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Subgeometries isomorphic to residues in
exceptional Lie incidence geometries

Bruce N. Cooperstein Hendrik Van Maldeghem

Abstract

We show that a geometry isomorphic to a point residual in a Lie incidence
geometry of exceptional type, either a strong parapolar space or the long
root subgroup geometry, is a trace, that is, coincides with the set of points
collinear to a given point p and not opposite to a given object opposite p. We
also show uniqueness of the line residue in the long root subgroup geometry
of type E8.

1 Introduction

Subgeometries of a given geometric structure play a similar role in incidence ge-
ometry as subgroups of groups in group theory. A good knowledge of all sub-
geometries of a geometry ∆ helps to understand ∆. It can also be used to char-
acterise certain automorphisms of ∆ by its fixed point structure. In this case the
ideal situation is that a given subgeometry is unique up to a projectivity. The
investigation and classification of all automorphisms of the exceptional spherical
buildings that do not map any chamber to an opposite, prompted the authors of
[8] to show that the long root subgroup geometries of types E7,1 and E6,2 admit
projectively unique embeddings into the long root subgroup geometry of type
E8,8. In the present paper we direct our attention to residual geometries, that is,
the geometries isomorphic to a point (or line) residue in the exceptional Lie inci-
dence geometries of type E. Our main aim is to investigate how the minuscule
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geometries E6,1 and E7,7 are sitting in the long root subgroup geometry E8,8(K),
and we show that this happens in a projectively unique way. We complete the
job for the exceptional Lie incidence geometries of type E by showing unique-
ness of full embeddings of geometries of types D5,5, A5,3, D6,6 and E6,1 into Lie
incidence geometries of types E6,1, E6,2, E7,1 and E7,7, respectively. The analogous
results for type F4 uses different techniques and shall be done elsewhere. This is
due to the fact that all buildings of type E are split, whereas there exists a vari-
ety of buildings of type F4, ranging from split, and mixed, to non-split and even
non-embeddable.
In order to state our main results, we need to explain what a trace geometry is.
Given a Lie incidence geometry ∆ and a point p thereof, there are objects which
are opposite p in the building-theoretic sense. Select one such object τ (in practice,
and in this paper, τ is either a point or a symplecton). Then the trace geometry with
respect to (p, τ) is the subgeometry of ∆ induced on the point set p⊥ ∩ τ 6≡, where
p⊥ denotes the set of points collinear to p and τ 6≡ the set of points not opposite τ.
The trace geometry with respect to lines is induced on the set of points collinear to (all
points of) a given line L and not opposite any point of a given line M opposite L
(here we assume that pairs of points can be opposite). Assuming familiarity with
standard terminology about embedded geometries and Lie incidence geometries
(see Section 2), we can now summarise all our results as follows.

Main Result. Let K be a field and let D5,5(K), A5,3(K), E6,1(K), D6,6(K) and E7,7(K)
be fully embedded in E6,1(K), E6,2(K), E7,7(K), E7,1(K) and E8.8(K), respectively.
Then the former is a trace geometry in the latter. If E6,1(K) is fully embedded in E8,8(K),
then it is a para—that is, a proper convex subspace properly containing a symplecton—of
an equator geometry, or, equivalently, a trace geometry with respect to two opposite lines.

One would hope that the techniques developed in [8] to prove uniqueness of em-
bedded long root subgroup geometries in the exceptional type case is applicable
in the situation of the present paper. However, there is an essential difference. In
[8], one must find two points p and q in the ambient geometry ∆ such that the
embedded geometry Ω coincides with the equator geometry E(p, q) (see Section
2.3.2). The points p and q are not too far away from Ω and can be recognised with
the point residuals. In the present situation, however, we must find a point p
collinear to all points of Ω, which can also be done with the point-residuals, but,
in the generic situation, we must also find a point which is special to all points
of Ω. This can no longer be accomplished by considering residues. The tech-
nique that works here is to prove that there is a companion embedded geometry
Ω∗, which is isomorphic either to an equator geometry—and then we apply the
results of [8]—or to Ω—in which case we find a point collinear to all points of Ω∗

and that is precisely the wanted second point.
Note that along the way we also have to deal with similar embedding questions
for some classical geometries.
The paper is organised as follows. In Section 2 we recall some definitions and list
some properties of the exceptional Lie incidence geometries of type E. We also
introduce the notation that we, in particular, used in the present paragraph. In 3,
we show our Main Result for D5,5(K) embedded in E6,1(K). The strategy of the
proof is to study the ways in which the skeleton graph of an apartment D5,5(1)
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can be embedded in E6,1(K). This avoids to have to first prove uniqueness of the
full embedding of A4,2(K) in D5,5(K), which would be another valuable strategy,
call it the point residual strategy. In Sections 4 to 7, we prove the rest of the first
part of our Main Result using the point residual strategy. In Section 8 we prove
an interesting consequence and in the final section we prove the second part of
the Main Result.

2 Preliminaries, definitions and notation

2.1 Point-line geometries

For the purposes of this paper, a point-line geometry, which we shall usually de-
note by ∆ = (X(∆),L(∆)), is a pair consisting of a point set X(∆) and a set L(∆)
of lines, which are subsets of X(∆). Two points x, y in such a structure are called
collinear, in symbols x ⊥ y, if they are contained in some line. We will exclu-
sively be dealing with partial linear spaces, which are point-line geometries with
the property that each pair of collinear points is contained in exactly one line. The
set of points collinear to a given point x is denoted by x⊥. A subspace Y is a set
of points Y ⊆ X with the property that, if a line has two points in common with
Y, then it is completely contained in Y. A geometric hyperplane of ∆ is a subspace
which intersects each line. It is proper if it does not coincide with X(∆).
The collinearity graph or point graph of Γ has as set of vertices the points of Γ,
adjacent when collinear. The distance between two points is the distance in the
collinearity graph. The diameter of ∆ is the diameter of the collinearity graph. We
say that ∆ is connected if the collinearity graph is.
A full subgeometry Γ′ = (X′,L′) of Γ is a geometry with X′ ⊆ X and L′ ⊆ L.
This implies that all points of Γ on a line of Γ′ are points of Γ′ and explains the
adjective ‘full’. Full subgeometries need not be subspaces.
Now a polar space is a thick point-line geometry in which the perp of every point
is a proper geometric hyperplane; this definition is justified by [2]. This forces
all singular subspaces to be projective spaces. In our case the polar spaces will
have finite rank, that is, there is a natural number r ≥ 2 such that all singular
subspaces (which are projective spaces) have dimension ≤ r− 1, and there exist
singular subspaces of dimension r − 1. A prominent notion in polar geometry
is opposition. Two singular subspaces U, W are opposite if no point of U ∪W is
collinear to all points of U ∪W. Opposite subspaces automatically have the same
dimension. Opposite points are just non-collinear ones. The singular subspaces
of dimension r− 1 are called generators. It is easy to see that polar spaces satisfy
the so-called one-or-all axiom: each point is collinear to either exactly one point or
to all points of a given line.
A convex subspace of a point-line geometry is a subspace with the property that
every shortest path in the collinearity graph between two points of the subspace
is contained in the subspace. A convex subspace isomorphic to a polar space is a
symplecton, or symp for short.
Now a parapolar space is a connected point-line geometry which is not a polar
space, such that two points at distance 2 either have a unique common neigh-
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bour in the collinearity graph—and then we call these two points special—or are
contained in a symplecton—the two points are called symplectic—and every line
is contained in a symp. A parapolar space without special pairs is called strong.
A symplecton through two noncollinear points x, y is unique and denoted by
ξ(x, y). The set of symps of a parapolar space ∆ is denoted by Ξ(∆). Parapolar
spaces found their birth in Section 3 of [4].
The parapolar spaces we will encounter all have the rather peculiar property that
all symps have the same rank, which is then called the (uniform) symplectic rank
of the parapolar space. In contrast, the maximal singular subspaces (which will
be projective spaces) will not all have the same dimension. The singular ranks
of a parapolar space with only projective spaces as singular subspaces (which is
automatic if the symplectic rank is at least 3) are the dimensions of the maximal
singular subspaces. In general, a singular subspace which is a projective space of
(projective) dimension d will be called a (singular) d-space for short.
Now let ∆ = (X(∆),L(∆)) be a parapolar space all of whose symps have rank
at least 3. Let x ∈ X. Then we define the geometry ∆x = (X(∆x),L(∆x)) as the
geometry with point set the set of lines through x, and the lines are the planar
line pencils with vertex x, that is, the set of lines through x in a plane through x,
and call it the residue at x, or the point residual at x.
In the present paper we will exclusively deal with Lie incidence geometries, which
are projective, polar and parapolar spaces arising from spherical buildings. As-
suming the basics of Tits’ theory of spherical buildings, we introduce these now
briefly.

2.2 Lie incidence geometries

Let ∆ be an irreducible thick spherical building. Let n be its rank, let I be its type
set and let i ∈ I. Then we define a point-line geometry ∆ as follows. The point set
X(∆) is just the set of vertices of ∆ of type i; a typical line of ∆ is the set of vertices
of type i completing a given panel of cotype i to a chamber. The geometry ∆ is
called a Lie incidence geometry. For instance, if ∆ has type An, n ≥ 2, and i = 1 (we
use Bourbaki labelling of the vertices of the Coxeter or Dynkin diagrams), then ∆
is the point-line geometry of a projective space of dimension n, and if n ≥ 3, it is
defined over some skew field K, in which case we denote it by PG(n, K). If Xn is
the Coxeter type of ∆ and ∆ is defined using i ∈ I as above, then we say that ∆
has type Xn,i. Another example: Geometries of type Bn,1 and Dn,1 are polar spaces.
Geometries of type Dn,n are more specifically called half spin geometries
Buildings of type A,D,E are uniquely defined by their underlying field K (or
skew field in the case of A), provided the rank is at least 3. We denote the cor-
responding building of type Xn by Xn(K), and the corresponding Lie incidence
geometries of type Xn,i by Xn,i(K).
In the present paper we are most interested in parapolar spaces of exceptional
type. More exactly, the Lie incidence geometries E6,1(K) and E7,7(K), which are
sometimes called the minuscule geometries of types E6 and E7, respectively, and the
Lie incidence geometries E6,2(K), E7,1(K) and E8,8(K), which are also called the
long root subgroup geometries of type E. We gather the most important properties of
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these in Section 2.3. Prominent subgeometries that we will also need are A4,2(K),
A5,2(K), A5,3(K), D5,5(K) and D6,6(K). The first three are well known Grass-
mannians of projective spaces. The latter two are so-called half spin geometries
arising from (nondegenerate) hyperbolic quadrics in PG(9, K) and PG(11, K), re-
spectively, by taking one system of generators as points, and a typical line is then
the set of generators of that system though a given singular subspace of dimen-
sion 2 and 3, respectively. The properties of these Lie incidence geometries that
we will need are easily deduced from the hyperbolic quadric. We explicitly note
that Dn,n(K), n ≥ 5, has singular ranks 3 and n− 1. Nonmaximal 3-spaces will
be called 3′-spaces.
Objects in a Lie incidence geometry ∆ will be called opposite if they are opposite
in the building-theoretic sense. They will be called locally opposite (with respect to
a point p) if they are opposite in ∆x (of course this requires that the two objects
correspond to flags containing or incident with x). Opposite objects a and b are
denoted x ≡ b; the symbol a≡ means the set of objects opposite a and a 6≡ is the set
of objects of the type of opposite objects, not opposite a. Lie incidence geometries
admit natural full embeddings in projective spaces. The natural embeddings of
D5,5(K), A5,3(K), E6,1(K), D6,6(K), E7,7(K), E6,2(K), E7,1(K) and E8.8(K) occur
in PG(15, K), PG(19, K), PG(26, K), PG(31, K), PG(55, K), PG(77, K), PG(127, K)
and PG(247, K), respectively. Moreover, it follows from [5] that the natural em-
beddings of D5,5(K), A5,3(K), E6,1(K), D6,6(K) and E7,7(K) are absolutely univer-
sal, that is, every other full embedding is isomorphic to a projection of the natural
one from some subspace onto some complementary subspace.
Finally, we need some terminology concerning embedding. Let Ω and ∆ be two
polar or parapolar spaces. We say that Ω is (fully) embedded in ∆ if Ω is isomorphic
to a (full) subgeometry of ∆. Usually we identify Ω with the isomorphic subge-
ometry of ∆, talking about points of ∆ that are also points of Ω. If both are polar
spaces or strong parapolar spaces, and Ω is embedded in ∆, then we call the em-
bedding isometric if the distance between two points of Ω either measured in Ω,
or measured in ∆, is the same. If Ω is a polar space or a strong parapolar space
of diameter at most 3 and ∆ is a nonstrong parapolar space of diameter at most 3,
then the embedding is called isometric if symplectic points of Ω are also symplec-
tic in ∆, and points at distance 3 in Ω are special in ∆. A graph that is isomorphic
to a (non-full) subgeometry of ∆ is called laxly embedded (to distinguish it from
the full embeddings). An isometric lax embedding of a graph of diameter 2 into
a (para)polar space is defined in the obvious way. The graphs we will encounter
are the skeletons of apartments, that is, the vertices are the vertices of certain type,
say i, of an apartment of a spherical building of type Xn, adjacent when contained
in adjacent chambers. Hinting at the heuristic that apartments are buildings over
the field of order 1, we denote such an apartment by Xn,i(1). We will only use this
for D5,5(1).

2.3 Some parapolar spaces of exceptional type

The below properties are taken from [8], where it is noted that they follow either
in a standard way from the Coxeter diagram, or from a representation of an apart-
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ment of the corresponding building as can be found in [11]. Most properties can
also be found in Chapters 14 to 18 of [10]. For the long root subgroup geometries
we also refer to [3].

2.3.1 Minuscule geometries of types E6 and E7

The Lie incidence geometry ∆ ∼= E6,1(K), for any field K, has the following prop-
erties.

(1) The point residuals are isomorphic to D5,5(K).
(2) The symps of ∆ are isomorphic to D5,1(K), that is, to the polar spaces arising

from hyperbolic quadrics in PG(9, K).
(3) The singular ranks of ∆ are 4 and 5. Nonmaximal singular subspaces of

dimension 4 are called 4′-spaces.
(4) The diameter of ∆ is equal to 2 and ∆ is strong.
(5) A point p not contained in a given symp ξ is collinear either to no points of

ξ, or to all points of a 4′-space contained in ξ. In the first case p is called far
from ξ, in the latter case close. Here, “far” is a synonym for “opposite”.

(6) Two symps meet either in a unique point or in a 4-space; in the latter case
the symps are called adjacent. It follows that a 4′-space is contained in a
unique symp.

(7) The geometry with point set the set of symps of ∆, where a typical line is
the set of symps containing a given 4-space, is isomorphic to ∆, and is for
clarity denoted by E6,6(K).

(8) A 3-space is contained in a unique 4-space and a unique 5-space (which
intersect exactly in the given 3-space).

(9) The set of points not opposite a given symp ξ, that is ξ 6≡, is a geometric
hyperplane of ∆. For a given point p and opposite symp ξ, the set p⊥ ∩ ξ 6≡

is a subspace isomorphic to D5,5(K), called a trace geometry.

The Lie incidence geometry ∆ ∼= E7,7(K), for any field K, has the following prop-
erties.

(10) The point residuals are isomorphic to E6,1(K).
(11) The symps of ∆ are isomorphic to D6,1(K), that is, to the polar spaces arising

from hyperbolic quadrics in PG(11, K).
(12) The singular ranks of ∆ are 5 and 6. Nonmaximal singular subspaces of

dimension 5 are called 5′-spaces.
(13) The diameter of ∆ is equal to 3 and ∆ is strong.
(14) A point p not contained in a given symp ξ is collinear either to exactly one

point q of ξ, or to all points of a 5′-space U contained in ξ. In the former case
p is opposite each point of ξ which is at distance 2 from q. In the latter case,
if p′ /∈ ξ is collinear to all points of a 5′ space U′, then p ≡ p′ if and only if
U ∩U′ = ∅.

(15) Two symps which share a point meet in a line or in a 5-space.
(16) The geometry with point set the set of symps of ∆, where a typical line is

the set of symps containing a given 5-space, is isomorphic to E7,1(K).
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(17) A 4-space is contained in a unique 5-space and a unique 6-space (which
intersect exactly in the given 4-space).

(18) The set of points not opposite a given point q, that is q 6≡, is a geometric
hyperplane of ∆. For another given point p opposite q, the set p⊥ ∩ q 6≡ is a
subspace isomorphic to E6,1(K), called a trace geometry.

2.3.2 Long root subgroup geometries of exceptional type E

The long root subgroup geometries of type E have a number of common proper-
ties (for proofs, see [3]). We begin with stating these.
Let ∆ be a Lie incidence geometry isomorphic to either E6,2(K), E7,1(K), or E8,8(K),
for some field K.

(1) The diameter ∆ is 3. Points at distance 3 are opposite.
(2) For a sequence p ⊥ a ⊥ b ⊥ q we have p ≡ q if and only if {p, b} and {q, a}

are both special pairs.
(3) A point collinear to at least one point of a given symplecton not containing

that point s, is collinear to either a line or a d′-space of the symp, where d+ 1
is the rank of the symplecton.

(4) If the points p, q are collinear to exactly a line L, M, respectively, of a symp
ξ, then p ≡ q if and only if L and M are opposite in the polar space ξ.
Consequently, if p⊥ ∩ ξ = L ∈ L(∆), and r ∈ ξ, then {p, r} is a special pair
if and only if r⊥ ∩ L is a unique point.

(5) The set of points not opposite a given point q, that is q 6≡, is a geometric
hyperplane of ∆. For another given point p opposite q, the set p⊥ ∩ q 6≡ is a
subspace isomorphic to the point residual at p and called a trace geometry.

(6) If p and q are opposite points, then each symp through p contains a unique
point symplectic to q.

The equator geometry E(p, q) (with poles p, q ∈ X(∆)) is a full subgeometry con-
sisting of the points symplectic to both p and q, and with induced line set. It is
shown in [8] that it is a subspace and a geometry isomorphic to the long root sub-
group geometry related to the point residual at p. For instance, if ∆ ∼= E8,8(K),
the equator geometry is isomorphic to E7,1(K). By Section 2F of [8], there is a
set of points C such that every pair of points are poles of E(p, q) (and no other
point appears in a pair of poles for E(p, q)). The set C is called an imaginary line
(and the notation C comes from the fact that it constitutes a conic in the standard
embedding).
A trace geometry with respect to lines is defined in the introduction.
The Lie incidence geometry E7,1(K) contains convex full subgeometries which are
also subspaces, isomorphic to E6,1(K). These are called paras. They correspond
to residues of vertices of type 7 in the corresponding building.
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2.4 Three lemmas

We recall the following result from [6].

Lemma 2.1. [6, Lemma 3.20] If a polar space is fully embedded in a parapolar space,
then either it is contained in a singular subspace, or it is isometrically embedded in a
symp.

We will also need the following lemma.

Lemma 2.2. A subspace of PG(2n − 1, K) meeting every generator of a hyperbolic
quadric Q isomorphic to Dn,1(K) has at least dimension n.

Proof. Clearly, the result is true for n = 2. So assume n ≥ 3.
Let T be a subspace of PG(2n− 1, K) of dimension n− 1 and suppose for a con-
tradiction that T intersects every generator of Q. Clearly T is not contained in the
span of every point perp as these have trivial global intersection. Let p ∈ Q be a
point with T not contained in 〈p⊥〉. Then T ∩ 〈p⊥〉 defines a subspace of dimen-
sion n − 2 in the quotient space 〈p⊥〉/{p} ∼= PG(2n − 3, K), intersecting every
generator of the hyperbolic quadric p⊥/{p} isomorphic to Dn−1,1(K) in at least a
point. Repeating this argument over and over again, we eventually are reduced
to the case n = 2 of the lemma, which we already discussed, and which yields
the desired contradiction.

We also recall Lemma 2.3 of [8].

Lemma 2.3. Let Ψ and Ψ′ be connected point-line geometries with Ψ fully embedded in
Ψ′, such that for each point p ∈ X(Ψ), each member of L(Ψ′) containing p also belongs
to L(Ψ). Then Ψ and Ψ′ coincide.

3 The uniqueness of D5,5(K) in E6,1(K)

In this section, we set Ω := D5,5(K) and ∆ := E6,1(K). Also, we denote by Γ a
graph isomorphic to the skeleton of D5,5(1).

Lemma 3.1. Let Γ be isometrically laxly embedded in ∆, and let ∆ be naturally embedded
in PG(26, K). Then Γ is either contained in a symp, or collinear to a given point. If Γ
spans a 15-dimensional projective space in PG(26, K), then it is naturally contained in a
trace geometry (as the skeleton of an apartment of that trace geometry).

Proof. We can describe Γ ∼= D5,5(1) as the graph with point set {{i, j} | i, j ∈
{1, 2, 3, 4, 5}}∪{∞}, where ∞ is adjacent to all pairs {i, j}, i 6= j, i, j ∈ {1, 2, 3, 4, 5},
the set {i, j}, which can be a singleton (case i = j) or a pair (case i 6= j) is adjacent
to {k} if k /∈ {i, j}, i, j, k ∈ {1, 2, 3, 4, 5}, and the pairs {i, j} and {i, k} are adjacent
if |{i, j, k}| = 3, i, j, k ∈ {1, 2, 3, 4, 5}.
The points {1}, {2}, {3}, {4}, {1, 5}, {2, 5}, {3, 5}, {4, 5} are all contained in the
symp ξ := ξ({1}, {1, 5}) (and each set of vertices of Γ like this is called a (4, 4)-
cross-polytope). Moreover, the singular subspace U generated by {1}, {2}, {3} and
{4} has dimension 3 since {i, 5} is not collinear to {i}, but collinear to all of
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{{j} | j ∈ {1, 2, 3, 4} \ {i}}. Similarly the singular subspace W generated by
{1, 5}, {2, 5}, {3, 5} and {4, 5} has dimension 3.
Suppose for a contradiction that U and W are not opposite in ξ. Then there is a
point u ∈ U collinear to W. Hence it is contained in each plane 〈{i}, {j}, {k}〉,
|{i, j, k}| = 3, i, j, k ∈ {1, 2, 3, 4}. But that intersection is empty, as {{1}, {2}, {3},
{4}} is a basis for U. Hence U and W are opposite in ξ.
Next, suppose that {5} ∈ ξ. Since {5} ⊥ {1, 2} ⊥ {1, 5}, the point {1, 2} is con-
tained in ξ. Similarly the points {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4} belong to ξ,
and also ∞, since the latter is collinear to the noncollinear points {1, 2} and {3, 4}.
Hence Γ is entirely contained in ξ. In this case it cannot span a 15-dimensional
subspace of PG(26, K) as ξ only spans a 9-dimension subspace.
So we may from now on assume that {5} /∈ ξ. Similarly, ∞ /∈ ξ.
Hence {5} is contained in the unique 5-space U∗ containing U, cf. Section 2.3.1(8),
but not in ξ. It follows that {1}, {2}, {3}, {4} and {5} generate a 4′-space, and in
similar way, the same thing holds for every 5-clique of Γ. Let z be the intersection
of the 4′-spaces of ξ containing U and W, respectively. Then z ∈ U∗ ∩W∗, where
W∗ is the unique 5-space containing W, and which contains also ∞. Hence {5} ⊥
z ⊥ ∞.
Assume for a contradiction that z is not collinear to {1, 2}. Then the points {1, 5},
{2, 5}, {3}, {4}, {5} and ∞ are contained in ξ(z, {1, 2}). Since the latter thus con-
tains the noncollinear points ∞ and {3}, it also contains the point {4, 5}, collinear
with both. But then it contains the noncollinear points {4, 5} and {4}, which be-
long to ξ. Consequently ξ = ξ(z, {1, 2}), which contains ∞. But we just argued
above that we may assume ∞ /∈ ξ, a contradiction. Hence {1, 2} ⊥ z, and simi-
larly every other point of Γ is collinear to z.
In order to complete the proof of the proposition, we may assume that Γ spans a
15-dimensional subspace V in PG(26, K). We claim that z /∈ V.
Suppose for a contradiction z ∈ V. From the construction above, it follows that
the subspace spanned by {1}, {2}, {3}, {4}, {1, 5}, {2, 5}, {3, 5} and {4, 5} is a
hyperbolic quadric Q1 not containing z. Likewise, {5}, ∞, {i, j}, i, j ∈ {1, 2, 3, 4},
i 6= j span a quadric Q2 not containing z. Hence the subspaces 〈z, Q1〉 and 〈z, Q2〉
share exactly a line L, contradicting Section 7 of [9]. The claim is proved.
Hence we can consider the cone with vertex z over V(Γ); this defines, by [5, The-
orem A], an apartment in the residue of z.
Now, using Section 2.3.1(6), we can consider the set Ξ of symps defined by the
4′-spaces generated by the 5-cliques of Γ. They form an isometrically embedded
graph Γ′ ∼= D5,4(1), which is also isomorphic to D5,5(1), in the dual ∆∗ ∼= E6,6(K)
of ∆. Hence, by the foregoing, each member of Ξ is adjacent to some fixed symp
ζ.
Assume for a contradiction that z is incident with ζ. Then [1, Corollary 1.3] im-
plies that we can find a (4, 4)-cross-polytope P in Γ defining a symp of ∆ through
z locally opposite ζ. Consider any 5-clique C of Γ containing a 4-clique of P. Every
symp containing C and a 4-space of ζ obviously contains z, which is a contradic-
tion since that symp would then contain a 5-space.
Assume, again for a contradiction, that z is close to ζ. Then, again by [1, Corol-
lary 1.3], we find a vertex v of Γ such that the line zv is locally opposite the 5-space
through z intersecting ζ in a 4′-space. Then v is far from ζ and can hence never
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be contained in a symp intersecting ζ in a 4-space.
Hence ζ and z are opposite and the assertion now follows.

Proposition 3.2. Let Ω ∼= D5,5(K) be fully embedded in ∆ ∼= E6,1(K). Then Ω coin-
cides with a trace geometry.

Proof. Consider a symp ξ of Ω. If ξ is not isometrically embedded, then by
Lemma 2.1, it is embedded in a singular subspace W of ∆. But ξ contains dis-
joint solids, contradicting dim W ≤ 5. Since each pair of points of Ω is contained
in a symp of Ω, we conclude that Ω is isometrically embedded in ∆.
Select an apartment with skeleton graph Γ in Ω and note that, by [7, Proposi-
tion 2.1], the latter spans a subspace of dimension 15 of PG(26, K). Hence also
the former does, by [5, Theorem A]. Also, the previous paragraph implies that Γ
is isometrically embedded in ∆. By Lemma 3.1 the graph Γ is naturally embed-
ded in a trace geometry. Since Γ generates Ω, and a trace geometry is a subspace,
it follows that Ω is contained in a trace geometry, say Ω ⊆ z⊥ ∩ ζ 6≡, for a point z
and an opposite symp ζ.
We now claim that X(Ω) = z⊥ ∩ ζ 6≡, which will conclude the proof of the propo-
sition.
Indeed, with the notation of the proof of Lemma 3.1, the quadrics Q1 and Q2 to-
gether span a 15-dimensional subspace U of 〈z⊥〉 (generation in PG(26, K)). Both
are also symps of the trace geometry z⊥ ∩ ζ 6≡ (and note that this trace geometry is
isomorphic to D5,5(K) by Section 2.3.1(9)). Now the construction of D5,5(K) out
of two opposite symps explained in [11, Sec. 5.1] shows the wanted equality.

4 The uniqueness of E6,1(K) in E7,7(K)

In this section, we set Ω ∼= E6,1(K) and ∆ ∼= E7,7(K). We assume that Ω is fully
embedded in ∆. Here is the main result of this section.

Proposition 4.1. If Ω is fully embedded in ∆, then it is isometrically embedded and it
coincides with a trace geometry.

Proof. We break up the proof in a few parts.
Part 1: The embedding is isometric. Let ξ be a symp of Ω. Then ξ ∼= D5,1(K) is
not embedded in a singular subspace of ∆, as the maximum dimension of such a
subspace is 6 (and ξ contains disjoint singular 4-spaces). Hence, by Lemma 2.1,
ξ is isometrically embedded in a symp of ∆. Since every pair of points of Ω is
contained in a symp, the distance between those points in Ω is 2 if and only if the
distance between those points in ∆ is 2. Hence the embedding is isometric.
Note that this implies that Ω is a subspace of ∆.
Part 2: Ω is contained in p⊥, for some point p ∈ X(∆). Select x ∈ X(Ω). Then
the geometry Ωx ∼= D5,5(K) is fully and isometrically embedded in ∆x (using
Part 1) and hence, by Proposition 3.2, there exists a line L ∈ L(∆) through x, not
belonging to Ωx, collinear to Ωx.
Now let y ∈ X(Ω) be collinear to x. Then, similarly, there exists a line M ∈ L(∆)
through y collinear to Ωy. Now note first that the intersection Ωx ∩ Ωy is not
contained in a symp (since it is a geometry isomorphic to a cone with vertex
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the line xy and base a subspace S isomorphic to A4,2(K), which contains a point
and a line violating the one-or-all axiom). Hence it immediately follows that the
lines L and M are collinear. Suppose for a contradiction that they generate a
solid Σ. Then select noncollinear points u, v ∈ S. Since singular subspaces of ∆
inside a symp have dimension at most 5, the subspace Σ intersects each plane
of P := u⊥ ∩ v⊥ (the perp is taken inside S) in at least a point. By Lemma 2.2,
the whole of Σ is generated by these intersections, and since the embedding is
isometric, Σ is a subspace of P, which is ridiculous since P does not contain 3-
spaces. Hence L and M generate a plane and therefore intersect in a point p.
Now let z ∈ X(Ω) be collinear to x, but not to y. Letting z play the role of y, the
previous paragraph yields a point q ∈ L \ {x} such that Ωz ⊆ q⊥. Assume for a
contradiction that p 6= q. Let A be the intersection of z⊥ and y⊥, where both perps
are taken in Ω. Then A contains points not collinear to x, whereas A is collinear
to both p and q, and hence to L, including x, the sought contradiction.
Now it is easy to see that for every pair of points of D5,5(K), there exists a point
at distance 2 from both. This implies by the previous paragraphs and the arbi-
trariness of z that Ωt ⊆ p⊥, for every t ∈ X(Ω) with t ⊥ x. This, however, covers
all points of Ω and Part 2 is proved.
Part 3: Every line of ∆ through p contains a unique point of Ω. Clearly, if some line
L of ∆ through p contained at least two points of Ω, then, since Ω is a subspace,
also p would belong to Ω, contradicting Part 1 (as no point in Ω is collinear to all
other points of Ω).
Again by Part 1, the lines through p containing some point of Ω constitute the
point set of a fully and isometrically embedded subgeometry Ω′ in ∆p isomorphic
to E6,1(K). Let x ∈ X(Ω′) be arbitrary. Select an arbitrary trace geometry Γ in x⊥

(the perp is in Ω′). Then Γ ∼= D5,5(K) and so, by Proposition 3.2, it coincided with
a trace geometry in ∆p. Hence every line of ∆p through x is also a line of Ω′. It
now follows from Lemma 2.3 that ∆p and Ω′ coincide, which concludes the proof
of Part 3.
Define, for each symp ξ of Ω, the point pξ as the unique point of the symp ξ∗ of
∆ containing ξ collinear to all points of ξ and distinct from p.
Part 4: The set X := {pξ ∈ X(∆) | ξ ∈ Ξ(Ω)} is the point set of an isometrically fully
embedded geometry Ω∗ isomorphic to E6,1(K). By Section 2.3.1(7), X carries in a nat-
ural way the structure of E6,6(K), since every point of X corresponds to a unique
symp of Ω, and no two symps of Ω define the same point (which is obvious).
Hence, due to Part 1, it suffices to show that each line in this natural structure
coincides with a line of ∆. Now, a line in X consists of the points corresponding
to the symps of ∆ containing a given 5-space U through p. The corresponding
points in X are, by definition, collinear to the same hyperplane H 63 p of U. Let
p∗ be such a point and consider an arbitrary symp ξ∗ containing U, but not p∗.
Then, using Section 2.3.1(14), p∗, being collinear to H, is collinear to a 5′-space U∗

of ξ∗, and obviously U∗ contains a member q∗ of X. So p∗ ⊥ q∗. One now deduces
that all points of X corresponding to U are contained in the 6-space generated by
U∗ and p∗. Let p∗1 , p∗2 and p∗3 be three such points and assume for a contradiction
that they are not contained in a common line. Then, inside the 6-space 〈U∗, p∗〉,
the line p∗1 p∗2 intersects the 5′-space 〈H, p∗3〉 in some point r3 /∈ H distinct from p∗3 .
Note that r3 is not collinear to p.
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Set ξi = p⊥ ∩ p∗i
⊥ ∈ Ξ(Ω). Since r3 /∈ {p, p∗3}, there exists a point s3 in ξ3

not collinear to r3. Since s3 is collinear to at least a 3-space of ξ2, it is, by (5)
and (8) of Section 2.3.1, contained in a 5-space of Ω intersecting both ξ1 and ξ2
in 4-spaces. It follows that any line L through s3, contained in that 5-space and
disjoint from the solid s⊥3 ∩ H intersects ξ1 and ξ2 in distinct points s1 and s2,
respectively. The symp of ∆ through s1 and p∗2 contains L, hence s3, and p∗1 p∗2 ,
hence r3. Hence r3 is collinear to some point t3 of L, which belongs to ξ(p, r3).
Hence t3 ∈ L ∩ ξ(p, r3) = {s3}, contradicting the choice of s3 not being collinear
to r3.
Hence X is a full embedding of E6,6(K) and, applying Part 1 to that embedding,
Part 4 is proved.
Part 5: There exists a unique point q opposite p and not opposite each point of Ω, that
is, Ω coincides with the trace geometry p⊥ ∩ q 6≡. By Part 2, there is a unique point
q collinear to all points of X. Then X(Ω) ⊆ q 6≡. It is obvious that p 6= q. Also,
if q ⊥ p, then it lies in each symp through p, a contradiction. If q is at distance
2 from p, then, by Section 2.3.1(14), the unique point of Ω on any line through p
locally opposite ξ(p, q) is opposite q, a contradiction. This proves existence. Let
ξp be any symp through p. Then, since q is opposite p, it follows from Section
2.3.1(14) that q is collinear to a unique point of ξp, which automatically belongs to
X. Let q′ now be any point opposite p distinct from q. Then by the uniqueness of
q as a point collinear to all points of X, there exists a symp ξ∗ containing a symp ξ
of Ω such that the unique point r of ξ∗ collinear to q′ (where we again use Section
2.3.1(14)) is not equal to pξ . Then r is collinear to some point s on a line px, with
x ∈ X(Ω) and s 6= x. Consequently q′ is not opposite s, and since it is opposite p,
it is also opposite x. Hence q′ is opposite some point of Ω and we conclude that q
is unique.

5 The uniqueness of E7,7(K) in E8,8(K)

In this section, we set Ω ∼= E7,7(K) and ∆ ∼= E8,8(K). We assume that Ω is fully
embedded in ∆. Here is the main result of this section.

Proposition 5.1. If Ω is fully embedded in ∆, then it is isometrically embedded and it
coincides with a trace geometry.

Proof. We again break up the proof in several steps. Although one will discover
great similarity with the structure of the proof of Proposition 4.1, some of the
arguments are a little different and less direct because of the growing complexity
that comes with the rank and the fact that we move from strong parapolar spaces
of diameter 2, over strong ones with diameter 3, to non-strong ones with diameter
3. Nevertheless, arguments very similar or the same as in the proof of Proposition
4.1 will not be repeated.
Part 1: The embedding is isometric. As in the proof of Proposition 4.1, one deduces
that symplectic points of Ω are also symplectic points of ∆. Now let {x, y} be an
opposite pair of points of Ω. Then, by Section 2.3.2(2), it is not an opposite pair in
∆ since x is collinear to a symplectic point to y. Let ξ be any symp of Ω containing
x. Then Section 2.3.1(14) asserts that there is a unique point z collinear to y and
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contained in ξ. Considering ∆z, we see that, by the fact that Ωz is isometrically
embedded in ∆z and Section 2.3.2(4), exactly a line of the symp of ∆ containing ξ
is collinear to y. This means, by Section 2.3.2(4) again, that y is special to x (as z is
symplectic to x). Hence the embedding is isometric.
Part 2: Ω is contained in p⊥, for some point p ∈ X(∆). This is entirely similar to Part
2 of the proof of Proposition 4.1, except that we have to push it one step further
and repeat the main argument for points collinear to y (with the notation of the
proof of Proposition 4.1).
Part 3: Every line of ∆ through p contains a unique point of Ω. Also this step is
completely similar to the corresponding part in the proof of Proposition 4.1.
We again define, for each symp ξ of Ω, the point pξ as the unique point of the
symp ξ∗ of ∆ containing ξ, collinear to all points of ξ and distinct from p.
Part 4: The set X := {pξ ∈ X(∆) | ξ ∈ Ξ(Ω)} is an equator geometry with p one of
its poles. Completely similar to the proof of Part 4 in the proof of Proposition 4.1
one shows that X is the point set of an isometrically fully embedded geometry
Ω∗ isomorphic to E7,1(K). By [8, Prop. 4.9], the assertion follows. Note that the
set of poles of X is an imaginary line C.
Part 4: There exists a unique imaginary line C containing p each point q of which distinct
from and hence opposite p is not opposite each point of Ω, that is, Ω is a trace geometry.
Part 4 yields already existence of C. Uniqueness follows with the same arguments
as in Part 5 of the proof of Proposition 4.1.

6 The uniqueness of A5,3(K) in E6,2(K)

Proposition 6.1. If a Lie incidence geometry Ω ∼= A5,3(K) is fully embedded in another
Lie incidence geometry ∆ ∼= E6,2(K), then it is isometrically embedded and it coincides
with a trace geometry.

The proof of this proposition is completely the same as the proof of Proposition
5.1, as soon as we prove the analogue of Proposition 3.2 for the Lie incidence
geometries A2,1(K)×A2,1(K) not only fully, but also assumed to be isometrically
embedded in A5,3(K). However, this is just an extended exercise in projective
geometry, which we shall not carry out in detail. We just hint at the fact that an
efficient proof uses the fact that a pair of planes of A5,3(K) with the property that
each point of each plane is collinear to a unique point of the other plane always
arises, up to duality in PG(5, K), from the set of planes of PG(5, K) through fixed
points x1 and x2, and contained in given 3-spaces Σ1 and Σ2, respectively, where
xi ∈ Σj if and only if i = j, and Σ1 ∩ Σ2 is a plane.

7 The uniqueness of D6,6(K) in E7,1(K)

Proposition 7.1. If a Lie incidence geometry Ω ∼= D6,6(K) is fully embedded in another
Lie incidence geometry ∆ ∼= E7,1(K), then it is isometrically embedded and it coincides
with a trace geometry.
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Proof. As in the previous section, the proof of this proposition is completely the
same as the proof of Proposition 5.1, as soon as we prove the analogue of Proposi-
tion 4.1 for the Lie incidence geometries A5,2(K) and D6,6(K), assuming we have
an isometric embedding. That one, on its turn, is completely similar to Propo-
sition 4.1 once we show the analogue of Proposition 3.2 for the Lie incidence
geometries A1,1(K)× A3,1(K) and A5,2(K), assuming we have an isometric em-
bedding. That is what we will now do.
Let Ω ∼= A1,1(K) × A3,1(K), which is just the Cartesian product of a projective
line over K with a projective space of dimension 3 over K, be isometrically and
fully embedded in ∆ ∼= A5,2(K). We argue in the corresponding projective space
PG(5, K). Pick a maximal singular subspace Σ1 of Ω of dimension 3. This cor-
responds to the set of lines of PG(5, K) through some point x1 inside some hy-
perplane H1. A point of ∆ is collinear to exactly one point of Σ if and only if it
corresponds to a line L of PG(5, K) not through x1 and not in H1. Hence a second
maximal singular subspace Σ2 of Ω corresponds to a point x2 /∈ H1 and a hyper-
plane H2 63 x1. It follows that the points of Ω correspond to the lines of PG(5, K)
intersecting both H1 ∩ H2 and x1x2, that is, it coincides with the trace geometry
p⊥ ∩ ξ 6≡, where p is the point corresponding to the line x1x2 and ξ is the symp
corresponding to the solid H1 ∩ H2 (through the Klein correspondence).

8 A general consequence

Before we go to the more tricky case of E6,1(K) in E8,8(K), we mention a global
consequence of all previous results. Note that the standard embedding of a long
root subgroup geometry in projective space is the one arising from the adjoint
module.

Corollary 8.1. Let ∆ be one of the Lie incidence geometries E6,1(K), E6,2(K), E7,7(K),
E7,1(K) and E8.8(K) with standard embedding in PG(d, K) (and d = 26, 77, 55, 132
and 247, respectively). Let p be any point of ∆ and let H be a hyperplane in the subspace
of PG(d, K) spanned by all points of ∆ collinear to p, not containing p. Then H ∩ X(∆)
is a trace geometry. In particular, there exists a point q ∈ X(∆) not opposite each point
of H ∩ X(∆), unique if ∆ is not a long root subgroup geometry, otherwise the imaginary
line containing p and q is unique.

Proof. The set H∩X(∆) is an embedded geometry isomorphic to a point residual.
The assertion now follows from Propositions 3.2, 6.1, 4.1, 7.1 and 5.1.

9 The uniqueness of E6,1(K) in E8,8(K)

In this section let Ω be isomorphic to E6,1(K) and ∆ to E8,8(K). We first aim to
show that Ω is a trace geometry with respect to two opposite lines.
But before that, we need to study the full embeddings of Ω′ ∼= D5,5(K) in ∆′ ∼=
E7,7(K). We head off with a partial analogue to Lemma 3.1.
Denote again by Γ a graph isomorphic to the skeleton of D5,5(1).
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Lemma 9.1. Let Γ be isometrically laxly embedded in ∆′, and let ∆′ be naturally embed-
ded in PG(55, K). Then Γ is either contained in a symp, or collinear to a given line.

Proof. We will follow the strategy of the proof of Lemma 3.1. Since now symps
have larger Witt index, some arguments need to be revised.
We take the same notation for the vertices of Γ as in the proof of Lemma 3.1. The
arguments of the first few paragraphs of that proof can then be copied, so that we
have the following situation:
The points {1}, {2}, {3}, {4}, {1, 5}, {2, 5}, {3, 5}, {4, 5} are all contained in a com-
mon symp ξ. Moreover, the singular subspaces U generated by {1}, {2}, {3}
and {4}, and W generated by {1, 5}, {2, 5}, {3, 5} and {4, 5}, are opposite and
3-dimensional. If {5} ∈ ξ then all vertices of Γ are contained in ξ. So we may
assume that both {5} and ∞ are not contained in ξ.
We now go on with the proof, slightly diverging from the proof of Lemma 3.1. By
the above, {5} is contained in a unique 6-space U∗ containing U and intersecting
ξ in a 5′-space U′. Likewise, ∞ is contained in a unique 6-space W∗ containing W
and intersecting ξ in a 5′-space W ′. Suppose that U′ ∩W ′ = ∅. Then, by Section
2.3.1(14), the points {5} and ∞ are opposite in ∆′, a contradiction. Hence U′ and
W ′ share exactly a line Z.
Now the arguments in the proof of Lemma 3.1 can be repeated to prove that all
vertices of Γ are collinear to Z.

We can now show:

Proposition 9.2. Let Ω′ ∼= D5,5(K) be fully embedded in ∆′ ∼= E7,7(K). Then Ω′

coincides with a trace geometry with respect to lines.

Proof. Since the symps of Ω′ do not admit any full embedding in PG(6, K), the
embedding is isometric. Since Ω′ is generated by Γ (see [5]), it is, by Lemma
9.1, contained in Z⊥, for some line Z. We select two (distinct) points p, z on Z.
In ∆′p, the cone with vertex p and base Ω′ induces a full embedding, which, by
Proposition 3.2, is a trace geometry of ∆′p. Hence there is a symplecton ζ of ∆′

through p such that each point of Ω′ is collinear to a 5′-space of ζ through p. We
select arbitrarily a point p′ in ζ not collinear to p, and we set ζ ′ := p⊥ ∩ p′⊥. Note
that p′ is not opposite (in ∆′) any point of Ω′.
Now we consider the (universal) embedding of ∆′ in PG(55, K). By construction,
the subspace of PG(55, K) generated by p, z, X(Ω′) and ζ ′ coincides with 〈p⊥〉
(generation in PG(55, K)) and is hence 27-dimensional. On the other hand, the
subspace U generated by z, X(Ω′) and ζ ′ has dimension at most (((0 + 15) +
1) + 9) + 1 = 26. It follows that it has dimension precisely 26 and that is does not
contain p. Hence U ∩ p⊥ (perp in ∆) is an embedded geometry Ω∗ isomorphic to
E6,1(K). Then we know from Proposition 4.1 that there is a point z′ ∈ X(∆′) not
opposite each point of {z} ∪X(Ω′)∪ ζ ′. The proof of Proposition 4.1 also directly
implies that z′ is collinear to p′. Since no point of Ω′ is now opposite either p′ or
z′, no point of Ω′ is opposite any point of the line p′z′. Also, since pz is locally
opposite ζ by construction, the points p′ and z are opposite in ∆. Hence pz is
opposite p′z′ and X(Ω′) ⊆ (pz)⊥ ∩ (p′z′) 6≡. (Here, the notation (p′z′) 6≡ means
the set of points not opposite any point of the line p′z′.)
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We now claim X(Ω′) = (pz)⊥ ∩ (p′z′) 6≡. If suffices to prove that every point
u ∈ (pz)⊥ ∩ (p′z′) 6≡ is contained in X(Ω′). Let u be such a point. Since u is not
opposite z′, it is contained in U ∩ (pz)⊥, which coincides with z⊥ ∩Ω∗. Hence
u is collinear to z (and obviously distinct from it). Let x be the unique point of
uz contained in X(Ω′). Since p′ is opposite z (see above) and not opposite x, it is
opposite each member of (uz)∗ \ {x}. Hence u = x and the claim is proved.
This completes the proof of the proposition.

Proposition 9.3. Let Ω ∼= E6,1(K) be fully embedded in ∆ ∼= E8,8(K). Then Ω coin-
cides with a trace geometry with respect to lines.

Proof. We begin with following the strategy of the proof of Proposition 4.1. Part
1 is completely similar and so the embedding is isometric.
For Part 2, the dimensions are different in the current case. For x ∈ X(Ω), using
Proposition 9.2, there now exists a plane α through x, not belonging to Ωx (in
fact only intersecting it in x), collinear to Ωx. For y ∈ X(Ω) collinear to x, we find
another plane β through y collinear to Ωy. As in the proof of Proposition 4.1, these
planes are contained in a common singular subspace Σ. If dim Σ ∈ {4, 5}, then,
with the notation of the proof of Proposition 4.1, Σ intersects every singular plane
of P, and by Lemma 2.2, these intersections generate at least a 3-space, leading to
the same contradiction as in the proof of Proposition 4.1. Hence Σ is a solid and
α ∩ β is a line L.
The rest of the arguments of the proof of Part 2 in the proof of Proposition 4.1 are
also valid here and we conclude that Ω is contained in L⊥.
Select p ∈ L arbitrarily. We apply Proposition 4.1 to ∆p. Then we find a line pz′

and a cone with vertex p and base a geometry Ω′′ isomorphic to E6,6(K) such
that pz′ is locally opposite L, collinear to X(Ω′′) and not locally opposite each
line through p and a point of X(Ω).
Consider the natural embedding of ∆ in PG(247, K). We claim that L is dis-
joint from the subspace of PG(247, K) generated by X(Ω). Indeed, suppose not,
and assume some point x ∈ L is contained in 〈X(Ω)〉. We may assume with
loss that x = p. Then ∆x is contained in the subspace of PG(247, K) gener-
ated by X(Ω), X(Ω′′), pz′ and a point on L distinct from p. This is at most a
55-dimensional space, which is a contradiction. The claim is proved.
Hence we can select a point p ∈ L and a hyperplane H in 〈p⊥〉 not containing p,
but containing X(Ω). Corollary 8.1 implies that there exists a point q opposite p
such that H ∩ X(∆) is contained in q 6≡. We may assume z′ ∈ H; then {z′, q} is a
special pair. Let w be the unique point of ∆ collinear to both q and z′. Since z′ is
symplectic to each point of Ω, the point w is not opposite any point of Ω. Hence,
as before, Ω is contained in L⊥ ∩ (qx) 6≡. Similarly as in the last paragraph of the
proof of Proposition 9.2 one shows now that X(Ω) = L⊥ ∩ (qx) 6≡.

Since the automorphism group of ∆ acts transitively on opposite pairs of lines
(by the so-called BN-property, or strongly transitivity), the embedding of E6,1(K)
in E8,8(K) is unique. Since, by Section 2.3.2, a geometry isomorphic to E6,1(K)
is also contained as a full subgeometry in an arbitrary equator geometry, every
such embedding also arises in this way. We now make this more concrete.
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Connection with equator geometries. Let us go back to the last paragraph of the
proof of Proposition 9.3. We proved that z′ is symplectic to all points of Ω. Let z
be the point in L ∩ H. Then {z, q} is special. Let u be the unique point collinear
to both z and q. Since z is collinear to each point of Ω, the point u is at distance at
most 2 from each point of Ω. It is not collinear to any point of Ω as such point is
also collinear to p and, by Section 2.3.2(2), u is special to p with z the unique point
collinear to both u and p. If u were special to a point t of Ω, then again Section
2.3.2(2) would imply that q is opposite t, a contradiction. Hence each point of Ω
is symplectic to u and we conclude X(Ω) ⊆ E(u, z′).
In general, Let p and q be two opposite points in ∆. A para in E7,1(K) corresponds
to a vertex of type 7 in the Coxeter diagram, hence to a point of E7,7(K). It follows
that a para of E(p, q) corresponds to a line L through p. More exactly, each symp
through L contains a point of E(p, q) (see Section 2.3.2(6)) and the set of these
points forms a para Π ∼= E6,1(K). The same reference implies that each point of
Π is collinear to the unique point u ∈ L special to q. Similarly, there exists a point
w special to p and collinear to u such that X(Π) ⊆ w⊥, and so X(Π) ⊆ (uw)⊥.
Now let M be a line through p locally opposite L and let R be the line through
the point x of M special to q, and containing a point y collinear to q. Since x is
collinear to p and p is symplectic to each point of Π, we deduce from Section
2.3.2(2) that no point of Π is opposite x. Likewise, no point of Π is opposite y.
Hence no point of R is opposite any point of Π. Then the proof of Proposition 9.3
implies that X(Π) = (uw)⊥ ∩ R 6≡. This explains the freedom we have in choosing
the line R. Note that we do not obtain additional lines like R by replacing q by
another point of the imaginary line through p and q.
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