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1. Introduction

Let Δ be a polar space of rank n with n ≥ 3, with T its set of types and Ωs its set of 
singular subspaces of type s (the type of a singular subspace is its dimension, except for 
the maximal singular subspaces of a hyperbolic quadric). The following situation is the 
central theme of some recent papers: Define some natural (adjacency) relation ∼ on Ωs

and determine the full automorphism group of the corresponding graph (Ωs, ∼), hoping 
for the full automorphism group of Δ. For instance, Liu, Ma and Wang [21] essentially 
prove that when Δ is a finite unitary polar space, s is arbitrary but not maximal, and 
adjacency is “being incident with common singular subspaces of types s − 1 and s + 1”, 
then the automorphism group of (Ω, ∼) coincides with the full automorphism group of 
the polar space. Zeng, Chai, Feng and Ma [29] prove the same thing for finite symplectic 
polar spaces. Pankov [23] shows this for general polar spaces, and points out the only 
exception, namely the polar space related to the triality quadric, where also trialities and 
dualities preserve this adjacency relation on the set of lines of the polar space (however, 
implicitly, this result was known long before, see Section 5). M. Pankov, K. Prazmovski 
and M. Zynel [24] show for an arbitrary polar space Δ and arbitrary s that, when 
adjacency is “being incident with a common singular subspace of type s − 1”, then the 
automorphism group of (Ω, ∼) coincides with the full automorphism group of the polar 
space (without exception). Huang and Havlicek [18] develop a technique that can be 
applied to this problem when the adjacency relation is given by “opposition” (see below 
for the precise definition of this notion). However, their result can not be applied to all 
polar spaces. Kasikova and Van Maldeghem [19] solve the case of opposition for all polar 
spaces and all possible types (pointing out several exceptions to the expectation of getting 
the full automorphism group of the polar space). Huang [16,17] shows that for many polar 
spaces, when s is maximal and adjacency is given by “intersecting in a singular subspace 
of type at most some fixed number”, the automorphism groups of the graph and the 
polar space coincide. Liu, Pankov and Wang [22] treat the case where adjacency is given 
by “being incident with a common singular subspace of type s − 1 and not with one 
of type s + 1”, and also the case where adjacency is defined as “being contained in a 
unique maximal singular subspace”. In the present paper we consider adjacency relations 
that contain and generalise all previously mentioned relations. Moreover, we consider 
these relations between singular subspaces of possibly different types, which gives rise 
to bipartite graphs and yields slightly more general results and more counter examples. 
We note that the adjacency relations in [24,16,17] express an intersection property of the 
singular subspaces in question, while the adjacency relations in [21,29,18,19,22] express 
a certain Weyl distance in the associated Tits-building.

Hence we study permutations of Ωi ∪Ωj , for i, j ∈ T (note that in most cases i, j rep-
resent dimensions, only when Δ is hyperbolic there are two types of (n − 1)-dimensional 
subspaces; hence, in general, |i| and |j| denote the corresponding dimensions), preserving 
either
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(i) a single Weyl distance between elements of Ωi and Ωj in the Tits-building associated 
to Δ,

or
(ii) the members of Ωi × Ωj which intersect in a subspace of given dimension,
or
(iii) the members of Ωi×Ωj whose intersection has dimension at least some given value.

In graph-theoretical terms, this amounts to automorphisms of bipartite graphs having 
Ωi and Ωj as bipartition classes, where I ∈ Ωi and J ∈ Ωj are adjacent if, for some 
k, � ∈ T ∪ {−1, n − 2} (defining the type of the empty set as −1 and including n − 2
in case Δ is a hyperbolic polar space, as then n − 2 /∈ T), the type of I ∩ J is k and 
the type of IJ is � in Case (i) (this will be explained below), the type of I ∩ J is k in 
Case (ii), and the type of I ∩ J is at least k in Case (iii). With only a single restriction 
on the parameters, being “|�| = n − 1 implies |i| = |j| = n − 1”, we prove that, up to two 
classes of exceptions and trivial graphs (meaning that the adjacency relation is empty, 
the graph is complete bipartite, a matching or the bipartite complement of a matching), 
every automorphism of these graphs is induced by an automorphism of the Tits-building 
corresponding to Δ, which is just an automorphism of the polar space Δ if Δ is not 
hyperbolic. The mentioned restriction is not expected to give rise to counterexamples, 
yet it does require a different approach which does not fit in the current paper (and 
as such we leave this case for future work). If i �= j, then by considering all possible 
Weyl distances between elements of type i and j, Case (i) provides a partition of the 
complete bipartite graph Ωi×Ωj such that the automorphism group of each class of the 
partition coincides with the full automorphism group of the polar space. This is a nice 
and unexpected, though theoretical combinatorial property of these groups.

In [12], we studied a similar problem for a projective space P, which gave rise to 
two types of graphs. Both have Pi and Pj as bipartition classes (with similar notation 
as above and 0 ≤ i, j ≤ dim(P)). In the first case (resp. the second case), I ∈ Pi

and J ∈ Pj are adjacent if dim(I ∩ J) = k (resp. dim(I ∩ J) ≥ k) for a fixed k with 
k ≥ −1. The main result of [12] states that if these graphs are nontrivial, then all their 
automorphisms are induced by automorphisms of P (possibly including a duality). Both 
cases fit in an incidence geometric setting, since in the first case (resp. the second case), 
I and J are adjacent whenever there is exactly one k-space (resp. at least one k-space) 
incident with both of them. However, the first case in fact also fits in a metric setting, 
since it corresponds with the preservation of a single Weyl distance in the Tits-building 
corresponding to P. As a projective space is a particular type of Tits-building and the 
Weyl distance is defined for Tits-buildings in general, it is natural to ask whether this 
also holds for other types of (spherical) Tits-buildings. This paper answers this question 
for Tits-buildings associated to polar spaces. Yet, we are also able to treat analogues of 
the incidence-geometric case at the same time. Precise definitions and statements will 
be given in Section 3. The case of the preservation of a Weyl distance yields a rather 



A. De Schepper, H. Van Maldeghem / J. Combin. Theory Ser. A 160 (2018) 332–408 335
general Beckman–Quarles [3] type result for the vertices of spherical Tits-buildings of 
classical type.

Since the analogous problem in the rank 2 spherical case is completely solved by Gov-
aert and Van Maldeghem [14], only the exceptional Tits-buildings of types F4,E6,E7,E8
remain. These yield a finite number of possible Weyl distances. Note that a similar 
question for chambers of any Tits-building has been answered by Abramenko and Van 
Maldeghem [2].

2. Preliminaries

To avoid ambiguity, we give definitions of the concepts that we will frequently use.

2.1. Polar spaces and related notions

A polar space Δ = (X, Ω) of rank n, n ≥ 2, consists of a set of points X and a family 
Ω of subsets of X, satisfying the following axioms.

(PS1) Each element U of Ω together with all elements of Ω contained in U is a projective 
space of dimension at most n − 1 (this dimension will be called the dimension
of U and is denoted by dim(U)). A projective space of dimension −1 is just the 
empty set, a projective space of dimension 0 is a point and a projective space of 
dimension 1 is a set of at least three points with no further structure.

(PS2) The intersection of any number of elements of Ω is again contained in Ω.
(PS3) For U ∈ Ω with dim(U) = n − 1 and p ∈ X \ U , the union of all elements of Ω

of dimension 1 containing p and intersecting U nontrivially is an element of Ω of 
dimension n − 1 which intersects U in a hyperplane.

(PS4) There are two disjoint elements of Ω of dimension n − 1.
A set X of cardinality at least two, together with Ω = X ∪ {∅} is considered to be a 
polar space of rank 1. Henceforth, Δ denotes a polar space of rank n with n ≥ 2.

Collinearity and opposition – An element of Ω of dimension n − 1 is called a maximal 
singular subspace (MSS for short) and an element of Ω of dimension 1 is called a line. Let 
x and y be two distinct points. If they are on a common line, they are called collinear and 
we write x ⊥ y, if not, they are called opposite. The set of points equal or collinear with 
x is denoted by x⊥. A subspace S of Δ is a subset of X such that the lines joining any 
two collinear points of S are contained in S. Moreover, if S contains no pair of opposite 
points, the subspace is called singular. The elements of Ω are precisely the singular 
subspaces of Δ. If U and V are singular subspaces with U ⊆ V , then the codimension
codimV U of U in V is defined as dim(V ) − dim(U) − 1.

For a singular subspace U , we define U⊥ as 
⋂

x∈U x⊥. For any singular subspace V , 
we say that U and V are collinear if V ⊆ U⊥. If they are collinear but disjoint, we write 
U ⊥ V . Let T be a set of pairwise collinear singular subspaces. We denote by 〈T 〉 the 
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smallest singular subspace containing all members of T , and we also say that the members 
of T generate 〈T 〉 or that 〈T 〉 is spanned by the members of T . If T consists of two distinct 
collinear points x, y, we denote the unique line joining these points by xy. The projection
projV (U) of a singular subspace U on a singular subspace V is V ∩U⊥ and the subspace 
spanned by U and projV (U) is denoted by UV (note that dim(UV ) = dim(V U )). If 
projV (U) or projU (V ) is empty, we say that U and V are semi-opposite. Now let U and 
V be semi-opposite singular subspaces. If dim(U) = dim(V ), then both projV (U) and 
projU (V ) are empty and U and V are just called opposite; in case dim(U) < dim(V ), the 
projection projU (V ) is empty whereas projV (U) is not, more precisely, it has dimension 
dim(V ) − dim(U) − 1.

Embeddable and non-embeddable polar spaces – A polar space Δ = (X, Ω) is called 
embeddable when X is a (spanning) subset of the point set of a projective space and the 
elements of Ω are subspaces of that projective space.

According to the classification of polar spaces of rank at least 3 by Jacques Tits, 
there are only two classes which are not embeddable. Both occur when the rank equals 
3 and are denoted by Δ(L) and Δ(O), respectively. The first one has diagram of type 
D3, more precisely, it is a line Grassmannian of a projective space of dimension 3 over 
a non-commutative skew field L and hence it has projective planes over both L and its 
opposite field, L↔; the second has diagram of type C3 and has planes over an octonion 
Cayley–Dickson division algebra O (hence these planes are non-Desarguesian). We now 
turn to the embeddable polar spaces.

An embeddable polar space does not necessarily admit a unique representation in 
projective space. However, it will suffice for us to have one specific representation, namely, 
the one arising from a pseudo-quadratic form. The following is based on Chapter 10 of 
[5], slightly modified by Tits in [28]. Let Δ be an embeddable polar space of rank n at 
least 3. Then there are a skew field L, a right vector space V over L (of possibly infinite 
dimension), an isomorphism σ of order at most 2 between L and its dual L↔, and a 
(σ, id)-linear form g : V ×V → L (i.e., g is σ-linear in the first argument and linear in the 
second argument) such that Δ can be described as follows. Put Lε

σ = {x −εxσ | x ∈ L} for 
ε ∈ {+1, −1}, and consider it as an additive group. Let f : V ×V → L be the (σ, id)-linear 
mapping defined by f(u, v) = g(u, v) + εg(v, u)σ, and define the pseudo-quadratic form
q as

q : V → L/Lε
σ : v �→ g(v, v) + Lε

σ,

where L/Lε
σ is considered as a quotient of additive groups. We must assume that q is 

anisotropic over the radical Rad(f) = {v ∈ V : f(v, w) = 0, ∀w ∈ V } of f , i.e., for 
v ∈ Rad(f), q(v) = 0 (this is the zero of the additive group L/Lε

σ) if and only if v = �o. 
Then the point set X of Δ consists precisely of the points of the projective space PG(V )
represented by vectors v which vanish under q, i.e., q(v) = 0. Two points of Δ, say 
corresponding with the 1-spaces generated by respective vectors u, v ∈ V , are collinear 
precisely if f(u, v) = 0.
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In the above, we can always assume that ε = +1 if σ is nontrivial. If σ is trivial, then 
L is commutative and f is either symmetric (ε = +1) or alternating (ε = −1).

Depending on g, σ and ε, we get different kinds of polar spaces, on which we will now 
comment. First note though that g is not uniquely determined by q. In spite of this, 
the pseudo-quadratic form q, if nontrivial, does determine the form f(u, v) = g(u, v) +
g(v, u)σε uniquely.

We start assuming that charL �= 2, in which case the polar spaces described below 
correspond to non-degenerate alternating forms, bilinear forms and Hermitian forms, 
respectively.

• Every point of PG(V ) is a point of Δ. In this case σ = 1, ε = −1 and f is alternating. 
Then V = 2n for some n and we can choose a basis {e−n, ..., e−1, e1, ..., en} for V
such that, for x(′) =

∑n
i=−n,i �=0 eix

(′)
i with x−n, ..., xn ∈ L,

f(x, x′) = x−nx
′
n − xnx

′
−n + x−n+1x

′
n−1 − xn−1x

′
−n+1 + · · ·x−1x

′
1 − x1x

′
−1.

These polar spaces are called symplectic. They have the property that every line L
of PG(V ) is either a line of Δ or a full hyperbolic line (see later on).

• Not all points of PG(V ) are points of Δ. Here, as alluded to above, we may always 
assume ε = 1. In this case, there is a subspace V0 of V of (vectorial) codimension 2n
and an anisotropic pseudo-quadratic form q0 : V0 → Lε

σ (meaning that q0(v) = 0 if 
and only if v = �o, for all v ∈ V0) and a basis {e−n, ..., e−1, e1, ..., en} of a subspace 
complementary to V0 in V such that for any vector v =

∑n
i=−n,i �=0(eixi) + v0 with 

x−n, ..., xn ∈ L and v0 ∈ V0 we have

q(v) = xσ
−nx−n + xσ

−n+1xn−1 + · · ·xσ
−1x1 + q0(v0)

We now distinguish between σ being the identity, and σ not being the identity. Let 
x, y be any pair of non-collinear points of Δ. Let L be the line in PG(V ) joining x
and y.
◦ If σ is the identity, then L always intersects Δ precisely in {x, y}. These polar 

spaces are called orthogonal (and sometimes also strictly orthogonal for consistency 
with the case of characteristic 2). In particular, if V0 = {0}, then Δ is hyperbolic; 
if dim(V0) = 1 then Δ is parabolic. Note that dim(V0) can be arbitrary, even every 
infinite cardinal.

◦ If σ is nontrivial, then L always intersects Δ in at least 3 points. Then Δ is called
unitary or Hermitian. Note that L is not necessarily commutative here, as opposed 
to the previous cases.

In both cases one sees that n − 1 is the maximum dimension of a subspace of PG(V )
entirely contained in the point set X of Δ.

If charL = 2, the situation is richer.
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• If L is a perfect field, then a parabolic polar space (similarly defined as above for 
characteristic different from 2, in particular we assume σ trivial) is isomorphic to a 
symplectic polar space (of the same rank and over L). Consequently, the parabolic 
polar space can now be embedded in PG(2n − 1, L) as the symplectic one, and we 
will consider this as its standard embedding.

• If L is an imperfect field, σ is trivial, then we consider as standard embedding the 
embedding of the polar space induced in PG(V/Rad(f)). If, and only if, Rad(f) is 
nontrivial, then a line of PG(V/Rad(f)) intersecting the polar space in at least two 
points, intersects it in at least three points. If Rad(f) is trivial, we say that the polar 
space is strictly orthogonal; otherwise mixed.

• If σ is not trivial, it could happen that the corresponding polar space can also be 
obtained as the zeros of the diagonal of a non-degenerate Hermitian form (and this 
always happens if L is commutative), but if L is not commutative, then this is not 
necessarily true. In any case, we will refer to a polar space from a pseudo-quadratic 
form with σ nontrivial as a Hermitian polar space. Again, we consider as standard 
embedding the embedding of the polar space induced in PG(V/Rad(f)). Indepen-
dently of the dimension of Rad(f), every line intersecting the polar space in at least 
two points, intersects it in at least three points.

Residues of Δ – Let K be a singular subspace of dimension k with k ≤ n − 2 and put 
XK = {U ∈ Ω | K ⊂ U and dim(U) = k + 1}. If M is an element of Ω containing 
K, we let M/K represent the elements of XK contained in M . We then define ΩK as 
{M/K | K ⊆ M ∈ Ω}. The resulting structure ResΔ(K) = (XK , ΩK), i.e., the residue, 
is a polar space of rank n −k− 1 of the same “kind” as Δ, e.g. the residue of a parabolic 
polar space is parabolic too, and likewise for hyperbolic, unitary, mixed and so on. As 
such, we extend this terminology to rank 2 and rank 1 residues. An element M/K ∈ ΩK

has dimension dim(M) − k − 1 and will often be identified with M . If dim(K) = n − 2, 
then ResΔ(K) has rank 1. This residue contains at least 2 points and it contains precisely 
2 if and only if Δ is hyperbolic.

The Tits-building associated to Δ – Denote by Δb the Tits-building associated to Δ. 
Note that, if Δ is hyperbolic, Δb is in fact the Tits-building associated to the oriflamme 
complex of Δ. This is the geometry having as elements of type i, with i ≤ n − 3, the 
elements of dimension i of Δ, and as elements of types (n −1)′ and (n −1)′′ the elements 
of Δ of dimension n − 1, hereby distinguishing between the two natural families of 
MSS. Incidence between elements of the latter two types is given by intersecting in an 
(n − 2)-space of Δ, incidence between all other pairs of elements is given by incidence 
in Δ. We define the type set T of Δ in this case as {0, ..., n − 3, (n − 1)′, (n − 1)′′}; 
in case Δ is not hyperbolic, T is just {0, ..., n − 1}. For t ∈ T, we denote by |t| the 
corresponding dimension if confusion is possible. The type of a flag of elements is then 
the set of types of these elements. If Δ is hyperbolic however, the type of a flag of type
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{(n − 1)′, (n − 1)′′} will conveniently be denoted by n − 2 sometimes, as this is the 
dimension of the corresponding subspace. Furthermore, to the empty subspace we assign
the type −1, as this is its projective dimension.

Automorphisms of Δ and Δb – We denote by Aut(Δ) the group of all automorphisms 
of the polar space Δ, i.e., all permutations of the point set of Δ preserving collinearity 
and opposition of points. Further, we denote by Aut(Δb) the group of automorphisms 
of the building Δb, i.e., all permutations of the elements of the building preserving 
incidence and non-incidence. Finally, we denote by Auto(Δb) the group of type pre-
serving automorphisms of Δb. However, an automorphism ρ of the Tits-building Δb

associated to Δ is always type-preserving (recall that we assume that the rank n of Δ
is at least 3), unless possibly if Δ is hyperbolic as then Δb allows dualities, or even 
trialities if n = 4. So assume that Δ is hyperbolic. A duality is an automorphism of 
Δb preserving all types but the maximal ones, which are interchanged. If n = 4, a tri-
ality is an automorphism of Δb only preserving type 1 and cyclically permuting the 
types 0, 3′, 3′′. The composition of a duality and a triality of Δb yields an automor-
phism of Δb preserving types 1 and t for some t ∈ {3′, 3′′} while interchanging types 0
and t′. We call this automorphism a t-duality. Analogously, we sometimes also speak of 
a 0-duality.

Hyperbolic subspaces – Let U and V be opposite t-spaces with t ∈ T non-maximal. We 
define the double perp {U, V }⊥⊥ of U and V as the set of points collinear with U⊥ ∩ V ⊥. 
If U ∪V � {U, V }⊥⊥, this double perp induces a polar space Δ′ ⊆ Δ of rank t + 1, which 
is called a hyperbolic (2t + 1)-space. A hyperbolic 1-space is just called a hyperbolic line
and hence has at least three points. In the standard embedding of Δ in a projective 
space PG(V ), we obtain Δ′ by intersecting Δ with the (2t +1)-space of PG(V ) generated 
by U and V . This way it is easily seen that each point in Δ which is collinear with 
two opposite t-spaces of {U, V }⊥⊥ is collinear with all elements of {U, V }⊥⊥, though this 
property also holds when Δ is not embeddable.

If each point p collinear to U and V should also be collinear with some point q, then 
it follows immediately that q belongs to {U, V }⊥⊥, since q ∈ p⊥ for all p ∈ {U, V }⊥. This 
property will often be used.

If t = 0, two opposite points determine a hyperbolic line unless Δ is a strictly orthogo-
nal polar space. In case Δ is Moufang (which it certainly is if n ≥ 3), the existence of one 
hyperbolic line is equivalent with all pairs of opposite points contained in a hyperbolic 
line. If t = 1, a hyperbolic 3-space is a hyperbolic quadrangle (that is, a hyperbolic polar 
space of rank 2) precisely if Δ is orthogonal. This is the only kind of polar spaces in which 
a maximal set R of pairwise opposite lines of a hyperbolic 3-space has the property that 
each line intersecting two of them intersects all of them (R is a regulus of a hyperbolic 
quadrangle then). For Δ ∈ {Δ(O), Δ(L)}, the hyperbolic 3-space {U, V }⊥⊥ is given by 
{x, y}⊥, for any two points x, y ∈ {U, V }⊥.
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2.2. Weyl distance between two subspaces of a polar space

We recall the definition of the Weyl distance but assume the reader to be familiar 
with its basic properties. For more details, see for example Sections 3.5 and 4.8 of [1], or 
Section 11 of [6]. The Weyl distance is defined in any Tits-building, in particular in Δ. 
First assume that Δ is not of hyperbolic type.

Let [−n, n]0 denote the set of nonzero integers not smaller than −n and not larger 
than n, for n any natural number. Let Ξ be the graph of a cross-polytope with 
2n vertices (where n is now indeed the rank of Δ), i.e., Ξ consists of the vertices 
ξ−n, ξ−n+1, . . . , ξ−1, ξ1, ξ2, . . . , ξn and ξi is adjacent with ξj , i, j ∈ [−n, n]0, if and only if 
i �= −j. The automorphism group of Ξ is a Coxeter group W of type Bn, and we choose 
the following canonical set S of generators. The automorphism si, i ∈ {1, 2, . . . , n − 1}
is given by the involution interchanging ξi with ξi+1 and ξ−i with ξ−i−1. The automor-
phism sn is given by interchanging ξ−n with ξn. The group W is generated by s1, . . . , sn
and by no proper subset of it, and we have the relations (sisj)mij = 1, where mij is 
really the order of the product sisj , given by

mij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j,

2 if |i− j| > 1,
3 if min{i, j} + 1 = max{i, j} < n,

4 if {i, j} = {n, n− 1}.

A chamber of Ξ is a maximal set of nested cliques. The standard chamber is the 
nested chain C0 = {{ξ1}, {ξ1, ξ2}, . . . , {ξ1, ξ2, . . . , ξn}}. One easily verifies that W acts 
sharply transitively on the set of all chambers of Ξ (there are |W | = 2nn! chambers in 
Ξ). Hence, given any chamber C, there exists a unique w ∈ W such that C = Cw

0 . We 
say that w is the Weyl distance from C0 to C, in symbols δ(C0, C) = w. In general, for 
two chambers C, C ′, we define δ(C, C ′) = δ(C0, C)−1δ(C0, C ′). The numerical distance 
d(C, C ′) ∈ N ∪ {0} is the minimal length of any expression of δ(C, C ′) in terms of the 
generators in S (that number is also called the length of the corresponding element 
of W ).

It is well known that W , just like each finite Coxeter group, contains a unique element 
w0 of maximal length. In our case, the maximal length is n2 and w0 is given by

w0 = (snsn−1 · · · s1) · (snsn−1 · · · s2) · · · (snsn−1) · (sn) · (sn−1sn−2 · · · s1)

· (sn−1sn−2 · · · s2) · · · (sn−1sn−2) · (sn−1).

An apartment A of Δ is a set of all singular subspaces spanned by a subset of the set 
S = {x1, . . . , xn, y1, . . . , yn} of 2n points for which yi is the unique point of S opposite 
xi and xi the unique point of S opposite yi, for 1 ≤ i ≤ n. The set S is called a frame. A 
chamber C of Δ is a maximal chain of nested nonempty singular subspaces. A chamber 
C is contained in the apartment A if each of the singular subspaces of C is contained in 
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A , i.e., each member of C is generated by a subset of the point set S . By Theorem 7.4 
of [27], for every pair of chambers C, C ′ there exists an apartment containing both C
and C ′. The frame S = {x1, . . . , xn, y1, . . . , yn} of that apartment can be numbered so 
that C contains the singular subspace spanned by x1, . . . , xi, for every i ∈ {1, 2, . . . , n}. 
We can then attach to C ′ a nested sequence of n subsets of S such that each subset 
generates a singular subspace of C ′. The bijection xi �→ ξi, yi �→ ξ−i, i ∈ {1, 2 . . . , n}, 
identifies this sequence with a chamber C1 of Ξ. A similar identification maps C to 
the standard chamber C0 of Ξ. The Weyl distance δ(C, C ′) is now by definition equal 
to δ(C0, C1). It is independent of the choice of the apartment containing C and C ′. If 
δ(C, C ′) = w0, then we say that C and C ′ are opposite.

This Weyl distance can also be defined in a natural way on pairs of singular subspaces 
of Δ as follows. Let U and W be two singular subspaces of Δ. Let D be the set of Weyl 
distances from a chamber of Δ containing U to a chamber of Δ containing W . Then one 
shows (Proposition 4.88 in [1]) that D contains a unique element w of minimal length. 
We set w = δ(U, W ).

Now suppose that Δ is hyperbolic and of rank n. Then the building associated with 
Δ is identified with the oriflamme complex rather than with Δ itself. We still consider 
the cross polytope graph Ξ as above, but we define the chambers in a different way. A 
chamber is now a nested set of n −2 cliques of size at most n −2, together with two cliques 
of size n intersecting in a clique of size n − 1 which contains each clique of the nested set 
of n − 2 cliques. Note that the set of maximal cliques of Ξ falls naturally into two classes 
in such a way that the size of the intersection of two elements (not) belonging to the 
same class has (does not have) the same parity as n. Every chamber contains a maximal 
clique of each class. The Coxeter group W ′ is now defined as the group of automorphisms 
of Ξ preserving the two classes of maximal cliques. It is a Coxeter group of type Dn. It 
is generated by the same elements s1, s2, . . . , sn−1 and a new element s′n interchanging 
ξn with ξ−n+1 and ξn−1 with ξ−n (and then s′n = snsn−1sn). Writing for a moment si
as s′i for convenience (i ∈ {1, 2, . . . , n − 1}), we again have relations (s′is′j)m

′
ij = 1, where 

m′
ij is really the order of the product s′is′j , given by

m′
ij =

⎧⎪⎨
⎪⎩

1 if i = j,

2 if |i− j| > 1 with max{i, j} < n, and if {i, j} = {n− 1, n},
3 if min{i, j} + 1 = max{i, j} < n, and if {i, j} = {n− 2, n}.

Again, there is a unique longest element w′
0 in W ′, and it has length n2 − n. It reads

w′
0 = s1s2 . . . sn−1s

′
nsn−2 . . . s1.s2s3 . . . sn−1s

′
nsn−2 . . . s2. · · ·

.sn−3sn−2sn−1s
′
nsn−2sn−3.sn−2sn−1s

′
nsn−2.sn−1s

′
n.

The standard chamber is now

C0 = {{ξ1}, {ξ1, ξ2}, · · · , {ξ1, ξ2, . . . , ξn−2}, {ξ1, ξ2, . . . , ξn}, {ξ1, ξ2, . . . , ξn−1, ξ−n}}.
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The Weyl distance from C0 to any other chamber of Ξ is defined as above, now using 
the Coxeter group W ′ and the set S ′ = {s1, s2, . . . , sn−1, s′n} of generators. Similarly 
as above, also the Weyl distance between two arbitrary chambers is defined. Also, if we 
define a chamber C in Δ as the union C≤n−2 ∪ Cn−1,n of a set C≤n−2 of n − 2 nested 
singular subspaces of dimension 0 up to n − 3 with a pair Cn−1,n of maximal singular 
subspaces intersecting in a singular subspace U of dimension n − 2 which contains each 
element of C≤n−2, then we can define the Weyl distance from one chamber to another in 
the same way as for type Bn above. Similarly, one also defines the Weyl distance between 
singular subspaces in Δ.

Before we prove the next lemma, we note that, if U is an element of type i of Δb, where 
Δ is not of hyperbolic type, and W is an element of type j not incident with U , i, j ∈
{0, 1, . . . , n − 1}, then any shortest expression of δ(U, W ) in terms of the generators in S
starts with si+1 and ends with sj+1. Indeed, it follows from the proof of Proposition 3.87 
in [1] that δ(U, W ) is the shortest element of the double coset Wi+1δ(U, W )Wj+1, where 
Wt denotes the (Weyl) subgroup generated by S \ {st}, t ∈ {1, 2, . . . , n}; hence if the 
shortest expression of δ(U, W ) would start with st, t �= i + 1, then we can absorb it in 
Wi+1 and get a shorter representative of the double coset, a contradiction (similarly if 
the shortest expression of δ(U, W ) would not end with sj+1). Hence the Weyl distance 
between two distinct elements reveals the type of the elements. Similarly for the case 
that Δ is hyperbolic (but then, if U has type (n − 1)′ or (n − 1)′′, then δ(U, W ) starts 
with sn−1 or s′n, respectively, and similar for W ).

2.1 Lemma. Let I, I ′, J , J ′ be four singular subspaces of Δ conforming to a type of the 
building and such that neither {I, J} nor {I ′, J ′} are flags. Then δ(I, J) = δ(I ′, J ′) if 
and only if t(I) = t(I ′), t(J) = t(J ′), t(I ∩ J) = t(I ′ ∩ J ′) and t(IJ) = t(I ′ J ′).

Proof. First suppose that δ(I, J) = δ(I ′, J ′). By the definition of Weyl distance, we 
find chambers c, c′, d and d′ containing I, I ′, J and J ′, respectively, such that δ(c, d) =
δ(c′, d′). As Auto(Δb) acts strongly transitively on Δb, it acts transitively on the family 
of pairs of chambers at the same Weyl distance (see e.g. Proposition 7.11 in [1]). Hence 
there is a type-preserving automorphism g of Δb mapping (c, d) on (c′, d′). Since the 
Weyl distance δ(I, J) = δ(I ′, J ′) determines the types of I, I ′, J, J ′, we deduce that the 
types of I and I ′ are the same, and also the types of J and J ′ coincide. This means that 
(I, J) is mapped by g onto (I ′, J ′) (because each chamber contains a unique element of 
each type), and moreover, I ∩ J is mapped on I ′ ∩ J ′ and projJ(I) on projJ ′(I ′). As g is 
type preserving, the assertion follows.

To show the converse, it suffices to find an element of Auto(Δb) that sends (I, J) to 
(I ′, J ′), since such a map preserves the Weyl distance. Without loss, J = J ′, for there is 
a type preserving automorphism mapping J onto J ′ and this of course preserves the re-
spective types of intersection and projection. We may also assume that I, I ′ and J are in 
a common apartment A determined by the frame {x1, . . . , yn} (with previous notation). 
Indeed, suppose that Σ is an apartment containing I and J and Σ′ an apartment con-
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taining I ′ and J . Then by the strong transitivity of Auto(Δb), there is a type preserving 
automorphism mapping Σ on Σ′ while fixing J . We now look for a type preserving auto-
morphism in A that fixes J and maps I on I ′. Let Q (resp. Q′) be a subspace of I (resp. 
I ′) complementary to projI(J). The subspaces I, I ′, J and their subspaces correspond 
to subsets of {x1, ..., yn}. Applying the bijection xi �→ ξi, yi �→ ξ−i, i ∈ {1, 2 . . . , n}, the 
assertion is now easily checked in the graph Ξ (for both cases of type Bn and Dn). �
2.2 Remark.

• The condition that both {I, J} and {I ′, J ′} are not flags is necessary but harm-
less. Indeed, it is necessary because if {I, J} and {I ′, J ′} are flags then δ(I, J) =
δ(I ′, J ′) = id, regardless of the types of I, I ′, J, J ′. It is harmless because, in our 
case we always have t(I) = t(I ′) and t(J) = t(J ′) and, given this, we also have 
δ(I, J) = δ(I ′, J ′) if and only if t(I ∩ J) = t(I ′ ∩ J ′) and t(IJ) = t(I ′ J ′).

• The previous lemma also holds if I, I ′, J, J ′ are flags (with an obvious definition of 
Weyl distance). However, we would only need this when Δ is hyperbolic of rank n, 
when dealing with singular subspaces of dimension n − 2, i.e., flags with type set 
{(n − 1)′, (n − 1)′′}. Yet, in that situation we will consider Δ as a non-thick building 
of type Bn and then we can apply the previous lemma anyway. So we do not need 
the flag version of the lemma after all.

3. Statements of the results

Let Δ be a polar space of rank n, with n ≥ 3, having type set T. Again, denote by Ωs

the set of singular subspaces of Δ having type s. We define, for each pair i, j ∈ T, three 
classes of bipartite graphs with bipartition classes C1 = Ωi and C2 = Ωj (this entails two 
disjoint copies of Ωi if i = j). The first one’s adjacency corresponds to a Weyl distance 
w between some i-space I0 and some j-space J0. By Lemma 2.1, (I, J) ∈ C1 × C2 are 
adjacent if t(I ∩ J) = t(I0 ∩ J0) and t(IJ) = t(I0J0). The latter type sets can also be −1
and, in case Δ is hyperbolic, also {(n −1)′, (n −1)′′}. Therefore, we let k, � be elements of 
T ∪{−1} and, if Δ is hyperbolic, we also allow {(n − 1)′, (n − 1)′′} (which we abbreviate 
to n − 2).

3.1 Definition.

• In the (k, �)-Weyl graph Γn
i,j;k,�(Δ), a pair of vertices (I, J) ∈ C1 × C2 is adjacent 

precisely if t(I ∩ J) = k and t(IJ) = �,
• In the k-incidence graph Γn

i,j;k(Δ), a pair of vertices (I, J) ∈ C1 × C2 is adjacent 
precisely if t(I ∩ J) = k,

• In the k≥-incidence graph Γn
i,j;≥k(Δ), a pair of vertices (I, J) ∈ C1 × C2 is adjacent 

precisely if dim(I ∩ J) ≥ |k|.
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Convention – In short, we will determine the automorphism groups of the above graphs. 
However, there is just one case that we will not consider in this paper, being the 
(k, �)-Weyl graph where |�| = n − 1 when |i| < n − 1 or |j| < n − 1, i.e., we only 
allow |�| = n − 1 in case |i| = |j| = n − 1. This is a very specific case that does not fit in 
the technique used in this paper.

Clearly, the definitions of the k-incidence graphs and the k≥-incidence graphs are 
independent of the order of i and j. We now discuss what happens for the (k, �)-Weyl 
graph if we switch the roles of i and j. Let I and J be adjacent vertices in Γn

i,j;k,�(Δ)
and put � = t(JI). If Δ is not hyperbolic or |�| < n − 1, then � = � and hence switching 
the roles of i and j yields the same graph. If |�| = n − 1 and Δ is hyperbolic, possibly 
� �= � (i.e., then � = �′) and in that case Γn

i,j;k,�(Δ) �= Γn
j,i;k,�(Δ), however, Γn

i,j;k,�(Δ) =
Γn
j,i;k,�(Δ).
As we are only concerned with the automorphism group of the graphs, isomorphic 

graphs are considered equivalent.

Trivial and equivalent cases – The above graphs are considered trivial if they or their bi-
partite complements (which are obtained by interchanging edges and non-edges between 
the biparts while keeping no edges within the biparts) are empty or matchings. We list 
the cases for which it is obvious that they are trivial or equivalent to other cases.

• Suppose first that Δ is not hyperbolic. In order for the graphs to be nonempty, we 
need k ≤ min{i, j} and for Γn

i,j;k,�(Δ) we also need max{i, j} ≤ � ≤ i + j − k. 
A matching occurs if k = i = j. If k + 1 = i = j = 0, then Γn

i,j;k(Δ) is the bipartite 
complement of a matching; if k = −1, then Γn

i,j;≥k(Δ) is a complete bipartite graph. 
Also note that, if i = j = n − 1, then Γk;� = Γk (as � = n − 1 anyhow).

• Next suppose that Δ is hyperbolic. The previous paragraph still applies if we replace 
i, j, k, � by |i|, |j|, |k|, |�|. However, if |k| = |i| = |j| = n − 1, we need to be more 
precise: if i = j then the graphs are matchings if k = i and empty if k �= i; if 
i �= j then they are empty. Moreover, there are additional trivial/equivalent cases 
when n −1 ∈ {|i|, |j|, |k|, |�|}. To study those cases, assume the previously mentioned 
measures have already been taken into account. This implies that we may assume 
that k = |k| < n − 1.
Assume |i| = |j| = n − 1. Note that this is always the case for the (k, �)-Weyl graph 
as soon as |�| = n − 1, by our convention. In order for this graph to be non-empty, 
i = �, j = � and, moreover, if i = j then n − k should be odd, if i �= j then n − k

should be even. The latter also holds when Γ = Γn
i,j;k(Δ) when |i| = |j| = n − 1, 

note that in fact Γn
i,j;k,�(Δ) = Γn

i,j;k(Δ) when |i| = |j| = n − 1. If i = j (resp., i �= j) 
and n − k is even (resp., odd), then Γn

i,j;≥k(Δ) = Γn
i,j;≥(k+1)(Δ). As the latter two 

graphs are equivalent, we will choose not to work with Γn
i,j;≥k(Δ), since intersecting 

in exactly a k-space does not occur. Lastly, if k ≤ 0, we also have that Γn
i,j;k,�(Δ)

(and hence also Γn
i,j;k(Δ)) is isomorphic to the bipartite complement of Γn

i,j;≥k+2(Δ). 
The latter graph is easier to work with, so that is what we will do.
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If n = 4 then Γ4
1,1;0,1(Δ) ∼= Γ4

1,1;−1,3′(Δ) ∼= Γ4
1,1;−1,3′′(Δ) as we can apply a triality. 

Hence in this specific situation, we can treat a case where |�| = 3 and |i|, |j| < 3.

The automorphism groups of the trivial graphs are readily deduced. For the non-
trivial graphs, it is clear that each automorphism of the associated building induces an 
automorphism of the graph. We aim for the converse, which roughly says that each auto-
morphism of the graph is induced by an automorphism of the associated building. This 
statement is made precise in Main Theorems 3.5 and 3.7, including the description of the 
two cases in which there are more automorphisms. In each of the latter two cases, the 
graph Γ, related to some building Δ, turns out to be isomorphic to a graph Γ′ related to 
another building in which the original building can be embedded naturally, and as such, 
each automorphism of this other building, also those not preserving Δb, will induce an 
automorphism of Γ. We first discuss those two cases in detail.

3.2 Example (Special equivalent case 1). Let Δ be a parabolic polar space of rank n
and Δ′ a hyperbolic polar space of rank n + 1 containing Δ as a subspace. Put Γ =
Γn
n−1,n−1;−1,n−1(Δ) (hence adjacent vertices in Γ correspond to opposite MSS of Δ) and

Γ′ =
{

Γn+1
n′,n′;−1,n′(Δ′) (n odd)

Γn+1
n′,n′′;−1,n′(Δ′) (n even)

(in Γ′, adjacent vertices correspond to opposite MSS of Δ′) and denote the bipartition 
classes of Γ by C1 and C2 again, and those of Γ′ by C ′

1 and C ′
2.

We claim that Γ ∼= Γ′. Indeed, let M1 be one of the two families of MSS of Δ′ and let 
M2 be the family of MSS of Δ′ of the opposite type (i.e., M1 = M2 if n is odd and M1
and M2 are distinct if n is even). We may assume that C ′

1 = M1 and then our choice of 
M2 implies that C ′

2 = M2. For r = 1, 2, consider the mappings βr : Cr → C ′
r which takes 

an element X ∈ Cr to the unique element of Mr containing it. Then the mapping

β1 × β2 : C1 × C2 → C ′
1 × C ′

2 : (I, J) → (β1(I), β2(J))

defines a graph isomorphism between Γ and Γ′: if (I, J) ∈ C1 × C2 is an adjacent 
pair of Γ, i.e., if they are disjoint, then β1(I) and β2(J) are also disjoint and hence 
adjacent (precisely by our choice of M2); if (I ′, J ′) ∈ C ′

1 × C ′
2 are disjoint, then clearly 

β−1
1 (I ′) = I ′ ∩ Δ and β−1

2 (J ′) = J ′ ∩ Δ are disjoint.
We now describe the action of an automorphism σ of Δ′ on Γ (note that σ does 

not necessarily stabilise Δ, i.e., possibly σ(Δ) �= Δ). Each vertex X ∈ Cr, r = 1, 2, is 
mapped to the vertex (β−1

r ◦ σ ◦ βr)(X). As σ preserves the adjacency of Γ′ and β1 × β2
defines an isomorphism between Γ and Γ′, this map preserves the adjacency of Γ and 
as such, σ induces an automorphism of Γ. Note that, in the non-bipartite case, i.e., for 
Γn
n−1;−1,n−1(Δ) (as treated in [19]), we can only work with one class of MSS of Δ′ at 

a time, so there is only such an isomorphism for n odd. Note that its bipartite double 
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is isomorphic to Γ, so when n is even, taking the bipartite double yields additional 
automorphisms.

3.3 Example (Special equivalent case 2). Let Δ be a symplectic polar space of rank n. 
Then Δ arises from a symplectic polarity ρ in a projective space P = PG(2n − 1, L), for 
some field L. Let Γ = Γn

0,0;−1,0(Δ) (hence adjacent vertices in Γ correspond to opposite 
points of Δ) and Γ′ be the bipartite graph with bipartition classes C ′

1 and C ′
2 containing 

the points and hyperplanes of P, respectively, and a point p and a hyperplane H are 
adjacent if p /∈ H (hence p and H are opposite in P).

Again, we claim that Γ ∼= Γ′. The points of Δ are precisely those of P, so C1 = C ′
1. 

Let x be a vertex in C2. We define B(x) as the set of vertices of C1 not adjacent with x. 
Then B(x) equals the set of points of Δ equal to or collinear with x, i.e., this is exactly 
ρ(x) as a set of points. Hence the morphism β2 : C2 → C ′

2 : x �→ B(x) is well defined. 
As B(x) = ρ(x), it follows that β2 is an isomorphism. Putting β1 = idC1 , we have that 
β1 × β2 defines an isomorphism between Γ and Γ′: (p, q) is an adjacent pair of Γ, i.e., 
p /∈ q⊥, if and only if β1(p) = p /∈ β2(q) = q⊥, i.e., if (β1(p), β2(q)) is an adjacent pair 
of Γ′.

Like above, an automorphism σ of P (not necessarily preserving Δ) induces an au-
tomorphism of Γ by mapping each vertex x ∈ Cr on (β−1

r ◦ σ ◦ βr)(x). The smallest 
example of this case has already been explained in [12] (Theorem 4.2(vi)).

In the non-bipartite case, i.e., for Γn
0,−1;0(Δ), there is no meaningful isomorphism like 

above to consider, since we worked with two types of subspaces. Also here, the bipartite 
double of Γn

0,−1;0(Δ) is isomorphic to Γ, which has additional automorphisms.

As one can see, there is a similarity between those two special cases, even more when 
we observe that also in the first case, the vertex sets C1 and C ′

1 are point sets of certain 
geometries: the dual parabolic polar space and the half spin geometry, respectively.

3.4 Remark. The pairs of point-line geometries corresponding to the two counter exam-
ples above, namely,

1. the pair of a projective space of odd dimension 2d − 1 and a symplectic polar space 
of rank d, d ≥ 2, over the same field, and

2. the pair of a half spin geometry of type Dk and a dual parabolic polar space of type 
Bk−1, k ≥ 3, defined over the same field (for k = 3, this pair coincides with the first 
pair for d = 2, using the same field),

are precisely the pairs of geometries related to split spherical buildings with the property 
that their point sets have a common projective representation as a projective variety, 
and the line set of the second is strictly contained in the line set of the first (the line set 
of the first one consists of all lines on the projective variety). Such pairs are classified 
by Cohen and Cooperstein [10]. The explanation why exactly these pairs turn up in our 
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result is that the relation of being not opposite induces geometric hyperplanes in these 
geometries, which are induced by ordinary projective hyperplanes; these hyperplanes 
coincide for both geometries in the pair, and so the opposition relation in both geometries 
are indistinguishable. This points to the conjecture that there are no more examples of 
this phenomenon to be found in the non-split case. It is conceivable that our result, 
together with the analogue for the exceptional buildings, can be used to prove this. Note 
that Cardinali, Giuzzi and Pasini [8] verify the conjecture for (Grassmannians of) polar 
spaces arising from reflexive bilinear and sesquilinear forms in finite dimensional vector 
spaces over commutative fields.

We now state our main results. Denote by Autc(Γ) the group of automorphisms of Γ
preserving the bipartition classes of Γ. We use the terminology regarding automorphisms 
of Δb defined in the previous section.

3.5 Main Theorem. Let Γ = Γn
i,j;k,�(Δ) be nontrivial and assume moreover that if |�| =

n − 1, then |i| = |j| = n − 1. Let ρ be an arbitrary element of Autc(Γ).

(i) If Δ is a parabolic polar space, i = j = � = n − 1 and k = −1, then ρ is induced by 
an automorphism of a hyperbolic polar space of rank n + 1 containing Δ and every 
such automorphism induces an element of Autc(Γ) (see Example 3.2).

(ii) If Δ is a symplectic polar space, i = j = � = 0 and k = −1, then ρ is induced by an 
automorphism of its ambient projective space PG(2n − 1, L) for some field L and 
every such automorphism induces an element of Autc(Γ) (see Example 3.3).

(iii) In all other cases, ρ is induced by an automorphism ρ of Δb. Moreover, the auto-
morphisms of Δb inducing an element of Autc(Γ) are precisely the type-preserving 
ones, except if Δ is hyperbolic and one of the following holds.
(a) The dualities of Δ also induce elements of Autc(Γ) if |�| < n − 1.
(b) If n = 4, then for each t ∈ {3′, 3′′}, the t-dualities of Δ also induce elements 

of Autc(Γ) if either 0 and t′ do not occur in {i, j, k, �} (including (i, j, k, �) =
(1, 1, −1, 2)), or if (i, j, k, �) = (1, 1, 0, 2).

(ab) If n = 4 and all conditions mentioned in both (a) and (b) are satisfied, i.e., 
if i = j = 1 and (k, �) ∈ {(−1, 1), (−1, 2), (0, 2)}, then also the trialities of Δ
induce elements of Autc(Γ).

If i = j or if Δb has an automorphism switching i and j then Aut(Γ) = Autc(Γ) × 2; 
otherwise Aut(Γ) = Autc(Γ).

3.6 Example. As an example to the cases mentioned in Main Theorem 3.5(iii), we explain 
the following situation. Suppose Δ is hyperbolic, n = 4 and (i, j, k, �) = (1, 1, 0, 2). We 
show that the t-dualities, for each t ∈ {0, 3′, 3′′}, indeed preserve the adjacency of Γ
(hence also their compositions, trialities in particular, preserve the adjacency). Let L
and L′ be adjacent lines in Γ. This means that L ∩L′ is a point p and there is a 3′-space 
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U and a 3′′-space V containing 〈L, L′〉. Equivalently, there is a set {p, U, V ′} of pairwise 
incident elements which are all incident with both L and L′. If we apply a t-duality θ, 
then {pθ, Uθ, V θ} is also a set containing a point, a 3′-space and a 3′′-space which are 
pairwise incident, and all of them are incident with both lines Lθ and L′ θ. Hence Lθ

and L′ θ are indeed adjacent vertices of Γ. The types 0, 3′, 3′′ play the same role in the 
adjacency relation.

3.7 Main Theorem. Let Γ be Γn
i,j;≥k(Δ) or Γn

i,j;k(Δ) and suppose Γ is nontrivial. If 
|i| = |j| = n − 1, assume moreover that Γ �= Γn

i,j;k(Δ), since Γn
i,j;k(Δ) = Γn

i,j;k,�(Δ). 
Let ρ be an arbitrary element of Autc(Γ). Then ρ is induced by an automorphism of Δb. 
Moreover, the automorphisms of Δb inducing an element of Autc(Γ) are precisely the 
type-preserving ones, except if Δ is hyperbolic and one of the following holds.

(a) The dualities of Δ also induce elements of Autc(Γ) if |i|, |j| < n − 1.
(b) If n = 4, then for t ∈ {3′, 3′′}, the t-dualities of Δ also induce elements of Autc(Γ)

if (i, j) ∈ {(1, t), (t, 1), (t, t)}.

If i = j or if Δb has an automorphism switching i and j then Aut(Γ) = Autc(Γ) × 2; 
otherwise Aut(Γ) = Autc(Γ).

3.8 Remark. If Δ is of type D4, then the nontrivial graphs Γ≥k are all equivalent with 
Γk′ for some k′ or the complement of such a graph. Indeed, Γ≥0 ∼= Γ−1; if 1 ∈ {i, j}
or {i, j} = {3′, 3′′} then Γ≥1 ∼= Γ1, Γ2, respectively; if i = j = 3′ or i = j = 3′′ then 
Γ≥1 ∼= Γ−1; lastly, Γ≥2 ∼= Γ2 (in this case {i, j} = {3′, 3′′} in order for the graph to be 
nontrivial). This, together with the fact that the presence of t-dualities (t ∈ {0, 3′, 3′′}) 
only depends on i and j, explains why we do not distinguish between those two types of 
graphs in Main Theorem 3.7(a) and (b).

3.9 Example. Note that in Main Theorem 3.7, there are no trialities of Δ inducing el-
ements of Autc(Γ). Indeed: for example, if Γ = Γ4

1,1;−1(Δ), two lines corresponding to 
adjacent vertices are mapped by a triality on two lines that possibly share a point, which 
happens if the original lines were contained in a t-space (t ∈ {3′, 3′′}). Like before, there 
is only a t-duality (t ∈ {3′, 3′′}) if the relations of an adjacent pair of vertices w.r.t. 
subspaces of types 0 and t′ is symmetrical.

One could also consider the non-bipartite versions of the graphs defined above, de-
noted by Γn

j;k,�(Δ), Γn
j;k(Δ) and Γn

j;≥k(Δ), respectively, with self-explaining notation. In 
general, the (extended) bipartite double 2Γ (2Γ) of a given graph Γ is obtained by taking 
two copies of the vertex set of Γ, without the edges, and defining a vertex of one copy 
to be adjacent to a vertex of the other copy if the corresponding vertices are (equal or) 
adjacent in Γ. It is clear that AutΓ is isomorphic to a (possibly proper) subgroup of 
Autc (2Γ) ≤ Aut (2Γ) and of Autc (2Γ) ≤ Aut (2Γ). This almost immediately yields the 
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following corollaries. Note that there is no counterpart of Main Theorem 3.5(i) for n is 
even, nor for Main Theorem 3.5(ii), as was explained in Examples 3.2 and 3.3.

3.10 Corollary. Let Γ = Γn
j;k,�(Δ) be nontrivial and assume moreover that if |�| = n − 1, 

then |j| = n − 1. Let ρ be an arbitrary element of Aut(Γ).

(i) If Δ is a parabolic polar space and j = � = n − 1, k = −1 and n is odd, then ρ is 
induced by an automorphism of hyperbolic polar space of rank n + 1 containing Δ
and every such automorphism induces an element of Aut(Γ) (see Example 3.2).

(ii) In all other cases, ρ is induced by an automorphism of Δb. Moreover, the automor-
phisms of Δb inducing an element of Autc(Γ) are precisely the type-preserving ones, 
except if Δ is hyperbolic and one of the following holds.
(a) The dualities of Δ also induce elements of Autc(Γ) if |�| < n − 1.
(b) If n = 4, then for t ∈ {3′, 3′′}, the t-dualities of Δ also induce elements of 

Autc(Γ) if either 0, t′ do not occur in {j, k, �} (including (j, k, �) = (1, −1, 2)), 
or if (j, k, �) = (1, 0, 2).

(ab) If n = 4 and the conditions mentioned in both (a) and (b) are satisfied, i.e., 
if j = 1 and (k, �) ∈ {(−1, 1), (−1, 2), (0, 2)}, the trialities of Δ also induce 
elements of Autc(Γ).

3.11 Corollary. Let Γ be Γn
j;≥k(Δ) or Γn

j;k(Δ) and suppose Γ is nontrivial. If |j| = n − 1, 
assume moreover that Γ �= Γn

j;k(Δ) since Γn
j;k(Δ) = Γn

j;k,�(Δ). Let ρ be an arbitrary 
element of Aut(Γ). Then ρ is induced by an automorphism of Δb. Moreover, the auto-
morphisms of Δb inducing an element of Autc(Γ) are precisely the type-preserving ones, 
except if Δ is hyperbolic one of the following holds.

(a) The dualities of Δ also induce elements of Autc(Γ) if |j| < n − 1.
(b) If n = 4, then for t ∈ {3′, 3′′}, the t-dualities of Δ also induce elements of Autc(Γ)

if j = t.

For simplicity, we henceforth denote the graphs Γn
i,j;k,�(Δ), Γn

i,j;≥k(Δ) and Γn
i,j;k(Δ) by 

Γ�
k, Γ≥k and Γk, respectively. We always assume these graphs to be nontrivial. According 

to the following remark, we may also assume that Δ is an infinite polar space which is 
not Δ(L).

3.12 Remark. When Δ is a finite polar space, Main Theorems 3.5 and 3.7 can be proven 
using a group-theoretical result of Liebeck, Praeger and Saxl [20] on the maximal sub-
groups of the alternating and symmetric groups. For more details, see [12]. Also, if 
Δ = Δ(L), then Δb is isomorphic to a projective space of dimension 3 over L and all 
occurring graphs in this case are also graphs that occurred in [12]. Hence the result 
follows from this paper.
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4. Sketch of the proof

It is in fact possible to prove Main Theorem 3.7 along the lines of [12], though extra 
cases arise. However, Main Theorem 3.5 requires another approach, as only the concept 
of the so-called round-up triples and round-up quadruples can be recycled from [12]. This 
new approach is general enough to cover Main Theorem 3.5 and 3.7 at the same time 
and provides a more elegant proof for Main Theorem 3.7.

We start by (re)defining the round-up triples and quadruples, stated in terms of j, 
but equally valid for i. For any graph and any subset V of its vertices, we denote by 
N(V ) the set of all common neighbours of V , i.e., N(V ) =

⋂
v∈V N(v), with N(v) the 

neighbourhood of v.

4.1 Definition. A set {J1, J2, J3} of three distinct elements of Ωj is called a round-up 
triple if no vertex is adjacent to exactly two of them and N(J1, J2, J3) is nonempty.

4.2 Definition. A set {J1, J2, J3, J4} of four distinct elements of Ωj is called a round-up 
quadruple if every vertex that is adjacent to at least two of them is adjacent to at 
least three of them and the sets N(J1, J2, J3, J4) and N(J1, J2, J3) \ N(J1, J2, J3, J4) are 
nonempty for any permutation of the indices.

When Γ = Γ≥k, we aim to classify round-up triples; when Γ ∈ {Γk, Γ�
k}, we aim to 

classify round-up quadruples. To this end, we give a construction of an i-space adjacent 
to two j-spaces at distance 2 in Γ (Section 6). Since such an i-space then has to be 
adjacent to a third member of the round-up triple or quadruple, this limits the possible 
configurations of such triples and quadruples. We narrow down these possibilities until 
we obtain a Grassmann graph or a graph strongly related to it (Section 7 for k > −1
and Section 8 for k = −1). The latter graphs determine Δb completely (see Section 5).

As such, an automorphism σ of Γ extends to an automorphism σ of Δb. We even 
claim that σ is the restriction of σ to the i- and j-spaces. Suppose that we constructed 
Δb out of its j-spaces (which is the case if we first construct Gj from Γ). By definition 
of σ, its action on the j-spaces coincides with the action of σ on the j-spaces. Now the 
action of σ on one of the biparts of Γ uniquely determines the action on the other bipart, 
since NΓ(I) = NΓ(I ′) if and only if I = I ′ (of course still under the assumption that Γ is 
nontrivial). Hence also the actions of σ and σ on the i-spaces coincides. This shows that 
σ is indeed the restriction of an automorphism of Δb.

Convention – In order to consider round-up triples and round-up quadruples at the 
same time, a round-up triple {J1, J2, J3} will be written as {J1, J2, J3, J3}. Conversely, 
if {J1, J2, J3, J4} in fact represents a round-up triple, we assume J3 = J4. For simplicity, 
we will refer to a round-up quadruple simply by a quadruple, whenever we need ordinary 
quadruples, we will make this clear by calling these 4-tuples; likewise for the (round-up) 
triples.



A. De Schepper, H. Van Maldeghem / J. Combin. Theory Ser. A 160 (2018) 332–408 351
5. Grassmann graphs

The t-Grassmann graph is the collinearity graph of the so-called t-Grassmannian 
geometry associated to Δ and is defined as follows.

5.1 Definition. For t ∈ T, the t-Grassmann graph Gt(Δ) has Ωt as vertex set, and two 
vertices U and V are adjacent if dim(U ∩ V ) = max{T ∩ T ′ | T, T ′ ∈ Ωt, T �= T ′} and 
dim(UV ) = dim(V U ) = min{|t| + 1, n − 1}.

If Δ is hyperbolic, we also consider Gn−2(Δ) and Gn−1(Δ), whose definitions are 
analogous up to the indices that now refer to dimensions only. If no confusion is possible, 
we omit Δ. Throughout the proofs of Main Results 3.5 and 3.7, we will encounter a 
graph with the same vertex set as Gt where two t-spaces are adjacent precisely if their 
intersection has maximal dimension amongst all elements of {T ∩ T ′ | T, T ′ ∈ Ωt, T �=
T ′}. This graph will be denoted G′

t and Gt can be reconstructed from it, as the following 
lemma says.

5.2 Lemma. For all t ∈ (T ∪ {n − 2, n − 1}) \ {0}, we can construct Gt from G′
t.

Proof. If |t| = n −1, clearly Gt = G′
t. So suppose |t| < n −1. A standard arguments yield 

two types of maximal cliques in G′
t: One consisting of all t-spaces in a (t + 1)-space, and 

one containing all t-spaces containing a common (t − 1)-space. Either way, two t-spaces 
in such a maximal clique are contained in a singular subspace precisely if there exists 
a vertex outside the clique that is adjacent to both of them. Removing the edges in G′

t
between vertices for which this is not the case, Gt is obtained. �

The following proposition can be found in the literature ([23]), but we include a proof 
written in the same spirit as the rest of this paper for completeness’ sake. Note also 
that this result was implicitly contained in the characterisations of polar Grassmannians 
obtained in the eighties mainly ([4], [7], [9], [11], [13], [15], [26]).

5.3 Proposition. For all t ∈ T, the t-Grassmann graph Gt uniquely determines Δb. That 
is, it uniquely determines Δ if Δ is not hyperbolic and, if Δ is hyperbolic, up to triality 
or t1-duality for t1 ∈ {0, 3′, 3′′} if (n, t) = (4, 1), up to t-duality if (n, t) ∈ {(4, 3′), (4, 3′′)}
and up to duality if t /∈ {(n − 1)′, (n − 1)′′}.

As a consequence of Lemma 5.2, we immediately have the following corollary.

5.4 Corollary. For all t ∈ (T ∪ {n − 2, n − 1}) \ {0}, the graph G′
t uniquely determines 

Δb. That is, it uniquely determines Δ if Δ is not hyperbolic and, if Δ is hyperbolic, up 
to triality or t1-duality for t1 ∈ {0, 3′, 3′′} if (n, t) = (4, 1), up to t-duality if (n, t) ∈
{(4, 3′), (4, 3′′)} and up to duality if t /∈ {(n − 1)′, (n − 1)′′}.
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5.5 Lemma. For all t ∈ T ∪ {n − 2} with |t| < n − 1, we can construct Gn−1 from Gt, 
unless Δ is of type D4 and t = 1. In the latter case, G1 uniquely determines Δb, i.e., it 
uniquely determines Δ up to t1-duality for t1 ∈ {0, 3′, 3′′}.

Proof. As |t| < n −1, t = |t|. A set consisting of all t-spaces in a (t +1)-space is clearly a 
clique of Gt, as is a set consisting of all t-spaces that go through a fixed (t −1)-space and 
are contained in some MSS. Denote by C1 all cliques of the first type and by C2 all cliques 
of the second type. A clique maximal with the property of being contained in more than 
one maximal clique is the set of all lines through a (t − 1)-space and contained in a 
(t + 1)-space. Such a clique is denoted by C (M, N) if M and N are two of its members.

Suppose first that 0 < t < n − 3. Again, standard arguments imply that C1 � C2
coincides with the set of maximal cliques of Gt. Let P be the poset consisting of elements 
{M1∩· · ·∩Mm | m ∈ N>1, Mi a maximal clique, Mi �= Mj , 1 ≤ i < j ≤ m}. A member of 
P\{∅} is the set of all t-spaces through a (t −1)-space and contained in a (t +s −1)-space 
for some s with 1 ≤ s ≤ n − t − 1 (denote the subset of P consisting of those members 
by Ps). A maximal clique is of the second type precisely if it contains an element of P3. 
By taking the cliques of the first type, we obtain the vertices of G′

t+1. They correspond 
to adjacent vertices of this graph if they have a one element (a t-space) in common. By 
Lemma 5.2, we obtain Gt+1 and we can continue up to Gn−3. Hence we still need to deal 
with t ∈ {0, n − 3, n − 2}.

(t = 0) In this case, the set of maximal cliques is given by C2 and hence we obtain all 
(n − 1)-spaces. Considering the poset P again, it is easily seen that we can 
determine when two such MSS intersect in an (n − 2)-space.

(t = n− 2) Now, C1 is the set of maximal cliques and again we obtain all (n −1)-spaces. 
They intersect each other in an (n −2)-space if they share precisely one element.

(t = n− 3) Note that, when endowed with the elements of P2 as lines, a clique of type 
C1, is isomorphic to a (t +1)-space and a clique of type C2 to an (n −t −1)-space. 
If t +1 > n −t −1, which happens if n > 4, we can distinguish the cliques by their 
dimension. Indeed, in our graph this comes down to the following: in a maximal 
clique of type C2, each two elements of P2 have a t-space in common, whereas, 
if n > 4, a maximal clique of type C1 contains elements of P2 that do not share 
a t-space. This way we can again recognise the cliques of type C1, after which 
we can proceed by constructing Gn−2 from this, like above.
If n = 4, then t = 1 and we consider two lines M and N at distance 2 in G1
having at least two common neighbours. Either M and N are disjoint collinear 
lines and hence 〈M, N〉 is a 3-space V , or M and N are intersecting non-collinear 
lines and hence M ∩N is a point, which we also call V (to deal with both cases 
at the same time). We now construct their convex closure (called a symplecton), 
which in the first case consists of all lines incident with V . We start with all 
members of N(M, N), which are clearly incident with V . For any R ∈ N(M, N), 
we also take all members of C (M, R) and of C (R, N). This way we have already 
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obtained the set CM which are, in the first case, all lines incident with V and 
intersecting M and, in the second case, all lines incident with V that are collinear 
with M ; likewise we have a set CN . Finally, for any pair (V, V ′) ∈ CM × CN

having distance two in G1, we add all members of N(V, V ′). It is easily verified 
that we have all elements of G1 incident with V .
Now, the set of all lines an 3-space is, regardless of the type of Δ, a Klein quadric 
(note that we also have its lines, which are the planar line pencils). However, the 
set of lines through a point is a hyperbolic polar space of rank 3 if and only if 
Δ is hyperbolic. So if Δ is of type D4, we cannot distinguish between the two 
types of symplecta; if Δ is not of type D4, we can. In order to do so, take two 
such symplecta that have more than one line in common. It is impossible that 
both symplecta are of the second type; if the symplecta are both of the first 
type, this means that the 3-spaces intersect in a plane, moreover, as Δ is not 
of type D4, there are more symplecta through this intersection; if the symplecta 
are of different types, the point is contained in the 3-space and, regardless of the 
type of Δ, there are no other symplecta through this intersection. Hence we can 
indeed distinguish between the two types of symplecta.
We conclude that, if Δ is of type D4, the set of all symplecta yields a tripartite 
graph by letting two of them be adjacent whenever they have more than one line 
in common. So up to a permutation of the types {0, 3′, 3′′}, we obtain Δ. In all 
other cases, we construct the graph having the symplecta corresponding to the 
3-spaces as vertices and with adjacency “having more than one line in common” 
and obtain Gn−1. �

Let CT(Δ) denote the incidence graph of Δ and, for T′ ⊆ T, let CT′(Δ) denote its 
restriction to elements of types in T′. We will use the notation [s, t] for all types in 
between s and t.

5.6 Lemma.

• For any polar space Δ, the graph Gn−1(Δ) completely determines Δ if Δ is not 
hyperbolic and up to duality if Δ is hyperbolic.

• For any hyperbolic polar space Δ, the graph Gt(Δ), for t ∈ {(n − 1)′, (n − 1)′′}, 
completely determines Δ if n �= 4; and up to t-duality if n = 4.

Proof. Let G be one of Gn−1(Δ), Gt(Δ) with t ∈ {(n −1)′, (n −1)′′}. In the latter case, we 
assume Δ to be hyperbolic and n > 4 (note that, if n = 3, Gt(Δ) is the collinearity graph 
of a projective 3-space). We now construct C[n−3,n−2](Δ) and C[n−4,n−3](Δ), respectively. 
First observe that the maximal cliques in Gn−1 correspond to the (n − 2)-spaces, and 
are determined by any two of its members, say U and V , and then the clique is denoted 
by C (U, V ). The maximal cliques in Gt(Δ) correspond to the (n − 4)-spaces and the 
t′-spaces. Those are not determined by any two of their members: suppose (Ui)i is a 
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subset of a maximal clique which all contain a common (n − 3)-space W , then (Ui)i is 
contained in all maximal cliques corresponding to (n − 4)-spaces containing W and in 
all maximal cliques corresponding to t′-spaces containing W . In general, “submaximal” 
cliques (cliques which are maximal with the property of being contained in more than 
two maximal cliques) correspond to the (n − 3)-spaces and are determined by any two 
of its members U and V and we also denote this by C (U, V ).

Now take two elements M and N at distance two in G. Their convex closure can be 
obtained as in the proof of the previous lemma and yields all elements of G containing 
M ∩N . In the first case, this readily gives us C[n−3,n−2](Δ). In the second case, we can 
construct C[n−4,n−3](Δ), as two distinct (n − 3)-spaces intersect in an (n − 4)-space if 
they have at least two (n − 5)-spaces in common; and the intersection of the two sets of 
t-spaces through those two (n − 5)-spaces is then exactly the set of t-spaces through this 
(n − 4)-space.

Given C[i,i+1](Δ), for 1 ≤ i ≤ n − 3, we can build the graph C[i−1,i](Δ). Let R and Q
be two i-spaces contained in an (i +1)-space SR,Q. Then R∩Q is (i −1)-dimensional and 
we aim for all i-spaces through R∩Q. We start by taking all i-spaces L /∈ N(SR,Q) such 
that N(L, R) and N(L, Q) are nonempty. Then L contains R ∩Q. Also, the members of 
N(SR,Q) that have a common neighbour with L are all i-spaces in SR,Q through R ∩Q. 
This way, we already obtained all i-spaces through R ∩Q collinear with SR,Q. Now let 
M be such an i-space that is not contained in SR,Q. Then any i-space through R∩Q is 
collinear with at least an i-space of each of SQ,R, SR,M , SM,Q, and at least two of these 
i-spaces are, or can be chosen, distinct. Hence, repeating the previous argument for all 
pairs (R′, Q′) in SQ,R ∪ SR,M ∪ SM,Q, we obtain all i-spaces through R ∩Q.

Finally, we deal with the graph Gt(Δ) in the case where Δ is hyperbolic and n = 4. 
As before, we can construct the lines of Δ, and given the lines and the t-spaces, we can 
construct Δ up to a t-duality. Indeed, using the fact that Δ allows a triality, we may 
assume that we are given its points and lines, and then the planes and the 3-spaces (so 
without distinction between the 3′- and 3′′-spaces) can be constructed from this. �

The above lemmas now prove Proposition 5.3.

6. Construction of an i-space adjacent to two j-spaces at distance 2 in Γ

Let Γ be one of Γ≥k, Γk, Γ�
k. Most of the time, it will be most convenient to assume 

|i| ≤ |j|, up to one particular situation:

Convention on i and j – If max{|i|, |j|} < |�|, we suppose |j| = max{|i|, |j|}; if 
max{|i|, |j|} = |�|, we suppose that |j| = min{|i|, |j|}.

Let J1 and J2 be elements of Ωj at distance 2. In general, an element of N(J1, J2) is 
generated by three kinds of subspaces (those will be called the ‘building bricks’) which 
we want to be able to place in “good” positions, as will be explained below. We first 
introduce notation regarding these building bricks, after which we start the construction.
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Fig. 1. Mutual position of J1 and J2 (left) and the position of I w.r.t. J (right).

6.1. The building bricks

The mutual position of any pair of subspaces of Δ is determined by their intersection 
and projection on each other.

The mutual position of J1 and J2 – Let {c, c′} be {1, 2} throughout this section. The 
mutual position of J1 and J2 is described as follows (see Fig. 1).

◦ The intersection is the subspace J1 ∩ J2 and is denoted by S, its dimension by s;
◦ the collinear part is the set projJc

(Jc′) \ S and is denoted by Pc. We fix a subspace 
Pc ⊆ Pc such that 〈S, Pc〉 = projJc

(Jc′), and denote by p∗ the dimension of Pc;
◦ the semi-opposite part is the set Jc \ (S ∪ Pc) and is denoted by Qc. Let Qc ⊆ Qc be 

a fixed subspace such that 〈S, Pc, Qc〉 = Jc, and denote by q∗ the dimension of Qc.

As the notation suggests, p∗ and q∗ do not depend on the value of c. The subspace 
spanned by the intersection and the collinear part, i.e., 〈S, P1, P2〉, is sometimes denoted 
by P and it is equal to 〈projJ1

(J2), projJ2
(J1)〉.

The position of I w.r.t. Jc – For I ∈ N(J1, J2), its position w.r.t. J1 and J2 has an 
analogous description but we use K, A and B instead of S, P and Q to denote each of 
the previous subsets (see Fig. 1). Again we fix subspaces Ac ⊆ Ac and Bc ⊆ Bc such 
that I = 〈Kc, Ac, Bc〉. The adjacency relation in Γ puts restrictions on the dimensions 
kc, ac and bc of Kc, Ac and Bc. Clearly, kc + ac + bc + 2 = i. If Γ = Γ≥k, then kc ≥ k, if 
Γ = Γk, then k1 = k2 =: k and if Γ = Γ�

k, all values are determined and independent of 
the index c:

k := k1 = k2;

a := a1 = a2 = |�| − |j| − 1;

b := b1 = b2 = |i| + |j| − k − |�| − 1.

For X ∈ {K, A, B}, X1 ∩X2 is a subspace incident with/collinear with/semi-opposite 
both J1 and J2 and will be referred to by X−, or simply X whenever X1 = X2. One should 
picture this for choices of A1 ⊆ A1 and A2 ∈ A2 for which 〈K1∩K2, A1∩A2〉 \〈K1, K2〉 =
A1 ∩ A2; likewise with B1 ⊆ B1 and B2 ⊆ B2 such that B1 ∩ B2 is complimentary to 
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〈K1, A1〉 and to 〈K2, A2〉 (i.e., the subspaces A1 and A2, respectively, B1 and B2, are 
chosen such that their intersection is maximal).

We say that a subspace avoids a set of subspaces if it is disjoint from each of its 
members. Fact 6.1 below describes how we can choose collinear parts and (semi-)opposite 
parts while avoiding a finite set of subspaces. Parts of the proofs of these facts can be 
found in the literature; yet the “avoiding”-part cannot and this will be essential for us.

6.1 Fact. Let Δ be infinite and let i, j ∈ T. Let F ⊆ Ωj and F ′ ⊆ Ω be finite sets.

(i)p Suppose F = {U, V } and let F ′ be such that each of its members intersects U and 
V in subspaces of dimensions at most dim(U ∩V ). Then there is a wp-space W p in 
〈projU (V ), projV (U)〉 \(U∪V ) if and only if wp ≤ codimprojU (V )(U∩V ). Moreover, 
W p can be chosen such that it avoids F ′.

(i)o Suppose F = {U, V } and let F ′ be such that each of its members intersects U and 
V in subspaces of dimension at most dim(U ∩ V ). Then there is a wo-space W o

avoiding (UV ∪ V U ) collinear with U and V if and only if wo ≤ n − dim(UV ) − 2. 
Moreover, W o can be chosen such that it avoids F ′, unless if Δ is hyperbolic, 
dim(UV ) = n − 2 and wo = 0, then we only have dim(W o ∩F ) ≤ 0 for all F ∈ F ′.

(i)∗ Combining (i)p and (i)o, there is a w-space W = 〈W p, W o〉 such that W ⊆ (U⊥ ∩
V ⊥) \(U ∪V ) if and only if w ≤ n −|j| −2. Moreover, W can be chosen such that it 
avoids F ′, unless if Δ is hyperbolic, dim(UV ) = n − 2 and w = n − |j| − 2, in this 
case there are exactly two subspaces P 1 and P 2 containing 〈projV (U), projU (V )〉
as a hyperplane and such that W is contained in one of them, say in P 1, then for 
all F ∈ F ′ with dim(F ∩P 1) = dim(projU (V )) + 1 we only have dim(W ∩F ) = 0.

(ii) There is an element W ∈ Ωt such that it is opposite each member of F for some 
type t ∈ T (if Δ is hyperbolic, |j| = n − 1 and n is odd, then t = j′; in all other 
cases t = j). Moreover, W can be chosen such that it avoids F ′, unless if Δ is 
hyperbolic and |j| = n − 1, then W can be chosen such that it avoids F ′ ∩ (Ω \Ωj′)
and intersects each member of F ′ ∩ Ωj′ in exactly a point.

(iii) Let F = {U, V } with U �= V and put t = t(UV ). If |i| ≤ |t| − |j| − 1, there is 
an element W ∈ Ωi such that W ⊆ U⊥ \ U and with W and V semi-opposite. 
Moreover, W can be chosen such that it avoids F ′, except if Δ is hyperbolic and 
|j| < |t| = n − 1 and |i| = |t| − |j| − 1, then W avoids F ′ ∩ (Ω \Ωt′) and intersects 
each member F with U ⊆ F ∈ F ′ ∩ Ωt′ in exactly a point.

Proof. (i)p Put P = 〈projV (U), projU (V )〉, U = P ∩ U , V = P ∩ V and write � for 
dim(UV ) and s for dim(U ∩ V ). We show that we can find a subspace W p of 
dimension wp := codimprojU (V )(U∩V ) in P that avoids U , V and F ′, which then 
also shows that any subspace of smaller dimension with the same properties can be 
found as a subspace of this one.
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By assumption, each member F ∈ F ′ intersects U and V , hence also U and V , in 
subspaces of dimension at most s. This implies dim(F ∩ P ) ≤ dim(U), for if not, 
F ∩ P would intersect U in a subspace with a dimension strictly bigger than s.
Hence, W p has to be a subspace complementary to U and V in P , which implies W p

would not be found if wp > codimprojU (V )(U ∩V ). Moreover, W p has to avoid F ′, a 
finite set of subspaces of dimensions at most dim(U). As P is an infinite projective 
space, this is possible.

(i)o We keep on using the notation introduced above. We first establish W o ⊆ (U⊥ ∩
V ⊥) \ (UV ∪ V U ), afterwards we verify whether we can do this while avoiding F ′. 
Again, it suffices to do this for wo = n − � − 2 and show that we cannot find such a 
W o with wo > n − � − 2.
We look in ResΔ(P ), where U and V correspond to opposite subspaces U ′ and 
V ′. In ResΔ(P ), consider U ′ ⊥ ∩ V ′ ⊥, which is isomorphic to a polar space Δ′ of 
rank n − � − 1. Note that n − � − 1 ≥ 1 since we may assume that � < n − 1. 
Indeed, if � = n − 1, necessarily each subspace W ⊆ U⊥ ∩V ⊥ belongs to P since no 
point outside P can be collinear with both U and V , as it would be collinear with 
the (n − 1)-dimensional subspaces UV and V U . Observe moreover that each point 
collinear with both U and V and not contained in UV ∪ V U corresponds to a point 
of Δ′.
Now, in Δ′, let W o be a maximal singular subspace, i.e., a subspace of dimension 
n − � −2 (this, and the above observation, shows that w0 > n − � −2 will not work). 
If Δ′ has infinitely many MSS then we can choose W 0 in Δ′ such that it avoids the 
set corresponding to F ′, i.e., the set {PF /P ∩Δ′ | F ∈ F ′}. The only case in which 
Δ′ does not have infinitely many MSS is when Δ is hyperbolic and � = n − 2, so 
wo = 0.

(i)∗ First note that codimprojU (V )(U ∩V ) +(n −dim(UV ) − 2) +1 = n − |j| − 2. Now, if 
w < n − |j| − 2, then we choose W p and W o by means of (i)p and (i)o respectively 
such that wo < n −dim(UV ) −2 and wp+wo+1 = w. Then (i)p and (i)o imply that 
we can choose W p such that it avoids F ′ and W o in ResΔ(P ) such that it avoids 
{PF /P | F ∈ F ′}, implying that in Δ, 〈W p, W o〉 avoids F ′. If w = n − |j| − 2
then we are forced to choose wp = codimprojU (U∩V ) and wo = n − dim(UV ) − 2. If 
Δ is not hyperbolic or dim(UV ) �= n − 2, everything is as above. If Δ is hyperbolic 
and dim(UV ) = n − 2, then by (i)o, there are exactly two subspaces P 1 and P 2

containing P as a hyperplane which are collinear with U and V . If we aim for a 
subspace W of dimension wp + wo + 1 in P c that avoids U , V and F ′, then this is 
possible unless dim(F∩P c) = dim(U) +1 for some F ∈ F ′, as then dim(F∩W ) = 0.

(ii) We prove this fact by induction on j. The induction basis depends on Δ and j. Up 
to now, we have assumed n ≥ 3 but since these proofs are of general nature and we 
want the lowest possible induction basis, we include n = 1, 2.
(IH0) Suppose that |j| = 0 and that either Δ is not hyperbolic or n ≥ 2. Note that 

this assumption says that there are infinitely many points in Δ. Let there be 
given a finite set {x1, ..., xr} (r ∈ N) of points. We aim for a point opposite 



358 A. De Schepper, H. Van Maldeghem / J. Combin. Theory Ser. A 160 (2018) 332–408
all of them, now by using induction on r. First suppose r = 1. Let M be any 
MSS not containing x1 and not coinciding with any member of F ′. Then 
the set {M ∩ F | F ∈ F ′} ∪ projM (x1) is finite and hence its union cannot 
cover M , yielding the existence of a point p ∈ M opposite x1 and avoiding 
F ′. Now suppose r > 1. By induction there is a point p which is opposite all 
points of {x2, ..., xr} and not contained in any member of F ′. If p = x1, take 
any line L through x1. Note that no member of F ′ contains L as they do not 
contain p. Since L has infinitely many points, there is a point on L not in 
F ′ ∪

⋃r
i=2 projL(xi). So we may assume that p and x1 are distinct collinear 

points. Now take a line L′ through p such that, in ResΔ(p), the lines px1

and L′ correspond to opposite points. Clearly, any point on L′ disjoint from 
F ′ ∪

⋃r
i=1 projL′(xi) satisfies the requirements.

(IH1) Suppose that |j| = 1 and that Δ is a hyperbolic polar space of rank 2. Note 
that Δ is a grid and F ∪ (F ′ ∩ Ωj) is a subset of one of its reguli, whereas 
F ′ ∩ Ωj′ is a subset of the other regulus. As a regulus contains infinitely 
many elements, the first mentioned regulus contains an element opposite the 
members of F while avoiding the members of F ′∩ (Ω \Ωj′) and intersecting 
the members of F ′ ∩ Ωj′ in a point.

Now suppose |j| > 0 (in particular, n > 1), and if |j| = 1, we may assume that 
Δ is not a hyperbolic polar space of rank 2, since that case has been dealt with 
already. Let {X1, ..., Xr} (r ∈ N) be a finite subset of Ωj . Take a point xi ∈ Xi for 
all i with 1 ≤ i ≤ r. We already know that there is a point p opposite all these 
points and avoiding F ′. In ResΔ(p), the j-spaces Xi correspond to (j − 1)-spaces 
pXi . By induction (up to case (IH1) if Δ is hyperbolic and |j| = n − 1, otherwise 
up to case (IH0)), there is a (j − 1)-space opposite all of them and avoiding the set 
corresponding to F ′, or, if Δ is hyperbolic and |j| = n −1, intersecting the members 
of F ′∩Ωt′ in a point only. The corresponding |j|-space in Δ is opposite all members 
of {X1, ..., Xr} and avoids F ′ \Ωt′ and up to a point, it avoids F ′∩Ωt′ (this cannot 
be more than a point by going back to Δ, since the dimension of intersection could 
only grow by one whereas the parity has to remain unchanged).

(iii) If |t| = |j|, there is nothing to prove, so assume |t| > |j|. Consider ResΔ(U), in 
which UV corresponds to a singular subspace V ′ of dimension |t| − |j| − 1 ≥ 0. By 
the previous fact, there is a singular subspace W ′ opposite V ′ that avoids the set 
corresponding to F ′, unless |t| = n −1, as then it avoids the set corresponding to F∩
(Ω \Ωt′) and intersects each member of the set corresponding to F ∩Ωt′ in exactly a 
point. Now let Z be the singular subspace in Δ through U corresponding to W ′ and 
let Z ′ be a subspace in Z complimentary to U . If W ′ avoids the set corresponding 
to F ′, then Z ′ avoids F ′. If for some F ∈ F ′, the subspace corresponding to it 
intersects W ′ in exactly a point of it, then Z also contains exactly a point of F . 
Only if some F ∈ F ′ contains U , we are not able to choose Z ′ such that it avoids 
F ′. This shows the lemma. �
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6.2. The construction of an element of N(J1, J2)

We define N(x)(J1, J2) to be the subset of N(J1, J2) consisting of those i-spaces I
for which K1 ∩ S = K2 ∩ S has dimension x. As mentioned, an element I ∈ N(J1, J2)
consists of the building bricks K1, K2, A1, A2, B1, B2. We now want to give a construction 
for some members of N(x)(J1, J2) as build up from these buildings bricks. These members 
will then help us to narrow down the mutual positions for a round-up quadruple. To make 
this a powerful tool, we need ‘many’ elements in N(x)(J1, J2), ‘many’ in the sense that 
we need to be able to choose our building bricks such that they avoid certain subspaces, 
cf. Fact 6.1. Yet we can limit ourselves to ‘easy’ members, ‘easy’ in the sense that, for 
any X in {K, A, B}, we choose X1 and X2 such that X− is as large as possible. This 
part is rather technical, but it is a key element of the proof.

Some assumptions – We list assumptions on the parameters that we use throughout the 
construction and in the rest of the proof.

• In view of Subsection 7.1, we may assume k < min{|i|, |j|} and, if Δ is hyperbolic, 
k �= n − 2.

• As mentioned at the beginning of this section, either |i| ≤ |j| or |i| = |j| + |a| + 1.

Our construction depends on the mutual position of J1 and J2 and also on x. The cases 
of interest turn out to be those with x = k in case s ≥ k, x = k−1 in case s ≥ k ≥ 0 and 
x = s if s < k (note that also in the last case, k ≥ 0). So we restrict our attention to those 
cases, despite the fact that a construction equal or similar to ours would also work for 
other values of x. We first suppose Γ = Γ�

k for a non-trivial Weyl graph Γ�
k. Afterwards 

we deal with the other types of graphs, which do not need much additional effort as 
their adjacency imposes less constraints. Moreover, we first study the case in which Δ
is not hyperbolic and afterwards we summarise the differences. At the conclusion of this 
section, we summarise our findings.

6.2 Construction. Our construction consists of three steps. In the first step, we examine 
the possibilities for K1 and K2. Then, given 〈K1, K2〉, we do the same for A1 and A2
and afterwards, taking into account 〈K1, K2, A1, A2〉, we do this again for B1 and B2. In 
each step we verify some “avoiding properties”. Fig. 2 depicts an element of N(s)(J1, J2)
as generated by its different “building bricks”, with respect to J1 and J2 respectively.

6.2.1 (Selection of K1 and K2). We will choose Kc such that Kc = 〈S∩Kc, Kc∩Pc, Kc∩
Qc〉, i.e., we choose subspaces of Pc and Qc which, together with the part of Kc chosen in 
S, generate Kc. The parts Kc ∩Pc and Kc ∩Qc need to be chosen carefully, as 〈K1, K2〉
has to be singular and, moreover, Kc∩Pc ⊆ Ac′ and Kc∩Qc ⊆ Bc′ . Our method depends 
on x.

[x = k] In this case, K1 = K2 is simply any k-space in S.
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Fig. 2. An element of N(s)(J1, J2), depicted w.r.t. J1 (left) and J2 (right).

[x = k − 1] Now Kc = 〈K−, zc〉 with zc ∈ Jc \ S and z1 ⊥ z2. If −1 /∈ {a, b}, we can 
choose any pair of collinear points and such a pair always exists if (p∗, q∗) �= (−1, 0). If 
a = −1 then necessarily zc ∈ Qc, which is possible unless q∗ ≤ 0. Likewise, if b = −1
then zc ∈ Pc, which is possible unless p∗ = −1.

[x = s] Here we still have to choose two collinear (k− s − 1)-spaces to complete K1 and 
K2. We call a 4-tuple (p1, q1; p2, q2) of integer numbers allowed values if we can find an 
element of N(s)(J1, J2) for which Kc is such that dim(Kc ∩ Pc) = pc, dim(Kc ∩Qc) = qc
(still assuming Kc = 〈S, Kc ∩ Pc, Kc ∩ Qc〉). This 4-tuple is sometimes abbreviated by 
(pc, qc)c and, in case p1 = p2 = p and q1 = q2 = q for some p and q, we will sometimes 
write (pc, qc)c = (p, q). Note that this definition does not depend on the choices of Pc and 
Qc in Pc and Qc, respectively, as they all play the same role. The following constraints 
apply to (pc, qc)c.

−1 ≤ pc ≤ min{a, p∗}, −1 ≤ qc ≤ min{b, q∗} (1)

Furthermore, as Q1 ∩K1 needs to be collinear with Q2 ∩K2, the latter needs to be 
contained inside projQ2

(Q1 ∩K1), resulting in the condition

q1 + q2 + 1 ≤ q∗. (2)

We also have to keep in mind that pc and qc are related by

pc + qc + 1 = k − x− 1. (3)

Now let (pc, qc)c be values satisfying (1), (2) and (3) and let K1 and K2 be such that 
dim(Kc∩Pc) = pc and with K1∩Q1 and K2∩Q2 collinear subspaces of dimensions q1 and 
q2, respectively. By choosing Ac and Bc, i.e., by finishing the construction and obtaining 
an element I = 〈K1, K2, A1, A2, B1, B2〉 in N(s)(J1, J2), we will show that (pc, qc)c are 
indeed allowed values, so it will then follow that (pc, qc)c are allowed values if and only if 
(1), (2) and (3) hold. To see that there are values (pc, qc)c satisfying (1), (2) and (3), take 
any I ∈ N(J1, J2). The k-spaces I ∩ J1 and I ∩ J2 are generated by subspaces S = I ∩S, 
P c ⊆ Pc and Qc ⊆ Qc of respective dimensions s, pc and qc with k = s + pc + qc + 2. 
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Clearly, (pc, qc)c satisfies (1) and (2) and pc+qc+1 = k−s−1 ≥ k−s −1. This means that 
there are pc and qc with −1 ≤ pc ≤ pc and −1 ≤ qc ≤ qc such that pc+qc+1 = k−s −1, 
i.e., (3) is satisfied for x = s. Furthermore, as (pc, qc)c satisfies (1) and (2), so does 
(pc, qc)c.

We encounter our first “avoiding property”. Suppose p1 ≤ p2; if not, we switch the 
roles of J1 and J2.

6.2.2 ((K1, K2)-avoiding). Suppose x = s < k and let F be a finite set of j-spaces 
intersecting J1 in at most a subspace of dimension s. We can choose K1 and K2 in 
such a way that dim(F ∩ 〈K1, K2〉) < k for each F ∈ F , unless if S ⊆ F for some 
F ∈ F or if (pc, qc)c = (p∗, b). In the latter case, each member I ∈ N(J1, J2) contains 
P = 〈S, P1, P2〉.

To show this, we start from k-spaces Kc in Jc such that (pc, qc)c takes allowed values, 
i.e., such that there is an element of N(s)(J1, J2) containing 〈K1, K2〉, or equivalently, 
values satisfying conditions (1), (2) and (3) (as explained above we prove this later, 
independently of this). Suppose that dim(F ∩ 〈K1, K2〉) ≥ k for some F ∈ F . A di-
mension argument yields that dim(F ∩ K1) = dim(F ∩ J1) = s. If S �= F ∩ Jc for 
all F ∈ F , we show that, when (pc, qc)c �= (p∗, b), we can choose K1 and K2 such that 
dim(Kc∩F ) ≤ s −1 for all F ∈ F and hence dim(〈K1, K2〉 ∩F ) < k. If (pc, qc)c = (p∗, b), 
it readily follows that there are no other allowed values and that each I ∈ N(J1, J2) has 
to contain 〈S, P1, P2〉 = P .

We want to replace K1 by a k-space K ′
1 through S, possibly by also replacing K2 by 

a k-space K ′
2 with S ⊆ K ′

2 ⊆ projJ2
(Q1 ∩K ′

1). Recall that Kc = 〈S, Kc ∩ Pc, Kc ∩Qc〉. 
We use the following (independent) actions.

(SP) The subspace K1 ∩ P1 may be replaced by any other p1-space P 1 in P1.
(SQ) The subspace Q1 may be replaced by any other q∗-space Q′

1 in Q1 and K1 ∩ Q1

may be replaced by any other q1-space Q1 in Q′
1, if we replace the subspace K2∩Q2

by any q2-space Q2 in projQ2
(Q1).

Then we put K ′
1 = 〈S, P 1, Q1〉 and K ′

2 = 〈S, K2 ∩ P2, Q2〉 (and hence P 1 = K ′
1 ∩ P1, 

Qc = K ′
c ∩Q′

c). Note that replacing P1 by any other p∗-space P ′
1 in P1 would not make 

a difference, as 〈S, K1 ∩ P1〉 = 〈S, K1 ∩ P ′
1〉.

First note that it is possible that K1 contains P1 as it can contain 〈S, P1〉 (at least 
if q∗ ≥ 0) but it is not possible that K1 contains Q1 as then it would contain J1, 
contradicting k < j. We may suppose that dim(F ∩ Jc) = s for all F ∈ F , because as 
noted before, if dim(F∩Jc) < s, then automatically dim(F∩〈K1, K2〉) < k. For each F ∈
F , set sF := dim(F ∩S), pF := codimF∩〈S,P1〉(F ∩S) and qF := codimF∩J1(F ∩〈S, P1〉). 
Denote the subsets {F ∈ F : pF ≥ 0} and {F ∈ F : qF ≥ 0} by Fp and Fq, respectively.



362 A. De Schepper, H. Van Maldeghem / J. Combin. Theory Ser. A 160 (2018) 332–408
• First suppose that Fq is non-empty. Then we may assume that q1 ≥ 0, as otherwise 
K1 cannot contain F ∩J1 for F ∈ Fq. We use (SQ) to replace Q1 such that K1 does 
not contain F ∩ J1 for each F ∈ Fq. Indeed, since K1 cannot contain Q1, we can 
always make sure that K1∩Q1 avoids a point of each subspace of {F ∩Q1 | F ∈ Fq}, 
as Fq is finite.

• Suppose next that Fp is non-empty. If p1 < pF for some F ∈ Fp, then clearly K1
cannot contain F ∩ J1, hence we may assume that p1 ≥ pF ≥ 0. Now, if p1 < p∗, we 
can use (SP) to change P1 ∩K1 such that 〈S, P1 ∩K1〉 does not contain F ∩ 〈S, P1〉
(not containing a point from each subspace of {F ∩ P1 | F ∈ Fp} suffices).
If p1 = p∗ and q1 < b, we replace K1 by another k-space K ′

1 through S, one for which 
(p′1, q′1) = (p∗−1, q1 +1). We claim that these are allowed values, i.e., that conditions 
(1), (2) and (3) are satisfied. First note that p1 ≤ p2 implies p1 = p2 = p∗ and q1 = q2. 
Since p1 ≥ 0, p1 − 1 ≥ −1 and by assumption q1 + 1 ≤ b. If (q1 + 1) + q2 + 1 > q∗, 
then q1 + q2 + 1 = q∗. However, this would imply i = s + 2p∗ + 2q2 + (a − p∗ − 1) +
(b −q2−1) +6 = j+a +1 +(b −q2) ≥ j, whereas we know that i ≤ j or i = j+a +1. 
Either way, this implies b − q2 = 0 and then, since q1 = q2, this contradicts our 
assumption that q1 < b and the claim holds. Since p′1 < p∗, we can again apply the 
above argument (if necessary).

Since sF +pF +qF = s and sF < s, we have pF +qF +2 ≥ 0, so Fp∪Fq = F . Hence, this 
shows that, if (pc, qc)c �= (p∗, b) we can choose K1 and K2 such that dim(F ∩〈K1, K2〉) <
k for all F ∈ F , under the assumption that S �= F ∩ Jc for any F ∈ F .

6.3 Remark. Note that for each F ∈ F , also if (pc, qc)c = (p∗, b), we can make sure that 
dim(〈K1, K2〉 ∩ F ) < k, as long as S � F .

We continue with our construction. First note that the dimensions (pc, qc)c can also 
be used in the case x = k−1. In this case, pc and qc belong to {−1, 0}, satisfy conditions 
(1) and (2) and condition (3) with x = k − 1 becomes pc + qc + 1 = 0. In the sequel, 
we handle the cases x = k − 1 and x = s simultaneously as they behave the same with 
respect to choosing A1, A2, B1 and B2.

6.2.3 (Selection of A1 and A2). As A1 and A2 have to be collinear with J1 and J2, they are 
automatically collinear with 〈K1, K2〉, the part of our i-space that has been constructed 
up to now. Denote by At the set of all t-spaces T belonging to (J⊥

1 ∩ J⊥
2 ) \ (J1 ∪ J2). By 

Fact 6.1(i)∗, At is certainly nonempty for all t with −1 ≤ t ≤ a, since a = � − j − 1 ≤
n − j − 2.

[x = k] Take A1 = A2 ∈ Aa arbitrarily.

[x ∈ {k − 1, s}] In these cases, K2 ∩ P2 ⊆ A1 and K1 ∩ P1 ⊆ A2. Assume p1 ≤ p2 and 
let a′ = a −p2−1. As we prefer A− to be as large as possible, we choose it in the set Aa′ , 
which is nonempty as −1 ≤ a′ ≤ a. Then A1 = 〈A−, K2 ∩ P2〉. Put ap := dim(A− ∩ P ).
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If p1 = p2, we also put A2 = 〈A−, K1∩P1〉; if p1 < p2, we still need a (p2−p1−1)-space 
C that together with A− and K1∩P1 will generate the a-space A2, as a = (a −p2−1) +p1+
(p2−p1−1) +2. This subspace C has to be collinear with J2 and semi-opposite J1, and also 
needs to be collinear with A−. We define J ′

c = 〈Jc, Pc′ ∩Kc′ , A−〉. A (p2−p1−1)-space C
collinear with J ′

2 and semi-opposite J ′
1 will be collinear with A−, K1∩P1 and J2 and will 

be semi-opposite J1. By Fact 6.1(iii), such a subspace exists if dim(J ′
2
J ′
1) −dim(J ′

2) −1 ≥
p2−p1−1. One can verify that dim(J ′

2
J ′
1) −dim(J ′

2) −1 = p∗−(p1+ap+1) −1 (note that 
〈A−∩P, P1∩K1, J2〉 ∩J1 has dimension s +(p1+ap+1) +1). Now p2−p1−1 ≤ p∗−p1−ap−2
if and only if ap ≤ p∗ − p2 − 1, which is true. Note that equality holds if and only if 
ap = p∗ − p2 − 1. We set A2 = 〈A−, K1 ∩ P1, C〉.

We encounter some more avoiding properties. Recall that P = 〈S, P1, P2〉.

6.2.4 ((A ∩ P )-avoiding). Let F be a finite subset of Ωj, all of whose members intersect 
J1 and J2 in subspaces of dimension at most s. Suppose ap := dim(A− ∩P ) ≥ 0. Then:
(i) If x = k ≥ 0, we can choose A ∩ P such that dim(〈K, A ∩ P 〉 ∩ F ) < k for each 

F ∈ F , unless if either K ⊆ F , or, if ap = p∗ ≥ 0 and dim(F ∩P ) = p∗ + s + 1 for 
some F ∈ F . If K ⊆ F for some F ∈ F , then we can always choose A ∩ P such 
that 〈K, A ∩ P 〉 ∩ F = K for all F ∈ F with K ⊆ F .

(ii) If x = s < k, we can choose A−∩P , K1 \S and K2 \S such that dim(〈K1, K2, A−∩
P 〉 ∩ F ) < k for each F ∈ F , unless if either dim(F ∩ 〈K1, K2〉) ≥ k for some 
F ∈ F , or, if dim(F ∩ P ) = p∗ + s + 1 for some F ∈ F , ap = p∗ − p2 − 1 ≥ 0
and −1 ∈ {q∗, b}. If dim(〈K1, K2〉 ∩ F ) = k for some F ∈ F , then we can always 
choose A− ∩ P such that 〈K1, K2, A− ∩ P 〉 ∩ F = 〈K1, K2〉 ∩ F for all F ∈ F with 
dim(〈K1, K2〉 ∩ F ) = k.

We now verify that this is true. Let F be an arbitrary member of F and put ap =
dim(A− ∩ P ).

(i) Clearly, if K ⊆ F , then dim(〈K, A ∩P 〉 ∩F ) ≥ k. We start with the first assertion, so 
suppose K � F and suppose dim(〈K, A ∩P 〉 ∩F ) ≥ k for all choices of A ∩P . This 
means that dim(F ∩P ) +dim(〈K, A ∩P 〉) −k ≥ dim(P ). Now dim(P ) = 2p∗+s +2, 
dim(〈K, A ∩P 〉) = k+ap +1 ≤ k+p∗ +1 and dim(F ∩P ) ≤ p∗ +s +1 (as otherwise 
dim(F ∩Jc) > s). We obtain that dim(〈K, A ∩P 〉) +dim(F ∩P ) −k ≤ (k+p∗ +1) +
(p∗+s +1) −k = dim(P ) and equality only holds when dim(F ∩P ) = k+p∗+1 and 
ap = p∗. We conclude that only when these conditions are fulfilled, it is not possible 
for F ∩ P and 〈K, A ∩ P 〉 to intersect in a subspace of dimension strictly less than 
k. On the other hand, this also reveals that if dim(K ∩F ) = k, it is always possible 
to choose A ∩ P such that K ∩ F = 〈K, A ∩ P 〉 ∩ F .

(ii) Let K1 and K2 be such that (pc, qc)c are allowed values. We consider the singular 
subspace P := 〈P, K1 ∩Q1, K2 ∩Q2〉, which has dimension 2p∗ + s + q1 + q2 + 4. As 
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before, we assume q1 ≥ q2. Suppose again that dim(〈K1, K2, A− ∩ P 〉 ∩ F ) ≥ k for 
all choices of A− ∩ P , while assuming dim(〈K1, K2〉 ∩ F ) < k for each F ∈ F .
Hence, as above, we then conclude dim(F∩P ) +dim(〈K1, K2, A−∩P 〉) −k ≥ dim(P ). 
Now dim(〈K1, K2, A−∩P 〉) = k+ap+p2+q2+3 ≤ k+p∗+q2+2 and dim(F ∩P ) ≤
p∗+s +q2+2 (otherwise dim(F∩J1) > s). This yields dim(F∩P ) +dim(〈K1, K2, A−∩
P 〉) − k ≤ (p∗ + s + q2 + 2) + (k + p∗ + q2 + 2) − k = dim(P ) − q1 + q2 ≤ dim(P )
and equality only holds when dim(F ∩ P ) = p∗ + s + q2 + 2, ap = p∗ − p2 − 1 and 
q1 = q2. Note that this, like in the previous item, reveals that it is always possible 
to choose A− ∩ P such that 〈K1, K2〉 ∩ F = 〈K1, K2, A− ∩ P 〉 ∩ F for all F ∈ F

with dim(〈K1, K2〉 ∩ F ) = k.
Now, we claim that there are allowed values for which q1 > q2 if and only if −1 /∈
{b, q∗}. So suppose that p1 = p2 and q1 = q2. Then (p1 − 1, p2; q1 + 1, q2) is not a 
tuple of allowed values if and only if either p1 = p2 = −1 or q1 = b or q1+q2+1 = q∗; 
likewise, (p1 + 1, p2; q1 − 1, q2) is not a tuple of allowed values if and only if either 
p1 = p2 = p∗ or p1 = p2 = a or q1 = q2 = −1. First note that if p1 = p2 = p∗ or if 
p1 = p2 = a, then necessarily ap = −1 so this contradicts our assumptions. Hence 
we may assume that q1 = q2 = −1 (otherwise the second tuple would be allowed 
after all). Now for the first tuple not to be allowed, we should have p1 = p2 = q1 =
q2 = −1, or b = q1 = q2 = −1, or q∗ = q1 + q2 + 1 = −1. The first possibility 
would imply that k = s, which contradicts s < k, so we conclude that −1 ∈ {b, q∗}, 
showing the claim. However, we also need to make sure that this does not conflict 
with the 〈K1, K2〉-avoiding used when proving Property 6.2.2. Indeed, there was one 
situation in which we changed the values (p1, q1; p2, q2), namely from (p∗, q1; p∗, q2)
to (p∗ − 1, q1 + 1; p∗, q2). Yet p2 = p∗ here, so ap = −1, while we assume ap ≥ 0.
We conclude that only when −1 ∈ {q∗, b} (and hence q1 = q2 = −1), ap = p∗−p2−1
and dim(F ∩ P ) = p∗ + s + q2 + 2, we cannot choose K1 \ S, K2 \ S and A− ∩ P

such that dim(〈K1, K2, A− ∩ P 〉 ∩ F ) < k.

Before we continue with our construction, we give one more avoiding property, 
concerning the selection of A1 and A2. In constructing these, we used Facts 6.1(i)∗
and 6.1(iii), and as we still assume that Δ is not hyperbolic, these facts also give the 
following property:

6.2.5 ((A \ P )-avoiding). Let F be a finite subset of Ωj such that dim(F ∩Jc) ≤ s for all 
F ∈ F . Then the parts of A1 and A2 outside P can be chosen such that 〈K1, K2, A1, A2〉 \
〈K1, K2, A ∩ P 〉 avoids F .

6.2.6 (Selection of B1 and B2). Let I∗ denote 〈K1, K2, A1, A2〉. Possibly, dim(I∗) = i

and nothing more needs to be done. So suppose dim(I∗) < i. As B1 and B2 have to be 
collinear with I∗, we look for them in Δ′ = ResΔ(I∗). Now, dim(J1∩I∗) = k by definition 
and dim(projJ1

(I∗)) = j − q1 − 1 since 〈K2 ∩ Q2, C〉, which has dimension q1 (recall 
p1 + q1 = p2 + q2), is a subspace of I∗ maximal with the property of being semi-opposite 
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J1. Hence, in Δ′, J1 corresponds to a subspace J ′
1 of dimension (j − q1 − 1) − k − 1. 

Likewise, dim(J2 ∩ I∗) = k and dim(projJ2
(I∗)) = j − q1 − 1 as a maximal subspace of 

I∗ semi-opposite J2 is K1 ∩Q1, which has dimension q1. Therefore, J2 corresponds to a 
subspace J ′

2 in Δ′ of dimension (j − q1 − 1) − k − 1 too.
As before, we choose B− as large as possible. If x = k, we aim for a b-space B1 = B2

semi-opposite J1 and J2. If x �= k, then I∗ ∩B1 = 〈K2 ∩Q2, C〉 and I∗ ∩B2 = K1 ∩Q1. 
Both subspaces are q1-dimensional, as q2 +(p2−p1−1) +1 = q1. So in this case we need 
a (b − q1 − 1)-space B− to define B1 = 〈K2 ∩Q2, C, B−〉 and B2 = 〈K1 ∩Q1, B−〉. This 
can be achieved as follows. Put q1 = −1 in case x = k and define b′ = b − q1 − 1. In Δ′, 
we select two arbitrary b′-spaces T1 and T2 in J ′

1 and J ′
2, respectively. This is possible as 

b′ = b − q1 − 1 ≤ (j − k − 1) − q1 − 1 (recall that b = i + j − k − � − 1). By Fact 6.1(ii), 
we know that there is some b′-space B′ in Δ′ which is opposite T1 and T2, hence the 
subspace of Δ corresponding to B′ is precisely a member of N(x)(J1, J2).

6.4 Remark. – The way we select B− has some nice features.

• As we choose B− in a residue, each b′-space in I \ 〈K1, K2, A1, A2〉 is semi-opposite 
J1 and J2.

• The above implies a generalisation of Fact 6.1(ii), stated here informally and not in-
cluding the case where Δ is hyperbolic: For each finite set of subspaces of dimensions 
at least b, there is a b-dimensional subspace semi-opposite them all.

• The subspaces T1 and T2 can be chosen in J ′
1 and J ′

2 wherever we want, a feature 
we will exploit at some point.

We end this construction with one last avoiding property, which again follows imme-
diately from Fact 6.1(ii) and our assumption that Δ is not hyperbolic.

6.2.7 ((B1, B2)-avoiding). Let F be a finite subset of Ωj. Then B1 and B2 outside 
〈K1, K2〉 can be chosen such that I \ 〈K1, K2, A1, A2〉 avoids F .

Intermediate summary – If x = k, we have I = 〈Kc, Ac, Bc〉 with X1 = X2 for all 
X ∈ {K, A, B} and clearly, i = k + a + b + 2 and I ∈ N(k)(J1, J2). If x ∈ {k − 1, s}, we 
have I = 〈K1, K2, A1, A2, B1, B2〉 with Kc = 〈S, Kc ∩Pc, Kc ∩Qc〉, A1 = 〈A−, K2 ∩P2〉, 
A2 = 〈A−, K1 ∩ P1, C〉, B1 = 〈B−, K2 ∩Q2, C〉 and B2 = 〈B−, K1 ∩Q1〉 with notation 
as before (recall that C is a subspace collinear with J2 and semi-opposite J1). In each 
stage, we checked that dim(Kc) = k, dim(Ac) = a and dim(Bc) = b, so the resulting 
singular subspace is indeed an i-space in N(x)(J1, J2). If x = s, then the structure of the 
resulting i-spaces can be seen in Fig. 2.

Note that it now follows that all values of (pc, qc)c satisfying (1), (2) and (3) are indeed 
allowed values. For any pair of collinear k-spaces in J1 and J2 satisfying those conditions, 
〈K1, K2〉 can, by means of the construction, be extended to an i-space I ∈ N(J1, J2). If 
s < k, then we will sometimes call a pair of k-spaces allowed k-spaces if x = s, i.e., if 
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dim(K1 ∩ K2) = s, abbreviating “k-spaces as obtained in the construction in the case 
when x = s < k”.

The hyperbolic case – We list the differences that occur when Δ is hyperbolic.

• The selection of K1 and K2. It is easy to see that choosing K1 and K2 can be done in 
the same way, once we know that we do not have to do anything special for A1, A2, B1
and B2 (if we would have to, then K1 \ S and K2 \ S could need special care). Also 
Avoiding Property 6.2.2 remains unchanged.

• The selection of A1 and A2. There could be a problem as the types t(JI
c ) = t(〈Jc, Ac〉)

should be correct. Recall that our definition is such that if I ∼ Jc then t(IJc) = �, and 
we put t = t(JI

c ). Now, our assumptions are such that |�| < n − 1 unless |j| = n − 1, in 
which case j = t and i = � (and t = � if b is odd and t = �′ if b is even). When |�| < n −1, 
choosing A1 and A2 is not different than before; if |j| = |�| = n − 1, then a = −1.

Avoiding Property 6.2.4 also holds in this case, but Property 6.2.5 has one exception.

6.2.8 ((A \ P )-avoiding). If codimA−(A− ∩ P ) = 0 and dim(J1
J2) = n − 2, then 

possibly dim(F ∩ 〈K1, K2, A−〉) = dim(F ∩ 〈K1, K2, A− ∩ P ) + 1 for some F ∈ F

with dim(F ∩ 〈P, A−〉) = p∗ + s + 2. In all other cases, dim(F ∩ 〈K1, K2, A1, A2〉) =
dim(F ∩ 〈K1, K2, A− ∩ P 〉).

The first assertion follows immediately from Fact 6.1(i)o and 6.1(i)∗. According to 
Fact 6.1(iii), a problem could occur in selecting C if, with the notation used during the 
selection of C, dim(J ′

2
J ′
1) = n − 1. Note that 〈J ′

2, C〉 = 〈J2, A2〉 and hence dim(J ′
2) =

|�| − (p2 − p1 − 1) − 1, furthermore, we have already verified that dim(J ′
2
J ′
1) ≤ dim(J ′

2) +
(p2 − p1 − 1) + 1 = |�|. So recalling that we assume |�| < n − 1 except when |j| = n − 1, 
we are fine (note that, if |j| = |�| = n − 1, then there is no need a subspace C collinear 
with J2 and semi-opposite J1).

• The selection of B1 and B2. Also B1 and B2 can be chosen as before.
Avoiding Property 6.2.7 has one exception too.

6.2.9 ((B1, B2)-avoiding). If |i| = |j| = n − 1 then possibly dim(F ∩ 〈K1, K2, B−〉) =
dim(F ∩ 〈K1, K2〉) + 1 for some F ∈ F , in all other cases, the dimension of the inter-
section with F does not increase for any F ∈ F .

Again with the notation as used during the selection of B−, we run into problems when 
Tc = J ′

c and J ′
c is a MSS in ResΔ(I∗). The latter is a polar space of rank n −(i −b′−1) −2, 

in which dim(J ′
c) = j−q1−k−2. Recalling that b′ = b −q1−1 and b = i + j−k−|�| −1, 

we obtain that J ′
c is a MSS if and only if |�| = n − 1. Furthermore, dim(Tc) = dim(J ′

c) if 
and only if b′ = j− k− q1 − 2, i.e., if b = j− k− 1. Hence |i| = |j| and a = −1. Together 
with |�| = n − 1, we hence obtain |i| = |j| = n − 1.

Final summary – Before we get to the other graphs (for which the construction follows 
almost immediately from this one), we give a brief overview of the selection procedure 
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and all avoiding properties. Let F be a finite set of j-spaces intersecting J1 and J2 in 
subspaces of dimension at most s.

• If x = s < k and if x = k − 1, the values (pc, qc)c should satisfy conditions (1), (2)
and (3). Property 6.2.2 describes, for x = s < k, when we can choose K1 and K2
such that dim(〈K1, K2〉 ∩ F ) < k.

• Property 6.2.4 says when we can choose A−∩P with dim(〈K1, K2, A−∩P 〉 ∩F ) < k.
• In general, we can complete A1 and A2 (i.e., choose the part of A− outside P

and choose the subspace C) such that dim(〈A1, A2, K1, K2〉 ∩ F ) equals dim(〈A− ∩
P, K1, K2〉 ∩F ); only when Δ is hyperbolic, this dimension increases by one. This is 
described in Properties 6.2.5 and 6.2.8.

• In general, we can complete B1 and B2 (i.e., choose B−) such that
dim(〈B1, B2, A1, A2, K1, K2〉 ∩ F ) = dim(〈A1, A2, K1, K2〉 ∩ F ); only when Δ is 
hyperbolic, possibly this dimension increases by one. This is described in Proper-
ties 6.2.7 and 6.2.9.

The other graphs – If Γ ∈ {Γk, Γ≥k} then Construction 6.2 gets easier as we do not 
longer have to take into account the dimensions projI(J1) and projI(J2). We quickly go 
through the steps of the construction. Again, let F be a finite set of j-spaces intersecting 
J1 and J2 in subspaces of dimension at most s.

The selection of K1 and K2 can be done similarly. If x = k, nothing changes; if 
x = k − 1 we only need (p∗, q∗) �= (−1, 0) in order to find a pair of collinear points in 
J1 \ S and J2 \ S; if x = s < k then condition (1) becomes

−1 ≤ pc ≤ p∗, −1 ≤ qc ≤ q∗ (1’)

and like before, we can show that conditions (1’), (2) and (3) give allowed values (pc, qc)c. 
If x = s < k, we can choose K1 and K2 such that dim(〈K1, K2〉 ∩ F ) < k unless some 
member F of F contains S.

If k′ := dim(〈K1, K2〉), we now just need an arbitrary (i − k′ − 1)-space in 
ResΔ(〈K1, K2〉) avoiding the subspaces corresponding to J1, J2 and F to complete 
our i-space I. Only if Δ is hyperbolic and |i| = n −1, and hence also |j| = n −1, it could 
be the case that dim(I ∩ F ) = dim(〈K1, K2〉 ∩ F ) + 1 for some F ∈ F , as the parity of 
the dimension of the intersection is fixed. In all other cases, there is no problem choosing 
I \ 〈K1, K2〉 such that it avoids F .

This concludes our construction. �

7. The k(≥)-incidence graphs and (k, �)-Weyl graphs for k ≥ 0

Let Γ be one of Γ≥k, Γk and Γ�
k. We will assume k �= −1 throughout this section. Yet, 

a couple of general lemmas also hold when k = −1, and this will be mentioned explicitly. 
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On all other occasions, we assume k ≥ 0. Recall that we assume that |i| ≤ |j| or either 
|i| = |j| + |a| + 1. We need two more preliminary lemmas.

7.1 Lemma. Let U, V, W (possibly V = W ) be singular subspaces of respective dimensions 
a, a′, a′′, with a ≥ max{a′, a′′, 0}, and such that V �= U ∩ V = U ∩W �= W . Let p ∈ U⊥

be a point not contained in U ∪ V ∪W . If, for each q ∈ U \ V , the line pq intersects V
or W in a point q′, then dim(U ∩ V ) = a − 1. Moreover, 〈p, U〉 contains at least one of 
V, W and a′ = a = a′′. If, say, W is not contained in 〈p, U〉, then pq ∩ W = ∅ for all 
q ∈ U \ V .

Proof. Put S = U ∩ V . Assume for a contradiction that dim(S) < a − 1. Then there 
is some line L contained in U \ S. Let q1, q2, q3 be three points on L. At least two of 
the lines pq1, pq2, pq3 must then intersect either V or W , say V , by the condition. Hence 
the plane 〈p, L〉 intersects V in a line L′. But then the point L ∩ L′ belongs to U ∩ V , 
contradicting the fact that L is disjoint from S. We conclude dim(S) = a − 1.

The line joining p and a point of U \S intersects V ∪W , clearly in a point not belonging 
to S. Hence at most one of V, W , say W , does not belong to 〈p, U〉. One can easily see 
that if pq intersects W for some q ∈ U \ S, then W belongs to 〈p, U〉 as well and vice 
versa. �
7.2 Lemma. Let U, V, W, X be subspaces of the same dimension, with V , W and X op-
posite U . If each point collinear with U and V is also collinear with W or X, then each 
point collinear with U and V is collinear with all four of them.

Proof. Take any point p collinear with U and V . As V , W and X are opposite U , we 
have p /∈ U ∪ V ∪W ∪X. Our assumptions imply that p is collinear with W or X, say 
p ⊥ W . The subspace 〈p, U〉 then contains a point q collinear with X. If p = q we are 
done, so suppose p �= q. As q is collinear with U and X, it has to be collinear with V
or W . But then the point pq ∩ U is collinear with V or W , contradicting that they are 
opposite U . Hence p = q after all and the lemma is proven. �

In the next section, we deal with a special case that needs to be treated separately.

7.1. Adjacency given by incidence

There are two types of graphs where adjacency is given by incidence:

– When Δ is hyperbolic, the adjacency of the graph Γn
(n−1)′,(n−1)′′;(n−2),(n−1)′(Δ) co-

incides with the notion of being incident in the building Δb associated to Δ.
– The graphs Γ�

k, Γk and Γ≥k with |k| = min{|i|, |j|} (hence in the first case also 
max{|i|, |j|} = |�|), are identical, and their adjacency is given by incidence, i.e., 
containment made symmetric. This means that they are equal to Ci,j (recall that 
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this is a restriction of the incidence graph of Δ to the types i and j). In this special 
case we can safely ignore our convention on |i| and |j| and just assume |i| ≤ |j|.

We readily have the following proposition.

7.3 Proposition. Suppose Δ is a hyperbolic polar space and let Γ =
Γn

(n−1)′,(n−1)′′;(n−2),(n−1)′(Δ). Then each automorphism of Γ is induced by an auto-
morphism of Δb. Moreover, each automorphism of Δb inducing an automorphism of 
Γ is either type-preserving or a duality (in which case the bipartition classes of Γ are 
switched).

Proof. Given Γ, we can construct the Grassmann graph G(n−1)′(Δ) by considering the 
bipartition class containing the (n −1)′-spaces and declaring two of them adjacent when 
they are at distance two in Γ. The proposition now follows from Proposition 5.3. �

We now prove that any automorphism of Ci,j is induced by an element of Aut Δ. 
The non-triviality of the graphs implies that |i| �= |j|, so as we assume |i| ≤ |j|, we may 
assume |i| < |j|.

7.4 Proposition. For all i, j ∈ T with |i| < |j|, each automorphism of the graph Cn
i,j(Δ)

is induced by an element of Aut Δb. Moreover, each automorphism of Δb inducing an 
automorphism of Cn

i,j(Δ) is either type-preserving or a duality if Δ is hyperbolic and 
|j| < n − 1, or, if Δ is of type D4, the automorphism can also be a t-duality if {i, j, t} =
{0, 3′, 3′′} (the biparts are switched) or a t-duality if {1, t} = {i, j} (the biparts are not 
switched).

Proof. Put C = Cn
i,j(Δ). First assume that there is no type between i and j, i.e., for no 

type t there can be a t-space T such that I, J and T are all incident (for clarity: this does 
include the case where i = n − 3 and j ∈ {(n − 1)′, (n − 1)′′}). We define C′ as a graph 
with vertex set Ωj where two vertices are adjacent if they have a common neighbour in 
C. Clearly, C′ ∼= G′

j and hence the assertion follows from Corollary 5.4.
Next, assume there are types between i and j. For any vertex v, let B(v) de-

note the set of vertices of C in the same bipart as v. Consider the poset Pv =
{N(v, w1, . . . , wt) | w1, . . . , wt ∈ B(v), t ∈ N}, ordered by inclusion. The length of a max-
imal chain in Pv is precisely j − i, regardless of the bipart where v is in. Indeed, an 
element in such a chain corresponds to a set of i-spaces or to a set of j-spaces incident 
with v and some m-space, with i ≤ m ≤ j. We define C′ as the graph having the ele-
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ments of Pv as vertices and adjacency given by containment made symmetric. Clearly, 
C′ ∼= Cn

[i,j](Δ). Therefore it is clear that C′ has a subgraph isomorphic to Cn
j′,j(Δ), where 

j′ is the biggest type smaller than j, which brings us back to the first case and hence 
concludes the proof. �

We now embark on the rest of the proof, with the extra conditions −1 < k <

min{|i|, |j|} and, if Δ is hyperbolic, |k| �= n − 2. Note that the first condition implies 
min{|i|, |j|} ≥ 1 as k ≥ 0.

7.2. Properties of the round-up triples and quadruples

Let {J1, J2, J3, J4} be a quadruple. We narrow down the possibilities for the mutual 
position of its members. We start by showing that at least one pair of them intersect in 
a subspace of dimension at least k and then continue by proving that they all have one 
common intersection. These two steps are the crux of the proof. Though the intuitive 
idea behind them is easy, the proofs are quite long. We keep using the earlier introduced 
notation.

7.5 Lemma. Up to renumbering, dim(J1 ∩ J2) ≥ k.

Proof. Renumbering if necessary, the dimension s of S = J1 ∩ J2 is maximal amongst 
the dimensions of the intersections of all distinct pairs of the quadruple. By way of 
contradiction, suppose s < k. Let c denote 1 and 2 again. According to Property 6.2.2, 
there are allowed k-spaces K1 and K2 such that dim(〈K1, K2〉 ∩ F ) < k for each F ∈
F := {J3, J4} (case 0) unless either (pc, qc)c = (p∗, b) (case 1) or S ⊆ F for some F ∈ F

(case 2), as in those cases possibly dim(〈K1, K2〉 ∩ F ) = k for all choices of K1 and K2

(note that dim(〈K1, K2〉 ∩ F ) > k is not possible since dim(F ∩Kc) ≤ dim(F ∩ Jc) ≤ s

by assumption). Of course, case 1 only yields problems if Γ = Γ�
k, as it involves the 

parameter b which is only relevant in this case. The reader should keep this in mind, we 
will not make an explicit distinction between the three types of graphs during this proof. 
For clarity, the end of each case is marked by a black square.

Case 0: There exist K1 and K2 such that dim(〈K1,K2〉 ∩ F ) < k for all F ∈ F . Fol-
lowing Construction 6.2, we below construct an i-space I ∈ N(J1, J2) with 〈K1, K2〉 ⊆ I

for which dim(I ∩ F ) < k for all F ∈ F (note that k ≥ 0). Then I would be 
adjacent to exactly two members of the quadruple, a contradiction to the latter’s defi-
nition.

Since dim(〈K1, K2〉 ∩ F ) < k for all F ∈ F , Property 6.2.4(ii) says that we 
can choose A− ∩ P such that dim(〈K1, K2, A− ∩ P 〉 ∩ F ) < k for each F ∈ F , 
unless ap = p∗ − p2 − 1 ≥ 0, −1 ∈ {b, q∗} and dim(F ∩ P ) = p∗ + s + 1. 
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This, however, is no problem: if |�| < n − 1 we can choose ap < p∗ − p2 − 1; 
if |�| = n − 1 then |i| = |j| = n − 1, in which case a = −1 (so A− ∩ P is 
empty).

Next, Properties 6.2.5 and 6.2.7 state that we can choose the remaining parts of 
A1, A2, B1, B2 such that for the resulting i-space I := 〈K1, K2, A1, A2, B1, B2〉 holds 
that dim(I ∩ F ) = dim(〈K1, K2, A− ∩ P 〉 ∩ F ) for all F ∈ F , except when Δ is hy-
perbolic and we are in one of the below situations, in which possibly dim(I ∩ F ) =
dim(〈K1, K2, A− ∩ P 〉 ∩ F ) + 1 for some F ∈ F .

• Case 0.1: dim(J1
J2) = n − 2 and codimA−(A− ∩P ) = 0. In this case, it is the selec-

tion of the part of A− outside P that could cause a problem. Suppose F ∈ F

is such that dim(〈K1, K2, A−〉 ∩ F ) = dim(〈K1, K2, A− ∩ P 〉 ∩ F ) + 1. Accord-
ing to Property 6.2.8, then dim(J1

J2) = j + p∗ + 1 = n − 2 and dim(〈P, A− \
P 〉 ∩ F ) = p∗ + s + 2, so in particular, dim(P ∩ F ) = p∗ + s + 1. Then a di-
mension argument implies that dim(F ∩ J1) ≥ s, so the maximality of s implies 
dim(F ∩ J1) = s. Note that 〈P, A− \ P 〉 ∩ F is a (p∗ + s + 2)-space collinear 
with J1, which implies that dim(JF

1 ) = j + (p∗ + 1) + 1 = n − 1. Hence we can 
work with the pair (J1, F ) instead, without ending up in Case 0.1 again (minor 
remark: later in this proof we sometimes switch the roles of the j-spaces again, 
but dim(JF

1 ) = j + p∗ + 2 will assure us that we can keep working with this 
pair).

• Case 0.2: |i| = |j| = n − 1. Since a = −1, it is only the selection of B− which 
could be a problem. First note that, as mentioned in Section 3, the graphs Γ�

0
and Γ0 are equal and, as we assume they are non-empty, they are isomorphic 
to Γ≥2, which we work with instead; moreover, if Γ≥0 contains no adjacent pair 
(I, J) with dim(I ∩ J) = 0, then we agreed to work with Γ≥1 instead, and if 
it does contain such a pair then Γ≥0 is a complete bipartite graph, which we 
excluded. Hence we may suppose that k > 0. This enables us to choose a hy-
perplane H of 〈K1, K2〉 such that dim(H ∩ F ) < k − 1 for all F ∈ F . Then 
we choose B− such that dim(〈H, B−〉 ∩ F ) = dim(H ∩ F ). Let I be the unique 
i-space through the (n − 2)-space 〈H, B−〉. As 〈H, B−〉 is a hyperplane of I and the 
parity of the dimensions of intersection is fixed, one verifies dim(I ∩ Jc) = k and 
dim(I ∩ F ) ≤ k − 2.

We obtained an i-space I ∈ N(J1, J2) with dim(I ∩ F ) < k for all F ∈ F , and as 
explained in the beginning of this case, this is a contradiction. �

For the sequel of this proof we may thus assume that for every pair of allowed k-spaces 
K1, K2 holds that dim(〈K1, K2〉 ∩F ) = k for some F ∈ F , likewise for any permutation 
σ of {1, 2, 3, 4} for which dim(Jσ(1) ∩ Jσ(2)) = s (the permutation also affects F of 
course).
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Note that either all pairs of j-spaces of the quadruple intersecting in an s-space are 
such that the only allowed values are (p∗, b), or there is a pair, say (J1, J2), for which 
there are allowed values (pc, qc)c �= (p∗, b). In the latter situation we will suppose that 
we are in Case 2, since clearly Case 1 is not applicable and Case 0 is excluded by the 
previous paragraph. Therefore, when we are in Case 1, we may assume the first situation 
occurs.

Case 1: Suppose, for every pair of distinct j-spaces Je, Je′ from the quadruple, 
that if dim(Je ∩ Je′) = s, then (pc, qc)c = (p∗, b) for c ∈ {e, e′} (which implies 
dim(Je

Je′ ) = j + p∗ + 1). Consider the pair (J1, J2), from which we know that 
dim(J1 ∩ J2) = s and hence (pc, qc)c = (p∗, b). This implies that each I ∈ N(J1, J2)
contains P = 〈S, P1, P2〉 (cf. Property 6.2.2). Let K1 and K2 be any pair of allowed 
k-spaces. Analogously as in Case 0 and using the fact that A− ∩ P is empty now (since 
p1 = p2 = p∗), we can take an i-space I ∈ N(J1, J2) through 〈K1, K2〉 such that 
〈K1, K2〉 ∩ F = I ∩ F for all F ∈ F : in Case 0.1, we obtain that the pair (J1, F ) is 
such that dim(J1 ∩ F ) = s and dim(JF

1 ) = dim(J1
J2) + 1 = j + p∗ + 2, contradicting 

our assumption; in Case 0.2 it is the selection of B− which is a problem whereas in the 
current case, B− is empty since b = q1, so this does not occur. Since I is adjacent to 
J1 and J2, the definition of a quadruple implies that I is adjacent to J3 or J4 as well. 
Suppose I ∼ J3. This has the following consequences.

(A) By construction, I∩J3 is a k-space K3 contained in 〈K1, K2〉. Since dim(K1∩K2) =
s, we know that dim(K1 ∩K3) ≥ s, whereas dim(K1 ∩K3) ≤ dim(J1 ∩ J3) ≤ s by 
assumption. We conclude that K1 ∩ K3 = J1 ∩ J3 and has dimension s. By our 
assumption, dim(projJ1

(J3)) = p∗ + s + 1.
(B) Noting that K3 ∩ J⊥

1 = K3 ∩ J1
J2 , we see that codimK3(K3 ∩ J1

J2) ≤ b (as I ∼ J1, 
I cannot contain a subspace of dimension bigger than b which is semi-opposite J1). 
Hence dim(K3 ∩ J1

J2) ≥ p∗ + s + 1. However, K3 ∩ J1
J2 ⊆ J3 ∩ J1

J2 ⊆ projJ3
(J1), 

and the latter’s dimension is p∗ + s + 1. We conclude that K3 ∩ J1
J2 = J3 ∩ J1

J2 =
projJ3

(J1) and that codimJ3∩P (J3 ∩ J1
J2) = b; likewise with the indices 1 and 2

switched.

Put P1e = 〈projJ1
(Je), projJe

(J1)〉 for e ∈ {3, 4}. We show that P13 = P (possibly by 
changing the roles of J3 and J4 – which is only sensible to do if (A) and (B) also apply 
when J3 is replaced by J4). By (A), we already know that dim(P13) = dim(P ), so if we 
can show that projJ1

(J3) ∪ projJ3
(J1) ⊆ P , then P13 = P . By definition, projJ1

(J3) is 
contained in J1, so it belongs to P if and only if it belongs to 〈S, P1〉. Furthermore, in 
the above we deduced that projJ3

(J1) is contained in J1
J2(= 〈J1, P2〉), so this subspace 

belongs to P if and only if 〈projJ3
(J1), P2〉 ∩ J1 ⊆ 〈S, P1〉. So we try to show that 

projJ1
(J3) ∪ (〈projJ3

(J1), P2〉 ∩ J1) ⊆ 〈S, P1〉. Observe that, since I ∈ N(J1, J2, J3) and 
(J1, J3) has the same mutual position as (J1, J2), it follows as in the beginning of the 
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proof that P13 ⊆ I and hence we also know that projJ1
(J3) ⊆ K1 and projJ3

(J1) ⊆ K3

so also 〈projJ3
(J1), P2〉 ∩ J1 ⊆ K1.

• Firstly, let b = −1. Then k = p∗+s +1, and hence projJ1
(J3) = K1 and projJ3

(J1) =
K3 by the above observation and equality of dimensions. Since K3 ⊆ 〈K1, K2〉 = P

in this case, P = P13 indeed.
• Next, suppose b ≥ 0. Put X = projJ1

(J3) ∪ (〈projJ3
(J1), P2〉 ∩ J1) and suppose for a 

contradiction that X � 〈S, P1〉. From the above observation we know X ⊆ K1. Yet, 
using property (SQ), we can choose other k-spaces K ′

1 and K ′
2 such that X � K ′

1. 
Similarly as before, we take an i-space I ′ ∈ N(J1, J2) through 〈K ′

1, K
′
2〉 such that 

〈K ′
1, K

′
2〉 ∩ F = I ′ ∩ F for all F ∈ F . Since X � K ′

1, I ′ is not adjacent to J3, 
hence I ′ ∼ J4 and the above conclusions also hold for J4. In particular, X ′ :=
projJ1

(J4) ∪ (〈projJ4
(J1), P2〉 ∩ J1) ⊆ K ′

1. Either X ′ ⊆ 〈S, P1〉 and then P14 = P , 
or X ′ � 〈S, P1〉 and then we can again choose k-spaces K ′′

1 and K ′′
2 such that K ′′

1
contains neither X nor X ′. This however leads to a contradiction, as a corresponding 
i-space I ′′ would not be adjacent to J3, neither to J4. The assertion follows.

Note that, even when both J3 and J4 satisfy (A) and (B), we cannot (yet) conclude that 
P = P13 = P14.

We obtain that, in ResΔ(P ), J1, J2 and J3 correspond to q∗-spaces Q1, Q2 and Q3, 
with Q2 and Q3 opposite Q1. As the notation suggests, we can identify Q1 and Q2 in 
ResΔ(P ) with Q1 and Q2 in Δ. Recall that q∗ ≥ q1 + q2 + 1 = 2b + 1. We distinguish 
the following three cases.

• Suppose q∗ > 2b + 1 and b ≥ 0. Let K1 and K2 be allowed k-spaces. In ResΔ(P ), 
K1 and K2 correspond to collinear b-spaces B1 ⊆ Q1 and B2 ⊆ Q2. First suppose that 
dim(〈K1, K∗

2 〉 ∩J3) = k for all k-spaces K∗
2 in J2 such that (K1, K∗

2 ) are allowed k-spaces. 
Note that, in ResΔ(P ), any b-space B∗

2 in Q2 collinear with B1 would yield a k-space 
K∗

2 such that (K1, K∗
2 ) are allowed k-spaces. So let B′

2 be a b-space in Q2 collinear 
with B1 and intersecting B2 in a (b − 1)-space (here we use q∗ > 2b + 1 and b ≥ 0). 
Then 〈B1, B2〉 ∩ J3 and 〈B1, B′

2〉 ∩ J3 are b-spaces B3 and B′
3 in Q3, respectively. The 

subspaces 〈B2, B′
2〉 and 〈B3, B′

3〉 have dimension (at least) (b + 1) and are contained in 
the (2b +2)-space 〈B1, B2, B′

2〉, implying that dim(〈B2, B′
2〉 ∩〈B3, B′

3〉) ≥ 0. This however 
contradicts Q2 ∩Q3 = ∅.

Next suppose that there is a k-space K∗
2 such that (K1, K∗

2 ) are allowed k-spaces for 
which dim(〈K1, K∗

2 〉 ∩J3) < k, and so dim(〈K1, K∗
2 〉 ∩J4) = k (as otherwise we are back 

to Case 0). We claim that P = P14. If not, then X ′ = projJ1
(J4) ∪(〈projJ4

(J1), P2〉 ∩J1) �
〈S, P1〉, according to the paragraph in which we showed P = P13. But then we could 
re-choose K1 such that X ′ � K1, which would imply that dim(〈K1, K∗

2 〉 ∩ J4) < k, and 
hence dim(〈K1, K∗

2 〉 ∩ J3) = k again, for all k-spaces K∗
2 in J2 for which (K1, K∗

2 ) are 
allowed k-spaces, bringing us back to the previous paragraph. Hence indeed P14 = P , 
and thus J4 plays the same role w.r.t. J1 and J2 as J3. We extend our reasoning of the 
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previous paragraph. Let Q4 be the q∗-space in ResΔ(P ) corresponding to J4. Since J4
plays the same role as J3, Q4 is also opposite Q1. In ResΔ(P ), we now take a third 
b-space B′′

2 through B2 ∩B′
2 that is collinear with B1. We know that 〈B1, B2〉, 〈B1, B′

2〉
and 〈B1, B′′

2 〉 intersect Q3 or Q4 in respective b-spaces B, B′, B′′. Since J3 and J4 play 
the same role, we may assume that at least two of those b-spaces are contained in Q3. 
We then obtain the same contradiction as in the previous paragraph.

We conclude that q∗ = 2b + 1 or b = −1.
• Suppose q∗ = 2b + 1 and b ≥ 0. We claim that, for all allowed k-spaces K1 and K2, 

〈K1, K2〉 ∩J3 is a k-space. Suppose first that P �= P14 and suppose for a contradiction that 
there are k-spaces K∗

1 and K∗
2 such that dim(〈K∗

1 , K
∗
2 〉 ∩ J3) < k. Then dim(〈K∗

1 , K
∗
2 〉 ∩

J4) = k (otherwise we are back in Case 0) and, as in the beginning of Case 1, we can 
again deduce consequences (A) and (B) with J3 replaced by J4. Recall that we then have 
X ′ := projJ1

(J4) ∪ (〈projJ4
(J1), P2〉 ∩ J1) ⊆ K∗

1 . As before, when we proved P = P13, 
P �= P14 is equivalent with X ′ � 〈S, P1〉. Consequently, there are (many) k-spaces K1
with X ′ � K1, and for every pair of k-spaces K1 and K2 with X ′ � K1, we know that 
〈K1, K2〉 ∩ J3 is a k-space K3. In ResΔ(P ), we obtain that, for every b-space B1 disjoint 
from B∗

1 and for B2 = projQ2
(B1), the subspace 〈B1, B2〉 intersects Q3 in a b-space 

B3. But then one can verify that also 〈B∗
1 , B

∗
2〉 ∩ Q3 has to be a b-space, contradicting 

dim(〈K∗
1 , K

∗
2 〉 ∩J3) < k. Next, suppose that P = P14. Then J3 and J4 play the same role 

and in ResΔ(P ), J4 corresponds to a q∗-space Q4 opposite Q1. Moreover, since J2, J3
and J4 play the same role w.r.t. J1, we may assume that each pair of collinear b-spaces 
in Q1 and Qe, for e = 2, 3, 4 generates a subspace intersecting at least one of the two 
remaining q∗-spaces in a b-space. Let B1 be any b-space in Q1 and put Be = projQe

(B1). 
Then we may suppose that 〈B1, B2〉 ∩ Q3 = B3. But then we may also assume that 
〈B1, B4〉 ∩Q2 = B2, from which it follows that 〈B1, B2〉 intersects both Q3 and Q4 in a 
b-space. Our claim is shown.

Let I be any i-space adjacent to J1 and J2. We show that I ∼ J3. First note that 
q∗ = 2b + 1 implies i = (s + 2p∗ + 2b + 4) + (a − p∗ − 1) + 1 = j + a + 1 ≥ j. Our 
convention on i and j yields that either a = −1 or i > j. In both cases, I ∼ J3 if and 
only if dim(I ∩J3) = k and J3 \ I contains no points collinear to I. Put K1 = I ∩J1 and 
K2 = I ∩ J2. By the previous paragraph, we obtain that 〈K1, K2〉 ∩ J3 is a k-space K3. 
Moreover, looking in ResΔ(P ) again, it is easily seen that J3 \K3 cannot contain points 
of I, nor points collinear to I, since those points would be points of Q3 \ B3 collinear 
with B1, contradicting B3 = projQ3

(B1). But then N(J1, J2) \ N(J3) = ∅, contradicting 
the definition of a quadruple. This case is ruled out as well.

• Suppose b = −1. We show that J4 plays the same role w.r.t. J1 and J2 as J3, i.e., 
dim(J1 ∩ J4) = s and P = P14. We first claim that dim(J4 ∩ P ) = k = p∗ + s + 1. By 
way of contradiction, suppose dim(J4 ∩ P ) < k. The definition of a quadruple yields an 
i-space I ∈ N(J1, J2, J4) \ N(J3), which necessarily contains P . In particular, I contains 
P ∩ J3, which has dimension p∗ + s + 1 = k. Since no point of J3 \P is collinear with J1
and I ⊥ J1 because b = −1, we have I ∩ J3 = P ∩ J3. Hence dim(J3 ∩ I) = k. However, 
I � J3, so there has to be a point p3 /∈ P which is collinear to J1 and J2 but not to J3. 
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Note that a − p∗ − 1 > −1, since if a = p∗ then, together with b = −1, this yields 
I = P , but then P would be the only element in N(J1, J2), contradicting the definition 
of a quadruple. So let A be an (a − p∗ − 2)-space collinear with J ′

1 := 〈J1, p3〉 and J ′
2 :=

〈J2, p3〉 such that dim(〈P, p3〉 ∩ J4) = dim(〈P, p3, A〉 ∩ J4) (note that Ac = 〈Pc′ , A, p3〉
then) and that such a subspace exists by Property 6.2.5, even if Δ is hyperbolic: if 
dim(J ′

1
J ′
2) = n − 2 and dim(A) = 0, then, since p3 /∈ P , dim(J1

J2) = |j| + p∗ + 1 = n − 3
and a = dim(Pc′) + dim(A) + dim(p3) + 2 = p∗ + 2, and as a ≥ 0, |�| = |j| + a + 1, 
which is at its turn equal to |j| + p∗ + 3 = n − 1, contradicting |�| < n − 1 when 
|j| < n − 1). Put Ip3 := 〈P, p3, A〉. By construction, J1 ∼ Ip3 ∼ J2. As p3 ∈ Ip3 and 
p3 /∈ J⊥

3 , necessarily Ip3 � J3, so the definition of a quadruple implies that Ip3 ∼ J4. 
Consequently, J4∩Ip3 is a k-space K4 contained in 〈P, p3〉. Our assumption on dim(J4∩P )
implies that dim(K4∩P ) = k−1, hence K4 \P contains a point q3 collinear with J1 and 
J2 and non-collinear with J3. Likewise, there exists a point q2 ∈ J4 which is collinear 
to J1 and J3 but not to J2. On the line q2q3, any point q distinct from q2 and q3 is 
collinear with J1, but not with J2 nor with J3. Now take an i-space Iq ∈ N(J1, J4)
through J1 ∩ J4 and q (note that q ∈ projJ4

(J1)). But then Iq is not adjacent to J2, 
neither to J3. This contradiction shows the claim. Then, since dim(J4 ∩P ) = p∗ + s + 1, 
we also have dim(J1 ∩ J4) = s, so by our assumptions we know dim(J1

J4) = j + p∗ + 1, 
or equivalently, dim(projJ4

(J1)) = p∗ + s + 1 = k. Now any i-space I adjacent with J1, 
J2 and J4 contains P and is collinear with J1 and J4. Consequently, J4 ∩ P ⊥ J1 and 
〈S, P1〉 ⊥ J4, so J4 ∩ P ⊆ projJ4

(J1) and 〈S, P1〉 ⊆ projJ1
(J4), respectively. As those 

subspaces are all k-dimensional, inclusion is in fact equality and P14 = P follows.
Furthermore, each point p /∈ P collinear with J1 and J2 has to be collinear with J3 or 

J4, for otherwise we could find an i-space 〈P, p, A〉 like in the previous paragraph which 
is not adjacent to J3 nor to J4, a contradiction. Applying Lemma 7.2 in ResΔ(P ) on 
the respective subspaces corresponding to J1, J2, J3 and J4, it follows from Lemma 7.2, 
p in fact has to be collinear with both J3 and J4. Let I be any member of N(J1, J2). 
Then I shares exactly a k-space with each of the four j-spaces, since it cannot contain 
points of J2 \P , J3 \P or J4 \P . As each point collinear with J1 and J2 is also collinear 
with J3 and J4, both are adjacent with I. We obtain the same contradiction as before: 
N(J1, J2) \ N(J3) = ∅. �

One case remains. By Case 1 we may assume that there is a pair of j-spaces in the 
quadruple, without loss J1 and J2, such that dim(J1 ∩ J2) = s and with allowed values 
(pc, qc)c �= (p∗, b) (note that if there are allowed values distinct from (p∗, b), then (p∗, b)
cannot be an allowed value).

Case 2: Suppose J3 contains J1 ∩ J2 and that there are allowed values (pc, qc)c �=
(p∗, b). The maximality of s implies that J1 ∩ J2 = J2 ∩ J3 = J3 ∩ J1.

Suppose first that S � J4. Then either dim(〈K1, K2〉 ∩J3) = k for all allowed k-spaces 
K1 and K2, or there is a pair for which dim(〈K1, K2〉 ∩ J4) = k, in which case we know 
that dim(Kc ∩ J4) = dim(Jc ∩ J4) = s. Since (pc, qc)c �= (p∗, b) and S � J4, we can 
re-choose K1 and K2 such that they still are a pair of allowed k-spaces but now with 
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dim(Kc∩J4) < s. If we fix K1 and take another k-space K2 in J2 for which (K1, K2) is an 
allowed pair of k-spaces, we have that dim(〈K1, K2〉 ∩ J3) = k, likewise if we fix K2 and 
vary the k-space K1 in J1. We claim that there are either multiple options for K2 while 
fixing K1, or multiple options of K1 while fixing K2. If not, then necessarily p1 = p2 = p∗

(as otherwise we can change Kc ∩ Pc in Pc) and q1 + q2 + 1 = q∗ (as otherwise we can 
change Kc∩Qc in projJc

(Qc′ ∩Kc′)). But then i = (j+a +1) +(b −q1) and hence q1 = b, 
so (p1, q1) = (p∗, b), contradicting our assumptions. This shows the claim, and without 
loss we may assume that there are multiple options for K2 while fixing K1. So let K ′

2 be 
such a k-space with dim(K2 ∩K ′

2) = k − 1. Completely similarly as in Case 1, 〈K1, K2〉
and 〈K1, K ′

2〉 contain k-spaces K3 and K ′
3 in J3 and dim(〈K2, K ′

2〉 ∩ 〈K3, K ′
3〉) > s since 

they are contained in the (2k− s + 1)-space 〈K1, K2, K ′
2〉. This contradicts J2 ∩ J3 = S.

If S ⊆ J4, a similar argument applies: for all allowed k-spaces K1 and K2, we have 
dim(〈K1, K2〉 ∩J3) = k or dim(〈K1, K2, 〉 ∩J4) = k, and taking three k-spaces K2, K ′

2, K
′′
2

in J2, as before, we may assume that dim(〈K1, K2〉 ∩ J3) = dim(〈K1, K ′
2〉 ∩ J3) = k, 

leading to the same contradiction. �

In all cases, we reached a contradiction, allowing us to conclude dim(J1∩J2) ≥ k. �
Knowing this, we can show that all pairwise intersections coincide by considering 

well-chosen members of N(k)(J1, J2).

7.6 Lemma. All pairwise intersections of distinct members of the quadruple coincide.

Proof. Renumbering if necessary, the dimension s of S = J1 ∩ J2 is maximal amongst 
the dimensions of the intersections of all distinct pairs of the quadruple. By Lemma 7.5, 
we already know s ≥ k. Again put F = {J3, J4}. Suppose for a contradiction that, for 
each F ∈ F , S � F . Then there is a k-space K ⊆ S with dim(K ∩ F ) < k for all 
F ∈ F . Completely analogously as in Case 0 of the previous lemma (though now using 
Property 6.2.4(i) instead of (ii)), Construction 6.2 yields an i-space I ∈ N(k)(J1, J2)
through K such that dim(I ∩ F ) = dim(〈K, A− ∩ P 〉 ∩ F ) < k for all F ∈ F . This 
i-space is adjacent to exactly two members of the quadruple, a contradiction. So we may 
assume S ⊆ J3 and by maximality of s we obtain J1 ∩ J2 = J1 ∩ J3 = J2 ∩ J3.

If Γ = Γ≥k, recall that we actually work with triples, so in this case we assume J3 = J4
and hence the lemma is proven here. If not, we have to show that J4 contains S as well. 
So assume for a contradiction that S � J4.

• Case 0: Suppose that there is a point p ∈ J3 \ S such that dim(〈K, p〉 ∩ J4) = k for 
every K ⊆ S \ J4. Put K4 = 〈K, p〉 ∩J4. Clearly, K4 ⊆ J3∩J4 and dim(K∩K4) = k−1. 
Firstly, let k > 0. If dim(S∩J4) < s −1, we can choose K such that dim(K∩J4) ≤ k−2, 
contradicting dim(K ∩ K4) = k − 1. Hence dim(S ∩ J4) = s − 1, as we assume that 
S � J4. Since 〈K, p〉 ∩ J4 is a k-space not entirely contained in S, it contains a point in 
〈K, p〉 \K ⊆ J3\S. Hence dim(J3∩J4) ≥ s and by the maximality of s, dim(J3∩J4) = s. 
Repeating the argument used in the beginning of the proof, we conclude that J1 or J2
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must contain J3 ∩ J4, a contradiction. So if k > 0, then S ⊆ J4. Next, let k = 0. 
Then each line 〈p, K〉 with K a point in S contains a point of J4, so either p ∈ J4

or dim(〈p, S〉 ∩ J4) = s. In the latter case dim(J3 ∩ J4) = s and, as above, S ⊆ J4. 
So, if S � J4, then p ∈ J4 for any point p ∈ J3 \ S; however, this gives J3 = J4,
a contradiction. �

We now use Construction 6.2 in trying to show that there is a point p ∈ J3 \ S such 
that dim(〈K, p〉 ∩ J4) = k for each k-space K ⊆ S \ J4. Put Ux

y := projJy
(Jx) \ S for 

{x, y} ⊆ {1, 2, 3}. We claim that we can always choose a point p ∈ J3 \S such that either 
p ∈ U1

3 ∩ U2
3 (case 1) or p /∈ U1

3 ∪ U2
3 (case 2), possibly by interchanging the roles of the 

j-spaces. Indeed, the only possibility where U1
3 and U2

3 have empty intersection while 
their union is J3 \S, occurs when {U1

3 , U
2
3 } = {∅, J3 \S}. In this case we can interchange 

the roles of the j-spaces to end up in either case 1 or case 2. The claim follows.

• Case 1: p ∈ U1
3 ∩ U2

3 . On the condition that a ≥ 0, we show that dim(〈K, p〉 ∩J4) = k

for each K ⊆ S\J4. Noting that dim(〈K, p〉 ∩J4) > k violates K � J4, we assume by way 
of contradiction that there is a k-space K ⊆ S \ J4 with dim(〈K, p〉 ∩ J4) < k. We now 
construct an i-space Ip in N(k)(J1, J2) with p ∈ A (hence the requirement a ≥ 0) such 
that dim(Ip ∩ J4) < k and then, as dim(Ip ∩ J3) ≥ dim(〈K, p〉) = k + 1, we obtain that 
Ip is adjacent to exactly two members of the quadruple, a contradiction to the latter’s 
definition.

Suppose first that p ∈ P . Property 6.2.4(i) implies that we can choose A ∩ P such 
that p ∈ A ∩ P and dim(〈K, A ∩ P 〉 ∩ J4) < k, unless possibly if ap = p∗ ≥ 0 and 
dim(J4 ∩ P ) = p∗ + s + 1. However, if dim(J4 ∩ P ) = p∗ + s + 1, then dim(J4 ∩ J1) = s

and, by the first part of the proof, J2 or J3 has to contain J4∩J1, implying S ⊆ J4 after all. 
Next, suppose p /∈ P . Then Properties 6.2.4(i), 6.2.5 and 6.2.8 imply that we can choose 
A such that p ∈ A and dim(〈K, A〉 ∩ J4) < k, unless the conditions in Property 6.2.8
are not met (those in Property 6.2.4(i) we can deal with as before): if Δ is hyperbolic, 
〈P, A〉 = 〈P, p〉 (this expresses that codimA(A ∩P ) = 0) and dim(J4∩〈P, p〉) = p∗+s +2. 
Since dim(J1 ∩ J4) ≤ s by assumption, we obtain that dim(J4 ∩ P ) = p∗ + s + 1, which 
as before leads us to S ⊆ J4.

We can now select B such that 〈K, A, B〉 ∩ J4 = 〈K, A〉 ∩ J4, since a ≥ 0 means 
that we are not in the case where |i| = |j| = n − 1. Then Ip := 〈K, A, B〉 is such that 
dim(Ip ∩ J4) < k. As explained above, this allows us to get back to Case 0 and conclude 
S ⊆ J4. �

• Case 2: p /∈ U1
3 ∪ U2

3 . On the condition that b ≥ 0, we show that dim(〈K, p〉 ∩J4) = k

for each K ⊆ S \ J4 and therefore we again assume dim(〈K, p〉 ∩ J4) < k. We apply the 
same technique as in the previous case, but now with p ∈ B. However, if a ≥ 0, we first 
need to find an a-space A such that p ∈ A⊥ (A and B are selected consecutively). Note 
that a ≥ 0 implies |�| < n − 1. Like in the previous case, there is a subspace A∗ with 
j + dim(A∗) + 1 = n − 1 collinear with both J1 and J2 such that dim(〈K, A∗〉 ∩ J4) < k

(recall that the possible cases of exceptions imply S ⊆ J4). Since |�| < n − 1 we have 
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a < dim(A∗), and as p is collinear with at least a hyperplane of A∗, we can choose 
A ⊆ A∗ ∩ p⊥.

Now we want to choose B such that p ∈ B. If B is moreover such that dim(〈K, A, B〉 ∩
J4) < k, then Ip := 〈K, A, B〉 is as required, and as before, Case 0 now implies S ⊆ J4. 
According to Property 6.2.9, such a b-space B exists, unless possibly if Δ is hyperbolic 
and |i| = |j| = n −1 (so A = ∅), as then it could be that dim(〈K, B〉 ∩J4) = dim(〈K, p〉 ∩
J4) + 1 = k. So suppose this happens. We aim for a contradiction. Since 〈K, B〉 ∼ J4, 
dim(〈K, B〉 ∩ J4) = k and so 〈K, p〉 ∩J4 is a (k− 1)-space H4 and hence dim(H4 ∩K) ≥
k − 2. As discussed in Case 0.2 of the previous lemma, we may assume k > 0 because 
Δ is hyperbolic. The argument is completely similar as the one in Case 0: if k > 1 we 
can vary K ⊆ S to obtain dim(J4 ∩ S) ≥ s − 2 and hence dim(J4 ∩ J3) > s − 2, which 
then implies dim(J3 ∩J4) = s since Δ is hyperbolic; and if k = 1, we consider the planes 
〈p, K〉 with K a line in S to conclude that either dim(J4 ∩ 〈K, p〉) ≥ s − 1 (and hence 
dim(J3 ∩ J4) ≥ s − 1) or p ∈ J4 (and then we vary p), both leading to S ⊆ J4. �

• Case 3: Suppose the requirements in the above cases are not met. If this happens then, 
since not both a and b can be −1 (recall k < min{i, j}), one of the following holds.

(3.1) a = −1 and there is no point p ∈ Ju\S such that p /∈ U t
u∪Uv

u for {u, t, v} = {1, 2, 3},
(3.2) b = −1 and there is no point p ∈ Ju\S such that p ∈ U t

u∩Uv
u for {u, t, v} = {1, 2, 3}.

In these cases we use another method to show S ⊆ J4. Assume for a contradiction that 
dim(S ∩ J4) < s.

Case (3.1) The assumptions imply U t
u ∪ Uv

u = Ju \ S, for all {u, t, v} = {1, 2, 3}. Since 
no two proper subspaces can cover Ju \ S, we have, without loss of generality, that 
J1 \ S = U2

1 (and hence J2 \ S = U1
2 ) and J3 \ S = U1

3 , i.e., J2 ⊥ J1 ⊥ J3.
Let p be any point semi-opposite both J1 and J2, not contained in J1 ∪ J2 ∪ J3. We 

show that p is also semi-opposite J3. If |j| = n − 1, this is trivial, so suppose |j| < n − 1
and p ⊥ J3. Let K be any k-space in S \ J4. As before, we assume dim(〈K, p〉 ∩ J4) < k. 
Then we can select I = 〈K, B〉 ∈ N(k)(J1, J2) with p ∈ B with dim(〈K, B〉 ∩ J4) < k (by 
Property 6.2.9, this is always possible since a = −1 and |j| < n − 1). As p ∈ I, we have 
I � J3, and dim(〈K, B〉 ∩ J4) < k implies I � J4. Hence it follows that dim(〈K, p〉 ∩ J4)
is a k-space K4 for each k-space K ⊆ S \J4. Furthermore, since K4 � S, there is a point 
p4 in K4 \K, which is just like p contained in J⊥

3 \ J3 and semi-opposite J1 and J2.
We claim that dim(J4 ∩ S) = s − 1. The argument is similar as the one used in Case 

0, so we omit some details. If k > 0 then varying K ⊆ S \J4 implies dim(J4∩S) = s −1. 
So suppose k = 0. Then each line 〈p, K〉 with K a point in S contains a point of J4, so 
either dim(〈p, S〉 ∩ J4) = s, in which case dim(S ∩ J4) = s − 1 indeed, or p ∈ J4. So if 
dim(S∩J4) < s −1, then varying p ∈ 〈p, S〉 \(p ∪S) (note that each point in 〈p, S〉 \(p ∪S)
has the same collinearity relations w.r.t. J1, J2 and J3 as p) yields 〈S, p〉 ⊆ J4, violating 
S � J4. The claim follows.
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Next, we first suppose k ≤ s − 1. Then we take a k-space K ⊆ J4 ∩ S and consider 
an element I = 〈K, B〉 ∈ N(k)(J1, J2) with p ∈ B. Clearly, dim(J4 ∩ I) > k and hence 
I � J4; moreover, I � J3 because p ∈ I. This is a contradiction to the definition of a 
quadruple. Consequently, k = s. Since we already obtained that dim(J3 ∩J4) ≥ k (recall 
K4 ⊆ J3 ∩ J4), this means dim(J3 ∩ J4) = s and as before the latter implies S ⊆ J4. As 
this violates our assumptions, we get that p /∈ J⊥

3 .
Let I ∈ N(J1, J2) be arbitrary. From the above we can deduce that I is also adjacent 

with J3: firstly, I ∩J2 is a k-space K inside S as J2 \S contains points collinear with J1, 
and by the same token, I ∩ J3 = K; secondly, each point in I \K is semi-opposite both 
J1 and J2 and by the above, those points are also semi-opposite J3. This contradiction 
to the definition of a quadruple shows that S ⊆ J4.

Case (3.2) In a similar way as in Case 3.1, one can show that each point p /∈ J1 ∪J2 ∪J3

which is collinear with J1 and J2 is also collinear with J3: first show that dim(〈K, p〉 ∩
J4) = k for all k-spaces K ⊆ S\J4 (note that if not we can find I = 〈K, A〉 ∈ N(k)(J1, J2)
with p ∈ A and dim(I ∩J4) < k, similarly as in Case 1 above), continue by showing that 
dim(J4 ∩ S) = s − 1 in exactly the same way as above, and then concluding in the same 
way as above (with A instead of B) that p ∈ J⊥

3 after all.
Knowing this, we can show that U1

2 and U2
1 are empty (note that dim(〈S, U1

2 〉) =
dim(〈S, U2

1 〉)): if not, each point p in 〈U1
2 , U

2
1 〉 \ (U1

2 ∪ U2
1 ) is collinear with both J1

and J2 and hence also with J3. As p was arbitrary, the entire space 〈U1
2 , U

2
1 〉 has to be 

collinear with J3, but then U1
2 ∩ U3

2 �= ∅, which contradicts our assumptions. This holds 
for all permutations of 1, 2, 3, so in ResΔ(S), the j-spaces are pairwise opposite.

As above, we now deduce that each I ∈ N(J1, J2) is also adjacent with J3. We conclude 
S ⊆ J4. �

Finally, if Γ = Γk, the existence of Ip is easily shown, as it does not matter whether 
p ∈ A or p ∈ B. �

Notation – We keep referring to J1 ∩ J2 by S. We also keep using Ux
y = projJy

(Jx) \ S.

7.7 Remark. Note that Lemma 7.5 is trivial when k = −1, but Lemma 7.6 is not. Not 
only does the latter’s proof rely on k ≥ 0, as we encountered i-spaces with dim(I∩J) < k

for some j-space J , also, when k = −1 we at first only have a weaker version of this 
Lemma (cf. Section 8). Hence we have to proceed in a different way than we will do now, 
which is the reason why we have devoted a section on k = −1.

In the proofs of the previous two lemmas, we always carefully verified whether we can 
select A and B such that they do not intersect J3 and J4. In the sequel, we will no longer 
explicitly do this, since all techniques needed have been discussed above and hence it 
would only make the proofs longer than necessary.
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The following property was used in a special case of the proof of the previous lemma. 
We state it with respect to J1 and J2 but it is valid for any pair of (distinct) j-spaces in 
a quadruple {J1, J2, J3, J4}.

(RU1) Let p be a point contained in at most one member of a quadruple {J1, J2, J3, J4}. 
If p ∈ J⊥

1 ∩ J⊥
2 , then p ∈ J⊥

3 ∪ J⊥
4 .

Now that we know that all j-spaces have one common intersection, we can show that 
this property holds when Γ = Γ�

k. Despite the above made remark, this is one of the few 
occasions that a lemma also holds for k = −1 as well.

7.8 Lemma. If Γ equals Γ�
k, possibly k = −1, then (RU1) holds. Moreover, (RU1) remains 

valid in ResΔ(S′) for any subspace S′ ⊆ J1 ∩ J2 ∩ J3 ∩ J4.

Proof. Let p be an arbitrary point collinear with J1 and J2, not contained in J1 ∩ J2. 
Recall that, if k �= −1, Lemma 7.6 states that the j-spaces intersect each other in S. 
Suppose for a contradiction that p /∈ J⊥

3 ∪ J⊥
4 . In particular, p /∈ J3 ∪ J4.

First suppose that a ≥ 0, |i| ≤ |j| and p /∈ J1 ∪ J2. Note that |j| < n −1 as otherwise 
there would be no point p ∈ J⊥

1 \ J1. In this case, we take an element I = 〈K, A, B〉 of 
N(k)(J1, J2) such that:

– The k-space K is empty if k = −1 and belongs to S if k ≥ 0.
– The a-space A collinear to J1 and J2 contains the point p and is such that 〈K, A〉 ∩
Je = K for e = 1, 2, 3, 4 (as in the proof of Lemma 7.6).

– The b-space B is chosen in ResΔ(〈K, A〉) such that it is semi-opposite the subspaces 
corresponding to J1, J2, J3 and J4 which are all of dimension at least (|j| −k−a −2), 
and as |i| ≤ |j|, we have that |j| − k − a − 2 ≥ b, so in each of those subspaces we 
can take b-spaces, and by Fact 6.1(ii), there is a b-space opposite them and avoiding 
J3 ∪ J4 (note that |j| < n − 1).

As I ∼ J1, J2, we may assume that I ∼ J3. However, by our choice of B in ResΔ(〈K, A〉)
we have that projJ3

(I) = 〈K, A〉 and in particular p is collinear with J3, as we wanted 
to show.

Next, suppose that |i| = |j| + a + 1 and p /∈ J1 ∪ J2. Note that this case comprises 
a = −1, since if a = −1 then max{|i|, |j|} = |�|, so our convention (cf. beginning of 
Section 6) on |i| and |j| implies that |i| = |�| = |j| + a + 1 = |j|. Moreover, we may 
assume that |i| < n − 1 since otherwise |j| = n − 1 too and like above, this conflicts 
with p ∈ J⊥

1 \ J1. Furthermore, we know b ≥ 0 as k < |j|. Note that an adjacent pair 
(I, J) is such that no point of J \ (I ∩ J) is collinear with I. We now take an element 
I = 〈K, A, B〉 of N(k)(J3, J4) such that:

– The k-space K is empty if k = −1 and belongs to S if k ≥ 0.
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– The b-space B equals 〈p, B−〉, where B− is a (b − 1)-space semi-opposite J1, J2, J3
and J4 and avoiding J1 and J2: we choose B− in ResΔ(〈K, p〉), in which J1 and J2
correspond to b-spaces, and J3 and J4 to (b − 1)-spaces (seeing |j| − k − 1 = b), so 
like above this is possible.

– If a ≥ 0, the a-space A is chosen in ResΔ(〈K, p, B−〉), in which J1 and J2 now 
correspond to points p1 and p2, and in which J3 and J4 do not correspond with 
anything. Let A be collinear with p1 and p2 and avoiding J3 and J4, which is possible 
by Fact 6.1(i)∗ (note that the rank of ResΔ(〈K, p, B−〉) is n − j − 1 and a is such 
that |j| + a + 1 = |�| < n − 1 and even |�| ≤ n − 3 if Δ is hyperbolic since i = �).

The resulting i-space 〈K, p, B−, A〉 is adjacent with J3 and J4 because, for e ∈ {3, 4}, 
I ∩ Je is the k-space K and no point of J \ K is collinear with I. However, I is not 
adjacent with J1 and J2 because both contain a (unique) point collinear with I. This 
contradiction to the definition of a quadruple shows that p ∈ J⊥

3 ∪ J⊥
4 .

Suppose p ∈ J1 \ S, i.e., p ∈ U2
1 . We consider any point q of 〈U1

2 , U
2
1 〉 \ (U1

2 ∪ U2
1 ). If 

q ∈ J3∪J4 then clearly q ∈ J⊥
3 ∪J⊥

4 ; if q /∈ J3∪J4, the previous cases imply q ∈ J⊥
3 ∪J⊥

4 . 
As q was arbitrary, 〈U1

2 , U
2
1 〉 ⊆ J⊥

3 ∪ J⊥
4 , and as J⊥

3 and J⊥
4 are subspaces (even though 

not singular), we may assume that 〈U1
2 , U

2
1 〉 ⊆ J⊥

3 . In particular, p ∈ J⊥
3 .

The fact that (RU1) is a residual property is easily verified. �
If the quadruple has one common intersection (which is the case if k > −1, by 

Lemma 7.6), it is no restriction to require that p is contained is at most one mem-
ber of the quadruple, as for each point of the intersection, (RU1) is trivially fulfilled. In 
case a �= −1, we can say more. The following lemma improves Lemma 7.8 in the case 
where p ∈ J1 ∪ J2 in (RU1).

7.9 Lemma. Let Γ equal Γ�
k and suppose a ≥ 0, possibly k = −1. Then U2

1 = U3
1 = U4

1
and this for all permutations of {1, 2, 3, 4}.

Proof. Again, by Lemma 7.6, the j-spaces intersect each other in S if k > −1. The 
condition a ≥ 0 implies |j| < n − 1.

First suppose |i| ≤ |j|. If p ∈ U2
1 then we may assume p ∈ U3

1 in view of the previous 
lemma. We show that p ∈ U4

1 too. Suppose for a contradiction that p /∈ J⊥
4 . We choose 

an i-space I = 〈K, A, B〉 ∈ N(k)(J2, J3) like in the first case of the previous lemma, i.e., 
with p ∈ A, only now 〈K, A〉 ∩Je = K for e = 2, 3, 4 and 〈K, A〉 ∩J1 = 〈K, p〉. The latter 
implies that I cannot be adjacent to J1 and hence has to be adjacent to J4, forcing p to 
be collinear with J4.

Next suppose |i| = |j| + a + 1. Assume for a contradiction that U4
1 = U2

1 = U3
1 does 

not hold. In view of the previous lemma we may assume that U4
1 � U2

1 = U3
1 . Possibly 

by switching the roles of J2 and J3, we may also assume that U2
4 � U3

4 = U1
4 or U1

4 �
U2

4 = U3
4 or U1

4 = U2
4 = U3

4 . In the first case, we find a line p1p4 such that p1 ∈ U3
1 \ U4

1
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and p4 ∈ U3
4 \ U2

4 . Clearly, p1p4 is collinear with J1 and J3. It follows from the previous 
lemma that p1p4 should be collinear with J2 or J4 as well, a contradiction. Similarly in 
the second case. Hence we are in the third case: U1

4 = U2
4 = U3

4 . Moreover, it follows 
that U4

2 � U3
2 = U1

2 and U4
3 � U2

3 = U1
3 , so J1, J2 and J3 play the same role w.r.t. each 

other and w.r.t. J4.
If k ≥ 0, let K be any k-space inside S; if k = −1, let K = ∅. Now take any 

(a + 1)-space A∗ collinear with J2 and J4 such that 〈K, A∗〉 ∩ Je = K for e = 1, 3, which 
is possible by Fact 6.1(i)∗ and since |i| < n − 1 (and if Δ is hyperbolic even |i| ≤ n − 3). 
Then by the previous lemma, A∗ ∩ J⊥

1 and A∗ ∩ J⊥
3 are subspaces of A∗ that together 

cover A∗, which is only possible if one of them coincides with A∗. As J1 and J3 play the 
same role w.r.t. J2 and J4, we may assume that A∗ is collinear with J3. Now let A be 
an a-space inside A∗ collinear with a point p ∈ J1 \ S. In ResΔ(〈K, p, A〉), the j-spaces 
J2 and J3 correspond to b-spaces J ′

2 and J ′
3 (recall |j| − k − 1 = b), hence there is a 

b-space opposite J ′
2 and J ′

3, that corresponds to a b-space B in Δ semi-opposite J2 and 
J3. The corresponding i-space I = 〈K, A, B〉 ∈ N(k)(J2, J3) is then collinear with the 
point p ∈ J1 \K and hence I � J1 (recall that no point of J \ I is collinear with I for an 
adjacent pair (I, J), when |i| = |j| + a + 1). Consequently, I ∼ J4 and hence, as A ⊥ J4, 
we obtain that B is semi-opposite J4.

Knowing this, we can reach a contradiction as follows. Let A− be an (a − 1)-space of 
A (recall a ≥ 0) and let p be a point in U2

1 \ U4
1 . Then I = 〈K, p, A−, B〉 also belongs 

to N(k)(J2, J3), since p ∈ J⊥
2 ∩ J⊥

3 . Since dim(I ∩ J1) = k + 1, I � J1. But now I � J4
too, because 〈B, p〉 is a (b +1)-space of I semi-opposite J4, a contradiction. We conclude 
that U4

1 = U2
1 = U3

1 . The lemma is proven. �
Notation – We write Uy instead of Ux

y , for all x �= y ∈ {1, 2, 3, 4}, if the latter does not 
depend on x.

The following lemma will be very useful in combination with Lemma 7.1, as it states 
that, under certain conditions, lines intersecting two members of the round-up quadruple, 
have to intersect a third member of the round-up quadruple. Again, we state it w.r.t. J1
and J2 but it holds for any two (distinct) members of the quadruple.

7.10 Lemma.

• If Δ is hyperbolic and |i| = |j| = n − 1, then each pair of collinear lines L1 ⊆ J1 \ S
and L2 ⊆ J2 \ S is such that 〈L1, L2〉 intersects either J3 or J4 in a line.

• In all other cases, each pair of collinear points x1 ∈ J1 \ S and x2 ∈ J2 \ S (where 
we, if Γ = Γ�

k, require that xc ∈ Qc if a = −1 and xc ∈ Pc if b = −1) is such that 
x1x2 intersects J3 or J4 in a point.

Proof. First suppose that Δ hyperbolic and |i| = |j| = n − 1. Let L1 ⊆ J1 \ S and 
L2 ⊆ J2 \ S be collinear lines (hence dim(S) ≤ n − 5). First note that, as before, when 
Δ is hyperbolic and |i| = |j| = n − 1, we may in this case suppose that k ≥ 1. Assume 
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first that 〈L1, L2〉 has nothing in common with J3 ∪ J4. Let K be a (k − 2)-space in 
S and put K1 := 〈K, L1〉 and K2 := 〈K, L2〉. Then J1, J2, J3 and J4 correspond to 
subspaces of the same type in ResΔ(〈K1, K2〉). Consequently, we can take a (b −2)-space 
B in this residue semi-opposite all of them. The corresponding i-space I := 〈K1, K2, B〉
belongs to N(k−2)(J1, J2) but is not adjacent to J3 nor to J4, a contradiction. Hence, 
for each pair of collinear lines L1 and L2, 〈L1, L2〉 has to intersect at least one of J3, J4

in a point (which is in particular collinear with L1). Consider the j-space LJ2
1 and put 

X3 := J3 ∩ LJ2
1 and X4 := J4 ∩ LJ2

1 . We claim that max{dim(X3), dim(X4)} = n − 3. 
Suppose for a contradiction that dim(X3) ≤ n − 5 and dim(X4) ≤ n − 5. Then there is a 
line L′

2 ⊆ projJ2
(L1) disjoint from (〈L1, X3〉 ∩J2) ∪(〈L1, X4〉 ∩J2) (as this is the union of 

two subspaces of J2 of dimension smaller or equal to n −5). But then it is impossible that 
〈L1, L′

2〉 contains a point from J3 ∪ J4, a contradiction. This proves the claim. Without 
loss, dim(X3) = n − 3. Since dim(〈L1, L2〉 ∩X3) ≥ 1 we obtain that 〈L1, L2〉 ∩ J3 is a 
line after all, proving the first assertion.

Now suppose that we are not in the previous case. Let x1 and x2 be as in the statement 
of the lemma. We want I ∈ N(k−1)(J1, J2) such that xc ∈ Kc and with I \ 〈K1, K2〉
avoiding J3 ∪ J4. If such an i-space exists, then, without loss of generality, we have 
I ∼ J3, implying dim(J3 ∩ I) = k. As J3 ∩ I ⊆ 〈K1, K2〉, the line x1x2 intersects J3

in a point x. Like before, the existence of such an i-space could only be a problem 
when Γ = Γ�

k and Δ is hyperbolic, and either |i| = |j| = n − 1 (which we excluded) 
or |�| = n − 2, dim(J1

J2) = n − 2, dim(Je ∩ P ) = p∗ + s + 1 and Je \ P contains a 
point collinear with J1 and J2, for some e ∈ {3, 4}. However, the latter situation does 
not occur. Indeed, the fact that |j| < |�| implies a ≥ 0, and then Lemma 7.9 tells us 
that, for e ∈ {3, 4}, dim(projJe

(J1)) = dim(projJ2
(J1)) = p∗ + s + 1, which means that 

dim(Je∩P ) = p∗+s +1 implies that projJe
(J1) ⊆ P and hence Je \P contains no points 

collinear with J1. �
7.3. Classification of the round-up triples and quadruples

We narrow down the possibilities for the quadruples to one of the five below types.

7.11 Definition. Let {J1, J2, J3, J4} be a 4-tuple (with J3 = J4 when Γ = Γ≥k, as then 
we only need 3-tuples) such that all pairwise intersections equal a fixed subspace S
and denote by Δ′ the residue ResΔ(S) and by J ′

a the subspace of Δ′ corresponding to 
Jd, d = 1, 2, 3, 4. Consider the following configurations. The definitions of a hyperbolic 
line and a hyperbolic 3-space can be found in Section 2.1. Let t be an integer with 
1 ≤ t ≤ j − k − 1.

I dim(S) = j − 1 and J ′
1, J

′
2, J

′
3, J

′
4 are on a line in Δ′;

II dim(S) = j − 1 and J ′
1, J

′
2, J

′
3, J

′
4 are pairwise opposite points in Δ′. If, moreover, 

these points are on a hyperbolic line, we say that the quadruple is of type II∗;
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Table 1
Occurrence of 4-tuples in Δ in function of Δ.

I II II∗ III III∗ IV V(1) V(> 1)
Δ orth., not hyperbolic x X X x x x
Δ hyperbolic, |i|, |j| < n − 1 x x x x x x
other Δ x X x x X x

Table 2
Occurrence of 4-tuples as round-up quadruples in function of Γ.

I II II∗ III III∗ IV V(t)
Γ�

k: |j| = n − 1 X X
Γ�

k: a, b ≥ 0, |j| < n − 1 X X X
Γ�

k: a = −1, |i| = |j| < n − 1 X X
Γ�

k: b = −1 (so |j| < n − 1) X X
Γk X X X X
Γ≥k X X X X

III dim(S) = j−2 and J ′
1, J

′
2, J

′
3, J

′
4 are pairwise opposite lines in Δ′ with the property 

that any line in Δ′ meeting two of them, meets them all. If, moreover, these lines 
span a hyperbolic 3-space, we say the quadruple is of type III∗;

IV dim(S) = j − 1-space and J ′
1, J

′
2, J

′
3, J

′
4 are points of Δ′, three of which are on a 

line and opposite the remaining point.
V(t) dim(S) ≥ k and J ′

1, J
′
2, J

′
3, J

′
4 are t-spaces in Δ′. The subspaces S ∪U1, S ∪U2, S ∪

U3, S ∪ U4 correspond in Δ′ to points on a line L and in ResΔ′(L), the j-spaces 
correspond to pairwise opposite (t − 1)-spaces defining a hyperbolic (2t − 1)-space.

7.12 Remark. If J3 = J4, then a type IV coincides with type I; if not, they are different.

Whether or not these 4-tuples occur in Δ depends on Δ, or more precisely, on the 
existence of hyperbolic lines in Δ and of the presence of hyperbolic quadrangles as 
hyperbolic subspaces. Hyperbolic lines do not occur precisely if Δ is a strictly orthogonal 
polar space (“orth.” for short in Table 1). On the other hand, the strictly orthogonal polar 
spaces are the only ones containing grids as hyperbolic subspaces (the lines of quadruples 
of types III and III∗ are contained in one regulus of a grid). Furthermore, it will also depend 
on j whether or not the 4-tuples occur in Δ. We summarise this in Table 1, where “X” 
means that the 4-tuple occurs and “x” means that it occurs if |j| < n − 1. Recall that 
|j| > 0. We do not include Δ hyperbolic and |i| = |j| = n − 1 here, as this will be a 
special case anyway.

It also depends on Γ which of the in Δ occurring 4-tuples actually occur as a quadruple. 
To keep track of the different cases, we already give a summary of our results now in 
Table 2, this time not taking into account that some of those types possibly do not occur 
in Δ. So for a given graph and a given polar space, one has to combine the two tables 
to know which are the occurring quadruples.
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We now prove that each of our quadruples is of one of these types. If Γ = Γ�
k, it 

appears that some cases in which −1 ∈ {a, b} behave differently. So we start with the 
“generic case” in which we do not take special cases into account.

7.3.1. Most general case

7.13 Lemma. Let Γ be one of Γ≥k, Γk, Γ�
k. If Δ is hyperbolic, we assume that |i|, |j| <

n − 1. If Γ = Γ�
k, we assume b ≥ 0 and, if moreover |j| < n − 1, we also assume a ≥ 0. 

Then every Γ-round-up quadruple is of type I, II, III or IV. Type IV does not occur if 
Γ = Γ�

k (and coincides with type I if Γ = Γ≥k). Type II occurs for all graphs, and if 
Γ = Γ�

k and |j| < n − 1 then each quadruple of type II is of type II∗. If |j| < n − 1, then 
a quadruple of type III is of type III∗.

Proof. Let {J1, J2, J3, J4} be a quadruple. By Lemmas 7.5 and 7.6, we already know that 
the j-spaces have one common intersection S of dimension s with s ≥ k. Suppose xt and 
xu are collinear points in Jt\S and Ju\S, respectively, for u, t ∈ {1, 2, 3, 4} with Ju �= Jt. 
We may apply Lemma 7.10 without extra conditions on xt and xu because, if a = −1, we 
assume |j| = n −1, which implies that Pt and Pu are empty, so automatically xt ∈ Qt and 
xu ∈ Qu; furthermore we assume b ≥ 0. This lemma then implies that xuxt intersects a 
third member of the quadruple, unless Γ = Γ�

k, Δ is hyperbolic and |i| = |j| = n − 1 Let 
Q′ := {J ′

1, J
′
2, J

′
3, J

′
4} be the set of (j − s − 1)-spaces in ResΔ(S) corresponding to the 

quadruple. There are two cases.

Case 1: There is a pair in Q′ which is not opposite. Suppose J ′
1 and J ′

2 are not opposite. 
This implies that |j| < n − 1 and then our assumptions are that a ≥ 0. Moreover, there 
is a point x1 ∈ J ′

1 collinear with J ′
2. These previous facts together with the above, imply 

that x1x2 intersects J3 or J4 in a point, for any x2 ∈ J2 \ S. This allows us to apply 
Lemma 7.1 on (x1, J ′

2, J
′
3, J

′
4). We obtain that s = j − 1, so J ′

1, J ′
2, J ′

3 and J ′
4 are just 

points in ResΔ(S) (with J ′
1 = x1); moreover, without loss, J ′

3 is a point on the line J ′
1J

′
2.

If Γ = Γ≥k then J3 = J4 and we are done. If not, there are two possibilities. Firstly, 
J ′

4 can be non-collinear with any of J ′
1, J

′
2, J

′
3, and then the quadruple is of type IV. 

Suppose now that J ′
4 is collinear with J ′

1. In particular, J ′
1 and J ′

4 are not opposite, so 
we can apply the reasoning of the beginning of the first paragraph on them, and obtain 
that J ′

2 or J ′
3 is on the line J ′

1J
′
4. Anyhow, the lines J ′

1J
′
2 and J ′

1J
′
4 have at least two 

points in common, so they coincide and the quadruple is of type I. By Lemma 7.9 (recall 
a ≥ 0 in this case), there are no quadruples of type IV if Γ = Γ�

k.

Case 2: All pairs in Q′ are opposite. We reason in ResΔ(S). Let x1 ∈ J ′
1 be arbitrary 

and let d = 2, 3, 4. Consider P ′
d = projJ ′

d
(x1). If P ′

2 is empty, then s = |j| − 1 and the 
quadruple is of type II. So suppose P ′

2 is nonempty. Suppose first that we are not in 
the special case of Lemma 7.10. As above, it follows that we can apply Lemma 7.1 on 
(x1, P ′

2, P
′
3, P

′
4), which implies that dim(P ′

d) = 0 and, without loss, P ′
3 is on the line x1P

′
2. 

So, as Pd is a hyperplane of J ′
d, s = |j| − 2 and J ′

1, J
′
2, J

′
3, J

′
4 are pairwise opposite lines.
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Now suppose that we are in the special case, i.e., Γ = Γ�
k, Δ is hyperbolic and |i| =

|j| = n −1. Then suppose or a contradiction that dim(S) < |j| −2 = n −3, i.e., dim(S) ≤
n − 5 since Δ is hyperbolic. Let x1 be a point in J1 \S. Note that codimS(x⊥

1 ∩ J2) ≥ 2. 
We take a hyperplane H2 of J2 through S distinct from x⊥

1 ∩ J2. Then there is a point 
x2 in (x⊥

1 ∩ J2) \ H2 such that the line x1x2 contains a point of J3 ∪ J4. Now taking 
a hyperplane H ′

2 in J2 through 〈S, x2〉 and distinct from x⊥
1 ∩ J2, we likewise obtain a 

point x′
2 ∈ (x⊥

1 ∩J2) \H ′
2 such that x1x

′
2 contains a point of J3∪J4. By our choice of H ′

2, 
x2 �= x′

2 and, moreover, 〈x2, x′
2〉 does not meet S (otherwise x′

2 ∈ H ′
2 after all). Lastly, 

we take a hyperplane H ′′
2 in J2 through 〈S, x2, x′

2〉 and distinct from x⊥
1 ∩ J2, to obtain 

a point x′′
2 ∈ (x⊥

1 ∩ J2) \H ′′
2 such that x1x

′′
2 contains a point of J3 ∪ J4. The choice of 

H ′′
2 implies that 〈x2, x′

2, x
′′
2〉 is a plane in x⊥

1 ∩J2 which is disjoint from S. Now, without 
loss, the lines x1x2 and x1x

′
2 both contain a point x3 and x′

3 from J3. But then x3x
′
3

and x2x
′
2 have to intersect as they are contained in the plane 〈x1, x2, x′

2〉, contradicting 
that x2x

′
2 does not meet S. Hence also in this case, dim(S) = |j| − 2. As |j| − 2 = n − 3

and Δ is hyperbolic, it follows immediately that the quadruple is of type III.
If Γ = Γ≥k then J3 = J4 and we are done. If not, we still need to show that the line 

x1P
′
2 intersects both J ′

3 and J ′
4. By the above, we may already assume that P ′

3 is on this 
line. If P ′′

4 is the unique point on J ′
4 collinear with P ′

3, then the same arguments as used 
just above imply that P3P

′′
4 contains x1 or P ′

2, so x1P
′
2 = P ′

3P
′′
4 and hence P ′′

4 is collinear 
with x1, implying P ′

4 = P ′′
4 . This shows that the quadruple is of type III.

If Γ = Γ�
k and |j| < n − 1, each quadruple of type II is of type II∗, by (RU1) and 

Lemma 7.2. Also, if |j| < n − 1, then each quadruple of type III is of type III∗ because 
if a point is collinear to two of those lines in Δ′, then it is also collinear with the two 
other lines as it is collinear to all transversals.

One can verify that each of the 4-tuples obtained above indeed satisfies the definition 
of a round-up quadruple. �

Lemmas 7.13 does not yet cover all cases if Γ = Γ�
k. We deal with the remaining cases 

separately.

7.3.2. Δ hyperbolic and |i| = |j| = n − 1

7.14 Lemma. If Δ is hyperbolic and |i| = |j| = n − 1 then each quadruple {J1, J2, J3, J4}
consists of four j-spaces intersecting each other in a common subspace S of dimension 
n − 3 (in ResΔ(S) they hence correspond to four pairwise opposite lines).

Proof. Let {J1, J2, J3, J4} be a quadruple. By Lemmas 7.5 and 7.6, we already know that 
the j-spaces have one common intersection S of dimension s with s ≥ k. If s = n − 3
then it is clear that the quadruple has hyperbolic type II (note that ResΔ(S) has rank 
2 so disjoint lines are opposite).

So suppose s ≤ n − 5. Let J ′
1, J

′
2, J

′
3, J

′
4 be the set of (j − s − 1)-spaces in ResΔ(S)

corresponding to the quadruple. Let L1 be a line in J ′
1 and let L2 be a line in J ′

2 collinear 
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with L1 (which exists since s ≤ n − 5). By Lemma 7.10, 〈L1, L2〉 intersects a third 
member of the quadruple in a line. If we apply the same reasoning as in Lemma 7.1
on (L1, projJ ′

2
(L1), projJ ′

3
(L1), projJ ′

4
(L1)), we obtain that dim(projJ ′

2
(L1)) = 1, i.e., 

s = n − 5, so J ′
1, J ′

2, J ′
3 and J ′

4 are pairwise disjoint 3-spaces in ResΔ(S), moreover, 
without loss, 〈L1, L2〉 intersects J ′

3 in a line L3. Moreover, we can show that also J ′
4

intersects 〈L1, L2〉 in a line. Indeed, let L4 be the unique line in J ′
4 collinear with L1. 

Then 〈L1, L4〉 has to intersect at least one of J2, J3 in a line, say J2. As projJ ′
2
(L1) = L2, 

we obtain that 〈L1, L4〉 = 〈L1, L2〉 intersects each of J ′
1, J ′

2, J ′
3 and J ′

4 in a line.
It remains to show that this last possibility does not occur. In ResΔ(S), which is of 

type D4, we obtain four pairwise disjoint 3-dimensional subspaces, say of type 3′, such 
that each 3′-space intersecting two of them in a line intersects all of them in a line. 
Applying the triality principle, this amounts to four pairwise opposite points such that 
each point collinear to two of them is collinear to all of them. As there are no hyperbolic 
lines in a hyperbolic polar space, this is impossible. �
7.3.3. The projection of adjacent vertices of Γ on each other is their intersection 
(a = −1)

Let {J1, J2, J3, J4} be a quadruple of Γ = Γ�
k, where a = |�| −|j| −1 = −1, i.e., |�| = |j|. 

However, we assumed that, if max{|i|, |j|} = |�| then |j| ≤ |i|, hence also |i| = |j|. We 
will furthermore assume that |i| = |j| < n − 1, as the case where |j| = n − 1 is already 
covered by Lemma 7.13. So for this subsection: i = j < n − 1.

We can prove the following property.

(RU2) Let L be a line containing distinct points p and p′ such that p ∈ J⊥
u and p′ ∈ J⊥

t for 
u �= t. Then L contains a point q with q ∈ J⊥

v ∪J⊥
w , where {u, t, v, w} = {1, 2, 3, 4}.

7.15 Lemma. If Γ equals Γ�
k, a = −1 and i = j < n − 1, possibly k = −1, then (RU2) is 

valid for any quadruple. Moreover, (RU2) remains valid in ResΔ(S′) for S′ ⊆ J1 ∩ J2 ∩
J3 ∩ J4.

Proof. Recall that k < min{i, j}. If k+1 = i and k ≥ 0, then by Lemma 7.6 the j-spaces 
all intersect each other in S and dim(S) = k = j − 1. If two distinct points of a line 
L are collinear with J1 and J2 respectively, then L is collinear with S. As any point pe
of Je \ S with e ∈ {3, 4} is collinear to at least one point of L, Je is collinear with this 
point. If k = −1 and i = j = 0, then this property is also trivial.

Now suppose k + 1 < i. Let L = pp′ be a line with p ∈ J⊥
1 and p′ ∈ J⊥

2 . Suppose for 
a contradiction that none of its points is collinear with J3 or J4. In particular, L does 
not meet any of J3, J4. Hence, we can choose an element I = 〈K, B〉 ∈ N(k)(J3, J4) such 
that L ⊆ B (recall k+ 1 < i). Then I ∩J3 = I ∩J4 = K ⊆ J3 ∩J4 = J1 ∩J2 ∩J3 ∩J4. If 
Jc, c ∈ {1, 2}, would be adjacent to I, then I ∩ Jc = K. But then I \K contains p and 
p′, which are collinear with J1 and J2, making I ∼ Jc impossible, a contradiction.

Since L is collinear with S, it follows that (RU2) is a residual property. �
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7.16 Lemma. Let {J1, J2, J3, J4} be a set of four j-spaces having one common intersection 
S and satisfying (RU1) and (RU2). Then at least one pair of them is contained in a 
singular subspace or is such that their projections on each other equal their intersection.

Proof. If |j| = n −1 this is trivial. So suppose |j| < n −1 and assume for a contradiction 
that no such pair exists. If dim(S) = j − 1, the lemma is trivial, so we may assume 
dim(S) < j − 1. In Δ′ := ResΔ(S), which has rank at least 3, the j-spaces correspond 
to subspaces V1, V2, V3 and V4 of dimension v with v ≥ 1. We denote the subspaces 
corresponding to 〈S, Uu

v 〉 by Uu
v as well; note that Uu

v = projVv
(Vu), for u, v ∈ {1, 2, 3, 4}. 

By assumption, these are all nonempty. By looking in ResΔ′(V1), we find a singular 
(v + 1)-space V 1 through V1 in Δ′ such that all points in V 1 \ V1 are collinear with 
none of U1

2 , U
1
3 and U1

4 , and hence collinear with none of V2, V3 and V4. Likewise, we 
can find such a singular (v + 1)-space V 2 w.r.t. V2. Let p1 ∈ V 1 \ V1 be arbitrary. As 
V2 � p⊥1 , there is a unique hyperplane H of V 2 collinear with p1. Clearly, H �= V2. So 
let p2 ∈ H \ V2. Denote by Z the subspace 〈p1, H〉.

By (RU1) and possibly by switching the roles of the j-spaces (as the above holds 
for any permutation of {1, 2, 3, 4}), we may assume that U1

2 ⊆ U3
2 = U4

2 . As U1
2 is 

not collinear with p1, it is not contained in H ∩ V2, and so 〈H ∩ V2, Uv
2 〉 = V2, for all 

v ∈ {1, 3, 4}. It follows that none of V3, V4 is collinear with H ∩ V2, for this would mean 
that they are contained in a singular subspace with V2. So both V3 and V4 are collinear 
with at most a hyperplane of V2∩H. As they are not collinear with any point of V 2 \V2, 
they are collinear with at most a codimension 1 subspace of Z. This shows that there 
is a line L in Z which is disjoint from V ⊥

3 ∩ V ⊥
4 . We may assume that L = p1p2 and so 

(RU2) is violated. �
The conditions (RU1) and (RU2) also appear in [19], though used for round-up triples, 

and the idea of the previous lemma is taken from the proof of Lemma 4.7 of the same 
article, and extended to quadruples.

7.17 Lemma. Assuming |i| = |j| < n − 1, the quadruple is of type I or II∗.

Proof. We already know that the four j-spaces intersect each other in a common subspace 
S of dimension at least k and they satisfy (RU1) and (RU2). By Lemma 7.16, there are 
only two cases to consider.

Case 1: There is a pair of j-spaces contained in a singular subspace. Suppose J1 ⊥ J2. 
By (RU1), 〈J1, J2〉 ⊆ J⊥

3 ∪ J⊥
4 , so we may assume that 〈J1, J2〉 ⊆ J⊥

3 . This implies that 
J1, J2 and J3 are contained in a singular subspace Z. We will prove that they are all 
contained in a singular subspace spanned by any pair of the j-spaces, afterwards we show 
that dim(S) = j − 1. This is accomplished in the following steps.

• Claim 1: J4 has to be collinear with J1, J2 and J3. In view of (RU1) and by switching 
the roles of J1, J2 and J3 if necessary (they play the same role), we may assume 
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U1
4 ⊆ U2

4 = U3
4 . Assume for a contradiction that U1

4 � J4. Then, in ResΔ(〈S, U1
4 〉), 

J1, J2 and J3 correspond to collinear (j − s − 1)-spaces V1, V2 and V3, respectively, 
and J4 corresponds to a subspace V4 of dimension at most (j − s − 1), which is 
semi-opposite V1. Take any (j − s)-space through V1 which is not collinear with V2

nor with V3. Clearly, this subspace contains a point which is collinear with V4 but 
not collinear with V2 or V3. As this violates (RU1), the claim is proved. Now, put 
Z = 〈J1, J2, J3, J4〉.

• Claim 2: Z is generated by any two members of the quadruple. We first show that at 
least one of J3, J4 belongs to 〈J1, J2〉. Assume for a contradiction that J3 and J4 are 
both not contained in 〈J1, J2〉. Then there is a hyperplane H of Z containing 〈J1, J2〉
and not containing J3 nor J4. Let p be a point collinear with H but not with Z. As 
p is collinear with J1 and J2 but not with J3 nor with J4, this contradicts (RU1), 
showing that one of J3, J4 is contained in 〈J1, J2〉.
Now suppose that J4 would not be contained in 〈J1, J2〉. Then we apply the same 
arguments as above to J1 and J4 and obtain that 〈J1, J4〉 contains one of J2, J3, 
say J2. Then 〈J1, J4〉 contains 〈J1, J2〉, and as their dimension are equal, 〈J1, J2〉 =
〈J1, J4〉. Since J3 ⊆ 〈J1, J2〉, we conclude that Z = 〈J1, J2〉 and this proves the claim.

• Claim 3: dim(S) = j − 1. Suppose for a contradiction that dim(S) < j − 1. We 
will exploit property (RU2). Since this is a residual property, we may assume that 
S is empty. Our assumption implies j ≥ 1 and from the previous claim, we know 
dim(Z) = 2j + 1. Hence we can find a line L in Z intersecting J1 and J2, but 
disjoint from J3 and J4. Let Z ′ be a singular (2j + 1)-space that intersects Z in L
and with projZ(Z ′) = L. Then projZ′(J1) and projZ′(J2) both have dimension j + 1
whereas projZ′(J3) and projZ′(J4) have dimension j. The pairwise intersection of 
these four subspaces is L, as no point of Z ′ \ L is collinear with Z. Hence we can 
find a line M inside Z ′ intersecting both projZ′(J1) and projZ′(J2), but disjoint from 
projZ′(J3) ∪ projZ′(J4). This contradiction to (RU2) yields dim(S) = j − 1.

We conclude that the quadruple is of type I.

Case 2: There is a pair of j-spaces whose projections on each other coincide with their 
intersection. Suppose U4

3 (and hence also U3
4 ) is empty. By Case 1, we know that no 

pair amongst the j-spaces is contained in a singular subspace, for otherwise they are all 
contained in a singular subspace. Consider the following two cases.

• Case 2(a): dim(S) = j − 1. It readily follows that the quadruple is of type II. 
Combining (RU1) and Lemma 7.2, we obtain that the quadruple is of type II∗.

• Case 2(b): dim(S) < j−1. Let x3 ∈ J3\S be arbitrary and note that x3 ∈ Q3 as U3
4 is 

empty. As dim(S) < j−1, there is a point x4 ∈ J4\S (again, automatically, x4 ∈ Q4) 
collinear with x3, so it follows from Lemma 7.10 (recall i = j < n − 1) that x3x4

intersects J1 or J2. Applying Lemma 7.1 on (x3, projJ4
(x3), projJ1

(x3), projJ2
(x3)), 

we obtain that dim(S) = |j| − 2.
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Let L1, L2, L3, L4 denote the lines in ResΔ(S) corresponding to J1, J2, J3, J4, respec-
tively. By assumption, L3 and L4 are opposite. We claim that they are all pairwise 
opposite. Suppose for a contradiction that y3 is a point of L3 collinear with L1. By 
(RU1), y3 has to be collinear with L2. Let y4 be the unique point on L4 collinear with 
y3. Then there is an i-space I ∈ N(k−1)(J3, J4) such that the subspace I ′ correspond-
ing to it in ResΔ(S) contains y3y4. As I ′ contains y3, a point collinear with J1 and 
J2, those two j-spaces are not adjacent to I. This contradiction to the definition of a 
quadruple proves the claim, as we can now switch the roles of the j-spaces. The same 
arguments as in the proof of Lemma 7.13 imply that the quadruple is of type III∗.
We now show that these kinds of quadruples do not occur when a = −1. Let L and 
L′ be two distinct transversals of L1, L2, L3, L4, with L ∩ Ld = xd and L′ ∩ Ld = x′

d

for d ∈ {1, 2, 3, 4}. Consider x⊥
3 ∩ x′⊥

4 , which is isomorphic to a polar space of rank 
n − (j − 1) − 1 ≥ 2 and which contains the points x′

3 and x4. In there, take a line 
M through x′

3 and a line N through x4 with M and N opposite, and let R be a line 
joining a point m ∈ M and a point n ∈ N , with m �= x′

3 and n �= x4. Now note that 
m is collinear with L3 (since m ∈ x⊥

3 is collinear with x′
3) and not with L4 (since 

m is not collinear with x4 because n �= x4), likewise, n is collinear with L4 but not 
with L3. Consequently, (RU2) implies that there is a point r ∈ R collinear with L1
or L2, say L1. Then r is collinear with L (as it is collinear with x3 and x1 ∈ L1) and, 
likewise, with L′; and therefore r is collinear with both L3 and L4. In particular it 
follows that r /∈ {m, n}, but then r, m ⊥ L3 implies n ⊥ L3, a contradiction. This 
implies that there are no quadruples of type III∗.

Again, it is easily verified that each of those 4-tuples obtained above indeed satisfies the 
definition of a round-up quadruple. �

Next, we deal with the case where b = −1.

7.3.4. Adjacent vertices are contained in a singular subspace (b = −1)
Clearly, if b = −1 then |i|, |j| < n − 1. The fifth type of 4-tuple emerges here.

7.18 Lemma. The quadruple is of type I or V(t).

Proof. Recall that the j-spaces intersect in a fixed subspace S with dim(S) ≥ k. Ac-
cording to Lemma 7.9, all pairs of them have the same mutual position, so all of them 
play the same role. Depending on U1, there are three cases. We will apply Lemma 7.10
again (note that |j| < n − 1).

• Case 1: U1 = J1 \ S. In this case, J1 ⊥ J2 and hence we can apply Lemma 7.10 on 
every pair of points xc ∈ Jc \S, c = 1, 2. Proceeding like in the proof of Lemma 7.13, 
we obtain that the quadruple is of type I.
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• Case 2: U1 is empty. Suppose I ∈ N(J1, J2). Then I ∩ Jd ⊆ S for all d ∈ {1, 2, 3, 4}, 
as b = −1. Combining (RU1) with Lemma 7.2, we conclude that N(J1, J2) =
N(J1, J2, J3, J4), a contradiction to the definition of a quadruple.

• Case 3: ∅ �= U1 � J1 \ S. Let x1 ∈ U1 and x2 ∈ U2 be points. By Lemma 7.10, 
x1x2 meets J3 ∪ J4, more precisely, x1x2 meets U3 ∪ U4. Applying Lemma 7.1 on 
(x1, S∪U2, S∪U3, S∪U4), we obtain dim(S) = dim(S∪Ud) −1 for all d ∈ {1, 2, 3, 4}
and at least one of S ∪ U3, S ∪ U4 lies in 〈S, U1, U2〉. Interchanging the roles of the 
j-spaces like before, we obtain that both S ∪ U3 and S ∪ U4 belong to 〈S, U1, U2〉. 
In ResΔ(〈S, U1, U2〉) (which has rank n − (s + 2) − 1), this translates to four (j −
s − 2)-spaces which are pairwise opposite. Note that these are not maximal singular 
subspaces, for otherwise j = n − 2, and together with a ≥ 0 (as b = −1) this would 
imply |�| = n − 1, which we only allow when |i| = |j| = n − 1. Again by (RU1) and 
Lemma 7.2, every point collinear with two of them is collinear with all of them, i.e., 
they define a hyperbolic (2t +1)-space with t = j− s − 2. Hence, the quadruple is of 
type V(t).

Also here, it is easily verified that each of those 4-tuples obtained above indeed satisfies 
the definition of a round-up quadruple. �
7.4. Constructing Gj or G′

j

With the just obtained classification, we want to construct Gj or G′
j . By Corollary 5.4

or Proposition 5.3, respectively, this would finish the proofs of Main Theorems 3.5 and 3.7
in the case where k ≥ 0. We start from the graph Γ′, which we define as the graph having 
Ωj as vertices, adjacent whenever they are contained in a quadruple. We aim to identify 
the types of the quadruples. The following notion will be useful.

7.19 Definition. Let J1, J2 be adjacent vertices of Γ′. A near-line (based at {J1, J2}) is 
defined as the union of all quadruples containing {J1, J2}. We denote this set of j-spaces 
by [J1, J2]. The type set of [J1, J2] is the set of types of the quadruples containing {J1, J2}. 
If this set contains only one element, we call this element the type of [J1, J2].

7.20 Lemma. Suppose J1 and J2 are contained in a quadruple and dim(J1∩J2) ≥ j−2. Let 
J, J ′ be two members of [J1, J2]. Then J∩J ′ = J1∩J2. Moreover, if dim(J1∩J2) = j−2, 
then in ResΔ(J1 ∩J2), the lines L and L′ are contained in the regulus determined by the 
lines L1 and L2 corresponding to J1 and J2.

Proof. Observe that J ∩J ′ always contains J1∩J2 for any two distinct members J, J ′ of 
[J1, J2], since Lemma 7.6 implies that J and J ′ both contain J1∩J2. If dim(J1∩J2) = j−1, 
then of course J ∩ J ′ = J1 ∩ J2. So suppose dim(J1 ∩ J2) = j − 2 from now on.

In Δ′ := ResΔ(S), the j-spaces correspond to respective lines L1, L2, L and L′. If 
|j| < n − 1, then L1 and L2 determine a hyperbolic 3-space which has the structure of 
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a hyperbolic quadrangle. As L and L′ both belong to the regulus determined by L1 and 
L2, it follows that there is a quadruple of type III∗ containing J and J ′. If |j| = n − 1, 
we need to do some more work. Note that in that case, Δ′ is a generalised quadrangle. 
If L and L′ would intersect in a point p, then a line M intersecting L1 and L2 and not 
containing p, will intersect L and L′ in distinct points (since each of L, L′ is contained 
in some quadruple together with L1 and L2), clearly a contradiction. Hence L and L′

are disjoint and hence opposite. We only need to show that each line intersecting L and 
L′ also intersects L1 and L2. So let M be a line intersecting L and L′ in points q and q′, 
respectively. Then the unique line N through q intersecting J1 will also intersect J2 since 
J, J1 and J2 are contained in a quadruple. But since also J1, J2 and J ′ are contained in a 
quadruple, N also intersects J ′. As L and L′ are opposite, M = N and hence M indeed 
intersects all four lines. The lemma is proven. �
7.21 Remark. Like before, we write S = J1 ∩ J2. Let S′ ⊆ S. If dim(S′) = j − 1, the 
subspaces in ResΔ(S′) corresponding to the members Ja of [J1, J2] are points, denoted 
by pa; likewise, if dim(S′) = j−2, the corresponding subspaces are lines, denoted by La.

Note that no near-line will have type IV. Indeed, type IV quadruples occur when 
Γ = Γk and |j| < n −1, and in this case there are quadruples of type I, II and IV (possibly 
also of type III is Δ is orthogonal). If J1 and J2 are j-spaces with dim(J1 ∩ J2) = j − 1, 
then if J1 ⊥ J2, the type set of [J1, J2] is {I, IV }, and if they are not collinear, it is 
{II, IV }. In this particular case, no near-line [J1, J2] will have type I or type II either, 
since we will in both cases find a quadruple of type IV that contains {J1, J2}.

We now focus on near-lines having a singleton as their type set. By the above, we do 
not need to consider near-lines of type IV (the above also implies that near-lines of type 
I or II would not occur if type IV quadruples occur). We neither consider near-lines of 
type V(t), existing or not, as we will not need them.

7.22 Lemma. Let [J1, J2] be a near-line with type I, II∗ or III∗ if |j| < n − 1, or, if 
|j| = n − 1, type II or III. Then in ResΔ(J1 ∩ J2), we get the following respective sets 
for [J1, J2]:

(I) The set of points on the line spanned by p1 and p2,
(II) the set of points which are opposite both p1 and p2,

(II∗) the set of points of the hyperbolic line spanned by p1 and p2,
(III, III∗) the set of lines of the regulus of the grid determined by L1 and L2,

In particular, each four elements occurring in [J1, J2] form a quadruple, which is of the 
same type as [J1, J2], and each two distinct members J ′

1, J
′
2 of [J1, J2] satisfy [J1, J2] =

[J ′
1, J

′
2].

Proof. Let J and J ′ be two elements of [J1, J2]. By Lemma 7.20, J1 ∩ J2 = J ′
1 ∩ J ′

2.
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If [J1, J2] is of type I, then in ResΔ(J1, J2), those four j-spaces correspond to points 
p1, p2, p′1, p′2, such that both p′1 and p′2 are on the line p1p2. As such, p′1 and p′2 determine 
the same line. It follows that each point on p1p2 corresponds to a j-space in [J1, J2] and 
vice versa, making it clear that [J1, J2] = [J ′

1, J
′
2] and that each four points on this line 

correspond to four j-spaces in a quadruple of type I. If [J1, J2] is of type II∗, the same 
argument applies, the only difference being that p1 and p2 determine a hyperbolic line 
instead of an ordinary line.

If [J1, J2] is of type II (so |j| = n − 1) then p1, p2, p′1 and p′2 are all just points 
in ResΔ(J1 ∩ J2), which is a polar space of rank 1, each point of which corresponds 
to a j-space in [J1, J2] and vice versa. It is again clear that any four such points then 
determine a quadruple of type II.

If [J1, J2] has type III (so |j| = n −1) or III∗ (|j| < n −1), it follows from Lemma 7.20
that, in ResΔ(J1 ∩ J2), the near-line [J1, J2] corresponds to the regulus determined by 
the respective lines L1 and L2 corresponding to J1 and J2. As this regulus is determined 
by any two of its members, the assertion follows. �

We start with the special case where |i| = |j| = n − 1 and we encounter Main Theo-
rem 3.5(i).

7.4.1. Maximal singular subspaces (|j| = n − 1)
If |j| = n − 1, then |�| = |j| and since we assume that if max{|i|, |j|} = |�| then 

|j| = min{|i|, |j|}, we have |i| = |j| = n − 1. Note that Γ�
k = Γk in this case. If Δ is not 

hyperbolic, then for all Γ ∈ {Γ�
k, Γk, Γ≥k}, the occurring triples/quadruples can only be 

of types II or III. Consequently, Γ′ is independent of Γ, so we can treat Γ�
k, Γk and Γ≥k

at the same time. We aim to separate type II from type III. Of course we only need to 
do this when type III really occurs, so we may assume that Δ is orthogonal.

Case 1: Δ is neither parabolic nor hyperbolic. The following lemma distinguishes between 
quadruples of types II and III, making use of the corresponding near-lines. Note that, 
since we only have types II and III, each near-line has a type (cf. Lemma 7.20).

7.23 Definition. Let L and L ′ be two near-lines having one element J0 in common. We 
say that L � L ′ if there is at least one j-space J /∈ L ∪ L ′ which is Γ′-adjacent to 
all members of L and such that each near-line through J meeting L also meets L ′; 
if moreover, for any of those j-spaces J , there is a near-line through it that meets L ′

without meeting L , then we write L ≺ L ′.

Despite the suggestive notation, we do not claim or intend to prove that � is an order 
relation. So in principle L ≺ L ′ and L ′ ≺ L is possible at the same time (this is 
because of the dependence on J). This will not matter for the next lemma.

7.24 Lemma. Suppose Δ is neither parabolic nor hyperbolic and i = j = n −1. A near-line 
L is of type III if and only if there is a near-line L ′ such that L ≺ L ′.
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Proof. Suppose first that L := [J0, J1] is of type III. We show that there is a near-line 
L ′ such that L ≺ L ′. By definition, dim(J0 ∩ J1) = n − 3. Take any j-space J2
such that J0 ∩ J2 is an (n − 2)-space containing J0 ∩ J1 and put L ′ := [J0, J2]. In 
ResΔ(J0∩J1), which is a generalized quadrangle Q, the lines L and L ′ correspond to a 
regulus and a pencil, respectively, sharing a line. In the dual generalized quadrangle Q∗, 
they correspond to a hyperbolic line L and an ordinary line L′, respectively, meeting in 
a point p0.

Let p be a point of L \{p0} and x the unique point on L′ collinear with p. As x is then 
collinear with two points of L, x is collinear to each point of L. Recall that (since Δ is 
orthogonal) we have that each hyperbolic line is the common perp of two non-collinear 
points, in particular, L = {x, x′}⊥ for some point x′ not collinear to x. Now consider the 
structure Px induced by the ordinary and hyperbolic lines in the pencil x⊥. Each of its 
ordinary lines contains x as otherwise we have a triangle. Since each hyperbolic line h in 
Px intersects two lines of x⊥ (in points distinct from x), h = {x, x′′}⊥ for some point 
x′′ not collinear to x. In particular, h intersects L′. Suppose for a contradiction that 
each hyperbolic line meets L. Seeing that Δ is Moufang (as its rank is at least three), 
it follows by transitivity that any two hyperbolic lines in Px meet, implying that Px

is a projective plane. By a result of Schroth ([25]), this means that Q∗ is a symplectic 
quadrangle. But then Q, and therefore also Δ, is parabolic. This contradiction implies 
that there is a hyperbolic line h in Px not intersecting L. Let q ∈ h be a point not on 
L′, then each hyperbolic line through q that meets L is contained in Px and therefore 
it also meets L′, so L � L ′. As h meets L′ but does not meet L, L ≺ L ′, as required.

For the converse, suppose L := [J0, J1] is of type II. We show that there is no near-line 
L ′ with L ≺ L ′. Assume for a contradiction that there is a near-line L ′ with L ≺ L ′. 
Let J be a j-space as in Definition 7.23. Put S = J0∩J1. We claim that dim(J∩S) = n −3
and that each j-space in L ′ contains J ∩ S.

Firstly, J /∈ L implies S � J (i.e., dim(S ∩ J) < n − 2); secondly, J is Γ′-adjacent to 
each member of [J0, J1] so in particular it has to intersect both J0 and J1 in at least an 
(n − 3)-space, and since J cannot contain points from both J0 \ S and J1 \ S (as those 
are not collinear), so dim(S ∩ J) = n − 3. Now J \ S contains a line which has a unique 
point collinear with S (if all its points were collinear with S then S ⊆ J), so L contains 
a unique element, say J∗, such that dim(J ∩ J∗) = n − 2. By definition, L ′ does not 
contain J and intersects L and all near-lines [J, JL] with JL ∈ L in a unique j-space. 
Take JL ∈ L \ {J∗}. Then J ∩ JL = J ∩ S, and hence [J, JL] is of type III, but more 
importantly, each j-space in [J, JL] contains J ∩ S. Consequently, at least two members 
of L ′ contain J ∩ S, hence, so does each member of L ′. This shows the claim. This 
allows us to restrict ourselves again to the generalised quadrangle Q∗ which is the dual 
of Q = ResΔ(J ∩ S).

Suppose first that L ′ has type III. In Q∗, L again corresponds to an ordinary line 
L, the j-space J corresponds to a point q /∈ L and the line L′ corresponding to L ′ does 
not contain q and meets each line qpL with pL ∈ L. Let x be the unique point on L
on an ordinary line with q (this points corresponds to J∗). Then Px contains L and 
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all lines qpL with pL ∈ L, and hence L′ ⊆ Px too. But then each line through q that 
meets L′ also belongs to Px and, as such, it intersects L too (as we deduced before). 
This contradicts L ≺ L ′.

Next, suppose L ′ has type II. Then, in Q∗ and with the same notation as above, L′

is an ordinary line, which hence contains x. Again, q∪L ∪L′ ⊆ Px. Then it is clear that 
each line through q that intersects L′ in a point distinct from x is a hyperbolic line, and 
each such hyperbolic line has to intersect L as well, again contradicting L ≺ L ′. �

As this allows us to recognise quadruples of type III, we can remove the edges in 
Γ′ between j-spaces that are contained in such a quadruple, hereby obtaining that all 
remaining edges join j-spaces that intersect each other in a (j − 1)-space, as they are 
contained in a quadruple of type II. The resulting graph is Gn−1; the result follows.

Case 2: Δ is hyperbolic. By Lemma 7.14, there is only one type of quadruple here, and 
these are such that dim(S) = n − 3. It follows that Γ′ = Gn−1. Therefore each element 
of Aut(Γ) is induced by an automorphism of Δ, possibly up to a duality. The duality 
occurs precisely if either {i, j} = {(n − 1)′, (n − 1)′′} (interchanging the biparts) or, if 
n = 4 and i = j, then an i-duality also induces an automorphism of Γ (not interchanging 
the biparts).

Case 3: Δ is parabolic. We exploit the natural embedding of Δ in a hyperbolic polar 
space Δ′ of rank (n +1) (defined over the same field as Δ). Let Γ = Γk = Γ�

k or Γ = Γ≥k. 
In Example 3.2 at the very beginning of this paper, we explained that, if k = −1, Γ is 
isomorphic to some graph Γ′ defined over Δ′ and hence Aut(Γ) ∼= Aut(Γ′), and by the 
previous case, it then follows that each automorphism of Δ′ b induces an automorphism 
of Γ′ and vice versa.

Claim: For k ≥ 0, the automorphisms of Γ are also induced by automorphisms of Δ′ b, 
but only those automorphisms of Δ′ b preserving Δ (i.e., the automorphisms of Δ) will 
induce automorphisms of Γ.

Inspired by Special Case 3.2, we first define a graph Γ′, associated to Δ′, such that 
there is a bijection between the vertices of Γ and those of Γ′. Let M1 be one family of 
MSS of Δ′ and let M2 be the family of MSS such that M1 = M2 if n − k is even and 
M1 �= M2 if n − k is odd. Let mc denote the type of the elements in Mc. If Γ = Γk, then 
we define for each k ≥ 0 the graph Γ′ as Γn+1

m1,m2;k(Δ
′); if Γ = Γ≥k, then, also for each 

k ≥ 0, we define Γ′ as Γn+1
m1,m2,≥k(Δ′).

For each member X of a bipartition class Cc of Γ, we denote by βc(X) the unique 
element of Mc going through it, c = 1, 2. Then β1 × β2 gives a bijection between the 
vertices of Γ and Γ′, and Γ′ is chosen such that if (I, J) is an adjacent pair in Γ, then 
(β1(I), β2(J)) is an adjacent pair in Γ′ and moreover, such that there are adjacent pairs 
(I ′, J ′) in Γ′ that intersect in a k-space (the definition of Γ′ is not entirely canonical, but 
other sensible choices for a graph isomorphic to Γ would behave similarly so we take this 
one as an example).
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Yet, we next show that the fact that k ≥ 0 will imply that there are adjacent pairs 
(I ′, J ′) in Γ′, for which (β−1

1 (I ′), β−1
2 (J ′)) is not an adjacent pair of Γ. To see this, 

suppose I ′ and J ′ are such that I ′ ∩ J ′ is a k-space in Δ′ which is not contained in 
Δ and note that I := β−1

1 (I ′) = I ′ ∩ Δ, likewise J := β−1
2 (J) = J ′ ∩ Δ. But then 

I ∩ J = I ′ ∩ J ′ ∩Δ is only a (k− 1)-space, and hence (I, J) is not an adjacent pair in Γ
(for all Γ under consideration). The mapping β1 × β2 is an embedding of Γ in Γ′ (since 
adjacency is preserved in one direction).

Now suppose that σ is an automorphism of Δ′ b with σ(Δ) �= Δ, then we still need 
to show that σ cannot induce an automorphism of Γ. As σ does not preserve Δ, there 
is a k-space K in Δ such that σ(K) � Δ. Thus, if (I ′, J ′) is an adjacent pair of Γ′

with I ′ ∩ J ′ = K, then σ(I ′) ∩ σ(J ′) = σ(K) � Δ and so β−1
1 (σ(I ′)) ∩ β−1

2 (σ(J ′)) =
σ(I ′) ∩ σ(J ′) ∩ Δ is only a (k − 1)-space, implying that (β−1

1 (σ(I ′)), β−1
2 (σ(J ′))) is not 

adjacent in Γ. This shows the claim.

Conclusion. We know that each automorphism α of Γ′ is induced by an automorphism α̃
of Δ′ b (see previous case). The above implies that α preserves Γ-adjacency (we view Γ as 
embedded in Γ′) if and only if α̃ preserves Δ. Hence Aut(Γ) ∼= {α ∈ Aut(Γ′) | α̃(Δ) = Δ}. 
With other words, each automorphism of Γ is induced by an automorphism of Δ, as 
required.

7.4.2. The (k, �)-Weyl graphs: |j| < n − 1 and b �= −1
In this case, the type sets of the quadruples are the singletons I, II∗ or III∗. Let J1

and J2 be adjacent vertices of Γ′.
The following lemma will allow us to separate type III∗ from the others, allowing us 

to remove the edges in Γ′ between j-spaces that intersect each other in a (j − 2)-space, 
hereby obtaining Gj or G′

j . We may hence assume that quadruples of type III∗ occur, 
otherwise we immediately obtain Gj or G′

j . Note that type I quadruples always occur 
(since |j| < n − 1). Furthermore, only in mixed polar spaces quadruples of type II∗ and 
of type III∗ can both occur; other polar spaces admit at most one of these types.

7.25 Lemma. Let J be a j-space, not contained in [J1, J2] and Γ′-adjacent to all members 
of [J1, J2], except one or two members J ′ and J ′′ (possibly J ′ = J ′′). Then dim(J∩J∗) =
j − 2 for all J∗ ∈ [J1, J2] \ {J ′, J ′′}. Moreover, for each pair of j-spaces J and J∗

intersecting each other in a (j − 2)-space, we can always find a near-line containing J∗

and not containing J , such that this situation occurs.

Proof. Let J be as stated. We may assume that J1 ∼ J ∼ J2, as [J1, J2] = [J3, J4] for 
all distinct J3, J4 in [J1, J2], as noted before.

Claim 1: The dimension of J ∩ S is at least j − 2. Suppose for a contradiction that 
dim(J ∩ S) ≤ j − 3. Firstly, let [J1, J2] be of type I or II∗. As dim(J ∩ S) ≤ j − 3, it 
follows from dim(S) = j − 1 that dim(J3 ∩ Jc) ≤ j − 2 for c = 1, 2. However, J ∼ Jc so 
dim(J ∩ Jc) = j − 2 (and hence J and Jc are contained in a quadruple of type III∗) and 
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dim(J ∩ S) = j − 3. This also means that J3 contains a point pc from Jc \ S. But then 
the point p2 is collinear with S and with p1, and hence with 〈S, p1〉 = J1. As p2 ∈ J \J1, 
this contradicts that J and J1 are contained in a quadruple of type III∗, as the lines 
corresponding to J and J1 in ResΔ(J ∩ J1) are clearly not opposite. This contradiction 
implies that dim(J ∩ S) ≥ j − 2 in this case.

Secondly, suppose [J1, J2] is of type III∗. First note that dim(J ∩ Jc) ≥ j − 2 for 
c = 1, 2. Then dim(J ∩S) ≤ j−3 implies that J contains at least a point in J1 \S and in 
J2 \S, say p1 and p2. Moreover, J cannot contain a line in J1 \S, since no line of J1 \S is 
collinear with p2. But that means that dim(J ∩S) = j− 3 and that dim(J ∩Jc) = j− 2. 
In ResΔ(J∩S), the members Jr of [J1, J2] correspond to planes πr through some point x
and J corresponds to a plane π (not containing x) intersecting the planes πr in respective 
points pr. Let J3 be the member of [J1, J2] with J � J3. Then the lines corresponding to 
π and π3 in ResΔ(〈J ∩ S, p3〉) are not opposite, so there is some line M in π through p3

collinear with π3. As the point p1 is not collinear with π3, it is not on M . Consequently, 
x is collinear with 〈p1, M〉 = π. However, this implies that J1 and J do not correspond 
to opposite lines in ResΔ(〈J ∩ S, p1〉), contradicting the fact that J ∼ J1. Hence, in this 
case, J even contains S.

Claim 2: For all Jr ∈ [J1, J2] \ {J ′, J ′′}, we have dim(J ∩ Jr) = j − 2. Now we know 
that dim(S ∩ J) ≥ j − 2, we take a (j − 2)-space S′ ⊆ J ∩ S and consider ResΔ(S′). 
Firstly, if [J1, J2] is of type I, then in ResΔ(S′) it corresponds to a set of lines through a 
point x and contained in a plane π. Secondly, if [J1, J2] is of type II∗, then in ResΔ(S′)
it corresponds to the set of lines through a point x such that, in ResΔ(〈S′, x〉), this set 
corresponds to a hyperbolic line. Lastly, if [J1, J2] is of type III∗, then in ResΔ(S′) it 
corresponds to one regulus of a hyperbolic quadric. Denote by L the line corresponding 
to J and denote by J ′ and J ′′ the member(s) of [J1, J2] not adjacent to J .

Suppose that dim(J ∩ J∗) = j − 1 for at least two members J∗ ∈ [J1, J2], then for all 
members. We reason in Res(S′) (using the notation settled in Remark 7.21).

– If [J1, J2] is of type I, then L either contains x or is contained in π. Either way, we 
conclude that dim(J ∩ J∗) = j − 1 for all J∗ ∈ [J1, J2]. But then J ∼ J∗ for one or 
for all J∗ ∈ [J1, J2] (‘one’ occurs if L contains x, is collinear with a unique line of π
and when there are no quadruples of type II∗).

– If [J1, J2] is of type II∗, then L goes through x. Since quadruples of type I and II∗

both occur now, J ∼ J∗ for all J∗ ∈ [J1, J2].
– If [J1, J2] is of type III∗, then L, intersecting two lines of the regulus, intersects them 

all. Depending on whether II∗ quadruples occur, J is either adjacent to none or to 
all members of [J1, J2].

As in none of the previous cases, J is adjacent to all members of [J1, J2] except one or two, 
we conclude that J cannot intersect more than one member of [J1, J2] in a (j−1)-space.
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Next, suppose dim(J ∩ J∗) = j − 1 for a unique member J∗ of [J1, J2] (if no such 
member exists, nothing needs to be shown). Note that this situation does not occur if 
[J1, J2] is of type I, since no line meeting L∗ can be opposite the lines corresponding to 
the other members of [J1, J2]. We show that J∗ ∈ {J ′, J ′′}. We will reason in Res(S); 
recall that we settled our notation already in Remark 7.21.

• Suppose there are quadruples of type II∗. In this case, J ∼ J∗, hence J∗ /∈ {J ′, J ′′}. 
Then there is a point z ∈ L′ collinear to L. If [J1, J2] is of type II∗, then z = x as 
L′ and L∗ are not collinear, but then no member of [J1, J2] \ {L∗} is adjacent to J , 
a contradiction. If [J1, J2] is of type III∗, then all points of 〈L ∩ L∗, z〉 are collinear 
to L so each line corresponding to a member of [J1, J2] contains a point collinear to 
L, implying that no member of [J1, J2] \ {J∗} is adjacent to J , a contradiction.

• Suppose there are no quadruples of type II∗. Then [J1, J2] is of type III∗. If J ⊥ J∗

then J ∼ J∗ and hence J∗ /∈ {J ′, J ′′}. As above, L′ contains a point collinear to L
and we obtain that J is not adjacent to any member of [J1, J2] \{J∗}, a contradiction. 
If J and J∗ are not collinear, then J � J∗, so indeed, J∗ ∈ {J ′, J ′′}.

Claim 3: For each pair J, J1 of j-spaces intersecting each other in a (j − 2)-space, 
there is a near-line containing J1 and not containing J such that J is adjacent to all its 
members except one or two.

We first look for a near-line, and then show that J is adjacent to all but one or two 
of its members. Consider ResΔ(J ∩ J1). If L and L1 are not opposite, we take a line L2

opposite both of them. If L and L1 are opposite, take a plane π through L and note 
that π is semi-opposite L1. Then π contains a point p /∈ L ∪L⊥

1 . Through p, we can then 
find a line L2 � π opposite L1 by taking a point in ResΔ(〈J ∩ J1, p〉) opposite the point 
corresponding to L1 and avoiding the line corresponding to π. All of this is possible by 
Fact 6.1(ii) and (iii).

Let J2 be the j-space through J ∩ J1 corresponding to L2. Then [J1, J2] is a near-line 
of type III∗. In the first case, J is adjacent to J2 and not adjacent to J1, in the second 
case, J is adjacent to J1 and not adjacent to J2. In both cases, we show that there 
is at most one member of [J1, J2] \ {J1, J2} not adjacent to J . Suppose J would not 
be adjacent to a third member J3 ∈ [J1, J2]. Then L3 would be collinear with a point 
z ∈ L. Now L also contains a point z′ collinear with Lc (c equals 1 or 2, depending on 
the case we are in). If z = z′, then z is collinear to all lines of the regulus determined 
by L1 and L2, contradicting the fact that L is opposite Lc′ (with {c, c′} = {1, 2}). If 
z �= z′, then there are exactly two points (namely, those on Lc and L3) of the hyperbolic 
3-space spanned by L1 and L2 that are collinear with L (this is easily verified when Δ is 
embeddable since it has to be orthogonal, and also holds true if Δ is not embeddable). 
This implies that J is collinear to all members of [J1, J2] \ {Jc, J3}.

The lemma is proven. �
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7.4.3. The (k, �)-Weyl graphs: |j| < n − 1 and b = −1
Now, the quadruples are of type I or V(t) (cf. Lemma 7.18) and the following lemma 

enables us recognise the type I quadruples, by which means we obtain Gj .

7.26 Lemma. A quadruple {J1, J2, J3, J4} is of type V(t) (with 1 ≤ t ≤ j − k − 1) if 
and only if there is a j-space J∗ �= J4 such that {J1, J2, J3, J∗} is a quadruple, whereas 
{J1, J2, J4, J∗} is not.

Proof. Suppose the quadruple is of type V(t) and let S and L be as described in the 
definition. Let J∗ be a j-space through S which is collinear with L such that J∗ ∩ L /∈
J1 ∪ J2 ∪ J3 ∪ J4 and J∗ and J4 correspond to the same (t − 1)-space in ResΔ(〈S, L〉). 
Clearly, {J1, J2, J3, J∗} is still a quadruple, as opposed to {J1, J2, J4, J∗}. Next, suppose 
the quadruple is of type I. If {J1, J2, J3, J∗} is a quadruple, then J∗ contains J1∩J2 and 
is contained in 〈J1, J2〉. As {J1, J2, J3, J∗} is a quadruple, J∗ /∈ {J1, J2, J3}, it follows 
{J1, J2, J4, J∗} is a quadruple too. �
7.4.4. The k≥-intersection graph: |j| < n − 1

In this case, there are triples of types I, II and III∗ (since the triples of type IV are 
the same as those of type I).

7.27 Lemma. Suppose {J1, J2, J3} and {J1, J2, J4} are triples, while {J1, J3, J4} is not. 
Then dim(J3∩J4) = j−1 and J3 and J4 are contained in a singular subspace. Moreover, 
for j-spaces J3 and J4 with dim(J3 ∩ J4) = j − 1 and J3 ⊥ J4 we can find j-spaces J1

and J2 such that {J1, J2, J3} and {J1, J2, J4} are triples whereas {J1, J3, J4} is not.

Proof. Note that all 3-tuples in a near-line of type I or III∗ need to be triples themselves 
(of the same type, in contrast to 3-tuples occurring in a near-line of type II). This 
observation shows that the near-line [J1, J2] is of type II. As {J1, J3, J4} is not a triple, 
J3 and J4 are collinear. This shows the first part of the lemma. For the second part, 
consider ResΔ(J3 ∩ J4), in which J3 and J4 correspond to points p3 and p4 on a line L. 
Let p be a third point on this line, and take two non-collinear lines L1 and L2 through 
p which both are non-collinear with L. Points pc ∈ Lc \ {p} (c = 1, 2) then correspond 
to j-spaces J1 and J2 satisfying our needs. �

Consequently, we can deduce Gj from Γ′.

7.4.5. The k-intersection graph: |j| < n − 1
This time, the quadruples are of types I, II, III∗ and IV. The presence of quadruples of 

type IV implies that j-spaces intersecting each other in a (j− 1)-space fit into two types 
of quadruples. On the other hand, two j-spaces intersecting each other in a (j−2)-space 
only fit in a type III∗ quadruple. This is the idea behind the following lemma.
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7.28 Lemma. Let J1 and J2 be adjacent vertices in Γ′. They are contained in a quadruple 
of type III∗ if and only if each 4-tuple in [J1, J2] is a quadruple too.

Proof. Suppose J1 and J2 are contained in a quadruple of type III∗. Then it is clear that 
all 4-tuples in [J1, J2] are quadruples (of type III∗) themselves.

Conversely, suppose that J1 and J2 are contained in a quadruple of type I, II or IV. 
Then dim(J1 ∩J2) = j− 1 and we can always find J3 and J4 such that {J1, J2, J3, J4} is 
a quadruple of type IV. We continue in ResΔ(J1 ∩ J2). There are two cases, depending 
on whether or not p1 and p2 are collinear.

– Suppose first that p1 ⊥ p2 and p3 ∈ p1p2. Then p4 is collinear to a point p′4 on 
p1p2, distinct from p1, p2 and p3. Let J ′

4 be the j-space through J1 ∩ J2 that corre-
sponds to p′4. As {J1, J2, J3, J ′

4} is also a quadruple, J ′
4 belongs to [J1, J2]. But then 

{J1, J2, J4, J ′
4} is a 4-tuple of [J1, J2] which is not a quadruple.

– Next, suppose p1 is opposite p2. We may moreover assume that p2, p3 and p4 are on 
one line. Then p1 is collinear with a unique point p′1 on this line, distinct from p2, 
p3 and p4. Let p5 and p6 be two distinct points in p1p

′
1 \ {p1, p′1}. Then p2 is not 

collinear with p5 nor with p3. If Je are the j-spaces through J1 ∩ J2 corresponding 
to pe, for e = 5, 6, then {J1, J2, J5, J6} are also a quadruple, and hence J5 and J6

belong to [J1, J2]. Yet, {J3, J4, J5, J6} is not a quadruple.

In both cases we found a 4-tuple in [J1, J2] which is not a quadruple, which proves the 
lemma. �

Hence we can remove the edges in Γ′ between the j-spaces that are contained in a 
quadruple of type III∗. We obtain G′

j .

In all cases we were able to deduce Gj or G′
j from Γ′. This finishes the proofs of Main 

Theorems 3.5 and 3.7 in case k �= −1. In the next section, we handle the case where 
k = −1.

8. The (−1, �)-Weyl graph

We may assume that Γ = Γ�
−1, since Γ≥−1 is a complete bipartite graph and Γ−1 is 

the bipartite complement of Γ≥0. We try to apply the same strategy as before though 
some cases require an alternative approach or lead to the counter examples described in 
cases (i) and (ii) of Main Theorem 3.5.

Again, let {J1, J2, J3, J4} be a quadruple. Note that J3 �= J4 now as we are working 
with Weyl-graphs only. Note also, that now it is possible that |j| = 0, which is not always 
useful, because G′

0 is complete graph and hence if we obtain this one, this does not help. 
When |j| = 0, this implies that we are in one of the following cases:
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(i) |i| = |j| = 0, k = −1, a = 0 and b = −1: two vertices (i.e., points) are adjacent 
whenever they are distinct but collinear.

(ii) |i| = |j| = 0, k = −1, a = −1 and b = 0: two vertices (i.e., points) are adjacent 
whenever they are opposite. This has been dealt with in [19].

(iii) |i| = |�| > 0, k = −1, a = i − 1, b = 0: An adjacent pair (I, J) consists of a point J
and an i-space I with J /∈ I⊥. We deal with this in subsection 8.2.

8.1. Adjacent vertices are in a general position (a, b ≥ 0)

Assume first that a, b ≥ 0. The following lemma is a weaker version of Lemma 7.6.

8.1 Lemma. Each point contained in two members of a quadruple is contained in a third 
member. By renumbering if necessary, J1 ∩ J2 = J2 ∩ J3 = J3 ∩ J1.

Proof. We show that, for any permutation of {1, 2, 3, 4}, J3 ∩ J4 ⊆ J1 ∪ J2. So suppose 
for a contradiction that a point p ∈ J3 ∩ J4 is not contained in J1 ∪ J2. We claim that 
there is an Ip := 〈A1, A2, B1, B2〉 ∈ N(−1)(J1, J2) containing p. To this end we apply 
Construction 6.2. Note that there is no need to avoid any subspace now but J1 and J2

themselves, which makes things easier. There are three cases. Firstly, if p ∈ J⊥
1 ∩ J⊥

2 , 
we can apply Construction 6.2 such that p ∈ A1 = A2. Secondly, if p ∈ J⊥

1 \ J⊥
2 , we 

take any a-space A in (J⊥
1 ∩ J⊥

2 ) \ (J1 ∪ J2), which certainly contains a hyperplane A−

collinear with p, so we can put A1 = 〈A−, p〉. We still need a point q ∈ (A⊥
1 ∪ J⊥

2 ) \ J⊥
1 . 

We look for this point in ResΔ(〈A−, projJ2
(p)〉). In here, J1 corresponds to a subspace 

p1 of dimension at least 0 (since projJ2
(p) is collinear with at least a point of J1 \J2) and 

J2 to a point p2, the point p corresponds to a point that we keep denoting by p. Then 
there is a point q in p⊥ ∩ p⊥2 which is opposite p1 (note that by now we are looking in a 
polar space of rank n − |�| − 1 ≥ 1 since |�| < n − 1 if |j| < n − 1). In Δ, a point in the 
subspace corresponding to q and disjoint from J2 satisfies our needs. We can now select 
B in the standard way. Finally, suppose p /∈ J⊥

1 ∪ J⊥
2 . As above we can find an a-space 

A collinear with p and then we only need to select B such that it contains p. The claim 
is proven.

As before, this leads to a contradiction, since Ip not adjacent to J3 nor to J4. Therefore, 
the intersection of two members of the quadruple is contained in a third member. If we 
start with a pair having maximal dimension of intersection, the lemma follows. �

There is also a weaker version of (RU2), that holds whenever 0 = min{a, b}.

(RU2′) Let L be a line containing distinct points p and p′ such that p ∈ J⊥
u \ Ju and 

p′ ∈ J⊥
r \ Jr for u �= r. Then L contains a point q with q ∈ J⊥

v ∪ J⊥
w , where 

{u, r, v, w} = {1, 2, 3, 4}.
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8.2 Lemma. If Γ equals Γ�
−1 and 0 ∈ {a, b}, then (RU2′) is valid for any quadruple. 

Moreover, (RU2′) remains valid in ResΔ(S′) for S′ ⊆ J1 ∩ J2 ∩ J3 ∩ J4.

Proof. Let L = pp′ be a line with p ∈ J⊥
1 \ J1 and p′ ∈ J⊥

2 \ J2 and suppose for a 
contradiction that none of its points is contained in J⊥

3 ∪ J⊥
4 . By (RU1), p /∈ J⊥

2 as then 
p ∈ J⊥

3 ∪ J⊥
4 ; likewise, p′ /∈ J⊥

1 .

Suppose first that b = 0. Let A− be an (a − 1)-space collinear with 〈J1, p〉 and 〈J2, p′〉
(cf. Fact 6.1(i)∗), again, there is no need to avoid J3 and J4. Then we take I = 〈L, A−〉 ∈
N(−1)(J1, J2) such that A1 = 〈p, A−〉 and A2 = 〈p′, A−〉. As we may assume I ∼ J3, 
there has to be an a-space A3 in I collinear with J3, and hence A3 intersects L in at 
least a point, i.e. L contains a point of J⊥

3 after all, a contradiction.

Next, suppose a = 0. By the previous case we may assume that b > 0. In ResΔ(L), J1
and J2 correspond to (j−1)-spaces J ′

1 and J ′
2 and J3 and J4 to (j−2)-spaces J ′

3 and J ′
4. 

If b −1 ≤ j−2 (recall b −1 ≥ 0), we take a (b −1)-space B′
x in J ′

x for each x ∈ {1, 2, 3, 4}. 
Fact 6.1(ii) then says that there is a (b − 1)-space B− which is opposite all of them, i.e., 
such that no point of B− belongs to J ′

1
⊥ ∪ J ′

2
⊥ ∪ J ′

3
⊥ ∪ J ′

4
⊥. The corresponding i-space 

〈L, B−〉 in Δ is adjacent to J1 and J2 (since J⊥
1 ∩ I = {p} and J⊥

2 ∩ I = {p′}) and 
hence I needs to be adjacent with one of J3, J4 too. If I ∼ J3, then by our choice of 
B− in the residue, J3 is collinear with a point of L; likewise if I ∼ J4. This violates our 
assumptions.

If b = j ≥ 1, then i = j + a + 1 = b + 1. If b ≥ 2, we take (b − 2)-spaces B′
x ⊆ J ′

x

for each x ∈ {1, 2, 3, 4} and let B− be a (b − 2)-space opposite each of these. If b = 1, 
we put B− = ∅. In both cases, I− := 〈L, B−〉 is a b-space opposite J3 and J4 containing 
unique points (p and p′, respectively) collinear with J1 and J2. Then J1 and J2 also 
contain unique respective points p1 and p2 collinear with I−. We claim that there is 
a (b + 1)-space I (recall b + 1 = i) through I− collinear with p1 and p2. If so, then 
I ∈ N(−1)(J3, J4) because I ∩ J3 = I ∩ J4 = ∅, since no point of J3 ∪ J4 is collinear with 
L; and I /∈ N(J1) ∪ N(J2) since J1 and J2 both contain a point collinear with I. This is 
a contradiction.

Note that we may assume that n ≥ b + 3, for otherwise Γn
b+1,b;−1,b+1 is isomorphic 

to the bipartite complement of Γn
b+1,b;≥0. Firstly, let p1 and p2 be non-collinear points. 

Then I− is a non-maximal singular subspace in p⊥1 ∩ p⊥2 , from which it follows that I
exists. Secondly, let p1 and p2 be collinear. Then 〈p1, p2, I−〉 is contained in a singular 
(b +2)-space D, which intersects J1 in precisely p1 since each (b − 1)-space in J1 compli-
mentary to p1 is opposite 〈B−, p′〉, likewise, D ∩ J2 = {p2}. Now any (b + 1)-space I in 
D through 〈p, p′, B−〉 satisfies our needs. The claim is proven and as mentioned above, 
this leads to a contradiction.

This works for all permutations of {1, 2, 3, 4}. The fact that (RU2′) is a residual 
property is again easily verified. �
8.3 Lemma. If a, b ≥ 0, each quadruple is of type I, II∗ or III∗. Moreover, if 0 ∈ {a, b}, 
then there are no quadruples of type III∗.
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Proof. By Lemma 8.1, we may assume that J1, J2, J3 intersect each other in one common 
subspace S and that J4 intersects them in a subspace S′ of S. By Lemma 7.9 and a ≥ 0, 
we may write Uy instead of Ux

y for x, y ∈ {1, 2, 3, 4} with x �= y. Put u = codim〈S,U1〉(S) =
codim〈S,U2〉(S) = codim〈S,U3〉(S) and u′ = codim〈S′,U4〉(S′). Since S′ ⊆ S, we have 
u ≤ u′. Observe that S = S′ precisely when u = u′.

Case 1: u′ = u = −1. In ResΔ(S), we obtain four opposite subspaces T1, T2, T3 and T4. 
By (RU1) and Lemma 7.2, they form a hyperbolic (2t +1)-space for t = j− s − 1. There 
are two cases.

• Claim 1: If a, b ≥ 1, the quadruple is of type II∗ or III∗. Assume for a contradiction 
that t > 1 and take any point p in T1 and any line L in projT2

(p). If every line joining 
p and a point of L intersects T3 ∪ T4, then the plane 〈p, L〉 meets one of T3, T4 in a 
line L′. But then L and L′ have to intersect, a contradiction. We conclude that there 
is a line M through p meeting L which is disjoint from T3 ∪ T4. Since the t-spaces 
form a hyperbolic 2t + 1-space, they correspond to maximal singular subspaces of a 
polar space of rank t + 1 (that also contains M). It follows that no point of M can 
be collinear with J3 or J4. Take an a-space A ⊆ (J⊥

3 ∩ J⊥
4 ) \ (J3 ∪ J4). As T1, T2, T3

and T4 are in a hyperbolic subspace, it follows that A is also collinear with T1 and T2

(so in particular, A ⊥ M) and is not contained in 〈T3, T4〉 (so 〈A, M〉 ∩〈T3, T4〉 = M

and hence 〈A, M〉 ∩ (J3 ∪ J4) is empty). In ResΔ(〈A, M〉), we take a (b − 2)-space 
B− opposite the subspaces corresponding to J3 and J4. Let I be the subspace in 
Δ corresponding to B−, i.e., I = 〈A, M, B−〉. Then I ∈ N(−1)(J3, J4), but as I
intersects J1 and J2 non-trivially, I /∈ N(J1) ∪ N(J2). This contradiction implies 
that t ≤ 1. If t = 1, one shows, similarly as in the proof of Lemma 7.13, that any 
line joining two collinear points of T1 and T2 will also intersect T3 and T4, so the 
quadruple is of type III∗. If t = 0, the quadruple is of type II∗ since the t-spaces are 
on a hyperbolic line, as mentioned above.

• Claim 2: If 0 ∈ {a, b}, the quadruple is of type II∗. In this case, (RU2)′ holds and 
similarly as in the proof of Lemma 7.17, we can show that there are no quadruples 
of type III∗.

Case 2: u′ ≥ 0. Let p be a point of U4 and q an arbitrary point of J1 \ S. If q /∈ U1, 
we claim that the line pq has to intersect a third member of the quadruple. Suppose 
the contrary. Let A∗ be an a-space which is collinear with 〈J2, p〉 and with 〈J3, p〉 (by 
Fact 6.1(i)∗, this is possible as |�| < n − 1 as a ≥ 0 implies max{|i|, |j|} < n − 1). 
Let A− be an (a − 1)-space of A∗ collinear with q. Next, let B− be a (b − 1)-space 
chosen in ResΔ(〈A−, p, q〉) semi-opposite the subspaces corresponding to J2 and J3. 
Then I = 〈A−, p, B−, q〉 ∈ N(−1)(J2, J3). However, I cannot be adjacent to J1 or J4 as it 
contains a point of both of them (the points q and p, respectively). This contradiction to 
the definition of a quadruple implies that pq intersects a third member of the quadruple 
after all. If we vary q over J1 \ (S ∪ U1) and as all lines pq have to intersect J2 or J3, it 
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follows just as in the proof of Lemma 7.1 that each line in J1 which is not contained in 
S∪U1 has to intersect S. But then either S∪U1 = J1 or U1 is empty and dim(S) = j−1. 
But the latter case does not occur, for another consequence of Lemma 7.1 implies that 
J1 has to be collinear with at least one of J2, J3, which would violate the fact that U1
is empty. Hence S ∪ U1 = J1 and we conclude that J1, J2, J3 and J4 are contained in a 
singular subspace.

If a ≥ 1, then the previous arguments also apply if q ∈ U1, as we can choose A such 
that it contains pq. Like before, it follows from Lemma 7.1 that the quadruple is of type I. 
If a = 0, we can also show that the quadruple is of type I, by proceeding as in Case 1 of 
Lemma 7.17 (with (RU2)′ instead of (RU2)).

It is easily verified that each of those 4-tuples obtained above indeed satisfies the 
definition of a round-up quadruple. �

As the quadruples are the same as before, we can continue in the same way as in the 
previous section to conclude the proof in this case.

8.2. Adjacent vertices are semi-opposite (a = −1 and case (iii))

Our convention on i and j implies that if a = −1, then |�| = |i| = |j| (see also 
Subsection 7.3.3). Then two adjacent vertices of Γ correspond to opposite subspaces. 
The opposition case, or at least its non-bipartite version, has been dealt with in [19]. 
The same techniques apply and hence we limit ourselves to summarising their approach: 
In this particular case, one can work with “reverse” round-up triples, i.e., a round-up 
triple of the complement of Γ: a (round-up) triple consists of three vertices (j-spaces) 
such that each vertex is either adjacent with one or all of them. After classification we 
obtain (with our own notation) when |j| < n − 1 either a triple of type I or of type II∗
and when |j| = n − 1, either a triple of type II or one of type III. As before, we can 
look at the near-lines. These can be distinguished from each other, leading us to the 
Grassmannian just like before, except in the two following cases.

• Let Δ be a symplectic polar space and i = j = 0: then a near-line of type I cor-
responds in ResΔ(S) (S still denotes the common intersection of the triple) to an 
ordinary line and a near-line of type II∗ to a hyperbolic line. Both are lines of the 
projective space in which Δ naturally embeds. They behave in the same way and 
hence cannot be separated.

• Let Δ be a parabolic polar space and i = j = n − 1. Also here, a near-line of type II 
now behaves in the same way as a near-line of type III.

So only in those two cases there are extra automorphisms, and those are explained in 
detail in Examples 3.2 and 3.3.

Next, suppose that we are in case (iii), i.e., 0 = |j| < |i|. If |i| = n − 1, then the 
bipartite complement Γ of Γ is precisely C0,n−1(Δ), and we can refer to Proposition 7.4. 
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Hence, we may assume that |i| < n − 1. In Γ, a point p and a i-space I are adjacent 
when p ∈ I⊥. We continue to work in Γ. With the following lemma we can construct G′

i, 
which as what we needed to prove.

8.4 Lemma. The intersection of two i-spaces I, I ′ has dimension i −1 if and only if there 
is no i-space I∗ �= I such that NΓ(I, I ′) � NΓ(I, I∗).

Proof. Let that I and I ′ be i-spaces such that dim(I ∩ I ′) < i − 1. In ResΔ(I ∩ I ′), I
and I ′ correspond to v-spaces V, V ′ with v ≥ 1. Take any v-space V ∗, corresponding to 
a i-space I∗ in Δ through I ∩ I ′, such that dim(V ∩ V ∗) = v− 1 and dim(V ′ ∩ V ∗) = 0. 
Clearly, NΓ(I, I ′) ⊆ NΓ(I, I∗). Suppose for a contradiction that NΓ(I, I ′) = NΓ(I, I∗). 
Consequently, V ∩ V ∗ is collinear with V ′. Hence, in ResΔ(I ∩ I∗), where I and I∗

correspond to points q, q∗, corresponding to V ′ is a subspace D strictly containing q∗. It 
is easy to see that there is a point in q⊥ ∩ q∗⊥ not collinear with V ′. We conclude that 
NΓ(I, I ′) � NΓ(I, I∗). Note that dim(I ∩ I∗) = i − 1.

For the converse, let I and I ′ be i-spaces with dim(I ∩ I ′) = i − 1. Suppose for a 
contradiction that there is an i-space I∗ such that NΓ(I, I ′) � NΓ(I, I∗). If dim(I∩I∗) <
i − 1, then the preceding paragraph yields an i-space I∗∗ with dim(I ∩ I∗∗) = i − 1 such 
that NΓ(I, I∗) � NΓ(I, I∗∗). But then NΓ(I, I ′) � NΓ(I, I∗) � NΓ(I, I∗∗), so by replacing 
I∗ by I∗∗ if necessary, we may assume that dim(I ∩ I∗) = i − 1. Then dim(I ∩ I ′ ∩ I∗) ∈
{i −2, i −1}. Taking into account that NΓ(I, I ′) � NΓ(I, I∗), it is easily deduced that the 
lines/points corresponding to the i-spaces in ResΔ(I ∩I ′∩I∗) have to be in a plane/on a 
(hyperbolic) line. But then one deduces that NΓ(I, I ′) = NΓ(I, I∗), a contradiction. �
8.3. Adjacent vertices are contained in a singular subspace (b = −1)

In this case, adjacent vertices I and J are disjoint subspaces spanning a singular 
subspace, implying |i| ≤ |j| < n − 1. We will be using triples instead of quadruples and 
a new type of triple will turn up.

Suppose J1, J2, J3 are j-spaces intersecting each other in a common subspace S. With 
the same notation as before, we say that they form a triple of type VI(t), with t an 
integer such that 0 ≤ t ≤ j, if the following condition is satisfied.

VI(t) J ′
1, J

′
2 and J ′

3 are t-spaces in Δ′ generating a hyperbolic (2t + 1)-space.

Note that a triple of type VI(0) is the same as a triple of type II∗, but a triple of type 
VI(1) is in general not the same as a triple of type III∗ for the lines in the hyperbolic 
3-space do not necessarily lie on a regulus of a hyperbolic quadric. Hence a triple of type 
VI(0) occurs when Δ is not a strictly orthogonal polar space, and a triple of type VI(t)
with t > 0 occurs in every kind of polar space.

8.5 Lemma. A triple {J1, J2, J3} is of type VI(t).
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Proof. We claim that each point contained in precisely one member of the triple is not 
collinear with any of the two other members of the triple. So assume for a contradiction 
that p ∈ J1\(J2∪J3) is collinear with J2. By Lemma 7.8, we know that (RU1) holds, so p
is also collinear with J3. But then, as p /∈ J2∪J3 there is an i-space I = A ∈ N(−1)(J2, J3)
with p ∈ A, which cannot be adjacent to J1. This contradiction shows the claim.

Denote by Sxy the intersection Jx ∩Jy for x, y ∈ {1, 2, 3} and x �= y and suppose that 
these do not coincide. We may assume that S12 ∩ S23 ∩ S31 is empty, as otherwise we 
look at its residue.

By (RU1), each point of Sxy is collinear with Jz, with {x, y, z} = {1, 2, 3}. Now 
suppose that S12 and S13 are nonempty, and consider a line L intersecting both of them, 
necessarily in distinct points. These two points are necessarily collinear with J2 and J3. 
Hence, each point of L has to be collinear with J2 and J3. However, L contains a point 
which is contained in J1 only, contradicting the first paragraph of this proof. This implies 
that at most one of the intersections, say S12 can be nonempty. But as S12 is collinear 
with J3, the latter contains a point which is collinear with J1, again a contradiction.

We conclude that the j-spaces have one common intersection S and, in ResΔ(S), they 
correspond to t-spaces which are on a hyperbolic (2t + 1)-space, as required. It is easily 
verified that each of those 3-tuples obtained above indeed satisfies the definition of a 
round-up triple. �

We now distinguish either t = 0 or t = 1 from the others, depending on the type of Δ.

8.6 Lemma. Suppose {J1, J2, J3} is triple of type VI(t). If no j-space J4 (with J4 �= J3) 
is such that {J1, J2, J4} is a triple whereas {J1, J3, J4} is not, then precisely one of the 
following occurs.

(i) t = 0 and Δ contains hyperbolic lines.
(ii) t = 1 and Δ contains hyperbolic quadrangles as hyperbolic 3-spaces.

Proof. In Δ′, the j-spaces of the triple correspond to t-spaces T1, T2 and T3. Denote the 
hyperbolic (2t + 1)-space generated by them by H. Suppose there is a t-space T4 in H
opposite T1, T2 such that T3 ∩ T4 �= ∅. Then clearly, {J1, J3, J4} cannot be a triple. If 
t > 1, such a t-space can always be found.

• If t = 1, such a t-space can always be found, except when Δ is a strictly orthogonal 
polar space, as in that case H is a hyperbolic quadrangle (the strictly orthogonal 
polar spaces are the only ones in which a hyperbolic 3-space consists of precisely a 
regulus).

• If t = 0, then H is a polar space of rank 1 and hence such a t-space can never be 
found. Note that, in this case, H only contains more than two points (i.e., H is a 
hyperbolic line) if Δ is not a strictly orthogonal polar space.
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So we see that either t = 0 or t = 1 and only one of these possibilities occurs, depending 
on Δ. It is easily seen that, in cases (i) and (ii), every j-space J4 such that {J1, J2, J4}
is a triple is also such that {J1, J3, J4} is a triple. �

Since each polar space either contains hyperbolic lines or is strictly orthogonal, and 
no strictly orthogonal polar space contains hyperbolic lines, we can either recognise the 
triples of type VI(0) or those of VI(1). This gives us the following two cases to consider.

Case (i): Δ contains hyperbolic lines. The previous lemma enables us to reduce Γ′ by 
restricting its adjacency relation to being contained in a triple of type VI(0). We obtain 
the (non-bipartite) graph Γj;j−1,j(Δ) and the result follows from [19].

Case (ii): Δ contains hyperbolic quadrangles as hyperbolic 3-spaces. In this case Δ is a 
strictly orthogonal polar space. Again with the help of the previous lemma, we reduce Γ′

by restricting the adjacency relation to being contained in a triple of type VI(1) (which 
is in fact the same as a triple of type III∗ in this kind of polar space). We obtain the 
non-bipartite Weyl-graph Γn

j;j−2,j(Δ), and the result follows from Section 7 if j > 1 and 
from [19] if j = 1 (see also Subsection 8.2).

So also in this case we obtain that each automorphism of Γ is induced by one of Δb.

As we went trough all cases, we have reached the end of the proofs of Main Theo-
rems 3.5 and 3.7. �

We thank the referee for the opportunity to improve the paper. Many arguments have 
been corrected and/or clarified.
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