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Abstract. We classify the convex subspaces of all hexagonic Lie incidence geometries
(among which all long root geometries of spherical Tits-buildings). We perform a similar
classification for most other Lie incidence geometries of spherical Tits-buildings, in par-
ticular for all projective and polar Grassmannians, and for exceptional Grassmannians of
diameter at most 3.
Keywords. buildings,parapolar spaces, long root geometries, hexagonal Lie incidence ge-
ometries
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1. Introduction

Spherical Tits-buildings are combinatorial objects geometrically interpreting groups of Lie type,
among which the Chevalley groups, semisimple linear algebraic groups, the classical groups,
and groups of mixed type. A further “geometrization” of these objects was obtained by the
so-called point-line approach to buildings of the last century starting with the seminal work
of Buekenhout-Shult (introducing a simple axiom system in terms of points and lines for polar
spaces), culminating in the introduction of the notion of “parapolar spaces” by Cooperstein. This
theory in particular contains the so-called long root geometries which can be obtained from a
simple Chevalley group by calling the long root subgroups “points” and the product of two dis-
tinct elementwise commuting such subgroups “lines”, with natural incidence. These are the
main examples of the more abstractly defined hexagonic geometries, see below. The interplay
between these geometrical objects and the corresponding groups and algebras is a fascinating
phenomenon. For instance, [Coh21] points out a connection between inner ideals generated by
extremal elements of a simple Lie algebra associated to some simple algebraic groups and flags
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of the corresponding spherical Tits-building. In the proof of Theorem 4.1 of loc.cit., convex sub-
spaces, satisfying some additional properties, of some Lie incidence geometries (more exactly,
hexagonic geometries) need to be recognized. This would have been simpler if one had at their
disposal a list of all convex subspaces of the Lie incidence geometries in question. Part of our
motivation is to fill that gap in the literature and provide such a classification for all interesting
Lie incidence geometries, in particular for the long root geometries, or, more generally, for the
hexagonic Lie incidence geometries. Briefly, we will show the following result.

Main Result 1. An arbitrary convex subspace of a hexagonic Lie incidence geometry con-
taining polar spaces of rank at least 3 either corresponds to a residue of a flag in the associated
spherical building (which we assume to be thick and irreducible), or consists of a union of lines
pairwise intersecting in the same point c such that, for each pair of points from distinct lines, c
is the unique point collinear to both.

Pairs of non-collinear points collinear to a unique common point are called special. The
requirement of containing a polar space of rank at least 3 is necessary. For instance, the geome-
tries arising from the point-hyperplane pairs of projective spaces are long root geometries and
contain additional convex subspaces, see Theorem 9.1 for more details.

There is also a cosmetic motivation. One knows that the singular subspaces (which are auto-
matically convex) of a given Lie incidence geometry can be read off the Coxeter diagram of the
corresponding building as residues of flags of certain types (this follows from Theorem 10.2.10
in [BCN89]). In the above Main Result 1, a similar thing for convex subspaces is almost true;
there is only one type of exceptions. We can ask ourselves for which Lie incidence geometries
there are no exceptions. If we call a Lie incidence geometry grammatical if all its convex sub-
spaces correspond to residues of the corresponding building (hence if the convex subspaces can
be read off the Coxeter diagram), then we will classify all grammatical Lie incidence geometries.
This is our Main Result 2.

Main Result 2. The grammatical Lie incidence geometries are precisely the Lie incidence
geometries without special pairs.

We will present a precise detailed list later on, and we note that this list, in the case that
the building has rank at least 3, coincides with the list of all Lie incidence geometries whose
point graph is distance transitive (or in the finite case, equivalently, distance regular), see Theo-
rem 10.4.6 in [BCN89]. This reflects in a certain sense the observation that the obstruction for
the point graph being distance transitive is always already visible at distance 2, where there are
special pairs (giving rise to convex subspaces not obtained from a residue) and non-special ones
(the convex closure of which conforms to a residue).

Finally, the third motivation for our work is to unify and extend classifications and character-
izations of convex subspaces of certain Lie incidence geometries in the literature. For instance,
Pankov [Pan12, Corollary 4.2] proves that a certain isomorphism class of convex subspaces
of polar Grassmannians arises as a class of residues of the corresponding building; Kasikova
[Kas09, Corollary 6.3] roughly proves a similar statement for a class of Lie incidence geome-
tries arising from buildings with simply laced diagram of Y-shape. These two results are now
also corollaries of our results, the main and most popular part of which can be stated roughly as
follows (here we exclude the geometries already mentioned in Main Results 1 and 2):

Main Result 3. Any convex subspace of a polar Grassmannian not related to the next-to-
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maximal singular subspaces either corresponds to a residue of the underlying spherical building,
or else is the union of singular subspaces pairwise intersecting in a fixed point p, such that any
pair of points in distinct such subspaces is special.

The case of a polar Grassmannian related to the next-to-maximal singular subspaces is more
complicated and technical, see Theorem 8.4.

While our Main Results characterise subspaces arising from residues of the underlying spher-
ical building in terms of convexity, also characterizations in terms of isomorphism classes can
be found in the literature, see e.g. [Kas09, Corollary 6.4] and [Kas13, Corollary 1.1].

Outline of the paper. In the next section, we introduce the Lie incidence geometries and the
language of the parapolar spaces, assuming the reader is more or less familiar with some of the
theory of spherical buildings. However, we also make an effort to make our results accessible to
readers only familiar with the classical geometries, i.e., projective spaces and their Grassman-
nians, and polar spaces and their Grassmannians; the results about such geometries are proved
without reference to parapolar theory.

In Section 3, we state more precise and detailed versions of the main results above, using
the language of parapolar spaces and Lie incidence geometries. Section 4 gathers some basic
properties of some specific Lie incidence geometries that we will need. In Section 5, we con-
tribute to the proof of Main Result 2 by treating projective Grassmannians. This section only
needs knowledge of projective spaces. The result is also used in further proofs. The proof of
Main Result 1 is the content of Section 6. Along the way, we also treat some grammatical Lie
incidence geometries, and we end by completing the proof of Main Result 2. Section 7 treats
the polar Grasmmannians, except for the case related to the next-to-maximal subspaces, which
is done in Section 8. Finally, in Section 9, we classify the convex subspaces of the (hexagonic)
geometry of point-hyperplane flags of projective spaces. The last three sections, as well as the
auxiliary results of the other sections dealing only with classical types (as e.g. Proposition 6.10),
i.e., the underlying building corresponds to a projective or polar space, are written in the lan-
guage of projective and polar spaces; the reader only interested in these classical cases can skip
the preliminaries about parapolar spaces and Lie incidence geometries.

2. Preliminaries

A point-line geometry Γ = (X,L, ∗) consists of a point set X together with a set L of lines and
an incidence relation ∗ between X and L. If no two lines are incident with exactly the same
points, then we can identify each line with the set of points incident with it. In that case, L is
a set of subsets of X and incidence is containment; we delete the ∗ in the notation and write
Γ = (X,L). Collinear points are points incident with the same line and if two points are always
on at most one line, then we say that Γ is a partial linear space. A subspace Γ′ of Γ is a set of
points with the property that, as soon as two collinear points belong to Γ′, then also all points
on all lines incident with both of these two points belong to Γ′ (often we will also consider the
lines contained in Γ′ and consider Γ′ as a point-line subgeometry of Γ, whence the notation Γ′).
A subspace with the property that every pair of points is collinear is called a singular subspace.
The collinearity graph of Γ is the graph on the points, adjacent when collinear. A point-line
geometry is called connected if its collinearity graph is connected. A convex set of points is a
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set of points closed under taking shortest paths in the collinearity graph of any pair of points of
the set. As usual, the convex closure of a set S of points is the intersection of all convex sets
containing S. We are interested in sets of points which are both subspaces and convex. The
convex subspace closure is defined in the obvious way.

We assume the reader to be familiar with the theory of Tits-buildings and polar spaces, see
e.g. [Tit74], [AB08], [Wei03]. For our purposes, a polar space is always non-degenerate and
every of its lines has at least three points. Let ∆ be an irreducible thick spherical building of rank
n. We consider ∆ as a numbered simplicial complex over the type set S, where the numbering of
the vertices corresponds to the Bourbaki labelling ([Bou68]) of the corresponding (connected)
Coxeter diagram Xn (for our purpose we do not need Dynkin diagrams). We choose a subset
T ⊆ S of the types and declare all flags of type T to be the points of a geometry ∆T , where
the lines are determined by the flags of type S \ {t}, for t ∈ T : the points of ∆T lying on the
line corresponding to such a flag f ′ are the flags f of type T with the property that f ∪ f ′ is a
chamber (a flag of type S). Note that different f ′ can lead to identical lines in ∆T . The resulting
geometry is called the T -Grassmannian of ∆. In general, we write τ(∆T ) = Xn,T . If T = {t},
then we also write Xn,t.

Often T is very small, and the interesting examples all have |T | = 1, except if Xn = An and
T = {1, n}. It are precisely these examples that we will refer to as Lie incidence geometries:

Definition 2.1. A Lie incidence geometry is a point-line geometry associated with Xn,T , where
Xn is an irreducible spherical Coxeter diagram and |T | = 1 or Xn,T = An,{1,n}.

Note that we only consider thick buildings, hence diagrams of type H3 and H4 do not occur
here.

These interesting cases are examples of parapolar spaces.

Definition 2.2. A parapolar space is a connected point-line geometry (X,L) such that the convex
subspace closure of a pair of points at distance 2 from each other in the collinearity graph,
is either a polar space (called a symplecton, or symp for short; the pair of points is called
symplectic), or the union of two intersecting lines (then the pair of points is called special), and
such that each line is contained in a symplecton.

Since polar spaces are partial linear spaces, the last condition implies that a parapolar space
is automatically a partial linear space. One often also assumes that a parapolar space is not a
polar space, but this is not important for our purposes. The advantage of working within the
framework of parapolar spaces is that we can deal at the same time with a whole family of Lie
incidence geometries sharing some properties, see for instance Lemma 6.9. We will need the
following terminology.

A parapolar space without special pairs is called strong. If the rank of any symplecton is
at least r, then we say that the parapolar space has (symplectic) rank at least r. The diameter
of a parapolar space is the diameter of its collinearity graph. A polar space isomorphic to a
hyperbolic quadric is simply called hyperbolic. We will denote the unique symp containing the
symplectic pair of points x, y by ξ(x, y). The parapolar spaces we will encounter will all have
the property that each singular subspace is a projective space (this is automatic if the symplectic
rank is at least 3, see Theorem 13.4.1(2) of [Shu11]). In this case there is an obvious notion of
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point residual: For an arbitrary point p of such a parapolar space Γ the point residual ResΓ(p) is
the point-line geometry with point set the lines passing through p and line set the (full projective)
planes passing through p. In general, a point residual of a Lie incidence geometry is not a Lie
incidence geometry in the narrow sense as we defined, but rather a direct product of several
ones; it is a Lie incidence geometry if the type of the points of Γ in the underlying building
corresponds to an end-node of the Coxeter diagram.

Note that we always mention dimensions pojectively. Hence the points of the (i + 1)-
Grassmannian of a projective space are the i-dimensional subspaces, or i-subspaces for short.

There is an axiomatic notion of “hexagonic” parapolar spaces, see Chapter 17 of [Shu11].
Slightly abusing that definition, we define:

Definition 2.3. A hexagonic geometry is any Lie incidence geometry of type An,{1,n}, n > 2,
Bn,2, n > 3, Dn,2, n > 4, E6,2, E7,1, E8,8, F4,1 or G2,1.

Note that we deal with Coxeter diagrams, so type F4,4 coincides with type F4,1 by symmetry
of the Coxeter diagram. A hexagonic geometry shares important properties with the so-called
“long root” geometries, but we do not insist on that. However, see [KS02].

For more background on parapolar spaces, hexagonic geometries and proofs of the above
mentioned facts we refer to [Shu11], Chapters 13 and 17. In Section 4, we have collected many
properties of parapolar spaces and some specific Lie incidence geometries that we will need in
our proofs.

3. Main results

We now make the brief versions of our Main Results more explicit. We start with the hexagonic
geometries. These were our main target. However, our methods require to also classify the
convex subspaces of some other Lie incidence geometries and so we deal with all classical cases
and some other exceptional ones.

More precisely, we will prove the following classifications. Note that, since the full space
and the empty subspace are always convex subspaces corresponding to the residue of the empty
flag and a chamber, respectively, we can restrict to proper convex subspaces, meaning exactly
those distinct from the whole space and the empty space.

Theorem 3.1. Let Γ = (X,L) be a hexagonic Lie incidence geometry with no rank 2 symplecta
and Γ′ = (X ′,L′) a proper convex subspace, viewed as a subgeometry. Then either Γ′ corre-
sponds to a residue in the underlying building geometry, or there exists a unique point c ∈ X ′
such that L′ is a set of lines of cardinality at least 2, each line contains c and every point pair in
X ′ on distinct such lines is a special pair.

The proof of Theorem 3.1 will be achieved in Section 6.4. The theorem also holds for the
Lie incidence geometries of type G2,1 and A2,{1,2} if we consider, in these geometries, any pair of
points at distance 2 in the collinearity graph as special. The hexagonic Lie incidence geometries
with rank 2 symplecta are the ones of type An,{1,n}, n > 3, and B3,2. The statements for these
cases require some more preliminaries and we simply refer to Lemma 6.6 and Theorem 9.1 for
the precise results.
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Remark 3.2. It may be of some interest to know precisely what the subspaces Γ′ of a hexagonic
Lie incidence geometry Γ with no rank 2 symplecta corresponding to a residue of the under-
lying spherical building are. For the convenience of the reader, and for further reference, we
enumerate these here:
(1) Γ′ is a singular subspace;
(2) Γ′ is a symp;
(3) τ(Γ) = Bn,2 and τ(Γ′) = Ai,2, 4 6 i 6 n − 1. The subgeometry Γ′ is obtained from the

underlying building geometry by taking a residue of type {i+ 1, . . . , n};
(4) τ(Γ) = Dn,2 and τ(Γ′) = Ai,2, 4 6 i 6 n − 1. The subgeometry Γ′ is obtained from the

underlying building geometry by taking a residue of type {i+ 1, . . . , n}, or, for i = n− 1,
also a residue of type n− 1 works;

(5) τ(Γ) = E6,2 and τ(Γ′) = D5,5. The subgeometry Γ′ is obtained from the underlying building
geometry by taking a residue of type either 1 or 6;

(6) τ(Γ) = E7,1 and τ(Γ′) = E6,1. The subgeometry Γ′ is obtained from the underlying building
geometry by taking a residue of type 7;
We now state our results for other Lie incidence geometries.

Theorem 3.3. Let Γ = (X,L) be a projective Grassmannian, that is, a Lie incidence geometry
of type An,j , 1 6 j 6 n, n > 2, and let Γ′ = (X ′,L′) be a convex subspace containing at
least one point. Then Γ′ corresponds to a residue in the underlying projective space. In other
words, Γ′ arises from the set of all (j − 1)-spaces of the corresponding projective space (over a
skew field), containing a given i1-space, −1 6 i1 6 j − 1, and contained in a given i2-space,
j − 1 6 i2 6 n.

Theorem 3.4. Let Γ = (X,L) be a polar Grassmannian, more precisely, a Lie incidence geom-
etry of type Bn,j or Dn,j , 3 6 j 6 n− 2, and let Γ′ = (X ′,L′) a convex subspace containing at
least one point. Then either Γ′ corresponds to a residue in the underlying building, or it consists
of the union of a set S of singular subspaces pairwise intersecting in a common point c such
that every point of U \ {c} is special to every point point of U ′ \ {c}, for every pair of distinct
members U and U ′ of S.

The previous theorem excludes the types Bn,j and Dn,j , j = 1, 2, n − 1, n. The case j = 1
is straightforward (only singular subspaces and the whole space), the case j = 2 is covered by
Theorem 3.1. The case j = n is the case of dual polar spaces or half spin geometries, see below.
Finally, the case j = n−1 for type B is special in that there are many more exceptional examples
not arising from residues in the underlying building (once again demonstrating the exceptional
behaviour of these Lie incidence geometries, which do not turn up in most characterization
theorems of parapolar spaces, see Chapters 14–17 in [Shu11]). The statement for type Bn,n−1

is cumbersome and we refer to Theorem 8.4. The statement for type Bn,n, commonly known as
dual polar spaces, is simple, and we can take it together with type Dn,n (which coincides with
type Dn,n−1 by symmetry of the diagram), n > 5, commonly known as half spin geometries.

Theorem 3.5. A convex subspace of a dual polar space or half spin geometry, that is, a Lie
incidence geometry of type Bn,n, n > 2, or Dn,n, n > 3, always corresponds to a residue of the
underlying spherical building.
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A special case of both Theorem 3.3 and Theorem 3.5 can be deduced from Lemma 5.2 in
[CGP18]. It follows from that lemma that the convex subspace closure of two points in the
relevant geometries always corresponds to a residue of the underlying spherical building.

The exceptional cases that we will handle and which are not covered by Theorem 3.1 are the
following.

Theorem 3.6. A convex subspace of a Lie incidence geometry of type E6,1 or E7,7 always corre-
sponds to a residue of the underlying spherical building.

For the other Lie incidence geometries of exceptional type (like type E6,3 and so on), we
expect the classification of convex subspaces to be as complicated as for type Bn,n−1, and the
proofs to be case-by-case.

It is noteworthy to consider the special case of strong parapolar spaces. It just follows from
our classification, without a unified proof, that Lie incidence geometries which are strong parap-
olar spaces have only convex subspaces coming from residues in the underlying spherical build-
ing.

Corollary 3.7. A convex subspace of a Lie incidence geometry which is a strong parapolar
space (including polar spaces themselves) always corresponds to a residue of the underlying
spherical building. Conversely, every Lie incidence geometry containing special pairs of points
contains convex subspaces which do not correspond to any residue of the associated spherical
building.

The second assertion of the corollary follows from the simple observation that the convex
subspace closure of a special pair never corresponds to a residue of the associated building. For
the first assertion, we need the classification of strong Lie incidence geometries. This can be
accomplished as follows. Firstly, the classical cases (types An up to Dn) can be easily checked
using the axioms of a projective and polar space (or, for the polar grassmannians of symplectic
rank at least 3, the following arguments will also work). This already provides types An,i, 1 6
i 6 n, Bn,1 and Bn,n, n > 2, and Dn,1 and Dn,n, n > 4. Secondly, Lemma 3.2(3) of [Shu17]
implies that, if the symplectic rank is at least 3, then the point residuals have diameter 2. Now,
these point-residuals can be read off the Coxeter diagram as residues in the building. It is easy
to see that the diameter of a direct product space of three projective spaces is 3; the diameter
of the direct product space of two nontrivial geometries at least one of which has diameter 2
has diameter at least 3; dual polar spaces of rank at least 3 have diameter at least 3; half spin
geometries have diameter 2 only for types Dn,n, with n = 4, 5. For exceptional types, only the
Lie incidence geometries of type E6,1 (and E6,6) have diameter 2, see Table 10.5 in [BCN89].
With this information, the only remaining candidates for strong Lie incidence geometries of
exceptional type are, up to a “duality” of the diagram, the ones of type E6,1 and E7,7. But these
are all strong, as for instance already remarked in [CC83] (in particular Theorem 1); it is also
straightforward to see that the converse of Lemma 3.2(3) of [Shu17] is true, that is to say, a
parapolar space of symplectic rank at least 3 with all point residuals of diameter 2 is strong.
(Perhaps only the case F4,2 needs some more explanation: a residue of type {1, 2, 3} is a convex
subspace of type B3,2, and it contains special pairs.)
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Remark 3.8. If we consider (thick irreducible spherical) building Grassmannians of type Xn,T ,
with arbitrary T , then no further geometries are strong. This can be proved by considering
suitable residues, e.g., if T contains two adjacent types i, j (adjacency in the Coxeter graph),
then the residue of a flag of cotype {i, j} is a non-thick generalized polygon of diameter at least
3, hence contains special pairs. We do not insist further on this since we do not need this in the
sequel of this paper.

We now prove all the preceding theorems. We start with gathering some basic properties in
Section 4. Then we prove Theorem 3.3 and treat the bulk of the other theorems in Section 6.
It appears to be most efficient and insightful to combine the proof of Theorem 3.1 with several
other classifications, since some arguments appear to be uniform across several types. After that,
we treat the types Bn,n−1 and An,{1,n} separately.

It may be noted that the assumptions of some lemmas are merely geometric or even ax-
iomatic, leaving room to be applied on potentially other parapolar spaces than the Lie incidence
geometries we are aiming at. Such lemmas may be useful for future characterizations or classifi-
cation results. Indeed, it is for instance still an open question whether there exist strong parapolar
spaces with symplectic rank at least 3 not arising from spherical buildings. To make this clear in
the sequel, we will refer to such results as axiomatic results. Their proofs do not require knowl-
edge of specific properties of the Lie incidence geometries but only use the given properties
assumed.

4. Basic properties of some Lie incidence geometries

Here we state a few facts that we will need in our proofs. The first one confirms that subspaces
corresponding to residues of the corresponding building are convex and follows immediately
from Corollary 3.14 of [Tit74].

Fact 4.1. Let Γ = (X,L) be a Lie incidence geometry associated with Xn,T . Let F be a flag of
the corresponding building. Then the set Σ of points P of Γ such that P ∪F is a flag is a convex
subspace of Γ.

With Σ and F as in the previous fact, we say that Σ corresponds to the residue of F . As
explained above, the converse is not always true; however for certain types of convex subspaces,
it is true. We record it for further reference.

Fact 4.2. Let Γ = (X,L) be a Lie incidence geometry associated with Xn,T . Let Γ′ be a convex
subspace of Γ′ isomorphic to either a projective space, or a polar space. Then there exists a flag
F of the corresponding building such that Γ′ corresponds to the residue of F .

For singular subspaces, this follows from Theorem 10.2.10 in [BCN89] (as mentioned above);
for polar spaces, this follows immediately from the fact that the symps of a Lie incidence geom-
etry are convex subspaces, they are determined by any pair of its non-collinear points, and every
convex subspace of a polar space is either singular or the whole space.

In the theory of spherical buildings, the notion of opposition is an important one. It expresses
that two elements are at maximal distance from each other. In the standard realization of an
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apartment on a sphere, such elements are really diametrically opposite. Opposite elements need
not necessarily have the same type, but in any hexagonic geometry, the elements opposite a point
are points, and the elements opposite a line are lines.

Fact 4.3. Let Γ = (X,L) be a hexagonic Lie incidence geometry. Then the following hold.
(i) Points that are at distance 3 in the collinearity graph are opposite; consequently the di-

ameter of Γ is 3.
(ii) If p ∈ X is opposite some point of L ∈ L, then there is a unique point q on L not opposite

p; the pair {p, q} is special.
(iii) If p ⊥ q ⊥ r ⊥ s for four points of Γ such that {p, r} and {q, s} are special pairs, then p

is opposite s.
(iv) If Γ has symplectic rank at least 3 then the following two properties hold.

If ξ is a symplecton and x a point not on ξ, then dim(x⊥ ∩ ξ) 6= 0. (A)

If ξ is a symplecton and x a point not on ξ with dim(x⊥ ∩ ξ) > 2,

then x⊥ ∩ ξ is a maximal singular subspace of ξ.
(B)

Noting that hexagonic geometries are non-degenerate root filtration spaces in the sense of
[CI07], (i) follows from Axiom (F) of [CI07], (ii) follows from Axiom (F) and Lemma 2(iv) in
[CI07], and (iii) follow from Lemma 2(v) of [CI07].

Regarding (iv), (A) is the same as (H1) in Theorem 17.1.1 of [Shu11]; (B) is straightforward
to check for polar line Grassmannians; for the exceptional types (B) it is a reformulation of (F4)
in [CC83] (taking care of types Ei, i = 6, 7, 8), and of (F5) in [Coh82] (taking care of type F4).

Our proof will also use the point residuals of hexagonic geometries. By Theorems 17.1.2,
17.2.6 and 17.2.7 of [Shu11], these have properties (i), (ii) and (iii) below. Property (iv) follows
from Fact 3.18 of [DSSVM22] in the exceptional case; in the classical cases this is straightfor-
ward to verify.

Fact 4.4. Let Γ = (X,L) be a parapolar space isomorphic to the point residual of a hexagonic
Lie incidence geometry of symplectic rank at least 3, Then the following assertions hold (where
opposition is relative to the spherical building underlying Γ).

(i) Points that are at distance 3 in the collinearity graph are opposite; consequently the di-
ameter of Γ is 3.

(ii) If p ∈ X is opposite some point of L ∈ L, then there is a unique point q on L not opposite
p; the pair {p, q} is symplectic.

(iii) A point p ∈ X not contained in a symp ξ is collinear to at least one point of it; if p is
collinear to exactly one point q of ξ, then it is opposite every point of ξ not collinear to q.

(iv) Two symps are opposite if and only if collinearity defines a bijection between their point
sets.

Finally we shall need a general property, called (CL) below, of some specific classes of
classical hexagonic geomeries Γ = (X,L).
(CL) The parapolar space Γ contains a symp ξ with the property that, whenever a point x ∈ X\ξ

is collinear to a point of ξ, then it is precisely collinear to a line L of ξ. Also, x is special
to every point of ξ not collinear to L.



10 Jeroen Meulewaeter, Hendrik Van Maldeghem

Lemma 4.5. The parapolar spaces of types Bn,i, n > 3, 2 6 i 6 n − 1 and Dn,2, n > 4,
2 6 i 6 n− 2, satisfy Property (CL) with ξ a symp corresponding to a residue of a flag of type
{1, 2, . . . , i− 1} in the underlying spherical building.

Proof. We view the points of the parapolar space as the (i−1)-dimensional singular subspaces of
the corresponding polar space. Let ξ be a symp consisting of the singular subspaces of dimension
i − 1 containing a fixed singular subspace U of dimension i − 2. Let W ⊇ U be a point of ξ.
Let W ′ /∈ ξ be collinear to W , that is, W ′ is an (i− 1)-dimensional singular subspace spanning
an i-dimensional subspace Y together with W and U 6⊂ W ′. Then the points of ξ collinear with
Y are precisely the (i− 1)-dimensional spaces containing U and contained in Y , which proves
the assertion, because they form a unique line of the parapolar space.

5. Proof of Theorem 3.3

We prove this theorem by induction on n. Translated to the projective space, the union of the
j-spaces corresponding to the points of Γ′ spans a subspace U ′ and the intersection of these
subspaces is a subspace U . Let i1 be the dimension of U and i2 be the dimension of U ′. If
i1 6= −1 or i2 6= n, then we can consider either the upper residue of U (all singular subspaces
strictly containing U ) or the lower residue of U ′ (all subspaces strictly contained in U ) and apply
the induction hypothesis to conclude the proof. So we may assume U = ∅ and U ′ is the whole
projective space. By duality we may also assume j 6 n

2
.

We now have to show that all j-spaces belong to Γ′. Since U ′ is generated by all j-spaces
that are points of Γ′, it suffices to show that for any two U1, U2 ∈ Γ′ all j-spaces in 〈U1, U2〉 are
contained in Γ′. So let U1, U2 ∈ Γ′ be arbitrary. If U1 ∩ U2 6= ∅ or dim(〈U1, U2〉) 6= n we can
again look at the residues of U1 ∩U2 or 〈U1, U2〉, respectively, and use the induction hypothesis.
Hence we may assume U1 ∩ U2 = ∅ and dim(〈U1, U2〉) = n.

Let W be a j-space intersecting U1 in a subspace of dimension j − 1. Then U1 and W span
a (j + 1)-dimensional subspace which intersects U2 in a subspace of dimension 0. Let V be
the span of this 0-dimensional subspace and U1 ∩W . Then by Proposition 6.6.2 of [BC13], V
is lying on a shortest path between U1 and U2, so V ∈ Γ′ and moreover W ∈ Γ′. Hence all
neighbours of U1 in Γ are contained in Γ′. By applying the same argument to U2 we can find
V ′ ∈ Γ′ such that W ∩ V ′ = ∅. This shows that we can repeat the previous argument to W in
place of U1 and by connectedness we get that all j-spaces are contained in Γ′.

6. Proof of Theorem 3.1

6.1. Short outline of the proof

In all cases where the convex subspace corresponds to a residue of the underlying spherical
building, Γ′ contains neither special nor opposite pairs (throughout this section, opposition will
refer to Γ and not to Γ′). We will hence first reduce to that case by showing that Γ′ cannot contain
opposite pairs of points and, if Γ′ contains at least one special pair (but no opposite pair), then
it consists of a union of lines passing through the same point such that each pair of points from
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distinct lines is special. We refer to this as the Special Case and we call a convex subspace of that
type a special star. If there are only collinear pairs in Γ′, then clearly Γ′ is a singular subspace.
Hence the only remaining case to deal with is then when Γ′ contains symplectic pairs, but no
special or opposite ones. We refer to this as the Symplectic Case.

For the rest of this section, Γ is a hexagonic Lie incidence geometry, and except for Lemma
6.1, we assume it is not of type An,{1,n}, n > 2. But we explicitly do allow type B3,2.

6.2. The Special Case

We first show that Γ′ never contains opposite pairs of points. The following lemma also holds
when τ(Γ) = An,{1,n}, n > 2.

Lemma 6.1. A proper convex subspace Γ′ = (X ′,L′) of the hexagonic Lie incidence geometry
Γ = (X,L) never contains any pair of opposite points.

Proof. We claim that whenever Γ′ contains a point x which has an opposite in X ′, then every
point of Γ collinear to x belongs toX ′ and has an opposite inX ′. A connectivity argument then
concludes the proof.

So let x, y ∈ X ′ with x and y opposite. Let z be an arbitrary point of X collinear to x. Let
L be the line containing x and z. Then, by Fact 4.3(ii), there is a unique point xL on L not
opposite y and xL belongs to a shortest path joining x and y. Hence L ⊆ X ′ and so z ∈ X ′.
Consider a line M through y opposite L. Then likewise M ⊆ X ′. But every point of M except
for one is opposite z, showing our claim.

We need a preparatory lemma which we will apply later on to a point residual. It is an
axiomatic result.

Lemma 6.2. Let ∆ be a strong parapolar space of diameter 3 such that every point is collinear
with at least one point of any symplecton. Then each subspace ∆′ containing a point x and a
symplecton S, such that dim(x⊥ ∩ S) = 0, closed under taking the symplecton through two
symplectic points, coincides with ∆. In particular, each such convex subspace coincides with
∆.

Proof. Let z be the unique neighbour of x in S. We first show x⊥ ⊆ ∆′. Consider y collinear
with x. First assume that y is not collinear to z. Then y is collinear with a point s ∈ S different
from z. Then x and s are symplectic and both in ∆′, hence y ∈ ∆′. Assume now that y
is collinear to z. We can find a symplecton T containing yx. There exist two lines through
x generating this symplecton and containing points not collinear to z. By the previous case,
T ⊆ ∆′ and hence y ∈ ∆′.

Now consider a point y symplectic with x. Since the symplecton through x and y is generated
by two lines through x, which are contained in ∆′, we get y ∈ ∆′. Finally consider a point y at
distance 3 from x. Consider a symplecton T through y, then x is collinear with a unique point t
of T and symplectic with all lines through t in T . Since these lines generate T and are contained
in ∆′, we get y ∈ ∆′.

Corollary 6.3. A proper convex subspace ∆′ of a Lie incidence geometry of type A5,3, D6,6 or
E7,7 does not contain a pair of opposite points.
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Proof. Although a proof similar to that of Lemma 6.1 could be given, we can also use Lemma
6.2. To that end, recall first that A5,3, D6,6 and E7,7 are the types of the point residuals of the Lie
incidence geometries of type E6,2, E7,1 and E8,8, respectively, so that we can use Fact 4.4. Now
let x, y ∈ ∆′ with x opposite y. By Fact 4.4(i), there is a path x ⊥ p ⊥ q ⊥ y of length 3
(which is contained in ∆′ by convexity). By Fact 4.4(ii), there is a unique symp ξ(p, y). Now
the conditions of Lemma 6.2 are met and the assertion follows.

Now we treat the case where the convex subspace Γ′ contains special pairs of points, but no
opposite ones, and Γ does not contain rank 2 symplecta (the latter is equivalent to Γ not having
type B3,2). If two points x and y are special, we denote by xony the unique point collinear with
both x and y.

Lemma 6.4. Suppose the convex subspace Γ′ = (X ′,L′) of the hexagonic Lie incidence geom-
etry Γ = (X,L) not containing rank 2 symplecta contains a special pair {x, y} of points, and
no opposite pair. Set z = xony. Then Γ′ does not contain a point u collinear to both x and z not
on xz.

Proof. Suppose for a contradiction that it does. Then Γ does not have type G2,1 and hence the
assumptions imply that Γ has symplectic rank at least 3.

In the residue ResΓ(z), the points zx and zy have distance 3 (by Fact 4.4(i)) and there is a
unique line in the plane on x, z and u, which we may assume to be zu, at distance 2 from zy
in this residue (by Fact 4.4(ii)). It follows that δΓ(y, u) = 2 and {y, u} is a symplectic pair.
Hence Γ′ contains the symp ξ(y, u). In ResΓ(u), the symp ξ(y, u) and the point ux are such
that a unique point of the symp is collinear to the point (because the symp ξΓ(y, u) contains a
point at distance 3 from the point ux). By Lemma 6.2 all points of ResΓ(u) belong to Γ′, since if
there is a symp ξ through two intersecting but non-coplanar lines, then ξ belongs to the convex
subspace closure of these two lines. Note that it follows from Fact 4.4(iii) that ResΓ(u) satisfies
the conditions of this lemma. Hence Γ′ contains all planes through the line uz. Likewise, if v is
a point collinear to z, u and y and distinct from z, then all planes through vz are contained in Γ′.

Let π be the plane through z, u, v and let α be an arbitrary plane through z intersecting π in
a line K. If K ∈ {uz, vz}, then α ⊆ Γ′. If K /∈ {uz, vz}, and α is in some 3-space together
with π, then clearly also α ⊆ Γ′. If K /∈ {uz, vz}, and α is not in any 3-space together with π,
then α and π are contained in a unique symp, which also contains some plane through uz not
contained in a 3-space together with π, and hence belongs to Γ′. But then also α belongs to Γ′.

Now let N be an arbitrary line through z. Then N is contained in at least one symp together
with some line K through z in π. But that symp is also generated by two planes through K,
which both belong to Γ′, and so we see that N belongs to Γ′. Hence all lines through z belong
to Γ′ and so all points symplectic to z do, too. We claim that may choose two of these that
are opposite, and then we contradict the previous lemma. Indeed, let ξ1 and ξ2 be two locally
opposite symps through z (hence opposite in the point residual at z). Select now points zi ∈ ξi
not collinear to z, i = 1, 2. Assume for a contradiction that δ(z1, z2) = 2 and select u ∈ z⊥1 ∩z⊥2 .
By Fact 4.3(iii)Equation (A), u⊥ ∩ ξi is either a line or a maximal singular subspace of ξi. It
follows that {z, u} is a symplectic pair; say the determine the symp ζ . If for some i ∈ {1, 2},
u⊥ ∩ ξi is a line, then Fact 4.4(iii) implies that either z is collinear to that line, and hence to zi,
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or {z, u} is a special pair, both contradictions. Hence u⊥∩ξi is a maximal singular subspace Ui,
for i = 1, 2. Let Wi be the maximal singular subspace of ξi generated by z and z⊥ ∩ Ui. Then
Wi ⊆ ζ and hence each point of W1 \ {z} is collinear to at least a plane of W2, contradicting
Fact 4.4(iv). The claim follows.

We now conclude the special case.

Proposition 6.5. Suppose the proper convex subspace Γ′ = (X ′,L′) of the hexagonic Lie inci-
dence geometry Γ = (X,L) not containing rank 2 symplecta contains a special pair {x, y} of
points. Then Γ′ is a special star.

Proof. If Γ has type G2,1, then the assertion is an easy exercise. So we may assume that Γ is a
(non-strong) parapolar space of symplectic rank at least 3. Suppose Γ′ contains a special pair
{x, y}. Set z = xony. Let u be a further point of Γ′, not on the line xz or yz.

We claim that u is collinear to z. Indeed, by Lemma 6.1, u is not opposite z. If {u, z} is
special, then uonz is not on any of the lines xz or yz, as, by Fact 4.3(iii), we also obtain in this
case an opposite pair {u, y} or {u, x}, respectively, in Γ′. By the same token, {x, uonz} is either
collinear or symplectic as otherwise x and u are opposite. But then there is a plane containing
the line zx, contradicting Lemma 6.4. Hence the only remaining possibility to rule out is when
u and z are contained in a symp. Then there is a plane π containing z. No point of π is special
to x, by Lemma 6.4. Hence all points of π are either collinear or symplectic; but then this yields
a plane on xz, again contradicting Lemma 6.4. The claim follows.

Now u is not symplectic to x as otherwise we again obtain a plane through xz, contradicting
Lemma 6.4. Similarly, u is not symplectic to y. It follows that X ′ consists of lines through z
such that points on different lines are special pairs.

The following lemma shows that the condition in Lemma 6.4 that there are no symplecta of
rank 2 is necessary. Indeed, the last type of convex subspaces in the following lemma contains
a special pair x, y and a point u collinear to both x and xony.

Lemma 6.6. The proper convex subspaces of a Lie incidence geometry of type B3,2 are singular
subspaces, symplecta, special stars, or there exist a plane π and a point p ∈ π in the underlying
polar space of rank 3 such that this convex subspace consists of all lines through p (a symplecton)
and all lines contained in π (a maximal singular subspace).

Proof. Let X ′ be a proper convex subspace. First assume that X ′ contains only identical,
collinear and special pairs, let {x, y} be such a special pair. Set z = xon y. First assume
that there exists a point u not on xz collinear with a point on the line xz (or yz) distinct from
z. If u is not collinear with z, then by assumption {u, z} is a special pair and hence u and y
are opposite, so X ′ would not be proper by Lemma 6.1. Hence u, x and z span a plane, con-
tained in X ′. For any r ∈ X , let Ur be the corresponding line in the polar space of rank 3.
There exists a plane π of the polar space such that Ux, Uu and Uz are contained in π. Note that
{r ∈ X | Ur ⊆ π} ⊆ X ′. Since z and y are collinear, Uy is a line intersecting π in a point p.
Since the rank of the polar space is 3, there exists a line in π through p not collinear with Uy.
ThenX ′ contains a symplectic pair, contradicting our assumption. Now assume that u is a point
not collinear with z; by assumption it is then special to z. By the previous considerations uonz
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is collinear with z and not with x (nor y), so it is special to x. Hence u and x are opposite, again
contradicting our assumption. So X ′ is a special star.

If X ′ contains only identical, collinear or symplectic pairs then Proposition 6.8 applies (and
note that the proof of Proposition 6.8 does not rely on the current lemma). So we may assume
that X ′ contains a symplecton and a special pair. Note that a symplecton of B3,2 consists of all
lines through a fixed point of the polar space. In particular, ifX ′ contains two distinct symplecta,
it would contain an opposite pair. So X ′ contains a unique symplecton ζ , consisting of all the
lines through the point p. By assumption there exists r ∈ X ′\ζ , i.e., Ur is a line not containing
p. If Ur is not collinear to p, then we find a line through p opposite Ur, and X ′ thus contains an
opposite pair. So Ur is collinear with p and X ′ contains all lines contained in the plane π on p
and Ur. Hence X ′ contains the subspace consisting of all lines through p and all lines contained
in π. One checks that this is indeed a convex subspace.

Assume that X ′ strictly contains this convex subspace, then the argument in the previous
paragraph shows that there exists another plane π′ through p such that all lines of π′ are contained
inX ′. If π and π′ intersect in a line L, then consider two non-collinear lines through a point on L
distinct from p. These are both contained inX ′ and henceX ′ would contain another symplecton,
quod non. If π and π′ intersect only in p, then X ′ contains an opposite pair.

6.3. The Symplectic Case

Type G2,1 is trivial. So it remains to deal with hexagonic parapolar spaces of symplectic rank at
least 3. We prove an auxiliary axiomatic result independent of that assumption.

Lemma 6.7. Let Γ = (X,L) be a non-strong parapolar space containing a convex subspace
Γ′ properly containing a symp ξ satisfying Property (CL). Then Γ′ contains special pairs. If
moreover Γ = (X,L) is a hexagonic parapolar space of symplectic rank at least 3, then Γ′ = Γ.

Proof. Consider a point x in Γ′ not contained in ξ. By replacing x with the second point of a
shortest path joining a point of ξ and x, we may assume that x is collinear to at least one point
of ξ. By (CL), x is collinear to a line L of ξ. Also by (CL), there are points y of ξ special to x.
Hence Γ′ contains special pairs {x, y}. The last assertion follows from Proposition 6.5.

We can now handle the types Bn,2, Dn,2 and F4,1.

Proposition 6.8. Let Γ = (X,L) be a Lie incidence geometry of typeBn,i, n > 3 and 1 < i < n,
Dn,i, n > 4 and 1 < i < n − 1, or F4,1. Let Γ′ = (X ′,L′) be a proper convex subspace such
that every pair {x, y} ⊆ X ′ is either identical, collinear or symplectic. Then either

• Γ′ is a singular subspace;

• Γ′ is a symp;

• Γ has type Bn,i or Dn,i and there exist singular subspaces U and V of the corresponding
polar space of type Bn,1 or Dn,1, respectively, of projective dimension i1 − 1, with 0 6
i1 < i − 1, and of projective dimension i2 − 1, with i + 1 < i2 6 n, respectively, and
(i1, i2) 6= (i − 2, i + 2), such that X ′ is the set of all (i − 1)-spaces contained in V and
containing U . (The case (i1, i2) = (i− 2, i+ 2) corresponds to a symp.)
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Proof. We may assume that Γ′ is not a singular subspace, that is, Γ′ contains a symp ξ. For
the types B3,2, B4,2, D4,2 and F4,1, the assertion now follows immediately from Lemma 6.7, as
these Lie incidence geometries have Property (CL) by Lemma 4.5 for the classical types, and by
Lemma 4.2(ii) in [Coh82] for type F4.

Now suppose that Γ has type Bn,i or Dn,i, with n > 5. If ξ is a polar space of type Bm,1 or
Dm,1 with m = n − i + 1, respectively, then, by Lemma 4.5, ξ possesses Property (CL), and
the assertion follows. Hence all symps of Γ′ consist of all (i − 1)-spaces contained in a (fixed)
singular subspace of dimension i + 1 and containing a (fixed) singular subspace of dimension
i−3. Consequently,X ′ consists of a set of (i−1)-spaces of the corresponding polar space which
are pairwise contained in a common singular subspace. It follows that the union of these (i−1)-
spaces is contained in a singular subspace U and so X ′ is the point set of a convex subspace of
the i-Grassmannian of U . The assertion now follows from Theorem 3.3.

In order to unify some proofs for the exceptional types, we now prove another axiomatic
result. We note that, by Theorems 1 and 2 in [CC83], each symp of any Lie incidence geometry
of type E6,1, E6,2, E7,1, E7,7 or E8,8 satisfies (HC). Moreover, all symps of these parapolar spaces
have respective rank 5, 4, 5, 6, 7 (this can be read off the respective Coxeter diagrams).

Lemma 6.9. Let Γ = (X,L) be a parapolar space containing a hyperbolic symp ξ of rank r > 3
possessing the following property.
(HC) If a point x ∈ X\ξ is collinear to a submaximal singular subspace of ξ, then it is collinear

to a maximal singular subspace of ξ.
Let Ω be the convex subspace spanned by ξ and a point p /∈ ξ collinear to some submaximal
singular subspace of ξ. Suppose that every symp of Γ has rank r. Then

(i) For every maximal singular subspace U of one of the two natural systems of ξ, there is a
singular subspace of Γ properly containing U and belonging to Ω.

(ii) Every maximal singular subspace of the other system of ξ is contained in a symp distinct
from ξ and belonging to Ω.

(iii) If r is odd and r > 5, then Ω contains a point q and a symp ζ such that no point of ζ is
collinear to q.

(iv) If r is even and r > 6, then Ω contains a point q and a symp ζ such that q⊥ ∩ ζ is a
singleton.

Proof. Let us denote the two different systems of maximal singular subspaces of ξ by Υ1 and
Υ2. We may assume that p is collinear to a member U1 ∈ Υ1. Let U ′1 ∈ Υ1 be adjacent to U1,
that is, dim(U1 ∩ U ′1) = r − 3. Pick a point x ∈ U ′1 \ U1 and set ζ := ξ(p, x). Then ζ contains
the (r − 2)-space S spanned by x and U1 ∩ U ′1, and also the (r − 1)-space U2 ∈ Υ2 spanned by
x and x⊥∩U1. Hence an arbitrary (r− 1)-space U of ζ containing S and distinct from U2 is not
contained in ξ. Pick a point q ∈ U \ S, then q is collinear to all points of S. Hence, by (HC),
q is collinear to either U ′1 or U2. Since the latter cannot happen, q ⊥ U ′1. Hence U ′1 is properly
contained in a singular subspace 〈q, U ′1〉 of dimension r contained in Ω. By connectivity of the
graph on Υ1 with above adjacency, we conclude that every member of Υ1 is properly contained
in a singular r-subspace contained in Ω. This shows (i).
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Note that the member U2 of Υ2 above is essentially arbitrary so that our arguments above
also imply that every member of Υ2 is contained in a second symp belonging to Ω. This shows
(ii).

Now let r > 5 be odd. Select U1 ∈ Υ1 and U2 ∈ Υ2 such that U1 ∩ U2 = ∅. Let ζ ⊆ Ω be
a symp distinct from ξ containing U2 and let y ∈ Ω be a point not in ξ collinear to U1. Suppose
y is collinear to some point z ∈ ζ . Then z /∈ U2. Set W := z⊥ ∩ U2. We have W 6= U2 since
U2 is maximal in ζ and z /∈ U2. Our assumptions then imply that z⊥ ∩ ξ = U is a maximal
singular subspace intersecting U1 in a point u. Pick w ∈ W . Then ξ(y, w) contains z, and also
it contains w⊥ ∩ U1. Hence, for each u′ ∈ (w⊥ ∩ U1) \ {u}, we have ξ(y, w) = ξ(z, u′). Since
for arbitrary w′ ∈ W \ {w}, dim(w′⊥ ∩w⊥ ∩U1) = r− 3 > 0, every point w′ of W is collinear
to some point u′ of (w⊥ ∩ U1) \ {u}. We deduce w′ ∈ ξ(z, u′) and so W ⊆ ξ(y, w). Likewise
y⊥ ∩ U1 ⊆ ξ(y, w), which would imply that ξ(y, w) = ξ, a contradiction. Hence no point of ζ
is collinear to y. This shows (iii).

Now let r > 6 be even. Select U1 ∈ Υ1 and U2 ∈ Υ2 such that U1 ∩ U2 is a point x. Let
ζ ⊆ Ω be a symp distinct from ξ containing U2. In the residue of x, we can apply (iii) and (iv)
follows.

In order to handle the cases of types E6,2 and E7,1, we need the classification of convex
subspaces of the parapolar spaces of types D5,5 and E6,1, respectively. We consider the former
as a special case of type Dn,n.

Proposition 6.10. A proper convex subspace of a Lie incidence geometry Γ of type Dn,n, n > 5,
is either singular or corresponds to the set of all maximal singular subspaces of one natural
system of the corresponding polar space containing a fixed singular subspace of projective di-
mension j, with 0 6 j 6 n− 5. The case j = n− 5 corresponds to a symp.

Proof. We prove this proposition by induction on n. To that aim, we allow n = 4, in which
case we just have a polar space and the assertion follows from the fact that nonsingular convex
subspaces of a polar space are improper.

Now let n > 5. Let Υ be the natural system of maximal singular subspaces, sometimes
called generators, of the corresponding polar space of type Dn,1 corresponding to the points of Γ
(that is, Υ is the set of vertices of the corresponding building of type Dn of type n). LetX ′ ⊆ Υ
be the set of generators corresponding to the points of an arbitrary proper convex subspace Γ′ of
Γ. Let S be the intersection of all members of X ′. If S is nonempty, then the assertion follows
from the induction hypothesis applied in the residue of S. If S = ∅, then we claim that X ′
contains two disjoint members (in particular, n is even).

Indeed, if not, set ε = 0, 1 according to whether n is even or odd, respectively, and let
n−ε

2
− j, 0 6 j < n−ε

2
, be the diameter of Γ′. Then there exist two members U , U ′ of X ′ with

dim(U ∩ U ′) = 2j − 1 + ε. If j = ε = 0, then U and U ′ are disjoint, so ` := 2j − 1 + ε > 0.
In the (upper) residue of U ∩ U ′, the generators U and U ′ become disjoint generators and so
the induction hypothesis implies that all members of Υ containing U ∩ U ′ belong to X ′. By
hypothesis, there exists U ′′ ∈ X ′ not containing U ∩ U ′. We may choose U ′′ so that m :=
dim(U ∩ U ′ ∩ U ′′) is minimal. If m 6 ` − 2, then we can find a generator W ∈ Υ containing
U ∩ U ′ and intersecting U ′′ in U ∩ U ′ ∩ U ′′, contradicting the value of the diameter of Γ′.
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Hence m = ` − 1. Suppose first ` > 1. Then we can find two members W,W ′ ∈ X ′ with
dim(U ∩U ′ ∩W ∩W ′) = m− 1. Applying induction in the residue of U ∩U ′ ∩W yields that
all members of Υ containing U ∩U ′ ∩W belong to X ′. Likewise, all members of Υ containing
U ∩ U ′ ∩W ′ belong to X ′. This now implies that we can find two members of X ′ intersecting
in just U ∩ U ′ ∩W ∩W ′, contradicting the value of the diameter of Γ′ again. Hence ` = 0. Set
{x} = U ∩ U ′. It is easy to see that we can select a member of Υ containing x and intersecting
U ′′ in just a point, say y. Induction implies that all members of Υ containing y belong to X ′.
Similarly, every point z of the corresponding polar space of type Dn,1 collinear to both x and
y, but not on the line xy is the intersection of a member of X ′ through x and one though y and
hence all members of Υ through z belong to X ′. Interchanging the role of y with z, we also
obtain this property for points of the line xy. Since there is a member U∗ of Υ containing xy,
and since ` = 0 implies ε = 1, every member of Υ intersects U∗ ⊆ (xy)⊥ and hence belongs to
X ′. But then Γ′ is improper, a contradiction. The claim follows.

The previous claim implies that we may assume that n is even and that X ′ contains two
opposite members U and U ′. Each line L in U can be obtained as the intersection of U with a
member of Υ in a shortest path between U and U ′, and hence induction implies that all members
of Υ intersecting U (or U ′) nontrivially, belong to X ′. Since each such member clearly has an
opposite in X ′, the same argument now readily implies that Υ = X ′.

This now implies for the case n = 5 the following corollary.

Corollary 6.11. A proper convex subspace of a Lie incidence geometry of type D5,5 is either
singular or coincides with a symp.

The same is true for type E6,1, as the following proposition claims. We use the fact that any
two symps of an incidence geometry of type E6,1 intersect nontrivially (see Exercise 15.5 in
[Shu11]).

Proposition 6.12. Each proper convex subspace of a Lie incidence geometry Γ = (X,L) of
type E6,1 is either singular or coincides with a symp.

Proof. Let Γ′ = (X ′,L′) be a convex subspace of Γ. We may assume that Γ′ is not singular.
Then it contains at least one symp ξ (as Γ is a strong parapolar space of diameter 2; see for
instance Exercise 15.4 in [Shu11]). We may assume that there exists x ∈ X ′ \ ξ. If x is opposite
ξ, then, since no two symps are disjoint, every point of Γ is contained in a symp determined
by x and some point of ξ, hence Γ′ is not proper. If x is not opposite ξ, then, noting that ξ has
Property (HC), there exist, by Lemma 6.9(iii), a point p and a symp ζ in Γ′ such that p⊥∩ζ = ∅.
But then p and ζ are opposite and we again conclude that Γ′ is not proper.

Now we can finish the exceptional cases of type E. Note that the cases in the next proposition
also follow from the proof of Theorem 4.1 of [Coh21], using different arguments.

Proposition 6.13. Each proper convex subspace Γ′ of a Lie incidence geometry Γ of type E6,2,
E7,1 or E8,8 containing no special pairs of points is obtained from a residue in the underlying
spherical building.
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Proof. We may assume that Γ′ contains a symp ξ and some point p outside ξ. Since Γ′ does
not contain special point pairs, Fact 4.4(iii) and Property (B) imply that p⊥ ∩ ξ is a maximal
singular subspace U of ξ. Note that the symp ξ satisfies the hypotheses of Lemma 6.9. We now
analyse the three distinct cases.

E6,2 We observe first that ξ and p are contained in a unique convex subspace Ω of type D5,5

obtained from the residue of a vertex of type 1 or 6 in the corresponding building of type
E6. By Corollary 6.11 we have Ω ⊆ Γ′. Assume that Γ′ contains a further point p′ /∈ Ω.
Then we may assume that p′⊥ ∩ ξ = U ′ is a maximal singular subspace of the natural
system not containing U . Without loss of generality we may assume that U ∩ U ′ is a
point u. By properties (easily verified in an apartment of the underlying building) of Lie
incidence geometries of type E6,2, the point pair {p, p′} is a special pair (and ponp′ = u),
a contradiction.

E7,1 We observe first that ξ and p are contained in a unique convex subspace Ω of type E6,1

obtained from the residue of a vertex of type 7 in the corresponding building of type E7.
Now Proposition 6.12 implies Ω ⊆ Γ′. Assume now there exists a point x ∈ Γ′ \ Ω.
Then by properties of Lie incidence geometries of type E7,1 (see for instance Fact 3.13 of
[DSSVM22] which can easily be derived from the (E6,1 − E6,2 − E6,1)-representation of
the thin parapolar space of type E7,2 in Section 7.2 of [VMV19]), there exists some point
of Ω special to x, a contradiction.

E8,8 Lemma 6.9(iii) yields a point x and a symp ζ , both belonging to Γ′, such that x⊥∩ζ = ∅.
Now the second diagram of Section 7.3 of [VMV19] implies that some point of ζ is special
to x, a contradiction.

The proof of the proposition is complete.

Finally, to complete the cases of diameter at most 3 in the exceptional case, we have the
following classification of convex subspaces for Lie incidence geometries of type E7,7.

Proposition 6.14. Each proper convex subspace Γ′ of a Lie incidence geometry Γ of type E7,7

either is singular or coincides with a symp.

Proof. Let Γ′ be a proper convex subspace of Γ. By Corollary 6.3, Γ′ does not contain opposite
pairs of points. Hence, if Γ′ is not singular and does not coincide with a symp, then it contains
a symp ξ and a point p such that dim(p⊥ ∩ ξ) 6= 0. Then automatically p⊥ ∩ ξ is a maximal
singular subspace of ξ (by Theorem 1 in [CC83]). Then Lemma 6.9(iv) yields a symp ζ and a
point x in Γ′ such that x⊥ ∩ ζ is a point. Consequently Γ′ contains pairs of opposite points after
all, a contradiction.

We covered all strong parapolar spaces which are Lie incidence geometries, except for the
dual polar spaces. This is the content of the next proposition. In fact, the result is well known
and is contained in Theorem 8.5.15 of [Shu11], which is noted there along the way of proving
Cameron’s characterisation [Cam82] of dual polar spaces. We include a proof for completeness’s
sake; it differs from the one in [Shu11] in that it is entirely written in terms of the underlying
polar space.



combinatorial theory vol (issue) (year), #n 19

Proposition 6.15. Each proper convex subspace of a Lie incidence geometry Γ of type Bn,n
corresponds to a residue of the underlying building. In other words, each convex subspace
corresponds to the set of maximal singular subspaces of the corresponding thick polar space
containing a fixed singular subspace (which can be empty or maximal, or anything in between).

Proof. In a similar way to the last paragraph of the proof of Proposition 6.10 one shows that
no proper convex subspace contains two points corresponding to disjoint maximal singular
subspaces of the corresponding polar space ∆. We denote by Up the maximal singular sub-
space of ∆ corresponding to the point p of Γ. Now let Γ′ be a proper convex subspace of Γ
and let d be its diameter, 0 6 d 6 n − 1. Then there exist two points p, q in Γ′ such that
dim(Up ∩Uq) = n− d− 1. Considering the (upper) residue of Up ∩Uq, we see that Γ′ contains
all points r such that Up ∩ Uq ⊆ Ur. But for any other maximal singular subspace Ux, there
exists a maximal singular subspace Uy ⊇ Up ∩Uq with δ(x, y) > d, a contradiction. This shows
the proposition.

6.4. Conclusion of the proof of Theorem 3.1

We wrap up everything we proved in this section: We proved Theorem 3.1 in

Lemma 6.1: opposite pairs of points in the proper convex subspace cannot occur,

Proposition 6.5: only special stars occur when at least one pair of points is special,

Proposition 6.8: the remaining cases for the classical types and type F4,1,

Proposition 6.13: in the remaining cases for the exceptional E-types.

Moreover, we classified the convex subspaces of the hexagonal geometries of typeB3,2 in Lemma
6.6. Also, we completed the proof of Main Result 2 in Proposition 6.10 for type Dn,n, in Propo-
sition 6.12 for type E6,1, in Proposition 6.14 for type E7,7, and in Proposition 6.15 for dual polar
spaces (the case of projective Grassmannians was done in Section 5).

7. Proof of Theorem 3.4

Let Γ = (X,L) be a Lie incidence geometry of type Bn,j or Dn,j , with 3 6 j 6 n − 2. Let
∆ be the corresponding polar space. Without danger of confusion, we will denote with ⊥ the
collinearity in both Γ and ∆ (it will always be clear from context). For a point p of Γ, we denote
by Up the singular subspace of dimension j − 1 of ∆ corresponding to p. For a subset Y ⊆ X ,
we denote by ∆(Y ) the corresponding set of (j−1)-spaces of ∆, that is, ∆(Y ) = {Uy | y ∈ Y }.

We first establish the distance between two points of Γ. Two distinct singular subspacesU,U ′
of the same dimension of a polar space are called locally opposite if U ∩U ′ = U⊥ ∩U ′. Hence
being opposite is equivalent with being locally opposite and disjoint at the same time.

Lemma 7.1. Let p, q ∈ X . Let i = dim(Up∩Uq). Then δ(p, q) = j− i, if Up and Uq are locally
opposite, and δ(p, q) = j − i− 1 otherwise.
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Proof. Performing induction on i, it suffices to show the assertion for i = −1. Suppose first
that Up and Uq are not opposite. Since (j − 1)-spaces corresponding to collinear points of Γ
(and we refer to such (j − 1)-spaces as being adjacent) share a (j − 2)-space, we easily see
that δ(p, q) > j. Let a be any point in U⊥p ∩ Uq and let W be a hyperplane of Up with either
W ⊆ Up ∩ U⊥q or W ⊇ Up ∩ U⊥q . Then a and W generate a (j − 1)-space Ur, for some point
r ∈ X , with p ⊥ r. Also, Ur and Uq are not locally opposite and the induction hypothesis
implies δ(Ur, Uq) = j − 1. Hence δ(p, q) 6 j and the assertion follows.

If Up and Uq are opposite, then every (j − 1)-space adjacent to Up is disjoint from Uq. It
follows that δ(p, q) > j + 1. But we can certainly find a (j − 1)-space adjacent to Up and not
opposite Uq, proving δ(p, q) = j + 1 (using the previous paragraph).

We now show that the convex subspace closure of certain pairs of points is the whole space
Γ.

Lemma 7.2. If for two points p, q ∈ X we have Up ∩Uq = ∅ and Up ∩U⊥q 6= Up, then the only
convex subspace containing p and q is Γ itself.

Proof. Let Γ′ = (X ′,L′) be the convex subspace generated by p and q.
First suppose that Up and Uq are opposite. Let r ⊥ p, with r ∈ X arbitrary. Then Ur and Up

are contained in a common singular j-spaceW . Set {a} = U⊥q ∩W , note that a 6∈ Up. Then we
may assume that a ∈ Ur (by possibly varying r on the line pr). But then δ(p, q) = 1 + δ(r, q)
by Lemma 7.1. Hence r ∈ X ′. Hence all points of Γ collinear with either p or q belong to
X ′. Noting that every point in p⊥ has an opposite in q⊥, an obvious induction argument yields
X ′ = X .

Now assume that i := dim(Up ∩ U⊥q ) > 1. Let r ∈ X be such that Ur intersects Up in
a(n arbitrary) (j − 2)-space and Uq ∩ U⊥p in a(n arbitrary) point. Then, since i > 1, we have
Ur ∩ Up ∩ U⊥q 6= ∅, and thus Ur and Uq are not locally opposite; hence Lemma 7.1 implies
δ(r, q) = δ(p, q)−1, and so r ∈ X ′. It follows from Theorem 3.3 that all points r such that Ur is
contained in the singular subspaceW spanned by Up and Uq∩U⊥p belong toX ′. Now let r ∈ X ′
be such that Ur 6 W contains Uq ∩ U⊥p and Ur ∩ (Up ∩ U⊥q ) = ∅. Then Ur and Uq are locally
opposite and the first part of the proof implies that all points s ∈ X such that Uq ∩ U⊥p ⊆ Us
belong to X ′. Similarly, all points s ∈ X such that Up ∩ U⊥q ⊆ Us belong to X ′. It is now easy
to see that we can select Us ⊇ Uq ∩ U⊥p and Us′ ⊇ Up ∩ U⊥q such that dim(Us ∩ U⊥s′ ) < i.

Hence we may assume that dim(Up ∩ U⊥q ) = 0. Set {x} = Up ∩ U⊥q and {y} = Uq ∩ U⊥p .
Let Wp and Wq be the j-spaces generated by Up and y, and by Uq and x, respectively. As in the
previous paragraph,X ′ contains all points r such that xy ⊆ Ur ⊆ Wp∪Wq. The first part of the
proof (or Theorem 3.1 if j = 3, 4), applied to the upper residue of xy, implies that all r ∈ X for
which xy ⊆ Ur belong toX ′. Also, Theorem 3.3 implies that all r ∈ X for which x ∈ Ur ⊆ Wp

or y ∈ Ur ⊆ Wq belong to X ′.
Now let Vp be any (j − 2)-space in Up containing x. Then Vp is collinear with a line L of Uq

and we can select a (j−2)-space Vq in Uq containing y but not L. It follows that V ⊥p ∩Vq = {y}
and V ⊥q ∩ Vp = {x}. Now select a (j − 1)-space Up′ , p′ ∈ X , containing Vp but not collinear
with y. Also, select a (j − 1)-space Uq′ , q′ ∈ X , containing Vq but not collinear with x. Then it
is easily checked that Up′ and Uq′ are opposite.
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Now we show p′, q′ ∈ X ′. Consider any (j − 3)-space Xp of Vp containing x. Since all
points of X corresponding to (j − 1)-spaces through 〈Xp, y〉 are contained in X ′, and p ∈ X ′,
we can apply Theorem 3.1 to the (upper) residue of Xp to obtain that all (j − 1)-spaces through
Xp are contained in X ′. In particular p′ ∈ X ′. Similarly q′ ∈ X ′. Now the first paragraph of the
proof implies X ′ = X .

Lemma 7.3. Let Γ′ = (X ′,L′) be a convex subspace of Γ, with diam Γ′ > 3. Then Γ′ corre-
sponds to a residue in the corresponding building.

Proof. If the Up, p ∈ X ′, are pairwise collinear, then they are contained in a common singular
subspace and the result follows from Theorem 3.3. So we may assume that not all Up, p ∈ X ′,
are collinear. Let ∆(X ′) be the set of Up with p ∈ X ′.

Now suppose that there exist p, q ∈ X ′ such that δ(p, q) = 3, with Up and Uq not collinear.
Then there are two possibilities.
(1) Up and Uq are locally opposite. In this case dim(Up ∩ Uq) = j − 3. Applying Theorem 3.1

to the upper residue of Up ∩ Uq, we deduce that all (j − 1)-dimensional singular subspaces
of ∆ containing Up ∩ Uq belong to ∆(X ′).

(2) Up and Uq are not locally opposite. In this case dim(Up∩Uq) = j−4. Applying Lemma 7.2
to the upper residue of Up ∩ Uq, we again deduce that all (j − 1)-dimensional singular
subspaces of ∆ containing Up ∩ Uq belong to ∆(X ′).

Now let W ⊆ Up ∩ Uq have minimal dimension with respect to the property that all (j − 1)-
spaces of ∆ through W belong to ∆(X ′) (this is well-defined and of dimension smaller than or
equal to j − 3 since Up ∩ Uq satisfies the given property). If X ′ = {x ∈ X | W ⊆ Ux}, then
the assertion follows. So assume that there is some point r ∈ X ′ with Z = W ∩Ur 6= W . Then
there exists a (j − 1)-space Us, for s ∈ X ′, containing W and intersecting Ur in Z. Applying
Lemma 7.2 to the upper residue of Z, we deduce that all (j−1)-dimensional singular subspaces
of ∆ containing Z belong to ∆(X ′), contradicting the minimality of dimW .

So we may assume that Up and Uq are collinear whenever δ(p, q) = 3, for p, q ∈ X ′. We
show that this leads to a contradiction. Select such p, q ∈ X ′. Then by Theorem 3.3 there exist
singular subspaces W ⊆ Up ∩ Uq and V ⊇ Up ∪ Uq such that the set S(W,V ) of all points
r ∈ X with W ⊆ Ur ⊆ V is contained in X ′, and such that dimV − dimW is maximal
with that property. Note that dimW 6 j − 4 and dimV > j + 2. Let s ∈ X ′ \ S(W,V ) be
collinear to some point r ∈ S(W,V ) (such s exists since we assume that not all Ux, x ∈ X ′, are
pairwise collinear). By Theorem 3.3, Us being collinear to all Ux, x ∈ S(W,V ) contradicts the
maximality of dimV − dimW . So the (j − 2)-dimensional subspace Ur ∩ Us coincides with
Ws := V ∩ Us. Also, Vs := U⊥s ∩ V has dimension at most dimV − 1. Consequently there
exists y ∈ S(W,V ) such that Uy is not contained in Vs, and such that dim(Uy ∩Ws) = j − 4.
But then, since Us and Uy are not locally opposite, we see that δ(y, s) = 3 and Uy and Us are not
contained in a singular subspace. This contradicts our assumption.

The lemma is proved.

So it remains to classify the convex subspaces with diameter 2.
We first prove a lemma.

Lemma 7.4. If a point p ∈ X is special to every point of some line L, then either
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(i) ponx = c, for all points x ∈ L and some point c; or
(ii) there is a symp ξ such that p⊥ ∩ ξ is a line M and L ⊆ ξ is ξ-opposite M .

Proof. Let WL and VL be such that L = {r ∈ X | WL ⊆ Ur ⊆ VL}. Note that WL 6⊆ Up, as
otherwise p is collinear to some point of L. There are two possibilities.

(i) Suppose dim(WL ∩ Up) = j − 4 and dim(VL ∩ Up) = j − 2. Note that WL ∩ U⊥p then
has dimension j − 3. Letting c ∈ X be the point corresponding to the (j − 1)-space
〈Up ∩ VL,WL ∩ U⊥p 〉, we obtain Conclusion (i).

(ii) Suppose dim(WL ∩ Up) = j − 3. We may argue in the upper residue of WL ∩ Up. Then
VL is a plane disjoint from the line Up, and since p is special to every point of L, there are
two possibilities. (1) The point WL belongs to U⊥p ; in fact WL = U⊥p ∩ VL. This leads to
Conclusion (ii), with ξ the symp defined by WL. (2) The line Up is collinear to a line of
the plane VL not containing the point WL, but not to the entire plane. In this case, there is
a unique point W⊥

L ∩ Up and Conclusion (ii) holds with ξ the hyperbolic quadric defined
by (the line Grassmannian of) the 3-space generated byW⊥

L ∩Up and VL. In ∆, this symp
is defined by all (j − 1)-spaces containing Up ∩WL and contained in 〈W⊥

L ∩ Up, VL〉.

The lemma is proved.

Proposition 7.5. Let Γ′ = (X ′,L′) be a convex subspace of Γ, with diam Γ′ = 2. Then exactly
one of the following occurs.

(i) If X ′ contains a pair of symplectic points p, q with Up not collinear to Uq, then Γ′ is a
symplecton.

(ii) If X ′ contains a symplectic pair, and each such pair {p, q} has the property that Up and
Uq are collinear, then either
(a) there is a unique (j − 3)-space W , a unique number `, j + 1 6 ` 6 n − 1, and a

unique `-space V such that X ′ = {r ∈ X | W ⊆ Ur ⊆ V }, or
(b) there is a unique (j + 1)-space V , a unique number `, −1 6 ` 6 j − 3, and a unique

`-space W such that X ′ = {r ∈ X | W ⊆ Ur ⊆ V }.
(iii) If X ′ does not contain symplectic pairs, then there is a unique point c ∈ X ′ such that

c = ponq, for every special pair of points p, q in X ′ \ {c}. Moreover, X ′ is the union of
singular subspaces pairwise intersecting in exactly {c}.

Proof. First suppose that Γ′ contains a symp ξ determined by two points p, q such that dim(Up∩
Uq) = j − 2 (and Up and Uq are locally opposite). Set W = Up ∩ Uq. If we are not in Case (i),
then there exists a point r ∈ X ′ \ ξ. Then also dim(W ∩ Ur) = j − 3, as otherwise we can
easily find a point x ∈ ξ with δ(x, r) > 3. But considering the upper residue in ∆ of W ∩Ur, it
follows from Theorem 3.1 that Γ′ contains points at distance 3. This concludes Case (i).

Now suppose that X ′ contains a symplectic pair {p, q} such that Up and Uq are collinear.
Set W = Up ∩ Uq and V = 〈Up, Uq〉. Assume that there is a point r ∈ X ′ with Ur 6⊆ V . If
W 6⊆ Ur, then it is easy to find s ∈ ξ(p, q) with δ(r, s) = 3, a contradiction. Hence W ⊆ Ur.
Now Theorem 3.1 applied to the upper residue of W yields Conclusion (ii)(a). Hence every
point x ∈ X ′ satisfies Ux ⊆ V . Then clearly Conclusion (ii)(b) holds.
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Finally suppose that X ′ does not contain symplectic pairs. Since diam Γ′ = 2, there is at
least one special pair {p, q} in X ′. Set c = ponq. We claim that c is collinear to every point of
Γ′. Indeed, if not there exists r ∈ X ′ special to c; set s = conr. Since p and q are special, at
least one of p, q is special to s, say p. Then p is special to every point of rs as otherwise {p, s}
would be symplectic. Lemma 7.4 implies that c is collinear to r after all. Thus, Conclusion (iii)
holds.

8. Convex subspaces of Lie incidence geometries of type Bn,n−1

Let Γ = (X,L) be a Lie incidence geometry of type Bn,n−1, with n > 3. The case n = 3 is
handled in Lemma 6.6, which we sometimes (implicitly) use in this section when we look at
certain residues. Let ∆ be the corresponding polar space. For a point p of Γ, we denote by Up
the singular subspace of dimension n− 2 of ∆ corresponding to p.

First note that the distance between two points is determined as in Lemma 7.1.
Let U be a singular subspace of ∆ of dimension smaller then or equal to n−3 and let P be a

maximal singular subspace of ∆. Set Π(U) = {x ∈ X | U ⊆ Ux}, Π(P ) = {x ∈ X | Ux ⊆ P},
Π(U, P ) = Π(U) ∩ Π(P ) and Π(U ;P ) = Π(U) ∪ Π(P ).

LetM be a singular subspace of ∆ of dimension at most n−2, letH be a set of hyperplanes
of M and, for each h ∈ H , let Ph be a maximal singular subspace containing M , such that the
following holds:

If Ph1 = Ph2 , for h1, h2 ∈ H, then for all hyperplanes h3 of M
such that h1 ∩ h2 ⊆ h3 : h3 ∈ H and Ph3 = Ph1 .

(C)

Now set Π(M, (Ph)h∈H) = Π(M) ∪
⋃
h∈H

Π(h, Ph).

We consider Π(p;P ), with p a point and P a maximal singular subspace, as a special case
of this construction, it is the same as Π(p, P∅), with H = {∅} and P∅ = P . (We consider the
empty set as the unique hyperplane of a point.) Moreover, Π(U) is obtained by setting H = ∅,
and Π(U, P ) equals Π(M, (Ph)h∈H), with M a singular subspace of dimension n − 2 of P
containing U , H the set of hyperplanes of M containing U and Ph = P for all h ∈ H . Also,
note that Π(P ) is the same as Π(∅, P ).

Lemma 8.1. For any point p and maximal singular subpace P such that p ∈ P , Π(p;P ) is
a maximal proper convex subspace. For any line L, any subset H of the point set of L and
any maximal singular subspace Ph for every h ∈ H such that Ph1 = Ph2 implies h1 = h2,
Π(L, (Ph)h∈H) is a convex subspace.

Proof. We first prove that Π(p;P ) is a convex subspace. Clearly Π(p) and Π(P ) are convex
subspaces so consider x and y in Π(p;P ) such that p ∈ Ux 6⊆ P and p 6∈ Uy ⊆ P . Note that
U⊥y ∩ Ux = 〈p, Ux ∩ Uy〉, so any neighbour z of y on a shortest path between x and y satisfies
p ∈ Uz, showing that Π(p;P ) is convex. Similarly Π(L, (Ph)h∈H) is convex.

Assume that X ′ is a proper convex subspace properly containing Π(p;P ) and consider z ∈
X ′\Π(p;P ). By definition p 6∈ Uz. IfUz is not collinear to pwe can find a subspace of dimension
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n− 2 through p opposite to Uz and as in the proof of Lemma 7.2 we find that X ′ is not proper.
So we may assume that p is collinear with Uz. By assumption Uz ∩ P has dimension at most
n − 3. So we can find r ∈ X ′ such that Ur ⊆ P , Ur ∩ Uz = Ur ∩ P and Ur and Uz are locally
opposite. By considering the upper residue of Uz ∩ Ur we see that {x ∈ X | Uz ∩ Ur ⊆ Ux} is
contained in X ′. Since p 6∈ Uz ∩Ur we can then find y ∈ X ′ such that p is not collinear with Uy
and hence X ′ would not be proper.

Lemma 8.2. Consider a convex subspaceX ′ containing p and q such that Up∩Uq = ∅. Then it
equals X itself, Π(x;P ) or Π(L, (Ph)h∈H), where x is a point, P and Ph are maximal singular
subspaces of ∆ andH is a subset of the point set of the lineLwith |H| > 2. Moreover, Ph1 = Ph2
implies h1 = h2.

Proof. If Up and Uq are opposite, as in Lemma 7.2, we get that X ′ = X . Since the maximal
singular subspaces are of dimension n−1, we may assume Up∩U⊥q = {x} and Uq∩U⊥p = {y}.
Let L be the line through x and y. Let Wp be the maximal singular subspace containing Up and
y, and Wq the maximal singular subspace containing x and Uq. By the same argument as in
Lemma 7.2 we get that {z ∈ X | L ⊆ Uz}, {z ∈ X | x ∈ Uz ⊆ Wp} and {z ∈ X | y ∈ Uz ⊆
Wq} are subsets of X ′.

By applying Lemma 8.1 to the upper residue of x we see that if X ′ contains r such that
x ∈ Ur, y 6∈ Ur and Ur 6⊆ Wp, then X ′ contains all (n − 2)-spaces through x. Applying
Theorem 3.3 to Wq, we see that X ′ then contains all (n− 2)-spaces contained in Wq. Hence X ′
equals X or Π(x;Wq) by Lemma 8.1. Similarly if X ′ contains r such that x 6∈ Ur, y ∈ Ur and
Ur 6⊆ Wq.

Now assume thatX ′ contains r such that L∩Ur = ∅. Since L can not be collinear to Ur, we
may assume that x is not collinear to Ur. Denote by Z the intersection of Ur and Wp. Then we
can find s ∈ X ′ such that Us is contained inWp, Us and Ur are locally opposite and Ur∩Us = Z.
By looking at the upper residue of Z we see that all (n− 2)-spaces containing Z are contained
inX ′. By Theorem 3.3 this implies that all (n− 2)-spaces inWp are contained inX ′. HenceX ′
contains r′ such that x 6∈ Ur′ , y ∈ Ur′ and Ur′ 6⊆ Wq and we can apply the previous paragraph
to get that X ′ is either X or Π(y;Wp).

We may now assume that X ′ contains r such that L ∩ Ur is a point z different from x and
y. If L is not collinear to Ur, then we can find an (n − 2)-space containing L (so contained in
X ′), intersecting Ur in the point z and locally opposite Ur. HenceX ′ contains all (n−2)-spaces
through z. Now, since X ′ contains {w ∈ X | x ∈ Uw ⊆ Wp} and {w ∈ X | y ∈ Uw ⊆ Wq},
this implies that all (n− 2)-spaces contained in Wp ∪Wq are contained in X ′, by Theorem 3.3.
Then Lemma 8.1 impliesX ′ = X . Hence L is collinear with Ur; letWr be the maximal singular
subspace containingL andUr. By considering the upper residue ofZ = Up∩Ur and applying the
argument in the first paragraph of this proof, all (n−2)-spaces contained inWr containing 〈z, Z〉
belong to X ′. Since all (n − 2)-spaces containing L are contained in X ′, Theorem 3.3 implies
that all (n− 2)-spaces of Wr containing z are contained in X ′. Also note that if Wr = Wp, then
using Theorem 3.3 all (n− 2)-spaces of Wp are contained in X ′. As in the previous paragraph
we obtain that X ′ equals X or Π(y;Wp). Hence we may assume that there exists a subset H of
the point set of L and for each h ∈ H a maximal singular subspace Ph containing L such that
Ph1 = Ph2 implies h1 = h2, and Π(h, Ph) ⊆ X ′. E.g., Px = Wp, Pr = Wr and Py = Wq.



combinatorial theory vol (issue) (year), #n 25

Lemma 8.3. For each singular subspace M of ∆ of dimension at most n − 2, each set H of
hyperplanes of M and, for each h ∈ H , Ph a maximal singular subspace containing M such
that Equation (C) holds, Π(M, (Ph)h∈H) is a convex subspace of X .

Proof. Set X ′ = Π(M, (Ph)h∈H). Clearly Π(M) and Π(h, Ph) are convex subspaces, with
h ∈ H . Consider h ∈ H , x ∈ Π(M) and y ∈ Π(h, Ph) arbitrary. We will look at the upper
residue of Ux ∩ Uy. Note that both Ux and Uy are collinear with M , so, looking in this residue,
Ux and Uy are contained in the subspace Π(〈M,Ux ∩ Uy〉;Ph), which is convex by Lemma 8.1.
Now Π(〈M,Ux ∩ Uy〉) and Π(Ux ∩ Uy, Ph) are contained in X ′, using h ⊆ Ux ∩ Uy. Hence all
points on a shortest path between x and y are contained in X ′.

Now consider h1, h2 ∈ H , x ∈ Π(h1, Ph1), h1 6= h2, and y ∈ Π(h2, Ph2) arbitrary. In the
residue of Ux ∩ Uy, Ux and Uy are contained in the subspace Π(〈M,Ux ∩ Uy〉, (Ph)h∈{h1,h2}),
which is convex by Lemma 8.1 if Ph1 6= Ph2 . Note that this subspace is contained in X ′. If
Ph1 = Ph2 and Ux 6= Uy, then the smallest convex subspace containing Ux and Uy is the line
Π(Ux∩Uy, Ph1), which is contained inX ′ by Equation (C) and the fact that every hyperplane of
Ph1 intersectsM in (at least) a hyperplane ofM . So in any case, the shortest path between x and
y is contained in X ′, and if x and y are collinear, the line joining them is contained in X ′.

Theorem 8.4. Let Γ be a Lie incidence geometry of type Bn,n−1 and ∆ be the corresponding
polar space. Let Γ′ = (X ′,L′) be a proper convex subspace of Γ. Then there exists a singular
subspace M of ∆ of dimension at most n − 2, a set H of hyperplanes of M and, for each
h ∈ H , a maximal singular subspace Ph of ∆ containing M and satisfying Equation (C) such
that Γ′ = Π(M, (Ph)h∈H).

Proof. Consider a singular subspace M of ∆ of dimension at most n− 2 such that all singular
subspaces of dimension n − 2 through M are contained in X ′, and assume that there does not
exist a proper subspace of M with the same property.

If all elements of X ′ contain M , we set H = ∅. So we may assume that there exists p ∈ X ′
such thatM 6⊆ Up. Also note that there exists q ∈ X ′ such thatM ⊆ Uq and Up∩Uq = Up∩M .
Now we can apply Lemma 8.2 in the upper residue of Up ∩ M to obtain a singular subspace
M ′ of M of dimension at most dim(Up ∩M) + 2 such that all singular subspaces of dimension
n − 2 through M ′ are contained in X ′. By our minimality assumption on M this implies that
dim(Up ∩M) > dim(M)− 2. Assume now dim(Up ∩M) = dim(M)− 2. Then Lemma 8.2
together with the minimality of M actually implies that any r ∈ X ′ such that Up ∩M ⊆ Ur
should intersect M in a hyperplane, contradicting the existence of p. Hence h := M ∩ Up is a
hyperplane ofM and, again by Lemma 8.2, Ph := 〈M,Up〉 is a maximal singular subspace such
that Π(h, Ph) ⊆ X ′.

Now, for any hyperplane h of M there is at most one maximal singular subspace P such
that Π(h, P ) ⊆ X ′, otherwise Lemma 8.1 would show that M is not minimal by looking at
the upper residue of h. Now assume that for two distinct hyperplanes h1 and h2 of M there
exists a maximal singular subspace P such that Π(h1, P ) and Π(h2, P ) are subspaces ofX ′. By
considering P in the upper residue of h1 ∩h2 and applying Theorem 3.3 we see that all singular
subspaces of dimension n − 2 contained in P and containing h1 ∩ h2 are contained in X ′. So
for any hyperplane h3 of M such that h1 ∩ h2 ⊆ h3 we have h3 ∈ H and Π(h3, P ) ⊆ X ′
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Remark 8.5. We did not consider Dn,{n−1,n} as the type of a Lie incidence geometry, but since
in the above proof we never used the fact that the polar space ∆ is related to a thick building,
the conclusion of Theorem 8.4 is also valid for Grassmannians of type Dn,{n−1,n}.

9. Convex subspaces of Lie incidence geometries of type An,{1,n}

Let Γ be a Lie incidence geometry of type An,{1,n} and let ∆ be the corresponding projective
space over some skew field k. The points of Γ will simply be called flags of ∆. Given a flag
{p,H}, with p a point of ∆ and H a hyperplane of ∆ such that p ∈ H , we call p the point-
component of {p,H} and H the hyperplane-component of {p,H}. For a pair of incident (pos-
sibly coinciding) subspaces S, T , S ⊆ T , of ∆, we denote by Π(S, T ) the convex subspace of Γ
consisting of all flags {p,H}, with p ∈ S and T ⊆ H . These are the convex subspaces corre-
sponding to residues of the underlying building. But, as we will see, there are also other convex
subspaces. Indeed, we shall prove the following result.

Theorem 9.1. Let Γ and ∆ be as above. Let Γ′ = (X ′,L′) be a proper convex subspace of Γ.
Then either there exist subspaces S, T of ∆, with S ⊆ T and 0 6 dimS 6 dimT 6 n − 1
such that Γ′ = Π(S, T ), or there exist subspaces S, T of ∆, with dimS = 1 + dim(S ∩ T ) and
1 6 dimS 6 dimT 6 n− 2 such that Γ′ = Π(S, 〈S, T 〉) ∪ Π(S ∩ T, T ).

Proof. Let Γ′ = (X ′,L′) be a convex subspace of Γ. Let S be the set of the point-components
of all members of X ′ and letH be the set of all hyperplane-components of all members of X ′.

Claim 1. If Γ′ contains two opposite flags of ∆, then Γ′ = Γ. Indeed, this is Lemma 6.1.
From now on we may assume that Γ′ does not contain opposite flags of ∆.
Claim 2. S is a subspace of ∆. Indeed, let p, p′ ∈ S and let {p,H} and {p′, H ′} be two

members of X ′. If p /∈ H ′ and p′ /∈ H , then the claim follows from Claim 1. If p ∈ H ′ and
p′ ∈ H , then {p,H} and {p′, H ′} are either collinear (H = H ′) or symplectic. In the former
case, the claim follows from the fact that Γ′ is a subspace; in the latter case the convex closure of
{p,H} and {p′, H ′} contains all flags {q,G} with q ∈ pp′ and H ∩H ′ ⊆ G, and the claim also
follows. Lastly, we may assume p ∈ H ′ and p′ /∈ H . Then {p,H} is special to {p′, H ′}, and
{p,H}on{p′, H ′} = {p,H ′} ∈ X ′. The claim then follows from the fact that Γ′ is a subspace
and {p,H ′}, {p′, H ′} ∈ X ′ are collinear.

Dually, every hyperplane containing the intersection T of the hyperplane-components of all
members of X ′, is a hyperplane-component of some member of X ′.

Claim 3. Let p ∈ S and H ′ ∈ H with p ∈ H ′. Then {p,H ′} ∈ X ′. Indeed, since p ∈ S,
there exists a hyperplane H ∈ H such that {p,H} ∈ X ′. Likewise, there is a point p′ ∈ S such
that {p′, H ′} ∈ X ′. Then the convex subspace closure of {p,H} and {p′, H ′} contains {p,H ′}
(just as in the proof of Claim 2).

Claim 4. dim〈S, T 〉 6 dimT+1. Indeed, suppose dim〈S, T 〉 > dimT+2 and let p, p′ ∈ S
be such that pp′ ∩ T = ∅. Then there exist H,H ′ ∈ H with p ∈ H \H ′ and p′ ∈ H ′ \H . But
then by Claim 3 we have {p,H}, {p′, H ′} ∈ X ′ and {p,H} is opposite {p′, H ′}, a contradiction.

Claim 5. If S ⊆ T , then Γ′ = Π(S, T ). Indeed, this is obvious in view of Claim 3. Note
that S = T is allowed.
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Claim 6. If S 6⊆ T , then Γ′ = Π(S, 〈S, T 〉) ∪ Π(S ∩ T, T ). Indeed, this also follows
from Claim 3 and the fact that, if p ∈ S \ T , and {p,H} ∈ X ′, then 〈S, T 〉 ⊆ H (because
〈p, T 〉 = 〈S, T 〉 by Claim 4). Moreover, one checks that Π(S, 〈S, T 〉) ∪ Π(S ∩ T, T ) is indeed
a convex subspace.
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