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Abstract

We study an abstract object, a finite generalized quadrangle W (3), due to Jacques Tits,
that can be seen as the Levi graph of a triangle free (404) point-line configuration. We
provide for W (3) representations as a topological (404) configuration, as a (404) circle
representation, and a representation in the complex plane. These come close to a still
questionable (real) geometric (404) point-line configuration realizing this finite general-
ized quadrangle. This abstract (404) configuration has interesting triangle free realizable
geometric subconfigurations, which we also describe. A topological (n4) configuration for
n < 40 must contain a triangle, so our triangle free example is minimal.

Keywords: Finite generalized quadrangles, computational synthetic geometry, point-line configura-
tions, oriented matroids, pseudoline arrangements

Math. Subj. Class.: 52C30

1 Introduction
In Computational Synthetic Geometry, see [5], we search for an unknown geometric object
when its abstract mathematical structure is given. Oriented matroids, see [2] or [4], play a
central part within this field. Our article can be seen in this context. It provides a connec-
tion from the theory of finite generalized quadrangles, see [12], to the study of point-line
configurations in the sense of recent books about these topics, see [9] and [14].

Definition 1.1. An (nk) configuration is a set of n points and n lines such that every point
lies on precisely k of these lines and every line contains precisely k of these points. We
distinguish three concepts.
∗Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstrasse 7, D–64289 Darmstadt,

Germany, juergen.bokowski@gmail.com
†Ghent University, Department of Mathematics: Algebra and Geometry, Krijgslaan 281, S25, B–9000 Gent,

Belgium, hendrik.vanmaldeghem@ugent.be
‡Corresponding author

1



2 Art Discrete Appl. Math. x (xxxx) #Pn

Definition 1.2. When the lines are straight lines in the projective plane, we have a geomet-
ric (nk) configuration.

Definition 1.3. When the lines are pseudolines forming a rank 3 oriented matroid, we have
a topological (nk) configuration.

Definition 1.4. When the lines are abstract lines, we have an abstract (nk) configuration.

We assume the reader to know basic facts about rank 3 oriented matroids or pseudoline
arrangements in the real projective plane.

This article provides, among other results, a triangle free topological (404) configura-
tion. We remark that triangle free configurations have been studied so far only for smaller
(n3) configurations, see e.g. [3], [10], or [15].

Definition 1.5. The generalized quadrangle W (3) is the point-line geometry where the
points are the points of the projective 3-space P3(3) over the field of 3 elements, and the
lines are the lines of P3(3) fixed under a symplectic polarity. A symplectic polarity is a
permutation of the set of points, lines and planes of P3(3) mapping the points to planes,
lines to lines and planes to points, such that incidence and non-incidence are both preserved
(that is, containment of points in lines and planes, and of lines in planes is transferred into
reversed containment), and the permutation has order 2, that is, if a point p is mapped to
the plane α, then the plane α is mapped to the point p. Such a polarity can be described,
after suitable coordinatization, as mapping the point (a, b, c, d) to the plane with equation
bX − aY + dZ − cU = 0, from which all other images follow.

As such, the full automorphism group ofW (3) is isomorphic to Aut(PSp4(3)), a group
of order 51840, containing PSp4(3) as normal simple subgroup of index 2.

The geometry W (3) is a member of the family of so-called symplectic generalised
quadrangles W (q), where q is any prime power. Each line of W (q) contains q + 1 points
and each point is contained in q+1 lines. Moreover, W (q) contains q3 + q2 + q+1 points.
Hence it is an abstract (q3 + q2 + q+ 1)q+1 configuration. For q = 3, we obtain an abstract
(40)4 configuration.

The name “generalised quadrangle” comes from the fact that the geometry does not
contain any triangle, but every two elements are contained in a quadrangle. Hence ev-
ery generalised quadrangle W (q) defines a triangle free abstract configuration. We will not
need the general definition of a generalised quadrangle, we content ourselves with mention-
ing that, conversely, when an abstract (q3 + q2 + q + 1)q+1 configuration is triangle free,
then it is a generalised quadrangle, i.e., every pair of elements is contained in a quadrangle.
We also say that the generalised quadrangle has order q. When q > 4 is a power of 2, there
are many non-isomorphic generalised quadrangles with order q known. For q a power of
an odd prime, we know exactly two generalised quadrangles of order q. One of those is
W (q). The other one is obtained from the first one by interchanging the names “point”
and “line”. We say that the latter is the dual of the former. The dual of W (q) is usually
denoted by Q(4, q); it arises as a non-singular parabolic quadric in the projective 4-space
P4(q) over the field of q elements, that is, a quadric with equation X1X2 + X3X4 = X2

0 ,
after suitable coordinatization. That W (q) is really not isomorphic to Q(4, q), q odd, can
be seen by noting that Q(4, q) admits substructures isomorphic to a (q+ 1)× (q+ 1) grid,
while this is not the case for W (q). If q is even, then W (q) is isomorphic to Q(4, q), and
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the isomorphism can be realised by projecting Q(4, q) from its nucleus, that is, the inter-
section point of all tangent hyperplanes of Q(4, q) (a hyperpane is tangent if it intersects
Q(4, q) in a cone).

For q = 3, it follows that there are at least two triangle free (40)4 configurations.
However, it is shown in 6.2.1 of [12] that these are the only examples.

The question whether a given generalised quadrangle of order q is a geometric (q3 +
q2 + q+ 1)q+1 configuration seems to be extremely difficult. The only such quadrangle for
which we know the answer is the one with q = 2: W (2) is a geometric (15)3 configuration.
Already for the next cases W (3) and Q(4, 3) nothing is known. In the present paper, we
focus on W (3). We motivate this in Section 6.

For now we have only a conjecture concerning the main question:

Conjecture 1.6. There is no geometric (404) configuration that represents the given finite
generalized quadrangle W (3).

Here are some aspects about the missing methods for solving this problem. One way to
prove that there is no such geometric configuration would be to show that there is even no
corresponding topological configuration. Our theorem shows that this cannot be done. An-
other method would have been to start with a projective base and to apply the construction
sequence method, see [6], that was very useful for the investigation of smaller (n4) configu-
rations. However, because of the missing triangles property, the number of variables for an
algebraic investigation exceeds very soon the problem size that can be handled with com-
puter algebra support. With a symmetry assumption we reduce the number of variables,
however, by using these assumptions we very soon realized that the best results are those
that we present in this article. Without any symmetry assumption, we never found a trian-
gle free projective incidence theorem that should occur towards the end of a construction
sequence; a property occurring in so many non-symmetric (n4) configurations. For in-
stance, if a configuration contains two triangles in perspective from a point, then we know
by Desargues’ theorem that an extra incidence occurs in the real plane, even if the “axis”
of the corresponding Desargues’ configuration is not a line of the configuration. But W (3)
does not contain triangles, and we are not aware of any incidence theorem in the real plane
(like Desargues’ theorem), which can be applied to W (3). In particular, such an incidence
theorem should be triangle free. What remains after this observation is a question.

Problem 1.7. Does there exist a triangle free incidence theorem in the real plane?

2 Description of the given abstract object
Our abstract object, an abstract (404) configuration, is known in the literature as W (3).
The authors attribute the discovery of classical finite quadrangles (including W (3)) to J.
Tits and they are first described in 1968 in the book by P. Dembowski [8]

The second author mentioned the problem of realizingW (3) long ago to the first author
hoping for a solution with methods from computational synthetic geometry.

2.1 The Levi graph of a triangle free abstract (40)4 point-line configuration

The Levi graph of a (point-line) configuration is the graph with vertices the points and the
lines of the configuration, adjacent when incident. The Levi graph of the triangle free ab-
stract (40)4 configuration W (3) is given by the following list of vertices with its following
four neighbors. We have used the first 40 labels for the points.
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(1, 41 42 43 44) (2, 45 46 47 48) (3, 49 50 51 52) (4, 53 54 55 56) (5, 41 45 49 53) (6,
41 57 58 59) (7, 41 60 61 62) (8, 45 63 64 65) (9, 49 66 67 68) (10, 53 69 70 71) (11, 45
72 73 74) (12, 53 75 76 77) (13, 49 78 79 80) (14, 42 46 50 54) (15, 42 63 66 69) (16, 42
72 75 78) (17, 46 60 70 79) (18, 50 61 64 76) (19, 54 62 67 73) (20, 46 57 68 77) (21, 54
58 65 80) (22, 50 59 71 74) (23, 43 47 51 55) (24, 43 65 68 71) (25, 43 73 76 79) (26, 47
61 69 80) (27, 51 62 63 77) (28, 55 60 66 74) (29, 47 59 67 75) (30, 55 57 64 78) (31, 51
58 70 72) (32, 44 48 52 56) (33, 44 64 67 70) (34, 44 74 77 80) (35, 48 62 71 78) (36, 52
60 65 75) (37, 56 61 68 72) (38, 48 58 66 76) (39, 56 59 63 79) (40, 52 57 69 73)

(41, 1 5 6 7) (42, 1 14 15 16) (43, 1 23 24 25) (44, 1 32 33 34) (45, 2 5 8 11) (46, 2 14
17 20) (47, 2 23 26 29) (48, 2 32 35 38) (49, 3 5 9 13) (50, 3 14 18 22) (51, 3 23 27 31)
(52, 3 32 36 40) (53, 4 5 10 12) (54, 4 14 19 21) (55, 4 23 28 30) (56, 4 32 37 39) (57, 6 20
30 40) (58, 6 21 31 38) (59, 6 22 29 39) (60, 7 17 28 36) (61, 7 18 26 37) (62, 7 19 27 35)
(63, 8 15 27 39) (64, 8 18 30 33) (65, 8 21 24 36) (66, 9 15 28 38) (67, 9 19 29 33) (68, 9
20 24 37) (69, 10 15 26 40) (70, 10 17 31 33) (71, 10 22 24 35) (72, 11 16 31 37) (73, 11
19 25 40) (74, 11 22 28 34) (75, 12 16 29 36) (76, 12 18 25 38) (77, 12 20 27 34) (78, 13
16 30 35) (79, 13 17 25 39) (80, 13 21 26 34)

2.2 A combinatorial construction

The generalised quadrangle W (3) can be coordinatized and so a description using coordi-
nates in the field of order 3 can be given, see [11]. However, we rather present a combina-
torial description, which we will use later in Subsection 3.1 and in Section 6.

Let N = {1, 2, 3, 4}. Then the points of W (3) are the elements (i+), (i−), (ij+)
and (ij−), with i, j ∈ N . Sixteen of the forty lines can be described as the sets Lij :=
{(i+), (j−), (ij+), (ij−)}, i, j ∈ N (we emphasise that i ≥ j is allowed). Two of the re-
maining lines can be described as Lε := {(iiε) : i ∈ N}, ε ∈ {+,−}. For each fixed point
free involution σ of N we have the two lines Lε1σ := {(11σε1), (22σε2), (33σε3), (44σε4) :
εi = εj ⇔ iσ = j,∀i, j ∈ {1, 2, 3, 4}}, which accounts for six more lines. Finally, let θ0
be a fixed permutation of N with exactly one fixed point, say i0 ∈ N . For each permuta-
tion θ of N with exactly one fixed point we define the two lines Lεσ := {(iiθε) : i ∈ N},
ε ∈ {+,−}, if θ0θ has exactly one fixed point, and Lεjσ := {(iiθεi) : i ∈ N, {εi, εj} =
{+,−} for i 6= j = jθ}, otherwise (i.e., if θ0θ has no or four fixed points). Since there
are exactly eight permutations with exactly one fixed point, this accounts for the remaining
sixteen lines.

It is elementary to check that the abstract configuration defined in the previous para-
graph is a triangle free (40)4 configuration. The fact that it defines W (3) can be deduced
from the observation that it contains a dual 4 × 4 grid, namely, all points of the 4-set
{(i+) : i ∈ N} are collinear to all points of the 4-set {(i−) : i ∈ N}.

There are essentially two different choices for θ0. We will choose θ0 to be the permu-
tation (2 3 4), fixing 1.

Concretely, we see the correspondence with the construction in the previous section as
follows (it is only one of the 51840 possible identifications).
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Figure 1: The Levi graph with a five-fold rotational symmetry of the triangle free (404)
point-line configuration, we use red labels 1, 2, . . . , 40 as points and blue labels 41, 42,
. . . 80 as (abstract) lines.
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(1+) 7→ 1 (2+) 7→ 35 (3+) 7→ 36 (4+) 7→ 37
(1−) 7→ 7 (2−) 7→ 24 (3−) 7→ 16 (4−) 7→ 32

(11+) 7→ 6 (22+) 7→ 22 (33+) 7→ 29 (44+) 7→ 39
(11−) 7→ 5 (22−) 7→ 10 (33−) 7→ 12 (44−) 7→ 4
(12+) 7→ 23 (21+) 7→ 27 (12−) 7→ 25 (21−) 7→ 19
(13+) 7→ 15 (31+) 7→ 28 (13−) 7→ 14 (31−) 7→ 17
(14+) 7→ 34 (41+) 7→ 26 (14−) 7→ 33 (41−) 7→ 18
(23+) 7→ 30 (32+) 7→ 8 (23−) 7→ 13 (32−) 7→ 21
(24+) 7→ 2 (42+) 7→ 20 (24−) 7→ 38 (42−) 7→ 9
(34+) 7→ 40 (43+) 7→ 11 (34−) 7→ 3 (43−) 7→ 31

This provides the following identification of the lines.

L11 7→ 41 L22 7→ 71 L33 7→ 75 L44 7→ 56
L12 7→ 43 L23 7→ 78 L34 7→ 52 L41 7→ 61
L13 7→ 42 L24 7→ 48 L31 7→ 60 L42 7→ 68
L14 7→ 44 L21 7→ 62 L32 7→ 65 L43 7→ 72
L+ 7→ 59 L− 7→ 53 L+

(12)(34) 7→ 51 L−(12)(34) 7→ 73

L+
(13)(24) 7→ 66 L−(13)(24) 7→ 46 L+

(14)(23) 7→ 80 L−(14)(23) 7→ 64

L+
(123) 7→ 79 L−(123) 7→ 55 L+

(321) 7→ 63 L−(321) 7→ 54

L+
(124) 7→ 47 L−(124) 7→ 76 L+

(421) 7→ 67 L−(421) 7→ 77

L+
(134) 7→ 50 L−(134) 7→ 69 L+

(431) 7→ 74 L−(431) 7→ 70

L+
(234) 7→ 57 L−(234) 7→ 49 L+

(432) 7→ 58 L(432) 7→ 45

We now study some interesting subconfigurations.

3 Geometric subconfigurations
3.1 The geometric unique triangle free (203) configuration

There exist a lot of triangle free (v3) configurations, for v ≥ 15. The one with v =
15 is often called the Cremona–Richmond configuration and it is the unique generalized
quadrangle W (2) with three points per line and three lines per point. Its Levi graph is
Tutte’s 8-cage.

There is another remarkable triangle free (v3) configuration with v relatively small, and
that is the unique flag-transitive (203) configuration, denote it by T . Note that there are
162 triangle-free (203) configurations altogether [1].

The Levi graph of T is the Kronecker cover (also sometimes called the bipartite double)
of the dodecahedron graph. It can be described as follows. The point set PT of T is the
set of ordered non-identical pairs (a, b), with a, b ∈ {1, 2, 3, 4, 5}. The lines of T are
the triples {(a, b), (b, c), (c, a)}, with a, b, c three distinct members of {1, 2, 3, 4, 5}. We
denote the line set by LT . The full collineation group Sym(5) × Z2 is now easy to see
(the involution in the center corresponds to the “opposition” mapping (a, b) 7→ (b, a); we
denote (b, a) by (a, b) and call these two points opposite).

The configuration T is realizable, see [3]. But it is also a subconfiguration of W (3).
This can be easily seen using the construction of Subsection 2.2. We present an embedding
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of T in W (3), given explicitly as follows:

(5, i) 7→ (i+), i ∈ {1, 2, 3, 4},
(i, 5) 7→ (i−), i ∈ {1, 2, 3, 4},

(i, j) 7→ (ij+), i, j ∈ {1, 2, 3, 4}, i 6= j.

Using these explicit descriptions, the following properties can easily be checked. (A
hyperbolic line in W (3) is the set of points of an ordinary line of P3(3) which is not a line
of W (3) in Definition 1.5 of W (3).)

• For every point p of T , the point p is the unique point of T at distance 6 from p in
the Levi graph.

• For every line L = {p1, p2, p3} of T , the line L := {p1, p2, p3} is the unique line at
distance 6 from L in the Levi graph.

• Two distinct points p, q of T are collinear in W (3) if and only if either they are
collinear in T , or p = q. In the latter case, no other points of T are contained in the
line of W (3) determined by p and q. In the former case, only the points of the line in
T determined by p and q are contained in the line of W (3) determined by p and q.

• The lines of W (3) corresponding to two distinct lines of T intersect in W (3) if and
only if they intersect in T .

• For each i ∈ {1, 2, 3, 4, 5}, the point set {(i, j) : j ∈ {1, 2, 3, 4, 5} \ {i}} forms a
hyperbolic line in W (3); the same thing holds for {(j, i) : j ∈ {1, 2, 3, 4, 5} \ {i}}.

• There are 20 lines of W (3) containing exactly three (necessarily collinear) points of
T ; there are 10 lines of W (3) containing exactly two (necessarily opposite) points
of T ; there are 10 lines of W (3) disjoint from T .

• The ten lines of W (3) containing opposite points of T form a spread of W (3), that
is, a partition of the point set of W (3) into lines.

The geometry T is self-dual, even self-polar, see [3]. A polarity using our description
is for instance given by the mapping

(i1, i2) 7→ {(i3, i4), (i4, i5), (i5, i3)},

where {i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5} and the permutation (i1 i2 i3 i4 i5) belongs to a
preassigned conjugacy class of elements of order 5 in Alt(5). There are two such conjugacy
classes of elements of order 5, and this gives rise to two distinct polarities, which differ by
the opposition map.

This polarity cannot be induced by a duality of W (3) as the latter is not self-dual.
The question can be asked whether every collineation of T is induced by a collineation of
W (3). We now show that the answer is positive. To that aim we prove that W (3) can be
canonically recovered from T . Given the abstract configuration T , we define the following
geometry Γ = (P,L). The point set P consists of the union of the point set of T and the
set

{({p, p}, L) : p ∈ PT , L ∈ LT , L ∩ (p⊥ ∪ p⊥) = ∅},

where p⊥ denotes the set of points of T collinear to p. It is easy to see that, for each
p ∈ PT , there are exactly two lines of T not containing any point collinear to p or p (and
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those two lines are mutually opposite). Also, given a line L ∈ LT , there is a unique pair
of opposite points p, p with the property that neither of them is collinear to a point of L.
Hence each line L defines a unique new point ({p, p}, L), which we denote by pL. So in
total, we have 40 points. We now define three types of lines of Γ.

Type 1 If L is a line of T , then L ∪ {pL} is a new line of Type 1.

Type 2 If p ∈ PT , then {p, p} ∪ {({p, p}, L) : L ∈ LT , L ∩ (p⊥ ∪ p⊥) = ∅} is a line of
Type 2.

Type 3 Let L1, L2, L3, L4 be four pairwise disjoint lines of T . Let ({pi, pi}, Li), i =
1, 2, 3, 4, be the corresponding new points. If PT = {pi, pi : i ∈ {1, 2, 3, 4}} ∪
L1 ∪ L2 ∪ L3 ∪ L4, then {pL1

, pL2
, pL3

, pL4
} is a line of Type 3.

Type 3 lines require some explanation. First of all, it is clear that, if p1 = (a, b) and
p2 = (c, d), then {a, b}∩ {c, d} 6= ∅, because otherwise L2 contains one of (a, b) or (b, a),
and we cannot obtain PT . Hence without loss, we can assume that pi = (5, i), for all
i ∈ {1, 2, 3, 4}. Then there are only two possibilities for L1, L2, L3, L4 anymore. Indeed,
if L1 = {(2, 3), (3, 4), (4, 2)}, then Lj , j = 2, 3, 4 must be equal to {(4, 3), (3, 1), (1, 4)},
{(2, 4), (4, 1), (1, 2)} and {(3, 2), (2, 1), (1, 3)}, respectively. The other possibility is by
applying opposition all these points. Hence, for each member j ∈ {1, 2, 3, 4, 5}, we have
exactly two lines of Type 3. So in total we have 20 + 10 + 10 = 40 lines. Now it can be
checked easily that Γ is a generalized quadrangle isomorphic to W (3).

Hence every collineation (not duality) of T extends to a (unique) collineation of W (3).
It can also be shown that the inclusion T ⊆ W (3) is unique, but we shall not insist on

that.

3.2 Subconfigurations from (dual) geometric hyperplanes

A geometric hyperplane of a configuration is a subset H of the point set with the property
that every line either has all its points in H , or intersects H in a unique point. A dual
geometric hyperplane is the dual of that, hence a subset G of the line set with the property
that for every point p either all the lines through p are in G, or a unique line through p is.

The interest in (dual) geometric hyperplanes for us lies in the fact that, removing a
(dual) geometric hyperplane of size s, together with all lines (points) completely contained
in it, from a configuration (vk), always gives a ((v − s)k, v′k−1)-configuration, or (in the
dual case) a (v′k−1, (v − s)k)-configuration, where v′ = k v−sk−1 . To find geometric real-
izations of a given configuration, it can help to first find those of such subconfigurations.
We give two examples, one with a dual geometric hyperpane and one with a geometric
hyperplane. First a dual geometric hyperplane.

In the description ofW (3) given in Subsection 2.2, the lines {(i+), (j−), (ij+), (ij−)},
i, j ∈ {1, 2, 3, 4}, i 6= j, form a dual geometric hyperplaneG. Removing all lines ofG and
all points (i+) and (i−), i ∈ {1, 2, 3, 4}, from W (3) gives rise to a geometric (323, 244)
configuration. A realization is provided in Figure 2. It has a rotational symmetry of order
4.

An example of a geometric hyperplane is given by the set Hp of all points collinear
to a given point p. Removing such a set of points, together with all lines through p, gives
rise to a (274, 363)-configuration, which is a subconfiguration of the unique triangle free
(275, 453)-configuration, which is the unique generalized quadrangle with 3 points per line
and 5 lines per point. It is realizable by Theorem 1.4 of [16].
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Figure 2: A realized part of the questionable triangle free (404) configuration, an incidence
structure with 32 3-valent points and 24 4-valent lines.
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Remark 3.1. Another example of a dual geometric hyperplaneGL is given by a line L and
the set of lines intersecting L nontrivially. The intersection of the configurations arising as
complements of Hp and GL, for a point p incident with L is the dual of the so-called Gray
configuration, that is, dual to the triple Cartesian product K ×K ×K of a line K of size
3 with itself. More information about the Gray configuration can be found in [13].

3.3 An incidence structure with 40 points and 35 lines

The group Aut(PSp4(3)) contains a single conjugacy class of elements of order 5. Each
such element acts fixed-point freely on W (3), and hence semi-regularly (this can immedi-
ately be deduced from the character table in [7]). Therefore, W (3) is a polycyclic configu-
ration. Remarkably, if we remove one line orbit, then we can realize the rest of W (3). This
is shown in Figure 3.

Starting with this geometric point-line incidence structure of 40 points and 35 lines, we
will be able to construct a circle configuration in Section 5.
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Figure 3: A realized part of the questionable triangle free (404) configuration, an incidence
structure with 40 points and 35 lines
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4 Topological solution
In this section we provide our first main result of this article.

Theorem 4.1. We have a topological (404) configuration that represents the given finite
generalized quadrangle W (3)

Figure 4: A topological triangle free (404) point-line configuration, i.e., a pseudoline ar-
rangement, with a symmetry of order 2.

Proof. We describe our result according to the picture in Figure 4. It shows the pseudoline
arrangement with a two-fold symmetry about a vertical axis (which is not drawn). The
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circular disc provides a model of the projective plane, the outer circle is not an element of
the configuration. It is easy to confirm the properties of this configuration. •

A triangle free (n4)-configuration must have at least 40 lines, which implies that our
configuration is minimal.

This can be seen as follows: Consider a first pointP of a triangle free (n4)-configuration
with its four lines L1, L2, L3, and L4 that are incident with P . On each of these four lines
Li, i ∈ {1, 2, 3, 4} we have three additional points P(i,j), j ∈ {1, 2, 3}. There are three
additional lines incident with each of these twelve points P(i,j), j ∈ {1, 2, 3}. These 36
lines have to be all different. Otherwise such a line forms a triangle together with P . This
was our claim, the four lines we started with, together with these 36 lines have to be part of
any triangle free (n4)-configuration.

5 A circle configuration representing W(3)
We also have a “realization” of W(3) as a “circle configuration” in which 35 “circles” are
degenerated, they are lines, see Figure 5. It has a rotational symmetriy of order 5, the
same symmetry as the Levi graph of Figure 1. A realization with 40 proper circles can be
obtained by applying inversion.

6 Realization in higher dimensions and over other fields
In this section, we further motivate the study of the (40)4 configuration W (3).

In [16], the geometric realisations of all so-called classical generalised quadrangles in
finite projective spaces of dimension at least 3 are studied, except for the class of symplectic
generalised quadrangles. The reason is that all methods break down for these examples.
Now, for the other classes, the generic result is that, up to a very few exceptions, if a
quadrangle defined over a finite field Fq of order q admits a representation spanning a
projective space of dimension at least 3 defined over the field Fq′ of q′ elements, then Fq
is a subfield of Fq′ and the representation in obtained by a field extension and a (possibly
trivial) projection of the standard representation. Although the results in [16] are stated and
proved for finite projective spaces, most results also hold for the infinite case, in particular
over the reals and the complex numbers. We summarize the results for Q(4, q) below in
Theorem 6.1, but first we’d like to point out that, as a consequence of the results in [16],
in the generic case, the characteristic of the field over which the quadrangle is defined
coincides with the characteristic of the field over which the projective space is defined.
If this is not the case, the representation has been called grumbling in [17]. Hence, any
representation of a finite (classical) quadrangle in a real or complex projective space is
necessarily grumbling.

The following theorem can be proved similar to the results in [16].

Theorem 6.1. Let Q(4, q) be the dual of W (q) and let Pn(k) be the n-dimensional pro-
jective space over the field k, with n ≥ 3. Then Q(4, q) admits a grumbling representation
spanning Pn(k), for some n ≥ 3, if and only if either q = 2 (and k is any field), or q = 3
and k admits a nontrivial cubic root of −1, say ζ. Let k′ be the prime field of k. Then, if
q = 2, the embedding is a (possibly trivial) projection of a projectively unique embedding
in P4(k′). If q = 3, then the embedding is a (possibly trivial) projection of a projectively
unique embedding in P4(k′) (if ζ ∈ k′) or P4(k′(ζ)) (if ζ /∈ k′).



14 Art Discrete Appl. Math. x (xxxx) #Pn

Figure 5: (404) circle configuration.
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A similar result for W (q), q odd, is now known, and probably out of reach for the
moment (although we do know that W (q) does not admit a representation spanning Pn(k),
for n ≥ 4 and any skew field k). That is why the geometry W (3) is interesting to us. It
is the smallest case for which we do not know a result like the previous theorem, and it is
small enough to possibly behave exceptionally. In general, it is the belief that W (q) does
not admit a grumbling embedding, but the case q = 3 could be exceptional. In fact, we
will now show that it does admit a grumbling embedding, but unfortunately, not over the
reals, though it does over the complex numbers. To that aim, we classify its embeddings
spanning a projective 3-space and such that, with the notation of Section 2.2, the points
(i+), i ∈ N , are contained in a single line, and the same thing holds for the points (i−),
i ∈ N .

Theorem 6.2. The abstract (40)4 configuration W (3) admits no representation spanning
Pn(k) for n ≥ 4. It admits a unique grumbling representation spanning P3(k), for k a
field, with the property that, with the notation of Section 2.2, the points (i+), i ∈ N , are
contained in a single line, and the same thing holds for the points (i−), i ∈ N , if and only
the characteristic of k is not equal to 2 and k admits a nontrivial cubic root of −1.

Proof. Suppose W (3) admits a representation spanning Pn(k), n ≥ 3. We show that
n = 3. The lines {(11+), (22+), (33+), (44+)} and {(11−), (22−), (33−), (44−)} span
a subspace of dimension at most 3. But now all points must be contained in that subspace,
since (iε) is contained in the line defined by (ii+) and (ii−), for all i ∈ N , and the
arbitrary point (ijε), with i, j ∈ N and ε ∈ {+,−} is contained in the line defined by (i+)
and (j−). Hence W (3) spans a subspace of dimension at most 3 and so n ≤ 3.

Now suppose n = 3 and the points (i+), i ∈ N , are contained in a single line, and the
same thing holds for the points (i−), i ∈ N . We can introduce coordinates in P3(k) in the
following way (where “−→” means “gets the coordinates”).

(1+) −→ (1, 0, 0, 0),
(1−) −→ (0, 1, 0, 0),
(2+) −→ (0, 0, 1, 0),
(2−) −→ (0, 0, 0, 1),
(3+) −→ (1, 0, 1, 0),

(11+) −→ (1, 1, 0, 0),
(22+) −→ (0, 0, 1, 1).

We denote the line of P3(k) joining the points P and Q by 〈P,Q〉. Expressing that
〈(3+), (3−)〉 and 〈(11+), (22+)〉 meet in (33+), and that (3−) belongs to 〈(1−), (2−)〉
by assumption, we obtain

(3−) −→ (0, 1, 0, 1),
(33+) −→ (1, 1, 1, 1).

Since the point (4+) belongs to 〈(1+), (2+)〉, there exists x ∈ k so that (4+) has co-
ordinates (x, 0, 1, 0). Expressing that (4+), (4−) and (44+) are collinear, that (4−) ∈
〈(1−), (2−)〉 and (44+) ∈ 〈(11+), (22+)〉, we easily see that (4−) has coordinates (0, x, 0, 1)
and (44+) has coordinates (x, x, 1, 1).

Now we consider the line defined by θ0 and (11+). Since θ0θ0 has exactly one fixed
point in N , the points (23+), (34+) and (41+) are on a line with (11+) and belong to
〈(2+), (3−)〉, 〈(3+), (4−)〉 and 〈(4+), (1−)〉, respectively. Hence, we can give (23+) the
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coordinates (0, 1, a, 1), for some a ∈ k, so that (34+) gets assigned (b, b+1, a, 1), for some
b ∈ k. Since (34+) ∈ 〈(3+), (4−)〉 = 〈(1, 0, 1, 0), (0, x, 0, 1)〉, we see that a = b = x−1.
Finally, the point (41+) is the intersection of 〈(4+), (1−)〉 = 〈(x, 0, 1, 0), (0, 0, 0, 1)〉 and
〈(11+), (23+)〉 = 〈(1, 1, 0, 0), (0, 1, x − 1, 1)〉, which easily implies (41+) = (x2 −
x, 0, x− 1, 1) = (−1, 0, x− 1, 1). This is only possible if x2 − x+ 1 = 0, hence if x is a
nontrivial third root of−1, since our assumption “grumbling” implies that the characteristic
of k is unequal to 3. So we can put x = ζ, with ζ one of the two nontrivial cubic roots of
−1. We now calculate:

(4+) −→ (ζ, 0, 1, 0),
(4−) −→ (0, ζ, 0, 1),

(44+) −→ (ζ, ζ, 1, 1),
(23+) −→ (0,−ζ, 1,−ζ),
(34+) −→ (1,−ζ2, 1,−ζ),
(42+) −→ (ζ, 0, 1,−ζ).

In a similar way, we calculate the points on the line defined by θ−10 and (11+).

(24−) −→ (0, ζ,−ζ, 1),
(32−) −→ (−ζ, 0,−ζ, 1),
(43−) −→ (−ζ2, 1,−ζ, 1).

We continue similarly with calculating the coordinates of the points of the lines {(22+), (13−), (34−), (41−)}
and {(22+), (14+), (31+), (43+)}:

(13−) −→ (−ζ, 1, 0, 1),
(34−) −→ (1, ζ2, 1, ζ),
(41−) −→ (ζ,−1, 1, 0),
(14+) −→ (1,−ζ, 0,−1),
(31+) −→ (1,−ζ, 1, 0),
(43+) −→ (ζ2, 1, ζ, 1).

Comparing (43+) and (43−), or equivalently, (34+) and (34−), we see that ζ 6= −ζ,
implying that the characteristic of k cannot be equal to 2.

Continuing like this, we obtain the coordinates of all remaining points.

(11−) −→ (1,−1, 0, 0),
(12+) −→ (1, 0, 0, ζ),
(12−) −→ (1, 0, 0,−ζ),
(13+) −→ (ζ, 1, 0, 1),
(14−) −→ (1, ζ, 0, 1),
(21+) −→ (0, 1,−ζ, 0),
(21−) −→ (0, 1, ζ, 0),
(22−) −→ (0, 0, 1,−1),
(23−) −→ (0, ζ, 1, ζ),
(24+) −→ (0, ζ, ζ, 1),
(31−) −→ (1, ζ, 1, 0),
(32+) −→ (ζ, 0, ζ, 1),
(33−) −→ (1,−1, 1,−1),
(41+) −→ (ζ, 1, 1, 0),
(42−) −→ (ζ, 0, 1, ζ),
(44−) −→ (ζ,−ζ, 1,−1).
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It is not difficult to check now that the four points on any line of W (3) are collinear in
P3(k). This concludes the proof of Theorem 6.2. •

One also checks that the group induced on W (3) by the linear transformation of P3(k)
is isomorphic to 2 × Alt(4) × Alt(4). The first 2 is realized by the involution sending
(x0, x1, x2, x3) to (x0,−x1, x2,−x3) and fixes all points of shape (iε), i ∈ N and ε ∈
{+,−}. The Alt(4) part can be derived from the mapping

(x0, x1, x2, x3) 7→ (x0, x1 − ζx3, x2,−ζx3)

and the uniqueness of the representation.
Discussion. Since R does not admit nontrivial cubic roots of −1, and C does, we

deduce that W (3) is not embeddable in P3(R) with the restrictions of Theorem 3, but it is
embeddable in the complex plane, and also as a spanning set of points in complex 3-space
(this was not known before). Hence it feeds our conjecture stated before.

It is perhaps remarkable that the condition of k having a nontrivial cubic root of −1
turns up in both theorems of this section. The explanation could be that every planar grum-
bling representation of W (3) and of Q(4, q) over a field k arises from a projection of a
3-dimensional spacial grumbling representation over the field k. In that case, a planar
grumbling embedding of Q(4, q) in P2(k) exists if and only if k admits a nontrivial cubic
root of−1. In the dual plane, this gives rise to a grumbling embedding ofW (3). Hence the
existence conditions for grumbling embeddings of W (3) and Q(4, 3) are exactly the same!
This, however, leaves us wondering about the additional condition of Theorem 6.2, namely
that the characteristic of k is not 2. This could be explained by the fact that the condition,
for each ε ∈ {+,−}, of the four points (iε), i ∈ N , being collinear, is too strong in the
characteristic 2 case.

If our claim that every planar grumbling embedding of W (3) is obtained from a 3-
dimensional one is right, then there certainly exist embeddings spanning P3(k), with k not
of characteristic 2 or 3, and k admitting nontrivial roots of unity, such that the points of
no dual grid are contained in two lines of P3(k). Indeed, there are projections of Q(4, 3)
that do not satisfy the dual of this condition (as the dual of that condition is never satisfied
in any 4-dimensional representation of Q(4, 3) (meaning to span the 4-space), and we can
choose the projection line appropriately).

However, as already mentioned, it is not clear whether proving the claims in this dis-
cussion is feasible. For the moment we either have to make assumptions that make the
calculations feasible, or use ad hoc methods and trial and error to find a representation.
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[9] Grünbaum, B., Configurations of Points and Lines, Graduate Studies in Mathematics, vol. 103,
American Mathematical Society, Providence, RI, 2009.
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texts, Birkhäuser, New York, 2013.

[15] Raney, M. W., On geometric trilateral-free (n3) configurations, Ars Mathematica Contempo-
ranea 6 (2013) 253–259.

[16] Thas, J. and Van Maldeghem, H., Lax embeddings of generalised quadrangles in finite projec-
tive spaces, Proc. London Math Soc. (3) 82 (2001), 402–440.

[17] Thas, J. and Van Maldeghem, H., Embeddings of small generalized polygons, Finite Fields
Appl. 12 (2006), 565–594.


