On inclusions of exceptional long root geometries of type E

Anneleen De Schepper and Hendrik Van Maldeghem

Abstract

We prove the uniqueness of the inclusion of the long root geometries of type E_{6} and E_{7} as full embeddings in the one of type E_{8}; the latter always arises as an equator geometry, the former as an intersection of two appropriate such equator geometries. Along the way, several other embedding results are obtained, notably featuring the subsequent point residuals of the above geometries.

1. Introduction

Equator geometries are subgeometries of the geometries related to spherical buildings, roughly speaking by taking the union of the equators, if any, of two opposite flags - the poles - in all apartments through these flags. That notion was first used in [Kasikova and Van Maldeghem 2013], and systematically and in full generality introduced and studied in [Van Maldeghem and Victoor 2019]. An equator geometry is always a geometry related to the residue of either of its poles in the corresponding building. Thinking in terms of roots, an equator geometry restricts the root system to the set of roots perpendicular to a given direction, which need not be the direction of a root. As a consequence, the long root geometries of the (split) spherical buildings are a natural home for equator geometries as the orthogonality relation is very present in these geometries. Indeed, every pair of opposite points of a long root geometry admits an equator geometry, which is then isomorphic to the long root geometry related to a point residue (see also Section 2 F). In most cases an equator geometry is not only a subgeometry, but also a subspace; in incidence geometrical terms we obtain a full embedding of one geometry in the other. It appears from [De Schepper et al. 2022] that the language of equator geometries is very convenient to describe all the full embeddings of certain type. And despite the connection of equator geometries with residues of the underlying building, embeddings of geometries not related to any residue at all can also sometimes be adequately described using equator geometries. For instance, it is shown in

MSC2020: primary 51E24; secondary 51B25.
Keywords: long root geometries, exceptional Tits buildings.
[De Schepper et al. 2022] that any (fully) embedded long root geometry of type F_{4} in a long root geometry of type E_{7} arises as the intersection of two equator geometries.

In the present paper, the aim is to describe all embeddings of long root geometries of exceptional type E_{6} and E_{7} inside the long root geometry of type E_{8}. We describe this situation now in some more detail, using the (standard) notation that we will introduce in Section 2.

Let p, q be opposite points in a geometry $\Delta \cong \mathrm{E}_{8,8}(\mathbb{K})$, with \mathbb{K} any (commutative) field, and consider the set of points $E(p, q)$ symplectic to both p and q. Equipped with the singular lines of Δ contained in $E(p, q)$, the set $E(p, q)$ is an equator geometry (with poles p, q), and is isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$ (see also Definition 3.8 and Lemma 3.9). This can be explained briefly by the fact that there is a bijection between the points of $E(p, q)$ and the symplecta of $\mathrm{E}_{8,8}(\mathbb{K})$ containing p, that is, the elements of type 1 in the point residue $\operatorname{Res}_{\Delta}(p) \cong \mathrm{E}_{7,7}(\mathbb{K})$. Informally speaking, a special case of our main result reads as follows (see Main Result 4.1 for a precise statement).

Main Result 1.1. Let Γ be the long root geometry $\mathrm{E}_{7,1}(\mathbb{K})$ fully embedded in a long root geometry $\Delta \cong \mathrm{E}_{8,8}(\mathbb{K})$. Then there are opposite points p, q in Δ such that $\Gamma=E(p, q)$. Consequently, the embedding of Γ in Δ is projectively unique.

The long root geometry $\Upsilon \cong \mathrm{E}_{6,2}(\mathbb{K})$ also embeds in a projectively unique way in the long root geometry $\Gamma \cong \mathrm{E}_{7,1}(\mathbb{K})$, also as an equator geometry; see Proposition 6.14 of [De Schepper et al. 2022]. However, the poles are not points, but subgeometries corresponding to vertices of type 7. A natural question then is whether, if we embed Υ in Δ, it is always contained in a subgeometry isomorphic to $E_{7,1}(\mathbb{K})$? The answer is yes. An informal statement is given below, and for a precise statement we refer to Main Result 5.1:
Main Result 1.2. Let Υ be the long root geometry $\mathrm{E}_{6,2}(\mathbb{K})$ fully embedded in a long root geometry $\Delta \cong \mathrm{E}_{8,8}(\mathbb{K})$. Then there exist pairs of opposite points p, q and r, s in Δ such that $\Upsilon=E(p, q) \cap E(r, s)$, i.e., Υ is the intersection of two equator geometries isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$. Consequently, the embedding of Υ in Δ is projectively unique.

The points p, r and q, s can be chosen collinear, so that $\mathrm{E}_{6,2}(\mathbb{K})$ could be viewed as the (appropriate connected component of the) equator geometry $E(L, M)$ of two opposite lines L, M of $E_{8,8}(\mathbb{K})$.

A large part of the proof of these results consists in showing that the given embedding is isometric, that is, the relative position of two points in the subgeometry is the same as that in the ambient geometry (relative position meaning "being collinear", "being symplectic", "being special" and "being opposite"). To achieve that, we take an inductive approach, considering point residues. For Main Result

Figure 1. Sequence of full embeddings of point-line geometries described in Main Result 1.1 (top) and Main Result 1.2 (bottom).
1.1, this gives rise to the sequence of full embeddings of point-line geometries shown at the top of Figure 1, while for Main Result 1.2 the sequence at the bottom appears. (An arrow points from a parapolar space to its point residual.)

We will show that, for each $i \in\{1,2,3\}$ and each $j \in\{2,3\}$, every embedding of Γ_{i} and Υ_{j} in Δ_{i} and Δ_{j}, respectively, is isometric, projectively unique and corresponds to an equator geometry. This is not the case for $i=0$ and $j=1$: there exist full embeddings of $\Gamma_{0} \cong A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ in $\Delta_{0} \cong D_{5,5}(\mathbb{K})$ which are not isometric. However, we can prove directly (not using the point residues) that the embedding of $\Gamma_{1} \cong A_{5,2}(\mathbb{K})$ in $\Delta_{1} \cong E_{6,1}(\mathbb{K})$ is isometric, see Lemma 4.3 ; so we will limit us to studying the isometric embeddings of Γ_{0} in Δ_{0}. There also exist full embeddings of $\Upsilon_{1} \cong A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$ in $\Delta_{1} \cong E_{6,1}(\mathbb{K})$ which are not isometric. The latter are classified in Proposition 5.7 up to the point that we need it to show that $\Upsilon_{2} \cong \mathrm{~A}_{5,3}(\mathbb{K})$ embeds isometrically in $\Delta_{2} \cong \mathrm{E}_{7,7}(\mathbb{K})$.

Structure of the paper. In the preliminaries (Section 2) we gather the basics on the general notions (such as Lie incidence geometries, (para)polar spaces, full embeddings of such geometries and long root geometries) needed in this paper. Specific properties on the Lie incidence geometries we will encounter can be found in the Appendix, they could also be found partially in, for instance, [De Schepper et al. 2022], but as we will use these properties frequently we included them for the convenience of the reader.

In Section 3 we give a description of the equator geometries we study, including proofs that the defined geometry is of the type that we aim for. After that we then study the full embeddings of Γ_{i} in Δ_{i} (Section 4) and of Υ_{i} in Δ_{i} (Section 5), which arise as (intersections of) equator geometries if isometric (which is automatically the case, except for Γ_{0} in Δ_{0} and for Υ_{1} in Δ_{1}, as explained above).

2. Preliminaries

We fix notation and introduce all relevant terminology. We assume that the reader is familiar with the basic theory of abstract buildings, Coxeter groups and Dynkin diagrams [Bourbaki 1968] and refer to the literature (for instance [Tits 1974]) for precise definitions and details; or to the introduction of [De Schepper et al. 2022]. We say that a spherical building is split if it arises from a split algebraic group. We will only be concerned with buildings whose Coxeter diagram is simply laced, and all these buildings are automatically split (whenever they are irreducible, have rank at least 3 , and are defined over a field).

2A. Abstract point-line geometries. Let $\Gamma=(X, \mathscr{L})$ be a point-line geometry (X is the set of points, the set of lines \mathscr{L} is a subset of the power set of X, and incidence is given by symmetrised inclusion). To exclude trivial cases, we assume $|\mathscr{L}| \geq 2$. We also assume that each line has at least three points.

Points $x, y \in X$ contained in a common line are called collinear, denoted $x \perp y$; the set of all points collinear to x is denoted by x^{\perp}. We will always deal with situations where every point is contained in at least one line, so $x \in x^{\perp}$. The collinearity graph of Γ is the graph on X with collinearity as adjacency relation. The distance δ between two points $p, q \in X$ (denoted $\delta_{\Gamma}(p, q)$, or $\delta(p, q)$ if no confusion is possible) is the distance between p and q in the collinearity graph, where $\delta(p, q)=\infty$ if there is no such path. If $\delta:=\delta(p, q)$ is finite, then a geodesic path or a shortest path between p and q is a path of length δ between them in the collinearity graph. The diameter of Γ (denoted Diam Γ) is the diameter of the collinearity graph. We say that Γ is connected if every pair of vertices is at finite distance from one another. The point-line geometry Γ is called a partial linear space if each pair of distinct points is contained in at most one line.

A subspace of Γ is a subset S of X such that, if $x, y \in S$ are collinear and distinct, then all lines containing both x and y are contained in S. A subspace S is called convex if, for any pair of points $\{p, q\} \subseteq S$, every point occurring in a shortest path between p and q in the collinearity graph is contained in S; it is singular if $\delta(p, q) \leq 1$ for all $p, q \in S$. The intersection of all convex subspaces of Γ containing a given subset $S \subseteq X$ is called the convex closure of S (this is well defined since X is a convex subspace). For $S \subseteq X$, we denote by $\langle S\rangle$ the subspace generated by S, it is the intersection of all subspaces containing S (again, this is
well defined since X is a subspace). If S consists of two distinct collinear points p and q contained in a unique line L, then $\langle S\rangle=L$ is sometimes briefly denoted by pq. Two singular subspaces S_{1} and S_{2} are called collinear if $S_{1} \cup S_{2}$ is a set of pairwise collinear points, and if so, we write $\left\langle S_{1}, S_{2}\right\rangle$ instead of $\left\langle S_{1} \cup S_{2}\right\rangle$. In the geometries that we will consider, that is, parapolar spaces, the subspace generated by a set of mutually collinear points is always a singular subspace.

2B. Polar spaces. Abstractly, a (nondegenerate, thick) polar space $\Gamma=(X, \mathscr{L})$ is a point-line geometry satisfying the following four axioms, due to Buekenhout and Shult [1974], which simplify the axiom system in [Tits 1974].
(PS1) Every line contains at least three points, i.e., every line is thick.
(PS2) No point is collinear to every other point.
(PS3) Every nested sequence of singular subspaces is finite.
(PS4) The set of points incident with a given arbitrary line L and collinear to a given arbitrary point p is either a singleton or coincides with L.
We will assume that the reader is familiar with the basic theory of polar spaces, see for instance [Buekenhout and Cohen 2013]. Let us recall that every polar space, as defined above, is a partial linear space and has a unique rank, given by the length of the longest nested sequence of singular subspaces (including the empty set); the rank is always assumed to be finite by (PS3) and at least 2 since we always have a sequence $\varnothing \subseteq\{p\} \subseteq L$, for a line $L \in \mathscr{L}$ and a point $p \in L$.

Now let $\Gamma=(X, \mathscr{L})$ be a polar space of rank $r \geq 2$. It is well known that the maximal singular subspaces are projective spaces of dimension $r-1$ (and so two arbitrary points of Γ are contained in at most one line). Moreover, there is a (not necessarily finite) constant t such that every singular subspace of dimension $r-2$ is contained in exactly $t+1$ maximal singular subspaces. If $t=1$, then we say that Γ is of hyperbolic type, or is a hyperbolic polar space. In this paper, all polar spaces we encounter will be hyperbolic. A hyperbolic polar space is isomorphic to one of the following.
$r=2: \mathscr{L}$ consists of two disjoint systems of lines, each covering the point set, such that two lines intersect nontrivially (hence in exactly one point) if, and only if, they belong to different systems. A typical example is a ruled nondegenerate quadric in a projective 3 -space.
$r=3: X$ is the set of lines of a 3 -dimensional projective space $\mathrm{PG}(3, \mathbb{L})$ over a noncommutative skew field \mathbb{L}. The members of \mathscr{L} are the (full) planar line pencils in $\operatorname{PG}(3, \mathbb{L})$.
$r \geq 3: X$ is the point set of a nondegenerate hyperbolic quadric Q in $\operatorname{PG}(2 r-1, \mathbb{K})$, \mathbb{K} a (commutative) field. The lines are the lines of $\operatorname{PG}(2 r-1, \mathbb{K})$ entirely contained
in Q. Note that a standard equation for Q is given by

$$
X_{-1} X_{1}+X_{-2} X_{2}+\cdots+X_{-r} X_{r}=0
$$

A maximal singular subspace of a hyperbolic polar space is also called a generator. The family of generators of each hyperbolic polar space of rank r is the disjoint union of two systems of generators, called the natural systems, such that two generators intersect in a singular subspace of odd codimension in each of them if, and only if, they belong to different systems (the codimension of a subspace U in a projective space W is just $\operatorname{dim} W-\operatorname{dim} U$).

We will use some notions of the theory of buildings in polar spaces. For instance, two subspaces are called opposite if no point of their union is collinear to every point of this union; in particular two points are opposite if, and only if, they are not collinear and two maximal singular subspaces are opposite if, and only if, they are disjoint.

2C. Parapolar spaces. Parapolar spaces are point-line geometries that are designed to model the Grassmannians of spherical buildings, see also Section 2E. They were introduced by Cooperstein [1977]. A standard reference is [Shult 2011]. A point-line geometry $\Gamma=(X, \mathscr{L})$ is a parapolar space if it satisfies the following axioms.
(PPS1) There is a line L and a point p such that no point of L is collinear to p.
(PPS2) The geometry is connected.
(PPS3) Let x, y be two points at distance 2 . Then either there is a unique point collinear with both, or the convex closure of $\{x, y\}$ is a polar space. Such polar spaces are called symplecta, or symps for short.
(PPS4) Each line is contained in a symplecton.
A pair $\{x, y\}$ of points with $x^{\perp} \cap y^{\perp}=\{z\}$ is called special and we denote this $z=x \bowtie y$; we also say that x is special to y. The set of points special to x is denoted by x^{\bowtie}. A pair of points $\{x, y\}$ at distance 2 from one another and contained in a (necessarily unique) symp is called symplectic and we write $x \Perp y$; we also say that x is symplectic to y. The set of points contained in a symp together with x is denoted by x^{\Perp}; note that this hence also includes x^{\perp} by (PPS4). A parapolar space without special pairs of points is called strong. Due to (PPS4) and the fact that symps are convex subspaces isomorphic to polar spaces, each parapolar space is automatically a partial linear space and, by (PPS1), it is not a polar space. Note that the symps are not required to all have the same rank. A para is a proper convex subspace of Γ, whose points and lines form a parapolar space themselves. The set of symps of a para is a subset of the set of symps of Γ.

As alluded to in the introduction, we will often make use of point residuals. If $\Gamma=(X, \mathscr{L})$ is a parapolar space whose symps have rank at least 3 , this is defined
as follows. For a point $p \in X$, we define the point residual of Γ at p, denoted by $\operatorname{Res}_{\Gamma}(p)$, as the point-line geometry $\left(X_{p}, \mathscr{L}_{p}\right)$, where X_{p} is the set of lines of \mathscr{L} containing p, and an element of \mathscr{L}_{p} is the set of lines through p in a singular plane through p.

2D. Embeddings of point-line geometries in each other. Consider two point-line geometries $\Gamma=\left(X^{\prime}, \mathscr{L}^{\prime}\right)$ and $\Delta=(X, \mathscr{L})$. We say that Γ is embedded in Δ if $X^{\prime} \subseteq X$ and for each $L^{\prime} \in \mathscr{L}^{\prime}$, there is a line $L \in \mathscr{L}$ with L^{\prime} (viewed as subset of X^{\prime}) contained in L (viewed as a subset of X). The embedding is called full if $\mathscr{L}^{\prime} \subseteq \mathscr{L}$, i.e., $L^{\prime} \subseteq X^{\prime}$ coincides with $L \subseteq X$ in the foregoing. Collinearity in Γ and Δ will respectively be denoted by \perp_{Γ} and \perp_{Δ}. Note that, if Γ is (not necessarily fully) embedded in Δ, then $\delta_{\Delta}(p, q) \leq \delta_{\Gamma}(p, q)$ for all points $p, q \in X^{\prime}$. An embedding is (point-)isometric if $\delta_{\Gamma}(p, q)=\delta_{\Delta}(p, q)$ for all points $p, q \in X^{\prime}$; in particular, \perp_{Γ} and \perp_{Δ} coincide on $\Gamma \times \Gamma$.

Next, suppose additionally that $\Gamma=\left(X^{\prime}, \mathscr{L}^{\prime}\right)$ and $\Delta=(X, \mathscr{L})$ are parapolar spaces and let $\xi=\left(X^{\prime \prime}, \mathscr{L}^{\prime \prime}\right)$ be a symplecton of Γ, a convex subspace of Γ which is isomorphic to a polar space. Since Γ embeds fully in Δ, also ξ embeds fully in Δ. The following fact says that there are two ways in which ξ can embed in Δ.
Fact 2.1 [De Schepper et al. 2022, Lemmas 3.19 and 3.20]. Either ξ embeds isometrically in $\Delta\left(x \perp_{\Gamma} y\right.$ if and only if $x \perp_{\Delta} y$ for each $\left.x, y \in \xi\right)$, or ξ embeds in a singular subspace of $\Delta\left(x \perp_{\Delta} y\right.$ for each $\left.x, y \in \xi\right)$. In the former case, ξ embeds isometrically in a symplecton Σ of Δ, uniquely determined by any two noncollinear points of ξ; and if Σ is viewed as a quadric embedded in a projective space \mathbb{P}, then ξ arises as the intersection of Σ with a subspace of \mathbb{P}.
Notation 2.2. If ξ embeds isometrically in Δ, we call ξ an isometric symp; if ξ embeds in a singular subspace of Δ, we refer to ξ as a singular symp. If x, y are two points of Γ which are symplectic in both Γ and Δ, then we denote by $\xi(x, y)$ the symp of Γ determined by x and y and by $\Sigma(x, y)$ the symp of Δ determined by x and y. We will also use $\xi(L, M)$ for $\xi(x, y)$, if the lines L, M intersect and contain x, y, respectively (and x and y are symplectic). In general we will use ξ for symps in Γ and Σ for symps in Δ. This should add to the clarity of the arguments.

Note that, if Γ embeds isometrically in Δ, then each symp is isometric. The converse is not automatically true but in all cases we will encounter, preserving both "collinearity" and "being symplectic" allows one to prove that also the other distances (if any) are preserved, as well as "being special".

We also mention the following straightforward observation.
Lemma 2.3. Let $\Psi=(X, \mathscr{L})$ and $\Psi^{\prime}=\left(X^{\prime}, \mathscr{L}^{\prime}\right)$ be connected point-line geometries with Ψ fully embedded in Ψ^{\prime} such that for each point $p \in X$, each member of \mathscr{L}^{\prime} containing p also belongs to \mathscr{L}. Then $\Psi=\Psi^{\prime}$.

2E. Lie incidence geometries. Let Δ be a (thick) spherical building, not necessarily irreducible. Let n be its rank, let S be its type set and let $J \subseteq S$. Then we define a point-line geometry $\Gamma=(X, \mathscr{L})$ as follows. The point set X is just the set of flags of Δ of type J. Each member of \mathscr{L} is given by the elements F of X that complete a given flag F^{\prime} of type $S \backslash\{s\}$, with $s \in J$, to a chamber; that is, $F \cup F^{\prime}$ is a chamber (note that several distinct flags F^{\prime} can give rise to the same line of Δ). The geometry Γ is called a Lie incidence geometry. For instance, if Δ has type A_{n}, and $J=\{1\}$ (remember we use Bourbaki labelling), then Γ is the point-line geometry of a projective space. If X_{n} is the Coxeter type of Δ and Γ is defined using $J \subseteq S$ as above, then we say that Γ has type $\mathrm{X}_{n, J}$ and we write $\mathrm{X}_{n, j}$ if $J=\{j\}$.

Most Lie incidence geometries are parapolar spaces. In particular, with the notation of Section 2E, if $|J|=1$, then we either have a projective space if $\mathrm{X}=\mathrm{A}$ and J is either $\{1\}$ or $\{n\}$, a polar space if $\mathrm{X} \in\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$ and $J=\{1\}$, or a parapolar space in all other cases, taking into account though that $\mathrm{A}_{3,2}=\mathrm{D}_{3,1}$. The hyperbolic polar spaces correspond precisely to the Lie incidence geometries $\mathrm{D}_{n, 1}$. For basic properties of parapolar spaces such as the facts that the intersections of symps are singular subspaces, and also that the set of points collinear to a given point x and belonging to a symp $\xi \nexists x$ is a singular subspace, we refer to [Shult 2011].

If the building Δ is irreducible and its diagram X_{n} is simply laced, with $n \geq 3$, then the classification in [Tits 1974] implies that Δ is unambiguously defined by a (skew) field \mathbb{K}, which is necessarily a field if X_{n} contains D_{4} as a subdiagram. We denote Δ by $\mathrm{X}_{n}(\mathbb{K})$. The corresponding Lie incidence geometry of type $\mathrm{X}_{n, J}$, where $J \subseteq S$, is denoted by $X_{n, J}(\mathbb{K})$. By a flag or a chamber of Γ we mean a set of objects of Γ corresponding to a flag or chamber of the underling building Δ. By an apartment of Γ we also mean the set of objects of Γ contained in an apartment of Δ.

2F. Long root geometries. Long root geometries are special Lie incidence geometries related to split irreducible spherical buildings. The original, algebraic definition takes as point set the set of root groups corresponding to the long roots of the underlying root system and as set of lines the family of sets consisting of such root groups, each maximal relative to the property that their union forms a group [Timmesfeld 2001]. It turns out that long root geometries thus defined are just the Lie incidence geometries of type $\mathrm{X}_{n, J}$, where $J \subseteq S$ is the set of types corresponding to the roots of a fundamental system not perpendicular to the highest root. Explicitly they are the Lie incidence geometries of types

$$
\mathrm{A}_{n,\{1, n\}}, \mathrm{B}_{n, 2}, \mathrm{C}_{n, 1}, \mathrm{D}_{n, 2}, \mathrm{E}_{6,2}, \mathrm{E}_{7,1}, \mathrm{E}_{8,8}, \mathrm{~F}_{4,1} \text { and } \mathrm{G}_{2,2}
$$

related to split spherical buildings. These geometries all share some intriguing properties, and they are so to speak the prototypes of nonstrong parapolar spaces
when their rank is at least 3 . A lot of information about long root geometries can be found in Shult's book [2011], Chapter 17.

Long root geometries satisfy certain regularity properties. One of those, when the geometry is a parapolar space, is the following. Consider the set of points $E(p, q)$ symplectic to two given opposite points p, q. Then the set $I(p, q)$ of points symplectic to each point of $E(p, q)$ carries the structure of a projective line over the base field: it is defined by an orbit of a full root group with centre in $I(p, q)$. The set $I(p, q)$ is called an imaginary line. A further property is that, when a point x is not opposite at least three members of $I(p, q)$, then it is not opposite each member of $I(p, q)$.

2G. Projectivities. The main results of the present paper classify embeddings of subgeometries "up to projective equivalence". In order to define this, we first need to define a projectivity. The group of projectivities of a Lie incidence geometry Δ containing projective planes as (not necessarily maximal) singular subspaces, is the group of collineations of Δ generated by all collineations each of which pointwise fixes some line or elementwise fixes a full line pencil of a singular plane. This amounts to the universal Chevalley group of respective type. A projectivity of Δ is a member of the group of projectivities of Δ. Then two embeddings Γ^{\prime} and $\Gamma^{\prime \prime}$ in Δ are projectively equivalent if there exists a projectivity of Δ mapping Γ^{\prime} bijectively to $\Gamma^{\prime \prime}$. A projectivity will also be referred to as a linear automorphism.

3. Equator geometries

Generally speaking, an equator of a Lie incidence geometry Δ is the set of points lying at equal distance from two given opposite flags F, F^{\prime} along a shortest path connecting these flags, which are called the poles of the equator. The distance is measured in the incidence graph of the building, or in a truncation of it to certain types. We will always be able to define a given equator using incidence geometric properties. As an example, consider Definition 3.8; the graph is the incidence graph restricted to points and symps, but a more geometric definition is just to say that the equator consists of the points contained in respective symps together with x and x^{\prime}. It is in that spirit that we will always define the individual equator geometries. (Hence, in principle, pairs of opposite flags can define different equator geometries, depending on the truncation of the incidence graph, but this will have no importance to us.)

There are various ways to furnish this set with lines so that it becomes a point-line geometry, called the equator geometry (with poles F and F^{\prime}), denoted $E\left(F, F^{\prime}\right)$. The standard way is to just consider the lines of Δ completely contained in it (and we shall always do it in this way). The point-line geometries thus obtained are again Lie incidence geometries, they are related to the building $\operatorname{Res}_{\Delta}(F)$.

We would also like to warn the reader that the poles of an equator are not necessarily unique. We will see explicit examples of this phenomenon, see for instance Proposition 4.2.

We now define and discuss the equator geometries relevant for this paper. In each of these cases, F and F^{\prime} will consist of one element. For more examples we refer to [Van Maldeghem and Victoor 2019].

3A. Equator geometries isomorphic to $A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ in $D_{5,5}(\mathbb{K})$.

Definition 3.1. Let U, U^{\prime} be opposite maximal 3-spaces of $\Delta_{0} \cong \mathrm{D}_{5,5}(\mathbb{K})$. The point set of the equator geometry $E\left(U, U^{\prime}\right)$ with poles U, U^{\prime} is given by the set of points of Δ_{0} collinear to simultaneously a plane of U and a plane of U^{\prime}, equipped with the lines of Δ_{0} entirely contained in it.

To see that $E\left(U, U^{\prime}\right)$ is isomorphic to $\mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{3,1}(\mathbb{K})$, we will work with Δ_{0}^{*}, the polar space isomorphic to $\mathrm{D}_{5,1}(\mathbb{K})$ corresponding to Δ_{0}. The poles U and U^{\prime} correspond to opposite lines L, L^{\prime} of Δ_{0}^{*}; the point set of $E\left(L, L^{\prime}\right)$ is the set of 4-spaces of Δ_{0}^{*} of one natural system of generators intersecting both L and L^{\prime} in (necessarily collinear) points of Δ_{0}^{*}. Observe that two such 4-spaces of Δ_{0}^{*} correspond to collinear points of Δ_{0} if they meet each other in a plane.

Lemma 3.2. Let U and U^{\prime} be opposite maximal 3-spaces of $\Delta_{0} \cong D_{5,5}(\mathbb{K})$. Then, as a point-line geometry, $E\left(U, U^{\prime}\right)$ is a subspace isomorphic to $\mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{3,1}(\mathbb{K})$.

Proof. As mentioned above, we work in Δ_{0}^{*}. We denote the set of 4 -spaces corresponding to the points of Δ_{0} by Υ. With the above notation, $L^{\perp} \cap L^{\prime \perp}$ is a polar space isomorphic to $D_{3,1}(\mathbb{K})$, which is contained in T^{\perp}, for each line T intersecting both L and L^{\prime} nontrivially. Let \mathscr{T} be the set of such lines and let Υ^{\prime} be the set of planes of the polar space $L^{\perp} \cap L^{\prime \perp}$ of one family of generators, namely the family consisting of the planes that, together with a line $T \in \mathscr{T}$, generate a member of Υ (note that this does not depend on $T \in \mathscr{T}$). We already see from this that $E\left(U, U^{\prime}\right)$ is a subspace. Hence we can write an arbitrary member of $E\left(U, U^{\prime}\right)$ as the span of a member π of Υ^{\prime} and a member T of \mathscr{T}, and we identify it with the couple (π, T). Hence $E\left(U, U^{\prime}\right)$ is already set-theoretically the direct product of $\mathrm{A}_{3,1}(\mathbb{K})$ and $\mathrm{A}_{1,1}(\mathbb{K})$, as \mathscr{T} clearly has the structure of $\mathrm{A}_{1,1}(\mathbb{K})$. It is also clear that (π, T) and $\left(\pi^{\prime}, T\right)$ are always collinear (since π and π^{\prime} intersect in a point or coincide, hence $\langle\pi, T\rangle$ and $\left\langle\pi^{\prime}, T\right\rangle$ intersect in a plane or coincide), and so are (π, T) and $\left(\pi, T^{\prime}\right)$. It remains to show that (π, T) and $\left(\pi^{\prime}, T^{\prime}\right)$ are not collinear if $\pi \neq \pi^{\prime}$ and $T \neq T^{\prime}$. And indeed, $\langle\pi, T\rangle \cap\left\langle\pi^{\prime}, T^{\prime}\right\rangle \subseteq T^{\perp} \cap T^{\prime \perp}=L^{\perp} \cap L^{\prime \perp}$, implying $\langle\pi, T\rangle \cap\left\langle\pi^{\prime}, T^{\prime}\right\rangle \subseteq \pi \cap \pi^{\prime}$. This proves the lemma.

Remark 3.3. The fact that $E\left(U, U^{\prime}\right)$ is a subspace, together with the fact that all noncollinear point pairs of both Γ_{0} and Δ_{0} are symplectic in their respective
geometry, implies that the embedding of $A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ in $D_{5,5}(\mathbb{K})$ as an equator geometry is isometric.

3B. Equator geometries isomorphic to $\mathbf{A}_{5,2}(\mathbb{K})$ in $\mathrm{E}_{6,1}(\mathbb{K})$. For notation and terminology regarding the parapolar space $\mathrm{E}_{6,1}(\mathbb{K})$, we refer to Section A2. In particular, we use the notation 4^{\prime}-space for a nonmaximal singular 4-space.

Definition 3.4. Let W, W^{\prime} be opposite 5 -spaces of $\Delta_{1} \cong \mathrm{E}_{6,1}(\mathbb{K})$. The point set of the equator geometry $E\left(W, W^{\prime}\right)$ with poles W, W^{\prime} is given by the set of points of Δ_{1} simultaneously collinear to a 3-space of W and a 3 -space of W^{\prime}, equipped with the lines of Δ_{1} entirely contained in it.

Lemma 3.5. Let W, W^{\prime} be opposite 5 -spaces of $\Delta_{1} \cong \mathrm{E}_{6,1}(\mathbb{K})$. Then, as a point-line geometry, the equator geometry $E\left(W, W^{\prime}\right)$ is a subspace isomorphic to $A_{5,2}(\mathbb{K}) \cong$ $\mathrm{A}_{5,4}(\mathbb{K})$.

Proof. By definition, each point p of $E\left(W, W^{\prime}\right)$ is Δ_{1}-collinear to a unique 3-space W_{p} of W. We first claim that the map $p \mapsto W_{p}$ is bijective onto the set of 3-spaces of W. Let S be a 3 -space in W. Then there is a unique 4 -space U containing S (see Fact A.14). Consider an arbitrary line $L \subseteq S$; let $L^{\prime} \subseteq W^{\prime}$ be the unique line of W^{\prime} each point of which is collinear to a point of L (see Fact A.11). Let Σ be the unique symp through L and L^{\prime}. Since $\Sigma \cap U$ contains L, it contains some plane π through L in U (see Fact A.8). In Σ, we see that there is a point $p \in \pi$ collinear to L^{\prime}. Since $p^{\perp} \cap W^{\prime}$ contains a line, it is a 3 -space by the same fact. Hence $p \in E\left(W, W^{\prime}\right)$ and $W_{p}=S$. This shows surjectivity. As for injectivity, suppose $p^{\prime} \in U$ also belongs to $E\left(W, W^{\prime}\right)$ and set $M=p^{\perp} \cap p^{\perp} \cap W^{\prime}$. Then M contains a line collinear to the line $p p^{\prime}$, which intersects S in a point, contradicting Fact A. 11 once again. The claim is proved.

Now take a line $L=p q$ of $E\left(W, W^{\prime}\right)$. The previous paragraph yields $W_{p} \neq W_{q}$. Hence we can take a point $p^{\prime} \in W_{p} \backslash W_{q}$ and consider the $\operatorname{symp} \Sigma_{L}$ determined by q and p^{\prime}. Then Σ_{L} contains p and intersects W in the 4^{\prime}-space $V_{L}:=\left\langle p^{\prime}, W_{q}\right\rangle$. In Σ_{L}, p is collinear to a 3 -space of V_{L} and hence $W_{p} \subseteq V_{L}$. Therefore, W_{p} and W_{q} share a plane π_{L}. Inside Σ_{L} it is easily seen that for each point r of L, we have $\pi_{L} \subseteq W_{r} \subseteq V_{L}$, and conversely, each 3-space incident with both π_{L} and V_{L} is collinear to a point on L. So the lines of $E\left(W, W^{\prime}\right)$ correspond to lines of the 3-space Grassmannian of W, and each line of $E\left(W, W^{\prime}\right)$ corresponds bijectively to a line of that Grassmannian.

Finally, consider two points p and q in $E\left(W, W^{\prime}\right)$ such that $W_{p} \cap W_{q}$ is a plane. We show that p and q are collinear in Δ_{1}, and hence in $E\left(W, W^{\prime}\right)$. Indeed, if not, they are symplectic and the symp they determine contains $W_{p} \cap W_{q}$ (which is a plane) and $W_{p}^{\prime} \cap W_{q}^{\prime}$ (which is at least a line). Therefore, $W_{p} \cap W_{q}$ contains a point which is collinear to a line of W^{\prime}, contradicting Fact A.11.

3C. Equator geometries isomorphic to $\mathrm{D}_{6,6}(\mathbb{K})$ in $\mathrm{E}_{7,7}(\mathbb{K})$.

Definition 3.6. Let Σ, Σ^{\prime} be opposite symps of $\Delta_{2} \cong E_{7,7}(\mathbb{K})$. The point set of the equator geometry $E\left(\Sigma, \Sigma^{\prime}\right)$ with poles Σ, Σ^{\prime} is given by the set of points of Δ_{2} simultaneously collinear to a 5^{\prime}-space of Σ and a 5^{\prime}-space of Σ^{\prime}, equipped with the lines of Δ_{2} entirely contained in it.

Lemma 3.7. Let Σ, Σ^{\prime} be opposite symps of $\Delta_{2} \cong \mathrm{E}_{7,7}(\mathbb{K})$. Then, as a point-line geometry, the equator geometry $E\left(\Sigma, \Sigma^{\prime}\right)$ is a subspace isomorphic to $D_{6,6}(\mathbb{K})$.

Proof. By definition, each point p of $E\left(\Sigma, \Sigma^{\prime}\right)$ corresponds to a unique 5^{\prime}-space U_{p} of Σ. We first claim that the mapping $p \mapsto U_{p}$ is bijective onto the 5^{\prime}-spaces of Σ. Surjectivity is proved in almost exactly the same fashion as in the proof of Lemma 3.5. We now show injectivity. Let p, q be distinct points with $U_{p}=U_{q}$. Then $\left\langle p, U_{p}\right\rangle$ and $\left\langle q, U_{q}\right\rangle$ are 6 -spaces sharing a 5^{\prime} 'space, hence they coincide. Set $M=p^{\perp} \cap q^{\perp} \cap \Sigma^{\prime}$. If $M \neq \varnothing$ then M contains a line collinear to the line $p q$, which intersects S in a point, contradicting Fact A.18. Now assume $M=\varnothing$. Then the symp containing a point x of $p^{\perp} \cap \Sigma^{\prime}$ and q contains p and at least a 4 -space in $q^{\perp} \cap \Sigma^{\prime}$, implying M has dimension at least 3. The claim is proved.

Now let $L=p q$ be a line of $E\left(\Sigma, \Sigma^{\prime}\right)$. The previous paragraph implies $U_{p} \neq U_{q}$, and then the argument in the last sentence, modified by choosing x in $U_{p} \backslash U_{q}$, implies that $U_{p} \cap U_{q}$ is a 3 -space. Now for any 5^{\prime}-space of Σ through $U_{p} \cap U_{q}$, the unique 6 -space through it meets the 5 -space $\left\langle L, U_{p} \cap U_{q}\right\rangle$ in a 4 -space and hence it meets L in a unique point; conversely, for each point z on L, Fact A. 15 implies that $z^{\perp} \cap \Sigma$ is a 5^{\prime}-space containing $U_{p} \cap U_{q}$.

Now let p and q be two points of $E\left(\Sigma, \Sigma^{\prime}\right)$ such that $U_{p} \cap U_{q}$ is a 3 -space. Suppose for a contradiction that p and q are not collinear in $E\left(\Sigma, \Sigma^{\prime}\right)$, i.e., they are not Δ_{2}-collinear. Then p and q are symplectic, since $p^{\perp} \cap q^{\perp}$ contains the 3 -space $U_{p} \cap U_{q}$. Set $\Sigma_{p q}:=\Sigma(p, q)$. Since p and q are noncollinear points of $\Sigma_{p q}$ collinear to a 5^{\prime}-space of Σ^{\prime}, it follows from the symp-symp relations of Δ_{2} (see Fact A.16, in particular (iv) and (v)) that $\Sigma_{p q} \cap \Sigma^{\prime}$ is nonempty. But then a point in $\Sigma_{p q} \cap \Sigma^{\prime}$ is collinear to more than a unique point of Σ (note that $\Sigma \cap \Sigma_{p q}$ is a 5space), a contradiction to the fact that Σ and Σ^{\prime} are opposite (see Fact A.16(v)). So p and q are collinear indeed. We obtain that $E\left(\Sigma, \Sigma^{\prime}\right)$ is isomorphic to $\mathrm{D}_{6,6}(\mathbb{K})$.

3D. Equator geometries isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$ in $\mathrm{E}_{\mathbf{8}, 8}(\mathbb{K})$.

Definition 3.8. Let x, x^{\prime} be opposite points of $\Delta_{3} \cong \mathrm{E}_{8,8}(\mathbb{K})$. The point set of the equator geometry $E\left(x, x^{\prime}\right)$ with poles x, x^{\prime} is given by the set of points of Δ_{3} symplectic to both x and x^{\prime}, equipped with the lines of Δ_{3} entirely contained in it.

Lemma 3.9. Let x, x^{\prime} be opposite points of $\Delta_{3} \cong \mathrm{E}_{8,8}(\mathbb{K})$. Then, as a point-line geometry, the equator geometry $E\left(x, x^{\prime}\right)$ is a subspace isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$.

Proof. By construction, each point p of $E\left(x, x^{\prime}\right)$ corresponds to a unique symp Σ_{p} through x and hence a unique symp of $\operatorname{Res}_{\Delta_{3}}(x) \cong \mathrm{E}_{7,7}(\mathbb{K})$, i.e., a point of $\mathrm{E}_{7,1}(\mathbb{K})$. By Fact A.22(iv) the mapping $p \mapsto \Sigma_{p}$ is bijective.

Suppose two points p, q of $E\left(x, x^{\prime}\right)$ are collinear. By the point-symp relations (Fact A.22) and the fact that $p \perp q, p$ is collinear to either a unique 6 -space $U \ni q$ of Σ_{q} or a unique line $L \ni q$ of Σ_{q}. In the second case, $p \Perp x$ implies $x \perp L$ by Fact A.22(ii), contradicting $x \Perp q$. Hence p is collinear to a 6^{\prime}-space U of Σ_{q}. Looking in Σ_{q}, we see that x is collinear to a 5 -space U_{x} of U. It follows that $\Sigma_{p} \cap \Sigma_{q}$ is the 6 -space $\left\langle x, U_{x}\right\rangle$. Note that $\left\langle p, q, U_{x}\right\rangle$ is a 7 -space of Δ_{3} and that hence, for each point $r \in p q$, the symp Σ_{r} contains $\left\langle x, U_{x}\right\rangle$ too; moreover, each symp containing $\left\langle x, U_{x}\right\rangle$ shares a point with $p q$, as can be deduced from the symp-max relations (Fact A.12) of $\mathrm{E}_{6,1}(\mathbb{K})$, which we obtain by considering the residue of a line in U_{x}.

Conversely, suppose now that Σ_{p} and Σ_{q} share a 6 -space. Suppose for a contradiction that p and q are not collinear. Put $V_{p q}=p^{\perp} \cap q^{\perp} \cap \Sigma_{p} \cap \Sigma_{q}$ and note that $\operatorname{dim} V_{p q} \geq 4$. Therefore, $p \Perp q$ and the unique symp $\Sigma_{p q}$ of Δ_{3} containing p, q also contains $V_{p q}$. Consider the position of the point x^{\prime} with respect to $\Sigma_{p q}$. Since x^{\prime} is symplectic to p and q by definition and p and q are not collinear by assumption, options (iii) and (iv) of Fact A. 22 are ruled out. Since x^{\prime} is special to the points of $V_{p q}$, option (i) of Fact A. 22 is also not possible. The only remaining possibility is (ii) of Fact A.22, where x^{\prime} is collinear to a unique line L of $\Sigma_{p q}$. But then x^{\prime} would be symplectic to the points of $L^{\perp} \cap V_{p q}$, a contradiction. We conclude that p and q are collinear.

4. Uniqueness of equator geometry isomorphic to $\mathrm{E}_{\mathbf{7}, \mathbf{1}}(\mathbb{K})$ in $\mathrm{E}_{8,8}(\mathbb{K})$

The goal of this section is to show that a geometry isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$ fully embedded in $\mathrm{E}_{8,8}(\mathbb{K})$ always arises as an equator geometry $E\left(x, x^{\prime}\right)$ for two opposite points x, x^{\prime} of $\mathrm{E}_{8,8}(\mathbb{K})$ (see Definition 3.8). As a consequence, the embedding is unique up to projectivity. We accomplish this inductively, proving the analogues for consecutive point residuals. This gives us the sequence of full embeddings as depicted at the top of Figure 1 in the introduction, and leads to the following main theorem (for the definitions of equator geometries, see Definitions 3.1, 3.4, 3.6 and 3.8; for properties of the Lie incidence geometries, we refer to the Appendix).

Main Result 4.1. Let $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ be point-line geometries that are isomorphic to $\mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{3,1}(\mathbb{K}), \mathrm{A}_{5,2}(\mathbb{K}), \mathrm{D}_{6,6}(\mathbb{K})$ and $\mathrm{E}_{7,1}(\mathbb{K})$, respectively; and let $\Delta_{0}, \Delta_{1}, \Delta_{2}, \Delta_{3}$ be point-line geometries isomorphic to $\mathrm{D}_{5,5}(\mathbb{K}), \mathrm{E}_{6,1}(\mathbb{K})$, $\mathrm{E}_{7,7}(\mathbb{K})$ and $\mathrm{E}_{8,8}(\mathbb{K})$, respectively. Let $i \in\{0,1,2,3\}$ and suppose Γ_{i} is fully embedded in Δ_{i}. If $i=0$, suppose additionally that this embedding is isometric. Then this embedding is projectively unique and arises as an equator geometry, where the
poles are elements of the type of the points of the long root geometry (an element of type 2, type 2, type 1, and type 8 , respectively).

4A. Full isometric embeddings of $A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ in $D_{5,5}(\mathbb{K})$. We first study the full isometric embeddings of a geometry Γ_{0} isomorphic to $A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$, in the half spin geometry Δ_{0} isomorphic to $D_{5,5}(\mathbb{K})$. Our aim is to show that such an embedding arises as an equator geometry (see Definition 3.1).

Let Π denote the set of singular 3 -spaces of Γ_{0} and let Λ denote the set of maximal singular 1-spaces of Γ_{0}. By definition, each point of Γ_{0} is contained in a unique element of Π and a unique member of Λ.

Proposition 4.2. Suppose $\Gamma_{0} \cong A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ embeds fully and isometrically in $\Delta_{0} \cong \mathrm{D}_{5,5}(\mathbb{K})$. Then there exist opposite maximal singular 3-spaces U, U^{\prime} in Δ_{0} such that Γ_{0} coincides with the equator geometry $E\left(U, U^{\prime}\right)$. Moreover, if V, V^{\prime} are opposite 3-spaces of Δ_{0} such that $\Gamma_{0}=E\left(V, V^{\prime}\right)$, then the lines corresponding to $U, U^{\prime}, V, V^{\prime}$ are on a regulus of Δ_{0}^{*} (the corresponding points in the long root geometry $\mathrm{D}_{5,2}(\mathbb{K})$ are points on an imaginary line).

Proof. Assume first for a contradiction that some member S of Π is contained in a singular 4 -space W and consider a point x of Γ_{0} not in S. In Δ_{0}^{*}, the point x corresponds to a 4 -space V_{x}, and the space W corresponds to a 4^{\prime}-space W^{*}. If $W^{*} \cap V_{x}=\varnothing$, then $x^{\perp} \cap W=\varnothing$, a contradiction. If $W^{*} \cap V \neq \varnothing$, then $x^{\perp} \cap W$ contains a plane, implying $x^{\perp} \cap S$ contains a line, also a contradiction since this would mean that the embedding is not isometric. Hence each member of Π is a maximal singular subspace. It is easy to see that distinct members of Π are opposite. We let Π^{*} be the corresponding set of lines of Δ_{0}^{*}. We have to show that Π^{*} consists of an (entire) regulus. Let X^{*} be the set of 4 -spaces of Δ_{0}^{*} corresponding to the point set of Γ_{0}, and we speak of collinear members if the corresponding points of Γ_{0} are collinear.

Take $L_{1}, L_{2} \in \Pi^{*}$ arbitrary, $L_{1} \neq L_{2}$. For each member $V_{1} \in X^{*}$ through L_{1}, there exists a unique $V_{2} \in X^{*}$ through L_{2} collinear to V_{1}. Denote the regulus containing L_{1} and L_{2} by \mathscr{R}. Then containment is a bijective correspondence between the members of \mathscr{R} and the members of X^{*} containing $V_{1} \cap V_{2}$, and these members correspond to the points on the line of Γ_{0} defined by V_{1} and V_{2}. Replacing L_{2} with any other member of $\mathscr{R} \backslash\left\{L_{1}\right\}$, this argument also proves that X^{*} consists of all 4 -spaces containing some member of \mathscr{R}. This shows that $\Pi^{*}=\mathscr{R}$.

In view of the discussion following Definition 3.1, it is clear that Γ_{0} coincides with $E\left(U, U^{\prime}\right)$, for each pair of maximal 3-spaces of Δ_{0} with U and U^{\prime} corresponding in Δ_{0}^{*} to lines of the opposite regulus to \mathscr{R}.

4B. Full embeddings of $\mathbf{A}_{5,2}(\mathbb{K})$ in $\mathrm{E}_{\mathbf{6 , 1}}(\mathbb{K})$. Next, we study the full embeddings of a geometry Γ_{1} isomorphic to $A_{5,2}(\mathbb{K})$ in a geometry Δ_{1} isomorphic to $E_{6,1}(\mathbb{K})$.

The former is a strong parapolar space of diameter 2 with symps isomorphic to $D_{3,1}(\mathbb{K})$, its properties can be derived from the properties of projective spaces (the points of Γ_{1} are the lines of $\left.\operatorname{PG}(5, \mathbb{K}) \cong A_{5,1}(\mathbb{K})\right)$. For details about Δ_{1} we refer to Section A3 in the Appendix. Our aim is to show that Γ_{1} arises as an equator geometry of Δ_{1} (see Definition 3.4).

We head off by showing that each full embedding of Γ_{1} in Δ_{1} is isometric.
Lemma 4.3. Suppose $\Gamma_{1} \cong A_{5,2}(\mathbb{K})$ is fully embedded in $\Delta_{1} \cong \mathrm{E}_{6,1}(\mathbb{K})$. Then the embedding of Γ_{1} in Δ_{1} is isometric.

Proof. If every pair of points of Γ_{1} is collinear in Δ_{1}, then Γ_{1} is contained in a singular subspace, which has dimension at most 5 , contradicting the fact that Γ_{1} contains singular subspaces of dimension 4 which intersect in only a point. Hence some point pair of Γ_{1}, say $\{p, q\}$, is symplectic in Δ_{1}, and also in Γ_{1} of course. We denote the line in $\operatorname{PG}(5, \mathbb{K})$ corresponding to a point x of $\Gamma_{1} \cong A_{5,2}(\mathbb{K})$ by L_{x}. Then L_{p} and L_{q} span a 3 -space. The $\operatorname{symp} \xi(p, q)$ of Γ_{1} is isometrically embedded in the symp $\Sigma(p, q)$ of Δ_{1} by Fact 2.1 (see also the notation below). Let L be a line of Γ_{1} through q not contained in $\xi(p, q)$. We claim that L is not contained in $\Sigma(p, q)$.

Indeed, suppose for a contradiction it is. Note that p is Δ_{1}-collinear to a unique point w of L (clearly, $q \neq w$), so the $\operatorname{symp} \xi(p, w)$ embeds in a singular 5-space S of Δ_{1}. The corresponding 3-space $\left\langle L_{p}, L_{w}\right\rangle$ in $\operatorname{PG}(5, \mathbb{K})$ then meets $\left\langle L_{p}, L_{q}\right\rangle$ in a plane π, generated by L_{p} and the point $L_{q} \cap L_{w}$. Let v be any point of $\xi(p, w)$, not Γ_{1}-collinear to p. Then $L_{v} \subseteq\left\langle L_{p}, L_{w}\right\rangle$ meets π in a point not on L_{p}. Now take a point q^{\prime} in $\xi(p, q)$ such that $L_{q^{\prime}}$ meets π precisely in the point $L_{v} \cap \pi$. Then q^{\prime} is Γ_{1}-collinear to v and not Γ_{1}-collinear to p. Since p and q^{\prime} are not Δ_{1}-collinear either, we obtain that $v \in p^{\perp_{\Delta_{1}}} \cap q^{\prime \perp_{\Delta_{1}}} \subseteq \Sigma\left(p, q^{\prime}\right)=\Sigma(p, q)$. Since v was any point in $\xi(p, w) \backslash\left\{p^{\perp_{\Gamma_{1}}}\right\}$ and the latter generates S, we obtain that S is a singular 5-space in $\Sigma(p, q) \cong \mathrm{D}_{5,1}(\mathbb{K})$, a contradiction. The claim follows.

Let x be a point of Γ_{1} which is Γ_{1}-symplectic to p. We show that x is also Δ_{1}-symplectic to p. Now either x is Γ_{1}-collinear to a plane π of $\xi(p, q)$, or it is Γ_{1}-symplectic to all points of $\xi(p, q)$. In the first case, π contains a point q^{\prime} not Γ_{1}-collinear to p and the above argument with q^{\prime} instead of q applies. In the second case, each Γ_{1}-line through x contains a unique point x^{\prime} which is collinear to a plane π^{\prime} of $\xi(p, q)$, and we can choose this such that $p \notin \pi$. We just proved that $\xi\left(p, x^{\prime}\right)$ is isometric, and replacing q with such x^{\prime} in the above argument, we see that also $\xi(p, x)$ is isometric. Connectivity of the graph on the points of Γ_{1}, adjacent if symplectic, now completes the proof of the lemma.

Knowing that the embedding of Γ_{1} in Δ_{1} is isometric, we can now show the analogue of Proposition 4.2 for Γ_{1} in Δ_{1}.
Proposition 4.4. Suppose $\Gamma_{1} \cong A_{5,2}(\mathbb{K})$ is fully embedded in $\Delta_{1} \cong E_{6,1}(\mathbb{K})$. Then there are opposite 5-spaces W and W^{\prime} in Δ_{1} such that Γ_{1} coincides with the equator
geometry $E\left(W, W^{\prime}\right)$. Moreover, if V, V^{\prime} are opposite 5-spaces of Δ_{1} such that $\Gamma_{1}=E\left(V, V^{\prime}\right)$, then V, V^{\prime} are maximal singular 5-spaces of the unique Segre variety $\mathscr{S}_{1,5}(\mathbb{K})$ in Δ_{1} determined by W and W^{\prime} (the points corresponding to $W, W^{\prime}, V, V^{\prime}$ in the long root geometry $\mathrm{E}_{6,2}(\mathbb{K})$ are on an imaginary line).
Proof. By Lemma 4.3, $\perp_{\Delta_{1}}=\perp_{\Gamma_{1}}$, so we will denote the collinearity relation in both geometries just by \perp. Let p be a point of Γ_{1} and ξ a symp of Γ_{1} such that $p^{\perp} \cap \xi$ is empty. Then, if Σ is the unique symp of Δ_{1} containing ξ, also $p^{\perp} \cap \Sigma=\varnothing$, for otherwise the 4^{\prime}-space $p^{\perp} \cap \Sigma$ would intersect ξ in at least a point; recall from Fact 2.1 that we can think of Σ as a hyperbolic quadric in $\operatorname{PG}(9, \mathbb{K})$ and of ξ as the intersection of that quadric with a 5 -dimensional subspace of $\operatorname{PG}(9, \mathbb{K})$.
Step 1. Determining poles W, W^{\prime} for the equator geometry. Define Δ_{0}^{p} as the point-line geometry induced by the points of p^{\perp} which are close to Σ and let Γ_{0}^{p} be the subgeometry $\Delta_{0}^{p} \cap \Gamma_{1}$. Note that by the argument of the previous paragraph, the points of Γ_{0}^{p} are also close to ξ. Clearly, $\Gamma_{0}^{p} \cong \mathrm{~A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{3,1}(\mathbb{K})$ is fully embedded in $\Delta_{0}^{p} \cong \mathrm{D}_{5,5}(\mathbb{K})$, and this embedding is isometric by Lemma 4.3. As such, Proposition 4.2 yields opposite 3-spaces U and U^{\prime} in Δ_{0}^{p} such that $\Gamma_{0}^{p}=E\left(U, U^{\prime}\right)$, i.e., each point of Γ_{0}^{p} is collinear to a plane of U and U^{\prime}. Now each point y of Σ (resp. ξ) is collinear to a symp of Δ_{0}^{p} (resp. Γ_{0}^{p}), namely $p^{\perp} \cap y^{\perp}\left(\right.$ resp. $\left.p^{\perp} \cap y^{\perp} \cap \Gamma_{0}^{\prime}\right)$, and the induced map is a bijection since each symp of Δ_{1} (resp. of Γ_{1}) through p meets Σ (resp. ξ) in a point. Moreover, by Fact A. 13 this map, which is given by collinearity, induces an isomorphism between Δ_{0}^{p} and Σ. Therefore, there are unique singular lines M and M^{\prime} in Σ which are collinear to U and U^{\prime}, and M and M^{\prime} are opposite in Σ.

Consider the singular 5-spaces $W:=\langle U, M\rangle$ and $W^{\prime}:=\left\langle U^{\prime}, M^{\prime}\right\rangle$. We claim that W and W^{\prime} are opposite 5 -spaces in Δ_{1}. Firstly, they are disjoint, since by convexity their intersection would belong to Σ (and since $\Sigma \cap W=M$ and $\Sigma \cap W^{\prime}=M^{\prime}$ are disjoint, this is not possible). Secondly, if not opposite, then the 5-5 relations (Fact A.10) imply that there is a unique plane π in W collinear to a plane π^{\prime} in W^{\prime}. This plane π shares at least a point z with U, and $\pi^{\prime} \cap U^{\prime}$ is then necessarily the unique point z^{\prime} of U^{\prime} collinear to z. Now take a point $y \in U \backslash \pi$. Then the symp determined by y and z^{\prime} contains π and hence it intersects W in a 4^{\prime}-space by the point-5 relations. The latter 4^{\prime}-space shares at least a plane with U and therefore z is not the unique point of U collinear to z^{\prime} after all, a contradiction. The claim follows.

Step 2. Showing that $\Gamma_{1}=E\left(W, W^{\prime}\right)$. To this end, take any point y in ξ and consider the symp $\xi^{\prime}=\xi(p, y)$ of Γ_{1} determined by p, y and let Σ^{\prime} be the symp of Δ_{1} in which ξ^{\prime} embeds isometrically, which is also determined by p and y. As explained in Step 1, ξ^{\prime} meets Γ_{0}^{p} in the hyperbolic polar space G of rank 2 and Σ^{\prime} meets Δ_{0}^{p} in a symp $\bar{\Sigma}$ isomorphic to $\mathrm{D}_{4,1}(\mathbb{K})$. Since $G \subseteq E\left(U, U^{\prime}\right)$, there are
unique lines L and L^{\prime} in U and U^{\prime}, respectively, with $L \perp G \perp L^{\prime}$. Therefore, $\bar{\Sigma}$ contains L and L^{\prime}, and hence $L \perp y \perp L^{\prime}$. We claim that y is also collinear to M and M^{\prime}. If not, consider a point $y^{\prime} \in M$ not collinear to y. Then Σ, the unique symp containing y and y^{\prime}, would also contain L, a contradiction. The claim follows. Now each point of ξ^{\prime} is collinear to L and hence, by the point- 5 relations (Fact A.11), is collinear to a 3 -space of W. Since each point of Γ_{1} lies on a symp through p which meets ξ in a point y^{\prime}, and since W and W^{\prime} play the same role, we obtain that $\Gamma_{1} \subseteq E\left(W, W^{\prime}\right)$. Let $z \in \Gamma_{1}$ be arbitrary. Since each point of $E\left(W, W^{\prime}\right)$ collinear to z is collinear to a plane of W_{z} and a plane of W_{z}^{\prime}, it follows that $\operatorname{Res}_{E\left(W, W^{\prime}\right)}(z)$, and in particular $\operatorname{Res}_{\Gamma_{1}}(z)$, is contained in the equator geometry of $\operatorname{Res}_{\Delta_{1}}(z)$ having as poles the 3 -spaces corresponding to $\left\langle z, W_{z}\right\rangle$ and $\left\langle z, W_{z}^{\prime}\right\rangle$. Lemmas 4.2 and 4.3 imply that $\operatorname{Res}_{E\left(W, W^{\prime}\right)}(z)=\operatorname{Res}_{\Gamma_{1}}(z)$. By Lemma 2.3, we conclude that $\Gamma_{1}=E\left(W, W^{\prime}\right)$.

The last statement follows from the construction and from the last statement of Proposition 4.2.

We record a consequence of this that will be useful in the next subsection, when studying the embedding of $\Gamma_{2} \cong D_{6,6}(\mathbb{K})$ in $\Delta_{2} \cong E_{7,7}(\mathbb{K})$.

Corollary 4.5. Suppose $\Gamma_{1} \cong A_{5,2}(\mathbb{K})$ is fully embedded in $\Delta_{1} \cong E_{6,1}(\mathbb{K})$. Then, for two distinct symps ξ_{1} and ξ_{2} of Γ_{1}, embedded in respective symps Σ_{1} and Σ_{2} of Δ_{1}, we have that $\Sigma_{1} \neq \Sigma_{2}$. Moreover, $\Sigma_{1} \cap \Sigma_{2}$ is a point if and only if $\xi_{1} \cap \xi_{2}$ is a point. If p is a point of Γ_{1} such that $p^{\perp} \cap \xi_{1}=\varnothing$, then $p^{\perp} \cap \Sigma_{1}=\varnothing$.

Proof. By Proposition 4.4, there are opposite 5 -spaces W and W^{\prime} in Δ_{1} such that $\Gamma_{1}=E\left(W, W^{\prime}\right)$. This yields unique lines L_{i} in W and L_{i}^{\prime} in W^{\prime} with $L_{i} \perp \xi_{i} \perp L_{i}^{\prime}$, for $i=1$, 2. Clearly, $L_{i} \cup L_{i}^{\prime} \subseteq \Sigma_{i}$; moreover, L_{i}, L_{i}^{\prime} and ξ_{i} generate Σ_{i} and $\Sigma_{i} \cap W=L_{i}$. The correspondence between $\Gamma_{1}=E\left(W, W^{\prime}\right)$ and W is such that, if $\xi_{1} \cap \xi_{2}$ is a unique point p, then L_{1} and L_{2} are disjoint, and if $\xi_{1} \cap \xi_{2}$ is a plane, then L_{1} and L_{2} intersect in a point. In particular, since $\Sigma_{i} \cap W=L_{i}$, we have that $\xi_{1} \neq \xi_{2}$ implies $\Sigma_{1} \neq \Sigma_{2}$. So, if $\xi_{1} \cap \xi_{2}$ is a plane, the symp-symp relations of Δ_{1} immediately imply that $\Sigma_{1} \cap \Sigma_{2}$ is a 4 -space. If $\xi_{1} \cap \xi_{2}=\{p\}$, suppose for a contradiction that Σ_{1} and Σ_{2} share a 4 -space $V \ni p$. Then a point $q_{1} \perp p$ of ξ_{1} is Γ_{1}-collinear to a plane of ξ_{2} and Δ_{1}-collinear to a 3 -space of $\Sigma_{2} \cap \Sigma_{1}$, and one can easily choose q_{1} in such a way that those two singular subspaces of Σ_{2} share exactly p. Hence q_{1} is Δ_{1}-collinear to a 5 -space of Σ_{2}, obviously a contradiction.

For the final statement, see the first paragraph of the proof of Proposition 4.4.
4C. Full embeddings of $\mathrm{D}_{6,6}(\mathbb{K})$ in $\mathrm{E}_{7,7}(\mathbb{K})$. We study the full embeddings of a geometry Γ_{2} isomorphic to $D_{6,6}(\mathbb{K})$ in a geometry Δ_{2} isomorphic to $E_{7,7}(\mathbb{K})$. The former is a strong parapolar space of diameter 3 with symps isomorphic to polar spaces isomorphic to $D_{4,1}(\mathbb{K})$; for more details we refer to Section 3.2 of [De Schepper et al. 2022]. (The properties of $\mathrm{D}_{6,6}(\mathbb{K})$ can also be verified using the
corresponding polar space $D_{6,1}(\mathbb{K})$.) For details about the latter geometry, $E_{7,7}(\mathbb{K})$, we refer to Section A3 in the Appendix. Again, our aim is to show that Γ_{2} arises as an equator geometry of Δ_{2} (see Definition 3.6). We first show that each full embedding of Γ_{2} in Δ_{2} is isometric.

Lemma 4.6. Suppose $\Gamma_{2} \cong \mathrm{D}_{6,6}(\mathbb{K})$ is fully embedded in $\Delta_{2} \cong \mathrm{E}_{7,7}(\mathbb{K})$. Then the embedding of Γ_{2} in Δ_{2} is isometric.

Proof. Let p, q be points of Γ_{2} and suppose for a contradiction that $d_{\Delta_{2}}(p, q)<$ $d_{\Gamma_{2}}(p, q)$. By definition, Γ_{2}-collinear points are Δ_{2}-collinear. So suppose first that p and q are symplectic in Γ_{2}. Then they are contained in a symp ξ of Γ_{2}. Since no singular subspace of Δ_{2} is large enough to contain a polar space isomorphic to $\mathrm{D}_{4,1}(\mathbb{K}), \xi$ embeds isometrically in a symp of Δ_{2}. In particular, p and q are also symplectic in Δ_{2}.

Now suppose p and q are Γ_{2}-opposite points and consider an arbitrary line L of Γ_{2} through p. The line L contains a unique point r which is Γ_{2}-symplectic to q and hence also Δ_{2}-symplectic. Let ξ be the symp of Γ_{2} determined by q and r and let Σ be the corresponding symp in Δ_{2}. Observe that $p^{\perp_{\Gamma_{2}}} \cap \xi=\{r\}$ because p and q are Γ_{2}-opposite. Hence, in $\operatorname{Res}_{\Delta_{2}}(r)$, the point corresponding to $p r$ is far from the symp corresponding to Σ, by Corollary 4.5. Hence $p^{\perp_{\Delta_{2}}} \cap \Sigma=\{r\}$. Fact A.15(i), together with r and q being Δ_{2}-symplectic by the above, implies that p and q are Δ_{2}-opposite.

Knowing this, we can show that a fully embedded Γ_{2} in Δ_{2} arises as an equator geometry. The global strategy of the proof is the same as that of Proposition 4.4, yet locally the proofs have differences.

Proposition 4.7. Suppose $\Gamma_{2} \cong \mathrm{D}_{6,6}(\mathbb{K})$ is fully embedded in $\Delta_{2} \cong \mathrm{E}_{7,7}(\mathbb{K})$. Then there are opposite symps Σ and Σ^{\prime} in Δ_{2} such that Γ_{2} coincides with the equator geometry $E\left(\Sigma, \Sigma^{\prime}\right)$. Moreover, if $\Sigma^{\prime \prime}, \Sigma^{\prime \prime \prime}$ are opposite symps of Δ_{2} such that $\Gamma_{2}=E\left(\Sigma^{\prime \prime}, \Sigma^{\prime \prime \prime}\right)$, then the points corresponding to $\Sigma, \Sigma^{\prime}, \Sigma^{\prime \prime}, \Sigma^{\prime \prime \prime}$ in the long root geometry $\mathrm{E}_{7,1}(\mathbb{K})$ are on an imaginary line.

Proof. Let p, q be opposite points of Γ_{2}, which are hence also opposite in Δ_{2} by Lemma 4.6. The same lemma allows us to speak about distances without referring to Γ_{2} or Δ_{2}. In particular, we use \perp to denote the collinearity relation.

Step 1. Determining poles Σ, Σ^{\prime} for the equator geometry. Define Δ_{1}^{p} as the pointline geometry induced by the points of p^{\perp} which are at distance 2 of q and Γ_{1}^{p} as the subgeometry of Δ_{1}^{p} obtained by intersecting Δ_{1}^{p} with Γ_{2}. Then $\Gamma_{1}^{p} \cong \mathrm{~A}_{5,2}(\mathbb{K})$ is fully embedded in $\Delta_{1}^{p} \cong \mathrm{E}_{6,1}(\mathbb{K})$. Likewise, we define Δ_{1}^{q} and Γ_{1}^{q} with respect to q. Proposition 4.4 yields opposite 5 -dimensional subspaces W and W^{\prime} in Δ_{1}^{p} such that $\Gamma_{1}^{p}=E\left(W, W^{\prime}\right)$, i.e., each point of Γ_{1}^{p} is collinear to a 3-space of W and W^{\prime}. Note that W and W^{\prime} are 5^{\prime}-spaces in Δ_{2} as they are nonmaximal (they
are collinear to p). By Fact A. 17 and its analogue for Γ_{2}, collinearity induces an isomorphism ρ between Δ_{1}^{p} and Δ_{1}^{q}; which, restricted to Γ_{1}^{p}, gives an isomorphism between Γ_{1}^{p} and Γ_{1}^{q}. Define $V=\rho(W)$ and $V^{\prime}=\rho\left(W^{\prime}\right)$. Then the 5^{\prime}-spaces V and V^{\prime} are opposite in Δ_{1}^{q}. Taking a pair of noncollinear points $r \in W$ and $s \in V$, we obtain that the unique symp Σ determined by r and s contains $U \cup W$, since r is collinear to a hyperplane of V, and s to a hyperplane of W. Likewise, there is a unique symp Σ^{\prime} containing $U^{\prime} \cup V^{\prime}$.

We claim that Σ and Σ^{\prime} are opposite symps of Δ_{2}. Firstly, suppose there would be a point $z \in \Sigma \cap \Sigma^{\prime}$. Now z, contained in $\Sigma \cap \Sigma^{\prime}$, is collinear to a hyperplane W_{z} of W and a hyperplane W_{z}^{\prime} of W^{\prime}, implying that p and z are symplectic: firstly, $p \neq z$ because $p \perp W$; secondly, $z \notin p^{\perp}$, as this would yield a point z^{\prime} in Δ_{1}^{p} collinear to W_{z} and W_{z}^{\prime}, a contradiction to the point -5 relations in Δ_{1}^{p} (Fact A.11). The unique symp determined by p and z contains W_{z} and W_{z}^{\prime}, contradicting the fact that W and W^{\prime} are opposite 5 -spaces in Δ_{1}^{p}. So $\Sigma \cap \Sigma^{\prime}=\varnothing$ indeed. Secondly, if Σ and Σ^{\prime} are not opposite, then the symp-symp relations (Fact A.16) imply that there is a symp $\Sigma^{\prime \prime}$ meeting both Σ and Σ^{\prime} in 5 -spaces Z and Z^{\prime}, respectively. Then Z and W share at least a point z since they are 5 -dimensional subspaces of different types in Σ. Since $z^{\perp} \cap Z^{\prime}$ is a 4 -space, the point-symp relations of Δ_{2} (Fact A.15) imply that $z^{\perp} \cap \Sigma^{\prime}$ is a 5^{\prime}-space. However, z is collinear to a unique point of W^{\prime}, which yields the absurdity that the two 5^{\prime}-spaces W^{\prime} and $z^{\perp} \cap \Sigma^{\prime}$ of Σ^{\prime} would share exactly one point. The claim follows.

Step 2. Showing that $\Gamma_{2}=E\left(\Sigma, \Sigma^{\prime}\right)$. Since clearly $p^{\perp^{2}} \cup q^{\perp^{2}}$ generates Γ_{2} as a subspace of itself, and hence as a subspace of Δ_{2}, by [Blok and Brouwer 1998; Cooperstein and Shult 1997], and since equator geometries are subspaces, it already follows that $\Gamma_{2} \subseteq E\left(\Sigma, \Sigma^{\prime}\right)$. We now show equality.

Let $z \in \Gamma_{2}$ be arbitrary and let $z^{\prime} \in \Gamma_{2}$ be Γ_{2}-collinear to z. Let W_{z} and W_{z}^{\prime} be the respective 5^{\prime}-spaces $z^{\perp} \cap \Sigma$ and $z^{\perp} \cap \Sigma^{\prime}$. Then, since $z, z^{\prime} \in E\left(\Sigma, \Sigma^{\prime}\right)$, it follows from Lemma 3.7 that $z^{\perp} \cap W_{z}$ and $z^{\prime \perp} \cap W_{z}^{\prime}$ are 3 -spaces of W_{z} and W_{z}^{\prime}, respectively. Hence $\operatorname{Res}_{\Gamma_{2}}(z)$ fully embeds in the equator geometry of $\operatorname{Res}_{\Delta_{2}}(z)$, with poles the 5 -spaces corresponding to $\left\langle z, W_{z}\right\rangle$ and $\left\langle z, W_{z}^{\prime}\right\rangle$. By Proposition 4.4, we obtain $\operatorname{Res}_{\Gamma_{2}}(z)=E\left(W_{z}, W_{z}^{\prime}\right)$. Now Lemma 2.3 shows that $\Gamma_{2}=E\left(\Sigma, \Sigma^{\prime}\right)$.

The last statement follows from the construction and from the last statement of Proposition 4.4.

4D. Full embeddings of $\mathrm{E}_{7,1}(\mathbb{K})$ in $\mathrm{E}_{8,8}(\mathbb{K})$. Finally, we study the full embeddings of a geometry Γ_{3} isomorphic to $\mathrm{E}_{7,1}(\mathbb{K})$ in a geometry Δ_{3} isomorphic to $\mathrm{E}_{8,8}(\mathbb{K})$. Both are nonstrong parapolar spaces of diameter 3. For more details about these geometries, we refer to Section 3.4 of [De Schepper et al. 2022] and Section A4. Our aim is to show that Γ_{3} arises as an equator geometry of Δ_{3} (see Definition 3.8). Once more, we first show that each full embedding of Γ_{3} in Δ_{3} is isometric.

Lemma 4.8. Suppose $\Gamma_{3} \cong \mathrm{E}_{7,1}(\mathbb{K})$ is fully embedded in $\Delta_{3} \cong \mathrm{E}_{8,8}(\mathbb{K})$. Then the embedding of Γ_{3} in Δ_{3} is isometric.

Proof. Let p, q be points of Γ_{3}. If $p \Perp_{\Gamma_{3}} q$ then also $p \Perp_{\Delta_{3}} q$ since each symp of Γ_{3} embeds isometrically in a symp of Δ_{3} (no singular subspace of Δ_{3} is large enough to contain a symp of Γ_{3}). If p and q are special in Γ_{3}, say with $r=p \bowtie q$, then in $\operatorname{Res}_{\Gamma_{3}}(r) \cong \mathrm{D}_{6,6}(\mathbb{K})$, the points p and q are at distance 3, and hence by Lemma 4.6, p and q are also at distance 3 in $\operatorname{Res}_{\Delta_{3}}(r) \cong \mathrm{E}_{7,7}(\mathbb{K})$. We conclude that p and q are also special in Δ_{3}. Since Γ_{3} and Δ_{3} are both long root geometries, Fact A. 23 now implies that opposite points in Γ_{3} are also opposite in Δ_{3}.

Proposition 4.9. Suppose $\Gamma_{3} \cong \mathrm{E}_{7,1}(\mathbb{K})$ is fully embedded in $\Delta_{3} \cong \mathrm{E}_{8,8}(\mathbb{K})$. Then there are opposite points x and x^{\prime} in Δ_{3} such that Γ_{3} coincides with the equator geometry $E\left(x, x^{\prime}\right)$. Moreover, if y, y^{\prime} are opposite points of Δ_{3} such that $\Gamma_{3}=$ $E\left(y, y^{\prime}\right)$, then $x, x^{\prime}, y, y^{\prime}$ are on an imaginary line.
Proof. Let p, q be opposite points of Γ_{3}, which are hence also opposite in Δ_{3} by Lemma 4.6. The same lemma allows us to speak about distances without referring to Γ_{3} or Δ_{3}. In particular, we use \perp to denote the collinearity relation.

Step 1. Determining poles x, x^{\prime} for the equator geometry. Define Δ_{2}^{p} as the pointline geometry induced by the points of p^{\perp} which are special to q and Γ_{2}^{p} as the subgeometry of Δ_{2}^{p} obtained by intersecting Δ_{2}^{p} with Γ_{3}. Then $\Gamma_{2}^{p} \cong \mathrm{D}_{6,6}(\mathbb{K})$ is fully embedded in $\Delta_{2}^{p} \cong \mathrm{E}_{7,7}(\mathbb{K})$. Likewise, we define Δ_{2}^{q} and Γ_{2}^{q} with respect to q. In this case, collinearity induces an isomorphism ρ between Δ_{2}^{p} and Δ_{2}^{q}, and its restriction to Γ_{2}^{p} gives an isomorphism between Γ_{2}^{p} and Γ_{2}^{q}. Proposition 4.7 yields opposite symps Σ_{p} and Σ_{p}^{\prime} in Δ_{2}^{p} such that $\Gamma_{2}^{p}=E\left(\Sigma_{p}, \Sigma_{p}^{\prime}\right)$; each point of Γ_{2}^{p} is collinear to a 5^{\prime}-space of Σ_{p} and Σ_{p}^{\prime}. Let $\bar{\Sigma}_{p}$ and $\bar{\Sigma}_{p}^{\prime}$ denote the corresponding symps of Δ_{3} through p. According to the point-symp relations in Δ_{3} (Fact A.22), q is symplectic to unique points x, x^{\prime} of $\bar{\Sigma}_{p}$ and $\bar{\Sigma}_{p}^{\prime}$, respectively. Let $\bar{\Sigma}_{q}$ and $\bar{\Sigma}_{q}^{\prime}$ denote the symps determined by q and x and by q and x^{\prime}, respectively, and consider the induced symps Σ_{q} and Σ_{q}^{\prime} in Δ_{2}^{q}, i.e., $\Sigma_{q}=x^{\perp} \cap q^{\perp}$ and $\Sigma_{q}^{\prime}=x^{\prime \perp} \cap q^{\perp}$. Since Δ_{2}^{p} and Δ_{2}^{q} are disjoint, we have $\bar{\Sigma}_{p} \cap \bar{\Sigma}_{q}=\{x\}$. Since $\bar{\Sigma}_{p} \cup \bar{\Sigma}_{q}$ contains the opposite points p and $q, \bar{\Sigma}_{p}$ and $\bar{\Sigma}_{q}$ are locally opposite (see (iv) and (v) of Fact A.16). This implies that each point of Σ_{p} is collinear to a unique point of Σ_{q} (and this correspondence is an isomorphism), i.e., $\rho\left(\Sigma_{p}\right)=\Sigma_{q}$. Analogous statements hold for $\bar{\Sigma}_{p}^{\prime}$ and $\bar{\Sigma}_{q}^{\prime}$ and for Σ_{p}^{\prime} and Σ_{q}^{\prime}. Moreover, the symps $\bar{\Sigma}_{p}$ and $\bar{\Sigma}_{p}^{\prime}$ are locally opposite since Σ_{p} and Σ_{p}^{\prime} are opposite in Δ_{2}^{p}. Consequently, by Fact A.22(iv), it follows that x and x^{\prime} are opposite.

Step 2. Showing that $\Gamma_{3}=E\left(x, x^{\prime}\right)$. Firstly, p and q are symplectic to both x and x^{\prime} by construction. Moreover, each point y of Γ_{2}^{p} is collinear to a 5^{\prime}-space W_{y}^{p} of Σ_{p} which is in turn collinear to x, and hence x and y are symplectic (they
cannot be collinear since points collinear to both x and p belong to Σ_{p}, which is disjoint from Γ_{2}^{p}). Moreover, if y^{\prime} is the unique point of Γ_{2}^{q} collinear to y, i.e., $y^{\prime}=\rho(y)$, then y^{\prime} is collinear to the 5^{\prime}-space $W_{y}^{q}:=\rho\left(W_{y}^{p}\right)$, which belongs to $\Sigma_{q}=\rho\left(\Sigma_{p}\right)$. From this we deduce that $\Gamma_{2}^{q}=E\left(\Sigma_{q}, \Sigma_{q}^{\prime}\right)$ and that also the points of Γ_{2}^{q} are symplectic to both x and x^{\prime}.

Let z be a point of Γ_{3} collinear to q and opposite p. The points x and x^{\prime} are the unique points of $\bar{\Sigma}_{p}$ and $\bar{\Sigma}_{p}^{\prime}$ symplectic to q, respectively. Noting that x and x^{\prime} are also symplectic to z (observe that $q^{\perp_{\Gamma_{2}}}=\left\langle q, \Gamma_{2}^{q}\right\rangle \subseteq E\left(x, x^{\prime}\right)$), and that the definition of $\bar{\Sigma}_{p}$ does not depend on q, that is, $z^{\bowtie} \cap p^{\perp} \cap \bar{\Sigma}_{p}$ and $z^{\bowtie} \cap p^{\perp} \cap \bar{\Sigma}_{p}^{\prime}$ are poles for $z^{\bowtie} \cap p^{\perp} \cap \Gamma_{2}$, the foregoing implies that also $z^{\perp_{\Gamma_{2}}} \subseteq E\left(x, x^{\prime}\right)$. By connectedness of Γ_{2}, we obtain that $\Gamma_{2} \subseteq E\left(x, x^{\prime}\right)$. Just like in Lemmas 4.4 and 4.7, we conclude that $\Gamma_{3}=E\left(x, x^{\prime}\right)$.

The last statement follows from the construction and from the last statement of Proposition 4.7.

This finishes the proof of Main Result 4.1 (see Propositions 4.9, 4.7, 4.4 and 4.2).

5. Uniqueness of equator geometry isomorphic to $E_{6,2}(\mathbb{K})$ in $E_{8,8}(\mathbb{K})$

The goal of this section is to show that a long root geometry isomorphic to $E_{6,2}(\mathbb{K})$ has, up to projectivity, a unique full embedding in a long root geometry isomorphic to $\mathrm{E}_{8,8}(\mathbb{K})$. We accomplish this inductively, giving rise to a sequence of full embeddings as mentioned in the introduction.
Main Result 5.1. Let $\Upsilon_{1}, \Upsilon_{2}, \Upsilon_{3}$ be point-line geometries isomorphic to $A_{2,1}(\mathbb{K}) \times$ $A_{2,1}(\mathbb{K}), A_{5,3}(\mathbb{K})$ and $E_{6,2}(\mathbb{K})$, respectively; and let $\Delta_{1}, \Delta_{2}, \Delta_{3}$ be point-line geometries isomorphic to $\mathrm{E}_{6,1}(\mathbb{K}), \mathrm{E}_{7,7}(\mathbb{K})$ and $\mathrm{E}_{8,8}(\mathbb{K})$, respectively. Let $i \in\{1,2,3\}$ and suppose Υ_{i} is fully embedded in Δ_{i}. If $i=1$, suppose additionally that this embedding is isometric. Then this embedding is unique up to a projectivity of Δ_{i} and arises as the intersection of two equator geometries of Δ_{i} isomorphic to $\mathrm{A}_{5,2}(\mathbb{K})$ if $i=1, \mathrm{D}_{6,6}(\mathbb{K})$ if $i=2$ and $\mathrm{E}_{7,1}(\mathbb{K})$ if $i=3$.

For the $i=1$ case, we already remarked that there are also nonisometric full embeddings of Υ_{1} in Δ_{1}. These will be discussed in fair detail in the next section.

5A. Full embeddings of $A_{\mathbf{2 , 1}}(\mathbb{K}) \times \mathbf{A}_{\mathbf{2 , 1}}(\mathbb{K})$ in $\mathrm{E}_{\mathbf{6 , 1}}(\mathbb{K})$. We discuss all full embeddings of the point-line geometry $\Upsilon_{1} \cong A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$ in the point-line geometry $\Delta_{1} \cong E_{6,1}(\mathbb{K})$, giving rise to four additional cases in which the embedding is not isometric. We do not claim that we classify up to projectivity; we only classify up to distinction of some specific features. This will be enough to help us in proving that a full embedding of $\Upsilon_{2} \cong A_{5,3}(\mathbb{K})$ in $\Delta_{2} \cong E_{7,7}(\mathbb{K})$ is isometric (see Lemma 5.30).

We start with some examples of nonisometric full embeddings of Υ_{1} into Δ_{1}. For this we will use the absolute universal embeddings of both geometries, which
are given by the Segre variety $\mathscr{S}_{2,2}(\mathbb{K})$ in $\operatorname{PG}(8, \mathbb{K})$ and the Cartan variety $\mathscr{E}_{6,1}(\mathbb{K})$ in $\operatorname{PG}(26, \mathbb{K})$, respectively. Below we briefly give a coordinate description of both varieties; for more information we refer to Section A1 and [Van Maldeghem and Victoor 2022].

5A1. Four classes of examples. Recall, on the one hand, that the Segre variety $\mathscr{S}_{2,2}(\mathbb{K})$ over the field \mathbb{K} is defined by the image of the Segre map

$$
\begin{aligned}
\sigma: \mathrm{PG}(2, \mathbb{K}) \times \mathrm{PG}(2, \mathbb{K}) & \rightarrow \mathrm{PG}(8, \mathbb{K}), \\
((x, y, z),(a, b, c)) & \mapsto(a x, a y, a z, b x, b y, b z, c x, c y, c z) .
\end{aligned}
$$

This image is given by the points ($a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$) with $\operatorname{rk}\left(a_{i j}\right)_{1 \leq i, j \leq 3}=1$, the rank 1 matrices, as is well known. Hence $\mathscr{S}_{2,2}(\mathbb{K})$ is the intersection of the quadrics with equation $x_{i j} x_{k \ell}-x_{i \ell} x_{k j}=0$ (with self-explaining notation) for all $1 \leq i<k \leq 3$ and $1 \leq j<\ell \leq 3$.

Example 5.2. It is obvious that, with the above notation, $\mathscr{S}_{2,2}(\mathbb{K})$ is contained in the quadric of $\operatorname{PG}(8, \mathbb{K})$ with equation

$$
x_{11} x_{22}+x_{22} x_{33}+x_{33} x_{11}=x_{12} x_{21}+x_{23} x_{32}+x_{31} x_{13}
$$

which is easily shown to be a nondegenerate parabolic quadric (indeed, apply the coordinate transformation $x_{11}^{\prime}=x_{11}+x_{33}, x_{22}^{\prime}=x_{22}+x_{33}$ to see this). Since this parabolic quadric is contained in a hyperbolic quadric isomorphic to $D_{5,1}(\mathbb{K})$ as a geometric hyperplane, we obtain an embedding of Υ_{1} into $D_{5,1}(\mathbb{K})$ and hence also in $E_{6,1}(\mathbb{K})$.

On the other hand, an embedding $\mathscr{E}_{6,1}(\mathbb{K})$ of $\mathrm{E}_{6,1}(\mathbb{K})$ into $\mathrm{PG}(26, \mathbb{K})$ is given by the intersection of 27 quadrics as follows. Label the coordinates of a 27-dimensional vector space over \mathbb{K} by $(u, v, w ; U, V, W)$, where $U=\left(u_{i}\right)_{0 \leq i \leq 7}, V=\left(v_{i}\right)_{0 \leq i \leq 7}$, $W=\left(w_{i}\right)_{0 \leq i \leq 7}$ belong to the split octonion algebra over \mathbb{K}, that is, an 8-dimensional algebra with multiplication defined by, using the above notation,

$$
\left.\begin{array}{rl}
U V=\left(u_{0} v_{0}+u_{4} v_{1}+u_{5} v_{2}+u_{6} v_{3},\right. & u_{1} v_{0}+u_{7} v_{1}-u_{5} v_{6}+u_{6} v_{5} \\
& u_{2} v_{0}+u_{7} v_{2}+u_{4} v_{6}-u_{6} v_{4}, \\
& u_{3} v_{0}+u_{7} v_{3}-u_{4} v_{5}+u_{5} v_{4} \\
& u_{0} v_{4}+u_{4} v_{7}+u_{2} v_{3}-u_{3} v_{2}, \\
& u_{0} v_{5}+u_{5} v_{7}-u_{1} v_{3}+u_{3} v_{1} \\
& u_{0} v_{6}+u_{6} v_{7}+u_{1} v_{2}-u_{2} v_{1},
\end{array} u_{1} v_{4}+u_{2} v_{5}+u_{3} v_{6}+u_{7} v_{7}\right) .
$$

We also define $\bar{U}=\left(u_{7},-u_{1},-u_{2},-u_{3},-u_{4},-u_{5},-u_{6}, u_{0}\right)$. Writing the (central) element $(k, 0,0,0,0,0,0, k), k \in \mathbb{K}$, of the octonion algebra briefly as k, the equations of the 27 quadrics are given in short hand notation (each of the equations
on the second row represents eight equations over \mathbb{K}) by

$$
\begin{align*}
& v w=U \bar{U}, \quad w u=V \bar{V}, \quad u v=W \bar{W}, \tag{1}\\
& V W=u \bar{U}, \quad W U=v \bar{V}, \quad U V=w \bar{W} . \tag{2}
\end{align*}
$$

The lines of $\mathscr{E}_{6,1}(\mathbb{K})$ are precisely the lines of $\operatorname{PG}(26, \mathbb{K})$ that are fully contained in $\mathscr{E}_{6,1}(\mathbb{K})$. Consequently, two points ($\left.u, v, w ; U, V, W\right)$ and $\left(u^{\prime}, v^{\prime}, w^{\prime} ; U^{\prime}, V^{\prime}, W^{\prime}\right)$ of $\mathscr{E}_{6,1}(\mathbb{K})$ are collinear if, and only if,

$$
\begin{align*}
v w^{\prime}+v^{\prime} w= & U \bar{U}^{\prime}+U^{\prime} \bar{U}, \quad w u^{\prime}+w^{\prime} u=V \bar{V}^{\prime}+V^{\prime} \bar{V} \\
& u v^{\prime}+u^{\prime} v=W \bar{W}^{\prime}+W^{\prime} \bar{W} \tag{3}\\
V W^{\prime}+W V^{\prime}= & u \bar{U}^{\prime}+u^{\prime} \bar{U}, \quad W U^{\prime}+W^{\prime} U=v \bar{V}^{\prime}+v^{\prime} \bar{V} \\
& U V^{\prime}+U^{\prime} V=w \bar{W}^{\prime}+w^{\prime} \bar{W} \tag{4}
\end{align*}
$$

Denote by $p, q, r, p_{i}, q_{i}, r_{i}$ the base points corresponding, for $0 \leq i \leq 7$, to the coordinate $u, v, w, u_{i}, v_{i}, w_{i}$, respectively. All base points belong to $\mathscr{E}_{6,1}(\mathbb{K})$ and for a base point b with corresponding coordinate c, the set b^{\perp} of points of $\mathrm{E}_{6,1}(\mathbb{K})$ is given by intersecting $\mathscr{E}_{6,1}(\mathbb{K})$ with the subspace given by setting to zero all coordinates d such that $\pm c d$ appears as a term in some equation of (1) or (2). For instance, p^{\perp} is obtained by intersecting $\mathscr{E}_{6,1}(\mathbb{K})$ with $v=w=u_{0}=\cdots=u_{7}=0$.

Example 5.3. The following form of the Segre map embeds $\mathscr{S}_{2,2}(\mathbb{K})$ into $\mathscr{E}_{6,1}(\mathbb{K})$, more exactly in p^{\perp} :

$$
\begin{aligned}
& \rho_{1}: \mathrm{PG}(2, \mathbb{K}) \times \mathrm{PG}(2, \mathbb{K}) \rightarrow \mathrm{PG}(26, \mathbb{K}), \\
&((x, y, z),(a, b, c)) \mapsto(0,0,0 ; \underbrace{0, \ldots, 0}_{8 \text { times }}, a x, b x, b y, b z, 0,-a z, a y, 0, \\
&0, c x, c y, c z, 0,0,0,0) .
\end{aligned}
$$

This also defines an embedding of $\Upsilon_{1} \cong A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$ into $D_{5,5}(\mathbb{K})$. We note that $\operatorname{Im}\left(\rho_{1}\right)$ is also contained in q_{0}^{\perp} (note that q_{0} belongs to Υ_{1}) and so all symps of Υ_{1} through q_{0} are singular. One can check that no other singular symp exists.

The base points p_{1}, p_{2}, p_{3} are pairwise collinear in $\mathrm{E}_{6,1}(\mathbb{K})$. Their common perp is obtained by intersecting $\mathscr{E}_{6,1}(\mathbb{K})$ with the subspace given by

$$
u=u_{i}=v_{j}=w_{k}=0, \quad \text { for } i=4,5,6 ; j=0, \ldots, 6 ; k=1, \ldots, 7 .
$$

Example 5.4. The following form of the Segre map embeds $\mathscr{S}_{2,2}(\mathbb{K})$ into $\mathscr{E}_{6,1}(\mathbb{K})$, more exactly in $\left\{p_{1}, p_{2}, p_{3}\right\}^{\perp}$:

$$
\begin{aligned}
& \rho_{2}: \mathrm{PG}(2, \mathbb{K}) \times \mathrm{PG}(2, \mathbb{K}) \rightarrow \mathrm{PG}(26, \mathbb{K}), \\
&((x, y, z),(a, b, c)) \mapsto(0, b x, c z ; c x, a x, a y, a z, 0,0,0, b z, \\
&\underbrace{0, \ldots, 0}_{7 \text { times }}, c y, b y, \underbrace{0, \ldots, 0}_{7 \text { times }}) .
\end{aligned}
$$

Note that each plane of the image disjoint from $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ generates, together with $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$, a 5 -space of $\mathscr{E}_{6,1}(\mathbb{K})$. This implies that every symp with a line in $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ is contained in a singular subspace of $\mathscr{E}_{6,1}(\mathbb{K})$. The fact that not all planes disjoint from $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ are contained in the same 5 -space implies that every symp disjoint from $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ embeds in a (unique) symp of $\mathscr{E}_{6,1}(\mathbb{K})$. This is the situation obtained and described in Lemma 5.13.

We now describe an embedding of Υ_{1} into a 5-dimensional projective space. This does not seem to work over an arbitrary field, though. However, we content ourselves with mentioning one example which works.

Example 5.5. Let \mathbb{K} be a field of characteristic 3 and consider the field $\mathbb{K}(t)$ of rational functions in t over \mathbb{K}. Consider the following embedding ρ of $\mathscr{S}_{2,2}(\mathbb{K}(t))$ in $\operatorname{PG}(5, \mathbb{K}(t))$:

$$
\begin{aligned}
& \rho_{3}: \mathrm{PG}(2, \mathbb{K}(t)) \times \mathrm{PG}(2, \mathbb{K}(t)) \rightarrow \mathrm{PG}(5, \mathbb{K}(t)), \\
&((x, y, z),(a, b, c)) \mapsto(b x-t a z, b y-a x, b z-a y, \\
&c x-t a y, c y-t a z, c z-a x) .
\end{aligned}
$$

This example arises from projecting the standard Segre variety defined by the 3×3 matrices over \mathbb{K} of rank 1 from the subspace U defined by

$$
\left(\begin{array}{ccc}
\lambda & \mu & v \\
v t & \lambda & \mu \\
\mu t & v t & \lambda
\end{array}\right), \quad \lambda, \mu, \nu \in \mathbb{K}(t)
$$

Every nonzero vector of U has determinant $\lambda^{3}+t \mu^{3}+t^{2} v^{3}$ and is hence invertible (as a matrix). Since the sum of two rank 1 matrices can never have rank 3, it follows that this projection is injective.

Finally, for completeness's sake, we describe an isometric embedding; it is obtained from the octonion representation above by restricting each octonion to the first and last coordinate.

Example 5.6. The following form of the Segre map embeds $\mathscr{S}_{2,2}(\mathbb{K})$ isometrically into $\mathscr{E}_{6,1}(\mathbb{K})$:

$$
\begin{aligned}
& \rho_{4}: \mathrm{PG}(2, \mathbb{K}) \times \mathrm{PG}(2, \mathbb{K}) \rightarrow \mathrm{PG}(26, \mathbb{K}), \\
&((x, y, z),(a, b, c)) \mapsto(a x, b y, c z ; b z, \underbrace{0, \ldots, 0}_{6 \text { times }}, c y, \\
&c x, \underbrace{0, \ldots, 0}_{6 \text { times }}, a z, a y, \underbrace{0, \ldots, 0}_{6 \text { times }}, b x) .
\end{aligned}
$$

5A2. The main theorem. Recall that we refer to a symp of Υ_{1} which embeds isometrically in a symp of Δ_{1} as an isometric symp, and to a symp which embeds in a singular subspace as a singular symp.

Proposition 5.7. Suppose Υ_{1} is a point-line geometry isomorphic to $A_{2,1}(\mathbb{K}) \times$ $A_{2,1}(\mathbb{K})$, fully embedded in a point-line geometry Δ_{1} isomorphic to $\mathrm{E}_{6,1}(\mathbb{K})$. Then one of the following occurs (and all options can occur).
(i) Each symp of Υ_{1} is singular, in which case Υ_{1} is contained in a singular subspace of Δ_{1}.
(ii) There is a unique plane π in Υ_{1} such that Υ_{1} is contained in the union of 5 -spaces of Δ_{1} containing π. A symp of Υ_{1} is singular if and only if it contains a line of π. Moreover, two isometric symps of Υ_{1} embed in the same symp of Δ_{1} if and only if they share a line that is contained in a plane of Υ_{1} disjoint from π.
(iii) There is a unique symp of Δ_{1} containing Υ_{1} and for each point p of Υ_{1} there exist two isometric symps of Υ_{1} that intersect in p only.
(iv) There is a unique point p in Υ_{1} such that Υ_{1} is contained in p^{\perp}. A symp of Υ_{1} is singular if and only if it contains p.
(v) Each symp ξ of Υ_{1} embeds isometrically in a symp Σ_{ξ} of Δ_{1} and the map $\xi \mapsto \Sigma_{\xi}$ is injective and preserves the distance: $\xi \cap \xi^{\prime}$ is a point if and only if $\Sigma_{\xi} \cap \Sigma_{\xi^{\prime}}$ is a point. In this case, Υ_{1} embeds isometrically in Δ_{1} and arises as the intersection of equator geometries $E\left(U, U^{\prime}\right)$ and $E\left(V, V^{\prime}\right)$ where U and U^{\prime} are opposite 5-spaces of Δ_{1} and V and V^{\prime} are opposite 5-spaces of Δ_{1} such that the planes $U \cap V$ and $U^{\prime} \cap V^{\prime}$ are also opposite in Δ_{1}.

Examples 5.2, 5.3, 5.4, 5.5 and 5.6 show that the respective cases (iii), (iv), (ii), (i) and (v) really do occur.

Structure of the proof of Proposition 5.7. In case each symp of Υ_{1} embeds in a singular symp, it follows immediately that we are in case (i), because Υ_{1} is a strong parapolar space of diameter 2: any pair of points of Υ_{1} is contained in a symp of Υ_{1} and therefore collinear in Δ_{1}. Also, if every symp is isometric, then the embedding is isometric and we deal with this situation in Section 5A6. Before we arrive there, we treat the mixed case (in which there are both isometric and singular symps), which leads to three distinct cases. To see how these three cases arise, we start with some general lemmas.

In Sections 5A3, 5A4 and 5A5, the standing hypothesis is that Υ_{1} possesses at least one singular and at least one isometric symp. We will freely use the basic properties of Υ_{1} mentioned in Section A1 of the Appendix. We also denote by Σ_{ξ} the unique symp of Δ_{1} in which an isometric symp ξ of Υ_{1} is embedded.

5A3. General lemmas. We start with an easy lemma.
Lemma 5.8. If ξ is an isometric symp of Υ_{1} and ξ^{\prime} a singular one, with $\xi \cap \xi^{\prime}$ a line, then $\xi^{\prime} \subseteq \Sigma_{\xi}$.
Proof. Let x^{\prime} be an arbitrary point of $\xi^{\prime} \backslash L$. Then x^{\prime} is Υ_{1}-collinear to a unique point x_{L} of L and hence to the unique line L_{x} of ξ containing x_{L} and distinct from L. Now take a point x in $L_{x} \backslash\left\{x_{L}\right\}$. Then x^{\prime} and x are collinear in Υ_{1} and hence also in Δ_{1}. Moreover, x^{\prime} is also Δ_{1}-collinear to all points of L. Taking a point $y_{L} \neq x_{L}$ on L, we hence obtain that $x^{\prime} \in \Sigma\left(x, y_{L}\right)=\Sigma_{\xi}$. Since $x^{\prime} \in \xi^{\prime}$ was arbitrary, the lemma follows.

Let p be any point of Υ_{1}. Then the singular lines of Υ_{1} through p are contained in the union of two singular planes of Υ_{1}, say π_{1}^{p} and π_{2}^{p}; each symp of Υ_{1} containing p has one line in each plane (see also Section A1 in the Appendix, in particular Fact A.6). The mutual position in Δ_{1} of the planes π_{1}^{p} and π_{2}^{p} tells us a lot. For that, we introduce the following notion:
Notation. A line of Υ_{1} with the property that each symp of Υ_{1} containing that line is singular, will be called an S-line.

We study the S-lines through p in π_{1}^{p} and π_{2}^{p}.
Lemma 5.9. Let p be a point of Υ_{1} and let π_{1}^{p} and π_{2}^{p} be the unique planes of Υ_{1} containing p. Then zero, one or all lines of π_{i}^{p} through p, with $i \in\{1,2\}$, are S-lines. In case all lines of π_{1}^{p} through p are S-lines, also all lines of π_{2}^{p} through p are S-lines and then all symps through p are singular and hence $p \perp_{\Delta_{1}} \Upsilon_{1}$. In case π_{1}^{p} and π_{2}^{p} both contain a unique S-line through p, there is a unique symp Σ of Δ_{1} which contains Υ_{1}.
Proof. Note first that a symp ξ of Υ_{1} containing p is determined by a line L_{1} in π_{1}^{p} through p and a line L_{2} in π_{2}^{p} through p (and L_{1} and L_{2} are not collinear in Υ_{1}). Therefore, ξ is singular if and only if $L_{1} \perp_{\Delta_{1}} L_{2}$, and L_{1} is an S-line if and only if L_{1} is Δ_{1}-collinear with π_{2}^{p} (likewise for L_{2} with respect to π_{1}^{p}).

Now suppose that π_{1}^{p} contains two S-lines L_{1} and L_{1}^{\prime} through p. Then each line L_{2} of π_{2}^{p} containing p is Δ_{1}-collinear to both L_{1} and L_{1}^{\prime} and hence to the entire plane π_{1}^{p}, i.e., L_{2} is an S-line. It follows that all lines through p are S-lines indeed, and hence all symps of Υ_{1} through p are singular. Since each point of Υ_{1} is contained in a symp together with p, we obtain that $p \perp_{\Delta_{1}} \Upsilon_{1}$.

Next, suppose that π_{i}^{p} contains a unique S-line L_{i} through p for $i=1,2$. Then the 3 -spaces $\left\langle L_{1}, \pi_{2}^{p}\right\rangle$ and $\left\langle L_{2}, \pi_{1}^{p}\right\rangle$ of Δ_{1} meet in the plane $\left\langle L_{1}, L_{2}\right\rangle$ and are not Δ_{1}-collinear (otherwise all lines through p would be S-lines as above). Hence there is a unique symp Σ of Δ_{1} containing $\pi_{1}^{p} \cup \pi_{2}^{p}$. Let ξ be a symp of Υ_{1} opposite p (no point of ξ is Υ_{1}-collinear to p). Then there is an isomorphism between the pairs $\left(M_{1}, M_{2}\right)$ of Υ_{1}-lines through p with $M_{i} \subseteq \pi_{i}^{p}$ for $i=1,2$, and the points of ξ in
the sense that each symp $\xi\left(M_{1}, M_{2}\right)$ meets ξ in a unique point. If we restrict to the pairs $\left(M_{1}, M_{2}\right)$ where $M_{1} \neq L_{1}$ and $M_{2} \neq L_{2}$ then the corresponding points of ξ constitute a subpolar space $G:=\xi \backslash\left\{L_{1}^{\prime}, L_{2}^{\prime}\right\}$ where L_{1}^{\prime} and L_{2}^{\prime} are two intersecting lines of ξ. Let q be any point of G. Then $\xi(p, q)=\xi\left(M_{1}, M_{2}\right)$ is an isometric symp of Υ_{1} since M_{1} is not Δ_{1}-collinear to M_{2} and therefore $\Sigma(p, q)=\Sigma$. So G and therefore $\langle G\rangle=\langle\xi\rangle$ is entirely contained in Σ. Since Υ_{1} is generated by $p^{\perp \Upsilon_{1}}$ and ξ, we conclude that $\Upsilon_{1} \subseteq \Sigma$ indeed.

We now turn our attention to the lines in a symp of Υ_{1}. Recall that a symp ξ of Υ_{1} is a hyperbolic polar space of rank 2, and hence its generators (which are lines) come into two families: two lines belong to the same family if and only if they are disjoint.

Notation. We denote the two families of lines of ξ by \mathscr{L}_{1}^{ξ} and \mathscr{L}_{2}^{ξ}. Each line L of Υ_{1} is contained in a unique plane π_{L} of Υ_{1}. Consider the set Π_{i}^{ξ} of planes meeting ξ in a line belonging to the two respective families, i.e., $\Pi_{i}^{\xi}:=\left\{\pi_{L} \mid L \in \mathscr{L}_{i}\right\}$ for $i=1,2$. Then, for each $i \in\{1,2\}$, the union of the planes in Π_{i}^{ξ} induces a subgeometry of Υ_{1} isomorphic to $A_{1,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$. We refer to this as a Segre subgeometry, and denote it by $\hat{\xi}_{i}$. Note that $\hat{\xi}_{1}$ and $\hat{\xi}_{2}$ are the two unique (full and isometric) subgeometries of Υ_{1} isomorphic to $A_{1,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$ containing ξ.

Lemma 5.10. Let ξ be a singular symp of Υ_{1} and $\{i, j\}=\{1,2\}$. With notation as above, either one or all lines of \mathscr{L}_{i}^{ξ} are S-lines. In the first case, $\hat{\xi}_{j}$ is contained in a unique symp of Δ_{1}; in the second case, $\hat{\xi}_{j}$ is contained in and spans a singular 5-space.

Proof. Suppose L is a line of ξ contained in an isometric symp ξ^{\prime}, say $L \in \mathscr{L}_{1}^{\xi}$. Note that the symps containing L induce a Segre subgeometry, which coincides with $\hat{\xi}_{2}$. By Lemma $5.8, \xi$ is contained in the unique symp Σ^{\prime} of Δ_{1} containing ξ^{\prime}. Since ξ and ξ^{\prime} generate, in Υ_{1}, the Segre subgeometry $\hat{\xi}_{2}$, the latter is contained in Σ^{\prime} too.

Next, we claim there is a unique S-line in \mathscr{L}_{1}^{ξ}. Take a point $x^{\prime} \in \xi^{\prime} \backslash L$. As above, x^{\prime} is Υ_{1}-collinear to a line K of ξ meeting L in a unique point x_{L}. Inside Σ^{\prime}, we hence obtain that x^{\prime} is collinear to a plane of $\langle\xi\rangle$ through the line K, and therefore this plane contains a second line L^{*} of ξ, disjoint from L. Therefore, L^{*} is $\Delta_{1^{-}}$ collinear to all points of the plane $\left\langle K, x^{\prime}\right\rangle$ and hence it is an S-line. Suppose for a contradiction that there is a second S-line $L^{* *}$ in ξ. Then x^{\prime} would be Δ_{1}-collinear to $\langle\xi\rangle=\left\langle L^{*}, L^{* *}\right\rangle$, contradicting the fact that x^{\prime} is not Δ_{1}-collinear to L. The claim follows.

Finally, suppose that all lines of \mathscr{L}_{1}^{ξ} are S-lines. The symps through these lines are precisely all symps of the Segre subgeometry $\hat{\xi}_{2}$ and these symps are hence all singular, meaning that each pair of points in $\hat{\xi}_{2}$ is Δ_{1}-collinear, implying that it is
contained in a singular 5-space. Since Segre subgeometries contain disjoint planes, $\hat{\xi}_{2}$ spans the singular 5 -space in which it is contained.

Next, we look at the particular situation in which two isometric symps, intersecting each other in a line, embed in the same symp.

Lemma 5.11. Let ξ_{1} and ξ_{2} be two isometric symps of Υ_{1}, intersecting each other in a line L, and contained in the same symp Σ of Δ_{1}. Then the Segre subgeometry determined by ξ_{1} and ξ_{2} contains a unique maximal singular line which is an S-line. In particular, there is a singular symp ξ^{\prime} meeting each of ξ_{1} and ξ_{2} in a line.

Proof. A point q in $\xi_{1} \backslash L$ is Υ_{1}-collinear to a line M of ξ_{2} and, selecting a line M^{\prime} of ξ_{2} disjoint from M, it is (looking in Σ) Δ_{1}-collinear to a point m of M^{\prime} and hence Δ_{1}-collinear to the line $L^{\prime} \neq L$ of ξ_{2} through m and distinct from M^{\prime}. The symp ξ containing q and L^{\prime} is singular. Now take a point r on L. Then r is Υ_{1}-collinear to a line M^{*} of ξ, and as above it follows that r is then also Δ_{1}-collinear to a second line L^{*} of ξ. The symp through L and L^{*} is singular, so L^{*} is Δ_{1}-collinear to L. We claim that each point x of L^{*} is Δ_{1}-collinear to all points of the Segre subgeometry \mathscr{S} determined by ξ_{1} and ξ_{2}. This follows from the fact that \mathscr{S} is generated by L and ξ, and x is collinear to both since $x \in L^{*}$ and ξ is singular, respectively. Since each symp through L^{*} is contained in \mathscr{S}, it follows that L^{*} is an S-line. If there were a second maximal singular line K^{*} which is an S-line, then by Lemma 5.10, all maximal singular lines in \mathscr{S} contained in the symp ξ^{*} determined by K^{*} and L^{*} would be S-lines, from which we deduce that each symp in \mathscr{S} would be singular, a contradiction.

We now consider two subcases, depending on whether or not there is a singular symp containing more than two S-lines.

5A4. Subcase: there is a singular symp ξ^{*} containing more than two S-lines. The assumptions in this section are according to the standing hypothesis and the title of this section.

Lemma 5.12. Each singular symp of Υ_{1} has a line which is not an S-line.
Proof. Let ξ be a singular symp and suppose for a contradiction that each line of ξ is an S-line. Then the two Segre subgeometries $\hat{\xi}_{1}$ and $\hat{\xi}_{2}$ containing ξ (as introduced before) are contained in respective singular 5 -spaces S_{1} and S_{2} by Lemma 5.10. Since $S_{1} \cap S_{2}$ contains the 3-space $\langle\xi\rangle$, it follows from the 5-5 relations of Δ_{1} that $S_{1}=S_{2}$. Take any symp ξ^{\prime}. If ξ^{\prime} meets ξ in a line, then ξ^{\prime} is singular as the intersection is an S-line; If ξ^{\prime} meets ξ in a unique point p, then the two unique lines L_{1} and L_{2} of ξ^{\prime} containing p are contained in $S_{1}=S_{2}$ since they are contained in $\hat{\xi}_{1}$ and $\hat{\xi}_{2}$, respectively. But then $L_{1} \perp L_{2}$ and hence ξ^{\prime} is singular. We conclude that all symps of Υ_{1} are singular, contradicting our assumption.

Lemmas 5.10 and 5.12 imply, together with the assumption that ξ^{*} has more than two S-lines, that ξ^{*} has one full system of S-lines, and the other system contains a unique S-line. We can now show that this gives rise to case (ii) of Proposition 5.7.

Lemma 5.13. Suppose Υ_{1} has an isometric symp and a (singular) symp ξ^{*} with more than two S-lines. Then there is a unique plane π^{*} of Υ_{1} such that:
(i) A symp of Υ_{1} is singular if and only if it meets π^{*} in a line.
(ii) $\Upsilon_{1} \subseteq \pi^{* \perp_{\Delta_{1}}}$, each Segre subgeometry of Υ_{1} containing π^{*} is contained in and spans a unique 5-space containing π^{*}, and distinct such Segre subgeometries span distinct such 5-spaces.
(iii) Two isometric symps of Υ_{1} embed in the same symp of Δ_{1} if and only if they share a line that is contained in a plane of Υ_{1} disjoint from π^{*}.

Proof. As explained just before this lemma, we may assume (up to renumbering) that the family $\mathscr{L}_{1}^{\xi^{*}}$ has S-lines only and that the other family $\mathscr{L}_{2}^{\xi^{*}}$ has a unique S-line L^{*}. Let $\hat{\xi}_{1}^{*}$ and $\hat{\xi}_{2}^{*}$ be the corresponding Segre subgeometries containing ξ^{*} (see notation introduced above). By Lemma 5.10, $\hat{\xi}_{2}^{*}$ is contained in a singular 5-space S and $\hat{\xi}_{1}^{*}$ is contained in a unique symp Σ of Δ_{1}. Since S and Σ share the 3 -space $\left\langle\xi^{*}\right\rangle$, it follows from the symp-5 relations (see Fact A.12) that $S \cap \Sigma$ is a 4^{\prime}-space U. Therefore, a line of $\hat{\xi}_{2}^{*}$ disjoint from ξ^{*} meets $S \cap \Sigma$ in a point u outside $\left\langle\xi^{*}\right\rangle$ and hence the unique plane π^{*} of $\hat{\xi}_{2}^{*}$ through u is contained in Σ. Set $L=\pi^{*} \cap \xi^{*}$. Take any point q on L and let M be the unique other line of ξ^{*} containing q (so M is an S-line). Consider the second plane π of Υ_{1} containing q, the one containing M (so π is a plane of $\hat{\xi}_{1}^{*}$ and hence $\pi \subseteq \Sigma$). The fact that $\pi \cup \pi^{*} \subseteq \Sigma$ and that M is Δ_{1}-collinear to π^{*}, implies that π^{*} also contains a line through q that is Δ_{1}-collinear to π, that is, π^{*} contains an S-line. If L is not an S-line, we deduce from Lemma 5.9 that π and π^{*} each contain a unique S-line through q, and by the same lemma, we obtain $\Upsilon_{1} \subseteq \Sigma$. However, $\hat{\xi}_{2}^{*}$ generates the singular 5 -space S, which is not contained in Σ, a contradiction. Hence, $L=L^{*}$, and by the arbitrariness of q, all lines of π^{*} are S-lines, and so are all lines through a point of L. We also conclude that the unique plane π^{*} of $\hat{\xi}_{2}^{*}$ contained in Σ contains L^{*}.
(i) Since every line of π^{*} is an S-line, each symp not disjoint from π^{*} is singular. Since each point of Υ_{1} is contained in such a symp, we deduce $\Upsilon_{1} \subseteq \pi^{* \perp_{\Delta_{1}}}$. So, if a symp ξ disjoint from π^{*} were singular, then $\left\langle\pi^{*}, \xi\right\rangle$ would be a singular 6 -space of Δ_{1}, a contradiction. This shows the assertion (i).
(ii) We already deduced that $\Upsilon_{1} \perp_{\Delta_{1}} \pi^{*}$. Any Segre subgeometry \mathscr{S} containing π^{*} plays the same role as $\hat{\xi}_{2}^{*}$ since it arises from one of the symps containing L^{*}, and by the above it has one full system of S-lines (since each line meeting L^{*} is an S-line). So indeed, \mathscr{S} is contained in a singular 5 -space containing π^{*}. If such a

5-space contained two such Segre subgeometries, then Υ_{1} would be contained in this 5-space, contradicting the hypothesis that Υ_{1} has an isometric symp.
(iii) Let ξ_{1} and ξ_{2} be symps that embed isometrically (both are disjoint from π^{*}). Suppose first that they share a line that is contained in a plane of Υ_{1} disjoint from π^{*}. Then ξ_{1} and ξ_{2} determine a Segre subgeometry \mathscr{S} whose planes intersect π^{*} in points. It follows that \mathscr{S} intersects π^{*} in a unique line N. Then N is Δ_{1}-collinear to ξ_{1} and therefore N is contained in the unique symp Σ_{1} of Δ_{1} containing ξ_{1}. Since N and ξ_{1} are disjoint, they generate \mathscr{S}. We obtain that $\xi_{1} \cup \xi_{2} \subseteq \mathscr{S} \subseteq \Sigma_{1}$.

Conversely, suppose ξ_{1} and ξ_{2} embed in the same symp Σ of Δ_{1}. Suppose first that $\xi_{1} \cap \xi_{2}$ is a unique point, say p. Then one of the planes of Υ_{1} containing p, say π_{1}^{p}, shares a point p^{\prime} with π^{*}. By (i), the line $p p^{\prime}$ is an S-line. Let π_{2}^{p} be the other plane through p. Then $p p^{\prime}$ and π_{2}^{p} generate a singular 3-space and so, by properties of the polar space Σ, it follows that π_{2}^{p} contains a line through p which is Σ-collinear to π_{1}^{p}. This line is then an S-line. However, by Lemma 5.9, not all lines of π_{1}^{p} and π_{2}^{p} through p are S-lines, since ξ_{1} and ξ_{2} are isometric, so it then follows from the same lemma that $\Upsilon_{1} \subseteq \Sigma$. As $\hat{\xi}_{2}^{*}$ generates a singular 5-space of Δ_{1}, this is a contradiction. Secondly, suppose ξ_{1} and ξ_{2} share a line that is contained in a plane of Υ_{1} not disjoint from π^{*}. Then $\Upsilon_{1} \subseteq \pi^{* \perp_{\Delta_{1}}}$ implies that $\pi^{*} \subseteq \Sigma$, contradicting the fact that π^{*} and each plane of the Segre geometry containing ξ_{1} and ξ_{2} generate a singular 5-space of Δ_{1}.

We conclude that we are in case (ii) of Proposition 5.7.
5A5. Subcase: each singular symp contains exactly two S-lines. The assumptions in this section are according to the standing hypothesis and the title of this section. This will lead to case (iii) or case (iv) of Proposition 5.7, depending on whether there is an isometric symp through each point or not. We start by assuming that this is the case.

Lemma 5.14. If there is an isometric symp through each point of Υ_{1}, then there is a unique symp Σ of Δ_{1} containing Υ_{1}.

Proof. Let ξ be a singular symp (which exists by assumption). Then ξ contains exactly two S-lines L and M, also by assumption. Let p be the point $L \cap M$ (these lines intersect by Lemma 5.10). As there is an isometric symp through p by assumption, it follows from Lemma 5.9 that L and M are the unique S-lines through p. Also by Lemma 5.9, there is a unique symp Σ containing Υ_{1}.

Remark 5.15. We can show that in the above case, Υ_{1} is actually contained in a subquadric of Σ, namely a parabolic quadric $Q(8, \mathbb{K})$ arising as the intersection of Σ with an 8 -dimensional subspace. Such a quadric is given by an equation of the form $X_{1} X_{2}+\cdots+X_{7} X_{8}=X_{0}^{2}$. An example of a full embedding of the Segre variety $\mathscr{S}:=\mathscr{S}_{2,2}(\mathbb{K})$ in $Q(8, \mathbb{K})$ is given in Example 5.2. In [De Schepper
and Victoor 2023], the first author and Magali Victoor study this embedding and consider the geometry $(\mathscr{X}, \mathscr{L})$, where \mathscr{L} is the set of S-lines and \mathscr{X} is the set of points contained in an S-line, and show that this forms a nonthick generalised hexagon (which is a geometric hyperplane of \mathscr{S}).

Next, we assume that there is a point p in Υ_{1} through which there is no isometric symp. We show that there is only one such point, and that a symp is singular if and only if it contains p.

Lemma 5.16. Suppose there is a point p in Υ_{1} such that each symp through p is singular. Then the symps of Υ_{1} not through p are all isometric. If ξ_{1} and ξ_{2} are two isometric symps which either meet in a unique point or one of them is far from p, then the respective corresponding symps Σ_{1} and Σ_{2} of Δ_{1} containing ξ_{1} and ξ_{2} are distinct and share a 4-space containing p.

Proof. First note that our assumption on p implies that each line of Υ_{1} through p is an S-line (see also Lemma 5.9). Let ξ be a symp close to p, i.e., ξ contains a unique line L which is Υ_{1}-collinear to p. Suppose ξ is singular. Then ξ contains an S-line M meeting L in a point q. Consider the symp determined by M and the line $p q$. This symp contains more than two S-lines: the two lines through p are S-lines, and so is M, a contradiction. Now suppose ξ is a singular symp far from p, so p is not collinear to any point of ξ. Let L be an S-line of ξ. Then each symp through L is singular, and since at least one of them is close to p by Fact A.4, we obtain a contradiction to the foregoing. So the singular symps of Υ_{1} are precisely those containing p.

Now take two isometric symps ξ_{1} and ξ_{2} and suppose that they embed in the same symp Σ of Δ_{1}. Suppose first that $\xi_{1} \cap \xi_{2}$ is a line L, and let \mathscr{S} be the Segre subgeometry determined by ξ_{1} and ξ_{2}. By Lemma $5.11, \mathscr{S}$ contains a unique maximal singular line which is an S-line. By the above, this means that p is contained in this line. In particular, p is contained in a plane of \mathscr{S} which meets ξ_{1} and ξ_{2} in a line; and hence p is close to both ξ_{1} and ξ_{2}. Next, suppose that ξ_{1} and ξ_{2} intersect in a unique point q, and let L_{i} and L_{i}^{\prime} be the unique lines of ξ_{i}, $i=1,2$, containing q, ordered such that $L_{1} \perp_{\Upsilon_{1}} L_{2}^{\prime}$ and $L_{2} \perp_{\Upsilon_{1}} L_{1}^{\prime}$. Let ξ be the symp of Υ_{1} determined by L_{1} and L_{2}. We claim that ξ is singular. Indeed, suppose not; then clearly $\xi \subseteq \Sigma$. Since ξ_{1} and ξ are both contained in Σ and share a line, it follows from the beginning of this paragraph that p is contained in a plane of the Segre subgeometry determined by ξ_{1} and ξ. The same holds for ξ and ξ_{2} though, implying that $p \in \xi$, a contradiction. The claim follows. Hence $p \in \xi$ and, likewise, $p \in \xi^{\prime}$, with ξ^{\prime} the symp of Υ_{1} determined by L_{1}^{\prime} and L_{2}^{\prime}. But $\xi \cap \xi^{\prime}=\{q\}$ and $q \neq p$ (since ξ_{1} and ξ_{2} are isometric). This contradiction shows that ξ_{1} and ξ_{2} cannot be contained in the same symp if they meet in a unique point. In any case,
the respective symps Σ_{1} and Σ_{2} containing ξ_{1} and ξ_{2} are hence distinct, but meet each other in a 4 -space since both also contain p.
Remark 5.17. In this case, we can also show the existence of a unique line K of Δ_{1} through p such that $\Upsilon_{1} \subseteq K^{\perp_{\Delta_{1}}}$. Then K is not contained in Υ_{1} and the projection of Υ_{1} from any point $x \in K \backslash\{p\}$ is injective. So we obtain a geometry isomorphic to $\mathrm{A}_{2,1}(\mathbb{K}) \times \mathrm{A}_{2,1}(\mathbb{K})$ fully embedded in $\operatorname{Res}_{\Delta_{1}}(x) \cong \mathrm{D}_{5,5}(K)$. An example of this situation is given in Example 5.3. We conjecture that the conditions of Lemma 5.16 always give rise to an embedding projectively equivalent to Example 5.3.

We reached the conclusion of cases (iii) and (iv) in Proposition 5.7.
5A6. Subcase: Each symp embeds isometrically. Finally, we treat the case that the full embedding of $\Upsilon_{1} \cong A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$ in $\Delta_{1} \cong E_{6,1}(\mathbb{K})$ is such that each symp of Υ_{1} is isometric, meaning that the embedding is isometric (since each pair of points of Υ_{1} is contained in a symp). We will hence use the symbol \perp for both Υ_{1} and Δ_{1}. This situation will lead to case (v) of Proposition 5.7.

We recall that, when a symp ξ of Υ_{1} embeds isometrically in a symp Σ_{ξ} of Δ_{1}, it arises as the intersection of the 3 -space $\langle\xi\rangle$ with the quadric Σ_{ξ}. We first show that distinct symps embed in distinct symps.
Lemma 5.18. The map $\xi \mapsto \Sigma_{\xi}$ is injective.
Proof. Suppose for a contradiction that there are distinct symps ξ_{1}, ξ_{2} with $\Sigma:=$ $\Sigma_{\xi_{1}}=\Sigma_{\xi_{2}}$. If $\xi_{1} \cap \xi_{2}$ is a unique point p, then a symp meeting both ξ_{1} and ξ_{2} in a line through p will also embed in Σ. Lemma 5.11 now yields a singular symp, contradicting our assumption.

We start with the mutual position in Δ_{1} of disjoint planes of Υ_{1}. As mentioned above, we do not need to make a distinction between collinearity in Υ_{1} and in Δ_{1}, so Fact A. 6 immediately implies:
Lemma 5.19. If π and π^{\prime} are disjoint planes of Υ_{1}, then collinearity between π and π^{\prime} is an isomorphism.

Notation. We will call (disjoint) planes π, π^{\prime} of Δ_{1} in Segre relation if collinearity between them is an isomorphism. Indeed, the geometry that arises when taking the union of the lines meeting π and π^{\prime} is a Segre subgeometry isomorphic to $\mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{2,1}(\mathbb{K})$, which we will denote by $\mathscr{S}\left(\pi, \pi^{\prime}\right)$.

Planes of Δ_{1} which are in Segre relation bring along a unique plane which is collinear to both of them:

Lemma 5.20. Let π and π^{\prime} be two planes of Δ_{1} in Segre relation. Then $\pi^{\perp} \cap \pi^{\prime \perp}$ is a plane α. If U and U^{\prime} denote the 5-spaces $\langle\pi, \alpha\rangle$ and $\left\langle\pi^{\prime}, \alpha\right\rangle$, respectively, and V and V^{\prime} are 5-spaces containing π and π^{\prime}, respectively, with $V \neq U$ and $V^{\prime} \neq U^{\prime}$, then V and V^{\prime} are opposite.

Proof. Let p_{1}, p_{2}, p_{3} be a triangle in π (that is, three points not in a common line) and let $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ be the respective collinear points in π^{\prime}. The symps ξ_{2} and ξ_{3} containing p_{1}, p_{2}^{\prime} and p_{1}, p_{3}^{\prime}, respectively, have a 4 -space U in common. By convexity of symps, $p_{2}^{\perp} \cap U=p_{3}^{\perp} \cap U$ and $p_{2}^{\prime \perp} \cap U=p_{3}^{\prime \perp} \cap U$; hence $\pi^{\perp} \cap \pi^{\prime \perp} \cap U$ is a plane α and clearly coincides with $\pi^{\perp} \cap \pi^{\prime \perp}$.

For the second assertion, let $v \in V \backslash \pi$ be arbitrary. By Fact A.10, it suffices to show that $\left|v^{\perp} \cap V^{\prime}\right|=1$. Suppose not, then Fact A. 11 implies that $v^{\perp} \cap V^{\prime}$ is a 3-space, which has some point v^{\prime} in common with π^{\prime}. Since $v^{\perp} \cap U$ is also a 3 -space, which contains π, we find a point $a \in \alpha$ not in v^{\perp}. Then $\xi(a, v)$ contains π and $v^{\prime} \in \pi^{\prime}$, contradicting $\left|v^{\perp} \cap \pi\right|=1$.

Next, we have a look at the mutual position of the Δ_{1}-symps in which the symps of Υ_{1} embed.

Lemma 5.21. If ξ, ξ^{\prime} are distinct symps of Υ_{1}, then the symps Σ_{ξ} and $\Sigma_{\xi^{\prime}}$ of Δ_{1} in which they embed intersect each other in exactly a point if $\xi \cap \xi^{\prime}$ is a point; and they intersect in a 4 -space if $\xi \cap \xi^{\prime}$ is a line. If p is a point of Υ_{1} and ξ a symp of Υ_{1} such that $p^{\perp} \cap \xi=\varnothing$, then $p^{\perp} \cap \Sigma_{\xi}=\varnothing$.

Proof. Lemma 5.18 yields $\Sigma_{\xi} \neq \Sigma_{\xi^{\prime}}$. Next, consider a point p and symp ξ with $p^{\perp} \cap \xi=\varnothing$ and suppose for a contradiction that $p^{\perp} \cap \Sigma_{\xi}$ is not empty. If $p \in \Sigma_{\xi}$, then $p^{\perp} \cap \xi \neq \varnothing$, a contradiction. So $p^{\perp} \cap \Sigma_{\xi}$ is a 4^{\prime}-space V. Since $\xi=\langle\xi\rangle \cap \Sigma_{\xi}$, we know that V and $\langle\xi\rangle$ are disjoint. Hence V contains a point q collinear to ξ. Obviously, $q \notin \Upsilon_{1}$. We claim that q is collinear to all points of Υ_{1}. Take two symps ξ_{1} and ξ_{2} containing p and meeting each other in a line L. Let Σ_{1} and Σ_{2} be the corresponding symps of Δ_{1} containing ξ_{1} and ξ_{2}, respectively. Since q is Δ_{1}-collinear to two noncollinear points of both ξ_{1} and ξ_{2}, namely p and the points $\xi_{1} \cap \xi$ and $\xi_{2} \cap \xi$, we obtain that $q \in \Sigma_{1} \cap \Sigma_{2}$. Since the latter is a singular subspace of Δ_{1} also containing L, we obtain that $q \perp_{\Delta_{1}} L$. Since this holds for any line L of Υ_{1} containing p, we obtain that q is Δ_{1}-collinear to $p^{\perp \Upsilon_{1}}$ and ξ and hence to all of Υ_{1}. The claim follows.

We conclude that Υ_{1} is fully and isometrically embedded in $\widetilde{\Delta}_{1}:=\operatorname{Res}_{\Delta_{1}}(q) \cong$ $D_{5,5}(\mathbb{K})$. We show that this is impossible. Indeed, let π_{1} and π_{2} be the two planes of Υ_{1} through some point x of Υ_{1}. Then no point of $\pi_{1} \backslash\{x\}$ is collinear to any point of $\pi_{2} \backslash\{x\}$ in either Υ_{1} or $\widetilde{\Delta}_{1}$. This yields two lines in $\operatorname{Res}_{\widetilde{\Delta}_{1}}(x) \cong \mathrm{A}_{4,2}(\mathbb{K})$ between which the collinearity relation is empty, contradicting the fact that each pair of planes in the 4-dimensional space $A_{4,1}(\mathbb{K})$ intersects nontrivially.

Finally, suppose $\xi \cap \xi^{\prime}$ is a point p. It is easily verified that a point $q \in \xi \backslash\left\{p^{\perp}\right\}$ is not collinear to any point of ξ^{\prime}. The previous paragraph then implies that q is far from $\Sigma_{\xi^{\prime}}$, which means that $\Sigma_{\xi} \cap \Sigma_{\xi^{\prime}}=\{p\}$. By the first paragraph we have that, if $\xi \cap \xi^{\prime}$ is a line, then $\Sigma_{\xi} \cap \Sigma_{\xi^{\prime}}$ is a 4 -space.

Notation. We denote the two families of planes of Υ_{1} by Π and $\bar{\Pi}$. Henceforth, we let $\pi, \pi^{\prime}, \pi^{\prime \prime}$ be three distinct planes of Π meeting a given plane $\bar{\pi} \in \bar{\Pi}$ in three points generating $\bar{\pi}$ (the three planes generate Υ_{1}). Also, let α denote the unique plane of Δ_{1} collinear to both π^{\prime} and $\pi^{\prime \prime}, \alpha^{\prime}$ the plane collinear to both π and $\pi^{\prime \prime}$, and $\alpha^{\prime \prime}$ the one collinear to both π and π^{\prime} (see Lemma 5.20).

Lemma 5.22. The planes α and π are opposite planes of Δ_{1}, i.e., the collinearity relation is empty between α and π (likewise for α^{\prime} and π^{\prime} and $\alpha^{\prime \prime}$ and $\pi^{\prime \prime}$).

Proof. Let p be a point of π. Take a symp ξ in the Segre subgeometry determined by the planes π^{\prime} and $\pi^{\prime \prime}$ such that $p^{\perp} \cap \xi=\varnothing$. Clearly, $\alpha \subseteq \Sigma_{\xi}$. Since p is far from Σ_{ξ} by Lemma 5.21, p is not collinear to any point of α.

It turns out that the mutual position between $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ is the same as between the planes $\pi, \pi^{\prime}, \pi^{\prime \prime}$.

Lemma 5.23. The planes α and α^{\prime} are in Segre relation (likewise for α^{\prime} and $\alpha^{\prime \prime}$ and $\alpha^{\prime \prime}$ and α). Moreover, if x is a point in α and x^{\prime} and $x^{\prime \prime}$ are the respective points in α^{\prime} and $\alpha^{\prime \prime}$ collinear to x, then $\alpha_{x}:=\left\langle x, x^{\prime}, x^{\prime \prime}\right\rangle$ is a singular plane of Δ_{1}.

Proof. Observe that the planes α and α^{\prime} are contained in the respective 5-spaces $U:=\left\langle\alpha, \pi^{\prime \prime}\right\rangle$ and $U^{\prime}:=\left\langle\alpha^{\prime}, \pi^{\prime \prime}\right\rangle$. From the point-5 relations in Δ_{1} (Fact A.11) it now follows easily that collinearity is a bijection between α and α^{\prime}, and by considering symps through noncollinear points of $\alpha \cup \alpha^{\prime}$, it follows that this bijection is an isomorphism.

Next, consider $x, x^{\prime}, x^{\prime \prime}$ as in the statement. Suppose for a contradiction that the unique point \bar{x}^{\prime} of $\alpha^{\prime \prime}$ collinear to x^{\prime} is distinct from $x^{\prime \prime}$. Then the symp (of Δ_{1}) determined by x and \bar{x}^{\prime} contains the plane π^{\prime} and the point $x^{\prime} \in \alpha^{\prime}$. Therefore x^{\prime} is collinear to a line of π^{\prime}, contradicting Lemma 5.22. We conclude that $\left\langle x, x^{\prime}, x^{\prime \prime}\right\rangle$ is singular. Clearly, $\left\langle x, x^{\prime}\right\rangle$ is a line since α and α^{\prime} are disjoint. If $x^{\prime \prime} \in\left\langle x, x^{\prime}\right\rangle$, then $x^{\prime \prime}$ would be collinear to $\pi^{\prime \prime}$, again contradicting Lemma 5.22.

We keep using the notation α_{x}, as introduced in the statement of the previous lemma, for the unique singular plane of Δ_{1} containing $x \in \alpha$ and meeting α^{\prime} and $\alpha^{\prime \prime}$ in points. Then two such planes α_{x} and α_{y} are also in Segre relation, as we show below.

Lemma 5.24. Let x, y be distinct points of α. Then α_{x} and α_{y} are in Segre relation. Proof. Let $x, x^{\prime}, x^{\prime \prime}$ be the intersection points of α_{x} and $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$, respectively; likewise for $y, y^{\prime}, y^{\prime \prime}$. Clearly, x is collinear to y and not collinear to y^{\prime} and $y^{\prime \prime}$. So if $x^{\perp} \cap \alpha_{y}$ is more than just y, it is a line L. The symp Σ of Δ_{1} containing x and y^{\prime} then contains $\alpha_{y}=\left\langle L, y^{\prime}\right\rangle$, and hence also $\alpha_{x}=\left\langle x, x^{\prime}, x^{\prime \prime}\right\rangle$. Let p be a point of π. Since π is collinear to α^{\prime} and $\alpha^{\prime \prime}$ by definition, p is collinear to $\left\langle x^{\prime}, y^{\prime}\right\rangle$ and $\left\langle x^{\prime \prime}, y^{\prime \prime}\right\rangle$, yielding $p \in \Sigma$ (because x^{\prime} and $y^{\prime \prime}$ are not collinear). Since $p \in \pi$ was
arbitrary and π plays the same role as π^{\prime}, we obtain $\pi \cup \pi^{\prime} \subseteq \Sigma$, contradicting Lemma 5.19.

We actually showed more or less that the " α_{x}-planes" constitute a subgeometry Υ_{1}^{α} of Δ_{1} isomorphic to Υ_{1}. We now repeat this "construction" to obtain yet another such geometry, say Υ_{1}^{β}, starting from Υ_{1}^{α} instead of from Υ_{1}. We then focus on a hexagon of 5-spaces determined by three planes of one family of the Υ_{1}^{α} geometry:

Notation. Put $\bar{\alpha}:=\alpha_{x}, \bar{\alpha}^{\prime}:=\alpha_{y}$ and $\bar{\alpha}^{\prime \prime}:=\alpha_{z}$, with $\langle x, y, z\rangle=\alpha$. By Lemma 5.24 these planes are in Segre relation, and hence by Lemma 5.20, there are unique planes $\beta, \beta^{\prime}, \beta^{\prime \prime}$ such that β is collinear to $\bar{\alpha}^{\prime}$ and $\bar{\alpha}^{\prime \prime} ; \beta^{\prime}$ is collinear to $\bar{\alpha}$ and $\bar{\alpha}^{\prime \prime}$ and $\beta^{\prime \prime}$ is collinear to $\bar{\alpha}$ and $\bar{\alpha}^{\prime}$. Recall that these planes are disjoint from the planes $\bar{\alpha}, \bar{\alpha}^{\prime}, \bar{\alpha}^{\prime \prime}$. We consider the hexagon of 5-spaces they determine: $U:=\left\langle\bar{\alpha}, \beta^{\prime \prime}\right\rangle$, $V=\left\langle\beta^{\prime \prime}, \bar{\alpha}^{\prime}\right\rangle, W=\left\langle\bar{\alpha}^{\prime}, \beta\right\rangle, U^{\prime}=\left\langle\beta, \bar{\alpha}^{\prime \prime}\right\rangle, V^{\prime}=\left\langle\bar{\alpha}^{\prime \prime}, \beta^{\prime}\right\rangle$ and $W^{\prime}=\left\langle\beta^{\prime}, \bar{\alpha}\right\rangle$.

We want to show that the above mentioned 5-spaces correspond to a hexagon in the geometry Δ_{1}^{*} isomorphic to $\mathrm{E}_{6,2}(\mathbb{K})$ associated to Δ_{1}, where "opposite" points in the hexagon are opposite in Δ_{1}^{*}. By looking in Δ_{1}^{*}, this is almost trivial:
Lemma 5.25. The 5-spaces U and U^{\prime} are opposite in Δ_{1}; likewise for V and V^{\prime} and for W and W^{\prime}.

Proof. This is completely similar to the proof of Lemma 5.20.
Recall the definition of the equator geometry $E\left(U, U^{\prime}\right) \cong \mathrm{A}_{5,2}(\mathbb{K})$ (Definition 3.4). We show that $\Upsilon_{1}=E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)=E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right)$.

Proposition 5.26. We have $\Upsilon_{1}=E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)$ and this point set coincides with the set of points which are simultaneously collinear to exactly a line of each of the planes $\bar{\alpha}, \beta^{\prime \prime}, \bar{\alpha}^{\prime}, \beta, \bar{\alpha}^{\prime \prime}, \beta^{\prime}$.

Proof. Let p be any point of Υ_{1}. Then p is contained in a unique plane $\bar{\pi}_{p}$ of Υ_{1} meeting each of $\pi, \pi^{\prime}, \pi^{\prime \prime}$ in unique points $q, q^{\prime}, q^{\prime \prime}$. We claim that $\bar{\alpha}$ is contained in a symp of Δ_{1} together with $\bar{\pi}_{p}$; likewise for $\bar{\alpha}^{\prime}$ and $\bar{\alpha}^{\prime \prime}$. Recall that $\bar{\alpha}=\alpha_{x}=\left\langle x, x^{\prime}, x^{\prime \prime}\right\rangle$ with $x \in \alpha, x^{\prime} \in \alpha^{\prime}$ and $x^{\prime \prime} \in \alpha^{\prime \prime}$. The points $x \in \alpha$ and $q \in \pi$ are not collinear by Lemma 5.22 , so they determine a symp Σ_{p}. Since α is collinear to $\pi^{\prime} \cup \pi^{\prime \prime}$ by definition, in particular x is collinear to $q^{\prime}, q^{\prime \prime}$; likewise, π is collinear to $\alpha^{\prime} \cup \alpha^{\prime \prime}$ and hence q is collinear to x^{\prime} and $x^{\prime \prime}$. Therefore, $q^{\prime}, q^{\prime \prime}, x^{\prime}$ and $x^{\prime \prime}$ all belong to $x^{\perp} \cap q^{\perp} \subseteq \Sigma_{p}$ and hence $\bar{\pi}_{p} \cup \bar{\alpha} \subseteq \Sigma_{p}$. The claim follows. Since $q^{\perp} \cap q^{\prime \perp} \cap q^{\prime \prime \perp} \cap \bar{\alpha}=x x^{\prime} \cap x^{\prime} x^{\prime \prime} \cap x x^{\prime \prime}=\varnothing$, the planes $\bar{\pi}_{p}$ and $\bar{\alpha}$ are opposite in the polar space Σ_{p}. Consequently, p is collinear to a unique line of $\bar{\alpha}$.

By the point-5 relations in Δ_{1} (Fact A.11), this means that p is collinear to a 3-space U_{p} of U (which meets $\bar{\alpha}$ in a line L_{p}). By the same token, p is collinear to a 3 -space V_{p} of V meeting $\bar{\alpha}^{\prime}$ in a line L_{p}^{\prime}. By dimension, U_{p} meets $\beta^{\prime \prime}=U \cap V$ in at least a point w, and w then also belongs to V_{p}. Since $\bar{\alpha}$ and $\bar{\alpha}^{\prime}$ are in Segre relation,
there exist noncollinear points $a \in L_{p}$ and $a^{\prime} \in L_{p}^{\prime}$. Clearly, the symp $\xi:=\xi\left(a, a^{\prime}\right)$ contains p, w. We claim that ξ also contains L_{p}. Let b be the unique point of $\bar{\alpha}$ collinear to a^{\prime}. Then $b \in \xi$. So, if $b \in L_{p}$, then $a^{\prime} b=L_{p} \subseteq \xi$; if $b \notin L_{p}$ then p and b are not collinear and hence $L_{p} \subseteq \xi(b, p)=\xi$. The claim follows. Likewise, $L_{p}^{\prime} \subseteq \xi$. Fact A. 12 then implies that $U \cap \xi$ and $V \cap \xi$ are 4^{\prime}-spaces in ξ. Since those intersect in either a plane or a point, we either have $\beta^{\prime \prime} \subseteq \xi$, or $U \cap \xi \cap \beta^{\prime \prime}$ and $V \cap \xi \cap \beta^{\prime \prime}$ are distinct lines, which contradicts the fact that both sets equal $\xi \cap \beta^{\prime \prime}$. We conclude that p is collinear to a unique line M_{p} of $\beta^{\prime \prime}$. By symmetry, we showed that p is collinear to a line of each of $\bar{\alpha}, \beta^{\prime \prime}, \bar{\alpha}^{\prime}, \beta, \bar{\alpha}^{\prime \prime}, \beta^{\prime}$. In particular, $p \in E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)$. Note that M_{p} is collinear to all points of $\bar{\pi}_{p}$ since the line of $\beta^{\prime \prime}$ collinear to a point of $\bar{\pi}_{p}$ is necessarily contained in the symp Σ_{p} (which meets $\beta^{\prime \prime}$ in M_{p}).

Conversely, suppose p is a point of $E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)$. Note that Υ_{1} is fully and isometrically embedded in $E\left(U, U^{\prime}\right) \cong \mathrm{A}_{5,2}(\mathbb{K})$, and that the planes β^{\prime} and $\bar{\alpha}^{\prime}$ both are contained in $E\left(U, U^{\prime}\right)$. By Lemma 6.12 of [De Schepper et al. 2022], Υ_{1} coincides with $E\left(\beta^{\prime}, \bar{\alpha}^{\prime}\right)$, which is by definition the set of points of $E\left(U, U^{\prime}\right)$ collinear to a line of β^{\prime} and to a line of $\bar{\alpha}^{\prime}$. An analogous argument as in the previous paragraph shows that p is collinear to a line of each of $\bar{\alpha}, \beta^{\prime \prime}, \bar{\alpha}^{\prime}$, $\beta, \bar{\alpha}^{\prime \prime}, \beta^{\prime}$. Therefore, p is also contained in $E\left(\beta^{\prime}, \bar{\alpha}^{\prime}\right) \cap E\left(U, U^{\prime}\right)=E\left(U, U^{\prime}\right) \cap$ $E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)$ and hence $\Upsilon_{1}=E\left(U, U^{\prime}\right) \cap E\left(V, V^{\prime}\right) \cap E\left(W, W^{\prime}\right)$.

This finishes the proof of Proposition 5.7.
Remark 5.27. Consider the following geometry. Let \mathscr{U} be the set of 5 -spaces U of Δ_{1} such that each point of Υ_{1} is collinear to a 3-space of U, and for each plane A of Δ_{1} occurring as the intersection of two such 5-spaces in \mathscr{U}, let $A_{\mathscr{U}}$ be the set of 5 -spaces of Δ_{1} containing A. It is easily verified that, for such a plane A, each point of Υ_{1} is collinear to a line of A and hence the point-5-space relations of Δ_{1} imply that each 5 -space of Δ_{1} containing A belongs to \mathscr{U} (it actually implies that a plane occurs as the intersection of two such 5 -spaces if and only if each point of Υ_{1} is collinear to a line of A). Let \mathscr{A} be the set of $A_{\mathscr{U}}$ for all planes A of Δ_{1} as above. Then one could show that the point-line geometry $(\mathscr{U}, \mathscr{A})$ is a thin generalised hexagon (with only two lines per point), which can also be seen as a (full) subgeometry of the $E_{6,2}(\mathbb{K})$ geometry Δ_{1}^{*} associated to Δ_{1}.

5B. Full embeddings of $A_{5,3}(\mathbb{K})$ in $E_{7,7}(\mathbb{K})$. Suppose $\Upsilon_{2}:=A_{5,3}(\mathbb{K})$ is fully embedded in $\Delta_{2}:=\mathrm{E}_{7,7}(\mathbb{K})$. Take any point p in Υ_{2}. Then $\operatorname{Res}_{\Upsilon_{2}}(p) \cong \mathrm{A}_{2,1}(\mathbb{K}) \times$ $A_{2,1}(\mathbb{K})$ is fully embedded in $\operatorname{Res}_{\Delta_{2}}(p) \cong \mathrm{E}_{6,1}(\mathbb{K})$. By Proposition 5.7, there are five possibilities for the nature of this embedding, labelled by (i) up to (v); we will call this label the type of p. Our first goal is to show that every point of Υ_{2} has type (v). For that, the following lemma will be useful.

By a standard subgeometry of Υ_{2} isomorphic to $\mathrm{A}_{4,2}(\mathbb{K})$ we mean the subgeometry of Υ_{2} arising from the residue of either a point or a hyperplane in the underlying projective space $P G(5, \mathbb{K})$. Since residues in buildings are convex, such a subgeometry is always isometric.

Lemma 5.28. Consider a standard subgeometry Ω of Υ_{2} isomorphic to $A_{4,2}(\mathbb{K})$ and let p be a point of Ω. Suppose $\operatorname{Res}_{\Omega}(p) \cong \mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{2,1}(\mathbb{K})$ is embedded in a singular 5-space of $\operatorname{Res}_{\Delta_{2}}(p)$. Then Ω is embedded in a singular 6-space of Δ_{2}.

Proof. Note that $\operatorname{Res}_{\Omega}(p)$ generates a 5-dimensional space in $\operatorname{Res}_{\Delta_{2}}(p)$ and hence, lifted to Δ_{2}, the set $p^{\perp_{\Omega}}$ is contained in a 6-dimensional singular subspace S of Δ_{2}. Suppose for a contradiction that there is a symp ξ of Ω through p such that ξ is not contained in S, and let q be a point of $\xi \backslash S$. Since $\langle\xi\rangle$ meets S in the 4 -space $\left\langle p^{\perp \xi}\right\rangle$, it follows that $\langle\xi\rangle$ is a maximal singular 5-space of Δ_{2} through p. In particular, $q^{\perp_{\Delta_{2}}} \cap S$ coincides with $\left\langle p^{\perp_{\xi}}\right\rangle$ by the point- 5 relations of $\operatorname{Res}_{\Delta_{2}}(p)$ (Fact A.11).

Now let ξ^{\prime} be another symp of Ω through p. Then $\xi \cap \xi^{\prime}$ is a plane π. In Υ_{2}, we see that q is collinear to a point $q^{\prime} \in \xi^{\prime} \backslash \pi$, because q is collinear to a line of π and hence to a plane of ξ^{\prime} distinct from π. In the ambient projective space $\operatorname{PG}(55, \mathbb{K})$ of the universal embedding of $E_{7,7}(\mathbb{K})$, the subspace $\left\langle\xi, \xi^{\prime}\right\rangle$ either has dimension 7 or 8: two symps in $\operatorname{Res}_{\Omega}(p)$ generate a 5 -space, so $\left\langle p^{\perp_{\xi}}, p^{\perp_{\xi^{\prime}}}\right\rangle=S$ and therefore, as $q \notin S$, we have $\operatorname{dim}\left\langle\xi, \xi^{\prime}\right\rangle \geq 7$; on the other hand, $\operatorname{dim}\left\langle\xi, \xi^{\prime}\right\rangle \leq 8$ because ξ and ξ^{\prime} share a plane.

Suppose first that $\operatorname{dim}\left\langle\xi, \xi^{\prime}\right\rangle=8$. Then $q^{\prime} \notin\langle S, \xi\rangle$ and q and q^{\prime} play the same role. Note that q^{\prime} is Δ_{2}-collinear to the 3 -space $\langle q, \pi\rangle$ of the maximal 5 -space $\langle\xi\rangle$. Fact A. 20 implies that q^{\prime} is Δ_{2}-collinear to a 4 -space of $\langle\xi\rangle$. This implies that q^{\prime} is Δ_{2}-collinear to a 5-space of $\left\langle p^{\perp_{\xi}}, p^{\perp_{\xi^{\prime}}}\right\rangle=S$, a contradiction.

Next, suppose $\operatorname{dim}\left\langle\xi, \xi^{\prime}\right\rangle=7$. Then the Υ_{2}-line $q q^{\prime}$ shares a point q^{*} with S and the $\operatorname{symp} \xi^{*}$ of Υ_{2} determined by p and q^{*} also contains π and therefore this symp also belongs to Ω. Since $q^{*} \in q^{\perp_{\Delta_{2}}} \cap S$, we obtain $q^{*} \in\left\langle p^{\perp \xi}\right\rangle$. Let L be the unique line of π that is Υ_{2}-collinear to q and q^{*}. Then the singular plane $\left\langle L, q^{*}\right\rangle$ of Ω has a nontrivial intersection with any plane of ξ through p, a contradiction in Ω. The lemma follows.

We can now exclude possibilities (i), (ii), (iii) and (iv).
Lemma 5.29. Each point of Υ_{2} has type (v).
Proof. Let p be any point. Suppose first that p has type (v). If q is a point $\Upsilon_{2}-$ collinear to p, then each symp of Υ_{2} through the line $p q$ is isometric and hence in $\operatorname{Res}_{\Upsilon_{2}}(q)$, there is no singular symp through the point corresponding to $p q$. So q has type (v) too, because for all other types, there is a singular symp through each point of the residue (see Proposition 5.7). By connectedness, each point has type (v) then. We now exclude all other possibilities.

To that end, suppose first that p has type (iii), so in particular, there is a unique $\operatorname{symp} \Sigma$ of Δ_{2} containing $p^{\perp \Upsilon_{2}}$. Let q be any point Υ_{2}-collinear to p. According to Proposition 5.7, there are two isometric symps ξ_{1} and ξ_{2} of Υ_{2} with $\xi_{1} \cap \xi_{2}=p q$. Since they embed isometrically in a symp of Δ_{2} and since their p-residues embed in Σ, we obtain that ξ_{1} and ξ_{2} are contained in Σ. So in $\operatorname{Res}_{\Upsilon_{2}}(q), \xi_{1}$ and ξ_{2} correspond to isometric symps which embed in the same symp and which meet each other in a unique point (corresponding to the line $p q$). Considering the list of possibilities in Proposition 5.7, we see that the latter situation cannot occur if the point q has type (i), (ii) or (v). Also if q has type (iv), the situation does not occur, according to Lemma 5.16. We conclude that q also has type (iii). By connectedness, it again follows that all points of Υ_{2} have type (iii). Let ξ be a singular symp of Υ_{2} containing p. Recall that an S-line in $\operatorname{Res}_{\Upsilon_{2}}(p)$ is a line through which each symp of $\operatorname{Res}_{\Upsilon_{2}}(p)$ is singular, and hence it corresponds to a plane of Υ_{2} through p through which each symp of Υ_{2} is singular, and vice versa. We will refer to these planes as S-planes. Noting that Proposition 5.7(iii) arose from the situation in which every singular symp contains exactly two S-lines (see Section 5A5), we see that there are exactly two S-planes π_{1} and π_{2} through p in ξ, which intersect each other in a line, say $p q$. Now let r be a point of $\pi_{1} \backslash \pi_{2}$. Then also through r there are exactly two S-planes in ξ, one of which is π_{1}, the other is a plane π_{3} (necessarily also distinct from π_{2} since it contains r). Then π_{1} and π_{3} share a line $r q^{\prime}$, and since $p q$ and $r q^{\prime}$ are lines in π_{1}, they intersect. But then there are three S-planes in ξ through that intersection point, a contradiction.

Next, suppose p has type (ii). Then there is a unique 3 -space Π_{p} of Υ_{2} through p such that $p^{\perp \Upsilon_{2}}$ is contained in the union of 6-spaces through Π_{p}. Take any such 6space U. Then the corresponding 5 -space in $\operatorname{Res}_{\Upsilon_{2}}(p)$ contains a Segre subgeometry, say \mathscr{S}_{U}, isomorphic to $\mathrm{A}_{1,1}(\mathbb{K}) \times \mathrm{A}_{2,1}(\mathbb{K})$. A straightforward verification in the projective 5 -space $\operatorname{PG}(5, \mathbb{R})$ corresponding to Υ_{2} now shows that the union of all symps of Υ_{2} through p whose point residue at p is contained in \mathscr{S}_{U} is a standard subgeometry Ω_{U} isomorphic to $A_{4,2}(\mathbb{K})$. By Lemma $5.28, \Omega_{U} \subseteq U$. Now let q be any point of Υ_{2} in $p^{\perp \Upsilon_{2}} \cap\left(U \backslash \Pi_{p}\right)$. Then through $p q$ there is an isometric symp, and $\operatorname{Res}_{\Upsilon_{2}}(q)$ has a Segre subgeometry, namely $\operatorname{Res}_{\Omega_{U}}(q)$, contained in and spanning the 5 -space corresponding to U. We claim that q has type (ii) too. Indeed, it cannot have type (i) because there are no isometric symps in this case, neither it can have type (v) as there are no singular symps in that case. Because of the Segre subgeometry \mathscr{S}_{U} in $\operatorname{Res}_{\Upsilon_{2}}(q)$ contained in a singular subspace of $\operatorname{Res}_{\Delta_{2}}(q)$, it cannot have type (iii) since then $\operatorname{Res}_{\Upsilon_{2}}(q)$ is contained in a symp of $\operatorname{Res}_{\Delta_{2}}(q)$ and these do not contain singular 5-spaces; nor can it have type (iv) since all symps in \mathscr{S}_{U} are singular but they do not have a common point. The claim follows. Since $\operatorname{Res}_{\Omega_{U}}(q)$ spans the 5 -space corresponding to U, and since obviously each 6 -spaces contained in the union of all 6 -spaces through a given 3 -space, contains that 3 -space,
the unique 3 -space Π_{q} defined analogously as Π_{p} is contained in U. Consider a point q^{\prime} of Υ_{2} in a second 6 -space U^{\prime} containing Π_{p}, not in Π_{p}, and Υ_{2}-collinear to q. Since $q q^{\prime}$ belongs to $\operatorname{Res}_{\Upsilon_{2}}(q)$, we obtain that q^{\prime} is Δ_{2}-collinear to Π_{q}; and obviously since $q^{\prime} \in U^{\prime}$, we also have that q^{\prime} is Δ_{2}-collinear to Π_{p}. So q^{\prime} is Δ_{2} collinear to Π_{p} and Π_{q}. However, the latter are 3 -spaces of the $\mathrm{A}_{4,2}(\mathbb{K})$-geometry Ω_{U}, and hence intersect in a unique point, i.e., they generate the maximal singular subspace U of Δ_{2}, a contradiction because $q^{\prime} \notin U$.

Now suppose p has type (i): all symps through p are singular and $p^{\perp r_{2}}$ is contained in a singular 6-space U. Let q be a point of $p^{\perp \Upsilon_{2}}$ distinct from p. Consider a Segre subgeometry \mathscr{S} contained in $\operatorname{Res}_{\Upsilon_{2}}(p)$ and containing q. As in the previous paragraph, the union of all symps containing p whose point residue at p is contained in \mathscr{S} gives a standard subgeometry Ω isomorphic to $A_{4,2}(\mathbb{K})$. Again by Lemma 5.28, $\Omega \subseteq U$. Since $q^{\perp \Upsilon_{2}}$ contains a Segre subgeometry, namely, $\operatorname{Res}_{\Omega}(q)$, in a singular 5 -space (corresponding to U), it follows that q has type (i) too since (iv) was now the only alternative. By connectedness, all points of Υ_{2} have type (i). In this case, $p^{\perp \Upsilon_{2}}$ generates a maximal 6 -space S of Δ_{2}. As in the previous case, it follows with the help of Lemma 5.28 that all symps of Υ_{2} containing p are contained in S too. Now let q be a point of Υ_{2} opposite p. Since q is Υ_{2}-symplectic to a unique point of each Υ_{2}-line through p, and q has type (i) too, it follows that q is Δ_{2}-collinear to a 5 -space of S, implying that $q \in S$. We conclude that $\Upsilon_{2} \subseteq S$, a contradiction because Υ_{2} contains disjoint 3-spaces.

Finally, suppose p has type (iv). Then, by the foregoing, all points of Υ_{2} have type (iv). This means that through each point x of Υ_{2}, there is a unique line L_{x} of Υ_{2} such that all symps of Υ_{2} through L_{x} are singular. Observe that, if y is any point on L_{x}, then $L_{x}=L_{y}$ (since the residue at y contains a unique point through which each symp is singular, and hence this point corresponds to the line L_{x}). Moreover, a symp through x is singular if and only if it contains L_{x}, so if ξ is a singular symp of Υ_{1}, the line L_{x} is contained in ξ. Now consider two singular symps ξ_{1} and ξ_{2} of Υ_{2} intersecting each other in a plane π through L_{p} and let x be a point of $\pi \backslash L_{p}$. Then L_{x} is contained in $\xi_{1} \cap \xi_{2}=\pi$, implying that it meets L_{x} in a point y. But then $L_{x}=L_{y}=L_{p}$, a contradiction.

Knowing that each point has type (v), we can show that the embedding is isometric.

Lemma 5.30. The embedding of $\Upsilon_{2}=A_{5,3}(\mathbb{K})$ in $\Delta_{2}=E_{7,7}(\mathbb{K})$ is isometric.
Proof. This can be proven analogously to Lemma 4.6, with two small changes. Firstly, to see that symps of Υ_{2} embed isometrically in Δ_{2}, we now use Lemma 5.29 instead of a dimension argument. Secondly, given a point p which is Υ_{2}-collinear to the unique point r of a $\operatorname{symp} \xi$ of Υ_{2}, to deduce that p is also Δ_{2}-collinear only
to the point r in the unique symp of Δ_{2} containing ξ, we now rely on Lemma 5.21 instead of Corollary 4.5.

It suffices to apply induction and hence exploit our result about the isometric embedding of corresponding point residues (see Proposition 5.26).
Proposition 5.31. Suppose $\Upsilon_{2}=A_{5,3}(\mathbb{K})$ is fully embedded in $\Delta_{2}=E_{7,7}(\mathbb{K})$. Then $\Upsilon_{2}=E\left(\Sigma_{1}, \Sigma_{4}\right) \cap E\left(\Sigma_{2}, \Sigma_{5}\right) \cap E\left(\Sigma_{3}, \Sigma_{6}\right)$, where $\Sigma_{1}, \ldots, \Sigma_{6}$ are symps of Δ_{2} with Σ_{i} and Σ_{i+3} opposite and $U_{i}:=\Sigma_{i} \cap \Sigma_{i+1}$ a singular 5 -space, with $i \in \mathbb{Z} / 6 \mathbb{Z}$.

Proof. By Lemma 5.30, the Δ_{2}-distance between two points of Υ_{2} is the same as their Υ_{2}-distance, so we make no distinction; in particular we write \perp instead of $\perp_{\Upsilon_{2}}$ or $\perp_{\Delta_{2}}$. Let p and q be opposite points of Υ_{2}. As in the proof of Proposition 4.4, we let Δ_{1}^{p} and Υ_{1}^{p} denote, respectively, the set of points of Δ_{2} and Υ_{2} which are collinear to p and at distance 2 from q, likewise for q. Observe that $\Delta_{1}^{p} \cong \mathrm{E}_{6,1}(\mathbb{K})$ and $\Upsilon_{1}^{p} \cong A_{2,2}(\mathbb{K}) \times \mathrm{A}_{2,2}(\mathbb{K})$ and recall from the proof of Proposition 4.4 that collinearity gives an isomorphism ρ between Δ_{1}^{p} and Δ_{1}^{q} mapping points to symps.

By Proposition 5.26, there are 5 -spaces V_{1}, \ldots, V_{6} of Δ_{1}^{p} with V_{i} and V_{i+3} opposite and $\pi_{i}:=V_{i} \cap V_{i+1}$ a plane, such that $\Upsilon_{1}^{p}=E\left(V_{1}, V_{4}\right) \cap E\left(V_{2}, V_{5}\right) \cap$ $E\left(V_{3}, V_{6}\right)$; with $i \in[1,6]$. Just like in the proof of Proposition 4.4, the 5 -space V_{i} and its image $\rho\left(V_{i}\right)$ determine a symp Σ_{i} of Δ_{2}. Observe that $U_{i}:=\Sigma_{i} \cap \Sigma_{i+1}$ is given by $\left\langle\pi_{i}, \rho\left(\pi_{i}\right)\right\rangle$ and hence is a 5 -space. The fact that Σ_{i} and Σ_{i+3} are opposite is shown in the proof of Proposition 4.4.

One can show that $\Upsilon_{2}=E\left(\Sigma_{1}, \Sigma_{4}\right) \cap E\left(\Sigma_{2}, \Sigma_{5}\right) \cap E\left(\Sigma_{3}, \Sigma_{6}\right)$ as follows. It is straightforward to see that $p^{\perp \Upsilon_{2}} \cup q^{\perp \Upsilon_{2}}$ is contained in $E\left(\Sigma_{1}, \Sigma_{4}\right) \cap E\left(\Sigma_{2}, \Sigma_{5}\right) \cap$ $E\left(\Sigma_{3}, \Sigma_{6}\right)$. Since $p^{\perp \Upsilon_{2}} \cup q^{\perp \Upsilon_{2}}$ generates Υ_{2} as a subspace of itself by [Blok and Brouwer 1998; Cooperstein and Shult 1997], and since equator geometries are subspaces, it already follows that $\Upsilon_{2} \subseteq E\left(\Sigma_{1}, \Sigma_{4}\right) \cap E\left(\Sigma_{2}, \Sigma_{5}\right) \cap E\left(\Sigma_{3}, \Sigma_{6}\right)$. Equality then follows from the induction and Lemma 2.3.

5C. Full embedding of $E_{6,2}(\mathbb{K})$ in $E_{8,8}(\mathbb{K})$. Suppose $\Upsilon_{3}:=E_{6,2}(\mathbb{K})$ is fully embedded in $\Delta_{3}:=\mathrm{E}_{8,8}(\mathbb{K})$. Take any point p in Υ_{3}. Then $\operatorname{Res}_{\Upsilon_{3}}(p) \cong \mathrm{A}_{5,3}(\mathbb{K})$ is fully embedded in $\operatorname{Res}_{\Delta_{3}}(p) \cong \mathrm{E}_{7,7}(\mathbb{K})$. By Lemma 5.30, this embedding is unique up to projectivity, automatically isometric, and given by an intersection of equator geometries isomorphic to $D_{6,6}(\mathbb{K})$. To show that Υ_{3} embeds isometrically in Δ_{3} is now easy.

Lemma 5.32. The embedding of $\Upsilon_{3}=\mathrm{E}_{6,2}(\mathbb{K})$ in $\Delta_{3}=\mathrm{E}_{8,8}(\mathbb{K})$ is isometric.
Proof. This can be proven analogously to Lemma 4.8, using Fact A. 23 and noting that Υ_{3} and Δ_{3} are both long root geometries and that the embedding of the point residues $\operatorname{Res}_{\Upsilon_{3}}(p) \cong \mathrm{A}_{5,3}(\mathbb{K})$ in $\operatorname{Res}_{\Delta_{3}}(p) \cong \mathrm{E}_{7,7}(\mathbb{K})$, for each point p of Υ_{3}, is also isometric by Lemma 5.30.

We can again apply our inductive method, as in the previous section.

Proposition 5.33. Suppose $\Upsilon_{3}=\mathrm{E}_{6,2}(\mathbb{K})$ is fully embedded in $\Delta_{3}=\mathrm{E}_{8,8}(\mathbb{K})$. Then $\Upsilon_{3}=E\left(x_{1}, x_{4}\right) \cap E\left(x_{2}, x_{5}\right) \cap E\left(x_{3}, x_{6}\right)$, where x_{1}, \ldots, x_{6} are points of Δ_{3} with x_{i} and x_{i+3} opposite and x_{i} and x_{i+1} collinear, with $i \in[1,6]$ (indices modulo 6).

Proof. By Lemma 5.32, the Δ_{3}-distance between two points of Υ_{3} is the same as their Υ_{3}-distance, so we make no distinction; in particular we write \perp instead of $\perp_{\Upsilon_{3}}$ or $\perp_{\Delta_{3}}$. As in the proof of Proposition 4.9, we let Δ_{2}^{p} and Υ_{2}^{p} denote, respectively, the set of points of Δ_{3} and Υ_{3} which are collinear to p and at distance 2 from q, likewise for q. Observe that $\Delta_{2}^{p} \cong \mathrm{E}_{7,7}(\mathbb{K})$ and $\Upsilon_{2}^{p} \cong \mathrm{~A}_{5,3}(\mathbb{K})$ and recall from the proof of Proposition 4.9 that collinearity gives an isomorphism ρ between Δ_{2}^{p} and Δ_{2}^{q}.

By Proposition 5.31, there are symps $\Sigma_{1}, \ldots, \Sigma_{6}$ of Δ_{2}^{p} with Σ_{i} and Σ_{i+3} opposite and $U_{i}:=\Sigma_{i} \cap \Sigma_{i+1}$ a 5-space, such that $\Upsilon_{2}^{p}=E\left(\Sigma_{1}, \Sigma_{4}\right) \cap E\left(\Sigma_{2}, \Sigma_{5}\right) \cap$ $E\left(\Sigma_{3}, \Sigma_{6}\right)$; with $i \in[1,6]$. Just like in the proof of Proposition 4.9, the symps of Δ_{3} containing Σ_{i} and $\rho\left(\Sigma_{i}\right)$ meet each other in a unique point x_{i} and one can show that $\Upsilon_{3}=E\left(x_{1}, x_{4}\right) \cap E\left(x_{2}, x_{5}\right) \cap E\left(x_{3}, x_{6}\right)$. The proof is really a multiple copy of the proof of Proposition 4.9 , one for each of the equators $E\left(x_{i}, x_{i+3}\right)$, $i=1,2,3$, to deduce $\Upsilon_{3} \subseteq E\left(x_{1}, x_{4}\right) \cap E\left(x_{2}, x_{5}\right) \cap E\left(x_{3}, x_{6}\right)$. Then we exploit the fact that $E\left(x_{1}, x_{4}\right) \cap E\left(x_{2}, x_{5}\right) \cap E\left(x_{3}, x_{6}\right)$ is a subspace which, endowed with the induced lines, is isomorphic to Υ_{3}. Indeed, this follows from the fact that the set of symps through a line through p corresponds to a para of $E(p, q)$ isomorphic to $E_{6,1}(\mathbb{K})$, and the equator of a pair of opposite such paras in $E_{7,1}(\mathbb{K})$ is a geometry isomorphic to $E_{6,2}(\mathbb{K})$, see Definition 6.6 of [De Schepper et al. 2022]. Lemma 2.3 then completes the proof.

Note that the mutual position of the symps Σ_{i} corresponds to the position of the points x_{i} : the fact that $\Sigma_{i} \cap \Sigma_{i+1}$ is a 5 -space translates to x_{i} and x_{i+1} being collinear, and Σ_{i} and Σ_{i+3} opposite translates to x_{i} and x_{i+1} opposite, as can easily be verified.

Remark 5.34. Alternatively, the above proof could be ended when we deduced that Υ_{3} is contained in one equator geometry Γ_{3} isomorphic to $E_{7,1}(\mathbb{K})$. Indeed, by Proposition 6.14 of [De Schepper et al. 2022] the embedding of Υ_{3} in Γ_{3} is projectively unique and the embedding of Γ_{3} in Δ_{3} is also projectively unique by Main Result 4.1. Combining these two facts, we also obtain that the embedding of Υ_{3} in Δ_{3} is projectively unique and therefore also given as an intersection of equator geometries.

This finishes the proof of Main Result 5.1 (see Propositions 5.33, 5.31 and 5.26).

Appendix: Properties of the parapolar spaces under consideration

In the following paragraphs we review some incidence and distance-related properties of the parapolar spaces occurring in this paper. Most of them also occur in
[De Schepper et al. 2022], but we include it for ease of reference. Everything in this section serves as reference material for later use.

A1. The direct product of two projective spaces (Segre geometries). Let ℓ and k be natural numbers with $\ell, k \geq 1$ and \mathbb{K} a field. Consider the direct product $A_{\ell, 1}(\mathbb{K}) \times A_{k, 1}(\mathbb{K})$ of two projective spaces over \mathbb{K} of respective dimensions ℓ and k. Abstractly, this gives a point-line geometry: the points are the pairs $p=\left(p_{1}, p_{2}\right)$ with p_{1} a point of $\operatorname{PG}(\ell, \mathbb{K})$ and p_{2} a point of $\operatorname{PG}(k, \mathbb{K})$, the lines have the form $\left\{p_{1}\right\} \times L_{2}:=\left\{\left(p_{1}, p_{2}\right) \mid p_{2} \in L_{2}\right\}$ with p_{1} a point of $\mathrm{PG}(\ell, \mathbb{K})$ and L_{2} a line of $\mathrm{PG}(k, \mathbb{K})$; or, likewise defined, $L_{1} \times\left\{p_{2}\right\}$. If $k=\ell=1$, this geometry is isomorphic to a hyperbolic polar space of rank 2 . If $k \ell>1$, then this geometry is a strong parapolar space of diameter 2, whose symps are hyperbolic polar spaces of rank 2 given by $L_{1} \times L_{2}$, where L_{1} is a line of $\operatorname{PG}(\ell, \mathbb{K})$ and L_{2} a line of $\operatorname{PG}(k, \mathbb{K})$.

If both k and ℓ are at least 2 , then the universal embedding of the $\mathrm{A}_{\ell, 1}(\mathbb{K}) \times$ $A_{k, 1}(\mathbb{K})$ geometry is given by the Segre variety $\mathscr{S}_{k, \ell}(\mathbb{K})$ [Zanella 1996], which lives in $\operatorname{PG}(m, \mathbb{K})$ for $m:=(\ell+1)(k+1)-1$. It is the set of points in the image of the Segre map

$$
\begin{aligned}
\sigma: \mathrm{PG}(\ell, \mathbb{K}) \times \mathrm{PG}(k, \mathbb{K}) & \rightarrow \mathrm{PG}(m, \mathbb{K}), \\
\left(\left(x_{0}, \ldots, x_{\ell}\right),\left(y_{0}, \ldots, y_{k}\right)\right) & \mapsto\left(x_{i} y_{j}\right)_{0 \leq i \leq \ell, 0 \leq j \leq k} .
\end{aligned}
$$

If k or ℓ equals 1 , say $\ell=1$, then an embedding in projective space of the $\mathrm{A}_{1,1}(\mathbb{K}) \times$ $\mathrm{A}_{k, 1}(\mathbb{K})$ geometry requires dimension $m=2 k+1$ because it contains two disjoint k spaces. Although technically speaking, there is no absolutely universal embedding, the global image of the Segre map is unique.

In this paper, we encountered $A_{1,1}(\mathbb{K}) \times A_{3,1}(\mathbb{K})$ and $A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$. The former can be constructed by two disjoint projective 3 -spaces in a projective 7 -space, and a projectivity ρ between those. Two points between these 3 -spaces are joined by a (maximal singular) line if they are each other's image under ρ. We now state some (elementary and well known) properties of the point-line geometry Γ associated to $A_{2,1}(\mathbb{K}) \times A_{2,1}(\mathbb{K})$. Then Γ has points, lines, planes as singular subspaces. Recall from the above that the symps of Γ are hyperbolic polar spaces of rank 2.

The following facts can easily be deduced by reasoning in the two projective planes π_{1}, π_{2} associated to Γ. Note that the singular planes are given by $p_{1} \times \pi_{2}$ or $\pi_{1} \times p_{2}$, with p_{i} a point in π_{i} for $i \in\{1,2\}$.

Fact A. 1 (point-point relations). Let x, y be two points of Γ. Then $\delta_{\Gamma}(x, y) \leq 2$, and if $\delta_{\Gamma}(x, y)=2$, then x and y are contained in a unique symp.
Fact A. 2 (point-symp relations). Let p be a point and ξ a symp of Γ with $p \notin \xi$. Then p is either collinear to no point of ξ (in which case we say that p is far from ξ), or p is collinear to a line of ξ (p is close to ξ). Hence p is never collinear to a unique point of ξ.

Fact A. $\mathbf{3}$ (symp-symp relations). Let ξ and ξ^{\prime} be distinct symps of Γ. Then $\xi \cap \xi^{\prime}$ is either a unique point or a line.

Fact A.4. Given a point p and a line $L \not \supset p$, there is always at least one symp close to p and containing L.

Fact A. 5 (point-plane relations). Given a point p and a singular plane π of Γ with $p \notin \pi$, the point p is collinear to a unique point of π.
Fact A. 6 (plane-plane relations). Let π, π^{\prime} be distinct singular planes of Γ. Then π and π^{\prime} are either disjoint, in which case collinearity gives an isomorphism between them, or $\pi \cap \pi^{\prime}$ is a unique point, in which case all singular lines containing this point belong to $\pi \cup \pi^{\prime}$.

The above fact divides the singular planes of Γ into two natural families: two planes belonging to the same family are disjoint; two planes of distinct families intersect each other in a unique point. Given two planes π and α of distinct families, the geometry Γ can be represented as the direct product of π and α, since each point p of $\Gamma \backslash(\pi \cup \alpha)$ is collinear to unique points of $p_{\pi} \in \pi$ and $p_{\alpha} \in \alpha$, and the unique planes of Γ containing p_{π} and p_{α} meet each other in precisely p.

Suppose π is a singular plane of Γ generated by three points $p, p^{\prime}, p^{\prime \prime}$, and $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ are the unique singular planes of Γ distinct from π containing $p, p^{\prime}, p^{\prime \prime}$ respectively. Then $\alpha \cup \alpha^{\prime} \cup \alpha^{\prime \prime}$ generates Γ since each point x of Γ is on a unique plane π_{x} generated by the unique points of $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ collinear to x.

A2. Parapolar spaces of type $\mathrm{E}_{6,1}$. Let Δ be a geometry isomorphic to $\mathrm{E}_{6,1}(\mathbb{K})$, for some field \mathbb{K}. Then Δ is a strong parapolar space of diameter 2 , each symp of which is isomorphic to $D_{5,1}(\mathbb{K})$ and each point residue of which is isomorphic to $\mathrm{D}_{5,5}(\mathbb{K})$. The maximal singular subspaces have dimension 4 and 5 . A symp and a 5-space are called incident when they share a 4-dimensional subspace. We refer to those as 4^{\prime}-spaces. A 4^{\prime}-space is contained in a unique symp and in a unique 5 -space and hence it corresponds to a flag of type $\{2,6\}$. The generators of a symp of Δ come into two natural families; one of them consists of 4 -spaces of Δ and the other family consists of 4^{\prime}-spaces. Incidence between other elements of Δ is given by containment. The opposition relation on Δ interchanges types 1 and 6 and types 3 and 5 , and preserves type 2 and type 4 . We restrict our overview of the properties of Δ to those that we will rely on.

Fact $\mathbf{A .} 7$ (point-symp relations). Let p be a point and Σ a symp of Γ with $p \notin \Sigma$. Then either $p^{\perp} \cap \Sigma$ is empty (in which case we say that p is far from Σ) or $p^{\perp} \cap \Sigma$ is a 4^{\prime}-space of $\Sigma(p$ and Σ are close $)$.

Fact A.8 (symp-symp relations). Two symps Σ and Σ^{\prime} of Γ either intersect in a point or in a 4-space.

Fact A.9. Let L and π be a line and a plane, respectively, disjoint from a symp Σ, but all of whose points are close to Σ. Then there exist a unique plane π^{\prime} and a unique line L^{\prime} in Σ such that $L \perp \pi^{\prime}$ and $\pi \perp L^{\prime}$. Also, $\left\langle L, \pi^{\prime}\right\rangle$ is a 4-space whereas $\left\langle L^{\prime}, \pi\right\rangle$ is a 4^{\prime}-space.

Fact A. 10 (5-5 relations). Two 5-spaces U, V either intersect in a plane, a point, or in the empty subspace. In the latter case, there are two options. Either there is a unique 5-space intersecting both U and V in respective planes π_{U} and π_{V}, in which case each point of $U \backslash \pi_{U}$ is collinear to a unique point of V, which lies in $\pi_{V} ;$ or U and V are opposite, in which case collinearity between U and V gives a type-preserving isomorphism (each point of U is collinear to a unique point of V and vice versa).

Fact $\mathbf{A .} 11$ (point-5 relations). Let p be a point and U be a 5 -space with $p \notin U$. Then $p^{\perp} \cap U$ is either a point or 3 -space. It is a point if, and only if, p is contained in an opposite 5-space.

Fact A. 12 (symp-5 relations). Let Σ be a symp and U be a 5 -space. Then $\Sigma \cap U$ is either empty, a line, or a 4^{\prime}-space.
Fact A.13. Let p be a point and Σ a symp with p far from Σ. Then each line through p contains a unique point close to Σ and the set $H_{p, \Sigma}$ of these points, equipped with the lines it naturally contains, is isomorphic to $\mathrm{D}_{5,5}(\mathbb{K})$. Moreover, collinearity between $H_{p, \Sigma}$ and Σ follows the natural correspondence between $\mathrm{D}_{5,5}(\mathbb{K})$ and $\mathrm{D}_{5,1}(\mathbb{K})$: a point of $H_{p, \Sigma}$ corresponds to a 4^{\prime}-space of Σ, a point of Σ corresponds to a symp of $H_{p, \Sigma}$.
Fact A.14. Every singular 3 -space is contained in a unique 5-space and a unique 4-space.

A3. Strong parapolar spaces of type $\mathrm{E}_{7,7}$. Let Δ be isomorphic to $\mathrm{E}_{7,7}(\mathbb{K})$, for some field \mathbb{K}. Then Δ is a strong parapolar space of diameter 3 ; points at distance 3 are called opposite. The opposition relation is type preserving. The symps of Δ are isomorphic to $D_{6,1}(\mathbb{K})$ and a point residue is isomorphic to $E_{6,1}(\mathbb{K})$. The maximal singular subspaces have dimension 5 and 6 . A symp and a 6 -space are called incident when they share a 5-dimensional subspace. We refer to those as 5^{\prime}-spaces. A 5^{\prime}-space is contained in a unique 6 -space and in a unique symp, i.e., it is a flag of type $\{1,2\}$. Other incidences between pairs of elements of Δ are given by containment. A 5 -space on the other hand is contained in at least two symps of Δ. The two families of maximal singular subspaces of a symp of Δ consist of 5 -spaces and 5^{\prime}-spaces, respectively.

We now review the point-symp and symp-symp relations. As in the previous section, they can be deduced by considering an appropriate model of an apartment of a building of type E_{7}, as given in [Van Maldeghem and Victoor 2019]; they can
sometimes be deduced from the previous section by considering an appropriate residue.

Fact $\mathbf{A .} 15$ (point-symp relations). If p is a point and Σ a symp of Δ with $p \notin \Sigma$, then precisely one of the following occurs:
(i) p is collinear to a unique point $q \in \Sigma$. In this case, p and x are symplectic if $x \in \Sigma \cap\left(q^{\perp} \backslash\{q\}\right)$ and $\delta(p, x)=3$ for $x \in \Sigma \backslash q^{\perp}$.
(ii) p is collinear to a 5^{\prime}-space U of Σ. In this case, x and p are symplectic if $x \in \Sigma \backslash U$.

Fact A. 16 (symp-symp relations). If Σ and Σ^{\prime} are two symps of Δ, then precisely one of the following occurs:
(i) $\Sigma=\Sigma^{\prime}$.
(ii) $\Sigma \cap \Sigma^{\prime}$ is a 5-space.
(iii) $\Sigma \cap \Sigma^{\prime}$ is a line L. Then points $x \in \Sigma \backslash L$ and $x^{\prime} \in \Sigma^{\prime} \backslash L$ are collinear only if $x, x^{\prime} \in L^{\perp}$, and $\delta\left(x, x^{\prime}\right)=3$ if, and only if, $x^{\perp} \cap L$ is disjoint from $x^{\perp} \cap L$.
(iv) $\Sigma \cap \Sigma^{\prime}=\varnothing$ and there is a unique symp $\Sigma^{\prime \prime}$ intersecting Σ in a 5-space U and intersecting Σ^{\prime} in a 5-space U^{\prime}, with U and U^{\prime} opposite in $\Sigma^{\prime \prime}$. Then each point of U is collinear to a 5^{\prime}-space of Σ^{\prime} (intersecting U^{\prime} in a 4-space) and each point of $\Sigma \backslash U$ is collinear to a unique point of Σ^{\prime} (contained in U^{\prime}).
(v) $\Sigma \cap \Sigma^{\prime}=\varnothing$ and every point of Σ is collinear to a unique point of Σ^{\prime}. In this situation, Σ and Σ^{\prime} are opposite.

Using the above relations, one can show that:
Fact A.17. Let p, q be opposite points of Δ. Then each line through p contains a unique point symplectic to q and each symp through q contains a unique point collinear to p. For each point $x \in p^{\perp}$ at distance 2 from q, let $S_{x}=x^{\perp} \cap q^{\perp}$. This $x \mapsto S_{x}$ induces an isomorphism between $\operatorname{Res}_{\Delta}(p)$ and $\operatorname{Res}_{\Delta}(q)$ mapping points to symps.

Fact A.18. Let Σ and Σ^{\prime} be two opposite symps. Then collinearity between the points of Σ and Σ^{\prime} defines an isomorphism between Σ and Σ^{\prime}.

Fact A. 19 (symp-6 relations). Let Σ be a symp and U be a 6 -space. Then $\Sigma \cap U$ is either empty, a point, a plane, or a 5^{\prime}-space.

Fact A.20. If a point is collinear to a 3-space of a maximal 5-space, then it is collinear to a 4-space of it.

A4. Nonstrong parapolar spaces of type $\mathrm{E}_{8,8}$. Let Δ be the long root geometry $\mathrm{E}_{8,8}(\mathbb{K})$, for some field \mathbb{K}. Then Δ is a parapolar space, which has diameter 3 and is nonstrong. The elements of the corresponding building of types $1,2,3,4,5,6,7,8$, are the symps, 7-spaces, 6-spaces, 5-spaces, 3-spaces, planes, lines and points, respectively. The symps are isomorphic to polar spaces $D_{7,1}(\mathbb{K})$. The other types are singular (projective) subspaces of Δ. A symp and a 7 -space of Δ are incident when they share a subspace of dimension 6 . These are referred to as 6^{\prime}-spaces and do not correspond to a type, but to a flag of type $\{1,2\}$; each 6^{\prime}-space is contained in a unique symp and a unique 7 -space. The two families of 6 -dimensional subspaces of a symp of Δ are then given by 6 -spaces and 6^{\prime}-spaces, respectively. All other incidence relations between elements of Δ are given by containment. One can deduce the possible mutual position of points, symps, etc., by considering an appropriate model of an apartment of a building of type E_{8}. Such models are given in [Van Maldeghem and Victoor 2019]. The point-point relations are as usual in a long root geometry of diameter 3 .

Fact A. 21 (point-point relations). Let x and y be two points of Δ. Then $\delta_{\Delta}(x, y) \leq 3$ (and distance 3 occurs and corresponds to opposite points) and if $\delta_{\Delta}(x, y)=2$, then either x and y are contained in a unique symp, or there is a unique point $x \bowtie y$ collinear with both x and y.

Fact $\mathbf{A} .22$ (point-symp relations). Let p be a point and Σ be a symp of Δ with $p \notin \Sigma$. Then precisely one of the following occurs:
(i) p is collinear to a 6^{\prime}-space U of Σ. In this case, p and x are symplectic for all $x \in \Sigma \backslash U$.
(ii) p is collinear to a unique line L of Σ. In this case, p and x are symplectic if $x \in \Sigma \cap L^{\perp}$ and p and x are special if $x \in \Sigma \backslash L^{\perp}($ and $p \bowtie x \in L)$.
(iii) p is symplectic to each point of a 6-space U of Σ. In this case, p and x are special if $x \in \Sigma \backslash U$ (and $p \bowtie x \notin \Sigma$).
(iv) p is symplectic to a unique point q of Σ. In this case, p and x are special if $x \in \Sigma \cap q^{\perp} \backslash\{q\}$ and p and x are opposite if $x \in \Sigma \backslash q^{\perp}$.

Finally, we record the following property of Δ, which in fact holds for all long root geometries related to spherical buildings, and also for all thick metasymplectic spaces. It is proved in [Cohen and Ivanyos 2007], see Lemma 2(v) therein.

Fact A. 23 [De Schepper et al. 2022, Fact 3.16]. Let $p \perp x \perp y \perp q$ be a path in Δ with (p, y) and (q, x) special. Then p and q are opposite, that is, $\delta(p, q)=3$.

Acknowledgement. The authors are very grateful to the referee for very helpful remarks that improved the paper.

References

[Blok and Brouwer 1998] R. J. Blok and A. E. Brouwer, "Spanning point-line geometries in buildings of spherical type", J. Geom. 62:1-2 (1998), 26-35. MR Zbl
[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4-6, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. MR Zbl
[Buekenhout and Cohen 2013] F. Buekenhout and A. M. Cohen, Diagram geometry: Related to classical groups and buildings, Ergebnisse der Math. (3) 57, Springer, 2013. MR Zbl
[Buekenhout and Shult 1974] F. Buekenhout and E. Shult, "On the foundations of polar geometry", Geometriae Dedicata 3 (1974), 155-170. MR Zbl
[Cohen and Ivanyos 2007] A. M. Cohen and G. Ivanyos, "Root shadow spaces", European J. Combin. 28:5 (2007), 1419-1441. MR Zbl
[Cooperstein 1977] B. N. Cooperstein, "A characterization of some Lie incidence structures", Geometriae Dedicata 6:2 (1977), 205-258. MR Zbl
[Cooperstein and Shult 1997] B. N. Cooperstein and E. E. Shult, "Frames and bases of Lie incidence geometries", J. Geom. 60:1-2 (1997), 17-46. MR Zbl
[De Schepper and Victoor 2023] A. De Schepper and M. Victoor, "A geometric connection between the split first and second rows of the Freudenthal-Tits magic square", Innov. Incidence Geom. 20:1 (2023), 1-53. MR
[De Schepper et al. 2022] A. De Schepper, N. S. N. Sastry, and H. Van Maldeghem, "Buildings of exceptional type in buildings of type $\mathrm{E}_{7} "$, Dissertationes Math. 573 (2022), 1-80. MR Zbl
[Kasikova and Van Maldeghem 2013] A. Kasikova and H. Van Maldeghem, "Vertex opposition in spherical buildings", Des. Codes Cryptogr. 68:1-3 (2013), 285-318. MR Zbl
[Shult 2011] E. E. Shult, Points and lines: Characterizing the classical geometries, Springer, 2011. MR Zbl
[Timmesfeld 2001] F. G. Timmesfeld, Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics 95, Birkhäuser, Basel, 2001. MR Zbl
[Tits 1974] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics 386, Springer, 1974. MR Zbl
[Van Maldeghem and Victoor 2019] H. Van Maldeghem and M. Victoor, "Some combinatorial and geometric constructions of spherical buildings", pp. 237-265 in Surveys in combinatorics 2019, edited by A. Lo et al., London Math. Soc. Lecture Note Ser. 456, Cambridge Univ. Press, 2019. MR Zbl
[Van Maldeghem and Victoor 2022] H. Van Maldeghem and M. Victoor, "On Severi varieties as intersections of a minimum number of quadrics", Cubo 24:2 (2022), 307-331. MR Zbl
[Zanella 1996] C. Zanella, "Universal properties of the Corrado Segre embedding", Bull. Belg. Math. Soc. Simon Stevin 3:1 (1996), 65-79. MR Zbl

Received 9 Aug 2022. Revised 8 Nov 2022.
Anneleen De Schepper:
anneleen.de.schepper@hotmail.com
Department of Mathematics: Algebra and Geometry, Ghent University, Ghent, Belgium

Hendrik Van Maldeghem:

hendrik.vanmaldeghem@ugent.be
Department of Mathematics: Algebra and Geometry, Ghent University, Ghent, Belgium

