FINITE SUBUNITALS OF THE HERMITIAN UNITALS

THEO GRUNDHÖFER, MARKUS J. STROPPEL, HENDRIK VAN MALDEGHEM

Abstract

Every subunital of any hermitian unital is itself a hhermermitian unital, embedded by field restriction (whatever this means here, to be clarefied).

A hermitian unital in a pappian projective plane consists of the absolute points of a unitary polarity of that plane, with blocks induced by secant lines (see Section 11). The finite hermitian unitals of order q are the classical examples of $2-\left(q^{3}+1, q+1,1\right)$-designs. In fact, we consider generalized hermitian unitals $\mathscr{H}(C \mid R)$ where $C \mid R$ is any quadratic extension of fields; separable extensions $C \mid R$ yield the hermitian unitals, inseparable extensions give certain projections of quadrics.

1. Generalized hermitian unitals and Baer subplanes

Let $C \mid R$ be any quadratic (possibly inseparable) extension of fields; the classical example is $\mathbb{C} \mid \mathbb{R}$. We can write $C=R+\varepsilon R$, with $\varepsilon \in C \backslash R$. There exist $t, d \in R$ such that $\varepsilon^{2}-t \varepsilon+d=0$, since $\varepsilon^{2} \in R+\varepsilon R$. For convenience, we can assume that $t=0$ if $\operatorname{char}(K) \neq 2$ (by replacing ε with $\left.\varepsilon-\frac{1}{2} t\right)$. The mapping

$$
\sigma: C \rightarrow C: x+\varepsilon y \mapsto(x+t y)-\varepsilon y \quad \text { for } x, y \in R
$$

is a field automorphism which generates $\operatorname{Aut}_{R} C$: if $C \mid R$ is separable, then σ has order 2 and generates the Galois group of $C \mid R$; if $C \mid R$ is inseparable, then σ is the identity.

Now we introduce our geometric objects. We consider the pappian projective plane $\mathrm{PG}(2, C)$ arising from the 3 -dimensional vector space C^{3} over C, and we use homogeneous coordinates $[X, Y, Z]:=(X, Y, Z) C$ for the points of $\operatorname{PG}(2, C)$.
Definition 1.1. The generalized hermitian unital $\mathscr{H}(C \mid R)$ is the incidence structure (U, \mathscr{B}) with the point set $U:=\left\{[X, Y, Z] \mid X^{\sigma} Y+Z^{\sigma} Z \in \varepsilon R\right\}$, and the set \mathscr{B} of blocks consists of the intersections of U with secant lines, i.e. lines of $\operatorname{PG}(2, C)$ containing more than one point of U.

Note that U is not empty: it contains $[1,0,0]$ and $[0,1,0]$. The condition $X^{\sigma} Y+Z^{\sigma} Z \in \varepsilon R$ is homogeneous, since $c^{\sigma} c \in R$ for every $c \in C$.

In the next proposition, we identify $\mathscr{H}(C \mid R)$ in classical terms and motivate the name "generalized hermitian unital". The nucleus of a quadric is the projective subspace corresponding to the radical of the associated polar form.

Date: August 20, 2021.
1991 Mathematics Subject Classification. 51A.
Key words and phrases. Hermitian unital, subunital, O'Nan configurations.

Proposition 1.2 (see [2]). If $C \mid R$ is separable, then $\mathscr{H}(C \mid R)$ is the hermitian unital arising from the skew-hermitian form $h: C^{3} \times C^{3} \rightarrow C$ defined by

$$
h\left((X, Y, Z),\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)\right)=\varepsilon^{\sigma} X^{\sigma} Y^{\prime}-\varepsilon Y^{\sigma} X^{\prime}+\left(\varepsilon^{\sigma}-\varepsilon\right) Z^{\sigma} Z^{\prime}
$$

If $C \mid R$ is inseparable, then $\mathscr{H}(C \mid R)$ is the projection of an ordinary quadric Q in some projective space of dimension at least 3 from a subspace of codimension 1 in the nucleus of Q.

2. Main Result

Theorem 2.1. Let (U, \mathscr{B}) be a finite subunital of order t of the generalized hermitian unital $\mathscr{H}(C \mid R)$. Then (U, \mathscr{B}) is a standard embedded hermitian unital, i.e., $C \mid R$ is separable and coordinates can be chosen such that $\mathscr{H}(C \mid R)$ has equation $X Y^{\theta}+Y X^{\theta}=Z Z^{\theta}$, with θ the involution in the $G a$ lois group related to $C \mid R$, the finite field $\mathbb{F}_{t^{2}}$ is isomorphic to a subfield F of C and θ induces $x \mapsto x^{t}$ in F; in other words $F \cap R$ is a field of order t. In particular, it follows that a finite unital of order t embedded in a Hermitian unital of order q satisfies $t^{3} \leq q$.

3. Proof of Theorem 2.1

We will use the following properties of hermitian unitals:
$\left(^{*}\right)$ If three blocks though a given point p intersect two disjoint blocks B and B^{\prime} not containing p, then each block through p intersecting either of B, B^{\prime} intersect both B and B^{\prime}.
$\left(^{* *}\right)$ If three blocks though a given point p intersect a block B not through p, then for each point z on either of the three blocks, $z \neq p$, there exists a (unique) block containing z and intersecting the three blocks in three distinct points.
${ }^{(* * *)}$ If three blocks though a given point p intersect two disjoint blocks B and B^{\prime} not containing p, then the intersection of the lines containing B and B^{\prime} in the standard embedding is contained in the tangent line at p.
We suppose $t>2$.
We first claim (Theo's observation) that two blocks of (U, \mathscr{B}) which have no point of U in common, correspond to disjoint blocks of $\mathscr{H}(C \mid R)$. Indeed, suppose for a contradiction that two blocks $B_{1}, B_{2} \in \mathscr{B}$ are disjoint in U, but that their extensions to $\mathscr{H}(C \mid R)$ contain a common point x. The lack of O'Nan configurations in $\mathscr{H}(C \mid R)$ implies that two arbitrary blocks of (U, \mathscr{B}) both intersecting $B_{1} \cup B_{2}$ in exactly two points have no points off $B_{1} \cup B_{2}$ in common. Hence the number of points in U lying on a block intersecting $B_{1} \cup B_{2}$ in exactly two points is equal to $(t+1)^{2}(t-1)>t^{3}+1$, a contradiction. The claim is proved.

Now let $p \in U$ be arbitrary, and let $B \in \mathscr{B}$ be such that $p \notin B$. Let $B_{0}, B_{1}, \ldots, B_{t}$ be the blocks of (U, \mathscr{B}) containing p and intersecting B nontrivially, say in $x_{0}, x_{1}, \ldots, x_{t}$, respectively. Let x be an arbitrary point on $B_{0} \backslash\left\{p, x_{0}\right\}$. We claim that at least one block of (U, \mathscr{B}) contains x and intersects $B_{1} \cup B_{2} \cup \cdots \cup B_{t}$ in at least two points. Indeed, if not, then there are t^{2} blocks through x different from B_{0}, a contradiction. So let B_{x} be a block
of (U, \mathscr{B}) containing at least three points of $B_{0} \cup B_{1} \cup \cdots \cup B_{t}$, among which x. We note that B_{x} and B are disjoint by the lack of O'Nan configurations. For the same reason they are also disjoint in $\mathscr{H}(C \mid R)$. It then follows from $\left(^{*}\right)$ and our first claim that B_{x} intersects every $B_{i}, i \in\{0,1, \ldots, t\}$, and the intersection point belongs to U. Hence we have shown (**), which is equivalent to Wilbrink's second condition (the block is indeed unique by the absence of O'Nan configurations).

Now let θ be the translation of $\mathscr{H}(C \mid R)$ with centre p mapping x_{0} to x. Let y be any point of U not on B_{0}. Since B was arbitrary, we may assume that $y \in B$, so without loss of generality $y=x_{1}$. By the uniqueness in $\left({ }^{* *}\right)$, θ maps x_{1} to the intersection $B_{x} \cap B_{1}$. Since this intersection point belongs to U, it follows that θ preserves U. Hence (U, \mathscr{B}) admits all translations and hence is Hermitian by the main result of [1].
Now consider the (standard) embedding of $\mathscr{H}(C \mid R)$ in the projective plane $\operatorname{PG}(2, C)$. Then also (U, \mathscr{B}) is embedded in $\operatorname{PG}(2, C)$ and so by [2] there is a subfield $F \leq C$ of order t^{2} and a subplane $\pi \cong \mathrm{PG}(2, F)$ containing U. Hence there is a polarity ρ_{π} of π with absolute point set U. We now show that ρ_{π} extends to a polarity ρ of $\operatorname{PG}(2, C)$ with absolute point set $\mathscr{H}(C \mid R)$. (In particular, $C \mid R$ is separable.)

Given the discussion above, it immediately follows from $\left({ }^{* * *}\right)$ that the tangent line to U at a point $p \in U$ coincides with the tangent line at p to $\mathscr{H}(C \mid R)$. This already implies that not all tangent lines to $\mathscr{H}(C \mid R)$ contain the same point and so $C \mid R$ is separable. Hence there is a polarity ρ of $\mathrm{PG}(2, C)$ associated to $\mathscr{H}(C \mid R)$. Since U contains a quadrangle, and points of U are mapped onto lines of π under the action of ρ, we see that ρ preserves π. Since tangent lines to (U, \mathscr{B}) and $\mathscr{H}(C \mid R)$ coincide in π, we see that $\rho_{\mid \pi} \equiv \rho_{\pi}$. Hence the involution θ of the Galois group related to $C \mid R$ preserves F and induces $x \mapsto x^{t}$ in F.

In particular, if C is finite of order q^{2}, then F is unique with given order t^{2} and $\theta: x \mapsto x^{q}$ is not trivial on F, which means that F is not contained in the unique subfield R of order q; hence C is an extension of F of odd degree d.

This proves our main result completely for $t \neq 2$. For $t=2$ we use Markus' arguments.

References

[1] T. Grundhöfer, M. Stroppel, H. Van Maldeghem, Unitals admitting all translations, J. Combin. Des. 21 (2013), 419-431.
[2] T. Grundhöfer, M. Stroppel, H. Van Maldeghem, Embeddings of Hermitian unitals into Pappian projective planes, Aequationes Math. 93 (2019), 927-953.
[3] T. Grundhöfer, M. Stroppel, H. Van Maldeghem, Embeddings of unitals such that each block is a subline, Australas. J. Combin. 79 (2021), 295-301.

