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Abstract: A Cooperstein ovoid is a set of q8 + q4 + 1 pairwise non-collinear points in the Lie incidence
geometry E6,1(q). They were introduced by Cooperstein twenty-six years ago, motivated by the fact
that possible non-existence of them would imply non-existence of ovoids in hyperbolic quadrics of
rank 5. Since then, no progress has been made on their existence question. We prove that Cooperstein
ovoids do not exist under some natural additional conditions. In particular, Cooperstein ovoids
intersecting every symplecton of E6,1(q) do not exist, Cooperstein ovoids which are the fixed points
of a collineation do not exist, and Cooperstein ovoids which are the absolute points of a polarity of
E6,1(q) do not exist.
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1. Introduction

Special substructures of finite geometries have proved their importance in many
instances. They are used in graph theory (for instance to construct strongly regular graphs),
coding theory (to construct codes that perform well), cryptography, in finite geometry
itself (to construct other geometries, in proofs, in classification results), etc. A prominent
substructure is an ovoid of a polar space. There has been a lot of work put into existence
and non-existence results for these structures in the finite case, but we are still far from a
complete answer. Many examples of interesting substructures arise as the set of fixed points
of a collineation of the ambient geometry. For instance, with the notation introduced below,
the (so-called) classical ovoids of the hyperbolic quadrics Q+(3, q), Q+(5, q), and Q+(7, q)
(the latter for q a power of 3) arise as fixpoint structure of a collineation. The next case for
hyperbolic quadrics, Q+(9, q), is still wide open for q a power of a prime distinct from 2 or
3 (for the latter, non-existence follows from a result of Blokhuis and Moorhouse [1], see [2],
Proposition 2.6.17). In order to make some progress on the (remaining) existence question,
Cooperstein [3] proved a connection between ovoids of Q+(9, q) and maximal cocliques of
size q8 + q4 + 1 in the Lie incidence geometry E6,1(q), which we will refer to as Cooperstein
ovoids, hoping that the non-existence of the latter would be easier to prove. To date, no one
has been able to further explore this connection. The main goal of the present paper is to
prove that Cooperstein ovoids cannot arise as fixpoint structure of a collineation of E6,1(q).
We also show the non-existence of Cooperstein ovoids under a natural geometric condition.
In fact, the latter result follows from a more general observation connecting cocliques of
E6,1(q) with blocking sets of E6,1(q) with respect to symplecta. More precisely, and with
the notation introduced in Section 2, we prove the following two results.

Main Result 1. Each coclique of points of E6,1(q) is disjoint from at least one symplecton. In
particular, there does not exist a Cooperstein ovoid intersecting each symplecton in at least one point.

Main Result 2. No Cooperstein ovoid arises as the set of fixed points of a collineation of E6,1(q).
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Some ovoids, like the so-called Ree-Tits ovoids in Q+(7, q), arise from polarities of an
appropriate geometry (here, a generalized hexagon embedded in the quadric—this gener-
alized hexagon itself arises from a triality of the oriflamme geometry defined by Q+(7, q)).
We will also prove that a search along these lines for Cooperstein ovoids leads nowhere.

Main Result 3. No Cooperstein ovoid arises as the set of absolute points of a polarity of E6,1(q).

Note that Main Result 1 is not true in the infinite case. Indeed, the naturally embedded
quaternion and octonion Veroneseans (see [4]) are counterexamples: they are cocliques
intersecting every symplecton non-trivially (see [4], Lemma 4.3). Moreover, they form the
fixed point set of a collineation, which morally contadicts Main Result 2 (although in the
infinite case one cannot speak of Cooperstein ovoids, these examples in the infinite case are
as close as one can get, see Remark 3 below).

In the next section, we introduce the main objects of this paper and set notation. In the
rest of the paper, we prove our main results.

2. Notation

Our main players are the so-called (finite) minuscule geometries of type E6, denoted
by E6,1(q) when the underlying field is the finite field Fq of order q. We introduce these as a
class of point-line geometries satisfying certain axioms, and then we list some well known
properties that should sharpen the intuition for such geometries. Let us note that these
were called Hjelmslev–Moufang planes by Springer and Veldkamp [5], who also collected a
lot of properties of these geometries, which were first defined by Tits in [6].

It is convenient to formulate the properties and axioms in the language of parapolar
spaces; these are geometries designed to be related to spherical buildings (and our main
players are related to buildings of type E6 as the notation already suggested). However, we
will not need any theory of (spherical Tits) buildings. We begin with some basic definitions.

Throughout, we will work with incidence structures called partial linear spaces. In this
subsection, we introduce the general definitions we will need.

2.1. Point-Line Geometries

Definition 1. A point-line geometry is a pair ∆ = (P ,L) with P a set and L a set of subsets of P .
The elements of P are called points and the members of L are called lines. If p ∈ P and L ∈ L
with p ∈ L, we say that the point p lies on the line L, and the line L contains the point p, or goes
through p. If two (not necessarily distinct) points p and q are contained in a common line, they are
called collinear, denoted p ⊥ q. If they are not contained in a common line, we say that they are
non-collinear. For any point p we denote p⊥ := {q ∈ P | q ⊥ p}.

A partial linear space is a point-line geometry in which every line contains at least three
points, and where there is a unique line through every pair of distinct collinear points p and q. That
line is then denoted with pq. A linear space is a partial linear space in which every pair of points
is collinear.

Example 1. Let V be a vector space of dimension at least 3. Let P be the set of 1-spaces of V, and let
L be the set of 2-spaces of V, each of them regarded as the set of 1-spaces it contains. Then, (P ,L)
is called a projective space (of dimension dim V − 1) and denoted by PG(V), or PG(n,K) if
V is defined over the field K and has dimension n + 1. If K is finite, say |K| = q, then PG(n,K)
is denoted by PG(n, q). Projective spaces are linear spaces. Projective planes are linear spaces
in which every pair of lines intersect in a point; examples are PG(2,K), but there are also other
examples. The finite planes PG(2, q) are characterized by the Moufang property, which states that
every line L is a translation line, that is, the pointwise stabilizer of L contains a subgroup acting
sharply transitively on the points off L.

Definition 2. Let ∆ = (P ,L) be a partial linear space.
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(i) The point graph Γ of ∆ is the graph with vertices the points of ∆, adjacent when collinear. A
geodesic in ∆ between the points x and y is a minimal path in Γ from x to y. The distance
between x and y in ∆ is the graph theoretic distance in Γ.

(ii) The partial linear space ∆ is called connected when the point graph is connected. The diameter
of ∆ is by definition the diameter of Γ (if it exists).

(iii) A subset S of P is called a subspace of ∆ when every line L of L that contains at least two
points of S is contained in S. A subspace that intersects every line in at least a point is called
a hyperplane; it is proper if it does not coincide with P . A subspace is called convex if it
contains all points on every geodesic that connects any two points in S. We usually regard
subspaces of ∆ in the obvious way as subgeometries of ∆.

(iv) A subspace S in which all points are pairwise collinear is called a singular subspace. If S
is, moreover, not contained in any other singular subspace, it is called a maximal singular
subspace. If it is contained in at least one other singular subspace, but all such singular
subspaces are maximal, then we call it submaximal. A singular subspace is called projective
if, as a subgeometry, it is a projective space (cf. Example 1). Note that every singular subspace
is trivially convex.

(v) For a subset P of P , the subspace generated by P is denoted ⟨P⟩ and is defined to be the
intersection of all subspaces containing P. The convex hull of P is defined to be the intersection
of all convex subspaces that contain P. A subspace generated by three mutually collinear
points, not on a common line, is called a plane. Note that, in general, this is not necessarily
a singular subspace; however, we will only deal with geometries satisfying Axiom (GS) (see
below), which implies that subspaces generated by pairwise collinear points are singular; in
particular, planes will be singular subspaces.

2.2. Polar and Parapolar Spaces

We recall the definition of a polar space, and gather some basic properties. We take
the viewpoint of Buekenhout and Shult [7]. All results in this section are well known, the
standard reference being [8]. Since we are only interested in non-degenerate polar spaces of
finite rank, we include this in our definition.

Definition 3. A polar space is a point-line geometry Γ in which for every point p, the set p⊥ is a
proper hyperplane, and each maximal nested family of singular subspaces is finite and has size r + 1
at least 3. The integer r is the rank of the polar space.

One shows that a polar space Γ is partial linear, and that each singular subspace is a
projective space, see [7]. The maximal singular subspaces of a polar space of rank r have
dimension r − 1. Two singular subspaces are called Γ-opposite if no point of either of them
is collinear to all points of the other.

Example 2. Let K be a field, n an integer at least 3, and H a hyperbolic quadric in PG(2n − 1,K),
that is, a quadric with standard equation X−1X1 + X−2X2 + · · ·+ X−nXn = 0. Then, the points
and lines on H define a point-line geometry that is a polar space of rank n and that we will denote by
Dn,1(K). We call it a hyperbolic polar space. Maximal singular subspaces of hyperbolic quadrics are
often called generators. A hyperbolic polar space has the peculiar property that every submaximal
singular subspace is contained in exactly two generators. Also, intersecting in a subspace of even
codimension defines an equivalence relation in the set of generators and we call the two thus-obtained
equivalence classes the natural classes of generators.

We also recall the definition of a parapolar space and introduce the examples that we
are concerned with in this paper.

Definition 4. A parapolar space ∆ is a connected point-line geometry, which is not a polar space,
and for which every pair {p, q} of points with |p⊥ ∩ q⊥| ≥ 2 is contained in a convex subspace
isomorphic to a polar space. Any such convex subspace is called a symplecton of ∆.
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A pair of points p and q is called special if |p⊥ ∩ q⊥| = 1. A pair of non-collinear points
p and q is called symplectic if |p⊥ ∩ q⊥| ≥ 2. In this case, the convex hull of {p, q} is a polar
space, which we denote by ξ(p, q). A parapolar space is called strong when it contains no pair of
special points.

Remark 1. The definition of a parapolar space immediately implies that it is a partial linear space.
Also, parapolar spaces are so-called gamma spaces, that is, they satisfy the following axiom, which
is sometimes superfluously added in the definition.

(GS) Every point is collinear to zero, one, or all points of any line.

In the present paper, we will only be concerned with parapolar spaces all symplecta of
which have the same rank r ≥ 3. We say that the parapolar space has (constant or uniform
symplectic) rank r. If r ≥ 3, then all singular subspaces are projective.

Example 3. Let H be a hyperbolic quadric in PG(2n − 1,K) as in Example 2, with n ≥ 5. Let Υ1
and Υ2 be the two natural classes of generatiors. Let Ξ be the set of singular subspaces of dimension
r − 3 and set L(W) = {U ∈ Υ1 | W ⊆ U} for each W ∈ Ξ. Then, the point-line geometry with
point set Υ1 and line set {L(W) | W ∈ Ξ} is a strong parapolar space with diameter ⌊ n

2 ⌋ and rank
4. We denote it by Dn,n(K).

Definition 5. Let Γ be a non-degenerate polar or parapolar space of rank r and let U be a singular
subspace of Γ of dimension at most r − 3. We define ResΓ(U) to be the point-line geometry
(P ,L) with:

P := {singular subspaces K of Γ with U ⊂ K and codimK U = 1},

L := {singular subspaces L of Γ with U ⊂ L and codimL U = 2},

where any element of L is identified with the set of elements of P contained in it.
If U is a point, then we say that ResΓ(U) is a point residual.

A lot of background information about parapolar spaces is provided in the standard
reference [9].

2.3. Parapolar Spaces of Type E6,1

Let K be a field. We now introduce the parapolar space E6,1(K). It is related to the
building of type E6 over the field K, but we will not need that relationship; instead, we
define this geometry by one of its characterizations in the literature, see ([9], Theorem 15.4.3).
However, this relation to buildings, and hence, to groups of Lie type, explains why this
geometry is often called a Lie incidence geometry, as we also did in the abstract.

Definition 6. A parapolar space ∆ = (X,L) is denoted by E6,1(K) and called of type E6,1 if it
satisfies the following axioms:

(i) Two different points are either collinear or symplectic. In other words, ∆ is strong and has
diameter 2.

(ii) The symplecta are hyperbolic polar spaces of rank 5 isomorphic to D5,1(K).
(iii) If a point p is collinear with at least one point of a symplecton ξ not containing p, then p⊥ ∩ ξ

is a generator of ξ.
(iv) Two different symplecta, with at least two common points, have a generator of both in common.

Note that these axioms are not entirely independent, but we are not concerned
about that.
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2.4. Known Properties of E6,1(K)

In this section, we collect a number of well-known properties of the geometry
∆ = (P ,L) of type E6,1. To have everything at one place, we also include the axioms.
Most results are proved in [6], the others follow directly from (ii) below and a straightfor-
ward argument in the associated polar space D5,1(K).

Lemma 1.

(i) ∆ is a strong parapolar space with diameter 2.
(ii) The point residual at any point is isomorphic to D5,5(K).
(iii) All symplecta of ∆ are isomorphic to D5,1(K).
(iv) All singular subspaces of dimension d ≥ 2 of ∆ are isomorphic to PG(d,K).
(v) The maximal singular subspaces of ∆ have dimension 4 and 5. They are referred to as the

4-spaces and 5-spaces, respectively.
(vi) Each singular subspace U of dimension 4 is contained in a unique maximal singular subspace.

If the latter is a 5-space, then U is referred to as a 4′-space.
(vii) If a point p is not contained in a symplecton ξ, but is collinear to at least one point of ξ, then

it is collinear to all points of a 4′-space U of ξ. The space ⟨p, U⟩ spanned by p and U is a
5-space.

(viii) The maximal singular subspaces of a given symplecton ξ also contained in some other
symplecton are 4-spaces and form one natural class of generators. The maximal singular
subspaces of ξ contained in a 5-space of ∆ are 4′-spaces and form the other class.

(ix) Two distinct symplecta intersect in either a point or a 4-space.
(x) Each singular 3-space is contained in a unique maximal singular 4-space and a unique

singular 5-space.
(xi) For a point p and 5-space W of ∆ with p /∈ W, either p⊥ ∩ W is a 3-space or p⊥ ∩ U is

a point.

Terminology 1.

• A point p not contained in a symplecton ξ is called neighboring to ξ if x⊥ ∩ ξ is a
4′-space. It is called opposite ξ if p⊥ ∩ ξ = ∅.

• In (xi) above, we say that p and W are close if p⊥ ∩ W is a 3-space, and they are far if
p⊥ ∩ W is a single point.

• Two symplecta are called adjacent if they intersect in a 4-space.

Principle of Duality

Finally, we note that there is a principle of duality in E6,1(K), for every field K. This
goes as follows. Let Ξ be the set of all symplecta of E6,1(K). For each 4-space U, define LU
to be the set of all symplecta containing U. Set U be the set of all LU , for U ranging over
the set of all 4-spaces of E6,1(K). Then, the pair (Ξ,U ) is a point-line geometry isomorphic
to E6,1(K) again. Hence, points and symplecta play a similar role in E6,1(K). We denote
this dual geometry by E6,6(K). We note that the planes and the 5-spaces of E6,1(K) are self
dual notions, that is, each plane in E6,6(K) consists of the symplecta of E6,1(K) containing
a given plane, and each 5-space in E6,6(K) consists of the symplecta of E6,1(K) intersecting
a given 5-space in a 4′-space.

2.5. The Finite Case

When the field K is finite, say isomorphic to Fq for some prime power q, then we
denote the corresponding geometry E6,1(K) = (P ,L) by E6,1(q). Its point graph (see
Definition 2) is strongly regular with parameters (v, k, λ, µ), where k is the valency of Γ, λ
is the number of vertices adjacent to two arbitrary adjacent vertices, and µ is the number of
vertices adjacent to two arbitrary non-adjacent vertices. We have the following values (see
also [2], Section 4.9):
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

v = |P| = |Ξ| = (q12−1)(q9−1)
(q4−1)(q−1) ,

k = q (q8−1)(q6−1)
(q3−1)(q−1) ,

λ = q − 1 + q2 (q5−1)(q4−1)
(q2−1)(q−1) ,

µ = (q6−1)(q4−1)
(q3−1)(q−1) .

The Hoffman bound for cocliques, that is, sets of pairwise non-adjacent vertices, is
q8 + q4 + 1 (see [3]). A coclique of that maximal size will be called a Cooperstein ovoid of
E6,1(q). No Cooperstein ovoid is known to exist, and the goal of this paper is to establish
some further restrictions on its existence.

We note an immediate consequence of the fact that the size of a Cooperstein ovoid
reaches the Hoffman bound (see for instance [2], Proposition 1.1.7(i)).

Lemma 2. Each point of E6,1(q) outside a given Cooperstein ovoid O is collinear to exactly q3 + 1
points of O.

A similar result holds for ovoids of D4,1(q), which are cocliques of the point graph
reaching the Hoffman bound q4 + 1. Such ovoids have a geometric definition as sets of
points intersecting each maximal singular subspace in exactly one point (a definition in the
same spirit does not exist for Cooperstein ovoids, but see Remark 3). The number q3 + 1
below also follows from the fact that the points of the ovoid collinear to a given point
outside the ovoid form an ovoid in the point residual.

Lemma 3. Each point of D4,1(q) outside a given ovoid O is collinear to exactly q3 + 1 points of O.

3. Proofs
3.1. Main Result 1

We begin with Main Result 1. Suppose O is a set of points of E6,1(q) no two of which
are collinear. We use the notation of above. The Hoffman bound implies:

|O| ≤ q8 + q4 + 1. (1)

Suppose each symplecton intersects O in at least one point. For each symplecton ξ, set
Nξ := |O ∩ ξ|. Then, 1 ≤ Nξ ≤ q4 + 1; the latter following from the Hoffman bound in ξ
(also known as the ovoid number in ξ). Note that, by the principle of duality, the number of
symplecta containing a given point is equal to the number of points in a given symplection,

which is (q8−1)(q5−1)
(q4−1)(q−1) . Counting the pairs (x, ξ) ∈ O × Ξ, with x ∈ ξ, in two ways, we

see that:

∑
ξ∈Ξ

Nξ = |O| (q
8 − 1)(q5 − 1)

(q4 − 1)(q − 1)
. (2)

Now, we count the triples (x, y, ξ) ∈ O × O × Ξ with x, y ∈ ξ in two ways. We obtain:

∑
ξ∈Ξ

Nξ(Nξ − 1) = |O|(|O| − 1). (3)

Multiplying Equation (2) by q4 + 1, subtracting this from Equation (3), and adding q4 + 1
times the total number of symplecta, we obtain, after some elementary calculation:

∑
ξ∈Ξ

(Nξ − (q4 + 1))(Nξ − 1) =

|O|2 − (1 + (q4 + 1)2(q4 + q3 + q2 + q + 1))|O|+ (q4 + 1)(q8 + q4 + 1)(q8 + q7 + · · ·+ q + 1), (4)
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which we can write as:

∑
ξ∈Ξ

(Nξ − (q4 + 1))(Nξ − 1) =

(
|O| − (q8 + q4 + 1)

)
·
(
|O| − (q4 + 1)(q8 + q7 + · · ·+ q + 1)

)
. (5)

Now, since 1 ≤ Nξ ≤ q4 + 1, the left-hand side of Equation (5) is non-positive. Hence, the
right-hand side of Equation (5) is also non-positive, implying that:

q8 + q4 + 1 ≤ |O| ≤ (q4 + 1)(q8 + q7 + · · ·+ 1),

which leads to |O| = q8 + q4 + 1 (and O is a Cooperstein ovoid). However, then the right-
hand side of Equation (5) is 0, which means that every term of the left-hand side is 0 (since
each such term is non-positive). Consequently, every symplecton contains either exactly
one point of O, or exactly q4 + 1. Let B be the set of intersections of O with symplecta
containing exactly q4 + 1 points of O. Clearly, by the foregoing, the point-line geometry
Γ = (O,B) is a linear space. Let B1, B2 ∈ B be two arbitrary lines of Γ. Let ξ1, ξ2 be the
respective corresponding symplecta. By Lemma 1(ix), there exists x ∈ ξ1 ∩ ξ2. If x /∈ O,
then, by Lemma 3, x is collinear to q3 + 1 points of B1 and q3 + 1 points of B2. Since ξ1 ∩ ξ2
is at most a 4-space, x is collinear to at least 2q3 + 1 > q3 + 1 points of O, contradicting
Lemma 2. Hence, Γ is a projective plane.

Now, for x ∈ O and B ∈ B, with x /∈ B, the point x is opposite B for if not, then, by
Lemma 1(vii), the point x is collinear to a 4′-space of the corresponding symplecton ξ,
which contains a member of O as B is an ovoid of ξ, contradicting the fact that points of O
are non-collinear. Hence, the map that assigns to b ∈ B the unique member of B containing
x and b is the restriction of the map that assigns to a point y of ξ the symplecton through x
and y. It follows that the projectivity group of a line B of Γ extends to a collineation group
of the ambient symplecton ξ. Since the projectivity group of a line of a projective plane is
3-transitive, the ovoid B ⊆ ξ is 2-transitive. If we allow ourselves to use the classification
of finite simple groups, then ([10], Main Result) implies the non-existence of B as an ovoid
of ξ. We can also bypass the classification of finite simple groups as follows. First, we note
that Kleidman only uses it to have the list of 2-transitive groups. So, if we could prove that
the simple socle of the projectivity group of B is some specific group, in particular PSL2(q4),
then ([10], Section 6) proves non-existence without relying on the classification of finite
simple groups. First, a lemma.

Lemma 4. A Cooperstein ovoid O in E6,1(q) which intersects each symplecton of E6,1(q) in
either one or exactly q4 + 1 points, is determined by its points in a single symplecton ξ with
|O ∩ ξ| = q4 + 1, and two additional points x, y.

Proof. We first note that we showed in the paragraph preceding this lemma that, if a ∈ O
and B ∈ B with a /∈ B, then a is opposite the symplecton ζ containing the points of B.

Next, we claim that, if ξ1 and ξ2 are two distinct symplecta both containing q4 + 1
points of O, then ξ1 ∩ ξ2 is a unique point (which belongs to O by a previous observation).
Indeed, by Lemma 1(ix), we may suppose for a contradiction that ξ1 and ξ2 intersect in a
4-space U. Select x ∈ O ∩ (ξ1 \ ξ2). Then, x is collinear with the points of a 3-space of U
and so x neighbors ξ2, contradicting the first paragraph.

Now, let O′ be another Cooperstein ovoid in E6,1(q), which intersects each symplecton
of E6,1(q) in either one or exactly q4 + 1 points, and suppose that O′ ∩ ξ = O ∩ ξ and
x, y ∈ O′. Let a ∈ O be arbitrary. First, assume a /∈ ξ(x, y). Then, a is the intersection of the
symplecta ξ(a, x) and ξ(a, y). Both symplecta intersect ξ in points of O ∩ O′ and, as such,
both symplecta contain q4 + 1 points of both O and O′. Therefore, a ∈ O ∩O′. If a ∈ ξ(x, y),
then we replace b with another point of O′ \ (ξ(x, y)∪ ξ) and apply the same argument.
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The following lemma can be deduced from [11] for fields of characteristic different
from 2 and 3. We are not aware of an explicit proof in the literature for general fields, and
hence, we provide one. It uses an explicit, but well-known representation of E6,1(K) in the
projective space PG(26,K).

Lemma 5. Let K be a field. For a given symplecton ξ of E6,1(K), and two given non-collinear
points a, b opposite ξ, there exists a collineation θ of E6,1(K) pointwise fixing ξ, stabilizing every
line, and hence, each symplecton through the intersection point ξ ∩ ξ(a, b), and mapping a to b.

Proof. We use the following representation of E6,1(K) in PG(26,K) described in [12]. We
describe the points of PG(26,K) by 6-tuples (x, y, z; X, Y, Z) ∈ K×K×K×O′ ×O′ ×O′,
where O′ is the (8-dimensional) split Cayley algebra over K with standard involution
O′ → O′ : X 7→ X. The points of E6,1(K) are those of PG(26,K) satisfying:

xy = ZZ,
yz = XX,
zx = YY,


XY = zZ,
YZ = xX,
ZX = yY.

We denote this set of points by E6,1(K). Each collineation of PG(26,K) preserving
E6,1(K) induces a collineation of E6,1(K).

Now, one checks that (0, ∗, ∗; ∗, 0, 0) defines a subspace spanned by a symplecton
ξ with equations yz = XX, x = Y = Z = 0. We may take a = (1, 0, 0; 0, 0, 0) and
b = (1, Y0Y0, 0; 0, 0, Y0). Then, the following mapping:

(x, y, z, X, Y, Z) 7→ (x, y + Y0Y0x + ZY0 + Y0Z, z, X + Y0Y, Y, Z + Y0x)

preserves E6,1(K). This follows from an easy calculation, keeping in mind that O′ is an
alternative algebra, that XX = XX belongs to the center of O′ and that the following
identities hold in O′:

XY + YX = XY + YX, X(YZ) + Y(XZ) = (XY)Z + (Y X)Z.

Now, it is also readily checked that a point of E6,1(K) is collinear to (0, 1, 0; 0, 0, 0) if, and
only if, it has coordinates (0, y, 0; X, 0, Z), with ZZ = XX = ZX = 0 (just express that all
points of the line joining a generic point with (0, 1, 0; 0, 0, 0) belong to E6,1(K)). Such a point
is mapped onto (0, y + ZY0 + Y0Z, 0; X, 0, Z), which belongs to the line spanned by that
point and (0, 1, 0; 0, 0, 0). Hence, all lines through (0, 1, 0; 0, 0, 0) = ξ ∩ ξ(a, b) are stabilized
(and consequently, all symplecta through that point are stabilized), all points in ξ are fixed,
and a is mapped to b. The lemma is proved.

Now we continue the proof of Main Result 1 without using the classification of finite
simple groups. Suppose ξ is a symplecton that intersects O in q4 + 1 points and let x, y ∈ O
be arbitrary and distinct points not in ξ. Set b := ξ(x, y) ∩ ξ. Select a ∈ ξ ∩ O \ {b}. Let ζ
be an arbitrary symplecton through b distinct from both ξ and ξ(x, y) and intersecting O in
q4 + 1 points. Then, x′ = ζ ∩ ξ(a, x) and y′ = ζ ∩ ξ(a, y) belong to O and x′θ = y′. Hence,
Oθ contains y, y′ and ξ ∩ O. Hence, Oθ = O by Lemma 4. By the arbitrariness of ξ, x and y,
we have shown that Γ is a Moufang plane. Since Γ is finite, it is isomorphic to PG(2, q4). It
is well known that the projectivity group of a line in that plane is isomorphic to PGL2(q4).
Hence, the 2-transitive action on the set B (see above) is PGL2(q4), and hence, it has simple
socle PSL2(q4).

This concludes the proof of Main Result 1.

Remark 2. Let Oq be the split Cayley algebra over the finite field Fq. Another way of concluding
the proof of Main Result 1 without using the classification of finite simple groups, and even without
using Kleidman’s result on 2-transitive ovoids, would be to use the Moufang property of Γ and the
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coordinating structures Oq and Fq4 of E6,1(K) and Γ, respectively, to show that Fq4 is a subalgebra
of Oq. However, Oq is quadratic over Fq, whereas Fq4 is not, leading to a contradiction. This would
perhaps conceptually be the most preferable way, but it requires rather many technicalities.

3.2. Main Result 2

Let, with the above notation, θ be a collineation of E6,1(q), whose fixed points form
a Cooperstein ovoid O. Recall that we do not know anything about the sizes of the
intersections of O with the symplecta. In fact, our goal is to prove that each symplecton has
at least one point in common with O.

Claim 1. We claim that for every triple of points x, y, z ∈ O, the symplecta ξ(x, y) and
ξ(x, z) are never adjacent. Indeed, suppose for a contradiction that ξ(x, y) ∩ ξ(x, z) = U
is a 4-space U. Then, we infer from Lemma 1(viii) that y together with the points of U
collinear to y generate a 4′-space Uy, which, due to Lemma 1(vi), is contained in a unique
5-space Wy. The latter is, by uniqueness, stabilized by θ. If some point u ∈ O were far from
Wy, then the unique point u′ ∈ Wy collinear to u would be fixed by θ, implying u, u′ ∈ O,
contradicting the collinearity of u and u′. Hence, all points of O \ {y} are close to Wy.
Likewise, each point of O \ {z} is close to the analogously defined 5-space Wz. Since y and
z are not collinear, and since Wy and Wz share the subspace y⊥ ∩ U ∩ z⊥ of dimension at
least 2, Lemma 1(x) implies that the 5-spaces Wy and Wz intersect precisely in a plane π,
which is fixed by θ.

If for some point u ∈ O, the 3-space u⊥ ∩ W intersects π in a unique point, then this
point is fixed by θ, and hence, it belongs to O, a contradiction again. Consequently, for each
point u ∈ O, the 3-space u⊥ ∩W either contains π, or intersects π in a line. In the latter case,
only one line L can occur for all points of O as otherwise the intersection point of two of
those lines is fixed, and would belong to O. Hence, L ⊆ u⊥, for all u ∈ O. Also, notice that
u⊥ ∩W ̸= v⊥ ∩W, for distinct points u, v ∈ O, as otherwise u and v would be collinear. All
this implies that O contains at most as many points as there are 3-spaces in W through L.
The latter number is (q2 + 1)(q2 + q + 1), which is far too small. This contradiction proves
Claim 1.

Claim 2. Each symplecton containing at least two points of O contains exactly q4 + 1 points.
Indeed, fix an arbitrary point x ∈ O. Let Ξx ⊆ Ξ be the set of symplecta through x
containing at least one further point of O. By Claim 1, the members of Ξx form a coclique
of points in the symplecton of E6,6(q) corresponding to x. The Hoffman bound implies that
Ξx contains at most q4 + 1 members. By the same token, each of these symplecta contains,
besides x, at most q4 further points of O. Hence, we obtain at most q4(q4 + 1) points of
O \ {x}. Since O contains exactly q4(q4 + 1) + 1 points, all abovementioned inequalities
become equalities, and thus, there are exactly q4 + 1 symplecta through x containing exactly
q4 + 1 points of O and every other symplecton through x intersects O in {x}. This proves
Claim 2.

Claim 3. Each symplecton of E6,1(q) contains at least one point of O. Indeed, let ξ be a
symplecton and pick x ∈ ξ arbitrary. Since x is collinear to exactly q3 + 1 points of O, we
can select two of them, and consider the symplecton ζ through them. Clearly, ζ contains
x, and by Claim 2, ζ contains exactly q4 + 1 points of O, and hence, an ovoid of ζ, which
implies that x is collinear to q3 + 1 points of O ∩ ζ. Hence, no other symplecton through x
contains at least 2 points of O (as such a symplecton would generate another set of q3 + 1
points of O collinear to x, a contradiction). Every symplecton ζ ′ through x adjacent to ζ
already contains a point of O since O ∩ ζ is an ovoid, and thus, there is a unique point of O
in the 4-space ζ ∩ ζ ′. Hence, we may assume that ξ intersects ζ in x. There are exactly q8

such symplecta, and there are also exactly q8 points of O not in ζ. Also, no such symplecton
contains at least two points. It follows that each such symplecton contains a unique point
of O, and hence, so does ξ.

Now, Main Result 2 follows from Main Result 1.



Mathematics 2024, 12, 3720 10 of 11

3.3. Main Result 3

Let θ be a polarity (that is, a duality of order 2) of E6,1(q) having a Cooperstein ovoid
O as set of absolute points. Recall that an absolute points is a point p contained in its image
pθ (and the latter is a symplecton).

The fact that no pair of absolute points of θ is collinear, ([13], Corollary 2.4) implies
that there is a point p mapped onto a neighboring symplecton pθ = ξ. Let W be the unique
5-space containing p and intersecting ξ in a 4′-space U (cf. Lemma 1(vii)). The principle
of duality and the uniqueness of W given (pθ)θ and pθ implies that Wθ = W. Hence, the
mapping from the point set of W to the set of hyperplanes of W given by W ∋ x 7→ W ∩ xθ

defines a polarity of W. Since W is isomorphic to PG(5, q), there are at least two absolute
points of that polarity, and they are obviously also absolute points of θ. This contradicts the
fact that a Cooperstein ovoid by definition does not contain collinear points.

Remark 3. Nobody knows a sensible definition of a Cooperstein ovoid in the infinite case. With
“sensible” we mean a global definition that, specialized to the finite case, exactly yields Cooperstein
ovoids. This is in contrast with ovoids of polar spaces. The reason is that, for polar spaces, there are
natural subsets of points satisfying the Hoffman bound for maximal cliques, namely, the maximal
singular subspaces. It then follows from ([2], Proposition 1.1.7(iii)) that the maximal cocliques
attaining the Hoffman bound are precisely those cocliques that intersect every maximal singular
subspace in exactly one point. Hence, the latter can be taken as general definition and it does not
refer to any counting or bound. However, in E6,1(q), there are no maximal singular subspaces

whose size attains the Hoffman bound (which, by the way, equals q9−1
q−1 ). Maybe, since the latter

bound approximates the number of points of a symplecton (which is q4 + q9−1
q−1 ), requiring that

a coclique intersects each symplecton non-trivially leads to a (special kind of) Cooperstein ovoid
(which does not exist, however, as we proved; note that the notions are not equivalent). In the infinite
case, the natural analogues of a Cooperstein ovoid in E6,1(K) (containing in a certain sense exactly
|K|8 + |K|4 + 1 points) do intersect each symplecton non-trivially. Furthermore, just like Γ above
in the proof of Main Result 1, they carry the structure of a projective plane (over a quaternion and
octonion division algebra, respectively).

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Blokhuis, A.; Moorhouse, G.E. Some p-ranks related to orhogonal spaces. J. Algebr. Comb. 1995, 4, 296–316. [CrossRef]
2. Brouwer, A.E.; Van Maldeghem, H. Strongly Regular Graphs; Cambridge University Press: Cambridge, UK, 2022.
3. Cooperstein, B.N. On a connection between ovoids on the hyperbolic quadric Q + (10, q) and the Lie Incidence Geometry E6,1(q).

In Groups and Geometries; di Martino, L., Kantor, W.M., Lunardon, G., Pasini, A., Tamburini, M.C., Eds.; Trends in Mathematics;
Birkhäuser: Basel, Switzerland, 1998; pp. 55–64.

4. Neyt, Y.; Parkinson, J.; Van Maldeghem, H.; Victoor, M. Automorphisms and opposition in spherical buildings of exceptional
type, IV. Buildings of type E7. arXiv 2024, arXiv:2402.04323.

5. Springer, T.A.; Veldkamp, F. On Hjelmslev-Moufang planes. Math. Z. 1968, 107, 249–263. [CrossRef]
6. Tits, J. Sur la géometrie des R-espaces. J. Math. Pure Appl. 1957, 36, 17–38.
7. Buekenhout, F.; Shult, E.E. On the foundations of polar geometry. Geom. Dedicata 1974, 3, 155–170. [CrossRef]
8. Buekenhout, F.; Cohen, A.M. Diagram Geometry, Related to Classical Groups and Buildings, Ergebnisse der Mathematik und

ihrer Grenzgebiete. Folge 2013, 57, 3.
9. Shult, E.E. Points and Lines, Characterizing the Classical Geometries; Universitext; Springer: Berlin/Heidelberg, Germany, 2011.
10. Kleidman, P.B. The 2-transitive ovoids. J. Algebra 1988, 117, 117–135. [CrossRef]
11. Springer, T.A.; Veldkamp, F. Collineation groups in Hjelmslev-Moufang planes. Math. Z. 1968, 108, 37–52.

http://doi.org/10.1023/A:1022477715988
http://dx.doi.org/10.1007/BF01110014
http://dx.doi.org/10.1007/BF00183207
http://dx.doi.org/10.1016/0021-8693(88)90244-X


Mathematics 2024, 12, 3720 11 of 11

12. Van Maldeghem, H.; Victoor, M. On Severi varieties as intersections of a minimum number of quadrics. Cubo 2022, 24, 307–331.
[CrossRef]

13. Van Maldeghem, H. Symplectic polarities in buildings of type E6. Des. Codes Cryptogr. 2012, 65, 115–125. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.56754/0719-0646.2402.0307
http://dx.doi.org/10.1007/s10623-011-9573-2

	Introduction
	Notation
	Point-Line Geometries
	Polar and Parapolar Spaces
	Parapolar Spaces of Type E6
	Known Properties of E6,1(K)
	The Finite Case

	Proofs
	Main Result 1
	Main Result 2
	Main Result 3

	References

