /∈ X, Axiom (VC1′) implies that
[x1, y1] and [x2, y2] are well defined. But Axiom (VC2) implies p ∈ X, a contradiction.
Hence p ∈ X and so 〈U, V 〉 is a singular plane. �

Lemma 4.8 There are no singular planes in X.

Proof Let U be a singular subspace of dimension ` ≥ 2 in X and assume that ` is
maximal with this property. Since X contains at least one plane π such that π ∩Xp is a
conic, we see that ` ≤ k− 2 ≤ 3. If ` = 3, then k = 5, and we can consider a point x ∈ X
outside U . For any u ∈ U , the line 〈u, x〉 is non-singular, as Lemma 4.7 would otherwise
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lead to a singular subspace of dimension 4. Pick two distinct points u, v ∈ U . So we have
an oval C ⊆ X through x and u, and for each point y of C \ {u}, we have an oval Cy

containing v and y. Let y1, y2 be two distinct points of C \ {u}. An arbitrary 4-space W
through U not containing the tangent lines at v to the ovals Cy1 and Cy2 , respectively,
intersects Cyi in a point zi, i = 1, 2. The line 〈z1, z2〉 intersects U and so is singular, a
contradiction to Lemma 4.7.

Next suppose ` = 2. If k = 4, then we argue similarly as above and obtain a contradiction.
So we may assume that k = 5. Let π be a plane in P5(K) skew to U . If π ∈ Ξ, then,
by Lemma 4.6, the projection from π onto U is injective, even on X \ π, which leads to
Xp = U ∪Xp(π), a contradiction as is easily seen. Hence all ovals intersect U nontrivially.
Now, the projection of X \U from U onto π is also injective, as the line joining two points
with same image must meet U and hence is singular, a contradiction to Lemma 4.7. If
K ∼= F2, then considering all conics joining a point off U with a point of U , we obtain
7 + 1 points of X off U , contradicting the injectivity. So suppose K 6∼= F2. Now let C1, C2

be two conics intersecting U in the same point u. The projection onto π of C1 \ {u} and
C2 \ {u} are two affine lines (an affine line is the point set of a line, except for one point)
L1 \{c1}, L2 \{c2}, respectively, where L1, L2 are lines of π and ci is a point of Li, i = 1, 2.
Suppose c1 6= c2. By injectivity, we may assume c1 ∈ L2 \ {c2}. Take an arbitrary point
c′1 of L1 \ {c1}. The conic defined by the inverse images of c1, c

′
1 in X intersects U and

projects into L1, contradicting the injectivity (since that conic is certainly different from
both C1, C2).

Hence all conics in X through the same point u of U project onto affine lines of π sharing
the same point pu. For different u, the points pu are also different as otherwise, by injec-
tivity of the projection, we find two conics through a common point of X \U intersecting
in all points but the ones in U , a contradiction. This now implies that two different conics
containing a (possibly different) point of U meet in a unique point of X. We now choose
a line L ⊆ U and project X \ L from L onto some skew 3-space Σ. Let ui, i = 1, 2, 3, be
three distinct points on L. The conics through these points project onto three families of
lines such that lines from different families intersect in a unique point. Considering two
families, we see that these lie either on a hyperbolic quadric, and the third family cannot
exist (|K| > 2), or in a plane. In the latter case, we easily see that all points of Xp \ U
are contained in a 4-space together with L, a contradiction considering a conic through
some point of U \ L (and once again using |K| > 2). �

So we now know that X does not contain planes. Before we start a detailed analysis when
there are singular lines, we note two easy properties.
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Lemma 4.9 No point x of any singular line is contained in the span of two other singular
lines. Also, no oval C misses at least two singular lines L1, L2.

Proof Note that by Lemma 4.7 singular lines do not intersect each other. But the
transversal through x—i.e., the line through x intersecting the two singular lines—must be
a singular line by (LS1), a contradiction. For the second assertion, let x ∈ 〈C〉 ∩ 〈L1, L2〉
(our assumption implies x /∈ L1 ∪ L2) and consider the unique transversal to L1, L2

containing x. Then Axiom (LS2) implies that x ∈ X and the transversal is singular, a
contradiction. �

We first treat the case where X spans a 4-space. From now one, we will frequently have
to make a distinction between |K| = 2 en the rest (a few times also |K| = 3 requires
special arguments). Note that |X| is odd if |K| = 2 (if there are ` ovals through a point
x ∈ X, then there are either 2` + 1 points—if there is no singular line through x—or
2` + 3—otherwise). Also, if |K| = 2, the geometry induced by the singular lines and the
ovals on X is a 2-design, which is the Fano plane if |X| = 7, and the affine plane of order
3 if |X| = 9.

Lemma 4.10 We have k = dim〈X〉 = 5.

Proof Since there are at least two ovals, Axiom (VC2) implies k ≥ 4. Hence for a
contradiction, we assume k = 4. We claim that there are at most two singular lines.
Indeed, suppose L1, L2, L3 are three different singular lines. Notice that they are disjoint
by Lemma 4.7. The 3-space 〈L1, L2〉 intersects L3 in at least a point, contradicting
Lemma 4.9. The claim is proved.

Now suppose that there are precisely two singular lines L1, L2. Let xi ∈ Li, i = 1, 2
and consider the projection of X \ [x1, x2] from [x1, x2] onto some skew line L. Clearly,
〈L1, L2, [x1, x2]〉 is 4-dimensional, so we can choose L to contain a point yi of Li, i = 1, 2.

• If |K| = 2, then the injectivity of the projection on X \ ([x1, x2] ∪ L1 ∪ L2) implies
6 ≤ |X| ≤ 8. Hence |X| = 7, contradicting the fact that in a Fano plane every two
lines meet (and L1 and L2 are disjoint).

• If |K| > 2, we consider three conics through y1 intersecting L2 \ {x2} nontrivially.
These project onto three affine lines in L containing y1, y2. Hence there is at least
one point L\{y1, y2} covered twice. This contradicts the injectivity of the projection
on X \ ([x1, x2] ∪ L1 ∪ L2).
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Now suppose that there is a unique singular line L. If some conic C is disjoint from L,
then projecting X \ C from 〈C〉 onto L implies that X = C ∪ L, an easy contradiction.
Hence every conic intersects L and the geometry of conics and L is a projective plane
(as in a 4-space every pair of planes intersects). We project X \ C from 〈C〉 onto some
disjoint line M , which we may assume to contain a point x ∈ L \ C.

• If |K| > 2, then we may consider three conics through y, which al project onto some
affine line in M containing x; this again implies that two distinct points have the
same image giving rise to an extra singular line, a contradiction.

• If |K| = 2, then |Xp| = 7 and we can coordinatize as follows: the points on L are
e1, e2, e1 + e2. Let x1, x2, x3 three arbitrary other points of X. The planes [x1, x2]
and [x2, x3] generate the 4-space, hence we may assume that they are e3, e4, e5, with
{e1, e2, e3, e4, e5} a basis. There are two projectively inequivalent choices for the
last point, namely e1 + e3 + e4 + e5 and e3 + e4 + e5. In the former case, the plane
[e1, e1 + e3 + e4 + e5], which we may assume to contain without loss of generality e3,
contains e4 + e5, a contradiction. In the latter case we may assume that the conic
planes through e1 are 〈e1, e3, e4〉 and 〈e1, e5, e3 +e4 +e5〉, which both contain e3 +e4,
a contradiction. �

So from now one we may assume that k = 5. We first treat the case where there are at
least three singular lines.

Lemma 4.11 There are at most three singular lines, and in case there are three of them,
|K| = 2 and (X,Ξ) is a biaffine singular cap.

Proof Suppose for a contradiction that there are at least four singular lines L1, L2, L3, L4.
Then the 3-spaces 〈L1, L2〉 and 〈L3, L4〉 have a line K in common, with K ∩X = ∅. Each
point a ∈ K belongs to a transversal to L1, L2, and to a transversal to L3, L4. Ax-
iom (LS2) now implies that these two transversals span a quadratic plane. We conclude
that every point a ∈ K is contained in a unique such quadratic plane, and so each
point x ∈ L1 ∪ L2 ∪ L3 ∪ L4 is contained in a unique oval Cx which intersects each Li,
i ∈ {1, 2, 3, 4}, nontrivially. This already implies |K| > 2. Consider two such ovals Cx

and Cy, with x, y ∈ L1 and project X \ Cx from Cx onto 〈Cy〉. Let ai be the projection
of Li, i = 2, 3, 4.

• Suppose first that |K| > 3. Let u, v ∈ Cx \ {x} be arbitrary and consider the
projections Lu and Lv of the ovals X([u, y]) and X([v, y]), respectively. If Lu = Lv,
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then at least three points on Lu are the image of at least two points of X([u, y]) ∪
Xp([v, y]), and at most one of these is contained in Cy. So there are at least two
singular lines intersecting Cx and projected off Cy. It follows that Cy misses at least
two singular lines, a contradiction. Hence Lu 6= Lv, and since there are at least four
choices for u ∈ Cx \{x}, there is a choice such that Lu misses {a2, a3, a4}, and hence
X([u, y]) misses at least two of {L2, L3, L4} (it intersects at most one of these in the
plane 〈Cx〉).

• Now let |K| = 3. Then an oval through x and a point of Cy \ {y} gives rise to a
point z ∈ X not contained in L1 ∪ L2 ∪ L3 ∪ L4. Every oval through z must have
precisely three points in common with L1 ∪ L2 ∪ L3 ∪ L4, which has 16 points, a
contradiction as 16 is not divisible by 3.

Now assume that there are exactly three singular lines L1, L2, L3. Suppose for a contra-
diction that some point x ∈ X is not contained in L1 ∪ L2 ∪ L3. Then 〈L1, L2〉 shares a
point y with 〈x, L3〉. As above, this implies that x and the unique transversal to L1, L2

through y span a quadratic plane. We conclude that every point outside L1, L2, L3 is
contained in an oval intersecting each of L1, L2, L3 (and so |K| > 2). Let C be such an
oval and project X \C from 〈C〉 onto some disjoint plane π. The projection of Li is some
point ai, i = 1, 2, 3. Let z ∈ X be a point not contained in L1 ∪ L2 ∪ L3 ∪ C, which we
may assume to be contained in π.

• Suppose |K| > 3. The conics through z and a point of C project into distinct lines of
π through z, because, if not, then by Lemma 4.6, there are at least three points on
such projection with inverse image consisting of at least three points, contradicting
the fact that a1, a2, a3 are the only such points, and they are not contained in one
line. Hence at least one such line misses a1, a2 and a3, and so can only meet one
of L1, L2, L3 (namely, in a point of C), a contradiction to the second assertion of
Lemma 4.9.

• Suppose |K| = 3. Since x is contained in exactly one conic meeting each of L1, L2, L3,
and every other conic through x meets exactly two of L1, L2, L3, an easy count
implies that there are 1+9/2 conics through x, a contradiction.

Consequently |K| = 2 and we have exactly nine points and nine ovals, as is easily checked.
These ovals form a biaffine plane; if we add the singular lines, we have an affine plane of
order 3. The uniqueness of this structure in easily proved. �

Lemma 4.12 The set X cannot contain exactly two singular lines.
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Proof Suppose for a contradiction that there are exactly two singular lines L1, L2.

• If |K| > 3, then choose a conic C containing a point xi ∈ Li and project X \ C
from C onto some disjoint plane π. Let ai be the projection of Li, i = 1, 2. Since
k = 5, there is some point x3 ∈ X, which we may assume to be in π, such that
〈a1, a2, x3〉 = π. As in the previous proof, no two conics through x3 and a point
of C \ {x1, x2} project into the same line. Hence we can find such an oval whose
projection misses a1 and a2 and hence which does not contain a point of L1 ∪ L2, a
contradiction to Lemma 4.9.

• Now suppose |K| = 3. If some point x ∈ Xp \ (L1 ∪ L2) is only contained in
ovals which meet L1 ∪L2 in two points, then all points are contained in 〈L1, L2, x〉,
contradicting k = 5.

Hence each point is contained in at least one oval intersecting L1 ∪ L2 in exactly
one point. Suppose the point x ∈ X \ (L1 ∪ L2) is contained in t ovals intersecting
L1 ∪ L2 in exactly two points; then it is contained 8− 2t ovals intersecting L1 ∪ L2

in exactly one point. Hence |X| = 1 + 3(8− t) and it follows that t is constant. If
y ∈ L1∪L2, then exactly four ovals through y intersect L1∪L2 in two points, leaving
9− 3t points. Hence there are 3− t ovals through y intersecting L1 ∪ L2 in just y.
So in total there are 24 − 8t ovals intersecting L1 ∪ L2 in just one point. On the
other hand, there are 17−3t points in X \ (L1∪L2), each in 8−2t ovals intersecting

L1 ∪ L2 in just one point. Hence there are (17−3t)(8−2t)
3

ovals intersecting L1 ∪ L2

in exactly one point. Equating the two expressions obtained for this number, we
obtain 136− 58t+ 6t2 = 72− 24t, implying 32− 17t+ 3t2 = 0, a contradiction.

• Now suppose |K| = 2. A similar count as in the case |K| = 3 implies (with similar

definition for t) that (7−2t)(6−2t)
2

= 18− 6t, so t = 1
2
, a contradiction. �

The next lemma concludes the proof of Proposition 4.5.

Lemma 4.13 If the set X contains a unique singular line L, then |K| = 2 and (X,Ξ) is
a projected Veronesean cap.

Proof

• Suppose first |K| > 2. We claim that every two ovals that intersect L, intersect
mutually. Indeed, let C,D be two ovals intersecting L in x, y, respectively. Suppose
C and D are disjoint. The projection from 〈C〉 onto 〈D〉 of X \ (C ∪L) is injective.
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Hence there are at least two ovals E1, E2 through y meeting C and projected onto
affine lines A1, A2, respectively, whose projective extensions M1,M2, respectively,
are not tangent to D at x. Injectivity implies that Mi \ Ai ∈ D, i = 1, 2. If there
were a second oval D′ through y disjoint from C, then its projection would be an oval
through y tangent to both M1,M2, a contradiction. Hence the points of X \ (C ∪L)
are projected onto the union U of a set of affine lines through y and the oval D.
Now consider an oval through a point of L \ {x, y} and some point of C \ {x}. Its
projection is an affine line T through y, contained in U . Since no affine line can be
contained in D, T is contained in the projective extension M of some projection A
of an oval through y and some point of C. If |K| > 3, then |(A ∩ T ) \ {y}| ≥ 2,
contradicting injectivity. If |K| = 3, then there are 16 points in total, hence five
ovals through a point z of X \L. Consequently there is an oval E through z disjoint
from L. The projection of X \E from 〈E〉 onto a plane π skew to 〈E〉 containing L
is injective. The four ovals through x intersecting E project into four distinct lines
of π. But these lines should also differ from L, contradicting the fact that we have
only four lines through x in π.

Hence all conics that intersect L meet mutually. Projection from L onto some
disjoint 3-space yields a system of |K| + 1 families of |K| lines generating 3-space
such that each pair of lines from different families intersect non-trivially. This is
only possible for |K| = 2.

• Hence let K ∼= F2. If |X| = 7, then the four points of X off L are projectively
unique; indeed, if L = {e1, e2, e1 + e2}, then the other points are e3, e4, e5, e6, where
{e1, e2, e3, e4, e5, e6} is a basis. The conics and L form a Fano plane. If |X| > 7,
then there is an oval disjoint from L, and hence projection from such an oval onto
a plane containing L is injective, implying |X| ≤ 10. Since |X| is odd, we have
|X| = 9 and the ovals and L form an affine plane of order 3. Hence there are two
disjoint ovals that are also disjoint from L. If {e1, . . . , e6} is a basis as above, we
may assume that the two ovals are C1 = {e1, e2, e3} and C2 = {e4, e5, e6}. Since
projection from 〈C1〉 onto 〈C2〉 is injective on X \ C1 and vice versa, and there is
only one line disjoint from Ci in 〈Ci〉, i = 1, 2, we deduce that L is contained in
〈e1 + e2, e2 + e3, e3 + e1, e4 + e5, e5 + e6, e6 + e4〉. Hence without loss of generality
we may take L = {e1 + e2 + e4 + e5, e2 + e3 + e5 + e6, e3 + e1 + e6 + e4}. The plane
[e1, e4] does not contain e1 + e2 + e4 + e5 as it would also contain e2 + e5, which does
not belong to Xp, but is also contained in [e2, e5]. Likewise [e1, e4] does not contain
e3 + e1 + e6 + e4. Hence it must contain e2 + e3 + e5 + e6. Likewise [e2, e5] contains
e3 + e1 + e6 + e4. But then [e1, e4] and [e2, e5] share the point e1 + e2 + · · · + e6,
which does not belong to X, contradicting (VC2). �
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5 Proof of Main Result 2

5.1 General Properties

In this section, (X,Ξ) is a Lagrangian set in PN(K), with K a field and N possibly
infinite. We denote by G(X) the corresponding geometry of points and singular lines, and
by Γ(X) we denote the point graph of G(X) (which is the graph with point set X and
adjacency is collinearity). The diameter of Γ(X) is by definition the diameter of (X,Ξ).
The distance between two points x, y ∈ X in Γ(X) is denoted by δ(x, y). Two points of
X on a singular line will be called X-collinear. The elements of Ξ are called the quadratic
spaces. Subspaces of PN(K) consisting entirely of points of X are called singular.

The following is exactly the Quadrangle Lemma of [10], proved there for similar objects,
although having diameter 2. We give a proof for completeness’ sake.

Lemma 5.1 (The Quadrangle Lemma) Let L1, L2, L3, L4 be four (not necessarily pair-
wise distinct) singular lines such that Li and Li+1 share a (not necessarily unique) point
pi, i = 1, 2, 3, 4 mod 4, and suppose that p1 and p3 are not X-collinear. Then L1, L2, L3, L4

are contained in a unique common symp.

Proof Since 〈p1, p3〉 is not singular, we can pick a point p ∈ 〈p1, p3〉 which does not
belong to X. Since p1 and p3 are X-collinear with p2, we have δ(p1, p3) = 2. Hence,
by (LS1), there is a unique quadratic space ξ containing p1 and p3. We choose two
arbitrary distinct lines M1,M2 through p inside the plane 〈L1, L2〉 not containing p2.
Denote Mi ∩ Lj = {pij}, {i, j} ⊆ {1, 2}, then δ(pi1, pi2) = 2, i = 1, 2. By (LS1) there is
a quadratic space ξi containing pi1 and pi2, i = 1, 2. If ξ1 6= ξ2, then (LS2) implies that
p, which is contained in ξ1 ∩ ξ2, belongs to X, a contradiction. Hence ξ1 = ξ2 = ξ and
contains L1, L2. We conclude ξ contains L1, L2, and similarly also L3, L4. �

Now let p ∈ X be arbitrary. Let Up be a hyperplane of Tx not containing p and define Xp

to be the set of points obtained by intersecting Up with all singular lines of X through p.
Let Ξp be the set of subspaces of U obtained by intersecting U with all tangent spaces at
p to the symps of (X,Ξ) through p. The pair (Xp,Ξp) is called the residue of (X,Ξ) in p.
We denote the dimension of Up by k. Note k ≤ 5.

We have the following result.

Lemma 5.2 For every p ∈ X, the residue (Xp,Ξp) is a singular pre-Veronesean cap.
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Proof Clearly, for any ξ ∈ Ξp, we have Xp ∩ ξ is a conic. Also, clearly (VC2) is
inherited from (X,Ξ). Now suppose x, y ∈ Xp. Assume first that some point of 〈x, y, p〉
does not belong to X. Then there are two points on 〈x, p〉 ∪ 〈y, p〉 which are not X-
collinear and the Quadrangle Lemma implies that a unique quadratic space ξ contains
〈x, p〉 ∪ 〈y, p〉 = X ∩ 〈x, y, p〉. In this case Tp(ξ) ∩ Xp is a conic. Assume now that all
points of 〈x, y, p〉 belong to X. Then all points of 〈x, y〉 belong to Xp. This shows (VC1′).

Since Ξ contains at least two elements, it follows from the connectivity and (LS1) that
there is at least one symp ξ through p. Now let x ∈ X \ ξ. Let (p, p1, p2, p3, . . . , x) be a
minimal path connecting p and x in Γ(X). If p2 /∈ ξ, then X([p, p2]) is a second symp
through p. So suppose p2 ∈ ξ. Then p2 6= x and p3 exists. But now we find a point y
outside ξ in X([p1, p3]) collinear with p1, and so X([p, y]) is a symp distinct from ξ and
containing p. Hence |Ξp| ≥ 2 and the lemma is proved. �

The previous lemma motivates the following terminology. For p ∈ X, if (Xp,Ξp) is
a Veronesean cap, we call p a straight point. All points are straight as soon as K 6∼=
F2. If K ∼= F2, then we also have almost straight points (when (Xp,Ξp) is a projected
Veronesean), 1-singular points (when (Xp,Ξp) contains exactly one singular line) and
3-singular points (when (Xp,Ξp) contains exactly three singular lines).

5.2 Lagrangian sets of diameter 2

We now suppose that Γ(X) has diameter 2 and prove the following lemma.

Lemma 5.3 If (X,Ξ) has diameter 2, and x ∈ X is not a 3-singular point, then every
point at distance 2 from x in Γ(X) is a 3-singular point.

Proof Let y ∈ X be at distance 2 from x and let L be any singular line of X through
y not contained in [x, y]. Choose a point z ∈ L \ {y}. Since x is not 3-singular, every
pair of ovals in (Xx,Ξx) intersects and hence the symp X([x, y]) and X([x, z]) intersect
in a line M containing x. Consequently, looking in X([x, z]), there is a point x′ of M
collinear with z. Clearly x′ 6= y, hence the Quadrangle Lemma implies that y and x′ are
X-collinear, and hence 〈z, y, x′〉 is a singular plane.

Hence every point of (Xy,Ξy) not on the oval corresponding to [x, y] is contained in a
singular line. This implies, by Proposition 4.5, that y is a 3-singular point. �

We are now ready to prove the nonexistence of Lagrangian sets of diameter 2.
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Proposition 5.4 Lagrangian sets of diameter 2 do not exist.

Proof Since, if K 6∼= F2 , every point of X is straight, the assertion follows in that case
directly from Lemma 5.3.

Now suppose K ∼= F2. Suppose first that some point p is not 3-singular. Then we can
select two singular lines L1, L2 through p which are not contained in a singular plane. It
follows that, if xi ∈ Li, i = 1, 2, are points distinct from p, none of the points x1, x2 is
3-singular. But by our choice, we have δ(x1, x2) = 2. This contradicts Lemma 5.3.

Hence we may assume that all points of X are 3-singular. Select an arbitrary point p; there
are 9 symps through p giving rise to exactly 72 points of X at distance 2 from p. There
are 9 singular lines through p giving rise to exactly 18 points X-collinear with p. Together
with p, this amounts to 91 = |X| points. A double count of the pairs (x, ξ) ∈ X ×Ξ with
x ∈ ξ yields 91× 9 = |Ξ| × 15, a contradiction. �

Remark 5.5 In fact, in the proof of Proposition 5.4 we did not use Axiom (LS3) explicitly
anymore; the facts that in every residue every pair of conics intersects nontrivially and
that there are no singular planes, or that |K| = 2 and that either every residue has seven
points with at most one singular line, or nine points with exactly three singular lines,
suffice.

5.3 Lagrangian sets of diameter at least 3

From now on we may assume that the diameter of Γ(X) is either unbounded or at least
3. We first aim at showing that the diameter is always equal to 3. Along the way, this
will also prove that there are no singular planes.

Lemma 5.6 If π is a singular plane, then every point p ∈ X not contained in π is
X-collinear with exactly one point of π.

Proof Suppose for a contradiction that no point of π is X-collinear with p. Then, by
connectivity, we may assume that there is a point x ∈ π with δ(p, x) = 2. Note that,
by Proposition 4.5, every symp through x intersects π in a line. Applied to X([p, x]),
this yields a line L ∈ π ∩ [p, x]. Inside the symp X([p, x]), there is a point y ∈ L that is
X-collinear with p, contradicting our hypothesis. Hence there is always at least one point
of π collinear with p ∈ X \ π.
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If at least two points x1, x2 ∈ π are collinear with p, then π′ = 〈x1, x2, p〉 is singular
and Lemma 4.7 applied to the residue at x1 leads to a singular plane in that residue, a
contradiction to Lemma 4.8. �

Lemma 5.7 There are no singular planes in X.

Proof This follows from Proposition 4.5 if K 6∼= F2; so suppose K ∼= F2. For a con-
tradiction, suppose there is a singular plane, and hence X contains some 1-singular point
or 3-singular point. If all points are either 1-singular or 3-singular, then every point is
contained in a singular plane and consequently, using Lemma 5.6, the diameter of Γ(X)
equals 2, a contradiction.

Hence we may assume that some point p is (almost) straight. Noting that (almost) straight
points are never X-collinear with 3-singular points, connectivity leads to the existence of
a 1-singular point q. Since q is contained in a singular plane, it is at distance ≤ 2 from
any other point of X, and hence every other point is contained in a symp together with
q. Since there are 6 symps through q, there are exactly 48 points at distance 2 from q;
since there are 7 singular lines through q, there are 14 points X-collinear with q. Hence
|X| = 63. But a similar count yields already 1 + 14 + 56 = 71 points at distance 0, 1, 2
from p, a contradiction. �

Lemma 5.8 The graph Γ(X) has diameter 3.

Proof Suppose for a contradiction that x1, x2, x3, x4, x5 are five points of X with
δ(xi, xj) = |i − j|, i, j ∈ {1, 2, 3, 4, 5}. The symps X([x1, x3]) and X([x3, x5]) intersect
in a line L. It follows that there are points z1, z5 on L which are X-collinear to x1, x5,
respectively. This leads to a path (x1, z1, z5, x5) or (x1, z1, x5) of length 3 or 2 joining x1
to x5 (depending on whether z1 6= z5 or z1 = z5), a contradiction. �

We can now determine the isomorphism class of the geometry of points and singular lines
of X.

Lemma 5.9 If L denotes the set of singular lines of X, then (X,L) is the dual polar
space associated to the building of absolute and relative type C3 over the field K; in other
words, X can be viewed as the set of totally isotropic planes with respect to a symplectic
polarity in P5(K), and the singular lines correspond to the planes intersecting in a common
totally isotropic line with respect to that polarity.
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Proof Define a geometry G over the type set {1, 2, 3} where the points of X are the
elements of type 3, the singular lines in X are the elements of type 2, and the symps in X
are the elements of type 1. Incidence is symmetrized containment. From the previous it
follows that this is a geometry of type C3. Moreover, properties (LL) and (O) of [13], p.
543, required for the geometry to correspond to a building, are in our setting equivalent
to the requirement that if two lines are both contained in two distinct quads S1 and S2,
then they coincide, which trivially holds. Hence the geometry corresponds to a building,
and since the residue of the elements of type 1 are precisely the symps, hence orthogonal
quadrangles Q(4,K), we see that G is the geometry of the totally isotropic subspaces of a
symplectic polarity in P5(K). Consequently, (X,L) is the corresponding dual polar space
DW(5,K). �

If |K| > 2, then by [5] and [6], LG(3, 6)(K) is the absolute universal embedding of (X,L),
and Proposition 3.3 completes the proof of Main Result 2.

Finally suppose |K| = 2.

Let Y be the point set of the universal embedding of DW(5,F2). By [14], Y spans a
14-dimensional space P14(F2) and the stabilizer of Y in PGL15(2) induces the full group
of automorphisms of DW(5,F2); in particular, it is transitive on the points of Y . For
y ∈ Y , denote by ηy the subspace of P14(F2) generated by all points of Y collinear with y
in DW(5,F2). We now show that P14(F2) is generated by 〈ηy, ηz〉, for y, z ∈ Y at distance
3 from each other.

Let x be an arbitrary point of Y . If x is at distance at most 2 from one of y and z, then we
claim it is contained in 〈ηy, ηz〉. Indeed, suppose x is at distance 2 from y. Let S be the
symp through x and y; then there is a unique point t ∈ S collinear with z. Since t cannot
be collinear with y, S is generated by t and the points of S in ηy. Hence S ⊆ 〈ηy, ηz〉 and
the claim follows.

So we may assume that x has distance 3 from both y and z. In the polar space W(5,F2),
the points x, y, z correspond to mutually disjoint planes πx, πy, πz. We claim that there is
a plane π intersecting πx in a line and πy ∪ πz in a single point. Indeed, clearly no plane
intersecting πx in a line can meet πy ∪ πz in more than two points. Suppose now, for a
contradiction, that each plane πL which intersects πx in a line L and πy in a point yL
(there are precisely 7 such planes) intersects πz in a point zL. If yL = yM , for L,M lines
of πx, then yL is collinear with all points of πx, a contradiction. Since the planes πx, πy, πz
are disjoint, one deduces that the mapping πy → πz : yL 7→ zL induces a collineation, and
so also the mapping πy → πx : yL 7→ L ∩ 〈yL, zL〉 is a collineation. Now the projection
mapping πx → πy : L 7→ yL is a duality; hence the mapping πx → πx : L 7→ L ∩ 〈yL, zL〉
is a duality, every point of which is incident with its image. It is easy to see that this is a
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contradiction. This proves our claim. So there are planes αy and αz intersecting πx in a
common line L, intersecting πy and πz, respectively, in some point, and disjoint from πz
and πy, respectively.

Now, this implies that the line L′ in Y corresponding to the line L of W(5,F2) contains the
point x, and the points at distance 2 from y and z on L′ are distinct. Hence x ∈ 〈ηy, ηz〉
by our first claim, and we have shown 〈ηy, ηz〉 is the whole space. By transitivity of the
automorphism group on Y , we either have dim ηz = dim ηy = 6, or dim ηz = dim ηy = 7. In
the former case, dim〈ηy, ηz〉 ≤ 13, a contradiction. Hence dim ηy = 7, for all y ∈ Y . Since
LG(3, 6)(F2) is isomorphic to the projection of Y from a point c /∈ Y , Axiom (LS3) yields
that c is contained in ηy, for all y ∈ Y . Choosing coordinates in ηy appropriately, we may
assume y = (1, 0, 0, 0, 0, 0, 0, 0, 0), and the other points of Y ∩ ηy are (0, . . . , 0, 1, 0, . . . , 0)
and (1, 0, . . . , 0, 1, 0, . . . , 0) (the 1 is twice in the ith position), i = 2, . . . , 8. The point c
consequently has coordinates either (1, 1, . . . , 1) or (0, 1, . . . , 1). Without loss of generality,
we may assume the former.

Now suppose for a contradiction that X does not arise from Y by projection from c. Then
it must arise from Y by projection from a subspace C that intersects ηy in a unique point
yC , for every y ∈ Y . Since (the projection of) y is either a straight or an almost straight
point, the point yC either has coordinates (0, 1, . . . , 1) (in case of a straight point), or we
may assume without loss of generality that yC has coordinates (0, 0, 1, . . . , 1). In both
cases, the projection of c coincides with the projection of a point of Y ∩ ηy, namely, y and
(1, 1, 0, . . . , 0), respectively. Since this holds for all y ∈ Y , it implies that the projection
from C is not injective on Y , a contradiction.

Hence X arises from Y by projection from c, and we obtain LG(3, 6)(F2). The proof of
Main Result 2 is complete.
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