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Automorphisms and opposition in spherical buildings
of exceptional type, II: Moufang hexagons

James Parkinson and Hendrik Van Maldeghem

Dedicated to Jacques Tits

We classify the automorphisms of a Moufang hexagon mapping no chamber to
an opposite chamber (such automorphisms are called domestic). This forms part
of a larger program to classify domestic automorphisms of Moufang spherical
buildings.

Introduction

An automorphism of a spherical building is called domestic if it maps no chamber
to an opposite chamber. Recently a systematic investigation of domestic automor-
phisms has revealed a beautiful connection between domesticity and large rich fixed
element structures of the automorphism, and there are now complete classifications
of the domestic automorphisms for various classes of spherical buildings. For
example, by [Van Maldeghem 2012] the domestic dualities of E6(F) buildings
with |F| > 2 are precisely the polarities that fix a split building of type F4, and by
[Van Maldeghem 2014] the domestic trialities of thick D4 buildings are precisely
the automorphisms fixing a split building of type G2. Moreover, in [Parkinson and
Van Maldeghem 2019b; 2022] we classified the domestic automorphisms of split
spherical buildings of types E6, F4, and G2, as well as providing partial classifications
in the E7 and E8 cases.

The case of rank 2 spherical buildings (equivalently, generalised polygons)
is complicated by the lack of classification of such buildings, which makes a
complete classification of domestic automorphisms of arbitrary generalised polygons
impossible. However Moufang generalised polygons have been classified by Tits and
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Weiss [2002]. In the case of Moufang hexagons the classification was announced
in [Tits 1976], with the complete proof appearing in [Tits and Weiss 2002]. The
classification is given in terms of hexagonal systems (which in turn were classified
by Petersson and Racine [1986]). In this paper we give the complete classification
of domestic automorphisms of Moufang hexagons.

It is easy to see that no duality of a generalised hexagon is domestic, and so
we restrict attention to collineations (that is, type preserving automorphisms). A
nontrivial collineation can be domestic for one of three reasons: either it maps no
point to an opposite point (point-domestic), or no line to an opposite line (line-
domestic), or it maps both points and lines to opposite points and lines yet maps
no chamber (that is, incident point-line pair) to an opposite chamber (exceptional
domestic). As a (very) special case of a result of Abramenko and Brown [2009] the
first two possibilities are mutually exclusive.

Our main theorem is as follows. By convention we fix the duality class of
Moufang hexagons so that if 0 is associated to the hexagonal system (J, F, #) then
the points on a line are indexed by {1}[F and the lines through a point are indexed
by {1} [ J. For example, if 0 is finite then it has parameters (s, t) = (|F|, |J|).
Theorem 1. Let 0 be a Moufang hexagon, with the above convention on the duality
class.

(1) 0 admits a unique class of nontrivial line-domestic collineations (the long root
elations).

(2) 0 admits a nontrivial point-domestic collineation if and only if 0 is a dual split
Cayley hexagon, a mixed hexagon, or a triality hexagon of type 3D4. Moreover,
if ✓ is a nontrivial point-domestic collineation then ✓ has order 3 and:
(a) If 0 is either mixed, or is a dual split Cayley hexagon over a field of

characteristic 3, then ✓ is a short root elation and there is a unique class
of such collineations.

(b) If 0 is a dual split Cayley hexagon over a field F with char F 6= 3 then
✓ fixes an ovoid (respectively, a large full subhexagon) if X2 + X + 1 is
irreducible (respectively, reducible) over F, and in each case there is a
unique class of such collineations.

(c) If 0 is a triality hexagon of type 3D4 then ✓ fixes a large full subhexagon,
and ✓ is conjugate to a nontrivial element of the Galois group of the
associated cubic Galois extension E/F.

(3) 0 admits an exceptional domestic collineation if and only if 0 is a dual split
Cayley hexagon over F = F2 or the triality hexagon of type 3D4 associated to a
cubic extension of F = F2. Moreover, for each of these hexagons there exists
a unique class of exceptional domestic collineations, and these collineations
have order 4.
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In [Parkinson and Van Maldeghem 2019a; 2019b] we developed the language
of opposition diagrams for automorphisms of spherical buildings. With the above
convention on duality classes, the line-domestic collineations are those with oppo-
sition diagram G2

2;1 = • • and the point-domestic collineations are those with
opposition diagram G1

2;1 = • • (see [Parkinson and Van Maldeghem 2022] for
the notation). The above theorem immediately gives:

Corollary 2. Let 0 be a Moufang hexagon, with the above convention on duality
classes.

(1) There exists a collineation with opposition diagram G2
2;1.

(2) There exists a collineation with opposition diagram G1
2;1 if and only if 0 is a

dual split Cayley hexagon, a mixed hexagon, or a triality hexagon of type 3D4.

(3) The hexagon 0 admits a domestic collineation not fixing a chamber if and only
if 0 is a dual split Cayley hexagon over a field F with X2 + X + 1 irreducible
over F.

The structure of this paper is as follows. In Section 1 we outline background
material and definitions on generalised hexagons, domesticity, and hexagonal sys-
tems. We also extend the coordinatisation of dual split Cayley hexagons and triality
hexagons from [Van Maldeghem 1998, Chapter 3] to general Moufang hexagons
(see Theorem 1.5). By Theorem 1.3, a collineation of a generalised hexagon is
point-domestic if and only if its fixed element structure is either a ball of radius 3
in the incidence graph centred at a line, a large full subhexagon, or an ovoid (and
dually for line-domestic collineations). These three possibilities, and their duals, are
each analysed in Sections 2A, 2B, and 2C, culminating in the proof of Theorem 1
in Section 2D.

1. Background and definitions

In this section we begin by giving some basic definitions concerning generalised
hexagons, and recalling results from the literature on domestic automorphisms
of generalised hexagons. In Section 1C we recall the classification of Moufang
hexagons in terms of hexagonal systems, following [Tits and Weiss 2002], and
record commutation relations and related formulae that will be used repeatedly
throughout the paper. In Section 1D we extend the coordinatisation of dual split
Cayley hexagons and triality hexagons from [Van Maldeghem 1998, Chapter 3] to
general Moufang hexagons (this coordinatisation will be used in Section 2B).

1A. Generalised hexagons. A generalised hexagon is a nonempty point line ge-
ometry 0 = (P,L) containing no ordinary 2, 3, 4, or 5-gon as a subgeometry such
that any two elements x, y 2 P [L are contained in an ordinary hexagon. We will
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typically drop the adjective “generalised”, and simply refer to generalised hexagons
as hexagons.

The hexagon 0 is thick if each line contains at least 3 points, and each point
is on at least 3 lines. The distance d(x, y) between elements x, y 2 P [L is the
distance in the incidence graph. Thus d(x, y)  6, and elements x, y are opposite
one another if and only if d(x, y) = 6. If x and y are opposite then necessarily x, y
are either both points, or are both lines. For p 2P let p? denote the set of all points
collinear with p, and write p?? for the set of all points that are not opposite p.

An ovoid of 0 is a set O of mutually opposite points such that every element
x 2 P [L is at distance at most 3 from some element of O . The dual notion of an
ovoid is a spread.

A subhexagon of 0 is a subgeometry 00 that is itself a generalised hexagon. A
subhexagon 00 is full if every point of 0 incident with a line of 00 belongs to 00,
and large if every element of 0 is at distance at most 3 from some element of 00.
The dual notion to a full subhexagon is an ideal subhexagon.

1B. Domestic automorphisms of generalised hexagons. We now recall the known
results concerning domesticity in hexagons. Firstly, it is easy to see that no duality
of a thick hexagon is domestic; see [Parkinson et al. 2015, Theorem 2.7]. If ✓ is a
domestic collineation of a thick hexagon 0 then there are three possibilities. If ✓

maps no point (respectively no line) to an opposite point (respectively line) then ✓

is called point-domestic (respectively line-domestic). The third possibility is that ✓

maps both points and lines to opposite points and lines, yet maps no chamber (that
is, incident point-line pair) to an opposite. Such a collineation is called exceptional
domestic.

Exceptional domestic collineations are extremely rare, and have been completely
classified for finite (that is |P|, |L| < 1) thick hexagons.

Theorem 1.1 [Parkinson et al. 2015, Corollary 2.11]. If a finite thick (not neces-
sarily Moufang) hexagon with parameters (s, t) admits an exceptional domestic
collineation then (s, t) 2 {(2, 2), (2, 8), (8, 2)}. Moreover, for each hexagon with
these parameters there exists a unique exceptional domestic collineation up to
conjugation, and these collineations have order 4.

The possibility of exceptional domestic collineations of infinite Moufang hex-
agons was also eliminated in [Parkinson et al. 2015] (see [Tits and Weiss 2002] for
the definition of the Moufang condition).

Theorem 1.2 [Parkinson et al. 2015, Theorem 2.14]. No infinite Moufang hexagon
admits an exceptional domestic collineation.

Theorems 1.1 and 1.2 prove Theorem 1(3), and so the classification of domestic
collineations of Moufang hexagons is reduced to the classification of collineations
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that are either point-domestic or line-domestic. The following theorem shows that
such collineations are characterised by their fixed element structures. This gives
an important guiding framework for our classification of domestic collineations of
Moufang hexagons.

Theorem 1.3 [Parkinson et al. 2015, Theorems 2.7 and 2.8]. A nontrivial collin-
eation ✓ of a thick generalised hexagon is point-domestic if and only if its fixed
element structure is either a ball of radius 3 in the incidence graph centred at a
line, a large full subhexagon, or an ovoid. Dually, a nontrivial collineation ✓ of a
thick generalised hexagon is line-domestic if and only if its fixed element structure
is either a ball of radius 3 in the incidence graph centred at a point, a large ideal
subhexagon, or a spread.

1C. Moufang hexagons and hexagonal systems. Let 0 = (P,L) be a Moufang
hexagon. Let A0 be a fixed choice of apartment (an ordinary hexagon), and let
C0 = {p0, L0} be a fixed choice chamber of A0. Let G = G(0) denote the full
collineation group of 0. Let B denote the stabiliser of C0, and let N denote the
(setwise) stabiliser of A0. Then (B, N ) is a split BN -pair in G with Weyl group
W = hs1, s6 | s2

1 = s2
6 = (s1s6)

6 = ei the dihedral group of order 12; see [Tits and
Weiss 2002, §33.4]. Let U1, . . . , U12 denote the root subgroups associated to A0,
as in [Tits and Weiss 2002], and let U = hU1, . . . , U6i denote the subgroup of G
generated by the positive root subgroups. Then B = H nU , where H = B \ N is
the elementwise stabiliser of A0. Let w0 = s1s6s1s6s1s6 = s6s1s6s1s6s1 denote the
longest element of W .

The Moufang hexagons are determined (up to isomorphism) by the commutator
relations that hold amongst the root subgroups in U . In [Tits and Weiss 2002] this
classification is given in terms of the following algebraic structures. An hexagonal
system is a triple (J, F, #), where F is a commutative field, J is a vector space
over F, and # : J ! J is a function called the adjoint satisfying various axioms; see
[Tits and Weiss 2002, Definition 15.15]. There is a unique element 1 2 J\{0} with
1# = 1 and we identify F with the subset {t1 | t 2 F} of J. The map # determines
a function N : J ! F (called the norm), a symmetric bilinear form T : J ⇥ J ! F

(called the trace), and a symmetric bilinear map ⇥ : J ⇥ J ! J. These maps satisfy
various properties, including the following (for a, b, c 2 J and t 2 F; see [Tits
and Weiss 2002, Definition 15.15 and §30.4]): N(1) = 1, T(1) = 3, (ta)# = t2a#,
N(ta) = t3N(a), a ⇥ a = 2a#,

(a + b)# = a# + (a ⇥ b) + b#, T(a ⇥ b, c) = T(a, b ⇥ c), T(a, a#) = 3N(a),

a = T(a) � 1 ⇥ a, N(a#) = N(a)2, a## = N(a)a.

The simplest examples are the hexagonal systems (F, F, #) with F any field and
a# = a2 (and then N(a) = a3, T(a, b) = 3ab, and a ⇥ b = 2ab), and the hexagonal



448 JAMES PARKINSON AND HENDRIK VAN MALDEGHEM

systems (E, F, #) where E/F is a separable cubic extension and a# = a� a� 2 with
� a nontrivial element of Gal(L/F) where L/F is the normal closure of E/F (and
then N(a) = aa� a� 2 , T(a, b) = ab +a� b� +a� 2

b� 2 , and a ⇥b = a� b� 2 +a� 2
b� ).

The complete list of hexagonal systems is given in [Tits and Weiss 2002, §15.14].
By a subhexagonal system of (J, F, #) we shall mean a triple (J0, F, #) with J0 a

subspace of J closed under # (such systems are called substructures in [Tits and
Weiss 2002]).

By the classification of Tits and Weiss [2002, Theorem 17.5] every Moufang
hexagon arises from an hexagonal system (J, F, #) via the construction in [Tits
and Weiss 2002, Example 16.8]. The nontrivial commutator relations amongst
the groups U1, . . . , U6 are as follows, where [g, h] = g�1h�1gh and a, b 2 J and
t, u 2 F; see [Tits and Weiss 2002, Example 16.8]:

[x1(a), x3(b)] = x2(T(a, b)), (1-1)

[x3(a), x5(b)] = x4(T(a, b)), (1-2)

[x1(a), x5(b)] = x2(�T(a#, b))x3(a ⇥ b)x4(T(a, b#)), (1-3)

[x2(t), x6(u)] = x4(tu), (1-4)

[x1(a), x6(t)] = x2(�tN(a))x3(ta#)x4(t2N(a))x5(�ta). (1-5)

We have Ui = hxi (a) | a 2 Ji if i is odd, and Ui = hxi (t) | t 2 Fi if i is even. Each
Ui is abelian and xi (a)xi (b) = xi (a + b) (for a, b 2 J if i is odd, and a, b 2 F if i
is even). Note that U4 is central in U , and that U3 is central in U if and only if the
bilinear form T( · , · ) is identically zero.

It will be convenient to divide Moufang hexagons into the following classes.

(H1) The G2-hexagons associated to the Chevalley group G2(F) with char F 6= 3.
These are associated to hexagonal systems (F, F, #) of type 1/F from [Tits
and Weiss 2002, Example 15.20] with char F 6= 3, where a# = a2 for all a 2 F.

(H2) The D4-hexagons associated to Tits indices 3D2
4,2 and 6D2

4,2. These correspond
to the hexagonal systems (E, F, #) of type 3/F from [Tits and Weiss 2002,
Example 15.21] with E/F a separable cubic extension (normal for 3D2

4,2 and
not normal for 6D2

4,2), and a# =a� a� 2 with � a nontrivial element of Gal(L/F),
with L/F the normal closure of E/F. We shall abbreviate the notation 3D2

4,2 to
3D4 and 6D2

4,2 to 6D4.

(H3) The type E-hexagons associated to Tits indices 1E16
6,2, 2E1600

6,2 , and E78
8,2. These

correspond to the hexagonal systems of type 9/F (for 1E16
6,2), 9K/F (for 2E1600

6,2 ),
27/F, and 27K/F from [Tits and Weiss 2002, Examples 15.22, 15.29, 15.31
and 15.34]. We will recall some basic properties of hexagonal systems of
type 9/F and 9K/F in Section 2C. It will turn out that we do not require any
detailed information on systems of type 27/F or 27K/F.
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(H4) The mixed hexagons associated to the hexagonal systems (E, F, #) where
char F = 3 and either E = F or E/F is a (necessarily purely inseparable) field
extension with E3 ✓F✓E, where a# =a2 for all a 2E. These correspond to the
hexagonal systems of type 1/F from [Tits and Weiss 2002, Example 15.20]
with char F = 3. Note that this class includes hexagons associated to the
Chevalley group G2(F) with char F = 3.

From the classification, if (J, F, #) is an hexagonal system not in class (H4) then
dim J 2 {1, 3, 9, 27}. We note that in classes (H1), (H2) and (H4) the vector space J

has the additional algebraic structure of a field. Moreover, in an hexagonal system
(J, F, #) of type 9/F the vector space J has the structure of a (noncommutative)
cyclic division algebra of degree 3 with centre F.

We fix the duality class of a Moufang hexagon throughout this paper as follows.

Convention 1.4. If 0 is associated to the hexagonal system (J, F, #) then the
points on a line are indexed by {1} [ F, and the lines through a point are indexed
by {1} [ J.

Thus, in particular, class (H1) consists precisely of the dual split Cayley hexagons
over fields of characteristic different from 3, while the dual split Cayley hexagons
over fields of characteristic 3 are a subset of class (H4). We refer to the root
subgroups Ui with i odd (respectively i even) as the short (respectively long) root
subgroups. The short (respectively long) root elations are the conjugates of elements
of Ui with i odd (respectively i even).

For a 2 J\{0} let
a�1 = N(a)�1a#.

Following [Tits and Weiss 2002, §32.12], for a 2 J\{0} and t 2 F\{0} let

s1(a) = x7(a�1)x1(a)x7(a�1) and s6(t) = x12(t�1)x6(t)x12(t�1),

and so s1(a) 7! s1 and s6(t) 7! s6 under the homomorphism N ! N/H = W .
In particular Hs1(a) = s1(a)H = s1(1)H and Hs6(t) = s6(t)H = s6(1)H for all
a 2 J\{0} and t 2 F\{0}. We will sometimes write si in place of si (1), i = 1, 6,
when there is no risk of ambiguity, however as we show below the elements si (1)

are not involutions (unless char F = 2), and instead they have order 4.
Writing gh = hgh�1 we have (see [Tits and Weiss 2002, §§29.35 and 32.12];

note that our convention for gh differs from [Tits and Weiss 2002], and is chosen
as we often need to move a si ( · ) past an xj ( · ) term from left to right — thus the
formulae from [Tits and Weiss 2002] have been modified accordingly):

x1(b)s1(a) = x7(T(a�1, b)a�1 � (a�1)# ⇥ b), x1(a)s6(t) = x5(ta),

x2(t)s1(a) = x6(t/N(a)), x2(u)s6(t) = x4(�tu),
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x3(b)s1(a) = x5(�a�1 ⇥ b +N(a)�1T(a, b)a), x3(a)s6(t) = x3(a),

x4(t)s1(a) = x4(t), x4(u)s6(t) = x2(t�1u),

x5(b)s1(a) = x3(a ⇥ b �N(a)T(a�1, b)a�1), x5(a)s6(t) = x1(�t�1a),

x6(t)s1(a) = x2(�tN(a)), x6(u)s6(t) = x12(t�2u).

In particular, note that si (1)xj (a)si (1)�1 = x2i+6� j (✏i j a) for i 2 {1, 6} and j 2
{1, 2, 3, 4, 5, 6} (with a 2 J for j odd and a 2 F for j even), where ✏i j 2 {�1, 1}
and the index 2i + 6 � j is read cyclically to lie between 1 and 12. It is convenient
to record the signs ✏i j in the following table (with i indexing rows, and j indexing
columns):

✏i j 1 2 3 4 5 6

1 1 1 1 1 �1 �1
6 1 �1 1 1 �1 1

(1-6)

It follows from (1-6) that s4
i xj (a)s�4

i = xj (a) for i 2 {1, 6} and 1  j  6, and so
s4

1 = s4
6 = 1. For example,

s4
1 x6(t)s�4

1 = s3
1 x2(�t)s�3

1 = s2
1 x6(�t)s�2

1 = s1x2(t)s�1
1 = x6(t),

however note that s2
1 x6(t)s�2

1 = x6(�t) and so s2
1 6= 1 unless char F = 2.

We record some further formulae for later use. Using the definition of s1(a) and
s6(t) we have, for a 2 J and t 2 F,

x1(a) = x7(�a�1)s1(a)x7(�a�1), (1-7)

x6(t) = x12(�t�1)s6(t)x12(�t�1). (1-8)

By [Tits and Weiss 2002, §32.12] we have

[x2(t), x7(a)] = x3(ta)x4(�t2N(a))x5(ta#)x6(�tN(a)),

[x3(b), x7(a)] = x4(�T(a, b#))x5(a ⇥ b)x6(�T(a#, b)),

[x5(b), x7(a)] = x6(�T(a, b)),

[x12(t), x4(u)] = x2(tu),

[x12(t), x5(a)] = x1(�ta)x2(�t2N(a))x3(�ta#)x4(�tN(a)),

(1-9)

and [xi (c), x7(a)] = 1 for i 2 {4, 6}, and [x12(t), xi (c)] = 1 for i 2 {1, 2, 3}.

1D. Parabolic subgroups and coordinatisation. By Convention 1.4, in the Dynkin
diagram 1 6• • the points of 0 are the type 6 objects, and the lines of 0 are
the type 1 objects (here S = {1, 6}). Thus the points of 0 are in bijection with
the cosets G/P1, where P1 is the parabolic subgroup P1 = B [ Bs1 B (note: in
the general building setup, the vertices of type j correspond to the cosets of the
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parabolic subgroup PS\{ j}, and in this case S\{6} = {1}). Similarly the lines are in
bijection with the cosets G/P6 with P6 = B [ Bs6 B. Thus the points of 0 are

P1, x6(t)s6 P1, x1(a)x2(t)s1s6 P1, x6(t)x5(a)x4(t 0)s6s1s6 P1,

x1(a)x2(t)x3(a0)x4(t 0)s1s6s1s6 P1, x6(t)x5(a)x4(t 0)x3(a0)x2(t 00)s6s1s6s1s6 P1,

with t, t 0, t 00 2 F and a, a0 2 J, and analogously for lines.
Points g P1 and h P1 are at distance 0, 2, 4, 6 in the incidence graph if and only if

P1g�1h P1 = P1, P1s6 P1, P1s616 P1, P1s61616 P1, (1-10)

respectively (where, for example, s616 = s6s1s6). Dual statements apply for lines.
The point g P1 and the line h P6 are incident if and only if g P1 \ h P6 6= ?.

Abbreviating notation in the obvious way, the points of 0 are given by all n-tuples
(1  n  5) in the sets F, J⇥F, F⇥J⇥F, J⇥F⇥J⇥F, F⇥J⇥F⇥J⇥F together
with a point labelled (1), corresponding to P1. The lines are given by the n-tuples
(1  n  5) in the sets J, F⇥J, J⇥F⇥J, F⇥J⇥F⇥J, J⇥F⇥J⇥F⇥J, denoted
with square brackets to distinguish from points, together with a line labelled [1],
corresponding to P6. This notation, along with the equations below determining
the incidence relation, is called a coordinatisation of 0. The split Cayley hexagons
and the triality hexagons are coordinatised in [Van Maldeghem 1998, Chapter 3],
and we extend this coordinatisation to general Moufang hexagons in the following
theorem.

Theorem 1.5. Let t, t 0, t 00, u, u0 2 F and a, a0, b, b0, b00 2 J. The incidence relation ⇤
between points and lines is given by

(t, a, t 0, a0, t 00) ⇤ [t, a, t 0, a0] ⇤ (t, a, t 0) ⇤ [t, a] ⇤ (t) ⇤ [1]
⇤(1) ⇤ [b] ⇤ (b, u) ⇤ [b, u, b0] ⇤ (b, u, b0, u0) ⇤ [b, u, b0, u0, b00],

and (t, a, t 0, a0, t 00) ⇤ [b, u, b0, u0, b00] if and only if

u = t 00 + tN(b) �T(a0, b) +T(a, b#), (1-11)

b0 = a0 � (a ⇥ b) � tb#, (1-12)

u0 = t 0 + t2N(b) � t t 00 + tT(a, b#) +T(a#, b) �T(a, a0), (1-13)

b00 = a + tb, (1-14)

if and only if

a = b00 � tb, (1-15)

t 0 = u0 + t2N(b) + ut � tT(b00, b#) +T(b0, b00) +T(b00#, b), (1-16)

a0 = b0 + b ⇥ b00 � tb#, (1-17)
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t 00 = u � tN(b) +T(b, b0) +T(b00, b#). (1-18)

Proof. All relations are clear with the exception of the relation (t, a, t 0, a0, t 00) ⇤
[b, u, b0, u0, b00]. Writing

g1 = x6(t)x5(a)x4(t 0)x3(a0)x2(t 00) and g2 = x1(b)x2(u)x3(b0)x4(u0)x5(b00),

the point (t, a, t 0, a0, t 00) = g1w0 P1 is on the line [b, u, b0, u0, b00] = g2w0 P6 if and
only if

w�1
0 g�1

2 g1w0 P1 \ P6 6= ?.

Thus if g�1
2 g1 = u6u5u4u3u2u1 with ui 2 Ui it follows that (t, a, t 0, a0, t 00) ⇤

[b, u, b0, u0, b00] if and only if u5 = u4 = u3 = u2 = 1.
We have

g�1
2 g1 = x5(�b00)x4(�u0)x3(�b0)x2(�u)x1(�b)x6(t)x5(a)x4(t 0)x3(a0)x2(t 00),

and we use the commutator relations to write this element in U6U5U4U3U2U1
form. Noting that U4 is central in U , we shall, for convenience, move all U4 terms
temporarily to the far right during the working. Moving the x6(t) term to the left
requires commutator relations (1-5) and (1-4) to move the term past x1(�b) and
x2(�u), and we obtain

g�1
2 g1 = x6(t)x5(�b00)x3(�b0)x2(�u)x1(�b)x2(tN(b))x3(tb#)

x5(a + tb)x3(a0)x2(t 00)x4(z1)

with z1 = t 0 � u0 � t2N(b) � tu. Now, since U2 commutes with all root subgroups
Ui with i 6= 6, we shall temporarily move all U2 terms to the right, and record them
next to the U4 term, giving

g�1
2 g1 = x6(t)x5(�b00)x3(�b0)x1(�b)x3(tb#)x5(a + tb)x3(a0)x2(y1)x4(z1)

where y1 = t 00 � u + tN(b). We now move the term x5(a + tb) to the left. Invoking
commutator relation (1-2), followed by (1-3), and then (1-2) again, we obtain

g�1
2 g1

= x6(t)x5(�b00)x3(�b0)x1(�b)x5(a + tb)x3(tb#)x3(a0)x2(y1)x4(z2)

= x6(t)x5(�b00)x3(�b0)x5(a+tb)x1(�b)x3(�b⇥(a+tb))x3(tb#+a0)x2(y2)x4(z3)

= x6(t)x5(a �b00 + tb)x3(�b0)x1(�b)x3(tb# +a0 �a ⇥b� t (b⇥b))x2(y2)x4(z4),

where z2 = z1+tT(a,b#)+t2T(b,b#), z3 = z2�T(b,(a+tb)#), y2 = y1�T(b#,a+tb)

and z4 = z3 +T(a + tb, �b0). Since b ⇥ b = 2b# the second coefficient of x3( · )
simplifies to a0 � a ⇥ b � tb#, and we then move the x3(a0 � a ⇥ b � tb#) term past
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x1(�b), using (1-1), giving

g�1
2 g1 = x6(t)x5(a � b00 + tb)x3(�b0)x3(a0 � a ⇥ b � tb#)x1(�b)x2(y3)x4(z4)

= x6(t)x5(a � b00 + tb)x4(z4)x3(a0 � b0 � a ⇥ b � tb#)x2(y3)x1(�b)

with y3 = y2 �T(b, a0 � a ⇥ b � tb#). This is now in U6U5U4U3U2U1 form, and
after simplification we obtain y3 = t 00 � u + tN(b) +T(a, b#) �T(a0, b) and

z4 = t 0 � u0 � t2N(b) � tu � tT(a, b#) �T(a#, b) �T(a, b0) � tT(b, b0).

Equations (1-11), (1-12), and (1-14) now follow (from the conditions u2 = u3 =
u5 = 1), and moreover z4 = 0 (since u4 = 1). Using (1-11) and (1-12) to eliminate
u and b0 from the equation z4 = 0 yields (1-13).

To derive (1-15)–(1-18), reverse the order of the first set of equations and rear-
range the expressions to give expressions for a, t 0, a0, t 00. Now substitute to find
expressions for a, t 0, a0, t 00 in terms of t, b, u0, b0, u0, b00. ⇤

Commutator relations are used extensively in this paper, particularly in Section 2C,
and we shall often give less details than in the above proof.

2. Domestic collineations of Moufang hexagons

Recall from Theorem 1.3 that a collineation of a thick hexagon is point-domestic if
and only if its fixed element structure is either a ball of radius 3 in the incidence
graph centred at a line, a large full subhexagon, or an ovoid (and dually for line-
domestic collineations). We consider each case in turn in Sections 2A, 2B, and 2C,
culminating in the proof of Theorem 1 in Section 2D.

2A. Balls of radius 3 in the incidence graph. Let 0 be a Moufang hexagon, with
Convention 1.4 in force.

Lemma 2.1. A collineation ✓ of a Moufang hexagon fixes precisely a ball of radius 3
in the incidence graph centred at a point if and only if ✓ is conjugate to x4(1).

Proof. Suppose that ✓ fixes a ball of radius 3 centred at a point. After conjugating,
we may assume that the centre of the fixed ball is the point P1 (in the notation of
Section 1D). In the BN -pair language, the hypothesis of the lemma gives that ✓

fixes each chamber gB with g 2 B [ Bs1 B [ Bs6 B [ Bs1s6 B [ Bs6s1 B [ Bs1s6s1 B.
In particular, ✓ B = B, giving ✓ 2 B. Thus ✓ = hu with h 2 H and u 2 U .
Write u = x1(a)x2(t)x3(a0)x4(t 0)x5(a00)x6(t 00) with a, a0, a00 2 J and t, t 0, t 00 2 F.
For each z 2 J the chamber x1(z)s1 B is fixed, and so by commutator relations
x1(z)s1 B = ✓x1(z)s1 B = hx1(a+z)s1 B, giving hx1(a+z)h�1 = x1(z) for all z 2 J.
Taking z = 0 gives x1(a)= h�1x1(0)h = 1 and so a = 0, and then hx1(z)h�1 = x1(z)
for all z 2 J gives h 2 C(U1), the centraliser of U1.
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Similarly we have x6(u)s6 B = ✓x6(u)s6 B = hx6(t 00 +u)s6 B for all u 2 F, and as
above this implies that t 00 = 0 and that h 2 C(U6). Since h fixes a subhexagon (as it
fixes an apartment) and h 2 C(U1)\ C(U6) it follows from [Van Maldeghem 1998,
Corollary 1.8.5] that h is the identity. Thus ✓ = x2(t)x3(a0)x4(t 0)x5(a00). Continuing
in this way, since the chamber x1(0)x2(u)s1s6 B (where u 2 F) is fixed by ✓ , we have
t = 0. Similarly since the chamber x6(0)x5(z)s6s1 B (where z 2 J) is fixed by ✓ we
have a00 = 0. So ✓ = x3(a0)x4(t 0), and since the chamber x1(0)x2(0)x3(z)s1s6s1 B
(where z 2 J) is fixed we have a0 = 0. Thus ✓ = x4(t 0), and this is conjugate to
x4(1) by an element of H .

Conversely, it is easy to check that x4(1) fixes precisely a ball of radius 3 in the
incidence graph centred at a point. ⇤
Lemma 2.2. There exists a collineation of a Moufang hexagon 0 fixing precisely a
ball of radius 3 in the incidence graph centred at a line if and only if 0 is in class
(H4), and in this case all such collineations are conjugate to x3(1).

Proof. After conjugating we may assume that ✓ fixes a ball of radius 3 centred at
the line P6. Thus ✓ fixes each chamber gB with g 2 B [ Bs1 B [ Bs6 B [ Bs1s6 B [
Bs6s1 B [ Bs6s1s6 B. As in Lemma 2.1 we see that ✓ = x3(a)x4(t) for some a 2 J

and t 2 F. Since the chamber x6(0)x5(0)x4(u)s6s1s6 B (where u 2 F) is fixed we
see that ✓ = x3(a). Moreover, since the chamber x6(0)x5(z)x4(0)s6s1s6 B (where
z 2 J) is fixed by ✓ , the commutator relations give

x5(z)s6s1s6 B = x3(a)x5(z)s6s1s6 B = x5(z)x4(T(a, z))s6s1s6 B.

Thus T(a, z) = 0 for all z 2 J, and so T( · , · ) is degenerate (as a 6= 0, otherwise
✓ = 1). By [Tits and Weiss 2002, §30.5] this forces 0 to be in class (H4). Then
✓ = x3(a) with T(a, z) = 0 for all z 2 J. This element fixes the ball B [ Bs1 B [
Bs6 B [ Bs1s6 B [ Bs6s1 B [ Bs6s1s6 B. By the commutator relations ✓ is central
in U , and ✓ is conjugate to x3(1). ⇤

Thus we have determined all (necessarily domestic) collineations fixing precisely
a ball of radius 3 in the incidence graph.

2B. Large full or ideal subhexagons. We now turn to the possibility of collin-
eations fixing large full (or ideal) subhexagons. We first recall the definition of
regularity in hexagons; see [Van Maldeghem 1998, §1.9]. Let x, y 2 P [ L be
opposite elements of the hexagon 0 (so x, y are either both points, or both lines).
For i = 2, 3 the distance-i-trace associated to {x, y} is 0i (x)\06�i (y), where 0i (x)

denotes the set of objects at distance i from x in the incidence graph of 0. The
element x is called distance-i-regular if distinct distance-i-traces 0i (x) \ 06�i (y)

and 0i (x)\06�i (y0) (with y, y0 opposite x) have at most one element in common.
The element x is regular if it is distance-i-regular for i = 2, 3. If all points of 0
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are distance-i-regular (respectively, regular) then we say that 0 is point-distance-i-
regular (respectively, point-regular). Dually, if all lines of 0 are distance-i-regular
(respectively, regular) then we say that 0 is line-distance-i-regular (respectively,
line-regular).

We record the following facts.

Proposition 2.3. Let 0 be a Moufang hexagon, with Convention 1.4 in force.

(1) If 0 is in class (H1), (H2) or (H3) then 0 is line-regular but not point-regular.

(2) If 0 is in class (H4) then 0 is both point-regular and line-regular.

Proof. By [Ronan 1980] (see also [Van Maldeghem 1998, Theorem 6.3.2]) in any
Moufang hexagon either all points are regular, or all lines are regular (or both).
Moreover, since the regularity property is preserved on restriction to subhexagons,
it follows from [Van Maldeghem 1998, Corollary 3.5.11] that for the hexagons in
classes (H1), (H2), and (H3) (with Convention 1.4 in force) the lines are regular
and the points are not regular, hence (1). Then (2) follows from [Van Maldeghem
1998, Corollary 5.5.15]. ⇤

We now return to the possibility of collineations fixing large full (or ideal)
subhexagons. We first consider the mixed hexagons, class (H4).

Lemma 2.4. A full or ideal subhexagon of a mixed Moufang hexagon 0 is never
the fixed point structure of an automorphism of 0.

Proof. Let 00 be a full subhexagon of a mixed hexagon 0 with hexagonal system
(E, F, #). Then either 00 is nonthick, or it is isomorphic to a mixed hexagon with
hexagonal system (E0, F, #) for some field E0  E. We claim that if 00 is fixed by
✓ then ✓ is the identity. Clearly it suffices to prove the result for the case that
00 is nonthick (for this is a subhexagon of the thick subhexagons). Let ✓ be a
collineation of 0 pointwise fixing 00. Let p be an arbitrary point of 00 and x ? p
an arbitrary point of 0 collinear to p not belonging to 00. Pick two points z1 and
z2 opposite p but not opposite x and such that z??

1 \ p? 6= z??
2 \ p? (it does not

matter whether one reads this inside 0 or 00). The point-distance-2-regularity of 0

(see Proposition 2.3) implies that z??
1 \ p? \ z??

2 \ p? = {x}. On the other hand it
also implies that z??

i \ p? = (z✓
i )

?? \ p? for i = 1, 2 (since ✓ fixes the two points
of z??

i \ p? in 00). It follows that x✓ = x and so every point collinear to p is fixed,
implying that the fixed point structure of ✓ is a full and ideal subhexagon, and hence
has to coincide with 0 by [Van Maldeghem 1998, Proposition 1.8.2]. Hence ✓ is
the identity. The dual argument applies due to line-distance-2-regularity of 0 (see
Proposition 2.3). ⇤

Now we consider the situation where 0 is a D4-hexagon or a type E-hexagon
(classes (H2) and (H3)). Let F be the underlying field and (J, F, #) the corresponding
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hexagonal system. Let 00 be a full subhexagon. Since every subhexagon of a
Moufang hexagon is again Moufang (see, for example, [Van Maldeghem 1998,
Lemma 5.2.2]) the hexagon 00 corresponds to an hexagonal system (J0, F, #), with
J0 a subspace of J. Since J and J0 are vector spaces over F, they need to have a
different dimension if 00 6= 0. We first determine the pairs (J, J0) for which 00 is
large in 0.

Proposition 2.5. Let 0 be a Moufang hexagon in class (H2) or (H3) with hexagonal
system (J, F, #). Let 00 be a full subhexagon of 0 and let (J0, F, #) be the associated
hexagonal system with J0 ✓ J (here we shall allow dim J0 = 0 if 00 is nonthick).
Then 00 is large in 0 if and only if dim J = 3 and J0 = F.

Proof. The dimension of 0 as an algebraic variety over F is equal to dim 0 =
3 + 2 dim J. The dimension of 00 is dim 00 = 3 + 2 dim J0, whereas the dimension
of a point perp equals dim p? = 1 + dim J. If 00 is large in 0, then every point
of 0 is in the perp of some point of 00 and so dim 0  dim 00 + dim p?, yielding
dim J  1 + 2 dim J0. Since the possible dimensions of J and J0 are 0, 1, 3, 9 and
27, and dim J � 3, this implies (dim J, dim J0) = (3, 1). We now show that this
condition is also sufficient.

We use the coordinatisation of 0 given in Theorem 1.5. For now we do not place
any restrictions on J and J0. The subhexagon 00 is given by restricting J to J0 in
each of the coordinates associated to the short roots. A generic point outside 00

is given by (t, a, t 0, a0, t 00), but by applying appropriate long root elations inside
00 we can assume that t = t 0 = t 00 = 0. Hence 00 is large in 0 if and only if, for
all (a, a0) 2 (J ⇥ J) \ (J0 ⇥ J0), there is some point q of 00 collinear to the point
p := (0, a, 0, a0, 0).

If a 2 J0, then (0, a, 0) 2 p? \ 00, and so we may assume that a 2 J \ J0. By
(1-11)–(1-14) the lines incident with p are the lines

L(b) = [b, �T(a0, b) +T(a, b#), a0 � (a ⇥ b), �T(a#, b) �T(a, b0), a]
with b 2 J. Thus we must find a point q of 00 on such a line L(b). There are two
scenarios.

Scenario 1: Suppose there is b 2 J0 such that a0 � (a ⇥ b) 2 J0. Then we may take

q = (b, �T(a0, b) +T(a, b#), a0 � (a ⇥ b), �T(a#, b) �T(a, b0)).

The point q is in 00 and lies on L(b) as required.

Scenario 2: Suppose there is b 2 J0 and u 2 F such that a�ub 2 J0 and a0�ub# 2 J0.
Then by (1-15)–(1-18) the point

q = (u, a � ub, u0, a0 � ub#, u00)

(for any u0, u00 2 F) is in 00 and lies on L(b) as required.
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Thus it suffices to show that in the case dim J = 3 and J0 = F at least one of
the above scenarios always occurs (given any a 2 J\J0 and a0 2 J). Assume first
that 1, a, a0 are linearly dependent, and so a0 = �a + µ with �, µ 2 F. In this case,
taking b = �� we have

a0 � (a ⇥ b) = �a + µ + a ⇥ � = �a + µ + �(a� + a� 2
) = �T(a) + µ 2 F,

and so we are in the first scenario.
Assume now that 1, a, a0 are linearly independent. Since dim J = 3 there exist

↵, �, � 2F with a� a� 2 =↵a0+�a+� . We have ↵ 6=0 (for otherwise a� a� 2 =�a+�

implies that �a2+� a 2F, and so a lies in a quadratic extension of F, a contradiction).
Choose b = ↵�1(a + �) and u = ↵. Then a � ub = �� 2 F, and we compute

a0 � ub# = �↵�1�T(a) � ↵�1� � ↵�1�2 2 F,

and so we are in scenario 2, completing the proof. ⇤
Theorem 2.6. Let 0 be a Moufang hexagon, with Convention 1.4 in force.

(1) 0 does not admit a domestic collineation pointwise fixing precisely a large
ideal subhexagon.

(2) 0 admits a collineation ✓ pointwise fixing precisely a large full subhexagon if
and only if 0 is either:
(a) A dual split Cayley hexagon over a field F with char F 6= 3 and X2 +

X + 1 reducible over F. In this case there is a unique class of nontrivial
collineations fixing a large full subhexagon, with each such collineation
having order 3.

(b) A triality hexagon of type 3D4 in which case ✓ is induced by a nontrivial
element of the Galois group, and hence ✓ has order 3.

Proof. (1) Proposition 5.9.11 of [Van Maldeghem 1998] implies that the Moufang
hexagons in classes (H2) and (H3) have no thick ideal subhexagons, and in particular
no large ones. By [Parkinson and Van Maldeghem 2022, Theorem 7.10] no hexagon
in class (H1) admits a domestic automorphism fixing a large ideal subhexagon, and
Lemma 2.4 eliminates the possibility for hexagons in class (H4).

(2) The statements for the split Cayley hexagons follow from the classification
in [Parkinson and Van Maldeghem 2022, Theorem 7.10]. Thus suppose that 0 is
not of class (H1). If 0 admits a collineation pointwise fixing precisely a large full
subhexagon then by Proposition 2.5 0 belongs to the class (H2). It is clear that if ✓

pointwise fixes a dual split Cayley subhexagon 00, then the action on a point row is
essentially a field automorphism — since the Moufang set structure of the point row
is preserved by ✓ , it induces an element of P0L2(J), with J the cubic extension of
F in question; this follows from a result of Hua [1949], see also [Van Maldeghem
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1998, Lemma 8.5.10]. Since the only subhexagon strictly containing 00 is 0 (in view
of the dimension of the corresponding Jordan algebra), ✓ as a whole is determined
by the field automorphism. Since the Galois group is trivial in the 6D4 case, 0 must
be of type 3D4. Since the fixed element set of a nontrivial element ✓ of the Galois
group is precisely a dual split Cayley hexagon, and since this subhexagon is large
and full by Proposition 2.5, it follows from Theorem 1.3 that ✓ is domestic. ⇤
2C. Ovoids and spreads. We now turn to the possibility of collineations fixing
ovoids or spreads.

Theorem 2.7. If 0 is a Moufang hexagon with regular points, then no nontrivial
collineation fixes an ovoid.

Proof. Let O be an ovoid of 0 fixed by some collineation ✓ . We show that ✓

is necessarily the identity. Indeed, choose p, q 2 O , p 6= q. There is a unique
nonthick ideal subhexagon 00 containing p and q; see [Van Maldeghem 1998,
Lemma 1.9.10]. Let p ⇤ Li ⇤ ri ⇤ Mi ⇤ si ⇤ Ki ⇤ q, i = 1, 2, be two distinct paths
joining p with q. Then we select an arbitrary line M3 through r1, M3 /2 {L1, M1}.
Let s3 be the unique point of 00 on M3 distinct from r1. Let r be the unique member
of O collinear to s3. Then r does not belong to 00 since it would otherwise not be
opposite q (by nonthickness of 00). Hence r?? \ p? contains r1 but not r2. Since
✓ fixes p, q, r , it fixes p? \ q?? \ r?? = {r1} (by regularity of points). Hence ✓

fixes L1. It is now easy to see that there are points of O at distance 3 from every
line meeting L implying that ✓ pointwise fixes a full and ideal subhexagon, and
hence is the identity by [Van Maldeghem 1998, Proposition 1.8.2]. ⇤
Corollary 2.8. The hexagons in classes (H1), (H2) and (H3) do not admit collin-
eations whose fixed element set is a spread, and those in class (H4) do not admit
collineations whose fixed element set is either an ovoid or a spread.

Proof. This follows from Proposition 2.3 and Theorem 2.7. ⇤
We must determine whether the hexagons in class (H1), (H2) and (H3) admit

collineations fixing ovoids. In [Parkinson and Van Maldeghem 2022, Theorem 7.10]
we proved that for class (H1) such an automorphism exists if and only if X2 + X +1
is irreducible over F, and so it remains to consider the classes (H2) and (H3).

An automorphism of an hexagonal system (J, F, #) is a vector space isomorphism
h :J!J such that h#=#h; see [Tits and Weiss 2002, Definition 15.17]. In particular,
if h is an hexagonal system automorphism then (ta#)h = tah#, T(ah, bh) =T(a, b),
N(ah) = N(a), and (a ⇥ b)h = ah ⇥ bh for all t 2 F and a, b 2 J. Each hexagonal
system automorphism h : J ! J may also be regarded as an automorphism h 2 G
of the associated Moufang hexagon in the natural way. Since h fixes the base
apartment we have h 2 H , and

hxi (c)h�1 = xi (ch), (2-1)
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for all 1  i  12, where c 2 J for odd i , and c 2 F for even i .
Theorems 2.9 and 2.10 below give the main tools to complete our analysis of

collineations fixing ovoids. In these theorems we will make repeated use of the
formulae listed in Section 1C.

Theorem 2.9. Let 0 be a Moufang hexagon with hexagonal system (J, F, #). Sup-
pose that there exists a nontrivial point-domestic collineation ✓ of 0 fixing an
ovoid O. Then ✓ is conjugate to an element ✓ = hx1(1)s1 with h : J ! J an
hexagonal system automorphism. Moreover:

(1) h3 = 1 and ✓ has order 3.

(2) T(a) = a + ah + ah2
and T(a#) = T(a, ah) for all a 2 J.

(3) The equation z = 1 � z�h has no solution z 2 J\{0}.
Proof. Let P1 = B [ Bs1 B be the parabolic subgroup as in Section 1D, and so
G/P1 is the point set of 0. Up to conjugation, we may assume that the points
P1 and w0 P1 are fixed by ✓ (as |O| � 2 and G acts strongly transitively on 0).
Then ✓ P1 = P1 gives ✓ 2 P1, and since ✓ /2 B (or else a chamber is fixed) we have
✓ = b1s1b2 with b1, b2 2 B. Conjugating further, we may assume that ✓ = bs1.
Then write b = hux1(c) with u 2 U6U5U4U3U2 and h 2 H with c 2 J. Conjugating
by an element of H we may assume that c = 0 or c = 1. Now the fact that ✓

fixes w0 P1 gives w�1
0 hux1(c)s1w0 2 P1, which in turn gives w�1

0 uw0 2 P1. But
w�1

0 uw0 2 U�6U�5U�4U�3U�2, and it follows that u = 1. Thus ✓ = hx1(c)s1 for
some h 2 H and c 2 {0, 1}.

We claim that c = 1. For if c = 0 then ✓ = hs1. Consider the chamber gB =
x6(t)s6s1s6 B with t 6= 0. Then

Bg�1✓gB = Bs616x6(�t)hs1x6(t)s616 B = Bs616x6(�t)x2(t 0)s1616 B

for some t 0 2F\{0}. Since x6(�t)x2(t 0)= x2(t 0)x6(�t)x4(t t 0)= x2(t 0)x4(t t 0)x6(�t)
we can move x2(t 0) to the left, and x6(�t) to the right, where they are each absorbed
into B. Thus

Bg�1✓gB = Bs616x4(t t 0)s1616 B = Bx12(±t t 0)s16161 B = Bw0 B,

and so gB is mapped to an opposite chamber, a contradiction. Thus we have shown
that, up to conjugation, ✓ = hx1(1)s1 for some h 2 H .

Define h : J ! J by

hx1(a)h�1 = x1(ah) for a 2 J.

We will show that h : J ! J is an hexagonal system automorphism, and that (2-1)
holds. First we show that for i 2 {2, 4, 6} and t 2 F we have hxi (t)h�1 = xi (t).



460 JAMES PARKINSON AND HENDRIK VAN MALDEGHEM

Consider the case i = 2. For t 2 F write h�1x2(t)h = x2(t 0). Let g P1 = x2(t)s1616 P1.
Then

P1g�1✓g P1 = P1s6161x2(�t)hx1(1)s1x2(t)s1616 P1

= P1s6161x2(�t 0)x1(1)x6(t)s616 P1.

One now uses commutator relations to push elements of U5 [ U6 to the left (where
they move past s6161, remain positive, and are absorbed into P1), and push elements
of U1 [ U2 [ U3 to the right (where they move past s616, remain positive, and are
absorbed into P1). Using this strategy, a short calculation gives

P1g�1✓g P1 = P1s6161x4(t (t � t 0))s616 P1.

If t (t � t 0) 6= 0 then since s�1
616x4(t (t � t 0))s616 2 U⇤

12 we have P1g�1✓g P1 =
P1s61616 P1, and so the point g P1 is mapped onto an opposite point, a contradiction.
Thus t 0 = t as required. Very similar calculations apply for the cases i = 4, 6 by
considering the points x4(t)s616 P1 and x6(t)s616 P1, respectively.

We return to the proof that h : J ! J is an hexagonal system automorphism.
It is clear from the definition that h : J ! J is bijective with (a + b)h = ah + bh ,
and since 0h = 0 (as h fixes the base apartment) we have (�a)h = �ah . It follows
from the commutator relation [x1(a), x6(t)], and the fact that hxj (t)h�1 = xj (t) for
j 2 {2, 4, 6} and t 2 F, that hxi (a)h�1 = xi (ah) for all i 2 {1, 3, 5} and a 2 J. Then
by (1-9) this extends to negative root groups too. Moreover,

x2(�tN(a))x3((ta#)h)x4(t2N(a))x5((�ta)h)

= [x1(a), x6(t)]h = [x1(ah), x6(t)]
= x2(�tN(a))x3(tah#)x4(t2N(ah))x5(�tah)

shows that (ta)h = tah for all t 2 F and a 2 J, and that a#h = ah# for all a 2 J.
Hence h : J ! J is an hexagonal system automorphism and (2-1) holds.

Now, by assumption ✓ = hx1(1)s1 fixes an ovoid O . Since the point (1) = P1
is fixed, all other points of O are opposite the point P1. The points opposite P1 are
of the form g P1 = x6(t)x5(a)x4(u)x3(b)x2(v)s61616 P1 with t, u, v 2 F and a, b 2 J,
and a direct calculation with commutator relations gives

✓g P1 = hx1(1)s1x6(t)x5(a)x4(u)x3(b)x2(v)s61616 P1

= hx1(1)x2(�t)x3(�a)x4(u)x5(b)x6(v)s61616 P1

= x6(v)x5(bh � v)x4(↵)x3(�)x2(� )s61616 P1,

where ↵ = u � tv + v2 �T(a, b) +T(b#) � vT(b), � = T(b) � v � bh � ah , and
� = �t +T(b) � v �T(a). It follows from these equations that p = (t, a, u, b, v)

is fixed by ✓ if and only if v = t , a = bh � t , and

T(b, bh) = T(b#), T(b) = b + bh + bh2
, T(bh) = T(b). (2-2)
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Recall that an ovoid O has the property that each point of 0 is at distance at most 2
(in the incidence graph) from a point of the ovoid. Consider the points (a1, t1, a2, t2)
with a1, a2 2 J and t1, t2 2 F. These points are at distance 4 from P1 = (1), and
hence must be at distance exactly 2 from one of the above fixed points of ✓ . Thus
there is a line [a1, t1, a2, t2, a3] (with a3 2 J) containing one of the above fixed
points. The equations in Theorem 1.5 then imply that for each a 2 J there must
be a fixed point ( · , a, · , · , · ) 2 O . This in turn implies that the equations in (2-2)
hold for all b 2 J. Hence statement (2) of the theorem holds.

Since T(a) = a + ah + ah2 and T(ah) = T(a) for all a 2 J we have a + ah +
ah2 = ah + ah2 + ah3

, from which it follows that h3 = 1 (as an hexagonal system
automorphism). Thus h3xi (c)h�3 = xi (c) for all i and c, and so h3 = 1 (as an
element of G). Then

✓3 = h3x1(1)s1x1(1)s1x1(1)s1 = s1x7(1)x1(1)x7(1)s2
1 = s4

1 ,

and so ✓3 = 1 (since s4
1 = 1, as noted in Section 1C), hence (1).

Finally, since ✓ fixes no lines it fixes no chambers. Consider the chamber
gB = x1(z)s1 B. We have

✓gB =hx1(1)s1x1(z)s1 B =hx1(1)x7(z)B =hx1(1)x1(�z�1)s1 B = x1(1�z�h)s1 B.

Thus the equation z = 1 � z�h has no solution in J, proving (3). ⇤
The following theorem gives a converse to Theorem 2.9.

Theorem 2.10. Let (J, F, #) be an hexagonal system with Moufang hexagon 0.
Suppose there exists an hexagonal system automorphism h : J ! J of order 1
or 3 such that T(a) = a + ah + ah2

and T(a#) = T(a, ah) for all a 2 J. Then the
automorphism ✓ = hx1(1)s1 of 0 is point-domestic.

Proof. Assume first that |F| > 2. By [Parkinson and Van Maldeghem 2019b,
Lemma 4.1] it suffices to show that no point opposite the base point P1 is mapped
onto an opposite point by ✓ . A generic such point p = (t, a, t 0, a0, t 00) in the BN -pair
language is

g P1 = x6(t)x5(a)x4(t 0)x3(a0)x2(t 00)w0 P1 with t, t 0, t 00 2 F and a, a0 2 J.

By (1-10) point-domesticity is equivalent to the statement that P1g�1✓g P1 6=
P1s61616 P1.

Note that the formula T(c) = c + ch + ch2 and the fact that h has order 1 or 3
implies that T(ch) = T(c) for all c 2 J. A lengthy but straightforward calculation
with commutator relations, using the formulae T(c) = c + ch + ch2 , T(ch) = T(c),
and T(c#) = T(c, ch), shows that

P1g�1✓g P1 = P1w0x6( f )x5(� )x4(0)x3(�
h)x2( f +T(� ))w0 P1,



462 JAMES PARKINSON AND HENDRIK VAN MALDEGHEM

where f = t 00 � t and � = a0h � a � t 00.
Suppose first that f 6= 0. By (1-8) we have

P1g�1✓g P1

= P1w0x12(� f �1)s6( f )x12(� f �1)x5(� )x4(0)x3(�
h)x2( f +T(� ))w0 P1

= P1w0s6( f )x12(� f �1)x5(� )x4(0)x3(�
h)x2( f +T(� ))w0 P1.

Note that P1w0s6( f ) = P1w0s6 (since H  P1). Using the formulae in (1-9) to
push the x12(� f �1) term to the right (where it is absorbed into P1), we obtain
(after some calculation)

P1g�1✓g P1 = P1w0s6x5(� )x4( f �1N(� ))x3( f �1� # + � h)x2( f1)w0 P1

= P1w0x1(�� )x2( f �1N(� ))x3( f �1� # + � h)x4(� f1)s1616 P1,

where f1 = f +T(� ) + f �2N(� ) + f �1T(� #).
Now suppose further that � 6= 0. Similarly to the above, by (1-7) we have

P1g�1✓g P1 = P1w0s1x7(�
�1)x2( f �1N(� ))x3( f �1� # + � h)x4(� f1)s1616 P1.

Using the formulae in (1-9) to push the x7(�
�1) term to the right (where it is

absorbed into P1) we obtain

P1g�1✓g P1 = P1w0s1x2( f �1N(� ))x3(�
h)x4(� f )s1616 P1

= P1w0x6( f �1N(� ))x5(�
h)x4(� f )s616 P1.

Since f �1N(� ) 6= 0 we can use (1-8) again, giving

P1g�1✓g P1 = P1w0s6x12(� f N(� )�1)x5(�
h)x4(� f )s616 P1

= P1w0s6x5(�
h)x4(0)s616 P1

= P1w0x1(�� h)s16 P1,

and using (1-7) gives

P1g�1✓g P1 = P1w0s1x7(�
�h)s16 P1 = P1w0s6 P1 = P1s616 P1,

showing that the point g P1 is mapped by ✓ to distance 4 from g P1 (see (1-10)).
Simpler calculations show that

P1g�1✓g P1 =
⇢

P1 if f = � = 0,

P1s616 P1 if either f = 0 and � 6= 0, or f 6= 0 and � = 0,

completing the proof for the case |F| > 2.
If |F| = 2 then 0 is either the dual split Cayley hexagon with parameters (2, 2), or

the triality hexagon with parameters (2, 8). In the first case h is necessarily trivial,
and in the second case h is a nontrivial element of the Galois group of the cubic
extension F8/F2. The results are easily verified in these cases. ⇤
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Corollary 2.11. No nontrivial collineation of a Moufang hexagon in class (H2)

fixes pointwise an ovoid.

Proof. Let 0 be a Moufang hexagon in class (H2) with hexagonal system (E, F, #).
Thus E is a separable cubic field extension of F (normal in the case 3D4, and not
normal in the case 6D4). Suppose that ✓ is a nontrivial collineation pointwise
fixing an ovoid. Then by Theorem 2.9 we have, up to conjugation, ✓ = hx1(1)s1
where h : E ! E is an hexagonal system automorphism of order 1 or 3 with
T(a) = a + ah + ah2 and T(a#) = T(a, ah) for all a 2 E. We have h 6= 1 (for
otherwise T(a) = 3a for all a 2 E), and so h has order 3.

By [Jacobson 1968, p. 2] the vector space automorphism h : E ! E is in fact an
element of Gal(E/F). Since h has order 3 the 6D4 case is eliminated, as the Galois
group is trivial in this case. Thus 0 is of type 3D4. Choose any a 2 J with ah 6= a
(such a exists as h 6= 1), and let b =a�ah . Then b 6= 0 and T(b)=T(a)�T(ah)= 0.
Let z0 = �bh2

b�1. Since h is a field automorphism we have

z0 � 1 + z�h
0 = �bh2

b�1 � 1 � bhb�1 = �(bh2 + b + bh)b�1 = �T(b)b�1 = 0,

contradicting Theorem 2.9(3). ⇤

We finally turn our attention to hexagons in class (H3). We first discuss the connec-
tion between hexagonal systems of type 9K/F and those of type 9/K. Let (J, F, #)

be an hexagonal system of type 9K/F. By [Tits and Weiss 2002, §§15.39 and
15.41] the hexagonal system (J, F, #) embeds into an hexagonal system (JK, K, #)

of type 9/K, where JK = J ⌦F K and K/F is a quadratic Galois extension. The
extension is determined by first choosing any � 2 K\F, and then defining # on JK by

(a + b�)# = a# + (a ⇥ b)� + b#�2 for a, b 2 J.

Recall from [Tits and Weiss 2002, Examples 15.5 and 15.22] that JK has the
algebraic structure of a cyclic division algebra of degree 3 with centre K.

Lemma 2.12. Let (J, F, #) be an hexagonal system of type 9K/F and let (JK, K, #)

be the associated hexagonal system of type 9/K described above. Suppose that
h : J ! J is an hexagonal system automorphism of order 3 with T(a) = a +ah +ah2

and T(a#) = T(a, ah) for all a 2 J. Then h extends to an order 3 hexagonal system
automorphism h : JK ! JK with T(↵) = ↵ + ↵h + ↵h2

and T(↵#) = T(↵, ↵h) for
all ↵ 2 JK.

Proof. Define (a + b�)h = ah + bh� for a, b 2 J. Let X2 � t X � s be the minimal
polynomial of � over F. Then

(a + b�)#h = ((a# + sb#) + (a ⇥ b + tb#)�)h = (a# + sb#)h + (a ⇥ b + tb#)h�,
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and since h : J ! J is an hexagonal system automorphism it follows that

(a + b�)#h = (ah# + sbh#) + (ah ⇥ bh + tbh#)� = (a + b�)h#.

Thus h : JK ! JK is an hexagonal system automorphism, and it is clear that it has
order 3.

Since T(↵) = T(a) +T(b)� if ↵ = a + b� we have T(↵) = ↵ + ↵h + ↵h2 for all
↵ 2 JK. Moreover, since T(↵, �) = T(↵�) in systems of type 9/K (see [Tits and
Weiss 2002, §15.6 and Example 15.22]) we have

T(↵, ↵h) = T(a + b�, ah + bh�)

= T(aah + (abh + bah)� + bbh�2)

= T(a, ah) +T(abh + bah)� +T(b, bh)�2

= T(a#) + [T(a, bh) +T(b, ah)]� +T(b#)�2.

But since a ⇥ b = (a + b)# � a# � b# (see [Tits and Weiss 2002, Definition 15.15]),
we have

T(a ⇥ b) = T((a + b)#) �T(a#) �T(b#)

= T(a + b, ah + bh) �T(a#) �T(b#)

= T(a, ah) +T(a, bh) +T(b, ah) +T(b, bh) �T(a#) �T(b#)

= T(a, bh) +T(b, ah).

Thus

T(↵, ↵h) = T(a#) +T(a ⇥ b)� +T(b#)�2 = T(a# + (a ⇥ b)� + b#�2) = T(↵#),

completing the proof. ⇤

Recall from [Tits and Weiss 2002, Example 15.5, §15.9 and Example 15.22] the
explicit model of the 9/F hexagonal systems. In particular there is a cubic Galois
extension E/F, a generator � 2 Gal(E/F), and an element � 2 F\N(E) such that
each element ↵ 2 J can be written in a unique way as

↵ = a + by + cy2 with a, b, c 2 E,

with multiplication given by the rules

y3 = � and ya = a� y for all a 2 E.

We shall record this situation by denoting the division algebra J by J = (E, �, � ).
We have

(a + by + cy2)# = (a# � � b� c� 2
) + (� c�# � a� 2

b)y + (b� 2# � a� c)y2. (2-3)
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Lemma 2.13. Let (J, F, #) be an hexagonal system of type 9/F with J = (E, �, � ).
Let e 2 E\F and z 2 J\E. The elements 1, e, e#, z, z#, e ⇥ z, e ⇥ z#, e# ⇥ z, e# ⇥ z#

form a basis of J.

Proof. Write z = a + by + cy2. Since {1, e, e#} span E (because the span is
closed under #, has dimension at most 3, and strictly contains F) it is clear that
we may assume that a = 0. Moreover, by [Tits and Weiss 2002, §15.6(iv) and
Definition 15.15(xi)] we have z2 = T(z)z � 1 ⇥ z# = T(z)z � T(z#) + z# and
so z# = z2 � T(z)z + T(z#), and so we may replace each occurrence of z# in
the spanning set by z2 without changing the vector space spanned (recall that
u ⇥ v = (u + v)# � u# � v#). We compute z2 = � (bc� + b� c) + � cc� 2

y + bb� y2,
and thus we may further replace each occurrence of z2 in the spanning set with z0 =
z2�� (bc� +b� c)= � cc� 2

y+bb� y2 without changing the space spanned. Thus we
must show that J is spanned by the elements 1, e, e#, z, z0, e⇥z, e⇥z0, e#⇥z, e#⇥z0.
Let V be the span of these elements. Since z = T(z) � 1 ⇥ z we have

V 3 �z + µ(e ⇥ z) + ⌫(e# ⇥ z) = �T(z) + (�� + µe + ⌫e#) ⇥ z,

and since {1, e, e#} is an F-basis of E it follows that f ⇥ z 2 V, and similarly
f ⇥ z0 2 V, for all f 2 E. For f 2 E we have

f ⇥ z = � f � 2
by � f � cy2,

f ⇥ z0 = �� f � 2
cc� 2

y � f � bb� y2.

Thus it is clear that if either b = 0 or c = 0 then gy, gy2 2 V for all g 2 E, and
hence V = J. So suppose that b, c 6= 0. Let � = N(b)� �N(c), and note that � 2 F

with � 6= 0, since � /2 N(E). Let g 2 E be arbitrary, and let g1 = ���1bb� 2
g� and

g2 = ���1c� 2
g� . Then

V 3 g1 ⇥ z = ��1N(b)gy + ��1bb� cg� 2
y2,

V 3 g2 ⇥ z0 = ��1�N(c)gy + ��1bb� cg� 2
y2.

Subtracting gives that ��1(N(b)� �N(c))gy = gy 2 V for all g 2 E. Similarly we
have gy2 2 V for all g 2 E, and hence V = E as required. ⇤
Corollary 2.14. No nontrivial collineation of a Moufang hexagon in class (H3)

fixes pointwise an ovoid.

Proof. Let 0 be a Moufang hexagon in class (H3) with hexagonal system (J, F, #).
Suppose that ✓ is a nontrivial collineation pointwise fixing an ovoid. Then by
Theorem 2.9 we have, up to conjugation, ✓ = hx1(1)s1 where h : J ! J is an
hexagonal system automorphism of order 1 or 3 with T(a) = a + ah + ah2 and
T(a#) = T(a, ah) for all a 2 J. We have h 6= 1 (for otherwise T(a) = 3a for all
a 2 J) and so h has order 3.

By [Tits and Weiss 2002, §30.6] there exists J0  J such that (J0, F, #) is of
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class (H2). Let a 2 J0\F, and so J0 = spanF{1, a, a#}. If ah 2 J0 then J0 is stable
under h (since ah2 = T(a) � a � ah), and so ✓ stabilises the Moufang hexagon
00 associated to (J0, F, #) and is point domestic fixing no lines of this hexagon,
contradicting Corollary 2.11. Thus ah /2 J0. Then by [Tits and Weiss 2002, §30.17]
there is a subspace J00  J with J0 [ {ah} ✓ J00 such that (J00, F, #) is an hexagonal
system of type 9/F or 9K/F for some quadratic Galois extension K/F. It follows
from Lemma 2.13 (along with the discussion just before Lemma 2.12 to extend a
9K/F system to a 9/K system) that the elements 1, a, a#, ah , ah#, a ⇥ ah , a ⇥ ah#,
a# ⇥ ah , a# ⇥ ah# form a basis of J00. Hence J00 is stable under h, and so the
Moufang hexagon 000 associated to (J00, F, #) is stabilised by ✓ . Moreover, since
✓ is point-domestic and fixes no lines of 0 then ✓ restricted to 000 also has these
properties, and so ✓ fixes an ovoid of 000.

Thus it is sufficient to eliminate the possibility of a nontrivial collineation ✓ of a
Moufang hexagon of type 9/F or 9K/F fixing pointwise an ovoid. Consider first
the 9/F case. Let (J, F, #) be of type 9/F, and so J is a noncommutative cyclic
division algebra of degree 3 with centre F. By [Jacobson 1968, p. 2] the vector
space automorphism h : J ! J is either an algebra automorphism, or an algebra
antiautomorphism. The latter case is impossible as h has order 3, and hence h
is an algebra automorphism. Following the argument of Corollary 2.11 there is
b 2 J\{0} with T(b)= 0. Then z0 =�bh2

b�1 satisfies z0�1+z�h
0 =�T(b)b�1 = 0,

contradicting Theorem 2.9(3).
We now consider the 9K/F case. We cannot directly use the argument of the

previous paragraph, because hexagonal systems of type 9K/F lack the algebraic
structure required to form the element z0 = �bh2

b�1. Instead we argue as follows.
Let 0 be a Moufang hexagon with hexagonal system (J, F, #) of type 9K/F. If 0

admits a point-domestic collineation fixing an ovoid then by Theorem 2.9 there is an
hexagonal system automorphism h : J ! J of order 3 such that T(a) = a +ah +ah2

and T(a#) = T(a, ah) for all a 2 J. By Lemma 2.12 the map h extends to an
automorphism of the hexagonal system (JK, K, #) of type 9/K such that h :JK !JK

has order 3 and satisfies T(↵) = ↵ +↵h +↵h2 and T(↵#) = T(↵, ↵h) for all ↵ 2 JK.
But then by Theorem 2.10 the extended automorphism ✓ =hx1(1)s1 of the associated
hexagon 0K of type 9/K is point-domestic. Since ✓ does not fix an ovoid of 0K (by
the previous paragraph) it must fix a large full subhexagon of 0K (by Theorem 1.3
and Lemma 2.2), contradicting Proposition 2.5. ⇤

2D. Proof of the main theorem. We now have all ingredients for the proof of
Theorem 1.

Proof of Theorem 1. Let 0 be a Moufang hexagon (with Convention 1.4 in force).
Suppose that ✓ is a nontrivial line-domestic collineation. By Theorem 1.3 the fixed
element structure of ✓ is either (i) a ball of radius 3 centred at a point, (ii) a large
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ideal subhexagon, or (iii) a spread. Case (ii) is eliminated by Theorem 2.6, and
case (iii) is eliminated by Corollary 2.8. By Lemma 2.1 there is a unique class of
collineations in case (i).

Suppose now that ✓ is a nontrivial point-domestic collineation. By Theorem 1.3
the fixed element structure of ✓ is either (i) a ball of radius 3 centred at a line,
(ii) a large full subhexagon, or (iii) an ovoid. Lemma 2.2 deals with case (i), and
Theorem 2.6 deals with case (ii). Case (iii) is dealt with by Corollaries 2.8, 2.11
and 2.14.

Finally, the statements on exceptional domestic collineations follow from Theo-
rems 1.1 and 1.2. ⇤

2E. Concluding comments. We conclude by providing an independent geometric
proof of Corollary 2.11, and a uniform description of all examples of point-domestic
collineations of Moufang hexagons.

Recall from [Ronan 1980] (see also [Van Maldeghem 1998, Theorem 6.3.2]) that
all points and all lines of a Moufang hexagon 0 are distance-3-regular. Suppose
that p, q 2 0 are opposite points, and consider the set L(p, q) of all lines that
are at distance 3 in the incidence graph from both p and q. The imaginary line
determined by p, q is

I (p, q) = {r 2 P | d(L , r) = 3 for all L 2 L(p, q)},
where d(L , r) denotes distance in the incidence graph. By distance-3-regularity the
set I (p, q) is determined by any two lines L , L 0 2 L(p, q) with L 6= L 0.

Proposition 2.15. Let 0 be a Moufang hexagon and suppose ✓ is a domestic
collineation only fixing points (hence the fixed point structure is an ovoid O). Then:

(i) ✓ has order 3.

(ii) There exists a full dual split Cayley subhexagon stabilised by ✓ .

(iii) Every full subhexagon stabilised under ✓ contains an ovoid fixed by ✓ .

(iv) O is closed under taking imaginary lines.

Proof. Let p, q be two points of the ovoid O (the fixed point set of ✓). Let
p ⇤ Li ⇤ ri ⇤ Mi ⇤ si ⇤ Ki ⇤ q, i = 1, 2, be two distinct paths joining p with q, with
L✓

1 = L2. Select r 0
1 2 L1 \ {p, r1} and let s 0

1 be the unique point collinear to r 0
1 and

at distance 3 from K2. Then s 0
1 is contained in the unique full nonthick subhexagon

000 defined by L1 and K2. Let r 2 O be collinear to s 0
1. Then r /2 000 since r is

opposite p and q. So rs 0
1 does not belong to 000 and hence the unique line M 0

2
through r2 at distance 4 from rs 0

1 is distinct from M2 and from L2. Hence r2, s1,
M2, M 0

2, L2 are contained in a unique full dual split Cayley subhexagon 00. The
latter contains r 0

1, hence s 0
1, hence rs 0

1, hence r . Now the lines L2, M2 and K2 are
contained in 00 \00✓ , and so is the point r . It follows that the shortest path from
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r to K2 is contained in 00 \ 00✓ , and hence s 0
1 is also contained in it. Then also

r 0
1, L1, M1, K1, M 0

2 2 00 \00✓ . Hence 00 ✓ 00 \00✓ , and we conclude that 00✓ = 00.
This shows (ii).

Now, by [Parkinson and Van Maldeghem 2022, Theorem 7.10] we know that ✓3

fixes 00 pointwise. As in the last line of the proof of Theorem 2.7, we conclude
that ✓3 is the identity, proving (i).

Now let 00 be any full subhexagon and let x be any point in it, not contained
in O . Let a 2 O be collinear to x . Then x✓ is collinear to a, and it readily follows
that a 2 00, since either x✓ lies on xa, and then by fullness, a 2 xx✓ ✓ 00, or not,
and then a is the unique point collinear to both x and x✓ . Hence O \00 is an ovoid
of 00. This proves (iii).

Now (iv) follows from the fact that every ovoid in a dual split Cayley hexagon
fixed by a domestic collineation is a Hermitian ovoid and hence closed under taking
imaginary lines. ⇤
Geometric proof of Corollary 2.11. Let 0 be of class (H2). Suppose that ✓ is a
collineation of 0 fixing precisely an ovoid O . By Proposition 2.15(ii) and (iii),
there exists a full proper dual split Cayley subhexagon 00 stabilised by ✓ and such
that O 0 = 00 \ O is an ovoid of 00. Let p 2 O \ O 0. Then, by Proposition 2.5 there
is a unique point t 2 0 collinear to p. Since both p and 00 are stabilised by ✓ , so
too is t , a contradiction. ⇤

The following Corollary shows that all point-domestic collineations can be
uniformly described using the setup of Theorem 2.10.

Corollary 2.16. Let 0 be a Moufang hexagon with hexagonal system (J, F, #). Let
✓ = hx1(1)s1 with h an automorphism of (J, F, #).

(1) If 0 is of class (H1) and h = 1 then ✓ is point-domestic. Moreover:
(a) If X2 + X + 1 is irreducible over F then ✓ fixes an ovoid.
(b) If X2 + X +1 is not irreducible over F then ✓ fixes a large full subhexagon.

(2) If 0 is of class (H4) and h = 1 then ✓ is point-domestic and fixes a ball of
radius 3 in the incidence graph centred at a line.

(3) If 0 is a triality hexagon of type 3D4 and h = � is a nontrivial element of the
Galois group then ✓ is point-domestic and fixes a large full subhexagon.

This gives the complete list of point-domestic collineations of Moufang hexagons.

Proof. In each case the given element h satisfies the conditions of Theorem 2.10,
and hence ✓ = hx1(1)s1 is point-domestic. Claim (1) follows from [Parkinson and
Van Maldeghem 2022, Theorem 7.10] (it is also easy to check directly because
✓ fixes a chamber if and only if X2 + X + 1 is not irreducible over F). Claim
(2) follows because we have already shown that for hexagons in class (H4) it is
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impossible to fix an ovoid or a large full subhexagon, leaving only a ball of radius 3
centred at a line remaining. For claim (3), the case of a ball of radius 3 centred at a
line has already been eliminated, and so it suffices to show that there is a chamber
fixed. Let gB = x1(z)s1 B with z 6= 0. We have, as in Corollary 2.11,

✓gB = � x1(1)s1x1(z)s1 B = � x1(1)x7(z)B

= � x1(1)x1(�z�1)s1 B = x1(1 � z�� )s1 B.

Thus the chamber gB is fixed if and only if z = 1 � z�� , or equivalently zz� �
z� + 1 = 0. Choose any a 2 J (a cubic Galois extension of F) with a� 6= a and let
b = a � a� . Then b 6= 0 with T(b) = 0. Then the element z = �b� 2

b�1 satisfies
zz� � z� + 1 = b� 2

b�� + bb�� + 1 = T(b)b�� = 0.
The fact that the list of examples is complete is a consequence of Theorem 1. ⇤

Remark 2.17. In case (3) of Corollary 2.16 it is easy to see that the element
✓ = � x1(1)s1 is conjugate to � (as expected by Theorem 2.6). Since the fixed
element set of � is clearly the dual split Cayley subhexagon, and since Theorem 2.10
implies � is domestic, it follows from Theorem 1.3 that the dual split Cayley hexagon
is large in the 3D4 triality hexagon, giving an independent proof of the “if” direction
of Proposition 2.5.
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