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On inclusions of exceptional long root geometries of type E

Anneleen De Schepper and Hendrik Van Maldeghem

We prove the uniqueness of the inclusion of the long root geometries of type E6

and E7 as full embeddings in the one of type E8; the latter always arises as an
equator geometry, the former as an intersection of two appropriate such equator
geometries. Along the way, several other embedding results are obtained, notably
featuring the subsequent point residuals of the above geometries.

1. Introduction

Equator geometries are subgeometries of the geometries related to spherical build-
ings, roughly speaking by taking the union of the equators, if any, of two opposite
flags — the poles — in all apartments through these flags. That notion was first used
in [Kasikova and Van Maldeghem 2013], and systematically and in full generality
introduced and studied in [Van Maldeghem and Victoor 2019]. An equator geometry
is always a geometry related to the residue of either of its poles in the corresponding
building. Thinking in terms of roots, an equator geometry restricts the root system
to the set of roots perpendicular to a given direction, which need not be the direction
of a root. As a consequence, the long root geometries of the (split) spherical
buildings are a natural home for equator geometries as the orthogonality relation is
very present in these geometries. Indeed, every pair of opposite points of a long
root geometry admits an equator geometry, which is then isomorphic to the long
root geometry related to a point residue (see also Section 2F). In most cases an
equator geometry is not only a subgeometry, but also a subspace; in incidence
geometrical terms we obtain a full embedding of one geometry in the other. It
appears from [De Schepper et al. 2022] that the language of equator geometries is
very convenient to describe all the full embeddings of certain type. And despite
the connection of equator geometries with residues of the underlying building,
embeddings of geometries not related to any residue at all can also sometimes
be adequately described using equator geometries. For instance, it is shown in
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[De Schepper et al. 2022] that any (fully) embedded long root geometry of type
F4 in a long root geometry of type E7 arises as the intersection of two equator
geometries.

In the present paper, the aim is to describe all embeddings of long root geometries
of exceptional type E6 and E7 inside the long root geometry of type E8. We describe
this situation now in some more detail, using the (standard) notation that we will
introduce in Section 2.

Let p, q be opposite points in a geometry 1⇠=E8,8(K), with K any (commutative)
field, and consider the set of points E(p, q) symplectic to both p and q . Equipped
with the singular lines of 1 contained in E(p, q), the set E(p, q) is an equator

geometry (with poles p, q), and is isomorphic to E7,1(K) (see also Definition 3.8
and Lemma 3.9). This can be explained briefly by the fact that there is a bijection
between the points of E(p, q) and the symplecta of E8,8(K) containing p, that is,
the elements of type 1 in the point residue Res1(p) ⇠=E7,7(K). Informally speaking,
a special case of our main result reads as follows (see Main Result 4.1 for a precise
statement).

Main Result 1.1. Let 0 be the long root geometry E7,1(K) fully embedded in a

long root geometry 1 ⇠= E8,8(K). Then there are opposite points p, q in 1 such

that 0 = E(p, q). Consequently, the embedding of 0 in 1 is projectively unique.

The long root geometry 7 ⇠= E6,2(K) also embeds in a projectively unique
way in the long root geometry 0 ⇠= E7,1(K), also as an equator geometry; see
Proposition 6.14 of [De Schepper et al. 2022]. However, the poles are not points,
but subgeometries corresponding to vertices of type 7. A natural question then is
whether, if we embed 7 in 1, it is always contained in a subgeometry isomorphic
to E7,1(K)? The answer is yes. An informal statement is given below, and for a
precise statement we refer to Main Result 5.1:

Main Result 1.2. Let 7 be the long root geometry E6,2(K) fully embedded in a

long root geometry 1 ⇠= E8,8(K). Then there exist pairs of opposite points p, q

and r, s in 1 such that 7 = E(p, q) \ E(r, s), i.e., 7 is the intersection of two

equator geometries isomorphic to E7,1(K). Consequently, the embedding of 7 in 1

is projectively unique.

The points p, r and q, s can be chosen collinear, so that E6,2(K) could be viewed
as the (appropriate connected component of the) equator geometry E(L , M) of two
opposite lines L , M of E8,8(K).

A large part of the proof of these results consists in showing that the given
embedding is isometric, that is, the relative position of two points in the subgeometry
is the same as that in the ambient geometry (relative position meaning “being
collinear”, “being symplectic”, “being special” and “being opposite”). To achieve
that, we take an inductive approach, considering point residues. For Main Result
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!0 := A1,1(!) ×A3,1(!) ⊆ "0 := D5,5(!)

↑ ↑

!1 := A5,2(!) ⊆ "1 := E6,1(!)

↑ ↑

!2 := D6,6(!) ⊆ "2 := E7,7(!)

↑ ↑

!3 := E7,1(!) ⊆ "3 := E8,8(!)

ϒ1 := A2,1(!) ×A2,1(!) ⊆ "1 := E6,1(!)

↑ ↑

ϒ2 := A5,3(!) ⊆ "2 := E7,7(!)

↑ ↑

ϒ3 := E6,2(!) ⊆ "3 := E8,8(!)

Figure 1. Sequence of full embeddings of point-line geometries
described in Main Result 1.1 (top) and Main Result 1.2 (bottom).

1.1, this gives rise to the sequence of full embeddings of point-line geometries
shown at the top of Figure 1, while for Main Result 1.2 the sequence at the bottom
appears. (An arrow points from a parapolar space to its point residual.)

We will show that, for each i 2 {1, 2, 3} and each j 2 {2, 3}, every embedding
of 0i and 7j in 1i and 1j , respectively, is isometric, projectively unique and
corresponds to an equator geometry. This is not the case for i = 0 and j = 1: there
exist full embeddings of 00 ⇠= A1,1(K) ⇥A3,1(K) in 10 ⇠= D5,5(K) which are not
isometric. However, we can prove directly (not using the point residues) that the
embedding of 01 ⇠= A5,2(K) in 11 ⇠= E6,1(K) is isometric, see Lemma 4.3; so we
will limit us to studying the isometric embeddings of 00 in 10. There also exist full
embeddings of 71 ⇠= A2,1(K) ⇥A2,1(K) in 11 ⇠= E6,1(K) which are not isometric.
The latter are classified in Proposition 5.7 up to the point that we need it to show
that 72 ⇠= A5,3(K) embeds isometrically in 12 ⇠= E7,7(K).

Structure of the paper. In the preliminaries (Section 2) we gather the basics on
the general notions (such as Lie incidence geometries, (para)polar spaces, full
embeddings of such geometries and long root geometries) needed in this paper.
Specific properties on the Lie incidence geometries we will encounter can be found
in the Appendix, they could also be found partially in, for instance, [De Schepper
et al. 2022], but as we will use these properties frequently we included them for the
convenience of the reader.
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In Section 3 we give a description of the equator geometries we study, including
proofs that the defined geometry is of the type that we aim for. After that we then
study the full embeddings of 0i in 1i (Section 4) and of 7i in 1i (Section 5), which
arise as (intersections of) equator geometries if isometric (which is automatically
the case, except for 00 in 10 and for 71 in 11, as explained above).

2. Preliminaries

We fix notation and introduce all relevant terminology. We assume that the reader
is familiar with the basic theory of abstract buildings, Coxeter groups and Dynkin
diagrams [Bourbaki 1968] and refer to the literature (for instance [Tits 1974]) for
precise definitions and details; or to the introduction of [De Schepper et al. 2022].
We say that a spherical building is split if it arises from a split algebraic group. We
will only be concerned with buildings whose Coxeter diagram is simply laced, and
all these buildings are automatically split (whenever they are irreducible, have rank
at least 3, and are defined over a field).

2A. Abstract point-line geometries. Let 0 = (X, L ) be a point-line geometry
(X is the set of points, the set of lines L is a subset of the power set of X , and
incidence is given by symmetrised inclusion). To exclude trivial cases, we assume
|L | � 2. We also assume that each line has at least three points.

Points x, y 2 X contained in a common line are called collinear, denoted x ? y;
the set of all points collinear to x is denoted by x

?. We will always deal with
situations where every point is contained in at least one line, so x 2 x

?. The
collinearity graph of 0 is the graph on X with collinearity as adjacency relation.
The distance � between two points p, q 2 X (denoted �0(p, q), or �(p, q) if no
confusion is possible) is the distance between p and q in the collinearity graph,
where �(p, q) = 1 if there is no such path. If � := �(p, q) is finite, then a geodesic

path or a shortest path between p and q is a path of length � between them in
the collinearity graph. The diameter of 0 (denoted Diam 0) is the diameter of the
collinearity graph. We say that 0 is connected if every pair of vertices is at finite
distance from one another. The point-line geometry 0 is called a partial linear

space if each pair of distinct points is contained in at most one line.
A subspace of 0 is a subset S of X such that, if x, y 2 S are collinear and

distinct, then all lines containing both x and y are contained in S. A subspace
S is called convex if, for any pair of points {p, q} ✓ S, every point occurring in
a shortest path between p and q in the collinearity graph is contained in S; it is
singular if �(p, q)  1 for all p, q 2 S. The intersection of all convex subspaces of
0 containing a given subset S ✓ X is called the convex closure of S (this is well
defined since X is a convex subspace). For S ✓ X , we denote by hSi the subspace
generated by S, it is the intersection of all subspaces containing S (again, this is
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well defined since X is a subspace). If S consists of two distinct collinear points
p and q contained in a unique line L , then hSi = L is sometimes briefly denoted
by pq . Two singular subspaces S1 and S2 are called collinear if S1 [ S2 is a set of
pairwise collinear points, and if so, we write hS1, S2i instead of hS1 [ S2i. In the
geometries that we will consider, that is, parapolar spaces, the subspace generated
by a set of mutually collinear points is always a singular subspace.

2B. Polar spaces. Abstractly, a (nondegenerate, thick) polar space 0 = (X, L ) is
a point-line geometry satisfying the following four axioms, due to Buekenhout and
Shult [1974], which simplify the axiom system in [Tits 1974].

(PS1) Every line contains at least three points, i.e., every line is thick.

(PS2) No point is collinear to every other point.

(PS3) Every nested sequence of singular subspaces is finite.

(PS4) The set of points incident with a given arbitrary line L and collinear to a
given arbitrary point p is either a singleton or coincides with L .

We will assume that the reader is familiar with the basic theory of polar spaces,
see for instance [Buekenhout and Cohen 2013]. Let us recall that every polar space,
as defined above, is a partial linear space and has a unique rank, given by the length
of the longest nested sequence of singular subspaces (including the empty set); the
rank is always assumed to be finite by (PS3) and at least 2 since we always have a
sequence ? ✓ {p} ✓ L , for a line L 2 L and a point p 2 L .

Now let 0 = (X, L ) be a polar space of rank r � 2. It is well known that the
maximal singular subspaces are projective spaces of dimension r � 1 (and so two
arbitrary points of 0 are contained in at most one line). Moreover, there is a (not
necessarily finite) constant t such that every singular subspace of dimension r � 2
is contained in exactly t + 1 maximal singular subspaces. If t = 1, then we say
that 0 is of hyperbolic type, or is a hyperbolic polar space. In this paper, all polar
spaces we encounter will be hyperbolic. A hyperbolic polar space is isomorphic to
one of the following.

r = 2: L consists of two disjoint systems of lines, each covering the point set,
such that two lines intersect nontrivially (hence in exactly one point) if, and only
if, they belong to different systems. A typical example is a ruled nondegenerate
quadric in a projective 3-space.

r = 3: X is the set of lines of a 3-dimensional projective space PG(3, L) over a
noncommutative skew field L. The members of L are the (full) planar line pencils
in PG(3, L).

r � 3: X is the point set of a nondegenerate hyperbolic quadric Q in PG(2r �1, K),
K a (commutative) field. The lines are the lines of PG(2r �1, K) entirely contained
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in Q. Note that a standard equation for Q is given by

X�1 X1 + X�2 X2 + · · · + X�r Xr = 0.

A maximal singular subspace of a hyperbolic polar space is also called a generator.
The family of generators of each hyperbolic polar space of rank r is the disjoint
union of two systems of generators, called the natural systems, such that two
generators intersect in a singular subspace of odd codimension in each of them if,
and only if, they belong to different systems (the codimension of a subspace U in a
projective space W is just dim W � dim U ).

We will use some notions of the theory of buildings in polar spaces. For instance,
two subspaces are called opposite if no point of their union is collinear to every
point of this union; in particular two points are opposite if, and only if, they are not
collinear and two maximal singular subspaces are opposite if, and only if, they are
disjoint.

2C. Parapolar spaces. Parapolar spaces are point-line geometries that are designed
to model the Grassmannians of spherical buildings, see also Section 2E. They were
introduced by Cooperstein [1977]. A standard reference is [Shult 2011]. A point-line
geometry 0 = (X, L ) is a parapolar space if it satisfies the following axioms.

(PPS1) There is a line L and a point p such that no point of L is collinear to p.

(PPS2) The geometry is connected.

(PPS3) Let x, y be two points at distance 2. Then either there is a unique point
collinear with both, or the convex closure of {x, y} is a polar space. Such
polar spaces are called symplecta, or symps for short.

(PPS4) Each line is contained in a symplecton.

A pair {x, y} of points with x
? \ y

? = {z} is called special and we denote this
z = x on y; we also say that x is special to y. The set of points special to x is
denoted by x

on. A pair of points {x, y} at distance 2 from one another and contained
in a (necessarily unique) symp is called symplectic and we write x ?? y; we also
say that x is symplectic to y. The set of points contained in a symp together with x

is denoted by x
??; note that this hence also includes x

? by (PPS4). A parapolar
space without special pairs of points is called strong. Due to (PPS4) and the fact
that symps are convex subspaces isomorphic to polar spaces, each parapolar space
is automatically a partial linear space and, by (PPS1), it is not a polar space. Note
that the symps are not required to all have the same rank. A para is a proper convex
subspace of 0, whose points and lines form a parapolar space themselves. The set
of symps of a para is a subset of the set of symps of 0.

As alluded to in the introduction, we will often make use of point residuals. If
0 = (X, L ) is a parapolar space whose symps have rank at least 3, this is defined
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as follows. For a point p 2 X , we define the point residual of 0 at p, denoted by
Res0(p), as the point-line geometry (Xp, Lp), where Xp is the set of lines of L

containing p, and an element of Lp is the set of lines through p in a singular plane
through p.

2D. Embeddings of point-line geometries in each other. Consider two point-line
geometries 0 = (X

0, L 0) and 1 = (X, L ). We say that 0 is embedded in 1 if
X

0 ✓ X and for each L
0 2 L 0, there is a line L 2 L with L

0 (viewed as subset of X
0)

contained in L (viewed as a subset of X ). The embedding is called full if L 0 ✓ L ,
i.e., L

0 ✓ X
0 coincides with L ✓ X in the foregoing. Collinearity in 0 and 1 will

respectively be denoted by ?0 and ?1. Note that, if 0 is (not necessarily fully)
embedded in 1, then �1(p, q)  �0(p, q) for all points p, q 2 X

0. An embedding
is (point-)isometric if �0(p, q) = �1(p, q) for all points p, q 2 X

0; in particular,
?0 and ?1 coincide on 0 ⇥ 0.

Next, suppose additionally that 0 = (X
0, L 0) and 1 = (X, L ) are parapolar

spaces and let ⇠ = (X
00, L 00) be a symplecton of 0, a convex subspace of 0 which

is isomorphic to a polar space. Since 0 embeds fully in 1, also ⇠ embeds fully
in 1. The following fact says that there are two ways in which ⇠ can embed in 1.

Fact 2.1 [De Schepper et al. 2022, Lemmas 3.19 and 3.20]. Either ⇠ embeds

isometrically in 1 (x ?0 y if and only if x ?1 y for each x, y 2 ⇠ ), or ⇠ embeds in

a singular subspace of 1 (x ?1 y for each x, y 2 ⇠ ). In the former case, ⇠ embeds

isometrically in a symplecton 6 of 1, uniquely determined by any two noncollinear

points of ⇠ ; and if 6 is viewed as a quadric embedded in a projective space P, then

⇠ arises as the intersection of 6 with a subspace of P.

Notation 2.2. If ⇠ embeds isometrically in 1, we call ⇠ an isometric symp; if ⇠

embeds in a singular subspace of 1, we refer to ⇠ as a singular symp. If x, y are

two points of 0 which are symplectic in both 0 and 1, then we denote by ⇠(x, y)

the symp of 0 determined by x and y and by 6(x, y) the symp of 1 determined

by x and y. We will also use ⇠(L , M) for ⇠(x, y), if the lines L , M intersect and

contain x, y, respectively (and x and y are symplectic). In general we will use ⇠ for

symps in 0 and 6 for symps in 1. This should add to the clarity of the arguments.

Note that, if 0 embeds isometrically in 1, then each symp is isometric. The
converse is not automatically true but in all cases we will encounter, preserving
both “collinearity” and “being symplectic” allows one to prove that also the other
distances (if any) are preserved, as well as “being special”.

We also mention the following straightforward observation.

Lemma 2.3. Let 9 = (X, L ) and 9 0 = (X
0, L 0) be connected point-line geometries

with 9 fully embedded in 9 0
such that for each point p 2 X , each member of L 0

containing p also belongs to L . Then 9 = 9 0
.
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2E. Lie incidence geometries. Let 1 be a (thick) spherical building, not necessarily
irreducible. Let n be its rank, let S be its type set and let J ✓ S. Then we define
a point-line geometry 0 = (X, L ) as follows. The point set X is just the set of
flags of 1 of type J . Each member of L is given by the elements F of X that
complete a given flag F

0 of type S\{s}, with s 2 J , to a chamber; that is, F [ F
0 is a

chamber (note that several distinct flags F
0 can give rise to the same line of 1). The

geometry 0 is called a Lie incidence geometry. For instance, if 1 has type An , and
J = {1} (remember we use Bourbaki labelling), then 0 is the point-line geometry
of a projective space. If Xn is the Coxeter type of 1 and 0 is defined using J ✓ S

as above, then we say that 0 has type Xn,J and we write Xn, j if J = { j}.
Most Lie incidence geometries are parapolar spaces. In particular, with the

notation of Section 2E, if |J | = 1, then we either have a projective space if X = A

and J is either {1} or {n}, a polar space if X 2 {B,C,D} and J = {1}, or a parapolar
space in all other cases, taking into account though that A3,2 =D3,1. The hyperbolic
polar spaces correspond precisely to the Lie incidence geometries Dn,1. For basic
properties of parapolar spaces such as the facts that the intersections of symps are
singular subspaces, and also that the set of points collinear to a given point x and
belonging to a symp ⇠ 63 x is a singular subspace, we refer to [Shult 2011].

If the building 1 is irreducible and its diagram Xn is simply laced, with n � 3,
then the classification in [Tits 1974] implies that 1 is unambiguously defined by
a (skew) field K, which is necessarily a field if Xn contains D4 as a subdiagram.
We denote 1 by Xn(K). The corresponding Lie incidence geometry of type Xn,J ,
where J ✓ S, is denoted by Xn,J (K). By a flag or a chamber of 0 we mean a set
of objects of 0 corresponding to a flag or chamber of the underling building 1. By
an apartment of 0 we also mean the set of objects of 0 contained in an apartment
of 1.

2F. Long root geometries. Long root geometries are special Lie incidence ge-
ometries related to split irreducible spherical buildings. The original, algebraic
definition takes as point set the set of root groups corresponding to the long roots
of the underlying root system and as set of lines the family of sets consisting of
such root groups, each maximal relative to the property that their union forms a
group [Timmesfeld 2001]. It turns out that long root geometries thus defined are
just the Lie incidence geometries of type Xn,J , where J ✓ S is the set of types
corresponding to the roots of a fundamental system not perpendicular to the highest
root. Explicitly they are the Lie incidence geometries of types

An,{1,n}, Bn,2, Cn,1, Dn,2, E6,2, E7,1, E8,8, F4,1 and G2,2

related to split spherical buildings. These geometries all share some intriguing
properties, and they are so to speak the prototypes of nonstrong parapolar spaces
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when their rank is at least 3. A lot of information about long root geometries can
be found in Shult’s book [2011], Chapter 17.

Long root geometries satisfy certain regularity properties. One of those, when
the geometry is a parapolar space, is the following. Consider the set of points
E(p, q) symplectic to two given opposite points p, q. Then the set I (p, q) of
points symplectic to each point of E(p, q) carries the structure of a projective line
over the base field: it is defined by an orbit of a full root group with centre in
I (p, q). The set I (p, q) is called an imaginary line. A further property is that,
when a point x is not opposite at least three members of I (p, q), then it is not
opposite each member of I (p, q).

2G. Projectivities. The main results of the present paper classify embeddings of
subgeometries “up to projective equivalence”. In order to define this, we first need
to define a projectivity. The group of projectivities of a Lie incidence geometry 1

containing projective planes as (not necessarily maximal) singular subspaces, is the
group of collineations of 1 generated by all collineations each of which pointwise
fixes some line or elementwise fixes a full line pencil of a singular plane. This
amounts to the universal Chevalley group of respective type. A projectivity of 1 is
a member of the group of projectivities of 1. Then two embeddings 00 and 000 in 1

are projectively equivalent if there exists a projectivity of 1 mapping 00 bijectively
to 000. A projectivity will also be referred to as a linear automorphism.

3. Equator geometries

Generally speaking, an equator of a Lie incidence geometry 1 is the set of points
lying at equal distance from two given opposite flags F, F

0 along a shortest path
connecting these flags, which are called the poles of the equator. The distance is
measured in the incidence graph of the building, or in a truncation of it to certain
types. We will always be able to define a given equator using incidence geometric
properties. As an example, consider Definition 3.8; the graph is the incidence graph
restricted to points and symps, but a more geometric definition is just to say that the
equator consists of the points contained in respective symps together with x and x

0.
It is in that spirit that we will always define the individual equator geometries.
(Hence, in principle, pairs of opposite flags can define different equator geometries,
depending on the truncation of the incidence graph, but this will have no importance
to us.)

There are various ways to furnish this set with lines so that it becomes a point-line
geometry, called the equator geometry (with poles F and F

0), denoted E(F, F
0).

The standard way is to just consider the lines of 1 completely contained in it (and
we shall always do it in this way). The point-line geometries thus obtained are
again Lie incidence geometries, they are related to the building Res1(F).
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We would also like to warn the reader that the poles of an equator are not
necessarily unique. We will see explicit examples of this phenomenon, see for
instance Proposition 4.2.

We now define and discuss the equator geometries relevant for this paper. In
each of these cases, F and F

0 will consist of one element. For more examples we
refer to [Van Maldeghem and Victoor 2019].

3A. Equator geometries isomorphic to A1,1(K) ⇥A3,1(K) in D5,5(K).

Definition 3.1. Let U, U
0 be opposite maximal 3-spaces of 10 ⇠= D5,5(K). The

point set of the equator geometry E(U, U
0) with poles U, U

0 is given by the set of
points of 10 collinear to simultaneously a plane of U and a plane of U

0, equipped
with the lines of 10 entirely contained in it.

To see that E(U, U
0) is isomorphic to A1,1(K)⇥A3,1(K), we will work with 1⇤

0,
the polar space isomorphic to D5,1(K) corresponding to 10. The poles U and
U

0 correspond to opposite lines L , L
0 of 1⇤

0; the point set of E(L , L
0) is the set

of 4-spaces of 1⇤

0 of one natural system of generators intersecting both L and
L

0 in (necessarily collinear) points of 1⇤

0. Observe that two such 4-spaces of 1⇤

0
correspond to collinear points of 10 if they meet each other in a plane.

Lemma 3.2. Let U and U
0
be opposite maximal 3-spaces of 10 ⇠= D5,5(K). Then,

as a point-line geometry, E(U, U
0) is a subspace isomorphic to A1,1(K) ⇥A3,1(K).

Proof. As mentioned above, we work in 1⇤

0. We denote the set of 4-spaces
corresponding to the points of 10 by 7 . With the above notation, L

? \ L
0? is

a polar space isomorphic to D3,1(K), which is contained in T
?, for each line T

intersecting both L and L
0 nontrivially. Let T be the set of such lines and let 7 0 be

the set of planes of the polar space L
? \ L

0? of one family of generators, namely
the family consisting of the planes that, together with a line T 2 T , generate a
member of 7 (note that this does not depend on T 2 T ). We already see from this
that E(U, U

0) is a subspace. Hence we can write an arbitrary member of E(U, U
0)

as the span of a member ⇡ of 7 0 and a member T of T , and we identify it with
the couple (⇡, T ). Hence E(U, U

0) is already set-theoretically the direct product
of A3,1(K) and A1,1(K), as T clearly has the structure of A1,1(K). It is also clear
that (⇡, T ) and (⇡ 0, T ) are always collinear (since ⇡ and ⇡ 0 intersect in a point
or coincide, hence h⇡, T i and h⇡ 0, T i intersect in a plane or coincide), and so are
(⇡, T ) and (⇡, T

0). It remains to show that (⇡, T ) and (⇡ 0, T
0) are not collinear

if ⇡ 6= ⇡ 0 and T 6= T
0. And indeed, h⇡, T i \ h⇡ 0, T

0i ✓ T
? \ T

0? = L
? \ L

0?,
implying h⇡, T i \ h⇡ 0, T

0i ✓ ⇡ \ ⇡ 0. This proves the lemma. ⇤

Remark 3.3. The fact that E(U, U
0) is a subspace, together with the fact that

all noncollinear point pairs of both 00 and 10 are symplectic in their respective
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geometry, implies that the embedding of A1,1(K)⇥A3,1(K) in D5,5(K) as an equator
geometry is isometric.

3B. Equator geometries isomorphic to A5,2(K) in E6,1(K). For notation and
terminology regarding the parapolar space E6,1(K), we refer to Section A2. In
particular, we use the notation 40

-space for a nonmaximal singular 4-space.

Definition 3.4. Let W, W
0 be opposite 5-spaces of 11 ⇠= E6,1(K). The point set of

the equator geometry E(W, W
0) with poles W, W

0 is given by the set of points of
11 simultaneously collinear to a 3-space of W and a 3-space of W

0, equipped with
the lines of 11 entirely contained in it.

Lemma 3.5. Let W, W
0
be opposite 5-spaces of 11 ⇠=E6,1(K). Then, as a point-line

geometry, the equator geometry E(W, W
0) is a subspace isomorphic to A5,2(K) ⇠=

A5,4(K).

Proof. By definition, each point p of E(W, W
0) is 11-collinear to a unique 3-space

Wp of W . We first claim that the map p 7! Wp is bijective onto the set of 3-spaces
of W . Let S be a 3-space in W . Then there is a unique 4-space U containing S (see
Fact A.14). Consider an arbitrary line L ✓ S; let L

0 ✓ W
0 be the unique line of W

0

each point of which is collinear to a point of L (see Fact A.11). Let 6 be the unique
symp through L and L

0. Since 6 \U contains L , it contains some plane ⇡ through
L in U (see Fact A.8). In 6, we see that there is a point p 2 ⇡ collinear to L

0. Since
p

? \ W
0 contains a line, it is a 3-space by the same fact. Hence p 2 E(W, W

0) and
Wp = S. This shows surjectivity. As for injectivity, suppose p

0 2 U also belongs
to E(W, W

0) and set M = p
? \ p

0? \ W
0. Then M contains a line collinear to the

line pp
0, which intersects S in a point, contradicting Fact A.11 once again. The

claim is proved.
Now take a line L = pq of E(W, W

0). The previous paragraph yields Wp 6= Wq .
Hence we can take a point p

0 2 Wp \ Wq and consider the symp 6L determined
by q and p

0. Then 6L contains p and intersects W in the 40-space VL := hp
0, Wqi.

In 6L , p is collinear to a 3-space of VL and hence Wp ✓ VL . Therefore, Wp and
Wq share a plane ⇡L . Inside 6L it is easily seen that for each point r of L , we
have ⇡L ✓ Wr ✓ VL , and conversely, each 3-space incident with both ⇡L and VL

is collinear to a point on L . So the lines of E(W, W
0) correspond to lines of the

3-space Grassmannian of W , and each line of E(W, W
0) corresponds bijectively to

a line of that Grassmannian.
Finally, consider two points p and q in E(W, W

0) such that Wp \ Wq is a plane.
We show that p and q are collinear in 11, and hence in E(W, W

0). Indeed, if not,
they are symplectic and the symp they determine contains Wp \ Wq (which is a
plane) and W

0
p
\ W

0
q

(which is at least a line). Therefore, Wp \ Wq contains a point
which is collinear to a line of W

0, contradicting Fact A.11. ⇤
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3C. Equator geometries isomorphic to D6,6(K) in E7,7(K).

Definition 3.6. Let 6, 60 be opposite symps of 12 ⇠= E7,7(K). The point set of the
equator geometry E(6, 60) with poles 6, 60 is given by the set of points of 12
simultaneously collinear to a 50-space of 6 and a 50-space of 60, equipped with the
lines of 12 entirely contained in it.

Lemma 3.7. Let 6, 60
be opposite symps of 12 ⇠= E7,7(K). Then, as a point-line

geometry, the equator geometry E(6, 60) is a subspace isomorphic to D6,6(K).

Proof. By definition, each point p of E(6, 60) corresponds to a unique 50-space
Up of 6. We first claim that the mapping p 7! Up is bijective onto the 50-spaces
of 6. Surjectivity is proved in almost exactly the same fashion as in the proof of
Lemma 3.5. We now show injectivity. Let p, q be distinct points with Up = Uq .
Then hp, Upi and hq, Uqi are 6-spaces sharing a 50-space, hence they coincide. Set
M = p

? \ q
? \ 60. If M 6= ? then M contains a line collinear to the line pq,

which intersects S in a point, contradicting Fact A.18. Now assume M = ?. Then
the symp containing a point x of p

? \60 and q contains p and at least a 4-space
in q

? \ 60, implying M has dimension at least 3. The claim is proved.
Now let L = pq be a line of E(6, 60). The previous paragraph implies Up 6= Uq ,

and then the argument in the last sentence, modified by choosing x in Up \ Uq ,
implies that Up \Uq is a 3-space. Now for any 50-space of 6 through Up \Uq , the
unique 6-space through it meets the 5-space hL , Up \ Uqi in a 4-space and hence
it meets L in a unique point; conversely, for each point z on L , Fact A.15 implies
that z

? \ 6 is a 50-space containing Up \ Uq .
Now let p and q be two points of E(6, 60) such that Up \ Uq is a 3-space.

Suppose for a contradiction that p and q are not collinear in E(6, 60), i.e., they
are not 12-collinear. Then p and q are symplectic, since p

? \ q
? contains the

3-space Up \Uq . Set 6pq :=6(p, q). Since p and q are noncollinear points of 6pq

collinear to a 50-space of 60, it follows from the symp–symp relations of 12 (see
Fact A.16, in particular (iv) and (v)) that 6pq \ 60 is nonempty. But then a point
in 6pq \60 is collinear to more than a unique point of 6 (note that 6 \6pq is a 5-
space), a contradiction to the fact that 6 and 60 are opposite (see Fact A.16(v)). So
p and q are collinear indeed. We obtain that E(6, 60) is isomorphic to D6,6(K). ⇤

3D. Equator geometries isomorphic to E7,1(K) in E8,8(K).

Definition 3.8. Let x, x
0 be opposite points of 13 ⇠= E8,8(K). The point set of

the equator geometry E(x, x
0) with poles x, x

0 is given by the set of points of 13
symplectic to both x and x

0, equipped with the lines of 13 entirely contained in it.

Lemma 3.9. Let x, x
0

be opposite points of 13 ⇠= E8,8(K). Then, as a point-line

geometry, the equator geometry E(x, x
0) is a subspace isomorphic to E7,1(K).
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Proof. By construction, each point p of E(x, x
0) corresponds to a unique symp 6p

through x and hence a unique symp of Res13(x) ⇠= E7,7(K), i.e., a point of E7,1(K).
By Fact A.22(iv) the mapping p 7! 6p is bijective.

Suppose two points p, q of E(x, x
0) are collinear. By the point–symp relations

(Fact A.22) and the fact that p ? q, p is collinear to either a unique 60-space
U 3 q of 6q or a unique line L 3 q of 6q . In the second case, p ?? x implies
x ? L by Fact A.22(ii), contradicting x ?? q . Hence p is collinear to a 60-space U

of 6q . Looking in 6q , we see that x is collinear to a 5-space Ux of U . It follows
that 6p \ 6q is the 6-space hx, Ux i. Note that hp, q, Ux i is a 7-space of 13 and
that hence, for each point r 2 pq, the symp 6r contains hx, Ux i too; moreover,
each symp containing hx, Ux i shares a point with pq , as can be deduced from the
symp–max relations (Fact A.12) of E6,1(K), which we obtain by considering the
residue of a line in Ux .

Conversely, suppose now that 6p and 6q share a 6-space. Suppose for a con-
tradiction that p and q are not collinear. Put Vpq = p

? \ q
? \ 6p \ 6q and note

that dim Vpq � 4. Therefore, p ?? q and the unique symp 6pq of 13 containing
p, q also contains Vpq . Consider the position of the point x

0 with respect to 6pq .
Since x

0 is symplectic to p and q by definition and p and q are not collinear by
assumption, options (iii) and (iv) of Fact A.22 are ruled out. Since x

0 is special to
the points of Vpq , option (i) of Fact A.22 is also not possible. The only remaining
possibility is (ii) of Fact A.22, where x

0 is collinear to a unique line L of 6pq .
But then x

0 would be symplectic to the points of L
? \ Vpq , a contradiction. We

conclude that p and q are collinear. ⇤

4. Uniqueness of equator geometry isomorphic to E7,1(K) in E8,8(K)

The goal of this section is to show that a geometry isomorphic to E7,1(K) fully
embedded in E8,8(K) always arises as an equator geometry E(x, x

0) for two opposite
points x, x

0 of E8,8(K) (see Definition 3.8). As a consequence, the embedding is
unique up to projectivity. We accomplish this inductively, proving the analogues
for consecutive point residuals. This gives us the sequence of full embeddings as
depicted at the top of Figure 1 in the introduction, and leads to the following main
theorem (for the definitions of equator geometries, see Definitions 3.1, 3.4, 3.6 and
3.8; for properties of the Lie incidence geometries, we refer to the Appendix).

Main Result 4.1. Let 00, 01, 02, 03 be point-line geometries that are isomor-

phic to A1,1(K) ⇥ A3,1(K), A5,2(K), D6,6(K) and E7,1(K), respectively; and let

10, 11, 12, 13 be point-line geometries isomorphic to D5,5(K), E6,1(K), E7,7(K)

and E8,8(K), respectively. Let i 2 {0, 1, 2, 3} and suppose 0i is fully embedded

in 1i . If i = 0, suppose additionally that this embedding is isometric. Then this

embedding is projectively unique and arises as an equator geometry, where the
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poles are elements of the type of the points of the long root geometry (an element of

type 2, type 2, type 1, and type 8, respectively).

4A. Full isometric embeddings of A1,1(K)⇥A3,1(K) in D5,5(K). We first study
the full isometric embeddings of a geometry 00 isomorphic to A1,1(K) ⇥A3,1(K),
in the half spin geometry 10 isomorphic to D5,5(K). Our aim is to show that such
an embedding arises as an equator geometry (see Definition 3.1).

Let 5 denote the set of singular 3-spaces of 00 and let 3 denote the set of
maximal singular 1-spaces of 00. By definition, each point of 00 is contained in a
unique element of 5 and a unique member of 3.

Proposition 4.2. Suppose 00 ⇠= A1,1(K)⇥A3,1(K) embeds fully and isometrically

in 10 ⇠= D5,5(K). Then there exist opposite maximal singular 3-spaces U, U
0

in 10
such that 00 coincides with the equator geometry E(U, U

0). Moreover, if V, V
0

are opposite 3-spaces of 10 such that 00 = E(V, V
0), then the lines corresponding

to U, U
0, V, V

0
are on a regulus of 1⇤

0 (the corresponding points in the long root

geometry D5,2(K) are points on an imaginary line).

Proof. Assume first for a contradiction that some member S of 5 is contained in
a singular 4-space W and consider a point x of 00 not in S. In 1⇤

0, the point x

corresponds to a 4-space Vx , and the space W corresponds to a 40-space W
⇤. If

W
⇤ \ Vx = ?, then x

? \ W = ?, a contradiction. If W
⇤ \ V 6= ?, then x

? \ W

contains a plane, implying x
? \ S contains a line, also a contradiction since this

would mean that the embedding is not isometric. Hence each member of 5 is a
maximal singular subspace. It is easy to see that distinct members of 5 are opposite.
We let 5⇤ be the corresponding set of lines of 1⇤

0. We have to show that 5⇤ consists
of an (entire) regulus. Let X

⇤ be the set of 4-spaces of 1⇤

0 corresponding to the
point set of 00, and we speak of collinear members if the corresponding points of
00 are collinear.

Take L1, L2 25⇤ arbitrary, L1 6= L2. For each member V1 2 X
⇤ through L1, there

exists a unique V2 2 X
⇤ through L2 collinear to V1. Denote the regulus containing

L1 and L2 by R. Then containment is a bijective correspondence between the
members of R and the members of X

⇤ containing V1 \ V2, and these members
correspond to the points on the line of 00 defined by V1 and V2. Replacing L2 with
any other member of R \ {L1}, this argument also proves that X

⇤ consists of all
4-spaces containing some member of R. This shows that 5⇤ = R.

In view of the discussion following Definition 3.1, it is clear that 00 coincides with
E(U, U

0), for each pair of maximal 3-spaces of 10 with U and U
0 corresponding

in 1⇤

0 to lines of the opposite regulus to R. ⇤

4B. Full embeddings of A5,2(K) in E6,1(K). Next, we study the full embeddings
of a geometry 01 isomorphic to A5,2(K) in a geometry 11 isomorphic to E6,1(K).
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The former is a strong parapolar space of diameter 2 with symps isomorphic to
D3,1(K), its properties can be derived from the properties of projective spaces (the
points of 01 are the lines of PG(5, K) ⇠= A5,1(K)). For details about 11 we refer
to Section A3 in the Appendix. Our aim is to show that 01 arises as an equator
geometry of 11 (see Definition 3.4).

We head off by showing that each full embedding of 01 in 11 is isometric.

Lemma 4.3. Suppose 01 ⇠= A5,2(K) is fully embedded in 11 ⇠= E6,1(K). Then the

embedding of 01 in 11 is isometric.

Proof. If every pair of points of 01 is collinear in 11, then 01 is contained in a
singular subspace, which has dimension at most 5, contradicting the fact that 01
contains singular subspaces of dimension 4 which intersect in only a point. Hence
some point pair of 01, say {p, q}, is symplectic in 11, and also in 01 of course. We
denote the line in PG(5, K) corresponding to a point x of 01 ⇠=A5,2(K) by Lx . Then
Lp and Lq span a 3-space. The symp ⇠(p, q) of 01 is isometrically embedded in
the symp 6(p, q) of 11 by Fact 2.1 (see also the notation below). Let L be a line of
01 through q not contained in ⇠(p, q). We claim that L is not contained in 6(p, q).

Indeed, suppose for a contradiction it is. Note that p is 11-collinear to a unique
point w of L (clearly, q 6= w), so the symp ⇠(p, w) embeds in a singular 5-space
S of 11. The corresponding 3-space hLp, Lwi in PG(5, K) then meets hLp, Lqi in
a plane ⇡ , generated by Lp and the point Lq \ Lw. Let v be any point of ⇠(p, w),
not 01-collinear to p. Then Lv ✓ hLp, Lwi meets ⇡ in a point not on Lp. Now take
a point q

0 in ⇠(p, q) such that Lq 0 meets ⇡ precisely in the point Lv \ ⇡ . Then q
0

is 01-collinear to v and not 01-collinear to p. Since p and q
0 are not 11-collinear

either, we obtain that v 2 p
?11 \ q

0?11 ✓ 6(p, q
0) = 6(p, q). Since v was any

point in ⇠(p, w) \ {p
?01 } and the latter generates S, we obtain that S is a singular

5-space in 6(p, q) ⇠= D5,1(K), a contradiction. The claim follows.
Let x be a point of 01 which is 01-symplectic to p. We show that x is also

11-symplectic to p. Now either x is 01-collinear to a plane ⇡ of ⇠(p, q), or it
is 01-symplectic to all points of ⇠(p, q). In the first case, ⇡ contains a point q

0

not 01-collinear to p and the above argument with q
0 instead of q applies. In the

second case, each 01-line through x contains a unique point x
0 which is collinear

to a plane ⇡ 0 of ⇠(p, q), and we can choose this such that p /2 ⇡ . We just proved
that ⇠(p, x

0) is isometric, and replacing q with such x
0 in the above argument, we

see that also ⇠(p, x) is isometric. Connectivity of the graph on the points of 01,
adjacent if symplectic, now completes the proof of the lemma. ⇤

Knowing that the embedding of 01 in 11 is isometric, we can now show the
analogue of Proposition 4.2 for 01 in 11.

Proposition 4.4. Suppose 01 ⇠= A5,2(K) is fully embedded in 11 ⇠= E6,1(K). Then

there are opposite 5-spaces W and W
0
in 11 such that 01 coincides with the equator
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geometry E(W, W
0). Moreover, if V, V

0
are opposite 5-spaces of 11 such that

01 = E(V, V
0), then V, V

0
are maximal singular 5-spaces of the unique Segre

variety S1,5(K) in 11 determined by W and W
0 (the points corresponding to

W, W
0, V, V

0
in the long root geometry E6,2(K) are on an imaginary line).

Proof. By Lemma 4.3, ?11=?01 , so we will denote the collinearity relation in both
geometries just by ?. Let p be a point of 01 and ⇠ a symp of 01 such that p

? \ ⇠

is empty. Then, if 6 is the unique symp of 11 containing ⇠ , also p
? \ 6 = ?, for

otherwise the 40-space p
? \ 6 would intersect ⇠ in at least a point; recall from

Fact 2.1 that we can think of 6 as a hyperbolic quadric in PG(9, K) and of ⇠ as the
intersection of that quadric with a 5-dimensional subspace of PG(9, K).

Step 1. Determining poles W, W
0

for the equator geometry. Define 1
p

0 as the
point-line geometry induced by the points of p

? which are close to 6 and let 0
p

0
be the subgeometry 1

p

0 \ 01. Note that by the argument of the previous paragraph,
the points of 0

p

0 are also close to ⇠ . Clearly, 0
p

0
⇠= A1,1(K) ⇥ A3,1(K) is fully

embedded in 1
p

0
⇠=D5,5(K), and this embedding is isometric by Lemma 4.3. As such,

Proposition 4.2 yields opposite 3-spaces U and U
0 in 1

p

0 such that 0
p

0 = E(U, U
0),

i.e., each point of 0
p

0 is collinear to a plane of U and U
0. Now each point y of 6

(resp. ⇠ ) is collinear to a symp of 1
p

0 (resp. 0 p

0 ), namely p
?\y

? (resp. p
?\y

?\00

0),
and the induced map is a bijection since each symp of 11 (resp. of 01) through
p meets 6 (resp. ⇠ ) in a point. Moreover, by Fact A.13 this map, which is given
by collinearity, induces an isomorphism between 1

p

0 and 6. Therefore, there are
unique singular lines M and M

0 in 6 which are collinear to U and U
0, and M and

M
0 are opposite in 6.
Consider the singular 5-spaces W := hU, Mi and W

0 := hU 0, M
0i. We claim that

W and W
0 are opposite 5-spaces in 11. Firstly, they are disjoint, since by convexity

their intersection would belong to 6 (and since 6 \ W = M and 6 \ W
0 = M

0

are disjoint, this is not possible). Secondly, if not opposite, then the 5–5 relations
(Fact A.10) imply that there is a unique plane ⇡ in W collinear to a plane ⇡ 0 in W

0.
This plane ⇡ shares at least a point z with U , and ⇡ 0 \ U

0 is then necessarily the
unique point z

0 of U
0 collinear to z. Now take a point y 2 U \ ⇡ . Then the symp

determined by y and z
0 contains ⇡ and hence it intersects W in a 40-space by the

point–5 relations. The latter 40-space shares at least a plane with U and therefore
z is not the unique point of U collinear to z

0 after all, a contradiction. The claim
follows.

Step 2. Showing that 01 = E(W, W
0). To this end, take any point y in ⇠ and

consider the symp ⇠ 0 = ⇠(p, y) of 01 determined by p, y and let 60 be the symp
of 11 in which ⇠ 0 embeds isometrically, which is also determined by p and y. As
explained in Step 1, ⇠ 0 meets 0

p

0 in the hyperbolic polar space G of rank 2 and
60 meets 1

p

0 in a symp 6 isomorphic to D4,1(K). Since G ✓ E(U, U
0), there are
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unique lines L and L
0 in U and U

0, respectively, with L ? G ? L
0. Therefore, 6

contains L and L
0, and hence L ? y ? L

0. We claim that y is also collinear to M

and M
0. If not, consider a point y

0 2 M not collinear to y. Then 6, the unique symp
containing y and y

0, would also contain L , a contradiction. The claim follows. Now
each point of ⇠ 0 is collinear to L and hence, by the point–5 relations (Fact A.11),
is collinear to a 3-space of W . Since each point of 01 lies on a symp through p

which meets ⇠ in a point y
0, and since W and W

0 play the same role, we obtain that
01 ✓ E(W, W

0). Let z 2 01 be arbitrary. Since each point of E(W, W
0) collinear to

z is collinear to a plane of Wz and a plane of W
0
z
, it follows that ResE(W,W 0)(z), and

in particular Res01(z), is contained in the equator geometry of Res11(z) having as
poles the 3-spaces corresponding to hz, Wzi and hz, W

0
z
i. Lemmas 4.2 and 4.3 imply

that ResE(W,W 0)(z) = Res01(z). By Lemma 2.3, we conclude that 01 = E(W, W
0).

The last statement follows from the construction and from the last statement of
Proposition 4.2. ⇤

We record a consequence of this that will be useful in the next subsection, when
studying the embedding of 02 ⇠= D6,6(K) in 12 ⇠= E7,7(K).

Corollary 4.5. Suppose 01 ⇠= A5,2(K) is fully embedded in 11 ⇠= E6,1(K). Then,
for two distinct symps ⇠1 and ⇠2 of 01, embedded in respective symps 61 and 62
of 11, we have that 61 6= 62. Moreover, 61 \ 62 is a point if and only if ⇠1 \ ⇠2 is

a point. If p is a point of 01 such that p
? \ ⇠1 = ?, then p

? \ 61 = ?.

Proof. By Proposition 4.4, there are opposite 5-spaces W and W
0 in 11 such that

01 = E(W, W
0). This yields unique lines Li in W and L

0

i
in W

0 with Li ? ⇠i ? L
0

i
,

for i = 1, 2. Clearly, Li [ L
0

i
✓ 6i ; moreover, Li , L

0

i
and ⇠i generate 6i and

6i \ W = Li . The correspondence between 01 = E(W, W
0) and W is such that, if

⇠1 \ ⇠2 is a unique point p, then L1 and L2 are disjoint, and if ⇠1 \ ⇠2 is a plane,
then L1 and L2 intersect in a point. In particular, since 6i \ W = Li , we have that
⇠1 6= ⇠2 implies 61 6= 62. So, if ⇠1 \ ⇠2 is a plane, the symp–symp relations of
11 immediately imply that 61 \ 62 is a 4-space. If ⇠1 \ ⇠2 = {p}, suppose for a
contradiction that 61 and 62 share a 4-space V 3 p. Then a point q1 ? p of ⇠1
is 01-collinear to a plane of ⇠2 and 11-collinear to a 3-space of 62 \ 61, and one
can easily choose q1 in such a way that those two singular subspaces of 62 share
exactly p. Hence q1 is 11-collinear to a 5-space of 62, obviously a contradiction.

For the final statement, see the first paragraph of the proof of Proposition 4.4. ⇤

4C. Full embeddings of D6,6(K) in E7,7(K). We study the full embeddings of
a geometry 02 isomorphic to D6,6(K) in a geometry 12 isomorphic to E7,7(K).
The former is a strong parapolar space of diameter 3 with symps isomorphic to
polar spaces isomorphic to D4,1(K); for more details we refer to Section 3.2 of
[De Schepper et al. 2022]. (The properties of D6,6(K) can also be verified using the
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corresponding polar space D6,1(K).) For details about the latter geometry, E7,7(K),
we refer to Section A3 in the Appendix. Again, our aim is to show that 02 arises
as an equator geometry of 12 (see Definition 3.6). We first show that each full
embedding of 02 in 12 is isometric.

Lemma 4.6. Suppose 02 ⇠= D6,6(K) is fully embedded in 12 ⇠= E7,7(K). Then the

embedding of 02 in 12 is isometric.

Proof. Let p, q be points of 02 and suppose for a contradiction that d12(p, q) <

d02(p, q). By definition, 02-collinear points are 12-collinear. So suppose first that
p and q are symplectic in 02. Then they are contained in a symp ⇠ of 02. Since
no singular subspace of 12 is large enough to contain a polar space isomorphic to
D4,1(K), ⇠ embeds isometrically in a symp of 12. In particular, p and q are also
symplectic in 12.

Now suppose p and q are 02-opposite points and consider an arbitrary line L of
02 through p. The line L contains a unique point r which is 02-symplectic to q and
hence also 12-symplectic. Let ⇠ be the symp of 02 determined by q and r and let
6 be the corresponding symp in 12. Observe that p

?02 \ ⇠ = {r} because p and q

are 02-opposite. Hence, in Res12(r), the point corresponding to pr is far from the
symp corresponding to 6, by Corollary 4.5. Hence p

?12 \6 = {r}. Fact A.15(i),
together with r and q being 12-symplectic by the above, implies that p and q are
12-opposite. ⇤

Knowing this, we can show that a fully embedded 02 in 12 arises as an equator
geometry. The global strategy of the proof is the same as that of Proposition 4.4,
yet locally the proofs have differences.

Proposition 4.7. Suppose 02 ⇠= D6,6(K) is fully embedded in 12 ⇠= E7,7(K). Then

there are opposite symps 6 and 60
in 12 such that 02 coincides with the equator

geometry E(6, 60). Moreover, if 600, 6000
are opposite symps of 12 such that

02 = E(600, 6000), then the points corresponding to 6, 60, 600, 6000
in the long root

geometry E7,1(K) are on an imaginary line.

Proof. Let p, q be opposite points of 02, which are hence also opposite in 12 by
Lemma 4.6. The same lemma allows us to speak about distances without referring
to 02 or 12. In particular, we use ? to denote the collinearity relation.

Step 1. Determining poles 6, 60
for the equator geometry. Define 1

p

1 as the point-
line geometry induced by the points of p

? which are at distance 2 of q and 0
p

1 as
the subgeometry of 1

p

1 obtained by intersecting 1
p

1 with 02. Then 0
p

1
⇠= A5,2(K)

is fully embedded in 1
p

1
⇠= E6,1(K). Likewise, we define 1

q

1 and 0
q

1 with respect
to q. Proposition 4.4 yields opposite 5-dimensional subspaces W and W

0 in 1
p

1
such that 0

p

1 = E(W, W
0), i.e., each point of 0

p

1 is collinear to a 3-space of W

and W
0. Note that W and W

0 are 50-spaces in 12 as they are nonmaximal (they
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are collinear to p). By Fact A.17 and its analogue for 02, collinearity induces an
isomorphism ⇢ between 1

p

1 and 1
q

1 ; which, restricted to 0
p

1 , gives an isomorphism
between 0

p

1 and 0
q

1 . Define V = ⇢(W ) and V
0 = ⇢(W

0). Then the 50-spaces V and
V

0 are opposite in 1
q

1 . Taking a pair of noncollinear points r 2 W and s 2 V , we
obtain that the unique symp 6 determined by r and s contains U [ W , since r is
collinear to a hyperplane of V , and s to a hyperplane of W . Likewise, there is a
unique symp 60 containing U

0 [ V
0.

We claim that 6 and 60 are opposite symps of 12. Firstly, suppose there would
be a point z 2 6 \ 60. Now z, contained in 6 \ 60, is collinear to a hyperplane
Wz of W and a hyperplane W

0
z

of W
0, implying that p and z are symplectic: firstly,

p 6= z because p ? W ; secondly, z /2 p
?, as this would yield a point z

0 in 1
p

1
collinear to Wz and W

0
z
, a contradiction to the point–5 relations in 1

p

1 (Fact A.11).
The unique symp determined by p and z contains Wz and W

0
z
, contradicting the fact

that W and W
0 are opposite 5-spaces in 1

p

1 . So 6 \60 =? indeed. Secondly, if 6

and 60 are not opposite, then the symp–symp relations (Fact A.16) imply that there
is a symp 600 meeting both 6 and 60 in 5-spaces Z and Z

0, respectively. Then Z

and W share at least a point z since they are 5-dimensional subspaces of different
types in 6. Since z

? \ Z
0 is a 4-space, the point–symp relations of 12 (Fact A.15)

imply that z
? \ 60 is a 50-space. However, z is collinear to a unique point of W

0,
which yields the absurdity that the two 50-spaces W

0 and z
? \60 of 60 would share

exactly one point. The claim follows.

Step 2. Showing that 02 = E(6, 60). Since clearly p
?02 [ q

?02 generates 02 as
a subspace of itself, and hence as a subspace of 12, by [Blok and Brouwer 1998;
Cooperstein and Shult 1997], and since equator geometries are subspaces, it already
follows that 02 ✓ E(6, 60). We now show equality.

Let z 2 02 be arbitrary and let z
0 2 02 be 02-collinear to z. Let Wz and W

0
z

be the respective 50-spaces z
? \ 6 and z

? \ 60. Then, since z, z
0 2 E(6, 60), it

follows from Lemma 3.7 that z
0? \ Wz and z

0? \ W
0
z

are 3-spaces of Wz and W
0
z
,

respectively. Hence Res02(z) fully embeds in the equator geometry of Res12(z),
with poles the 5-spaces corresponding to hz, Wzi and hz, W

0
z
i. By Proposition 4.4,

we obtain Res02(z) = E(Wz, W
0
z
). Now Lemma 2.3 shows that 02 = E(6, 60).

The last statement follows from the construction and from the last statement of
Proposition 4.4. ⇤

4D. Full embeddings of E7,1(K) in E8,8(K). Finally, we study the full embeddings
of a geometry 03 isomorphic to E7,1(K) in a geometry 13 isomorphic to E8,8(K).
Both are nonstrong parapolar spaces of diameter 3. For more details about these
geometries, we refer to Section 3.4 of [De Schepper et al. 2022] and Section A4.
Our aim is to show that 03 arises as an equator geometry of 13 (see Definition 3.8).
Once more, we first show that each full embedding of 03 in 13 is isometric.
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Lemma 4.8. Suppose 03 ⇠= E7,1(K) is fully embedded in 13 ⇠= E8,8(K). Then the

embedding of 03 in 13 is isometric.

Proof. Let p, q be points of 03. If p ??03 q then also p ??13 q since each symp
of 03 embeds isometrically in a symp of 13 (no singular subspace of 13 is large
enough to contain a symp of 03). If p and q are special in 03, say with r = p on q ,
then in Res03(r) ⇠= D6,6(K), the points p and q are at distance 3, and hence by
Lemma 4.6, p and q are also at distance 3 in Res13(r) ⇠= E7,7(K). We conclude
that p and q are also special in 13. Since 03 and 13 are both long root geometries,
Fact A.23 now implies that opposite points in 03 are also opposite in 13. ⇤
Proposition 4.9. Suppose 03 ⇠= E7,1(K) is fully embedded in 13 ⇠= E8,8(K). Then

there are opposite points x and x
0

in 13 such that 03 coincides with the equator

geometry E(x, x
0). Moreover, if y, y

0
are opposite points of 13 such that 03 =

E(y, y
0), then x, x

0, y, y
0
are on an imaginary line.

Proof. Let p, q be opposite points of 03, which are hence also opposite in 13 by
Lemma 4.6. The same lemma allows us to speak about distances without referring
to 03 or 13. In particular, we use ? to denote the collinearity relation.

Step 1. Determining poles x, x
0
for the equator geometry. Define 1

p

2 as the point-
line geometry induced by the points of p

? which are special to q and 0
p

2 as the
subgeometry of 1

p

2 obtained by intersecting 1
p

2 with 03. Then 0
p

2
⇠= D6,6(K) is

fully embedded in 1
p

2
⇠= E7,7(K). Likewise, we define 1

q

2 and 0
q

2 with respect to q .
In this case, collinearity induces an isomorphism ⇢ between 1

p

2 and 1
q

2 , and its
restriction to 0

p

2 gives an isomorphism between 0
p

2 and 0
q

2 . Proposition 4.7 yields
opposite symps 6p and 60

p
in 1

p

2 such that 0
p

2 = E(6p, 6
0
p
); each point of 0

p

2 is
collinear to a 50-space of 6p and 60

p
. Let 6p and 60

p
denote the corresponding

symps of 13 through p. According to the point–symp relations in 13 (Fact A.22),
q is symplectic to unique points x, x

0 of 6p and 60
p
, respectively. Let 6q and 60

q

denote the symps determined by q and x and by q and x
0, respectively, and consider

the induced symps 6q and 60
q

in 1
q

2 , i.e., 6q = x
? \ q

? and 60
q

= x
0? \ q

?.
Since 1

p

2 and 1
q

2 are disjoint, we have 6p \ 6q = {x}. Since 6p [ 6q contains
the opposite points p and q, 6p and 6q are locally opposite (see (iv) and (v) of
Fact A.16). This implies that each point of 6p is collinear to a unique point of
6q (and this correspondence is an isomorphism), i.e., ⇢(6p) = 6q . Analogous
statements hold for 60

p
and 60

q
and for 60

p
and 60

q
. Moreover, the symps 6p and

60
p

are locally opposite since 6p and 60
p

are opposite in 1
p

2 . Consequently, by
Fact A.22(iv), it follows that x and x

0 are opposite.

Step 2. Showing that 03 = E(x, x
0). Firstly, p and q are symplectic to both x

and x
0 by construction. Moreover, each point y of 0

p

2 is collinear to a 50-space
W

p

y of 6p which is in turn collinear to x , and hence x and y are symplectic (they
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cannot be collinear since points collinear to both x and p belong to 6p, which is
disjoint from 0

p

2 ). Moreover, if y
0 is the unique point of 0

q

2 collinear to y, i.e.,
y

0 = ⇢(y), then y
0 is collinear to the 50-space W

q

y := ⇢(W
p

y ), which belongs to
6q = ⇢(6p). From this we deduce that 0

q

2 = E(6q , 60
q
) and that also the points

of 0
q

2 are symplectic to both x and x
0.

Let z be a point of 03 collinear to q and opposite p. The points x and x
0 are

the unique points of 6p and 60
p

symplectic to q, respectively. Noting that x and
x

0 are also symplectic to z (observe that q
?02 = hq, 0

q

2 i ✓ E(x, x
0)), and that the

definition of 6p does not depend on q, that is, z
on \ p

? \ 6p and z
on \ p

? \ 60
p

are poles for z
on \ p

? \ 02, the foregoing implies that also z
?02 ✓ E(x, x

0). By
connectedness of 02, we obtain that 02 ✓ E(x, x

0). Just like in Lemmas 4.4 and
4.7, we conclude that 03 = E(x, x

0).
The last statement follows from the construction and from the last statement of

Proposition 4.7. ⇤
This finishes the proof of Main Result 4.1 (see Propositions 4.9, 4.7, 4.4 and 4.2).

5. Uniqueness of equator geometry isomorphic to E6,2(K) in E8,8(K)

The goal of this section is to show that a long root geometry isomorphic to E6,2(K)

has, up to projectivity, a unique full embedding in a long root geometry isomorphic
to E8,8(K). We accomplish this inductively, giving rise to a sequence of full
embeddings as mentioned in the introduction.

Main Result 5.1. Let 71, 72, 73 be point-line geometries isomorphic to A2,1(K)⇥

A2,1(K), A5,3(K) and E6,2(K), respectively; and let 11, 12, 13 be point-line ge-

ometries isomorphic to E6,1(K), E7,7(K) and E8,8(K), respectively. Let i 2 {1, 2, 3}

and suppose 7i is fully embedded in 1i . If i = 1, suppose additionally that this

embedding is isometric. Then this embedding is unique up to a projectivity of 1i and

arises as the intersection of two equator geometries of 1i isomorphic to A5,2(K) if

i = 1, D6,6(K) if i = 2 and E7,1(K) if i = 3.

For the i = 1 case, we already remarked that there are also nonisometric full
embeddings of 71 in 11. These will be discussed in fair detail in the next section.

5A. Full embeddings of A2,1(K)⇥A2,1(K) in E6,1(K). We discuss all full embed-
dings of the point-line geometry 71 ⇠=A2,1(K)⇥A2,1(K) in the point-line geometry
11 ⇠= E6,1(K), giving rise to four additional cases in which the embedding is not
isometric. We do not claim that we classify up to projectivity; we only classify up to
distinction of some specific features. This will be enough to help us in proving that
a full embedding of 72 ⇠= A5,3(K) in 12 ⇠= E7,7(K) is isometric (see Lemma 5.30).

We start with some examples of nonisometric full embeddings of 71 into 11.
For this we will use the absolute universal embeddings of both geometries, which
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are given by the Segre variety S2,2(K) in PG(8, K) and the Cartan variety E6,1(K)

in PG(26, K), respectively. Below we briefly give a coordinate description of both
varieties; for more information we refer to Section A1 and [Van Maldeghem and
Victoor 2022].

5A1. Four classes of examples. Recall, on the one hand, that the Segre variety
S2,2(K) over the field K is defined by the image of the Segre map

� : PG(2, K) ⇥PG(2, K) ! PG(8, K),

((x, y, z), (a, b, c)) 7! (ax, ay, az, bx, by, bz, cx, cy, cz).

This image is given by the points (a11, a12, a13, a21, a22, a23, a31, a32, a33) with
rk(ai j )1i, j3 = 1, the rank 1 matrices, as is well known. Hence S2,2(K) is the
intersection of the quadrics with equation xi j xk` � xi`xk j = 0 (with self-explaining
notation) for all 1  i < k  3 and 1  j < `  3.

Example 5.2. It is obvious that, with the above notation, S2,2(K) is contained in
the quadric of PG(8, K) with equation

x11x22 + x22x33 + x33x11 = x12x21 + x23x32 + x31x13,

which is easily shown to be a nondegenerate parabolic quadric (indeed, apply the
coordinate transformation x

0

11 = x11 + x33, x
0

22 = x22 + x33 to see this). Since this
parabolic quadric is contained in a hyperbolic quadric isomorphic to D5,1(K) as a
geometric hyperplane, we obtain an embedding of 71 into D5,1(K) and hence also
in E6,1(K).

On the other hand, an embedding E6,1(K) of E6,1(K) into PG(26, K) is given by
the intersection of 27 quadrics as follows. Label the coordinates of a 27-dimensional
vector space over K by (u, v, w; U, V, W ), where U = (ui )0i7, V = (vi )0i7,
W = (wi )0i7 belong to the split octonion algebra over K, that is, an 8-dimensional
algebra with multiplication defined by, using the above notation,

U V = (u0v0 + u4v1 + u5v2 + u6v3, u1v0 + u7v1 � u5v6 + u6v5,

u2v0 + u7v2 + u4v6 � u6v4, u3v0 + u7v3 � u4v5 + u5v4,

u0v4 + u4v7 + u2v3 � u3v2, u0v5 + u5v7 � u1v3 + u3v1,

u0v6 + u6v7 + u1v2 � u2v1, u1v4 + u2v5 + u3v6 + u7v7).

We also define U = (u7, �u1, �u2, �u3, �u4, �u5, �u6, u0). Writing the (central)
element (k, 0, 0, 0, 0, 0, 0, k), k 2 K, of the octonion algebra briefly as k, the
equations of the 27 quadrics are given in short hand notation (each of the equations
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on the second row represents eight equations over K) by

vw = UU , wu = V V , uv = W W , (1)

V W = uU , WU = vV , U V = wW . (2)

The lines of E6,1(K) are precisely the lines of PG(26, K) that are fully contained
in E6,1(K). Consequently, two points (u, v,w;U, V, W ) and (u0, v0,w0;U

0, V
0, W

0)

of E6,1(K) are collinear if, and only if,

vw0
+ v0w = UU

0
+ U

0
U , wu

0
+ w0

u = V V
0
+ V

0
V ,

uv0
+ u

0v = W W
0
+ W

0
W ,

(3)

V W
0
+ W V

0
= uU

0
+ u

0
U , WU

0
+ W

0
U = vV

0
+ v0

V ,

U V
0
+ U

0
V = wW

0
+ w0

W .
(4)

Denote by p, q, r, pi , qi , ri the base points corresponding, for 0  i  7, to
the coordinate u, v, w, ui , vi , wi , respectively. All base points belong to E6,1(K)

and for a base point b with corresponding coordinate c, the set b
? of points of

E6,1(K) is given by intersecting E6,1(K) with the subspace given by setting to zero
all coordinates d such that ±cd appears as a term in some equation of (1) or (2). For
instance, p

? is obtained by intersecting E6,1(K) with v = w = u0 = · · · = u7 = 0.

Example 5.3. The following form of the Segre map embeds S2,2(K) into E6,1(K),
more exactly in p

?:

⇢1 : PG(2, K) ⇥PG(2, K) ! PG(26, K),

((x, y, z), (a, b, c)) 7!
�
0, 0, 0; 0, . . . , 0| {z }

8 times

, ax, bx, by, bz, 0, �az, ay, 0,

0, cx, cy, cz, 0, 0, 0, 0
�
.

This also defines an embedding of 71 ⇠= A2,1(K) ⇥A2,1(K) into D5,5(K). We note
that Im(⇢1) is also contained in q

?

0 (note that q0 belongs to 71) and so all symps
of 71 through q0 are singular. One can check that no other singular symp exists.

The base points p1, p2, p3 are pairwise collinear in E6,1(K). Their common perp
is obtained by intersecting E6,1(K) with the subspace given by

u = ui = vj = wk = 0, for i = 4, 5, 6; j = 0, . . . , 6; k = 1, . . . , 7.

Example 5.4. The following form of the Segre map embeds S2,2(K) into E6,1(K),
more exactly in {p1, p2, p3}

?:

⇢2 : PG(2, K) ⇥PG(2, K) ! PG(26, K),

((x, y, z), (a, b, c)) 7!
�
0, bx, cz; cx, ax, ay, az, 0, 0, 0, bz,

0, . . . , 0| {z }
7 times

, cy, by, 0, . . . , 0| {z }
7 times

�
.
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Note that each plane of the image disjoint from hp1, p2, p3i generates, together
with hp1, p2, p3i, a 5-space of E6,1(K). This implies that every symp with a line
in hp1, p2, p3i is contained in a singular subspace of E6,1(K). The fact that not all
planes disjoint from hp1, p2, p3i are contained in the same 5-space implies that
every symp disjoint from hp1, p2, p3i embeds in a (unique) symp of E6,1(K). This
is the situation obtained and described in Lemma 5.13.

We now describe an embedding of 71 into a 5-dimensional projective space.
This does not seem to work over an arbitrary field, though. However, we content
ourselves with mentioning one example which works.

Example 5.5. Let K be a field of characteristic 3 and consider the field K(t) of
rational functions in t over K. Consider the following embedding ⇢ of S2,2(K(t))

in PG(5, K(t)):

⇢3 : PG(2, K(t)) ⇥PG(2, K(t)) ! PG(5, K(t)),

((x, y, z), (a, b, c)) 7!
�
bx � taz, by � ax, bz � ay,

cx � tay, cy � taz, cz � ax
�
.

This example arises from projecting the standard Segre variety defined by the 3 ⇥ 3
matrices over K of rank 1 from the subspace U defined by

0

@
� µ ⌫

⌫t � µ

µt ⌫t �

1

A , �, µ, ⌫ 2 K(t).

Every nonzero vector of U has determinant �3 + tµ3 + t
2⌫3 and is hence invertible

(as a matrix). Since the sum of two rank 1 matrices can never have rank 3, it follows
that this projection is injective.

Finally, for completeness’s sake, we describe an isometric embedding; it is
obtained from the octonion representation above by restricting each octonion to the
first and last coordinate.

Example 5.6. The following form of the Segre map embeds S2,2(K) isometrically
into E6,1(K):

⇢4 : PG(2, K) ⇥PG(2, K) ! PG(26, K),

((x, y, z), (a, b, c)) 7!
�
ax, by, cz; bz, 0, . . . , 0| {z }

6 times

, cy,

cx, 0, . . . , 0| {z }
6 times

, az, ay, 0, . . . , 0| {z }
6 times

, bx
�
.
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5A2. The main theorem. Recall that we refer to a symp of 71 which embeds
isometrically in a symp of 11 as an isometric symp, and to a symp which embeds
in a singular subspace as a singular symp.

Proposition 5.7. Suppose 71 is a point-line geometry isomorphic to A2,1(K) ⇥

A2,1(K), fully embedded in a point-line geometry 11 isomorphic to E6,1(K). Then

one of the following occurs (and all options can occur).

(i) Each symp of 71 is singular, in which case 71 is contained in a singular

subspace of 11.

(ii) There is a unique plane ⇡ in 71 such that 71 is contained in the union of

5-spaces of 11 containing ⇡ . A symp of 71 is singular if and only if it contains

a line of ⇡ . Moreover, two isometric symps of 71 embed in the same symp of

11 if and only if they share a line that is contained in a plane of 71 disjoint

from ⇡ .

(iii) There is a unique symp of 11 containing 71 and for each point p of 71 there

exist two isometric symps of 71 that intersect in p only.

(iv) There is a unique point p in 71 such that 71 is contained in p
?

. A symp of 71
is singular if and only if it contains p.

(v) Each symp ⇠ of 71 embeds isometrically in a symp 6⇠ of 11 and the map

⇠ 7! 6⇠ is injective and preserves the distance: ⇠ \ ⇠ 0
is a point if and only if

6⇠ \6⇠ 0 is a point. In this case, 71 embeds isometrically in 11 and arises as

the intersection of equator geometries E(U, U
0) and E(V, V

0) where U and

U
0

are opposite 5-spaces of 11 and V and V
0

are opposite 5-spaces of 11
such that the planes U \ V and U

0 \ V
0
are also opposite in 11.

Examples 5.2, 5.3, 5.4, 5.5 and 5.6 show that the respective cases (iii), (iv), (ii),
(i) and (v) really do occur.

Structure of the proof of Proposition 5.7. In case each symp of 71 embeds in a
singular symp, it follows immediately that we are in case (i), because 71 is a strong
parapolar space of diameter 2: any pair of points of 71 is contained in a symp of 71
and therefore collinear in 11. Also, if every symp is isometric, then the embedding
is isometric and we deal with this situation in Section 5A6. Before we arrive there,
we treat the mixed case (in which there are both isometric and singular symps),
which leads to three distinct cases. To see how these three cases arise, we start with
some general lemmas.

In Sections 5A3, 5A4 and 5A5, the standing hypothesis is that 71 possesses at
least one singular and at least one isometric symp. We will freely use the basic
properties of 71 mentioned in Section A1 of the Appendix. We also denote by 6⇠

the unique symp of 11 in which an isometric symp ⇠ of 71 is embedded.
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5A3. General lemmas. We start with an easy lemma.

Lemma 5.8. If ⇠ is an isometric symp of 71 and ⇠ 0
a singular one, with ⇠ \ ⇠ 0

a

line, then ⇠ 0 ✓ 6⇠ .

Proof. Let x
0 be an arbitrary point of ⇠ 0 \ L . Then x

0 is 71-collinear to a unique
point xL of L and hence to the unique line Lx of ⇠ containing xL and distinct
from L . Now take a point x in Lx \ {xL}. Then x

0 and x are collinear in 71 and
hence also in 11. Moreover, x

0 is also 11-collinear to all points of L . Taking a
point yL 6= xL on L , we hence obtain that x

0 2 6(x, yL) = 6⇠ . Since x
0 2 ⇠ 0 was

arbitrary, the lemma follows. ⇤
Let p be any point of 71. Then the singular lines of 71 through p are contained in

the union of two singular planes of 71, say ⇡
p

1 and ⇡
p

2 ; each symp of 71 containing
p has one line in each plane (see also Section A1 in the Appendix, in particular
Fact A.6). The mutual position in 11 of the planes ⇡

p

1 and ⇡
p

2 tells us a lot. For
that, we introduce the following notion:

Notation. A line of 71 with the property that each symp of 71 containing that line
is singular, will be called an S-line.

We study the S-lines through p in ⇡
p

1 and ⇡
p

2 .

Lemma 5.9. Let p be a point of 71 and let ⇡
p

1 and ⇡
p

2 be the unique planes of

71 containing p. Then zero, one or all lines of ⇡
p

i
through p, with i 2 {1, 2}, are

S-lines. In case all lines of ⇡
p

1 through p are S-lines, also all lines of ⇡
p

2 through p

are S-lines and then all symps through p are singular and hence p ?11 71. In case

⇡
p

1 and ⇡
p

2 both contain a unique S-line through p, there is a unique symp 6 of 11
which contains 71.

Proof. Note first that a symp ⇠ of 71 containing p is determined by a line L1 in ⇡
p

1
through p and a line L2 in ⇡

p

2 through p (and L1 and L2 are not collinear in 71).
Therefore, ⇠ is singular if and only if L1 ?11 L2, and L1 is an S-line if and only if
L1 is 11-collinear with ⇡

p

2 (likewise for L2 with respect to ⇡
p

1 ).
Now suppose that ⇡

p

1 contains two S-lines L1 and L
0

1 through p. Then each
line L2 of ⇡

p

2 containing p is 11-collinear to both L1 and L
0

1 and hence to the
entire plane ⇡

p

1 , i.e., L2 is an S-line. It follows that all lines through p are S-lines
indeed, and hence all symps of 71 through p are singular. Since each point of 71
is contained in a symp together with p, we obtain that p ?11 71.

Next, suppose that ⇡
p

i
contains a unique S-line Li through p for i = 1, 2. Then

the 3-spaces hL1, ⇡
p

2 i and hL2, ⇡
p

1 i of 11 meet in the plane hL1, L2i and are not
11-collinear (otherwise all lines through p would be S-lines as above). Hence there
is a unique symp 6 of 11 containing ⇡

p

1 [ ⇡
p

2 . Let ⇠ be a symp of 71 opposite p

(no point of ⇠ is 71-collinear to p). Then there is an isomorphism between the pairs
(M1, M2) of 71-lines through p with Mi ✓ ⇡

p

i
for i = 1, 2, and the points of ⇠ in
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the sense that each symp ⇠(M1, M2) meets ⇠ in a unique point. If we restrict to the
pairs (M1, M2) where M1 6= L1 and M2 6= L2 then the corresponding points of ⇠

constitute a subpolar space G := ⇠ \ {L
0

1, L
0

2} where L
0

1 and L
0

2 are two intersecting
lines of ⇠ . Let q be any point of G. Then ⇠(p, q) = ⇠(M1, M2) is an isometric
symp of 71 since M1 is not 11-collinear to M2 and therefore 6(p, q) = 6. So G

and therefore hGi = h⇠i is entirely contained in 6. Since 71 is generated by p
?71

and ⇠ , we conclude that 71 ✓ 6 indeed. ⇤

We now turn our attention to the lines in a symp of 71. Recall that a symp ⇠ of
71 is a hyperbolic polar space of rank 2, and hence its generators (which are lines)
come into two families: two lines belong to the same family if and only if they are
disjoint.

Notation. We denote the two families of lines of ⇠ by L
⇠
1 and L

⇠
2 . Each line L of

71 is contained in a unique plane ⇡L of 71. Consider the set 5
⇠
i

of planes meeting
⇠ in a line belonging to the two respective families, i.e., 5

⇠
i

:= {⇡L | L 2 Li }

for i = 1, 2. Then, for each i 2 {1, 2}, the union of the planes in 5
⇠
i

induces a
subgeometry of 71 isomorphic to A1,1(K) ⇥A2,1(K). We refer to this as a Segre

subgeometry, and denote it by ⇠̂i . Note that ⇠̂1 and ⇠̂2 are the two unique (full and
isometric) subgeometries of 71 isomorphic to A1,1(K) ⇥A2,1(K) containing ⇠ .

Lemma 5.10. Let ⇠ be a singular symp of 71 and {i, j} = {1, 2}. With notation as

above, either one or all lines of L
⇠
i

are S-lines. In the first case, ⇠̂ j is contained in

a unique symp of 11; in the second case, ⇠̂ j is contained in and spans a singular

5-space.

Proof. Suppose L is a line of ⇠ contained in an isometric symp ⇠ 0, say L 2 L
⇠
1 .

Note that the symps containing L induce a Segre subgeometry, which coincides
with ⇠̂2. By Lemma 5.8, ⇠ is contained in the unique symp 60 of 11 containing ⇠ 0.
Since ⇠ and ⇠ 0 generate, in 71, the Segre subgeometry ⇠̂2, the latter is contained in
60 too.

Next, we claim there is a unique S-line in L
⇠
1 . Take a point x

0 2 ⇠ 0 \ L . As above,
x

0 is 71-collinear to a line K of ⇠ meeting L in a unique point xL . Inside 60, we
hence obtain that x

0 is collinear to a plane of h⇠i through the line K , and therefore
this plane contains a second line L

⇤ of ⇠ , disjoint from L . Therefore, L
⇤ is 11-

collinear to all points of the plane hK , x
0i and hence it is an S-line. Suppose for a

contradiction that there is a second S-line L
⇤⇤ in ⇠ . Then x

0 would be 11-collinear
to h⇠i = hL

⇤, L
⇤⇤i, contradicting the fact that x

0 is not 11-collinear to L . The claim
follows.

Finally, suppose that all lines of L
⇠
1 are S-lines. The symps through these lines

are precisely all symps of the Segre subgeometry ⇠̂2 and these symps are hence all
singular, meaning that each pair of points in ⇠̂2 is 11-collinear, implying that it is
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contained in a singular 5-space. Since Segre subgeometries contain disjoint planes,
⇠̂2 spans the singular 5-space in which it is contained. ⇤

Next, we look at the particular situation in which two isometric symps, intersect-
ing each other in a line, embed in the same symp.

Lemma 5.11. Let ⇠1 and ⇠2 be two isometric symps of 71, intersecting each other

in a line L , and contained in the same symp 6 of 11. Then the Segre subgeometry

determined by ⇠1 and ⇠2 contains a unique maximal singular line which is an S-line.

In particular, there is a singular symp ⇠ 0
meeting each of ⇠1 and ⇠2 in a line.

Proof. A point q in ⇠1 \ L is 71-collinear to a line M of ⇠2 and, selecting a line M
0

of ⇠2 disjoint from M , it is (looking in 6) 11-collinear to a point m of M
0 and hence

11-collinear to the line L
0 6= L of ⇠2 through m and distinct from M

0. The symp ⇠

containing q and L
0 is singular. Now take a point r on L . Then r is 71-collinear to

a line M
⇤ of ⇠ , and as above it follows that r is then also 11-collinear to a second

line L
⇤ of ⇠ . The symp through L and L

⇤ is singular, so L
⇤ is 11-collinear to L . We

claim that each point x of L
⇤ is 11-collinear to all points of the Segre subgeometry

S determined by ⇠1 and ⇠2. This follows from the fact that S is generated by L

and ⇠ , and x is collinear to both since x 2 L
⇤ and ⇠ is singular, respectively. Since

each symp through L
⇤ is contained in S , it follows that L

⇤ is an S-line. If there
were a second maximal singular line K

⇤ which is an S-line, then by Lemma 5.10,
all maximal singular lines in S contained in the symp ⇠⇤ determined by K

⇤ and L
⇤

would be S-lines, from which we deduce that each symp in S would be singular, a
contradiction. ⇤

We now consider two subcases, depending on whether or not there is a singular
symp containing more than two S-lines.

5A4. Subcase: there is a singular symp ⇠⇤
containing more than two S-lines. The

assumptions in this section are according to the standing hypothesis and the title of
this section.

Lemma 5.12. Each singular symp of 71 has a line which is not an S-line.

Proof. Let ⇠ be a singular symp and suppose for a contradiction that each line of ⇠ is
an S-line. Then the two Segre subgeometries ⇠̂1 and ⇠̂2 containing ⇠ (as introduced
before) are contained in respective singular 5-spaces S1 and S2 by Lemma 5.10.
Since S1 \ S2 contains the 3-space h⇠i, it follows from the 5–5 relations of 11
that S1 = S2. Take any symp ⇠ 0. If ⇠ 0 meets ⇠ in a line, then ⇠ 0 is singular as the
intersection is an S-line; If ⇠ 0 meets ⇠ in a unique point p, then the two unique lines
L1 and L2 of ⇠ 0 containing p are contained in S1 = S2 since they are contained in
⇠̂1 and ⇠̂2, respectively. But then L1 ? L2 and hence ⇠ 0 is singular. We conclude
that all symps of 71 are singular, contradicting our assumption. ⇤
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Lemmas 5.10 and 5.12 imply, together with the assumption that ⇠⇤ has more than
two S-lines, that ⇠⇤ has one full system of S-lines, and the other system contains a
unique S-line. We can now show that this gives rise to case (ii) of Proposition 5.7.

Lemma 5.13. Suppose 71 has an isometric symp and a (singular) symp ⇠⇤
with

more than two S-lines. Then there is a unique plane ⇡⇤
of 71 such that:

(i) A symp of 71 is singular if and only if it meets ⇡⇤
in a line.

(ii) 71 ✓ ⇡⇤?11 , each Segre subgeometry of 71 containing ⇡⇤
is contained in and

spans a unique 5-space containing ⇡⇤, and distinct such Segre subgeometries

span distinct such 5-spaces.

(iii) Two isometric symps of 71 embed in the same symp of 11 if and only if they

share a line that is contained in a plane of 71 disjoint from ⇡⇤
.

Proof. As explained just before this lemma, we may assume (up to renumbering)
that the family L

⇠⇤

1 has S-lines only and that the other family L
⇠⇤

2 has a unique
S-line L

⇤. Let ⇠̂⇤

1 and ⇠̂⇤

2 be the corresponding Segre subgeometries containing
⇠⇤ (see notation introduced above). By Lemma 5.10, ⇠̂⇤

2 is contained in a singular
5-space S and ⇠̂⇤

1 is contained in a unique symp 6 of 11. Since S and 6 share
the 3-space h⇠⇤i, it follows from the symp–5 relations (see Fact A.12) that S \ 6

is a 40-space U . Therefore, a line of ⇠̂⇤

2 disjoint from ⇠⇤ meets S \ 6 in a point
u outside h⇠⇤i and hence the unique plane ⇡⇤ of ⇠̂⇤

2 through u is contained in 6.
Set L = ⇡⇤ \ ⇠⇤. Take any point q on L and let M be the unique other line of ⇠⇤

containing q (so M is an S-line). Consider the second plane ⇡ of 71 containing q ,
the one containing M (so ⇡ is a plane of ⇠̂⇤

1 and hence ⇡ ✓ 6). The fact that
⇡ [ ⇡⇤ ✓ 6 and that M is 11-collinear to ⇡⇤, implies that ⇡⇤ also contains a line
through q that is 11-collinear to ⇡ , that is, ⇡⇤ contains an S-line. If L is not an
S-line, we deduce from Lemma 5.9 that ⇡ and ⇡⇤ each contain a unique S-line
through q , and by the same lemma, we obtain 71 ✓ 6. However, ⇠̂⇤

2 generates the
singular 5-space S, which is not contained in 6, a contradiction. Hence, L = L

⇤,
and by the arbitrariness of q , all lines of ⇡⇤ are S-lines, and so are all lines through
a point of L . We also conclude that the unique plane ⇡⇤ of ⇠̂⇤

2 contained in 6

contains L
⇤.

(i) Since every line of ⇡⇤ is an S-line, each symp not disjoint from ⇡⇤ is singular.
Since each point of 71 is contained in such a symp, we deduce 71 ✓ ⇡⇤?11 . So, if
a symp ⇠ disjoint from ⇡⇤ were singular, then h⇡⇤, ⇠i would be a singular 6-space
of 11, a contradiction. This shows the assertion (i).

(ii) We already deduced that 71 ?11 ⇡⇤. Any Segre subgeometry S containing
⇡⇤ plays the same role as ⇠̂⇤

2 since it arises from one of the symps containing L
⇤,

and by the above it has one full system of S-lines (since each line meeting L
⇤ is an

S-line). So indeed, S is contained in a singular 5-space containing ⇡⇤. If such a
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5-space contained two such Segre subgeometries, then 71 would be contained in
this 5-space, contradicting the hypothesis that 71 has an isometric symp.

(iii) Let ⇠1 and ⇠2 be symps that embed isometrically (both are disjoint from ⇡⇤).
Suppose first that they share a line that is contained in a plane of 71 disjoint from ⇡⇤.
Then ⇠1 and ⇠2 determine a Segre subgeometry S whose planes intersect ⇡⇤ in
points. It follows that S intersects ⇡⇤ in a unique line N . Then N is 11-collinear
to ⇠1 and therefore N is contained in the unique symp 61 of 11 containing ⇠1.
Since N and ⇠1 are disjoint, they generate S . We obtain that ⇠1 [ ⇠2 ✓ S ✓ 61.

Conversely, suppose ⇠1 and ⇠2 embed in the same symp 6 of 11. Suppose first
that ⇠1 \ ⇠2 is a unique point, say p. Then one of the planes of 71 containing p,
say ⇡

p

1 , shares a point p
0 with ⇡⇤. By (i), the line pp

0 is an S-line. Let ⇡
p

2 be
the other plane through p. Then pp

0 and ⇡
p

2 generate a singular 3-space and so,
by properties of the polar space 6, it follows that ⇡

p

2 contains a line through p

which is 6-collinear to ⇡
p

1 . This line is then an S-line. However, by Lemma 5.9,
not all lines of ⇡

p

1 and ⇡
p

2 through p are S-lines, since ⇠1 and ⇠2 are isometric,
so it then follows from the same lemma that 71 ✓ 6. As ⇠̂⇤

2 generates a singular
5-space of 11, this is a contradiction. Secondly, suppose ⇠1 and ⇠2 share a line
that is contained in a plane of 71 not disjoint from ⇡⇤. Then 71 ✓ ⇡⇤?11 implies
that ⇡⇤ ✓ 6, contradicting the fact that ⇡⇤ and each plane of the Segre geometry
containing ⇠1 and ⇠2 generate a singular 5-space of 11. ⇤

We conclude that we are in case (ii) of Proposition 5.7.

5A5. Subcase: each singular symp contains exactly two S-lines. The assumptions
in this section are according to the standing hypothesis and the title of this section.
This will lead to case (iii) or case (iv) of Proposition 5.7, depending on whether
there is an isometric symp through each point or not. We start by assuming that
this is the case.

Lemma 5.14. If there is an isometric symp through each point of 71, then there is

a unique symp 6 of 11 containing 71.

Proof. Let ⇠ be a singular symp (which exists by assumption). Then ⇠ contains
exactly two S-lines L and M , also by assumption. Let p be the point L \ M

(these lines intersect by Lemma 5.10). As there is an isometric symp through p

by assumption, it follows from Lemma 5.9 that L and M are the unique S-lines
through p. Also by Lemma 5.9, there is a unique symp 6 containing 71. ⇤
Remark 5.15. We can show that in the above case, 71 is actually contained in a
subquadric of 6, namely a parabolic quadric Q(8, K) arising as the intersection
of 6 with an 8-dimensional subspace. Such a quadric is given by an equation
of the form X1 X2 + · · · + X7 X8 = X

2
0. An example of a full embedding of the

Segre variety S := S2,2(K) in Q(8, K) is given in Example 5.2. In [De Schepper
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and Victoor 2023], the first author and Magali Victoor study this embedding and
consider the geometry (X , L ), where L is the set of S-lines and X is the set
of points contained in an S-line, and show that this forms a nonthick generalised
hexagon (which is a geometric hyperplane of S ).

Next, we assume that there is a point p in 71 through which there is no isometric
symp. We show that there is only one such point, and that a symp is singular if and
only if it contains p.

Lemma 5.16. Suppose there is a point p in 71 such that each symp through p is

singular. Then the symps of 71 not through p are all isometric. If ⇠1 and ⇠2 are two

isometric symps which either meet in a unique point or one of them is far from p,
then the respective corresponding symps 61 and 62 of 11 containing ⇠1 and ⇠2 are

distinct and share a 4-space containing p.

Proof. First note that our assumption on p implies that each line of 71 through p

is an S-line (see also Lemma 5.9). Let ⇠ be a symp close to p, i.e., ⇠ contains a
unique line L which is 71-collinear to p. Suppose ⇠ is singular. Then ⇠ contains
an S-line M meeting L in a point q . Consider the symp determined by M and the
line pq. This symp contains more than two S-lines: the two lines through p are
S-lines, and so is M , a contradiction. Now suppose ⇠ is a singular symp far from p,
so p is not collinear to any point of ⇠ . Let L be an S-line of ⇠ . Then each symp
through L is singular, and since at least one of them is close to p by Fact A.4, we
obtain a contradiction to the foregoing. So the singular symps of 71 are precisely
those containing p.

Now take two isometric symps ⇠1 and ⇠2 and suppose that they embed in the
same symp 6 of 11. Suppose first that ⇠1 \ ⇠2 is a line L , and let S be the Segre
subgeometry determined by ⇠1 and ⇠2. By Lemma 5.11, S contains a unique
maximal singular line which is an S-line. By the above, this means that p is
contained in this line. In particular, p is contained in a plane of S which meets
⇠1 and ⇠2 in a line; and hence p is close to both ⇠1 and ⇠2. Next, suppose that ⇠1
and ⇠2 intersect in a unique point q, and let Li and L

0

i
be the unique lines of ⇠i ,

i = 1, 2, containing q, ordered such that L1 ?71 L
0

2 and L2 ?71 L
0

1. Let ⇠ be the
symp of 71 determined by L1 and L2. We claim that ⇠ is singular. Indeed, suppose
not; then clearly ⇠ ✓ 6. Since ⇠1 and ⇠ are both contained in 6 and share a line, it
follows from the beginning of this paragraph that p is contained in a plane of the
Segre subgeometry determined by ⇠1 and ⇠ . The same holds for ⇠ and ⇠2 though,
implying that p 2 ⇠ , a contradiction. The claim follows. Hence p 2 ⇠ and, likewise,
p 2 ⇠ 0, with ⇠ 0 the symp of 71 determined by L

0

1 and L
0

2. But ⇠ \ ⇠ 0 = {q} and
q 6= p (since ⇠1 and ⇠2 are isometric). This contradiction shows that ⇠1 and ⇠2
cannot be contained in the same symp if they meet in a unique point. In any case,
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the respective symps 61 and 62 containing ⇠1 and ⇠2 are hence distinct, but meet
each other in a 4-space since both also contain p. ⇤
Remark 5.17. In this case, we can also show the existence of a unique line K of 11
through p such that 71 ✓ K

?11 . Then K is not contained in 71 and the projection
of 71 from any point x 2 K \ {p} is injective. So we obtain a geometry isomorphic
to A2,1(K) ⇥A2,1(K) fully embedded in Res11(x) ⇠= D5,5(K ). An example of this
situation is given in Example 5.3. We conjecture that the conditions of Lemma 5.16
always give rise to an embedding projectively equivalent to Example 5.3.

We reached the conclusion of cases (iii) and (iv) in Proposition 5.7.

5A6. Subcase: Each symp embeds isometrically. Finally, we treat the case that
the full embedding of 71 ⇠= A2,1(K) ⇥A2,1(K) in 11 ⇠= E6,1(K) is such that each
symp of 71 is isometric, meaning that the embedding is isometric (since each pair
of points of 71 is contained in a symp). We will hence use the symbol ? for both
71 and 11. This situation will lead to case (v) of Proposition 5.7.

We recall that, when a symp ⇠ of 71 embeds isometrically in a symp 6⇠ of 11,
it arises as the intersection of the 3-space h⇠i with the quadric 6⇠ . We first show
that distinct symps embed in distinct symps.

Lemma 5.18. The map ⇠ 7! 6⇠ is injective.

Proof. Suppose for a contradiction that there are distinct symps ⇠1, ⇠2 with 6 :=

6⇠1 = 6⇠2 . If ⇠1 \ ⇠2 is a unique point p, then a symp meeting both ⇠1 and ⇠2 in
a line through p will also embed in 6. Lemma 5.11 now yields a singular symp,
contradicting our assumption. ⇤

We start with the mutual position in 11 of disjoint planes of 71. As mentioned
above, we do not need to make a distinction between collinearity in 71 and in 11,
so Fact A.6 immediately implies:

Lemma 5.19. If ⇡ and ⇡ 0
are disjoint planes of 71, then collinearity between ⇡

and ⇡ 0
is an isomorphism.

Notation. We will call (disjoint) planes ⇡, ⇡ 0 of 11 in Segre relation if collinearity
between them is an isomorphism. Indeed, the geometry that arises when taking
the union of the lines meeting ⇡ and ⇡ 0 is a Segre subgeometry isomorphic to
A1,1(K) ⇥A2,1(K), which we will denote by S (⇡, ⇡ 0).

Planes of 11 which are in Segre relation bring along a unique plane which is
collinear to both of them:

Lemma 5.20. Let ⇡ and ⇡ 0
be two planes of 11 in Segre relation. Then ⇡? \ ⇡ 0?

is a plane ↵. If U and U
0
denote the 5-spaces h⇡, ↵i and h⇡ 0, ↵i, respectively, and

V and V
0
are 5-spaces containing ⇡ and ⇡ 0, respectively, with V 6= U and V

0 6= U
0,

then V and V
0
are opposite.
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Proof. Let p1, p2, p3 be a triangle in ⇡ (that is, three points not in a common
line) and let p

0

1, p
0

2, p
0

3 be the respective collinear points in ⇡ 0. The symps ⇠2 and
⇠3 containing p1, p

0

2 and p1, p
0

3, respectively, have a 4-space U in common. By
convexity of symps, p

?

2 \U = p
?

3 \U and p
0?

2 \U = p
0?

3 \U ; hence ⇡? \⇡ 0? \U

is a plane ↵ and clearly coincides with ⇡? \ ⇡ 0?.
For the second assertion, let v 2 V \ ⇡ be arbitrary. By Fact A.10, it suffices

to show that |v? \ V
0| = 1. Suppose not, then Fact A.11 implies that v? \ V

0 is
a 3-space, which has some point v0 in common with ⇡ 0. Since v? \ U is also a
3-space, which contains ⇡ , we find a point a 2 ↵ not in v?. Then ⇠(a, v) contains
⇡ and v0 2 ⇡ 0, contradicting |v0? \ ⇡ | = 1. ⇤

Next, we have a look at the mutual position of the 11-symps in which the symps
of 71 embed.

Lemma 5.21. If ⇠, ⇠ 0
are distinct symps of 71, then the symps 6⇠ and 6⇠ 0 of 11

in which they embed intersect each other in exactly a point if ⇠ \ ⇠ 0
is a point; and

they intersect in a 4-space if ⇠ \ ⇠ 0
is a line. If p is a point of 71 and ⇠ a symp of

71 such that p
? \ ⇠ = ?, then p

? \ 6⇠ = ?.

Proof. Lemma 5.18 yields 6⇠ 6= 6⇠ 0 . Next, consider a point p and symp ⇠ with
p

? \ ⇠ = ? and suppose for a contradiction that p
? \ 6⇠ is not empty. If p 2 6⇠ ,

then p
? \ ⇠ 6= ?, a contradiction. So p

? \6⇠ is a 40-space V . Since ⇠ = h⇠i\6⇠ ,
we know that V and h⇠i are disjoint. Hence V contains a point q collinear to ⇠ .
Obviously, q /2 71. We claim that q is collinear to all points of 71. Take two
symps ⇠1 and ⇠2 containing p and meeting each other in a line L . Let 61 and 62
be the corresponding symps of 11 containing ⇠1 and ⇠2, respectively. Since q is
11-collinear to two noncollinear points of both ⇠1 and ⇠2, namely p and the points
⇠1 \⇠ and ⇠2 \⇠ , we obtain that q 2 61 \62. Since the latter is a singular subspace
of 11 also containing L , we obtain that q ?11 L . Since this holds for any line L of
71 containing p, we obtain that q is 11-collinear to p

?71 and ⇠ and hence to all
of 71. The claim follows.

We conclude that 71 is fully and isometrically embedded in e11 := Res11(q) ⇠=

D5,5(K). We show that this is impossible. Indeed, let ⇡1 and ⇡2 be the two planes
of 71 through some point x of 71. Then no point of ⇡1 \ {x} is collinear to any
point of ⇡2 \ {x} in either 71 or e11. This yields two lines in Rese11

(x) ⇠= A4,2(K)

between which the collinearity relation is empty, contradicting the fact that each
pair of planes in the 4-dimensional space A4,1(K) intersects nontrivially.

Finally, suppose ⇠ \ ⇠ 0 is a point p. It is easily verified that a point q 2 ⇠ \ {p
?}

is not collinear to any point of ⇠ 0. The previous paragraph then implies that q is far
from 6⇠ 0 , which means that 6⇠ \6⇠ 0 = {p}. By the first paragraph we have that, if
⇠ \ ⇠ 0 is a line, then 6⇠ \ 6⇠ 0 is a 4-space. ⇤
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Notation. We denote the two families of planes of 71 by 5 and 5. Henceforth,
we let ⇡, ⇡ 0, ⇡ 00 be three distinct planes of 5 meeting a given plane ⇡ 2 5 in three
points generating ⇡ (the three planes generate 71). Also, let ↵ denote the unique
plane of 11 collinear to both ⇡ 0 and ⇡ 00, ↵0 the plane collinear to both ⇡ and ⇡ 00,
and ↵00 the one collinear to both ⇡ and ⇡ 0 (see Lemma 5.20).

Lemma 5.22. The planes ↵ and ⇡ are opposite planes of 11, i.e., the collinearity

relation is empty between ↵ and ⇡ (likewise for ↵0
and ⇡ 0

and ↵00
and ⇡ 00).

Proof. Let p be a point of ⇡ . Take a symp ⇠ in the Segre subgeometry determined
by the planes ⇡ 0 and ⇡ 00 such that p

? \ ⇠ = ?. Clearly, ↵ ✓ 6⇠ . Since p is far
from 6⇠ by Lemma 5.21, p is not collinear to any point of ↵. ⇤

It turns out that the mutual position between ↵, ↵0, ↵00 is the same as between
the planes ⇡, ⇡ 0, ⇡ 00.

Lemma 5.23. The planes ↵ and ↵0
are in Segre relation (likewise for ↵0

and ↵00
and

↵00
and ↵). Moreover, if x is a point in ↵ and x

0
and x

00
are the respective points in

↵0
and ↵00

collinear to x , then ↵x := hx, x
0, x

00i is a singular plane of 11.

Proof. Observe that the planes ↵ and ↵0 are contained in the respective 5-spaces
U := h↵, ⇡ 00i and U

0 := h↵0, ⇡ 00i. From the point–5 relations in 11 (Fact A.11) it now
follows easily that collinearity is a bijection between ↵ and ↵0, and by considering
symps through noncollinear points of ↵ [ ↵0, it follows that this bijection is an
isomorphism.

Next, consider x, x
0, x

00 as in the statement. Suppose for a contradiction that the
unique point x̄

0 of ↵00 collinear to x
0 is distinct from x

00. Then the symp (of 11)
determined by x and x̄

0 contains the plane ⇡ 0 and the point x
0 2 ↵0. Therefore x

0 is
collinear to a line of ⇡ 0, contradicting Lemma 5.22. We conclude that hx, x

0, x
00i is

singular. Clearly, hx, x
0i is a line since ↵ and ↵0 are disjoint. If x

00 2 hx, x
0i, then

x
00 would be collinear to ⇡ 00, again contradicting Lemma 5.22. ⇤

We keep using the notation ↵x , as introduced in the statement of the previous
lemma, for the unique singular plane of 11 containing x 2 ↵ and meeting ↵0 and ↵00

in points. Then two such planes ↵x and ↵y are also in Segre relation, as we show
below.

Lemma 5.24. Let x, y be distinct points of ↵. Then ↵x and ↵y are in Segre relation.

Proof. Let x, x
0, x

00 be the intersection points of ↵x and ↵, ↵0, ↵00, respectively;
likewise for y, y

0, y
00. Clearly, x is collinear to y and not collinear to y

0 and y
00. So

if x
? \ ↵y is more than just y, it is a line L . The symp 6 of 11 containing x and

y
0 then contains ↵y = hL , y

0i, and hence also ↵x = hx, x
0, x

00i. Let p be a point
of ⇡ . Since ⇡ is collinear to ↵0 and ↵00 by definition, p is collinear to hx 0, y

0i and
hx 00, y

00i, yielding p 2 6 (because x
0 and y

00 are not collinear). Since p 2 ⇡ was
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arbitrary and ⇡ plays the same role as ⇡ 0, we obtain ⇡ [ ⇡ 0 ✓ 6, contradicting
Lemma 5.19. ⇤

We actually showed more or less that the “↵x -planes” constitute a subgeometry
7↵

1 of 11 isomorphic to 71. We now repeat this “construction” to obtain yet another
such geometry, say 7

�
1 , starting from 7↵

1 instead of from 71. We then focus on a
hexagon of 5-spaces determined by three planes of one family of the 7↵

1 geometry:

Notation. Put ↵ := ↵x , ↵0 := ↵y and ↵00 := ↵z , with hx, y, zi = ↵. By Lemma 5.24
these planes are in Segre relation, and hence by Lemma 5.20, there are unique
planes �, � 0, � 00 such that � is collinear to ↵0 and ↵00; � 0 is collinear to ↵ and ↵00

and � 00 is collinear to ↵ and ↵0. Recall that these planes are disjoint from the planes
↵, ↵0, ↵00. We consider the hexagon of 5-spaces they determine: U := h↵, � 00i,
V = h� 00, ↵0i, W = h↵0, �i, U

0 = h�, ↵00i, V
0 = h↵00, � 0i and W

0 = h� 0, ↵i.

We want to show that the above mentioned 5-spaces correspond to a hexagon in
the geometry 1⇤

1 isomorphic to E6,2(K) associated to 11, where “opposite” points
in the hexagon are opposite in 1⇤

1. By looking in 1⇤

1, this is almost trivial:

Lemma 5.25. The 5-spaces U and U
0
are opposite in 11; likewise for V and V

0

and for W and W
0
.

Proof. This is completely similar to the proof of Lemma 5.20. ⇤
Recall the definition of the equator geometry E(U, U

0)⇠=A5,2(K) (Definition 3.4).
We show that 71 = E(U, U

0) \ E(V, V
0) \ E(W, W

0) = E(U, U
0) \ E(V, V

0).

Proposition 5.26. We have 71 = E(U, U
0) \ E(V, V

0) \ E(W, W
0) and this point

set coincides with the set of points which are simultaneously collinear to exactly a

line of each of the planes ↵, � 00, ↵0, �, ↵00, � 0
.

Proof. Let p be any point of 71. Then p is contained in a unique plane ⇡p

of 71 meeting each of ⇡, ⇡ 0, ⇡ 00 in unique points q, q
0, q

00. We claim that ↵ is
contained in a symp of 11 together with ⇡p; likewise for ↵0 and ↵00. Recall that
↵ = ↵x = hx, x

0, x
00i with x 2 ↵, x

0 2 ↵0 and x
00 2 ↵00. The points x 2 ↵ and

q 2 ⇡ are not collinear by Lemma 5.22, so they determine a symp 6p. Since ↵ is
collinear to ⇡ 0 [ ⇡ 00 by definition, in particular x is collinear to q

0, q
00; likewise, ⇡

is collinear to ↵0 [ ↵00 and hence q is collinear to x
0 and x

00. Therefore, q
0, q

00, x
0

and x
00 all belong to x

? \ q
? ✓ 6p and hence ⇡p [ ↵ ✓ 6p. The claim follows.

Since q
? \q

0? \q
00? \↵ = xx

0 \ x
0
x

00 \ xx
00 =?, the planes ⇡p and ↵ are opposite

in the polar space 6p. Consequently, p is collinear to a unique line of ↵.
By the point–5 relations in 11 (Fact A.11), this means that p is collinear to a

3-space Up of U (which meets ↵ in a line Lp). By the same token, p is collinear to a
3-space Vp of V meeting ↵0 in a line L

0
p
. By dimension, Up meets � 00 = U \ V in at

least a point w, and w then also belongs to Vp. Since ↵ and ↵0 are in Segre relation,
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there exist noncollinear points a 2 Lp and a
0 2 L

0
p
. Clearly, the symp ⇠ := ⇠(a, a

0)

contains p, w. We claim that ⇠ also contains Lp. Let b be the unique point of ↵

collinear to a
0. Then b 2 ⇠ . So, if b 2 Lp, then a

0
b = Lp ✓ ⇠ ; if b /2 Lp then p

and b are not collinear and hence Lp ✓ ⇠(b, p) = ⇠ . The claim follows. Likewise,
L

0
p

✓ ⇠ . Fact A.12 then implies that U \ ⇠ and V \ ⇠ are 40-spaces in ⇠ . Since
those intersect in either a plane or a point, we either have � 00 ✓ ⇠ , or U \ ⇠ \ � 00

and V \ ⇠ \ � 00 are distinct lines, which contradicts the fact that both sets equal
⇠ \� 00. We conclude that p is collinear to a unique line Mp of � 00. By symmetry,
we showed that p is collinear to a line of each of ↵, � 00, ↵0, �, ↵00, � 0. In particular,
p 2 E(U, U

0) \ E(V, V
0) \ E(W, W

0). Note that Mp is collinear to all points of
⇡p since the line of � 00 collinear to a point of ⇡p is necessarily contained in the
symp 6p (which meets � 00 in Mp).

Conversely, suppose p is a point of E(U, U
0) \ E(V, V

0) \ E(W, W
0). Note

that 71 is fully and isometrically embedded in E(U, U
0) ⇠= A5,2(K), and that the

planes � 0 and ↵0 both are contained in E(U, U
0). By Lemma 6.12 of [De Schepper

et al. 2022], 71 coincides with E(� 0, ↵0), which is by definition the set of points of
E(U, U

0) collinear to a line of � 0 and to a line of ↵0. An analogous argument as
in the previous paragraph shows that p is collinear to a line of each of ↵, � 00, ↵0,
�, ↵00, � 0. Therefore, p is also contained in E(� 0, ↵0) \ E(U, U

0) = E(U, U
0) \

E(V, V
0) \ E(W, W

0) and hence 71 = E(U, U
0) \ E(V, V

0) \ E(W, W
0). ⇤

This finishes the proof of Proposition 5.7.

Remark 5.27. Consider the following geometry. Let U be the set of 5-spaces U

of 11 such that each point of 71 is collinear to a 3-space of U , and for each plane
A of 11 occurring as the intersection of two such 5-spaces in U , let AU be the
set of 5-spaces of 11 containing A. It is easily verified that, for such a plane A,
each point of 71 is collinear to a line of A and hence the point–5-space relations of
11 imply that each 5-space of 11 containing A belongs to U (it actually implies
that a plane occurs as the intersection of two such 5-spaces if and only if each
point of 71 is collinear to a line of A). Let A be the set of AU for all planes A of
11 as above. Then one could show that the point-line geometry (U , A ) is a thin
generalised hexagon (with only two lines per point), which can also be seen as a
(full) subgeometry of the E6,2(K) geometry 1⇤

1 associated to 11.

5B. Full embeddings of A5,3(K) in E7,7(K). Suppose 72 := A5,3(K) is fully
embedded in 12 := E7,7(K). Take any point p in 72. Then Res72(p) ⇠= A2,1(K)⇥

A2,1(K) is fully embedded in Res12(p) ⇠= E6,1(K). By Proposition 5.7, there are
five possibilities for the nature of this embedding, labelled by (i) up to (v); we will
call this label the type of p. Our first goal is to show that every point of 72 has
type (v). For that, the following lemma will be useful.
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By a standard subgeometry of 72 isomorphic to A4,2(K) we mean the subge-
ometry of 72 arising from the residue of either a point or a hyperplane in the
underlying projective space PG(5, K). Since residues in buildings are convex, such
a subgeometry is always isometric.

Lemma 5.28. Consider a standard subgeometry � of 72 isomorphic to A4,2(K)

and let p be a point of �. Suppose Res�(p) ⇠= A1,1(K)⇥A2,1(K) is embedded in a

singular 5-space of Res12(p). Then � is embedded in a singular 6-space of 12.

Proof. Note that Res�(p) generates a 5-dimensional space in Res12(p) and hence,
lifted to 12, the set p

?� is contained in a 6-dimensional singular subspace S of 12.
Suppose for a contradiction that there is a symp ⇠ of � through p such that ⇠ is not
contained in S, and let q be a point of ⇠ \ S. Since h⇠i meets S in the 4-space hp

?⇠ i,
it follows that h⇠i is a maximal singular 5-space of 12 through p. In particular,
q

?12 \ S coincides with hp
?⇠ i by the point–5 relations of Res12(p) (Fact A.11).

Now let ⇠ 0 be another symp of � through p. Then ⇠ \ ⇠ 0 is a plane ⇡ . In 72, we
see that q is collinear to a point q

0 2 ⇠ 0 \⇡ , because q is collinear to a line of ⇡ and
hence to a plane of ⇠ 0 distinct from ⇡ . In the ambient projective space PG(55, K)

of the universal embedding of E7,7(K), the subspace h⇠, ⇠ 0i either has dimension 7
or 8: two symps in Res�(p) generate a 5-space, so hp

?⇠ , p
?⇠ 0

i = S and therefore,
as q /2 S, we have dimh⇠, ⇠ 0i � 7; on the other hand, dimh⇠, ⇠ 0i  8 because ⇠ and
⇠ 0 share a plane.

Suppose first that dimh⇠, ⇠ 0i = 8. Then q
0 /2 hS, ⇠i and q and q

0 play the same
role. Note that q

0 is 12-collinear to the 3-space hq, ⇡i of the maximal 5-space h⇠i.
Fact A.20 implies that q

0 is 12-collinear to a 4-space of h⇠i. This implies that q
0 is

12-collinear to a 5-space of hp
?⇠ , p

?⇠ 0
i = S, a contradiction.

Next, suppose dimh⇠, ⇠ 0i = 7. Then the 72-line qq
0 shares a point q

⇤ with S

and the symp ⇠⇤ of 72 determined by p and q
⇤ also contains ⇡ and therefore this

symp also belongs to �. Since q
⇤ 2 q

?12 \ S, we obtain q
⇤ 2 hp

?⇠ i. Let L be the
unique line of ⇡ that is 72-collinear to q and q

⇤. Then the singular plane hL , q
⇤i

of � has a nontrivial intersection with any plane of ⇠ through p, a contradiction
in �. The lemma follows. ⇤

We can now exclude possibilities (i), (ii), (iii) and (iv).

Lemma 5.29. Each point of 72 has type (v).

Proof. Let p be any point. Suppose first that p has type (v). If q is a point 72-
collinear to p, then each symp of 72 through the line pq is isometric and hence in
Res72(q), there is no singular symp through the point corresponding to pq. So q

has type (v) too, because for all other types, there is a singular symp through each
point of the residue (see Proposition 5.7). By connectedness, each point has type
(v) then. We now exclude all other possibilities.
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To that end, suppose first that p has type (iii), so in particular, there is a unique
symp 6 of 12 containing p

?72 . Let q be any point 72-collinear to p. According
to Proposition 5.7, there are two isometric symps ⇠1 and ⇠2 of 72 with ⇠1 \⇠2 = pq .
Since they embed isometrically in a symp of 12 and since their p-residues embed
in 6, we obtain that ⇠1 and ⇠2 are contained in 6. So in Res72(q), ⇠1 and ⇠2
correspond to isometric symps which embed in the same symp and which meet
each other in a unique point (corresponding to the line pq). Considering the list of
possibilities in Proposition 5.7, we see that the latter situation cannot occur if the
point q has type (i), (ii) or (v). Also if q has type (iv), the situation does not occur,
according to Lemma 5.16. We conclude that q also has type (iii). By connectedness,
it again follows that all points of 72 have type (iii). Let ⇠ be a singular symp of
72 containing p. Recall that an S-line in Res72(p) is a line through which each
symp of Res72(p) is singular, and hence it corresponds to a plane of 72 through
p through which each symp of 72 is singular, and vice versa. We will refer to
these planes as S-planes. Noting that Proposition 5.7(iii) arose from the situation
in which every singular symp contains exactly two S-lines (see Section 5A5), we
see that there are exactly two S-planes ⇡1 and ⇡2 through p in ⇠ , which intersect
each other in a line, say pq. Now let r be a point of ⇡1 \ ⇡2. Then also through
r there are exactly two S-planes in ⇠ , one of which is ⇡1, the other is a plane ⇡3
(necessarily also distinct from ⇡2 since it contains r ). Then ⇡1 and ⇡3 share a line
rq

0, and since pq and rq
0 are lines in ⇡1, they intersect. But then there are three

S-planes in ⇠ through that intersection point, a contradiction.
Next, suppose p has type (ii). Then there is a unique 3-space 5p of 72 through

p such that p
?72 is contained in the union of 6-spaces through 5p. Take any such 6-

space U . Then the corresponding 5-space in Res72(p) contains a Segre subgeometry,
say SU , isomorphic to A1,1(K) ⇥ A2,1(K). A straightforward verification in the
projective 5-space PG(5, K) corresponding to 72 now shows that the union of all
symps of 72 through p whose point residue at p is contained in SU is a standard
subgeometry �U isomorphic to A4,2(K). By Lemma 5.28, �U ✓ U . Now let q

be any point of 72 in p
?72 \ (U \ 5p). Then through pq there is an isometric

symp, and Res72(q) has a Segre subgeometry, namely Res�U
(q), contained in and

spanning the 5-space corresponding to U . We claim that q has type (ii) too. Indeed,
it cannot have type (i) because there are no isometric symps in this case, neither
it can have type (v) as there are no singular symps in that case. Because of the
Segre subgeometry SU in Res72(q) contained in a singular subspace of Res12(q),
it cannot have type (iii) since then Res72(q) is contained in a symp of Res12(q)

and these do not contain singular 5-spaces; nor can it have type (iv) since all symps
in SU are singular but they do not have a common point. The claim follows. Since
Res�U

(q) spans the 5-space corresponding to U , and since obviously each 6-spaces
contained in the union of all 6-spaces through a given 3-space, contains that 3-space,
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the unique 3-space 5q defined analogously as 5p is contained in U . Consider a
point q

0 of 72 in a second 6-space U
0 containing 5p, not in 5p, and 72-collinear

to q. Since qq
0 belongs to Res72(q), we obtain that q

0 is 12-collinear to 5q ; and
obviously since q

0 2 U
0, we also have that q

0 is 12-collinear to 5p. So q
0 is 12-

collinear to 5p and 5q . However, the latter are 3-spaces of the A4,2(K)-geometry
�U , and hence intersect in a unique point, i.e., they generate the maximal singular
subspace U of 12, a contradiction because q

0 /2 U .
Now suppose p has type (i): all symps through p are singular and p

?72 is
contained in a singular 6-space U . Let q be a point of p

?72 distinct from p.
Consider a Segre subgeometry S contained in Res72(p) and containing q. As in
the previous paragraph, the union of all symps containing p whose point residue
at p is contained in S gives a standard subgeometry � isomorphic to A4,2(K).
Again by Lemma 5.28, � ✓ U . Since q

?72 contains a Segre subgeometry, namely,
Res�(q), in a singular 5-space (corresponding to U ), it follows that q has type (i)
too since (iv) was now the only alternative. By connectedness, all points of 72 have
type (i). In this case, p

?72 generates a maximal 6-space S of 12. As in the previous
case, it follows with the help of Lemma 5.28 that all symps of 72 containing p are
contained in S too. Now let q be a point of 72 opposite p. Since q is 72-symplectic
to a unique point of each 72-line through p, and q has type (i) too, it follows that
q is 12-collinear to a 5-space of S, implying that q 2 S. We conclude that 72 ✓ S,
a contradiction because 72 contains disjoint 3-spaces.

Finally, suppose p has type (iv). Then, by the foregoing, all points of 72 have
type (iv). This means that through each point x of 72, there is a unique line Lx of
72 such that all symps of 72 through Lx are singular. Observe that, if y is any point
on Lx , then Lx = L y (since the residue at y contains a unique point through which
each symp is singular, and hence this point corresponds to the line Lx ). Moreover,
a symp through x is singular if and only if it contains Lx , so if ⇠ is a singular symp
of 71, the line Lx is contained in ⇠ . Now consider two singular symps ⇠1 and ⇠2 of
72 intersecting each other in a plane ⇡ through Lp and let x be a point of ⇡ \ Lp.
Then Lx is contained in ⇠1 \ ⇠2 = ⇡ , implying that it meets Lx in a point y. But
then Lx = L y = Lp, a contradiction. ⇤

Knowing that each point has type (v), we can show that the embedding is
isometric.

Lemma 5.30. The embedding of 72 = A5,3(K) in 12 = E7,7(K) is isometric.

Proof. This can be proven analogously to Lemma 4.6, with two small changes.
Firstly, to see that symps of 72 embed isometrically in 12, we now use Lemma 5.29
instead of a dimension argument. Secondly, given a point p which is 72-collinear
to the unique point r of a symp ⇠ of 72, to deduce that p is also 12-collinear only
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to the point r in the unique symp of 12 containing ⇠ , we now rely on Lemma 5.21
instead of Corollary 4.5. ⇤

It suffices to apply induction and hence exploit our result about the isometric
embedding of corresponding point residues (see Proposition 5.26).

Proposition 5.31. Suppose 72 = A5,3(K) is fully embedded in 12 = E7,7(K). Then

72 = E(61, 64) \ E(62, 65) \ E(63, 66), where 61, . . . ,66 are symps of 12
with 6i and 6i+3 opposite and Ui := 6i \6i+1 a singular 5-space, with i 2 Z/6Z.

Proof. By Lemma 5.30, the 12-distance between two points of 72 is the same as
their 72-distance, so we make no distinction; in particular we write ? instead of ?72

or ?12 . Let p and q be opposite points of 72. As in the proof of Proposition 4.4,
we let 1

p

1 and 7
p

1 denote, respectively, the set of points of 12 and 72 which are
collinear to p and at distance 2 from q , likewise for q . Observe that 1

p

1
⇠= E6,1(K)

and 7
p

1
⇠= A2,2(K) ⇥ A2,2(K) and recall from the proof of Proposition 4.4 that

collinearity gives an isomorphism ⇢ between 1
p

1 and 1
q

1 mapping points to symps.
By Proposition 5.26, there are 5-spaces V1, . . . , V6 of 1

p

1 with Vi and Vi+3
opposite and ⇡i := Vi \ Vi+1 a plane, such that 7

p

1 = E(V1, V4) \ E(V2, V5) \

E(V3, V6); with i 2 [1, 6]. Just like in the proof of Proposition 4.4, the 5-space Vi

and its image ⇢(Vi ) determine a symp 6i of 12. Observe that Ui := 6i \ 6i+1 is
given by h⇡i , ⇢(⇡i )i and hence is a 5-space. The fact that 6i and 6i+3 are opposite
is shown in the proof of Proposition 4.4.

One can show that 72 = E(61, 64) \ E(62, 65) \ E(63, 66) as follows. It is
straightforward to see that p

?72 [ q
?72 is contained in E(61, 64) \ E(62, 65) \

E(63, 66). Since p
?72 [ q

?72 generates 72 as a subspace of itself by [Blok
and Brouwer 1998; Cooperstein and Shult 1997], and since equator geometries
are subspaces, it already follows that 72 ✓ E(61, 64)\ E(62, 65)\ E(63, 66).
Equality then follows from the induction and Lemma 2.3. ⇤

5C. Full embedding of E6,2(K) in E8,8(K). Suppose 73 := E6,2(K) is fully em-
bedded in 13 := E8,8(K). Take any point p in 73. Then Res73(p) ⇠= A5,3(K) is
fully embedded in Res13(p) ⇠= E7,7(K). By Lemma 5.30, this embedding is unique
up to projectivity, automatically isometric, and given by an intersection of equator
geometries isomorphic to D6,6(K). To show that 73 embeds isometrically in 13 is
now easy.

Lemma 5.32. The embedding of 73 = E6,2(K) in 13 = E8,8(K) is isometric.

Proof. This can be proven analogously to Lemma 4.8, using Fact A.23 and noting
that 73 and 13 are both long root geometries and that the embedding of the point
residues Res73(p) ⇠= A5,3(K) in Res13(p) ⇠= E7,7(K), for each point p of 73, is
also isometric by Lemma 5.30. ⇤

We can again apply our inductive method, as in the previous section.
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Proposition 5.33. Suppose 73 = E6,2(K) is fully embedded in 13 = E8,8(K). Then

73 = E(x1, x4) \ E(x2, x5) \ E(x3, x6), where x1, . . . , x6 are points of 13 with xi

and xi+3 opposite and xi and xi+1 collinear, with i 2 [1, 6] (indices modulo 6).

Proof. By Lemma 5.32, the 13-distance between two points of 73 is the same
as their 73-distance, so we make no distinction; in particular we write ? instead
of ?73 or ?13 . As in the proof of Proposition 4.9, we let 1

p

2 and 7
p

2 denote,
respectively, the set of points of 13 and 73 which are collinear to p and at distance
2 from q , likewise for q . Observe that 1

p

2
⇠= E7,7(K) and 7

p

2
⇠= A5,3(K) and recall

from the proof of Proposition 4.9 that collinearity gives an isomorphism ⇢ between
1

p

2 and 1
q

2 .
By Proposition 5.31, there are symps 61, . . . ,66 of 1

p

2 with 6i and 6i+3
opposite and Ui := 6i \6i+1 a 5-space, such that 7

p

2 = E(61, 64)\ E(62, 65)\

E(63, 66); with i 2 [1, 6]. Just like in the proof of Proposition 4.9, the symps
of 13 containing 6i and ⇢(6i ) meet each other in a unique point xi and one can
show that 73 = E(x1, x4) \ E(x2, x5) \ E(x3, x6). The proof is really a multiple
copy of the proof of Proposition 4.9, one for each of the equators E(xi , xi+3),
i = 1, 2, 3, to deduce 73 ✓ E(x1, x4)\ E(x2, x5)\ E(x3, x6). Then we exploit the
fact that E(x1, x4)\ E(x2, x5)\ E(x3, x6) is a subspace which, endowed with the
induced lines, is isomorphic to 73. Indeed, this follows from the fact that the set
of symps through a line through p corresponds to a para of E(p, q) isomorphic to
E6,1(K), and the equator of a pair of opposite such paras in E7,1(K) is a geometry
isomorphic to E6,2(K), see Definition 6.6 of [De Schepper et al. 2022]. Lemma 2.3
then completes the proof.

Note that the mutual position of the symps 6i corresponds to the position of
the points xi : the fact that 6i \ 6i+1 is a 5-space translates to xi and xi+1 being
collinear, and 6i and 6i+3 opposite translates to xi and xi+1 opposite, as can easily
be verified. ⇤
Remark 5.34. Alternatively, the above proof could be ended when we deduced
that 73 is contained in one equator geometry 03 isomorphic to E7,1(K). Indeed,
by Proposition 6.14 of [De Schepper et al. 2022] the embedding of 73 in 03 is
projectively unique and the embedding of 03 in 13 is also projectively unique by
Main Result 4.1. Combining these two facts, we also obtain that the embedding
of 73 in 13 is projectively unique and therefore also given as an intersection of
equator geometries.

This finishes the proof of Main Result 5.1 (see Propositions 5.33, 5.31 and 5.26).

Appendix: Properties of the parapolar spaces under consideration

In the following paragraphs we review some incidence and distance-related prop-
erties of the parapolar spaces occurring in this paper. Most of them also occur in
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[De Schepper et al. 2022], but we include it for ease of reference. Everything in
this section serves as reference material for later use.

A1. The direct product of two projective spaces (Segre geometries). Let ` and
k be natural numbers with `, k � 1 and K a field. Consider the direct product
A`,1(K)⇥Ak,1(K) of two projective spaces over K of respective dimensions ` and k.
Abstractly, this gives a point-line geometry: the points are the pairs p = (p1, p2)

with p1 a point of PG(`, K) and p2 a point of PG(k, K), the lines have the form
{p1} ⇥ L2 := {(p1, p2) | p2 2 L2} with p1 a point of PG(`, K) and L2 a line of
PG(k, K); or, likewise defined, L1 ⇥{p2}. If k = ` = 1, this geometry is isomorphic
to a hyperbolic polar space of rank 2. If k` > 1, then this geometry is a strong
parapolar space of diameter 2, whose symps are hyperbolic polar spaces of rank 2
given by L1 ⇥ L2, where L1 is a line of PG(`, K) and L2 a line of PG(k, K).

If both k and ` are at least 2, then the universal embedding of the A`,1(K) ⇥

Ak,1(K) geometry is given by the Segre variety Sk,`(K) [Zanella 1996], which lives
in PG(m, K) for m := (` + 1)(k + 1) � 1. It is the set of points in the image of the
Segre map

� : PG(`, K) ⇥PG(k, K) ! PG(m, K),

((x0, . . . , x`), (y0, . . . , yk)) 7! (xi yj )0i`,0 jk .

If k or ` equals 1, say ` = 1, then an embedding in projective space of the A1,1(K)⇥

Ak,1(K) geometry requires dimension m = 2k +1 because it contains two disjoint k-
spaces. Although technically speaking, there is no absolutely universal embedding,
the global image of the Segre map is unique.

In this paper, we encountered A1,1(K) ⇥A3,1(K) and A2,1(K) ⇥A2,1(K). The
former can be constructed by two disjoint projective 3-spaces in a projective 7-space,
and a projectivity ⇢ between those. Two points between these 3-spaces are joined by
a (maximal singular) line if they are each other’s image under ⇢. We now state some
(elementary and well known) properties of the point-line geometry 0 associated to
A2,1(K) ⇥A2,1(K). Then 0 has points, lines, planes as singular subspaces. Recall
from the above that the symps of 0 are hyperbolic polar spaces of rank 2.

The following facts can easily be deduced by reasoning in the two projective
planes ⇡1, ⇡2 associated to 0. Note that the singular planes are given by p1 ⇥⇡2 or
⇡1 ⇥ p2, with pi a point in ⇡i for i 2 {1, 2}.

Fact A.1 (point–point relations). Let x, y be two points of 0. Then �0(x, y)  2,
and if �0(x, y) = 2, then x and y are contained in a unique symp.

Fact A.2 (point–symp relations). Let p be a point and ⇠ a symp of 0 with p /2 ⇠ .

Then p is either collinear to no point of ⇠ (in which case we say that p is far from

⇠ ), or p is collinear to a line of ⇠ (p is close to ⇠ ). Hence p is never collinear to a

unique point of ⇠ .
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Fact A.3 (symp–symp relations). Let ⇠ and ⇠ 0
be distinct symps of 0. Then ⇠ \ ⇠ 0

is either a unique point or a line.

Fact A.4. Given a point p and a line L 63 p, there is always at least one symp close

to p and containing L.

Fact A.5 (point–plane relations). Given a point p and a singular plane ⇡ of 0 with

p /2 ⇡ , the point p is collinear to a unique point of ⇡ .

Fact A.6 (plane–plane relations). Let ⇡, ⇡ 0
be distinct singular planes of 0. Then ⇡

and ⇡ 0
are either disjoint, in which case collinearity gives an isomorphism between

them, or ⇡ \⇡ 0
is a unique point, in which case all singular lines containing this

point belong to ⇡ [ ⇡ 0
.

The above fact divides the singular planes of 0 into two natural families: two
planes belonging to the same family are disjoint; two planes of distinct families
intersect each other in a unique point. Given two planes ⇡ and ↵ of distinct families,
the geometry 0 can be represented as the direct product of ⇡ and ↵, since each
point p of 0 \ (⇡ [↵) is collinear to unique points of p⇡ 2 ⇡ and p↵ 2 ↵, and the
unique planes of 0 containing p⇡ and p↵ meet each other in precisely p.

Suppose ⇡ is a singular plane of 0 generated by three points p, p
0, p

00, and
↵, ↵0, ↵00 are the unique singular planes of 0 distinct from ⇡ containing p, p

0, p
00

respectively. Then ↵ [ ↵0 [ ↵00 generates 0 since each point x of 0 is on a unique
plane ⇡x generated by the unique points of ↵, ↵0, ↵00 collinear to x .

A2. Parapolar spaces of type E6,1. Let 1 be a geometry isomorphic to E6,1(K),
for some field K. Then 1 is a strong parapolar space of diameter 2, each symp of
which is isomorphic to D5,1(K) and each point residue of which is isomorphic to
D5,5(K). The maximal singular subspaces have dimension 4 and 5. A symp and a
5-space are called incident when they share a 4-dimensional subspace. We refer
to those as 40-spaces. A 40-space is contained in a unique symp and in a unique
5-space and hence it corresponds to a flag of type {2, 6}. The generators of a symp
of 1 come into two natural families; one of them consists of 4-spaces of 1 and the
other family consists of 40-spaces. Incidence between other elements of 1 is given
by containment. The opposition relation on 1 interchanges types 1 and 6 and types
3 and 5, and preserves type 2 and type 4. We restrict our overview of the properties
of 1 to those that we will rely on.

Fact A.7 (point–symp relations). Let p be a point and 6 a symp of 0 with p /2 6.

Then either p
? \6 is empty (in which case we say that p is far from 6) or p

? \6

is a 40
-space of 6 (p and 6 are close).

Fact A.8 (symp–symp relations). Two symps 6 and 60
of 0 either intersect in a

point or in a 4-space.
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Fact A.9. Let L and ⇡ be a line and a plane, respectively, disjoint from a symp

6, but all of whose points are close to 6. Then there exist a unique plane ⇡ 0
and

a unique line L
0

in 6 such that L ? ⇡ 0
and ⇡ ? L

0
. Also, hL , ⇡ 0i is a 4-space

whereas hL
0, ⇡i is a 40

-space.

Fact A.10 (5–5 relations). Two 5-spaces U, V either intersect in a plane, a point,
or in the empty subspace. In the latter case, there are two options. Either there is

a unique 5-space intersecting both U and V in respective planes ⇡U and ⇡V , in

which case each point of U \ ⇡U is collinear to a unique point of V , which lies in

⇡V ; or U and V are opposite, in which case collinearity between U and V gives a

type-preserving isomorphism (each point of U is collinear to a unique point of V

and vice versa).

Fact A.11 (point–5 relations). Let p be a point and U be a 5-space with p /2 U.

Then p
? \U is either a point or 3-space. It is a point if , and only if , p is contained

in an opposite 5-space.

Fact A.12 (symp–5 relations). Let 6 be a symp and U be a 5-space. Then 6 \ U

is either empty, a line, or a 40
-space.

Fact A.13. Let p be a point and 6 a symp with p far from 6. Then each line

through p contains a unique point close to 6 and the set Hp,6 of these points,
equipped with the lines it naturally contains, is isomorphic to D5,5(K). Moreover,
collinearity between Hp,6 and 6 follows the natural correspondence between

D5,5(K) and D5,1(K): a point of Hp,6 corresponds to a 40
-space of 6, a point of 6

corresponds to a symp of Hp,6 .

Fact A.14. Every singular 3-space is contained in a unique 5-space and a unique

4-space.

A3. Strong parapolar spaces of type E7,7. Let 1 be isomorphic to E7,7(K), for
some field K. Then 1 is a strong parapolar space of diameter 3; points at distance
3 are called opposite. The opposition relation is type preserving. The symps of
1 are isomorphic to D6,1(K) and a point residue is isomorphic to E6,1(K). The
maximal singular subspaces have dimension 5 and 6. A symp and a 6-space are
called incident when they share a 5-dimensional subspace. We refer to those as
50-spaces. A 50-space is contained in a unique 6-space and in a unique symp, i.e., it
is a flag of type {1, 2}. Other incidences between pairs of elements of 1 are given
by containment. A 5-space on the other hand is contained in at least two symps
of 1. The two families of maximal singular subspaces of a symp of 1 consist of
5-spaces and 50-spaces, respectively.

We now review the point–symp and symp–symp relations. As in the previous
section, they can be deduced by considering an appropriate model of an apartment
of a building of type E7, as given in [Van Maldeghem and Victoor 2019]; they can
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sometimes be deduced from the previous section by considering an appropriate
residue.

Fact A.15 (point–symp relations). If p is a point and 6 a symp of 1 with p /2 6,
then precisely one of the following occurs:

(i) p is collinear to a unique point q 2 6. In this case, p and x are symplectic if

x 2 6 \ (q? \ {q}) and �(p, x) = 3 for x 2 6 \ q
?

.

(ii) p is collinear to a 50
-space U of 6. In this case, x and p are symplectic if

x 2 6 \ U.

Fact A.16 (symp–symp relations). If 6 and 60
are two symps of 1, then precisely

one of the following occurs:

(i) 6 = 60
.

(ii) 6 \ 60
is a 5-space.

(iii) 6 \60
is a line L. Then points x 2 6 \ L and x

0 2 60 \ L are collinear only if

x, x
0 2 L

?, and �(x, x
0) = 3 if , and only if , x

? \ L is disjoint from x
0? \ L.

(iv) 6 \ 60 = ? and there is a unique symp 600
intersecting 6 in a 5-space U and

intersecting 60
in a 5-space U

0, with U and U
0

opposite in 600
. Then each

point of U is collinear to a 50
-space of 60 (intersecting U

0
in a 4-space) and

each point of 6 \ U is collinear to a unique point of 60 (contained in U
0).

(v) 6 \ 60 = ? and every point of 6 is collinear to a unique point of 60
. In this

situation, 6 and 60
are opposite.

Using the above relations, one can show that:

Fact A.17. Let p, q be opposite points of 1. Then each line through p contains

a unique point symplectic to q and each symp through q contains a unique point

collinear to p. For each point x 2 p
?

at distance 2 from q, let Sx = x
? \ q

?
. This

x 7! Sx induces an isomorphism between Res1(p) and Res1(q) mapping points to

symps.

Fact A.18. Let 6 and 60
be two opposite symps. Then collinearity between the

points of 6 and 60
defines an isomorphism between 6 and 60

.

Fact A.19 (symp–6 relations). Let 6 be a symp and U be a 6-space. Then 6 \ U

is either empty, a point, a plane, or a 50
-space.

Fact A.20. If a point is collinear to a 3-space of a maximal 5-space, then it is

collinear to a 4-space of it.



292 ANNELEEN DE SCHEPPER AND HENDRIK VAN MALDEGHEM

A4. Nonstrong parapolar spaces of type E8,8. Let 1 be the long root geometry
E8,8(K), for some field K. Then 1 is a parapolar space, which has diameter 3 and is
nonstrong. The elements of the corresponding building of types 1, 2, 3, 4, 5, 6, 7, 8,
are the symps, 7-spaces, 6-spaces, 5-spaces, 3-spaces, planes, lines and points,
respectively. The symps are isomorphic to polar spaces D7,1(K). The other types
are singular (projective) subspaces of 1. A symp and a 7-space of 1 are incident
when they share a subspace of dimension 6. These are referred to as 60-spaces and
do not correspond to a type, but to a flag of type {1, 2}; each 60-space is contained in
a unique symp and a unique 7-space. The two families of 6-dimensional subspaces
of a symp of 1 are then given by 6-spaces and 60-spaces, respectively. All other
incidence relations between elements of 1 are given by containment. One can
deduce the possible mutual position of points, symps, etc., by considering an
appropriate model of an apartment of a building of type E8. Such models are given
in [Van Maldeghem and Victoor 2019]. The point–point relations are as usual in a
long root geometry of diameter 3.

Fact A.21 (point–point relations). Let x and y be two points of 1. Then �1(x, y)3
(and distance 3 occurs and corresponds to opposite points) and if �1(x, y) = 2,
then either x and y are contained in a unique symp, or there is a unique point x on y

collinear with both x and y.

Fact A.22 (point–symp relations). Let p be a point and 6 be a symp of 1 with

p /2 6. Then precisely one of the following occurs:

(i) p is collinear to a 60
-space U of 6. In this case, p and x are symplectic for all

x 2 6 \ U.

(ii) p is collinear to a unique line L of 6. In this case, p and x are symplectic if

x 2 6 \ L
?

and p and x are special if x 2 6 \ L
? (and p on x 2 L).

(iii) p is symplectic to each point of a 6-space U of 6. In this case, p and x are

special if x 2 6 \ U (and p on x /2 6).

(iv) p is symplectic to a unique point q of 6. In this case, p and x are special if

x 2 6 \ q
? \ {q} and p and x are opposite if x 2 6 \ q

?
.

Finally, we record the following property of 1, which in fact holds for all long
root geometries related to spherical buildings, and also for all thick metasymplectic
spaces. It is proved in [Cohen and Ivanyos 2007], see Lemma 2(v) therein.

Fact A.23 [De Schepper et al. 2022, Fact 3.16]. Let p ? x ? y ? q be a path in 1

with (p, y) and (q, x) special. Then p and q are opposite, that is, �(p, q) = 3.
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