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Abstract. Every subunital of any hermitian unital is itself a hhermer-
mitian unital, embedded by field restriction (whatever this means here,
to be clarefied).

A hermitian unital in a pappian projective plane consists of the absolute
points of a unitary polarity of that plane, with blocks induced by secant
lines (see Section 1). The finite hermitian unitals of order q are the classical
examples of 2-(q3 + 1, q + 1, 1)-designs. In fact, we consider generalized
hermitian unitals H (C|R) where C|R is any quadratic extension of fields;
separable extensions C|R yield the hermitian unitals, inseparable extensions
give certain projections of quadrics.

1. Generalized hermitian unitals and Baer subplanes

Let C|R be any quadratic (possibly inseparable) extension of fields; the
classical example is C|R. We can write C = R+ εR, with ε ∈ C rR. There
exist t, d ∈ R such that ε2− tε+ d = 0, since ε2 ∈ R+ εR. For convenience,
we can assume that t = 0 if char(K) 6= 2 (by replacing ε with ε− 1

2 t). The
mapping

σ : C → C : x+ εy 7→ (x+ ty)− εy for x, y ∈ R
is a field automorphism which generates AutR C: if C|R is separable, then
σ has order 2 and generates the Galois group of C|R; if C|R is inseparable,
then σ is the identity.

Now we introduce our geometric objects. We consider the pappian projec-
tive plane PG(2, C) arising from the 3-dimensional vector space C3 over C,
and we use homogeneous coordinates [X,Y, Z] := (X,Y, Z)C for the points
of PG(2, C).

Definition 1.1. The generalized hermitian unital H (C|R) is the incidence
structure (U,B) with the point set U := {[X,Y, Z] |XσY + ZσZ ∈ εR}, and
the set B of blocks consists of the intersections of U with secant lines, i.e.
lines of PG(2, C) containing more than one point of U .

Note that U is not empty: it contains [1, 0, 0] and [0, 1, 0]. The condition
XσY + ZσZ ∈ εR is homogeneous, since cσc ∈ R for every c ∈ C.

In the next proposition, we identify H (C|R) in classical terms and mo-
tivate the name “generalized hermitian unital”. The nucleus of a quadric is
the projective subspace corresponding to the radical of the associated polar
form.
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Proposition 1.2 (see [2]). If C|R is separable, then H (C|R) is the her-
mitian unital arising from the skew-hermitian form h : C3×C3 → C defined
by

h
(
(X,Y, Z), (X ′, Y ′, Z ′)

)
= εσXσY ′ − εY σX ′ + (εσ − ε)ZσZ ′ .

If C|R is inseparable, then H (C|R) is the projection of an ordinary quadric
Q in some projective space of dimension at least 3 from a subspace of codi-
mension 1 in the nucleus of Q.

2. Main Result

Theorem 2.1. Let (U,B) be a finite subunital of order t of the generalized
hermitian unital H (C|R). Then (U,B) is a standard embedded hermit-
ian unital, i.e., C|R is separable and coordinates can be chosen such that
H (C|R) has equation XY θ +Y Xθ = ZZθ, with θ the involution in the Ga-
lois group related to C|R, the finite field Ft2 is isomorphic to a subfield F of
C and θ induces x 7→ xt in F ; in other words F ∩R is a field of order t. In
particular, it follows that a finite unital of order t embedded in a Hermitian
unital of order q satisfies t3 ≤ q.

3. Proof of Theorem 2.1

We will use the following properties of hermitian unitals:

(*) If three blocks though a given point p intersect two disjoint blocks
B and B′ not containing p, then each block through p intersecting
either of B,B′ intersect both B and B′.

(**) If three blocks though a given point p intersect a block B not through
p, then for each point z on either of the three blocks, z 6= p, there
exists a (unique) block containing z and intersecting the three blocks
in three distinct points.

(***) If three blocks though a given point p intersect two disjoint blocks B
and B′ not containing p, then the intersection of the lines containing
B and B′ in the standard embedding is contained in the tangent line
at p.

We suppose t > 2.
We first claim (Theo’s observation) that two blocks of (U,B) which have

no point of U in common, correspond to disjoint blocks of H (C|R). Indeed,
suppose for a contradiction that two blocks B1, B2 ∈ B are disjoint in U ,
but that their extensions to H (C|R) contain a common point x. The lack
of O’Nan configurations in H (C|R) implies that two arbitrary blocks of
(U,B) both intersecting B1 ∪ B2 in exactly two points have no points off
B1 ∪ B2 in common. Hence the number of points in U lying on a block
intersecting B1∪B2 in exactly two points is equal to (t+ 1)2(t−1) > t3 + 1,
a contradiction. The claim is proved.

Now let p ∈ U be arbitrary, and let B ∈ B be such that p /∈ B. Let
B0, B1, . . . , Bt be the blocks of (U,B) containing p and intersecting B non-
trivially, say in x0, x1, . . . , xt, respectively. Let x be an arbitrary point on
B0 r {p, x0}. We claim that at least one block of (U,B) contains x and in-
tersects B1∪B2∪· · ·∪Bt in at least two points. Indeed, if not, then there are
t2 blocks through x different from B0, a contradiction. So let Bx be a block
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of (U,B) containing at least three points of B0∪B1∪· · ·∪Bt, among which
x. We note that Bx and B are disjoint by the lack of O’Nan configurations.
For the same reason they are also disjoint in H (C|R). It then follows from
(*) and our first claim that Bx intersects every Bi, i ∈ {0, 1, . . . , t}, and
the intersection point belongs to U . Hence we have shown (**), which is
equivalent to Wilbrink’s second condition (the block is indeed unique by the
absence of O’Nan configurations).

Now let θ be the translation of H (C|R) with centre p mapping x0 to x.
Let y be any point of U not on B0. Since B was arbitrary, we may assume
that y ∈ B, so without loss of generality y = x1. By the uniqueness in (**),
θ maps x1 to the intersection Bx ∩B1. Since this intersection point belongs
to U , it follows that θ preserves U . Hence (U,B) admits all translations
and hence is Hermitian by the main result of [1].

Now consider the (standard) embedding of H (C|R) in the projective
plane PG(2, C). Then also (U,B) is embedded in PG(2, C) and so by [2]
there is a subfield F ≤ C of order t2 and a subplane π ∼= PG(2, F ) containing
U . Hence there is a polarity ρπ of π with absolute point set U . We now
show that ρπ extends to a polarity ρ of PG(2, C) with absolute point set
H (C|R). (In particular, C|R is separable.)

Given the discussion above, it immediately follows from (***) that the
tangent line to U at a point p ∈ U coincides with the tangent line at p
to H (C|R). This already implies that not all tangent lines to H (C|R)
contain the same point and so C|R is separable. Hence there is a polarity
ρ of PG(2, C) associated to H (C|R). Since U contains a quadrangle, and
points of U are mapped onto lines of π under the action of ρ, we see that
ρ preserves π. Since tangent lines to (U,B) and H (C|R) coincide in π, we
see that ρ|π ≡ ρπ. Hence the involution θ of the Galois group related to C|R
preserves F and induces x 7→ xt in F .

In particular, if C is finite of order q2, then F is unique with given order
t2 and θ : x 7→ xq is not trivial on F , which means that F is not contained
in the unique subfield R of order q; hence C is an extension of F of odd
degree d.

This proves our main result completely for t 6= 2. For t = 2 we use
Markus’ arguments.

References
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