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Mixed relations for buildings of type F4

Johannes Roth and Hendrik Van Maldeghem

Dedicated to the memory of Jacques Tits

The main result of this paper is an explicit description of the representation of
the metasymplectic space related to an arbitrary building of mixed type F4 in
25-dimensional projective space. As an application, we study collineations of
such spaces the fixed point structure of which is a Moufang quadrangle. We show
that the exceptional Moufang quadrangles of type F4 can be obtained as the inter-
section of the mixed metasymplectic space with a Baer subspace of the ambient
projective space. We also determine the group of collineations fixing a mixed
quadrangle and, more surprisingly, observe that it has infinite order, whereas it
was generally believed to have just order 2. Finally, we classify collineations of
the mixed metasymplectic space fixing mixed Moufang quadrangles arising from
subspaces.

1. Introduction

The notion of a group of mixed type is due to Jacques Tits, see for instance [16]. In
fact, Jacques seems to have cared a lot about mixed phenomena, and recognized them
rather early. We can mention his general construction [15] of the Suzuki groups, of
both classes of Ree groups, using in particular nonperfect fields, and his construction
and classification of Moufang quadrangles of mixed type [18]. Moreover, in [16],
Jacques describes an at that time new class of Moufang hexagons, namely precisely
the ones of mixed type. In the same book he classifies the buildings of type F4,
and also here, one of the five classes is the class of mixed type. These were
neglected by Freudenthal, who was well aware of all other classes. But, as well
known, the only class of Moufang quadrangles which was overlooked by Jacques
Tits in his original conjecture [17] were exactly those of mixed type F4, which are
constructed using a properly mixed building of type F4. The quadrangles themselves
were abstractly first constructed by Richard Weiss, and recognized as fixed point

MSC2020: 51E24.
Keywords: Tits-buildings, metasymplectic spaces, Moufang quadrangles, mixed groups.

© 2023 MSP (Mathematical Sciences Publishers).



544 JOHANNES ROTH AND HENDRIK VAN MALDEGHEM

structures of a semilinear involution in buildings of mixed type F4 (so to speak
“mixed Galois descent”) by Bernhard Mühlherr and Hendrik Van Maldeghem [7].
In the latter paper, it is also described how linear involutions give rise to Moufang
quadrangles, which are of purely mixed type. In the present paper we construct the
mixed buildings of type F4 as varieties, or as metasymplectic spaces embedded in
projective spaces of dimension 25 and show that these involutions can be extended
to the projective spaces, implying that the associated Moufang quadrangles can be
defined as the intersection of the varieties with either a Baer subspace, or a linear
subspace (of dimension 15). In the case of mixed Galois descent, this really shows
the similarity with ordinary Galois descent in linear algebraic groups, since we just
take the rational points of a linear group.

However, our focus here is not on the mixed Galois descent (as there are other
papers dealing with these in a much better algebraic way, see e.g., [3; 4]). Instead,
we direct our attention to the linear case. “Linearization” of Galois descent groups
have attracted some interest lately in connection with automorphisms of buildings
with a restricted displacement spectrum. On top, it seems like the “linear descent
groups” have a richer structure than their Galois counterparts. For instance, the
Galois (descent) group related to the Tits index E28

6,2 (see [14])

defining an octonion projective plane, has only order 2 whereas its linear analogue
defining a quaternion projective plane consists of the multiplicative group of quater-
nion numbers with norm 1 (this is proved in ongoing work of Van Maldeghem with
Yannick Neyt, James Parkinson and Magali Victoor in a paper in progress). For a
long time, it was believed that the linear involution defining a mixed quadrangle in
a mixed building of type F4 is unique. In this paper we show that also that linear
descent group has a richer structure.

The main achievement of this paper is an explicit description of the representation
of the metasymplectic space related to an arbitrary building of mixed type F4 in
25-dimensional projective space. It was also the main object of Roth’s PhD thesis
(under the guidance of Van Maldeghem). The construction and the proof that the
construction works requires some long but rather elementary calculations, and we
will often leave these to the reader. A lot of computations can be found in Roth’s
PhD thesis [10]. The usefulness of this construction shall be demonstrated by the
application to the descent groups mentioned above.

We now briefly comment on the construction itself. Buildings of type E6 are
generally best approached via the shadow geometry of type E6,1, meaning that we
consider the geometry 1 = E6,1(K) of vertices of type 1 of a building of type E6
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over a field K, where the lines are the panels of cotype 1. It is well known that 1

has a unique embedding E6,1(K) in (and spanning) PG(26, K), the 26-dimensional
projective space over K. It is also folklore that the shadow geometry F4,4(K)

analogously defined from a (split) building of type F4 over K has a representation
F4,4(K) in PG(25, K) arising from intersecting E6,1(K) with an appropriate hyper-
plane. However, not all lines on F4,4(K) are lines of F4,4(K). Hence collinearity
in F4,4(K) does not coincide with collinearity on F4,4(K). There is an algebraic
description of F4,4(K), as a point set; is there also an algebraic description of the
collinearity on F4,4(K)? We will deduce one in case char K = 2.

Now, in general, for each quadratic alternative division algebra A over K, there
exists a building of type F4 whose planes are coordinatized by K and A according
to the following picture:

K K A A

(black nodes represent short roots in the underlying root system). Now, if char K =2,
then we can consider a subfield K0  K such that K2  K0 (the notation K2 means
the set of all squares in K). It follows that K can be seen in a natural way as a
quadratic associative and commutative division algebra over K0. Therefore there
exists a well defined building F4(K

0, K) with diagram:

K0 K0 K K

It is the building of mixed type F4 associated to the pair of fields (K0, K). It is
for the corresponding shadow geometry F4,4(K

0, K) of that building that we are
going to provide algebraic equations and relations to fully describe the standard
embedding in PG(25, K).

About the proof — Structure of the paper. The proof that the construction works
will deviate slightly from the proof in [10] in that we avoid the study and use of the
corresponding groups with a BN-pair, and the Lie-algebras. We emphasize though
that this approach was very fruitful to discover the mixed relations (see below).
However, once these relations are established, a different, more geometric, road can
be taken to prove them. Large parts remain the same, though. The main difference
is that we are going to recognize the geometry F4,4(K

0, K) in a local fashion. This
entails an adequate description of the local geometry, which is obtained by looking
at the lines through a point; the type can be obtained by deleting in the diagram the
vertex representing the points. We obtain:

K0 K0 K
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This is a mixed dual polar space. Therefore, we start in Section 2 with describing
an embedding of that geometry. We will derive it from a general description of the
universal embeddings of dual polar spaces related to quadratic alternative division
algebras as contained in [2].

Sections 2 and 3 perform preliminary work. In Section 3 we determine all
collineations of certain mixed polar spaces of rank 3 with a given set of fixed points.
This will enable us later to determine the linear descent group related to the linear
“homogeneous involutions” constructed in [7].

In Section 4 we show the main result: We construct the geometry F4,4(K
0, K),

which we will refer to as a mixed metasymplectic space, in PG(25, K), using
quadratic algebraic expressions. This will be done by first describing E6,1(K) (see
above), intersecting with a suitable hyperplane, and then imposing a set of mixed
relations, short ones and long one. We show that the stabilizer in PG(25, K) of the
set of points satisfying all relations acts transitively on that set, and that it is locally
a mixed dual polar space.

In Section 5 we discuss collineations with common fixed point structure (that is
also a mixed Moufang quadrangle). In Section 6 we classify collineations fixing
mixed Moufang quadrangles arising from subspaces. As we will explain, this has
to do with our interest in automorphisms of spherical buildings having a restricted
displacement spectrum.

Notation — Terminology. We will use standard notation as much as we can. The
geometries under consideration are in fact parapolar spaces, but we try to avoid
the theory of parapolar spaces. We will use some terminology, though, related to
that theory. Points in projective space will usually be denoted by the span hvi of
a vector v belonging to the associated underlying vector space; in coordinates we
leave out the brackets since we conceive coordinate-tuples be determined up to a
nonzero scalar.

2. The mixed dual polar space B3,3(K
0, K)

Let K be a field in characteristic 2 and let K0  K be a subfield such that K2  K0.
The mixed polar space B3,1(K

0, K) is the shadow geometry with diagram:

K0 K0 K

If K0 = K2, then it is the symplectic polar space in PG(5, K0); otherwise it can be
explicitly defined as the points and lines contained in the set of points of PG(5, K0)
with coordinate tuple (x1, x2, x3, x4, x5, x6) satisfying the mixed relation

X1 X2 + X3 X4 + X5 X6 2 K2.
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The corresponding dual polar space B3,3(K
0, K) is the geometry of planes and

plane pencils in B3,1(K
0, K) and has the following explicit description, providing

right away an embedding in projective space. First note that in [2] the polar
spaces are given in their symplectic disguise, meaning with respect to the diagram
C3(K

0, K2):

K0 K0 K2

Hence we can consider K0 and K2 as vector spaces over K2 an define a vector space
U as the direct sum

K2 � K2 � K2 � K2 � K0 � K0 � K0 � K2 � K2 � K2 � K0 � K0 � K0 � K2,

and consider the corresponding projective space PG(U ). In that space we gather
the following set S of points, given by eight different types, according to the zeros
appearing in the coordinates at certain places. We let k, `, m run through K, and
x, x1, x2, x3 through K0

(1,k2,`2,m2, x1, x2, x3,`
2m2+x2

1 ,k2m2+x2
2 ,k2`2+x2

3 ,k2x1+x2x3,

`2x2+x1x3,m2x3+x1x2,k2`2m2+k2x2
1+`2x2

2+m2x2
3), (VIII)

(0, x2
3 , 1, x2

1 , x1, x1x3, x3, k2, `2x2
1 + k2x2

3 , `2,

x2x3 + `2x1, x2, x1x2 + k2x3, k2`2 + x2
2), (VII)

(0, x2
2 , 0, 1, 0, x2, 0, k2, `2, k2x2

2 , x1x2, k2x2, x1, k2`2 + x2
1), (VI)

(0, 0, 0, 0, 0, 0, 0, 1, x2
1 , x2

2 , x1x2, x2, x1, k2), (V)

(0, 1, 0, 0, 0, 0, 0, 0, k2, `2, x, 0, 0, `2k2 + x2), (IV)

(0, 0, 0, 0, 0, 0, 0, 0, x2, 1, x, 0, 0, k2), (III)

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, k2), (II)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). (I)

Suppose two points p1, p2 2 S are such that the line hp1, p2i intersects the
subspace

N = (0, 0, 0, 0, ⇤, ⇤, ⇤, 0, 0, 0, ⇤, ⇤, ⇤, 0)

nontrivially. It is clear that both points must have the same type. For instance, let
their type be (VIII). Then, with self-explaining notation for the coordinates of p1
and p2, we have k1 = k2, `1 = `2, m1 = m2, x1 = y1, x2 = y2 and x3 = y3. So, N
behaves like a nucleus subspace and we can project injectively the whole dual polar
space S from it. Moreover, we can apply the isomorphism PG(7, K2) ! PG(7, K)

that takes the square root of each coordinate. This way we obtain the following
representation V of B3,3(K

0, K)⇠=C3,3(K
0, K2), it consists precisely of the following

points (where l, `, m run through K, and x, x1, x2, x3 through K0):



548 JOHANNES ROTH AND HENDRIK VAN MALDEGHEM

(VIII) (1, k, `, m, `m + x1, km + x2, k` + x3, k`m + kx1 + `x2 + mx3).

(VII) (0, x3, 1, x1, k, `x1 + kx3, `, k` + x2).

(VI) (0, x2, 0, 1, k, `, kx2, k` + x1).

(V) (0, 0, 0, 0, 1, x1, x2, k).

(IV) (0, 1, 0, 0, 0, k, `, `k + x).

(III) (0, 0, 0, 0, 0, x, 1, k).

(II) (0, 0, 0, 0, 0, 1, 0, k).

(I) (0, 0, 0, 0, 0, 0, 0, 1).

We denote these coordinates by (z0, z1, z2, z3, z4, z5, z6, z7) and prove:

Proposition 2.1. The set V coincides exactly with (z0, z1, z2, z3, z4, z5, z6, z7), the
set of points satisfying:

(a) Z0 Z7 + Z1 Z4 + Z2 Z5 + Z3 Z6 = 0.

(b) Z0 Z4 + Z2 Z3 2 K0.

(c) Z0 Z5 + Z1 Z3 2 K0.

(d) Z0 Z6 + Z1 Z2 2 K0.

(e) Z7 Z1 + Z5 Z6 2 K0.

(f) Z7 Z2 + Z4 Z6 2 K0.

(g) Z7 Z3 + Z4 X5 2 K0.

Proof. It is easy to verify that the coordinates of all points of V satisfy these
relations. Now assume that a point with coordinates (z0, z1, . . . , z7) satisfies the
above relations. Suppose first that z0 6= 0. Then we may assume z0 = 1. Set z1 = k,
z2 = ` and z3 = m. Relation (b) yields x1 2 K0 such that z4 = x1 + `m. Likewise
Relations (c) and (d) yield x2, x3 2 K0 with z5 = x2 + km and z6 = x3 + k`. Then
Relation (a) yields z7 = k(`m + x1) + `(km + x2) + m(k` + x3) = k`m + kx1 +
`x2 + mx3, and we obtain a point of type (VIII).

Now suppose z0 = 0. Then we first assume that z2 6= 0, so that we can set z2 = 1.
We set z1 = x3, z3 = x1, z4 =k and z6 =`. Relation (b) implies x1 2K0 ad Relation (d)
yields x3 2 K0. Relation (f) yields x2 2 K0 such that z7 = x2 + z4z6 = x2 + k`.
Finally Relation (a) implies z5 = z1z4 + z3z6 = kx3 + `x1. We obtain a point of
type (VII).

So we may assume z0 = z2 = 0. Assume first that z3 6= 0, so that we may
take z3 = 1. We set z1 = x2, z4 = k and z5 = `. Relation (c) implies x2 2 K0.
Relation (g) yields x1 2 K0 such that z7 = x2 + z4z5 = x2 + k`. Relation (a) then
implies z6 = z1z4 = kx2. This yields a point of type (VI).
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So we may assume z0 = z2 = z3 = 0. Assume first z4 6= 0, so that we may take
z4 = 1. Relation (a) implies z1 = 0. Relations (f) and (g) imply z5, z6 2 K0. We
obtain a point of type (V). If z1 6= 0, we may set z1 = 1, and then z4 = 0. Relation (e)
yields x 2 K0 so that z7 = z5z6 + x . This gives rise to a point of type (IV). If also
z1 = 0, we can first assume z6 = 1, so that Relation (e) implies z5 2 K0. This gives
a type (III) point. If z6 = 0, then types (II) and (I) follow. ⇤

3. Quadrangles of mixed type

Let K be a field of characteristic 2 and let � := C2,1(K) = C2,1(K, K) be the
corresponding symplectic quadrangle. That is, the point set of � is the point
set of PG(3, K) and the lines are the lines of PG(3, K) that are totally isotropic
with respect to the nondegenerate alternating form X1Y2 + X2Y1 + X3Y4 + X4Y3.
Now let K0 be a subfield of K containing all squares of K; so we again have
K2  K0  K. Then the points of PG(3, K) whose coordinates (x1, x2, x3, x4)

satisfy X1 X2 + X3 X4 2 K0 induce a (mixed) subquadrangle �0 of �; if K0 6= K,
then the lines of �0 are determined by the point set in that they are the only lines of
PG(3, K) fully contained in �0. Indeed, suppose first two points p = (x1, x2, x3, x4)

and q = (y1, y2, y3, y4) of �0 are collinear in �; then for each k 2 K, we have

(x1 + ky1)(x2 + ky2) + (x3 + ky3)(x4 + ky4)

= (x1x2 + x3x4) + (y1 y2 + y3 y4) + k(x1 y2 + x2 y1 + x3 y4 + x4 y3),

which implies that all points of the line hp, qi of PG(3, K) belong to �0. Suppose
now that p = (x1, x2, x3, x4) and q = (y1, y2, y3, y4) are points of �0 not collinear
in �, but that every point of the line hp, qi lies in �0. Then the calculation above
implies that x1 y2 + x2 y1 + x3 y4 + x4 y3 = 0, contradicting the assumption.

We denote the quadrangle �0 as C2,1(K, K0). The point rows of � are canonically
projective lines over K; the line pencils are canonically projective lines over K0.
Indeed, the isomorphism class of a line pencil is given by (1, 0, 0, 0)?\(0, 1, 0, 0)?,
which is the set {(0, 0, x3, x4) | x3x4 2 K0}. This set equals {(0, 0, 0, 1)} [
{(0, 0, 1, x) | x 2 K0}.

Now let L ✓ K be a vector space over K0 containing K0 and generating K as
a ring. Let L 0 ✓ K0 be a vector space over K2 containing K2 and generating K0

as a ring. Then we restrict the coordinates to L and consider only those points
(x1, x2, x3, x4) satisfying X1 X2 + X3 X4 2 L 0. Again this defines a generalized
quadrangle, denoted C2,1(K, K0; L , L 0), also called a quadrangle of mixed type. If
L = K and L 0 = K0, then C2,1(K, K0; L , L 0) coincides with C2,1(K, K0).

We now define a special and particular kind of quadrangles of mixed type. Again
let K and K0 be as above. Let ↵ 2 K0\K2 and � 2 K\K0. Then K2(↵) is a quadratic
extension of K2 contained in K0, hence also in the quadratic extension K0(�) of K0.
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Also �K0 is contained in K0(�) and since K0(�) is, as a vector space over K0, and
hence also over K2(↵), the direct sum of K0 and �K0, we see that K2(↵) + �K0 is
a vector space over K2(↵). We set L = ��1K2(↵) + K0. It is a vector space over
K2(↵) containing K2(↵) and being itself contained in K0(�). Clearly L generates
K0(�) as a ring. Likewise, L 0 := ↵K02(�2) + K2 is a vector space over K02(�2)

contained in, and generating as a ring, K2(↵). Hence we have a mixed quadrangle
Q = C2,1(K

0(�), K2(↵); L , L 0). A point row of Q is the projective line PG(1, L)

over L , which is itself a vector space over K2(↵).
We now want to embed this point row in an algebraic way as an ovoid in a polar

space of mixed type and rank 3.
Let 1 := C3,1(K, K0) be the polar space of mixed type and rank 3 defined

by the points of PG(5, K) whose coordinates (x1, x2, . . . , x6) satisfy X1 X4 +
X2 X5 + X3 X6 2 K0. Consider the following involution: ✓ : (x1, x2, . . . , x6) 7!
(x 0

1, x 0
2, . . . , x 0

6), with

x 0
1 = x1, x 0

4 = x4, x 0
2 = ↵��1x5, x 0

5 = ↵�1�x2, x 0
3 = ��1x6, x 0

6 = �x3.

In the sequel we shall denote this briefly by

x1 7!x1, x4 7!x4, x2 7!↵��1x5, x5 7!↵�1�x2, x3 7!��1x6, x6 7!�x3.

It is easily checked that a generic fixed point, for xi 2 K, i = 1, 4, 5, 6, has
coordinates (x1, ↵��1x5, �

�1x6, x4, x5, x6). The condition to belong to 1 is

x1x4 + ↵��1x2
5 + ��1x2

6 2 K0.

Setting (1) = (0, 0, 0, 1, 0, 0) and z = x4 +��1(x2
6 +↵x2

5), this fixed point set can
be identified with

F = {(1)}[ {(1, ↵��1x5, �
�1x6, z +��1(x2

6 +↵x2
5), x5, x6) | x5, x6 2 K, z 2 K0},

that is in other words, {(1)} [ L , with L = ��1K2(↵) + K0, as above.
With action on the left, it is immediate that every linear collineation of PG(6, K)

pointwise fixing F has matrix
0

BBBBBBB@

1 �a �b 0 ↵a b
0 1 + �c �d 0 ↵c d
0 �e 1 + � f 0 ↵e f
0 �g �h 1 ↵g h
0 �p �q 0 1 + ↵p q
0 �r �s 0 ↵r 1 + s

1

CCCCCCCA

,

with a, b, c, d, e, f, g, h, p, q, r, s 2 K. We now put some further restrictions on
these coefficients by requiring that the collineation with above matrix preserves 1

and hence is a collineation of 1 pointwise fixing F .
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The images of the base points belong to 1; hence

�2(ag + cp + er) + �p 2 K0, �2(bh + dq + f s) + �s 2 K0,

↵2(ag + cp + er) + ↵c 2 K0, (bh + dq + f s) + f 2 K0.

Also, the image of (1, 0, 1, 0, 0, 0) lies in 1, so combined with the second
condition above, we find �h 2K0. Likewise, now using the image of (1, 0, 0, 0, 0, 1),
we obtain h 2 K0 and conclude � 2 K0 if h 6= 0. Since we assumed � 2 K \ K0

above, this yields h = 0. Similarly a = b = g = 0. The matrix now looks like:
0

BBBBBBB@

1 0 0 0 0 0
0 1 + �c �d 0 ↵c d
0 �e 1 + � f 0 ↵e f
0 0 0 1 0 0
0 �p �q 0 1 + ↵p q
0 �r �s 0 ↵r 1 + s

1

CCCCCCCA

We now express that the image of a generic point (x1, . . . , x6) belongs to 1.
This means that, for all x1, x2, . . . , x6 2 K such that x1x2 + x3x4 + x5x6 2 K0, this
relation must hold:

x1x4+((1+�c)x2+�dx3+↵cx5+dx6)(�px2+�qx3+(1+↵p)x5+qx6)

+(�ex2+(1+� f )x3+↵ex5+ f x6)(�r x2+�sx3+↵r x5+(1+s)x6) 2 K0.

This means that for all x2, x3, x5, x6 2 K,

x2x5+x3x6+((1+�c)x2+�dx3+↵cx5+dx6)(�px2+�qx3+(1+↵p)x5+qx6)

+(�ex2+(1+� f )x3+↵ex5+ f x6)(�r x2+�sx3+↵r x5+(1+s)x6) 2 K0.

If we put two of x2, x3, x5, x6 equal to zero, then letting the others range through
K, we see that this implies that the coefficients of xi x j , i, j 2 {2, 3, 5, 6}, i 6= j , are
all zero.

Hence:

The coefficient of x2x3 yields �2qc + �2dp + �2es + �2r f = �(q + r).

The coefficient of x5x6 yields ↵qc + ↵dp + ↵es + ↵r f = d + ↵e.

The coefficient of x2x6 yields �qc + �pd + �es + �r f = q + �e.

The coefficient of x3x5 yields ↵�qc + ↵�pd + ↵�es + ↵�r f = �d + ↵r .

The first two equalities yield r = �e, the last two q = ↵�1�d . These four equalities
now all reduce to

↵�1�dc + dp + es + �e f = ↵�1d + e. (3)
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Expressing that the coefficient of x2x5 in the above expression is zero yields �c +
↵p = 0. Expressing that the coefficient of x3x6 in the above expression is zero
yields � f + s = 0. Substituting p = ↵�1�c and s = � f in (3), the left hand side
becomes zero, hence d = ↵e. Hence we have shown:

Proposition 3.1. Let ✓ be a collineation of the mixed rank 3 polar space C3,1(K, K0)
defined by the points of PG(5, K) whose coordinates (x1, x2, . . . , x6) satisfy X1 X4+
X2 X5 + X3 X6 2 K0. Suppose that ✓ fixes the point (x1, ↵��1x5, �

�1x6, x4, x5, x6),
for each x1, x4, x5, x6 2 K. Then there exist e, c, f 2 K such that ✓ is given by the
following matrix (action on the left):

0

BBBBBBB@

1 0 0 0 0 0
0 1 + �c ↵�e 0 ↵c ↵e
0 �e 1 + � f 0 ↵e f
0 0 0 1 0 0
0 �2↵�1c �2e 0 1 + �c �e
0 �2e �2 f 0 ↵�e 1 + � f

1

CCCCCCCA

,

with ⇢
�(c2 + ↵e2) + c 2 K0,
�( f 2 + ↵e2) + f 2 K0.

It is easy to check that the set of all matrices as in the previous proposition defines
a group of exponent 2. We will show later that these groups are large, although at
present at first sight, it is not clear that there are plenty of c, e, f 2 K that satisfy
the given constraints.

We mention in passing that the above represents a central collineation if and
only if the line determined by (0, 1, 0, 0, 0, 0) and its image intersects F in the
same point as the line determined by (0, 0, 1, 0, 0, 0) and its image does. This is
equivalent to (�c, �e, �2↵�1c, �2e)=�(↵�e, � f, �2e, �2 f ), for some �2 K, so to
(c, e, �↵�1c, �e)=�(↵e, f, �e, � f ). This happens if and only if (c, e)=�(↵e, f ),
hence c = �2↵ f and e = � f . This is so if and only if c f = ↵e2.

4. The embedding of F4,4(K, K0)

Our approach is based on the description of the universal embedding of E6,1(K) in
PG(26, K) using the generalized quadrangle 0 = (X, L ) of order (2, 4); see for
instance [19]. This construction is particularly simple if the characteristic of the
field is equal to 2, and runs as follows.

Let V be a 27-dimensional vector space with standard basis vectors ep labeled
by the points p of 0. A generic vector of V can then be given by a coordinate
tuple (x p)p2X , x p 2 K. For p 2 X , let Q p be the (degenerate hyperbolic) quadric
in PG(V ) with equation

P
{p,q,r}2L

Xq Xr = 0. The intersection of all Q p, p 2 X ,
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together with all lines contained in it, constitute the universal embedding of the Lie
incidence geometry E6,1(K), which is a 16-dimensional variety that we shall denote
by E6,1(K). The secant variety E

2
6,1(K) has equation

P
{p,q,r}2L

X p Xq Xr = 0.
The variety E6,1(K) has the following properties. The relation ? stands for the

collinearity relation within E6,1(K):

(1) Each pair of points x, y, which are not collinear on E6,1(K), is contained in a
unique nondegenerate hyperbolic quadric Q of rank 5 in some 9-dimensional
subspace UQ of PG(26, K). Moreover, UQ \ E6,1(K) = Q. We also have
UQ = hx, y, x? \ y?i. Each such a quadric Q will be called a symp, referring
to the theory of parapolar spaces whose roots lie in Freudenthal’s exploration
of the metasymplectic spaces.

(2) Symps intersect in either a unique point or a 4-space.

Now let r1, r2, r3 2 X be three fixed points with {r1, r2, r3} 2 L . Then the
hyperplane H with equation H $ Xr1 + Xr2 + Xr3 = 0 intersects E6,1(K) in a
geometric hyperplane, denoted by H , enjoying the following properties:

(i) No symp is entirely contained in H .

(ii) Each point x of H is contained in a unique symp Qx so that x? \ Qx ✓ H .

(iii) For a line L ✓ H , the following are equivalent:
(a) There exists a point x 2 L such that L ✓ Qx (with Qx as above).
(b) For every point x 2 L , we have L ✓ Qx .
(c) There exist at least two 5-space containing L and themselves entirely

contained in H .

(iv) For each 5-space W entirely contained in H , the mapping ⇢ : W ! W ⇤ :
x 7! W \ Qx is well defined and defines a symplectic polarity in W (here,
W ⇤ denotes the dual of W , that is, the set of hyperplanes of W ). The set of
absolute lines with respect to ⇢ is precisely the set of lines of W belonging
to L.

(v) The pair 1 = (H ,L) is isomorphic to the metasymplectic space F4,4(K); each
pair of points that is collinear in E6,1(K) is contained in a symplecton, that
is, a symplectic polar space of rank 3 corresponding to a 5-space of E6,1(K)

entirely contained in H , hence in H as in (iv) above.

Now let K0 be a subfield of K, as before, with K2  K0. Assume K0 6= K.
Define the set of points with the suggestive name F4,4(K

0, K) as the subset of
points of H satisfying the twelve long mixed relations below and the twenty four
short mixed relations below. In short, a generic short mixed relation looks like
X p1 Xq1 + X p2 Xq2 + X p3 Xq3 2 K0, where {p1, p2, p3, q1, q2, q3} is a set of pairwise
noncollinear points of 0 disjoint from {r1, r2, r3}, and pi , qi are collinear to ri ,
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i = 1, 2, 3. We call such a set a special 6-coclique; there are indeed twenty four
such. Each such 6-set has a unique opposite by considering the points p0

i , q 0
i 2 X

so that {pi , p0
i , ri } and {qi , q 0

i , ri } belong to L . Then a generic long mixed relation
looks like

3X

i=1

X pi X p0
i
+ Xqi Xq 0

i
2 K0.

Although it would be possible to show many results just using this rather abstract
form, there is no way to efficiently write such arguments down. Hence we are going
to use the concrete model given in 6.1.3 of [9] for 0 and then write out all relations
explicitly.

We take as point set

X = {1, 2, . . . , 6} [ {10, 20, . . . , 60} [ {12, 13, . . . , 56}.

The lines of 0 are the 3-subsets {i, i j, j 0} and {i 0, i j, j}, i, j 2 {1, 2, . . . , 6}, i < j ,
and {i j, k`, mn}, with {i, j, k, `, m, n} = {1, 2, . . . , 6}, i < j , k < `, m < n. We set
ri = i(i + 3).

Then here are the long mixed relations:

(I) X1 X40 + X4 X10 + X2 X50 + X5 X20 + X3 X60 + X6 X30 2 K0.

(II) X1 X40 + X10 X4 + X24 X15 + X45 X12 + X34 X16 + X46 X13 2 K0.

(III) X1 X40 + X23 X56 + X45 X12 + X3 X60 + X46 X13 + X2 X50 2 K0.

(IV) X1 X40 + X56 X23 + X24 X15 + X6 X30 + X34 X16 + X5 X20 2 K0.

(V) X1 X40 + X35 X26 + X24 X15 + X3 X60 + X46 X13 + X5 X20 2 K0.

(VI) X1 X40 + X26 X35 + X45 X12 + X6 X30 + X34 X16 + X2 X50 2 K0.

(VII) X10 X4 + X23 X56 + X45 X12 + X30 X6 + X46 X13 + X20 X5 2 K0.

(VIII) X10 X4 + X56 X23 + X24 X15 + X60 X3 + X34 X16 + X50 X2 2 K0.

(IX) X10 X4 + X35 X26 + X24 X15 + X30 X6 + X46 X13 + X50 X2 2 K0.

(X) X10 X4 + X26 X35 + X45 X12 + X60 X3 + X34 X16 + X20 X5 2 K0.

(XI) X23 X56 + X26 X35 + X12 X45 + X24 X15 + X2 X50 + X20 X5 2 K0.

(XII) X23 X56 + X35 X26 + X13 X46 + X34 X16 + X3 X60 + X30 X6 2 K0.
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And here are the short mixed relations written out:
(1) X1 X4 + X2 X5 + X3 X6 2 K0. (2) X10 X40 + X20 X50 + X60 X30 2 K0.
(3) X10 X1 + X24 X45 + X46 X34 2 K0. (4) X4 X40 + X15 X12 + X16 X13 2 K0.
(5) X1 X56 + X45 X3 + X2 X46 2 K0. (6) X40 X23 + X12 X60 + X50 X13 2 K0.
(7) X1 X23 + X24 X6 + X5 X34 2 K0. (8) X40 X56 + X15 X30 + X20 X16 2 K0.
(9) X1 X26 + X24 X3 + X5 X46 2 K0. (10) X40 X35 + X15 X60 + X20 X13 2 K0.

(11) X1 X35 + X45 X6 + X2 X34 2 K0. (12) X40 X26 + X12 X30 + X50 X16 2 K0.
(13) X10 X56 + X45 X30 + X20 X46 2 K0. (14) X4 X23 + X12 X6 + X5 X13 2 K0.
(15) X10 X23 + X24 X60 + X50 X34 2 K0. (16) X4 X56 + X15 X3 + X2 X16 2 K0.
(17) X10 X26 + X24 X30 + X50 X46 2 K0. (18) X4 X35 + X15 X6 + X2 X13 2 K0.
(19) X10 X35 + X45 X60 + X20 X34 2 K0. (20) X4 X26 + X12 X3 + X5 X16 2 K0.
(21) X23 X26 + X12 X24 + X50 X5 2 K0. (22) X56 X35 + X45 X15 + X20 X2 2 K0.
(23) X23 X35 + X34 X13 + X60 X6 2 K0. (24) X56 X26 + X16 X46 + X30 X3 2 K0.

The equation stemming from the degenerate quadric Q p, p 2 X , will be referred to
as the p-symp equation, or briefly symp equation if we do not want to mention p.

Now we introduce two types of certain transformations of PG(V ) directly with
coordinates. The first type are so-called short root elations. There are twenty four
basic ones, each related to a point p of 0 not on {r1, r2, r3}. The short root elation
�p(k), k 2 K, with center p fixes all points of the subspace of PG(26, K) generated
by all eq , with q not 0-collinear to p. In order to describe it abstractly, we call two
points of X \ {r1, r2, r3} sibling if they are both 0-collinear to the same member of
{r1, r2, r3}. If that member is ri , i 2 {1, 2, 3}, then we also talk about ri -sibling. For
each point q 2 X \ {r1, r2, r3}, there is a unique point, denoted q⇤, that is collinear
and sibling. Then the action of �p(k) on the coordinates of a random point (Xq)q2X
is defined as follows:

Xq 7!

8
>>><

>>>:

Xq if p, q are sibling or collinear,
X p + k Xri + k2 X p⇤, {p, p⇤, ri } 2 L if q = p,

Xr j + k X p⇤, {p, p⇤, ri } 2 L if p = r j , j 6= i,
Xq + k Xq 0, {p, q⇤, q 0} 2 L otherwise.

For example, if p = 1, we have: Xa 7! Xa , for a = 10, 20, 30, 40, 50, 60; 14; 4;
12, 13, 15, 16, 23, 26, 35, 56, and

X1 7! X1 + k X14 + k2 X40,

X25 7! X25 + k X40, X36 7! X36 + k X40,

X2 7! X2 + k X15, X3 7! X3 + k X16,

X5 7! X5 + k X12, X6 7! X6 + k X13,

X24 7! X24 + k X50, X34 7! X34 + k X60,

X45 7! X45 + k X20, X46 7! X46 + k X30 .
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Lemma 4.1. Each short root elation �p(k) is a permutation of F4,4(K
0, K).

Proof. This is a simple calculation. First we notice that all short root elations play
the same role, so we only need to prove the assertion for �1(k). Also, since �1(k) is
clearly an involution, we only need to show that �1(k) preserves, in one direction,
the symp equations, the long mixed relations and the short mixed relations. We
provide an example or two of each.

The 16-symp equation X1 X60 + X6 X10 + X23 X45 + X24 X35 + X25 X34 = 0 is
transformed under the action of �1(k) onto

X1 X60+X6 X10+X23 X45+X24 X35+X25 X34+k
�
X14 X60+X13 X10+X23 X20

+X50 X35+X25 X60+X40 X34
�
+k2(X40 X60+X40 X60) = 0,

which holds by the 16-symp equation and the 30-symp equation in combination
with the equation X14 + X25 + X36 = 0.

The 56-symp equation X5 X60 + X6 X50 + X12 X34 + X13 X24 + X14 X23 = 0 is
transformed under the action of �1(k) onto X5 X60 + X6 X50 + X12 X34 + X13 X24 +
X14 X23 + k(X12 X60 + X13 X50 + X12 X60 + X13 X50), hence Q56 is fixed.

The long mixed relation (V) is transformed under the action of �1(k) onto

X1 X40+X35 X26+X24 X15+X3 X60+X46 X13+X5 X20

+k(X14 X40+X50 X15+X16 X60+X30 X13+X12 X20)+k2 X2
40 2 K0,

which holds by the 1-symp equation and the fact that K2  K0.
Finally, the short mixed relation (5) is transformed under the action of �1(k) onto

X1 X56+X45 X3+X2 X46+k(X14 X56+X20 X3+X45 X16+X15 X46+X2 X30)

+k2(X40 X56+X2 X16+X30 X15) 2 K0,

which holds by the 23-symp equation and the short mixed relation (8), noting
k2 2 K2  K0. ⇤
Remark 4.2. In the given form, a short root elation does not preserve E6,1(K).
However, if we substitute in the second line of the definition of �p(k) the coordinate
Xri with Xrk + Xr` , with {i, j, `} = {1, 2, 3}, then we obtain the same action on
F4,4(K

0, K), and we do preserve E6,1(K). The reason not to introduce it like that is
that the given form is more convenient to calculate with.

The second type of transformations consists of so-called long root elations. There
are again twenty four basic ones, each related to a special 6-coclique of 0. The long
root elation �C(k), k 2 K0, with axis C , where C is a special 6-coclique, fixes all
points of the subspace of PG(26, K) generated by all eq , with q not contained in the
opposite special 6-coclique. More precisely, the action of �C(k) on the coordinates
of a random point (Xq)q2X is defined as follows, where for each point p 2 C , the
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unique point that belongs to special 6-coclique opposite C and not collinear to p
in 0, is denoted by pC .

Xq 7!
⇢

Xq if q /2 C,

Xq + k XqC if q 2 C.

For example, if C = {1, 2, 3, 4, 5, 6}, we have

X1 7! X1 + k X10, X2 7! X2 + k X20, X3 7! X3 + k X30,

X4 7! X4 + k X40, X5 7! X5 + k X50, X6 7! X6 + k X60,

and all other coordinates are fixed.

Lemma 4.3. Each long root elation �C(k) is a permutation of F4,4(K
0, K).

Proof. Again, this is an elementary calculation., and we may consider only �C(k),
k 2 K0, for C = {1, 2, 3, 4, 5, 6}. Then it is clear that i j-symp equations are fixed,
for all i, j 2 {1, 2, . . . , 6}, i 6= j , and the same holds for all i-symp equations,
i 2 {1, 20, . . . , 6}. The 10-symp equation is mapped onto the equality

X2 X12+X3 X13+X4 X14+X5 X15+X6 X16

+k(X20 X12+X30 X13+X40 X14+X50 X15+X60 X16) = 0,

which is zero by the 1-symp equation itself and the 10-symp equation.
The long mixed relations (I), (II), (XI) and (XII) are preserved, whereas the other

ones are mapped onto a combination with a short mixed relation. For instance, the
long mixed relation (V) is mapped onto

X1 X40+X35 X26+X24 X15+X3 X60+X46 X13+X5 X20

+k(X10 X40+X30 X60+X50 X20) 2 K0,

which holds by (V) itself, and by the short mixed relation (2) and the fact that
k 2 K0.

Finally, the left hand sides of the short mixed relations with a term Xi Xi 0 ,
i 2 {1, 2, . . . , 6}, are mapped onto the sum of themselves with k X2

i 0 and hence
that expression again belongs to K0. The ones with a term Xi 0 X j` are preserved,
whereas those with a term Xi X j` are mapped onto a combination of themselves
with the one containing the term Xi 0 X j`. Finally, short mixed relation (2) is fixed,
and short mixed relation (1) is transformed under the action of �C(k) onto

X1 X4+X2 X5+X3 X6+k(X10 X4+X1 X40+X20 X5+X2 X50+X30 X6+X3 X60)

+k2(X10 X40+X20 X50+X30 X60) 2 K0,

which holds because of short mixed relations (1) and (2), and long mixed relation (I),
recalling that k 2 K0. ⇤
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Now it is clear that each collineation ⌧ of 0 preserving {r1, r2, r3} = {14, 25, 36}
defines a permutation of the coordinates that induces a collineation g⌧ of E6,1(K)

preserving H and preserving the mixed relations. We denote the group of all such
collineations by T . Hence the group of linear maps generated by T and all short
and long root elations defined above, acts on F4,4(K

0, K), and shall be denoted
by G.

Proposition 4.4. The group G acts transitively on the point set of F4,4(K
0, K).

Proof. We will show that for each point a 2 F4,4(K
0, K), there exists g 2 G such

that ag is a base point. Since base points are clearly in one orbit of T , and hence
also of G, this will suffice.

It is easily derived from the 14-, 25- and 36-symp equations that at least one
coordinate x p, p 2 X \ {14, 25, 36}, is distinct from zero and hence can be chosen
to equal 1 (indeed, these symp relations imply x14x25 = x25x36 = x36x14 = 0, which,
combined with x14 + x25 + x36 = 0, implies x14 = x25 = x36 = 0). Without loss, we
may assume x40 = 1. For ease of verification by the reader, we will explicitly write
down the actions of the root elations that we use.

We first subsequently apply the following short root elations to a:

Short root elation �45(x20):

X1 7! X1+x20 X5, X10 7! X10+x20 X50,

X2 7! X2+x20 X4, X20 7! X20+x20 X40,

X56 7! X56+x20 X16, X35 7! X35+x20 X13,

X34 7! X34+x20 X23, X46 7! X46+x20 X26,

X25 7! X25+x20 X12, X14 7! X14+x20 X12,

X45 7! X45+x20 X36+x2
20 X12.

Short root elation �46(x30):

X1 7! X1+x30 X6, X10 7! X10+x30 X60,

X3 7! X3+x30 X4, X30 7! X30+x30 X40,

X56 7! X56+x30 X15, X26 7! X26+x30 X12,

X24 7! X24+x30 X23, X45 7! X45+x30 X35,

X36 7! X36+x30 X13, X14 7! X14+x30 X13,

X46 7! X46+x30 X25+x2
30 X13.
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Short root elation �24(x50):

X1 7! X1+x50 X2, X10 7! X10+x50 X20,

X5 7! X5+x50 X4, X50 7! X50+x50 X40,

X26 7! X26+x50 X16, X23 7! X23+x50 X13,

X34 7! X34+x50 X35, X46 7! X46+x50 X56,

X25 7! X25+x50 X15, X14 7! X14+x50 X15,

X24 7! X24+x50 X36+x2
50 X15.

Short root elation �34(x60):

X1 7! X1+x60 X3, X10 7! X10+x60 X30,

X6 7! X6+x60 X4, X60 7! X60+x60 X40,

X35 7! X35+x60 X15, X23 7! X23+x60 X12,

X24 7! X24+x60 X26, X45 7! X45+x60 X56,

X36 7! X36+x60 X16, X14 7! X14+x60 X16,

X34 7! X34+x60 X25+x2
60 X16.

Short root elation �5(x12):

X1 7! X1+x12 X45, X3 7! X3+x12 X56,

X4 7! X4+x12 X15, X6 7! X6+x12 X35,

X12 7! X12+x12 X40, X23 7! X23+x12 X60,

X24 7! X24+x12 X10, X26 7! X26+x12 X30,

X14 7! X14+x12 X20, X36 7! X36+x12 X20,

X5 7! X5+x12 X25+x2
12 X20 .

Short root elation �6(x13):

X2 7! X2+x13 X56, X1 7! X1+x13 X46,

X5 7! X5+x13 X26, X4 7! X4+x13 X16,

X23 7! X23+x13 X50, X13 7! X13+x13 X40,

X35 7! X35+x13 X20, X34 7! X34+x13 X10,

X25 7! X25+x13 X30, X14 7! X14+x13 X30,

X6 7! X6+x13 X36+x2
13 X30 .
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Short root elation �2(x15):

X1 7! X1+x15 X24, X3 7! X3+x15 X26,

X4 7! X4+x15 X12, X6 7! X6+x15 X23,

X15 7! X15+x15 X40, X35 7! X35+x15 X60,

X45 7! X45+x15 X10, X56 7! X56+x15 X30,

X14 7! X14+x15 X50, X36 7! X36+x15 X50,

X2 7! X2+x15 X25+x2
15 X50 .

Short root elation �3(x16):

X2 7! X2+x16 X35, X1 7! X1+x16 X34,

X5 7! X5+x16 X23, X4 7! X4+x16 X13,

X26 7! X26+x16 X50, X16 7! X16+x16 X40,

X56 7! X56+x16 X20, X46 7! X46+x16 X10,

X25 7! X25+x16 X60, X14 7! X14+x16 X60,

X3 7! X3+x16 X36+x2
16 X60 .

After applying these short root elations (in arbitrary order, call the composi-
tion g1), the coordinates of the image ag1 = b, denoted by (yp)p2X , satisfy

y20 = y30 = y50 = y60 = y12 = y13 = y15 = y16 = 0 and y40 = 1.

Then the following indicated short mixed relations reduce to and imply

(2) X10 X40 2 K0 =) y10 2 K0, (4) X4 X40 2 K0 =) y4 2 K0,

(6) X40 X23 2 K0=) y23 2 K0, (8) X40 X56 2 K0=) y56 2 K0,

(10) X40 X35 2 K0=) y35 2 K0, (12) X40 X26 2 K0=) y26 2 K0.

Moreover, the symp equation X20 X12 + X30 X13 + X40 X14 + X50 X15 + X60 X16 = 0
implies y14 = 0.

Consider the following long root elations:

• �{1,10,24,34,45,46}(y10):

X1 7! X1 + y10 X4, X10 7! X10 + y10 X40, X24 7! X24 + y10 X12,

X45 7! X45 + y10 X15, X46 7! X46 + y10 X16, X34 7! X34 + y10 X13.

• �{1,2,3,4,5,6}(y4):

X1 7! X1 + y4 X10, X2 7! X2 + y4 X20, X3 7! X3 + y4 X30,

X4 7! X4 + y4 X40, X5 7! X5 + y4 X50, X6 7! X6 + y4 X60 .
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• �{1.5.6.23.24.34}(y23):

X1 7! X1 + y23 X56, X5 7! X5 + y23 X16, X6 7! X6 + y23 X15,

X24 7! X24 + y23 X30, X34 7! X34 + y23 X20, X23 7! X23 + y23 X40 .

• �{1,2,3,45,46,56}(y56):

X1 7! X1 + y56 X23, X2 7! X2 + y56 X13, X3 7! X3 + y56 X12,

X45 7! X45 + y56 X60, X46 7! X46 + y56 X50, X56 7! X56 + y56 X40 .

• �{1,2,6,34,35,45}(y35):

X1 7! X1 + y35 X26, X2 7! X2 + y35 X16, X6 7! X6 + y35 X12,

X45 7! X45 + y35 X30, X34 7! X34 + y35 X50, X35 7! X35 + y35 X40 .

• �{1,3,5,24,26,46}(y26):

X1 7! X1 + y26 X35, X3 7! X3 + y26 X15, X5 7! X5 + y26 X13,

X24 7! X24 + y26 X60, X46 7! X46 + y26 X20, X26 7! cr X26 + y26 X40 .

If we apply these elations in arbitrary order (say the composition is g2) to b, then
the coordinates of bg2 = c, which we denote by (z p)p2X , satisfy z10 = z4 = z23 =
z26 = z35 = z56 = 0, whereas we did not touch the coordinates that were already zero
by virtue of applying g1 to a. That is, z20 = z30 = z50 = z60 = z12 = z13 = z15 = z16 =0.

The symp equation X20 X12 + X30 X13 + X40 X14 + X50 X15 + X60 X16 = 0 implies
z14 = 0. This implies z25 = z36. Now, the symp equation X10 X4 + X1 X40 +
X23 X56 + X26 X35 + X25 X36 = 0 implies z1 = z2

25 = z2
36. Now the short root elation

g3 :=�1(z25) turns the coordinates z1, z25 and z36 equal to zero (and so we do assume
z1 = z25 = z36 = 0) and only alters the coordinates z2, z3, z5, z6, z24, z34, z45, z46.

But now the given symp equations reduce to and imply

24-symp equation : X2 X40 = 0 =) z2 = 0,

34-symp equation : X3 X40 = 0 =) z3 = 0,

45-symp equation : X5 X40 = 0 =) z5 = 0,

46-symp equation : X6 X40 = 0 =) z6 = 0,

2-symp equation :X24 X40 = 0 =)z24 = 0,

3-symp equation :X34 X40 = 0 =)z34 = 0,

5-symp equation :X45 X40 = 0 =)z45 = 0,

6-symp equation :X46 X40 = 0 =)z46 = 0.

In conclusion, we have mapped an arbitrary point of F4,4(K
0, K) with x40 coordinate

nonzero to the base point he40 i. ⇤
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Now we denote the set of points of F4,4(K
0, K) briefly by H

0. Let L0 be the set
of lines contained in H

0. Set 10 = (H 0,L0). We have just shown that the geometry
10 admits a transitive collineation group.

We now determine the residual geometry at a base point b 2 H
0, that is, the

geometry with point set the set of all members of L0 through b, and with for each
plane ⇡ contained in H

0 and containing b, the set of lines through b and contained
in ⇡ is a (typical) line of that residual geometry (this definition agrees with the one
given in 13.4.1 of [11]). Let us take b = he1i.
Proposition 4.5. The point residual of 10 at he1i is isomorphic to the dual polar
space B3,3(K

0, K). Also, the point residual of 10 at he1i is contained in the tangent
space T at he1i of a unique symp ⇠ of E6,1(K); we have T = h⇠i \ H.

Proof. The symp equations imply that a point a of H
0 is collinear to he1i in E6,1(K)

if and only if its coordinate xq is zero as soon as 1 ? q in 0. Hence every line in H
0

intersects the subspace W 0 ⇢ H defined as the intersection with H of the subspace
of PG(26, K) generated by all her i with r not collinear to 1. Consequently, if we
are looking for the lines he1, ai ✓ H

0, we may assume a 2 W 0. Set a = (xq)q2X .
Consider the short mixed relation (1): X1 X4 + X2 X5 + X3 X6 2 K0. If x4 6= 0,

then we can find t 2 K such that (1) does not hold for the point hte1 + ai. In other
words, we can find a point on he1, pi not contained in H

0. We conclude that x4 = 0.
Likewise x10 = x56 = x23 = x26 = x35 = 0. Also since x14 = 0, we have x25 = x36
and the 14-symp equation X25 X36 + X1 X40 + X10 X4 + X23 X56 + X26 X35 = 0 yields
x25 = x36 = 0.

Hence each line hhe1i, ai of H
0 intersects W 00 = he2, e3, e5, e6, e24, e34, e45, e46i

in a unique point. Conversely, each point h f i of H
0 in W 0 is 10-collinear to

he1i (as the point h�e1 + f i satisfies all mixed relations). This already shows
the second assertion, with ⇠ the symp of E6,1(K) corresponding to Q1. So we
can identify each member of L0 with a unique point having (truncated) coordi-
nates (x2, x3, x5, x6, x24, x34, x45, x46). If we run these coordinates through all
symp equations and mixed relations, then the only nonvanishing relations are the
following:

X2 X24 X3+X34 + X5 X45 + X6 X46 = 0,

X2 X5 + X3 X6 2 K0, X24 X45 + X46 X34 2 K0,

X2 X46 + X3 X45 2 K0, X5 X46 + X6 X24 2 K0,

X3 X24 + X5 X46 2 K0, X2 X34 + X6 X45 2 K0.

By Proposition 2.1 in Section 2, this is exactly a geometry isomorphic to
B3,3(K

0, K). ⇤
If we knew that 10 were a parapolar space of symplectic rank 3, then the local

recognition result Lemma 5.7 of [6] would imply that 10 is the metasymplectic
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space F4,4(K
0, K). This will be taken care of in the next lemma. A convex subspace

of 10 is a set of points closed under joining collinear points with all points of the
joining line and taking shortest paths between points in the graph with vertices the
points of 10, adjacent when collinear.

Lemma 4.6. (a) Each pair of points of 10 that is collinear in E6,1(K) is contained
in a convex subgeometry of 10 isomorphic to C3,1(K, K0).

(b) Each pair of points of 10 that is not collinear in E6,1(K) is 10-collinear to at
most one common point.

Proof. First notice that by Properties (ii) and (iii) in the beginning of this section,
Proposition 4.5 implies that L0 ✓ L. This implies that, if two points of 10 are
1-collinear to at most one common point, then they are also 10-collinear to at most
one common point. Property (v) of the beginning of this section now says that the
pairs of points of 1 contained in a symp of 1 are themselves contained in a 5-space
of E6,1(K). This yields (b).

So now let a, b be a pair of points of 10 that is collinear in E6,1(K). By
Proposition 4.4, we may assume that a = he1i. Let (x p)p2X be a coordinate tuple
for b. Expressing that also e1 + (x p)p2X satisfies all symp equations, we deduce
x20 = x30 = x40 = x50 = x60 = x12 = x13 = x14 = x15 = x16 = 0.

Our first main step is to show that we may assume that b 2 he1, e2, . . . , e6i.
Suppose first that x4 = x10 = x23 = x26 = x35 = x56 =0. Then the 14-symp equation

implies x25x36 = 0, yielding x25 = x36 = 0 (since x14 = 0 and x14 + x25 + x36 = 0).
Hence the only nonzero coordinates of b are among x2, x3, x5, x6, x24, x34, x45
and x46. In the last paragraph of the proof of Proposition 4.5 we deduced that b
is 10-collinear to a. We now claim that we can assume that x24 = x34 = x45 =
x46 = 0. Indeed, suppose not. Without loss we may assume x46 6= 0. Applying
�{4,5,6,12,13,23}(1)

X4 7! X4 + X56, X5 7! X5 + X46, X6 7! X6 + X45,

X12 7! X12 + X30, X13 7! X13 + X20, X23 7! X23 + X10,

if need be, we may also assume x5 6= 0. Applying �{10,30,60,24,25,45}(x24x�1
5 ),

�{10,20,60,34,35,45}(x34x�1
5 ) and �{10,20,30,45,46,56}(x46x�1

5 ) (which all fix a) in a row,
we see that we may assume x24 = x34 = x46 = 0 and x5 6= 0. The 40-symp equation
now implies x5x45 = 0, hence x45 = 0, proving our claim. Then b 2 he1, e2, . . . , e6i.

Now suppose at least one of x4, x10, x23, x26, x35 or x56 is not equal to zero. If one
of x23, x26, x35 or x56 is nonzero, say x23 6= 0, then by applying �{2,3,4,15,16,56}(1)

if need be, we may assume x4 6= 0. But then we apply �{10,50,60,23,24,34}(x23x�1
4 ),

�{10,30,50,24,26,46}(x26x�1
4 ), �{10,20,60,34,35,45}(x35x�1

4 ) and �{10,20,30,45,46,56}(x56x�1
4 ),

all in a row, and we see that we may assume x23 = x26 = x35 = x56 = 0, x4 6= 0.
The 14-symp equation implies x4x10 = x25x36 = k2, with k = x25 = x36. Applying
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�10(kx�1
4 ) we see that we may assume x10 = 0. Then x25 = x36 = 0 and the

i 0-symp equations for i = 2, 3, 5, 6 yield x24 = x34 = x45 = x46. This again implies
b 2 he1, e2, . . . , e6i.

Now note that he1, e2, . . . , e6i is a 5-space contained in H , and hence by (iv)
it intersects 1 in a symplectic polar space � of rank 3. Now all symp equations
and all long mixed relations vanish on he1, e2, . . . , e6i and the only surviving short
mixed relation is (1) X1 X4 + X2 X5 + X3 X6 2 K0, which defines a polar subspace
�0 of � isomorphic to C3,1(K, K0). Since � is convex in 1, we conclude that �0

is convex in 10 and (a) is proved. ⇤
We can now state the main result of this section.

Theorem 4.7. 10 is isomorphic to the metasymplectic space F4,4(K
0, K).

Proof. Lemma 4.6 implies that 10 is a parapolar space and then Lemma 5.7 of
[6] and Proposition 4.5 imply that 10 is isomorphic to the metasymplectic space
F4,4(K

0, K). ⇤
In the proof of Lemma 4.6, we observed that the subspace he1, e2, . . . , e6i

hosts a symplecton of 10, that is, a convex subspace isomorphic to the polar
space C3,1(K, K0). In fact, it is easily checked that this is true for each subspace
hep1, ep2, . . . , ep6i, where {p1, p, . . . , p6} is a special 6-coclique. Hence each of
the short mixed relations defines such a host space and such a symplecton, which
we will refer to as a symplecton of the same type as the short mixed relation. For
instance, the symplecton in he1, e2, . . . , e6i has type (1).

The next lemma will be needed in Section 5. An alternative proof consists of
using the “principle of triality”; Theorem 3.2.1 of [12].

Lemma 4.8. A collineation of F4,4(K
0, K) pointwise fixing the parabolic intersec-

tion of a symp of E6,1(K) with F4,4(K
0, K) is the identity.

Proof. Without loss we may assume that the subspace

W = he1, e4, e10, e40, e23, e26, e35, e56, e25 + e36i
is fixed pointwise. It can easily be verified that the only type-preserving collineation
of the corresponding symp fixing W pointwise is the identity (we need type-
preserving otherwise it is even not a collineation of E6,1(K)). Hence also he25, e36i
is fixed pointwise. Consider an arbitrary base point outside W . Without loss
we can take he2i. The short mixed relations (1), (11), (16) and (18) imply
that he2i is fixed. Hence we see that all base points distinct from he14i are
fixed. Any symp equation containing X14 then yields that also he14i is fixed.
So the corresponding matrix is diagonal. Denote the (J, J )-entry by kJ , J 2
{1, 2, . . . , 6, 10, 20, . . . , 60, 12, 13, . . . , 56}, and note that by assumption we may
assume k1 = k4 = k10 = k40 = k23 = k56 = k26 = k35 = k25 = k36 = 1. Then the short
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mixed relations (1), (5) and (9) imply k2k5 = k2k46 = k5k46 = 1, yielding k2
2 = 1

and so k2 = k5 = k46 = 1. Similarly all other kJ , except possibly k14, are equal to 1.
This again implies k14 = 1 and the assertion is proved. ⇤
Remark 4.9. The parabolic intersection mentioned in Lemma 4.8 is called an
extended equator geometry in [5].

Digression — Collinearity relations for F4,4(K, K). Since we now have a com-
plete algebraic description of F4,4(K

0, K), the point set of F4,4(K0, K), and since, if
K0 6= K, the lines of F4,4(K0, K) are precisely the lines of PG(V ) fully contained in
F4,4(K

0, K), we can deduce an algebraic collinearity relation by expressing that, if
hvi and hwi, v, w 2 V , are projective points that belong to F4,4(K

0, K), then hvi and
hwi are collinear in F4,4(K

0, K) if and only if, for every k 2 K, the point hv + kwi
belongs to F4,4(K

0, K). The result of this little and straightforward calculation is
the following bilinearization of the symp equations and the mixed relations.
Theorem 4.10. Two points with coordinates (x p)p2X and (yp)p2X contained in 10

are collinear in 10 if and only if the coordinates satisfy the following identities:
(1) For each point p 2 X of 0, we have the identity

X

{p,q,r}2L

XqYr + Xr Yq = 0.

(2) For ever special 6-coclique {p1, p2, p3, q1, q2, q3} of 0 (relative to {r1, r2, r3},
that is, disjoint from this set), where pi and qi are collinear to ri in 0, we have
the identity

3X

i=1

X pi Yqi + Xqi Ypi = 0.

(3) For every pair of opposite special 6-cocliques {p1, p2, p3, q1, q2, q3} and
{p0

1, p0
2, p0

3, q 0
1, q 0

2, q 0
3}, with {p1, p2, p3, q1, q2, q3} as above and p0

i , q 0
i 2 X

so that {pi , p0
i , ri } and {qi , q 0

i , ri } belong to L , we have the identity

3X

i=1

X pi Yp0
i
+ X p0

i
Ypi + Xqi Yq 0

i
+ Xq 0

i
Yqi = 0.

An adopted but rather simplified version of the arguments above can be given to
complete the description of F4,4(K, K) with the collinearity relation exactly as given
in the previous theorem. Hence Theorem 4.10 also holds for 1! We conjecture that
a similar description holds for the case where the characteristic of the field is not 2.

Note that this implies that two points of 10 are 10-collinear if and only if they
are 1-collinear. This can also be deduced directly from Proposition 4.5 by noting
that this proposition also holds for K0 = K, where ⇠ is the image of he1i under the
so-called symplectic polarity of E6,1(K) defining 1; see Lemma 4.19 of [5].
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5. Involutions that produce generalized quadrangles

In this section, we provide a first application of the construction in the previous
section. Briefly, we show that the involutions exhibited in [7] and that produce
exceptional Moufang quadrangles of type F4, and also quadrangles of mixed type,
extend to the ambient projective space PG(25, K). As a corollary, the exceptional
Moufang quadrangle of type F4 related to the quadratic Galois extension K/F of
base fields, is shown to live in PG(25, F). Secondly, we show that the involution
producing a quadrangle of mixed type is not unique, and that each nontrivial element
of a whole group of exponent 2 fixes the given quadrangle and nothing more.

5A. The linear case. We start by defining an involution ✓0 of PG(V ). Here, V is
still our 27-dimensional vector space over the imperfect field K of characteristic
2, and K0 is a subfield satisfying K2  K0  K. We select arbitrary ↵ 2 K0 \ K2

and � 2 K \ K0. By definition, ✓0 depends on ↵ and � and acts as follows on the
coordinates (x p)p2X of an arbitrary point of PG(V ):

x1 7! x1, x2 7! ↵��1x5, x3 7! ��1x6,

x4 7! x4, x5 7! ↵�1�x2, x6 7! �x3,

x10 7! x10, x20 7! ↵��1x50, x30 7! ��1x60,

x40 7! x40, x50 7! ↵�1�x20, x60 7! �x30,

x23 7! ↵�1�2x56, x34 7! �x46, x24 7! ↵�1�x45,

x56 7! ↵��2x23, x46 7! ��1x34, x45 7! ↵��1x24,

x26 7! ↵�1x35, x13 7! �x16, x12 7! ↵�1�x15,

x35 7! ↵x26, x16 7! ��1x13, x15 7! ↵��1x12,

x14 7! x14, x25 7! x25, x36 7! x36.

Proposition 5.1. The involution ✓0 is a collineation of F4,4(K
0, K). Also, the

geometry consisting of the fixed points of ✓0 in F4,4(K
0, K), where the lines are

the fixed points contained in a common fixed symplecton, is a mixed quadrangle
isomorphic to C2,1(K

0(�), K2(↵); ��1K2(↵) + K0, ↵K02(�2) + K2).

Proof. One easily calculates that all symp equations, the equation X14 + X25 +
X36 = 0, and all mixed relations are satisfied by the image under ✓0 of a point
of F4,4(K

0, K). The determination of the fixed points in F4,4(K
0, K) requires a

tedious calculation that is contained in [10]. We content ourselves with identifying
the point rows and the line pencils of the corresponding generalized quadrangle
(and then, in fact, the assertion also follows from [7] and Theorem 6.3). First
the point rows. Clearly, the symplecton of type (1) is fixed and the involution
induced in it by ✓0 is exactly the one considered in Section 3. The point rows
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follow. For a line pencil, we consider the two fixed points he10 i and he4i. We
identify each fixed symplecton ⇠ containing he10 i with its intersection with the
fixed subspace W := he1, e40, e23, e25, e26, e35, e36, e56i, that is, the line pencil
can be identified with the fixed point set in W . We first determine the structure
of W \ H

0. The only nonvanishing symp equation yields X1 X40 + X23 X56 +
X26 X35 = X2

25 (since X25 + X36 = 0). The nonvanishing long mixed relations are
equivalent to the relations X1 X40 2 K0, X23 X46 2 K0, X26 X35 2 K0; the nonvanishing
short mixed relations are equivalent to the relations X p Xq 2 K0, for all pairs p, q
in {1, 40, 23, 26, 35, 56} except {1, 40}, {23, 56} and {26, 35}. Hence the union
of all these conditions is simply that W \ H consists precisely of the points in
he1, e40, e23, e26, e56, e35, e25+e36i satisfying X1 X40 +X23 X56+X26 X35 = X2

25 and
with all coordinates x1, x40, x23, x26, x35 and x56 belonging to K0. We can project
from the nucleus he25 +e36i onto he1, e40, e23, e26, e56, e35i and obtain a polar space
isomorphic to C3,1(K

0, K2). The involution ✓0 induces the following involution in
that space:

x10 7! x10, x23 7! ↵�1�2x56, x26 7! ↵�1x35,

x40 7! x40, x56 7! ↵��2x23, x35 7! ↵x26.

Now if we substitute the coordinate tuple (x1, x2, x3, x4, x5, x6) in the calculation
of Section 3 with (x1, x23, x26, x40, x56, x35) and (↵, �) with (�2, ↵�1), then the
result follows. ⇤

Now let F0 ✓H
0 be the fixed point set of ✓0. it is clear that F0 is the intersection

of H
0 and the 15-dimensional subspace of PG(V ) given by the equations X14 +

X25 + X36 = 0 and

X2 = ↵��1 X5, X6 = � X3, X56 = ↵��2 X23, X34 = � X46, X45 = ↵��1 X24,

X20 = ↵��1 X50, X60 = � X30, X35 = ↵X26, X13 = � X16, X15 = ↵��1 X14.

Here is the main result of this section.

Theorem 5.2. The group of automorphisms of 10 pointwise fixing F0 is a group of
exponent 2 isomorphic to the additive group {(a, b)2 K⇥K | a+�(a2+↵b2)2 K0},
with standard addition. The value (a, b) = (��1, 0) corresponds to ✓0.

Proof. Let ✓ be an arbitrary collineation of 1 fixing F0 pointwise. In the host space
of type (1), the points of F0 have generic coordinates (x1,↵��1x5,�

�1x6, x4, x5, x6)

(in natural ordering). By Proposition 3.1, the restriction of ✓ to he1, e2, . . . , e6i has
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the following matrix
0

BBBBBBB@

1 0 0 0 0 0
0 1 + �a ↵�b 0 ↵a ↵b
0 �b 1 + �c 0 ↵b c
0 0 0 1 0 0
0 �2↵�1a �2b 0 1 + �a �b
0 �2b �2c 0 ↵�b 1 + �c

1

CCCCCCCA

with ⇢
�(a2 + ↵b2) + a 2 K0,
�(c2 + ↵b2) + c 2 K0.

We claim that the points (x10, x20, . . . , x60)2he10, e20, . . . , e60 i and (x1, x2, . . . , x6)2
he1, e2, . . . , e6i are collinear in E6,1(K) if and only if

(x10, x20, . . . , x60) = �(x1, x2, . . . , x6),

for some � 2 K⇥. Indeed, expressing that the point with coordinates (x p)p2X , with
xi j = 0 for all i, j 2 {1, 2, . . . , 6}, i < j , belongs to E6,1(K) implies by the i j -symp
equation that xi x j 0 = x j xi 0 , for all distinct i, j 2 {1, 2, . . . , 6}. This easily implies
the claim. It follows that the above matrix is also the matrix of ✓ restricted to
he10, e20, . . . , e60 i.

Now, in a completely similar way, the restriction of ✓ to the host spaces of
type (3) and (4), with the coordinates ordered as (x1, x45, x46, x10, x24, x34) and
(x40, x15, x16, x4, x12, x13), has the following matrix:

0

BBBBBBB@

1 0 0 0 0 0
0 1 + �d ↵�e 0 ↵d ↵e
0 �e 1 + � f 0 ↵e f
0 0 0 1 0 0
0 �2↵�1d �2e 0 1 + �d �e
0 �2e �2 f 0 ↵�e 1 + � f

1

CCCCCCCA

with ⇢
�(d2 + ↵e2) + d 2 K0,
�( f 2 + ↵e2) + f 2 K0.

It follows that ✓ is an involution on the subspaces

he1, e2, e3, e4, e5, e6i, he10, e20, e30, e40, e50, e60 i,
he1, e45, e46, e10, e24, e34i, he40, e15, e16, e4, e12, e13i,

and hence on the subspace generated by these.
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Note that, since he1i and he40 i are fixed, ✓ stabilizes the symp ⇠14 defined
by Q14. Now a completely similar calculation as performed in the proof of
Proposition 3.1 shows that the restriction of ✓ to h⇠14i, where coordinates are
ordered as (x25, x36, x1, x4, x10, x40, x23, x26, x35, x56), has the following matrix M ,
where 04 is short hand notation for a subrow of four zeros, likewise 0|4 stands for a
subcolumn of four zeros.

M :=

0

BBBBBBBBB@

✏ + ↵(r + q) ✏0 + ↵(r + q) 04 ↵g ↵h h �2g
✏0 + ↵(r + q) ✏ + ↵(r + q) 04 ↵g ↵h h �2g

0|4 0|4 I4⇥4 0|4 0|4 0|4 0|4
�2g �2g 04 1 + ↵r ↵�2 p �2 p �2r

h h 04 ↵p 1 + ↵q q �2 p
↵h ↵h 04 ↵2 p ↵2q 1 + ↵q ↵�2 p
↵g ↵g 04 ↵2��2r ↵2 p ↵p 1 + ↵r

1

CCCCCCCCCA

with g, h 2 K and r, p, q 2 K0 and

⇢
↵(r2 + �2 p2) + r = �2g2,

↵(q2 + �2 p2) + q = h2,

and with {✏, ✏0} = {0, 1}. The latter choice for ✏ and ✏0 must be made to ensure that
the map is type preserving. However, we will decide this later.

Independent of that is the fact that it now follows that ✓ is an involution on the
subspace he25, e36, e23, e26, e35, e56, e1, e4, e10, e40 i. Hence, by Lemma 4.8, ✓2 is
the identity and so ✓ is globally an involution.

Now note that V = he1, e4, e10, e40 i � he2, e3, e5, e6i � he20, e30, e50, e60 i �
he24, e34, e45, e46i � he12, e13, e15, e16i � he25, e36, e23, e26, e35, e56i � he14i and
each of the direct factors is preserved under the involution ✓ . Hence the above
matrices completely describe the involution ✓ , if we add x14 7! x14.

We now derive some relations between the parameters a, b, c, d, e, f, p, q, r .
The short mixed relation (13) X1 X56 + X3 X45 + X2 X46 2 K0 must hold for the
image. We deduce b = e, bd = ae and b f = ce by considering the coefficients of
X2 X45, X3 X46, X5 X24 and X6 X34 in the expression of the image.

From the mixed relation (7) X1 X23 + X24 X6 + X34 X5 2 K0 and the coefficients
of the corresponding monomials in the expression of the image, we deduce similarly
↵2��2r = ↵dc + ↵2eb = ↵2be + ↵a f , hence dc = a f .

From the mixed relation (9) X1 X26+ X24 X3+ X5 X46 2 K0 and the coefficients of
the corresponding monomials, we deduce ↵2 p = ↵d(1 +�c)+↵2�be = ↵2�be +
↵a(1+� f ), which implies a = d . Note that a and b cannot be zero together, hence
c = f .
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From the mixed relation (11) X1 X35+X45 X6+X2 X34 2K0 and the coefficients of
the corresponding monomials, we deduce ↵p =c(1+�a)+↵�b2 =↵�b2+c(1+�a),
hence a(1 + �c) = c(1 + �a), so a = c.

We have ⇢
↵r = �2(a2 + ↵b2),

↵p = a + �(a2 + ↵b2).

Plugging this into the expression for g2 one obtains ↵�1(�4a4 + �4↵2b4 + �2a2 +
�4a4 + �4↵2b4 + �2a2 + �2↵b2) = �2g2. Hence b = g

Analogously, one shows that h = �b and q = r . It can now be easily checked that
✏ = 1 leads to a type preserving map, whereas ✏0 = 1 leads to a type interchanging
one.

The matrix M becomes, setting u := a2 + ↵b2,
0

BBBBBBBBB@

1 0 04 ↵b ↵�b �b �2b
0 1 04 ↵b ↵�b �b �2b

0|4 0|4 I4⇥4 0|4 0|4 0|4 0|4
�2b �2b 04 1 + �2u �2(a + �u) ↵�1�2(a + �u) ↵�1�4u
�b �b 04 a + �u 1 + �2u ↵�1�2u ↵�1�2(a + �u)

↵�b ↵�b 04 ↵(a + �u) ↵�2u 1 + �2u �2(a + �u)

↵b ↵b 04 ↵u ↵(a + �u) a + �u 1 + �2u

1

CCCCCCCCCA

with a +�u 2 K0. Conversely, it is easy to check that the map defined by the above
matrices, with c = d = f = a, preserves all symp equations, and also all mixed
relations. Hence it defines a collineation of 10 fixing each point of F0 (and nothing
more).

Clearly, (a, b) = (��1, 0) yields the original involution ✓0. ⇤

Standard group theoretic arguments show that the said group is equal to CG(✓0),
the centralizer in G of ✓0 (indeed, the automorphism group of the fixed point
quadrangle induced by G acts transitively on the fixed point set by Theorem 24.31
of [8]).

At first sight, it is not even clear that a, b 2 K satisfying the constraint a +
�(a2 + ↵b2) 2 K0 exist, besides the trivial case a = b = 0 and the case (a, b) =
(��1, 0). However, an infinite number of appropriate a, b is given by

a = ↵2t+1�2s+1

1 + ↵2t+1�2s+2 , b = ↵t�s

1 + ↵2t+1�2s+2 ,

for arbitrary integers s, t . For all these values, a +�(a2 +↵b2) = 0. An example
where this is equal to a nonzero member of K0 is given in the next paragraph.
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The group CG(✓0) can be seen as having cardinality at least |K⇥K0| by assigning,
for every k 2 K and k 0 2 K0, the pair (k, k 0) to the pair (a, b) with

a = ��1(1 + ↵k2 + �k 0)�1, b = k��1(1 + ↵k2 + �k 0)�1.

Here, a + �(a2 + ↵b2) = k 0(1 + ↵k2 + �k 0)�2.

5B. The semilinear case. We now present an explicit description of the involution
related to an arbitrary Moufang quadrangle of mixed type F4. As above, we will
not show in detail that the stated involution is the right one — again a detailed proof
can be found in the thesis [10] of Roth — it will however be clear from the data
that we obtain a generic Moufang quadrangle of type F4.

These data are the following. Let K, K0, ↵ and � be as above. Let E/K be a
separable quadratic extension with Galois involution x 7! x . Let E0 = E2K0 (the
composite field). Now suppose that the forms

E ⇥ E ⇥ K0 ! K : (x, y, k) 7! ��1(xx + ↵yy) + k,

E0 ⇥ E0 ⇥ K ! K0 : (x, y, k) 7! ↵(xx + �2 yy) + k2 (⇤)

are anisotropic, that is, they only become 0 for the zero-entry (0, 0, 0).
It is shown in [7, Lemma 6.3] that the two conditions in (⇤) are equivalent.

However, it is convenient to have them both explicitly stated. We note another
consequence of these data (not needed in [7] because of the slightly different form
of the involution).

Lemma 5.3. If xx 2 E0, x 2 E, then x = kx 0, with k 2 K and x 0 2 E0.

Proof. Let E = K(�), then E = K(�2) as E/K is separable and char K = 2. Moreover,
we can choose � so that � + �2 + t = 0, for some t 2 K. Then E2 = K2(�2) and
E0 = K0(�2). Write x = x0 + x1�

2. If x0 = 0 or x1 = 0, then the assertion is
obvious, so assume x0 6= 0 6= x1. Now note that �4 = �2 + t2 and one calculates that
xx = x2

0 + x0x1 + x2
1 t2. If xx 2 E0, then, since K2  K0  E0, we have x0x1 2 E0 and

hence in K0 (since one easily sees E0 \ K = K0). Consequently

x = x0 + x1�
2 = x�1

0 (x2
0 + x0x1�

2),

which shows the assertion. ⇤
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Extend the vector space V to V ⇤ by tensoring with E and consider F4,4(E
0, E).

Consider the following involution ✓⇤ of PG(V ⇤):

x1 7! x1, x2 7! ↵��1x5, x3 7! ��1x6,

x4 7! x4, x5 7! ↵�1�x2, x6 7! �x3,

x10 7! x10, x20 7! ↵��1x50, x30 7! ��1x60,

x40 7! x40, x50 7! ↵�1�x20, x60 7! �x30,

x23 7! ↵�1�2x56, x34 7! �x46, x24 7! ↵�1�x45,

x56 7! ↵��2x23, x46 7! ��1x34, x45 7! ↵��1x24,

x26 7! ↵�1x35, x13 7! �x16, x12 7! ↵�1�x15,

x35 7! ↵x26, x16 7! ��1x13, x15 7! ↵��1x12,

x14 7! x14, x25 7! x25, x36 7! x36.

Again, it is easy to verify that ✓⇤ is a collineation of F4,4(E
0, E). For a generic

fixed point hvi for ✓⇤ we may assume that v itself is fixed; otherwise we consider
v + v✓⇤ . So the set of fixed points in PG(V ⇤) for ✓⇤ consists of the points (x p)p2X
satisfying x1, x4, x10, x40, x14, x25, x36 2 K and

x2 = ↵��1x5, x6 = �x3, x56 = ↵��2x23, x34 = �x46, x45 = ↵��1x24,

x20 = ↵��1x50, x60 = �x30, x35 = ↵x26, x13 = �x16, x15 = ↵��1x14.

We now show that two fixed points that belong to F4,4(E
0, E) are never collinear

in F4,4(E
0, E). Indeed, if a = (x p)p2X and b = (yp)p2X were collinear fixed points,

then Theorem 4.10 would imply via the bilinearization of the short mixed relation (1)

x1 y4 + x4 y1 + ↵��1x5 y5 + ↵��1x5 y5 + �x3 y3 + �x3 y3 = 0. (4)

Since we assume that a and b belong to F4,4(E
0, E), we have short mixed rela-

tion (1)

x1x4 + ↵��1x5x5 + �x3x3 2 E0 and y1 y4 + ↵��1 y5 y5 + � y3 y3 2 E0.

Suppose for a moment that x1 = 0. Then by (⇤), we deduce x3 = x5 = 0, and so
(4) becomes x4 y1 = 0. Hence y1 = 0 or x4 = 0. Suppose y1 = 0. Then likewise
y3 = y5 = 0 and y4 is arbitrary. Similar conclusions hold if we assume y1 = 0
instead of x1 = 0.

Suppose now that x1 6= 0 6= y1. Note both belong to K. Then multiplying
relation (4) by x1 y1 and substituting x1x4 by k 0 + ↵��1x5x5 + �x3x3, k 0 2 K0 and
y1 y4 by `0 + ↵��1 y5 y5 + � y3 y3, `0 2 K0, we obtain, after combining terms,

↵��1(y1x5 + x1 y5)(y1x5 + x1 y5) + �(y1x3 + x1 y3)(y1x3 + x1 y3) = k 0 + `0 2 K0,
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implying by (⇤) that the tuples (x1, x2, . . . , x6) and (y1, y2, . . . , y6) are proportional
with factor in K.

We conclude that either the tuples (x1, x2, . . . , x6) and (y1, y2, . . . , y6) are pro-
portional with factor in K, or one of them is the 0-tuple. Set

P = {1, 2, . . . , 6, 10, 20, . . . , 60, 12, 13, 15, 16, 24, 34, 45, 46}.

Short mixed relations (2), (3) and (4) imply that, if x1 = x2 = · · · = x6 = 0,
then x p = 0, for all p 2 P . Playing the same game as above, but now with the
respective short mixed relations (2), (3) and (4), we can conclude that either the
tuples (x p)p2P and (yp)p2P are proportional with factor in K, or one of them is
the 0-tuple. Suppose now that (x p)p2P is the 0-tuple. The 25-symp equation and
the 36-symp equation imply that either x14 = 0, or x25 = x36 = 0. In any case
x25 = x36 and so x14 = 0. If x23 = x26 = x35 = x56 = 0, then the 14-symp equation
implies x25 = 0 and then (x p)p2X is the 0-tuple, a contradiction. Without loss we
may assume that x35 6= 0. As in the proof of Proposition 5.1, the mixed relations
imply that the 4-tuple (x23, x26, x35, x56) is proportional to a 4-tuple in E0, say
(x23, x26, x35, x56) = �(x 0

23, x 0
26, x 0

35, x 0
56), with x 0

23, x 0
26, x 0

35, x 0
56 2 E0, � 2 E. Since

a is fixed by ✓⇤, �x 0
35 = ↵�x 0

26. Consequently, since x35 6= 0,

�� = ↵�1�2x 0
34x 0�1

26 2 E0.

Lemma 5.3 implies that we may assume � 2 K. Multiplying the coordinate tuple of
a with ��1, and noting that we assumed x25 2 K, we may additionally assume that
x23, x26, x35 and x56 belong to E0. Then the 14-symp equation yields

↵��2x23x23 + ↵x26x26 + x2
25 = 0.

Hence, by (⇤), x p = 0, for all p 2 X , a contradiction again. So we may assume that
(x p)p2P and (yp)p2P are proportional with factor in K, say (x p)p2P = k(yp)p2P ,
k 2 K. Since a and b are collinear fixed points, the point hci, with c = (x p�kyp)p2X
is also a fixed point. Since x p � kyp = 0, for all p 2 P , the foregoing implies
x p � kyp = 0, for all p 2 X and consequently a = b.

Hence it now follows that also no plane is fixed by ✓⇤, and so ✓⇤ only fixes
points and symplecta. Since the symplecta of type (1), (2), (3) and (4) are fixed,
the fixed point structure is a thick generalized quadrangle (where the lines of this
quadrangle correspond to the fixed symps). Hence ✓⇤ is a homogeneous involution
in the sense of [7] (see 2.1 of that paper). Now, since ✓⇤ is clearly semilinear (it
involves the field automorphism K ! K : x 7! x) the main result stated in Section
7 of [7] implies that the fixed point structure of ✓⇤ is a Moufang quadrangle of type
F4. It follows that the latter can be seen as the intersection of F4,4(E

0, E) with a
Baer subspace of PG(V ⇤) isomorphic to PG(V ).
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6. A classification

The above involutions have as fixed point sets Moufang quadrangles whose points
are points of F4,4(K

0, K), whose lines are ovoids in symplecta, and whose line
pencils with vertex p correspond to ovoids in the residue of p. One could wonder
whether there are other collineations of F4,4(K

0, K) with the same property. We
will answer negatively to this question, at least in the linear case, that is, not only the
case where the collineation comes from a linear map in V , but also the ovoids in the
symplecta arise from intersections of the symplecta with subspaces of the ambient
projective subspaces. The reason to restrict to this linear case is purely technical;
the proof in the nonlinear case requires further technical results that would make
the paper needlessly longer. Also, we are motivated by the following remark.

Remark 6.1. The interest in linear collineations (in the above sense) with the above
properties stems from the fact that, besides being related to “mixed Galois descent”,
such collineations are also characterized by the property that their displacement
spectrum avoids the extreme distances for chambers; in other words, no chamber is
fixed and no chamber is mapped onto an opposite. This equivalence shall be proved
in another paper where we hopefully classify such collineations for all metasym-
plectic spaces. Here we content ourselves with carrying out the classification for
F4,4(K

0, K).

Remark 6.2. Before stating and proving the main theorem of this section, we note
that the short and long root elations defined in Section 4 are actually a complete set
of root elations for the standard apartment with point set {hepi | p 2 X \{r1, r2, r3}}.
Then Theorem 7.10 of [1] shows that the group G (see Section 4) acts strongly
transitively on 10, which implies for instance that it acts transitively on pairs of
opposite symps.

Theorem 6.3. Let ✓ be a collineation of 10 whose fixed points and fixed symplecta
form a generalized quadrangle such that the set of fixed points in a fixed symplecton
⇠ is an ovoid of ⇠ obtained by intersecting the symplecton with a subspace of PG(V ),
and dually the set of fixed symplecta through a fixed point p is an ovoid in the polar
space corresponding to the point residual of p. Then ✓ is conjugate to the involution
✓0 above for some appropriate ↵ 2 K0 \ K2 and � 2 K \ K0.

Proof. First assume that ✓ is an involution. By Remark 6.2, we may assume that
the symplecta corresponding to the short mixed relations (1) and (2) are fixed, and
we can choose coordinates so that he1i, he4i, he10 i and he40 i are fixed, and he2i is
interchanged with he5i, hx3i with he6i, and hence he20 i with he50 i and he30 i with he60 i.
Now the symps (21) and (22) are interchanged, and since (3) is fixed, it follows
that he24i and he45i are interchanged. Likewise, ✓ interchanges he12i and he15i, also
he34i and he46i, and he13i and he16i. The same technique implies that he23i and
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he56i are interchanged as well as he26i and he35i. It also follows that he14i, he25i
and he36i are fixed.

Since ✓ fixes he1i and he4i, and a coordinate description of ✓ is determined up to
a scalar factor, we may assume that ✓ fixes the coordinates X1 and X4 (note that
✓2 is the identity, and so if ✓ fixes X1, it fixes X4). Also, since he3i and he5i are
interchanged, there is a constant � 2 K such that ✓ maps the coordinate X6 to � X3,
and hence it maps the coordinate X3 to ��1 X6 (again taking into account that ✓2 is
the identity). Likewise there exists � 2 K such that ✓ maps X2 to � X5 and X5 to
� �1 X2. Setting ↵ := �� , we can hence assume that ✓ acts on the coordinates in
he1, e2, . . . , e6i as

X1 7! X1, X2 7! ↵��1 X5, X3 7! ��1 X6,

X4 7! X4, X5 7! ↵�1� X2, X6 7! � X3,

and consequently on he10, e20, . . . , e60 i as (since hei 7! hei 0 i induces an isomorphism
defined by collinearity in E6,1(K))

X10 7! X10, X20 7! ↵��1 X50, X30 7! ��1 X60,

X40 7! X40, X50 7! ↵�1� X20, X60 7! � X30 .

Note that, in order for the fixed point sets in these spaces be ovoids of the
symplecta, we need ↵� and � to belong to K \ K0. Now define � 2 K such that
the coordinate X35 is changed to �X26. Then the short mixed relation (11) implies
X45 7! ���1 X24 and X34 7! �↵�1� X46. Then the short mixed relation (15) implies
X23 7! �↵�2�2 X56. Now the symp equation X1 X60 + X10 X6 + X23 X45 + X24 X35 +
X25 X34 =0 implies � = (�↵�2�2)(���1); consequently �2 =↵2, or �=↵. Similarly
one now calculates all other coordinate images and exactly obtains the description
of ✓0. Note that the short mixed relation (11) implies ↵ 2 K0. Now suppose for a
contradiction that ↵ 2 K2, say ↵ = � 2. We argue inside the E6,1(K)-symp ⇠14. The
mixed relations imply that the points of F4,4(K

0, K) in ⇠14 are given by coordinates
(x25, x36; x1, x4, x10, x40; x23, x26, x35, x56), which may all be assumed to belong to
K0 and satisfy

X2
25 = X2

36 = X1 X40 + X10 X4 + X23 X56 + X26 X35.

Then the points e10 = (0,0;0,0,1,0;0,0,0,0) and e� := (� ,� ;0,0,0,0;0,� 2,1,0)

are both symplectic to e1 = (0, 0; 1, 0, 0, 0; 0, 0, 0, 0) and these three points are
fixed. But he� i and e10 are symplectic, which implies that the fixed symplecta
of F4,4(K

0, K) determined by he1i an he10 i, and he1i and he� i share a plane, a
contradiction to our assumptions. Hence ↵ 2 K0 \ K2 as required.

So we may from now on assume that ✓ is not an involution. We must show
nonexistence. We can provide a synthetic argument using the notion of extended
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equator geometry and its properties proved in [5]; see Remark 4.9. Consider two
opposite fixed points p, q (one can think of he1i and he40 i). The associated extended
equator geometry bE := bE(p, q) is also fixed (one can think of the intersection with
the symp ⇠14). The argument in the previous paragraph implies that ✓ does not
fix any plane in bE , whereas the assumption that the fixed points in a symp form
a subspace of the ambient projective space yields fixed lines of bE . It also implies
that the fixed point set in bE , as a polar space, is a subspace S. The properties of
S just mentioned imply that S has codimension 2 in 6 := hbEi and contains the
nucleus he25 +e36i of the corresponding parabolic quadric. Hence S can be thought
of as the perp of a line L ✓ 6 in the symplectic representation of the parabolic
quadric bE . We now argue over the quadratic closure of K, say L. Then L is either
an isotropic line, or not. In the first case, it is easily checked that ✓ is involutive
on bE , implying it is an involution by Lemma 4.8. Hence L is not isotropic. Note
that no point of L is fixed, as otherwise S has codimension at most 1 in hbEi. Select
two points a, b 2 L arbitrarily. Then ✓ pointwise fixes exactly a? \ b?. Hence ✓

does not fix any singular 3-space of bE containing a fixed plane. It follows that ✓

does not fix any singular 3-space as, by a dimension argument, each such intersects
a? \ b? in at least a line, and considering the projection of a fixed point collinear
to that line onto the fixed 3-space, one obtains a fixed 3-space through a fixed plane,
a contradiction. It now follows from Lemma 5.37 of [5] that no point of F4,4(L, L)

collinear to some point of bE is fixed by ✓ . But then Corollary 5.38 of [5] implies
that each point of F4,4(L, L) is special to some fixed point in bE . Hence ✓ fixes no
point outside bE . This now clearly contradicts the assumption that ✓ pointwise fixes
ovoids in fixed symps. ⇤

Remark 6.4. A further weakening of the hypothesis could consist in only assuming
a set of points with the following properties:

• The points and the symplecta containing at least two points of the set form a
generalized quadrangle.

• Every symp intersecting the set in at least two points intersects it in an ovoid
of the symp.

• Dually, the symps through a point of the set containing at least one further
point of the set, form an ovoid in he polar space defined by the residue of the
point.

By a result of Struyve [13], the generalized quadrangle is Moufang, and then, using
the groups of perspectivities, one obtains ovoids with high transitivity properties (in
fact, Moufang sets). However, ovoids like that, only pointwise fixed by the identity,
in (different) polar spaces are known to exist. This makes this question harder, but
more interesting, though. We do not have a conjecture, although it is tempting to
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believe that the only such sets are the Moufang quadrangles fixed by an involution,
as in [7] or the present paper.
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