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Moufang quadrangles and affine twin buildings of type eC2

Bernhard Mühlherr and Hendrik Van Maldeghem

In memory of Jacques Tits.

We prove a group-theoretic criterion in terms of root groups for two subquadran-
gles 01, 03 of a Moufang quadrangle 0 to arise from a Moufang twin building 1

of type C̃2 as two adjacent residues of distinct special type, naturally embedded
in the building at infinity of 1, which is contained in 0.

1. Introduction

Twin buildings were introduced by Ronan and Tits in the late 1980s. Their definition
was motivated by the theory of Kac–Moody groups over fields developed by Tits
in [8]. Twin buildings generalize spherical buildings in a natural way. In view of
the classification of irreducible spherical buildings of rank at least 3 in [7] there is
the natural question about a possible classification of twin buildings. This question
was discussed by Tits in his paper [9] and it turns out that there is only reasonable
hope for such a classification in the 2-spherical case. In this case substantial
progress has been made. In [5] it is proved that a 2-spherical building is uniquely
determined by its local structure (if it is not too fragile, meaning, if the rank 2
residues are not too small; it usually suffices that all panels have size at least 5).
This result implies that each 2-spherical twin building is Moufang and that its local
structure is a Moufang foundation. The remaining problem is to decide whether
a given Moufang foundation is integrable, that is, whether it is indeed the local
structure of a twin building. The true difficulty is to show the existence of a twin
building whose local structure is isomorphic to a given Moufang foundation. In [2]
a technique of geometric descent was developed to show integrability of certain
foundations. This is refined in [3] where also a strategy for a complete classification
is outlined; see also [4]. This strategy, however, relies on a complete classification
of all irreducible 2-spherical twin buildings of rank 3. For most of the rank 3
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diagrams, the classification is straightforward. For some other more involved cases
the classification was accomplished in [12]. The only case remaining is the case eC2.
The present paper provides an existence criterion for affine twin buildings of type eC2.
We intend to apply this existence criterion for the classification of affine buildings
of type eC2 in future work.

Let 1 be a twin building of type eC2. Then 1 is Moufang and therefore its
building at infinity 11 is a Moufang quadrangle by a result of Van Maldeghem
and Van Steen [11]. Moreover, each special residue of 1 can be realized as a
subquadrangle of 11. More precisely, let 6 = (6+, 6�) be a twin apartment of
1 = (1+, 1�), let v1, v3 be two adjacent special vertices in 6+ and let 0i denote
the residue of vi in 1+ for i = 1, 3. Then there is a canonical way to embed 0i
in 11 by means of the twin apartment 6 (this follows from the arguments of [6],
suitably adopted to type eC2). Viewed as subquadrangles of 11 they contain 61

and there is a vertex v1 2 61 such that its set of neighbors in 01 coincides with
its set of neighbors in 03.

The goal of this paper is to analyze such a situation in an arbitrary Moufang
quadrangle. That is, we start with a Moufang quadrangle 0 and two subquadrangles
01, 03 sharing an apartment 6 such that there exists a vertex v 2 6 with 0v \01 =
0v \ 03 (with 0v the residue of v in 0). We say that the pair (01, 03) is integrable
if it arises from a twin building 1 of type eC2 in the way described above. Our main
result provides an integrability criterion for the pair (01, 03). This criterion uses
root groups. We label the apartment 6 by i 2 Z/8Z in a natural cyclic order such
that v is labeled by 4 and for each i we let Ui denote the root group fixing the vertex
i , but not the vertex i � 1. The subquadrangles 01 and 03 yield root subgroups
Xi , Yi  Ui and we have X4 = Y4, X0 = Y0. Our criterion is the following.

Main result. With the notation above, let A := hX1, X4, Y7i  Aut(0). Then
(01, 03) is integrable if [hX1, X5i, hY7, Y3i] = 1 and none of the groups X0, X5, Y3
is contained in A.

Let 1 be the affine twin building whose existence follows from the Main Result,
and let 11 be its building at infinity. Then 11 is the subquadrangle of 0 generated
by 01 and 03.

2. Preliminaries

2A. Root systems of type C2 and eC2. Let E = R2 be the Euclidean plane and for
each line L of E let sL denote the Euclidean reflection about L .

Let 8✓ E be a crystallographic root system of type C2 in E . Let 1={⌘1, ⌘2} be a
root base of 8 such that ⌘2 is long. Thus we have 8+ :={⌘1, ⌘2, ⌘1+⌘2, 2⌘1+⌘2}✓
8 and 8 = 8+ [ 8� where 8� := �8+. For each ↵ 2 8 we let s↵ denote the
reflection of E associated with ↵, that is, the reflection along the line through the
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origin which is perpendicular to the line R↵. We put si = s⌘i for i = 1, 2, S ={s1, s2}
and W = hSi and remark that we have a natural action (w, ↵) 7! w ·↵ of W and 8.

A natural cyclic numbering of 8 is a map ⌫ : Z/8Z ! 8 such that

⌫(z + 4) = �⌫(z)

for all z 2 Z and

((⌫(k), ⌫(k + 1), ⌫(k + 2), ⌫(k + 3))

2 {(⌘1, 2⌘1 + ⌘2, ⌘1 + ⌘2, ⌘2), (⌘2, ⌘1 + ⌘2, 2⌘1 + ⌘2, ⌘1)}
for some k 2 Z.

Let ↵ 2 8 and z 2 Z. We denote the line in E perpendicular to R↵ that passes
through z↵ by L [↵,z]. We put s[a;z] := sL [a;z] 2 Isom(E). The affine root [↵; z] is the
open half-plane of E such that @(↵; z) = L [a;z], where @(↵; z) is the boundary of
[↵; z], and (z � 1)↵ 2 [a; z]. (Note the semicolon in the notation for affine roots to
avoid confusion with later notation of intervals of roots.)

The root system of typeeC2 is the set 8 :={[↵; z] |↵28, z 2Z}. For � =[↵; z]28

we put � := ↵ 2 8 and �� := [�↵; �z] 2 8.
We put �1 := [⌘1; 0], �2 := [⌘2; 0], �3 := [�(⌘1+⌘2); 1] and si := s�i for 1  i  3.

This is consistent with the previous definition of si for i = 1, 2. Furthermore, we
define 1 := {�1, �2, �3}, S := {s1, s2, s3} and W := hSi  Isom(E). We observe
that o(s2si ) = 4 for i = 1, 3 and s1s3 = s3s1. It is a well known fact that (W, S)

is the Coxeter system of type eC2 where the diagram is labeled in a linear order.
Furthermore, we have a natural action (w, � ) 7! w · � of W on 8.

Denote t12 := s2s1s2, t13 := s3, t21 := s1s2s1, t23 := s3s2s3, t31 := s1 and
t32 := s2s3s2. We leave the proof of the following observations to the reader.

Lemma 2.1. (a) 8 is the disjoint union of the three subsets W · �i for i = 1, 2, 3.

(b) StabW (�1) = ht12, t13i, StabW (�2) = ht21, t23i and StabW (�3) := ht31, t32i.
Using the two observations of the previous lemma, we obtain the following.

Proposition 2.2. Let � be a set, (w, !) 7! w · ! be an action of W on � and
!1, !2, !3 2 �. Then the following assertions are equivalent:

(i) There exists a W -equivariant map f : 8 ! � such that f (�i ) = !i .

(ii) ti j · !i = !i for {i, j} ✓ {1, 2, 3}.
For a point v 2 E we put 8v := {� 2 8 | v 2 @� } and v is called a vertex of 8 if

|8v| � 2, it is called special vertex if |8v| = 4. The set of vertices of 8 is denoted
by V (8); it is just the (root) lattice spanned by 8. We set vi := @� j \ @�k for
{i, j, k} = {1, 2, 3}. We have a natural action of W on V (8) and for each v 2 V (8)

there exist w 2 W and 1  i  3 such that w ·vi = v. We note also that w ·8v =8w·v
for all v 2 V (8) and w 2 W .
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A pair ⇡ = (↵, �) 2 82 of roots is called prenilpotent if ↵ 6= � and if ↵ \ � 6=
? 6= (�↵) \ (��). For a prenilpotent pair (↵, �) 2 82 we put

[↵, �] := {� 2 8 | ↵ \ � ✓ � and (�↵) \ (��) ✓ �� }

and ]↵, �[ := [↵, �] \ {↵, �}.
Let ↵, � 2 8, ↵ 6= �. If ↵, � 2 8v for some vertex v 2 V (8), then the pair

(↵, �) is prenilpotent as soon as � 6= �↵, and then [↵, �] = {� 2 8v | ↵ \ � ✓ � }.
If @↵ \ @� = ?, then (↵, �) is a prenilpotent pair if and only if ↵ ✓ � or � ✓ ↵;
moreover, if ↵ ✓ �, then [↵, �] = {� 2 8 | ↵ ✓ � ✓ �} and we have � = ↵ for all
� 2 [↵, �].

For � 6= ±↵ 2 8 we put

[↵, �] := {� 2 8 | [↵; 0] \ [�; 0] ✓ [� ; 0]}

and ]↵, �[ := [↵, �] \ {↵, �}. This conforms to the above definition for affine roots.
A sector of 8 is a pair of roots (↵, �) such that o(s↵s�) = 4 = |[↵, �]|. Two

roots ↵, � 2 8 are called parallel if ↵ = �. Parallelism is an equivalence relation
on 8 that is compatible with the action of W on 8. We identify the set of parallel
classes with 8 and denote the unique epimorphism from W onto W fixing si for
i = 1, 2 by ⇡W . We have ⇡W (w) · � = w · � for all w 2 W and ↵ 2 8.

2B. Commutator calculations. Throughout this subsection G is a group. For
g, h 2 G we set hg := g�1hg, [h, g] := h�1g�1hg and observe that [h, g]�1 =
[g, h]. (It will always be clear from the context whether [ · , · ] means an interval
of roots, or a commutator in a group.) For two subsets X and Y of G we put
[X, Y ] := h[x, y] | x 2 X, y 2 Y i and observe that [X, Y ] = [Y, X ]. In the following
lemma we collect some commutator identities that can be verified by straightforward
calculations.

Lemma 2.3. Let a, c, d, x 2 G. Then:

(i) [cd, a] = [c, a]d [d, a].
(ii) If [d, a] = 1, then [[d, c], a] = [d, [a, c�1]]c.

(iii) If [x, a] = 1 = [d, a], then [[d, c]x, a] = [d, [a, c�1]]cx .

2C. RGD-systems of type C2. Throughout this subsection G is a group and for a
subgroup of U of G we put U ] := U \ {1}.

A rank-1-system in G is a triple (U+, U�, µ) such that U+, U� are subgroups
of G and µ : U ]

+ ! U�U+U� is a map, such that the following hold:

(ROS1) U± 6= {1} = U+ \ U�.

(ROS2) Uµ(u)
+ = U� and Uµ(u)

� = U+ for all u 2 U ]
+.
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The notion of a rank-1-system is closely related to the notion of a RGD-system
of type A1 (or a rank-1-group) as defined in Section 7.8.2 in [1]. A straightforward
adaptation of the arguments given there yields the following proposition.

Proposition 2.4. Let 6 = (U+, U�, µ) be a 1-system in G. Let L := hU+, U�i,
e 2 U ]

+, r := µ(e) and H := hµ(u)�1µ(v) | u, v 2 U ]
+i. Then the following hold:

(a) H = NL(U+) \ NL(U�).

(b) r 2 NL(H) and r2 2 H.

(c) r H = µ(u)H for all u 2 U ]
+.

(d) If µ0 : U ]
+ ! U�U+U� is such that (U+, U�, µ0) is a rank-1-system, then

µ = µ0.

Let 6 = (U+, U�, µ) be a rank-1-system in G. By Assertion (d) of the previous
proposition, the mapping µ is uniquely determined by the pair (U+, U�) and
therefore it makes sense to talk about the rank-1-system (U+, U�).

Let 6 = (U+, U�, µ) be a rank-1-system in G. A subsystem of 6 is a pair 5 =
(V+, V�) with V+ (resp. V�) a subgroup of U+ (resp. U�) such that (V+, V�, µ |V+)

is a rank-1-system.
General RGD-systems have been introduced by Tits [9] and a detailed account

can be found in [1] (see Definition 7.82 therein). Here, we are especially interested
in RGD-systems of type C2. However, we provide a slightly modified set of axioms,
which better suits our purposes. In Proposition 2.6, we comment on the equivalence
of both definitions.

An RGD-system of type C2 in G is a family (U↵)↵28 such that the following hold:

(RGD10) (U↵, U�↵) is a rank-1-system in G (yielding a map µ↵) for all ↵ 2 8.

(RGD20) For all ↵, � 2 8 and all u 2 U ]
↵ we have

µ↵(u)U�µ↵(u)�1 = Us↵(�).

(RGD30) For all ↵ 6= � 6= �↵ we have

[U↵, U�] ✓ U]↵,�[ := hU� | � 2 ]↵, �[i.
(RGD40) U�⌘i is not contained in U+ := hU� | � 2 8+i for i = 1, 2.

In the remainder of this subsection we fix the following setup.

Conventions 2.5. 6 = (U↵)↵28 is an RGD-system of type C2 in G and

(1) L↵ := hU↵, U�↵i and H↵ := hµ�1
↵ (a)µ↵(b) | a, b 2 U ]

↵i for each ↵ 2 8;

(2) for i = 1, 2 we choose ei 2 U ]
⌘i and put ri := µ⌘i (ei ); furthermore, we set

Li := L⌘i and Hi := H⌘i ;

(3) H := hH↵ | ↵ 2 8i, N := hr1, r2, Hi and L := hU↵ | ↵ 2 8i.
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Proposition 2.6. With the above conventions, the following hold:

(a) [H1, H2]  H1 \ H2, H = H1 H2 and H = \↵28NL(U↵).

(b) ri 2 NL(H) and r2
i 2 H for i = 1, 2.

(c) r1r2r1r2 = r2r1r2r1.

(d) H is normal in N and the map si 7! ri H for i = 1, 2 extends to an isomorphism
' : W ! N/H.

(e) For each x 2 N and each ↵ 2 8 we have (x H)U↵(x H)�1 = U'�1(x H)·↵.

(f) rir jri normalizes U j for {i, j} = {1, 2}.
Proof. We first observe that (L , (U↵)↵28, H) is an RGD-system of type (W , S)

in the sense of Definition 7.82 in [1]. Indeed (RGD0) and (RGD2) in [1] follow
from (RGD10), (RGD20) and the definition of H ; (RGD1) (resp. (RGD3)) in [1]
corresponds to (RGD30) (resp. (RGD40)); (RGD4) in [1] follows from the definition
of L , and (RGD5) in [1] follows from the fact that µ(x)µ(y)�1 normalizes all
subgroups U� for any two x, y 2 U ]

↵ and ↵ 2 8. Setting B := HU+, it follows
from Theorem 7.115 in [1] that (B, N ) is a B N -pair of type (W , S) in L and, by
Theorem 7.116 in [1], that the building 1 = 1(L , B) is a Moufang building of
type (W , S). Moreover, the group H corresponds to the pointwise stabilizer in L
of an apartment 6 in 1 and the family (U↵)↵28 corresponds to the root groups
associated with 6.

In view of the previous remarks, 1 is a Moufang quadrangle which enables us
to use results from [10]. The proof of Assertions (a) and (b) can be extracted from
the proof of (33.9) in [10]. Assertion (c) follows from (6.9) in [10]. Assertion (d)
follows from the fact that the groups U↵ are pairwise distinct which follows from
7.90 in [1]. Finally, Assertions (e) and (f) are consequences of Assertion (d). ⇤

Proposition 2.7. Let ⌫ : Z/8Z ! 8 be a natural cyclic order on 8 and put
Ui := U⌫�1(↵) for each ↵ 2 8. Then the following hold for each k 2 Z/8Z:

(a) The product map

Uk ⇥ Uk+1 ⇥ Uk+2 ⇥ Uk+3 ! hUk+i | 0  i  3i

is bijective.

(b) XUk+1 = Uk+1 X = Uk+1Uk+2 = XUk+2 = Uk+2 X where X := {[a, b] | a 2
Uk, b 2 Uk+3}.

(c) Uk or Uk+1 is abelian and if Uk is abelian, then Uk  Z(Uk�1Uk)\Z(UkUk+1).

(d) If x 2 Uk, c 2 Uk+1 and y 2 UkUk+1Uk+2 are such that ycx 2 Uk+2, then
y 2 Uk+2.
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Proof. Assertion (a) is Proposition (5.6) in [10] and Assertion (b) follows from (6.4)
in [10] (because n = 4). The first assertion in (c) is (21.26) in [10] and the second
is a consequence of it because [Uk, Uk+1] = 1 = [Uk�1, Uk]. Assertion (d) follows
from (a) and the fact that Uk+2 normalizes the subgroup UkUk+1. ⇤

Definition 2.8. A subsystem of 6 is an RGD-system (X↵)↵28 of type C2 in G such
that (X↵, X�↵) is a subsystem of the rank-1-system (U↵, U�↵) for each ↵ 2 8.

Remark 2.9. As explained in the proof of Proposition 2.6, the notion of a Moufang
quadrangle is essentially equivalent to the notion of an RGD-system of type C2 in a
group G. More precisely, given a Moufang quadrangle 0 and an apartment 6 of 0,
then the family of root groups associated with the roots of 6 is an RGD-system 5 of
type C2 in Aut(0). Now, each thick subquadrangle 00 of 0 that contains 6 provides
in a natural way a subsystem of 5 in the sense of the previous definition.

The following observation is obvious.

Lemma 2.10. Let 60 = (X↵)↵28 be a subsystem of 6 and let e0
i 2 X ]

⌘i . Define
H 0

1, H 0
2, H 0,r 0

1, r 0
2 and N 0 for the system 60 as in Conventions 2.5 for 6 and let

'0 : W ! N 0/H 0 be the isomorphism from Assertion (d) in Proposition 2.6. Then
H 0

i  Hi , H 0  H and (x H 0)U↵(x H 0)�1 = U'�1(x H 0)·↵ for all x 2 N 0 and ↵ 2 8.

3. Proof of the main result

Conventions 3.1. In this section G is a group, 6 = (U↵)↵28 is an RGD-system of
type C2 in G and (X↵)↵28,(Y↵)↵28 are subsystems of 6 such that the following
conditions are satisfied:

(C1) (X⌘2, X�⌘2) = (Y⌘2, Y�⌘2).

(C2) [hX⌘1, X�⌘1i, hY⌘1+⌘2, Y�(⌘1+⌘2)i] = 1.

We put (V1, V�1) := (X⌘1, X�⌘1), (V2, V�2) := (X⌘2, X�⌘2) and (V3, V�3) :=
(Y�(⌘1+⌘2), Y⌘1+⌘2). Let 1  i  3. We put Li := hVi , V�i i. We denote the µ-map
of the rank-1-system (Vi , V�i ) by µi and put Hi := hµi (a)µi (b) | a, b 2 V ]

i i. We
choose ei 2 V ]

i and put ri := µi (ei ). Finally, we set H := hHi | 1  i  3i and
N := hr1, r2, r3, Hi.
Lemma 3.2. With the above conventions, the following hold:

(a) For 1  i 6= j  3 we have [Hi , Hj ]  Hi \ Hj and in particular H = H1 H2 H3.

(b) For 1  i  3 we have H  NG(Vi ), ri Hr�1
i = H and r2

i 2 H.

(c) r2rir2ri = rir2rir2 for i = 1, 3 and r1r3 = r3r1.

(d) r2r1r2, r3 2 NG(V1), r1r2r1, r3r2r3 2 NG(V2) and r1, r2r3r2 2 NG(V3).
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Proof. Assertions (a) and (b) follow from Proposition 2.6(a), (b) and (C2). As-
sertion (c) follows from Proposition 2.6(c) and (C2). Assertion (d) follows from
Proposition 2.6(f). ⇤
Remark and notation. We set � := {xVi x�1 | x 2 N , 1  i  3}. By Assertion
(b) of the previous lemma, H is a normal subgroup of N that normalizes each Vi
and therefore each element of �. Thus, we obtain an action of N/H on �. By
Assertions (b) and (c) of the previous lemma there is a unique homomorphism
' : W ! N/H such that '(si ) = ri H for each 1  i  3. In this way we obtain
an action (w, V ) 7! w · V of W on �. By Assertion (d) and Proposition 2.2 we
obtain a unique W -equivariant map ↵ 7! V↵ from 8 onto � such that V�i = Vi for
1  i  3.

Lemma 3.3. (a) Let � := {U↵ | ↵ 2 8}. Then H  NG(U ) and xU x�1 2 � for
each U 2 � and each x 2 N. In particular, N/H acts on �.

(b) For each ↵ 2 8 we have V↵  U↵.

(c) For each special vertex v of 8 the family (V↵)↵28v is an RGD-system of type
C2 in G.

Proof. Assertion (a) follows from Lemma 2.10.
We have V�1 = V1 = X⌘1  U⌘1 and �1 = ⌘1; V�2 = V2 = X⌘2  U⌘2 and �2 = ⌘2;

V�3 = V3 = Y�(⌘1+⌘2)  U�(⌘1+⌘2) and �3 := �(⌘1 + ⌘2). Thus (b) holds for ↵ 2 1.
Let ↵ 28 be an arbitrary root. Then there exist w 2 W and � 21 such that w ·� =↵.
Let x 2 '(w) 2 N/H . Then xV�x�1  xU�x�1 2 �. Since the action of W on 8

respects parallelism in 8, it follows that V↵  U↵.
If v = v1 then (V↵)↵28v = (Y↵)↵28, and if v = v3, then (V↵)↵28v = (X↵)↵28.

Thus Assertion (c) holds for v 2 {v1, v3}. Let v be an arbitrary special vertex of 8.
Then there exist i 2 {1, 3} and w 2 W such that v = w · vi . Let x 2 '(w), then
(V↵)↵28v = (xV� x�1)�28vi

. Since conjugation by x is an automorphism of G,
Assertion (c) holds for v as well. ⇤
Corollary 3.4. Let (↵, �) 2 82 be a prenilpotent pair such that @↵ and @� intersect
in a vertex v. Then

[V↵, V�]  V]↵,�[ := hV� | � 2 ]↵, �[i.
Proof. If v is a special vertex, then the assertion follows from Assertion (c) of
the previous proposition. If v is not special, there exists w 2 W such that {w ·
�1, w ·�3} = {↵, �}. Let x 2 '(w). Then we have [V↵, V�] = [xV�1 x�1, xV�3 x�1] =
x[V1, V3]x�1 = 1 and the assertion holds as well. ⇤

Let ↵, � 2 8 be parallel roots such that ↵ ✓ �. Then there exist unique m  n 2 Z

such that ↵ = [↵; m] and � = [↵; n]. The pair (↵, �) is called even (odd) if n � m
is even (odd). If (↵, �) is even, we put µ(↵, �) := [↵; (n + m)/2].
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Proposition 3.5. Let ↵ 6= � 2 8 be parallel roots such that ↵ ✓ �. If [V↵, V�] 6= 1,
then the pair (↵, �) is even and [V↵, V�]  Vµ(↵,�).

Proof. Let v be a special vertex on @� and let (� , �) 2 82
v be a sector such that

� 2]� , �[ and such that @� is perpendicular to @�. Let ⇠ 2]� , �[ be the unique root
with ⇠ 6= �. Then (� , ⇠ , ↵ = �, �) are in a natural cyclic order. We put U1 := U� ,
U2 := U⇠ , U3 := U↵ and U4 := U�.

Suppose a 2 V↵ and b 2 V� are such that [b, a] 6= 1. Since V↵ and V� are
subgroups of U3 (by Lemma 3.3(b)) the group U3 is nonabelian and [b, a] 2 U3.
Thus, by Proposition 2.7(c), U2 is abelian and U2  Z(U2U3). Thus [x, a] = 1
for each x 2 V⇠ . For a similar reason we have [d, a] = 1 for each d 2 V�. By
Proposition 2.7(b) there exist x 2 V⇠ , c 2 V� and d 2 V� such that b = [d, c]x . By
Lemma 2.3(iii) we have [b, a] = [[d, c]x, a] = [d, [a, c�1]]cx . As [b, a] 6= 1, we
have [a, c�1] 6= 1 and hence [V� , V↵] 6= 1. This implies that @� and @↵ intersect
in a special vertex v0. As @� is perpendicular to @↵ we have ]� , ↵[= {✏} for a
root ✏ 2 8v0 and 1 6= y := [a, c�1] 2 V✏ . As [b, a] 6= 1 we have [d, y] 6= 1 which
implies that @✏ intersects @� in a special vertex. Now, ]�, ✏[= {µ} for a unique root
µ that is parallel with ↵ and �. Furthermore, by elementary Euclidean geometry,
@↵ and @� are at the same distance from @✏ and we conclude that (↵, �) is even
and µ = µ(↵, �). As [b, a] 2 U3, [d, y] 2 Vµ  U3, c 2 V�  U1 and x 2 V⇠  U2
it follows from Proposition 2.7(d) that [d, y] = [b, a] and hence [b, a] 2 Vµ. ⇤
Corollary 3.6. For each prenilpotent pair (↵, �) 2 82 we have

[V↵, V�]  hV� | � 2 ]↵, �[i.
Proof. This follows from Corollary 3.4 and Proposition 3.5. ⇤
Theorem 3.7. Let L := hV↵ | ↵ 2 8i and V+ := hV↵ | ↵ 2 8+i. Then the following
are equivalent:

(i) 5 = (L , (V↵)↵28, H) is an RGD-system of type eC2, that is, it satisfies the
axioms (RGDi) (0  i  5) of Definition 7.82 in [1].

(ii) V�i = V��i is not contained in V+ := hV↵ | ↵ 2 8+i for i = 1, 2, 3.

Proof. Condition (ii) coincides with Axiom (RGD3) and therefore (i) implies (ii).
Thus it remains to show that (ii) implies (i).

Let ↵ 2 8. Then we have w 2 W and 1  i  3 such that w ·�i = ↵. Let x 2 '(w).
Then xV�x�1 = V↵ . Since V�i 6= 1, the system 5 satisfies Axiom (RGD0). Axiom
(RGD1) for 5 follows from Corollary 3.6.

Let 1  i  3. Then (Vi , V�i , µi ) is a rank-1-system in L and

Hi := hµi (a)�1µi (b) | a, b 2 V ]
i i  hHi | 1  i  3i =: H.

Let a 2 V ]
i . Then µi (a)H = ri H = '(si ) and therefore µi (a)V↵µi (a)�1 = Vsi ·↵

for each ↵ 2 8. Thus, Axiom (RGD2) holds with m = µi .
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As already mentioned above, Axiom (RGD3) is equivalent to (ii). Further, 5

satisfies (RGD4) by the definition of L . Finally, it follows from Lemma 3.3 that 5

satisfies (RGD5). ⇤
Our next aim is to establish the existence a Moufang twin building of type eC2

on which the group L acts in a natural way. This follows from general facts about
Moufang twin buildings and RGD-systems as described in [1]. We recall these
facts below. Throughout the discussion we assume that (X, R) is an irreducible
Coxeter system of finite rank at least 2.

Let 1 be a Moufang twin building of type (X, R), let 6 be a twin apartment
of 1 and let 8(6) denote the set of twin roots of 6. For each twin root ↵ of 6

let U↵  Aut(1) be the root group associated with ↵. Let Y  Aut(1) be a group
of type-preserving automorphisms containing all root groups U↵ and let T be the
pointwise stabilizer of 6 in Y . Then, by Exercise 8.47 in [1], (Y, (U↵)↵28(6), T )

is an RGD-system of type (X, R) in the sense of Definition 7.82 in [1].
In the other direction, let (Y, (U↵)↵28(X,R), T ) be an RGD-system of type (X, R).

Then it follows by Theorems 8.80 and 8.81 in [1] that the group Y acts on a
Moufang twin building 1 of type (X, R) in such a way that the subgroups U↵ map
isomorphically onto the root groups associated with a suitable twin apartment 6 of
1 and such that T is the pointwise stabilizer of 6 in Y .

In view of these two general facts Theorem 3.7 has the following consequence:

Corollary 3.8. Let L := hV↵ | ↵ 2 8i and suppose that V�i = V��i is not contained
in V+ := hV↵ | ↵ 2 8+i for i = 1, 2, 3.

Then L acts on a Moufang twin building 1 of type eC2 in such a way that the
subgroups (V↵)↵28 can be identified with the set of root groups associated with a
suitable apartment 6 of 1.

Let 5 be the RGD-system of Theorem 3.7 and let 1 be the Moufang twin
building of type eC2 from Corollary 3.8. Let 6 be as in Corollary 3.8 and let v be a
vertex of 6. Then the residue of 1 corresponding to v is the Moufang quadrangle
associated with the RGD-system (V↵)↵28v . Thus, by Lemma 3.3(c) they are all
isomorphic to one of the Moufang quadrangles associated with (X↵)↵28 or (Y↵)↵28.
This yields the following.

Proposition 3.9. Let 5 be the RGD-system of Theorem 3.7 and let 1 be the
Moufang twin building of type eC2 from Corollary 3.8. Then the residues of type
{2, 3} of 1 are isomorphic to the Moufang quadrangle associated with the RGD-
system (Y↵)↵28 and the residues of type {1, 2} of 1 are isomorphic to the Moufang
quadrangle associated with the RGD-system (X↵)↵28.

Conclusion of the proof of the main result. Let 0, 6,01 and 03 be as in the
statement of the main result, let G := Aut(0) and let (U↵)↵28 be the RGD-system
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of type C2 in G associated with 0 and 6. By Remark 2.9 the subquadrangles
01 and 03 yield subsystems (X↵)↵28 and (Y↵)↵28 of (U↵)↵28 in the sense of
Definition 2.8. The condition [hX1, X5i, hY7, Y3i] = 1 in the statement of the main
result corresponds to the Convention (C2) in this section. Moreover, since it is
assumed that the set of neighbors v in 01 coincides with its set of neighbors in 03,
it follows that X4 = Y4 and X0 = Y0 which corresponds to Convention (C1) in this
section. Thus we are in the position to apply the results obtained in this section.
The condition in the main result that none of the groups X0, X5, Y3 is contained in
A coincides in the setup of this section with the condition that V�i = V��i is not
contained in V+ := hV↵ | ↵ 2 8+i for i = 1, 2, 3 in 3.7. Thus the assertion of the
main result follows from Theorem 3.7, Corollary 3.8 and Proposition 3.9.
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