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Introduction

In the preceding chapters a lot of rank 2 geometries, such as projective and affine planes,
designs, linear spaces, generalized polygons, ... are studied in detail. In this chapter
we will discuss some more rank 2 geometries that are merely generalizations of these
geometries. A treatment of all the known rank 2 geometries is impossible. We have
therefore made a choice which is rather restrictive and subjective. Although a lot of the
basic definitions are given in other chapters (especially in Chapter 3) we will, for the sake
of completeness, recall the most important ones. This will also give us the opportunity
to fix the notations used in this chapter.

1. Generalities on geometries

Referring to definitions given in Chapter 3 we can say that a rank 2 geometry S is a
{0, 1}-geometry. The elements of type O will be called the points while the elements
of type 1 will be called lines. In some other chapters a rank 2 geometry is called an
incidence structure S = (P, B,I) with P (# @) the set of points, B (# &) the set of
lines and a symmetric incidence relation I C (P x B)U (B x P). In this chapter both the
sets P and B will be finite and the geometry will be connected. In a lot of cases, lines
will be subsets of the point set P and the incidence I will be the natural incidence (€).

The dual of a rank 2 geometry S = (P, B,]) is the geometry SP = (PP, BP,IP)
with PP = B, BP = P, and 1P = 1.

A rank 2 geometry S is called a partial linear space, if each point is on at least 2
lines, if all lines have at least two points and if any two distinct points in P are incident
with at most one line, or equivalently, if any two distinct lines are incident with at most
one point. Some authors call this a semilinear space. Lines incident with only 2 points,
are called thin lines. If all lines are thin lines, then S is called a thin partial linear space.
If all lines are incident with at least 3 points and if every point is incident with at least 3
lines, the partial linear space is called thick. Two points are said to be collinear if they
are incident with a common line. Note that a point is collinear with itself. Dually, two
lines are said to be concurrent if they are incident with a common point. We will denote
collinear points = and y (resp., concurrent lines L and M) by = ~ y (resp., L ~ M).
On the other hand, we will sometimes use the standard notation for the set of points
collinear to a point z: z+ = {y € P: y ~ z}.

If any two different points are collinear, then S is called a linear space. For more
details on linear spaces we refer to Chapter 6.

In this chapter we will mainly deal with quite special partial linear spaces. They will
have the next two properties:

(S1): Each point is incident with ¢ 4+ 1 (¢ > 1) lines.
(S2): Each line is incident with s + 1 (s > 1) points.

A partial linear space S satisfying these two properties will be called a partial linear
space of order (s,1).

Let S be a connected partial linear space. Let (x, L) be an antiflag of S, i.e. z is a
point and L is a line of S, such that x is not incident with L. We denote by a(zx, L) the
number of points on L collinear with z, or equivalently the number of lines through x
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concurrent with L. We will sometimes call oz, L) the incidence number of the antiflag
(x, L).

In this chapter we will mainly deal with connected partial linear spaces in which
a(x, L) can take only a few values. For instance, if a(x, L) can only have the values
0 and « # 0, then the connected partial linear space is called a (0, «)-geometry in De
Clerck and Thas [1983] and Thas, Debroey and De Clerck [1984]. One can easily check
that if S is a (0, a) geometry with a > 1 then there exist two integers s (= 1) and ¢
(= 1) such that S is of order (s,%). The dual of a (0, a)-geometry is of course again
a (0, o)-geometry. There are a lot of examples of (0, a)-geometries. We will restrict
ourselves to some special classes with extra regularity conditions.

A lot of the examples we will encounter in this chapter have points and lines in a
projective or affine space. To be more precise, a geometry S = (P, B,I) is said to be
embedded in a projective or an affine space if B is a subset of the set of lines of the
space and if P is the set of all points of the space on these lines. We will always assume
in what follows that the dimension of the space is the smallest possible dimension for
an embedding. Some authors call this a full embedding or a flat embedding.

A special type of affine embedding is the so-called linear representation of a geometry
of order (s, t) in AG(n+1,s+1). Itis an embedding of § = (P, B,I)in AG(n+1,s+1)
such that the line set B of S is a union of parallel classes of lines of AG(n + 1,s 4 1)
hence the point set P of S is the point set of AG(n + 1, s + 1). These lines of S define
in the hyperplane at infinity I1., a set of points /C of size t+ 1. If S is a (0, a)-geometry,
then every line of I/, intersects IC in either 0,1 or o + 1 points. A line intersecting X
in m points will be called an m-secant. A 1-secant will also be called a tangent line,
while a line not intersecting /C will be called a passant.

Using standard notations, the linear representation of a geometry S in AG(n+1,s+1)
will be denoted by T7*(XC). We shall give several examples in the next sections.

However we first need some graph theoretical definitions.

2. Graphs and rarnk 2 geometries

A finite graph I' = (X, E) is a structure consisting of a set X (# @) with v elements and
a set E of unordered pairs of X. The elements of X are called the vertices of the graph
I', while the elements of E are called the edges. If x and y are two different vertices
such that {z,y} € FE, then x and y are called adjacent and we write x ~ y; if {z,y} ¢ E
then we denote this by x ¢ y; remark that z ¢ x. If E is the set of all unordered pairs
of X then I' is called the complete graph denoted by K,. The complement I' of a
graph I' = (X, E) is the graph I'C = (X¢, E®) with X¢ = X and E¢ = XI?I\ E.
The line graph L£(I") of a graph I is the graph with vertices the edges of I, two edges
being adjacent if and only if they have a common vertex.

A path of length m from z to y, is a set of vertices * = o, T1,Z2,...,Tm = Y
such that z; ~ z;11, 0 < ¢ < m— 1. If z = y then any such path with z; # z;42
(0 <1 < m— 2) will be called a circuit. Two vertices z and y of a graph I’ are at
distance d(z,y), provided there exists a path of length d(z, y) between these vertices and
there exists no shorter one. A vertex has distance O from itself and distance 1 from all
its adjacent vertices. We will denote by I35(z) the set of all vertices of I' at distance ¢
from z. For convenience we will use I'(x) for the set I'1(x). A graph is connected if and
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only if for any two distinct vertices = and y, there is at least one path connecting these
2 vertices. The diameter of a graph I' is the maximum value of the distance function
d(zx,y). The girth of I' is the length of its shortest circuit.

Given a partial linear space S, one may define the point graph or collinearity graph
I'(S), by taking as vertices the points of .S. Two different vertices are adjacent whenever
they are collinear. Remark that we are using the same symbol (~) for the collinearity
relation as for the adjacency relation, although a point z is collinear to itself but not
adjacent to itself. A geometry is connected whenever its point graph is.

On the other hand, the incidence graph Z(S) is the graph with vertices the elements of
PUB, and 2 vertices are adjacent if and only if the corresponding elements are incident,
hence edges of Z(.S) are the flags of S. Unlike the case of the collinearity graph, the
geometry is completely determined by its incidence graph. Obviously, two vertices of
the same type (i.e. either points or lines) in the incidence graph are connected by paths of
even length. In particular, a circuit in an incidence graph has even length and hence the
girth is an even positive integer, say 2g. By definition, g is called the gonality of S, and
2g is called the (geometric) girth of S. Let x be a point or a line. A geodesic (based at
x) is a path « in the incidence graph starting in = and such that the length of ~ is equal to
the distance d(z, y), where y is the last element of v. A maximal geodesic is a geodesic
that is not properly contained in another one. The local diameter d(z) is the length of
the longest geodesic based at x, whether = be a point or a line. The point-diameter d,
(resp., line-diameter d;) of S is the greatest value taken by d(x) for = a point (resp., a
line). In Chapter 3, d,, is denoted by dy and is called the 0-diameter while d; is denoted
by d;, the 1-diameter. The diameter d of a geometry S is the diameter of the incidence
graph Z(.S), hence it is the largest of the two numbers d,, d;.

Finally, the flag graph of a rank 2 geometry S is the graph with vertices the maximal
flags of S and 2 flags are adjacent whenever they share exactly one element. The
flag-diameter d* of S is the diameter of the flag graph.

A successful attempt to unify the study of all rank 2 geometries of this chapter (and
some others) was made by Buekenhout [1982] (see also Chapter 3). He studied those
geometries by considering their gonality g and the diameters d,, d; and d*. He proved
that a connected geometry S such that every element of S is incident with at least two
other elements, and such that all points (resp., lines) have the same local diameter d,,
(resp., d;) has the property that d* is the smallest of the two numbers d,,d;. Hence
{d,d*} = {dp,d;} and we always have g < d* < d. Moreover, d — d* < 1. For
the sequel we may assume that d, < d;, which is no loss of generality since one can
always consider the dual geometry. With this «erminology and under these conditions,
S is called by Buekenhout [1982] a (g,dp, d;)-gon provided d, < g + 2. The last
condition is purely subjective and comes from the observation that almost all the ‘nice’
rank 2 geometries arising from finite simple groups — and especially the sporadic ones
— satisfy this condition. Exceptions arise mainly from truncations of higher dimensional
geometries. For instance, Suz acts on a (3, 8, 8)-gon which is a truncation of an extended
generalized quadrangle (see Buekenhout [1985]).

In the last section we will return to the theory of the (g, dp, d;)-gons in order to explain
how all the rank 2 geometries introduced in the other sections fit into this more global
point of view.
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3. Distance regular graphs
A graph I' is called regular provided every vertex of I' is adjacent to a constant number
k of vertices, and this number & is called the valency or the degree of the graph.

A distance regular graph I' with diameter d, is a regular and connected graph of
valency k£ with the following property. There are natural numbers:

bozk, bla-"abd—l; Cl—_—l, Cy .- -5 Cd,s

such that for each pair (z,y) of vertices at distance j, we have:
(D) [N @) =c; (1< j <d)
@) NN Ii(@)|=5b; 0< 7 <d-1).

The intersection arrav of I' ic defined bv
Ty J

v L] (A9 (274 A & 2.5 [ azdivs W

i(F): {k,bl,...,bd_1;1,62,...,Cd}.

For any graph I of diameter d, and vertex set {xy,...,Z,}, the distance matrices Ay,
h=0,...,d, are the v X v matrices defined as follows:

(Ap)i; = { 1 if d(zi,z;) = h,

0 otherwise.

THEOREM 1 (Damerell [1973]). Let I' be a distance regular graph with intersection
array

i) ={k,b1,....bg—151,¢c2,...,Cq}.
For1<i<d—1, puta; =k —b; — c;; then

i—1Ai—1 +a;A;

. 1/4;:1

b+1- TT1

[y

ISH

—1

~~

<i<

N’

Morveover, the distance matrices form an algebra of dimension d + 1, and {Ay =
I, Ay,...,Aq} is a basis for this algebra.

This implies that we can use a lot of techniques from linear algebra, such as eigenvalue
techniques, to find for instance restrictions on the intersection array. For all information
on distance regular graphs and an extensive bibliography, we refer to Brouwer, Cohen
and Neumaier [1989].

A distance regular graph of diameter 2 is better known as a strongly regular graph. For
reasons of convenience we will recall the definition in order to introduce the notations
that are mainly used for these graphs.

A regular graph I is called a strongly regular graph (notation srg(v, k, A, ;t)) provided:

(1) any two vertices x and y, « ~ Yy, are both adjacent to a constant number A of
vertices (independent of the choice of the adjacent pair {, yb;

(2) any two vertices « and y, x ¢ y, are both adjacent to a constant number p of
vertices (independent of the choice of the nonadjacent pair {x, y}).
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We exclude disconnected graphs and their complements, hence we assume 0 < p <
k < v —1. It is easy to check that the complement of a srg(v, k, A, ) is a srg(v,v — k —
l,v—2k+ pu—2,v—2k+ )) and that a srg(v, k, A\, i) is indeed equivalent to a distance
regular graph with intersection array {k,k — 1 — A\; 1, u}.

The distance matrix A; = A (or the (0, 1) adjacency matrix) of a srg(v, k, A, 1) satisfies

AJ = kJ, AP+ (— NA+ (u— k) = pJ,

where J is the all-one matrix. Hence A has the valency £ as an eigenvalue with multi-
plicity 1, and two other eigenvalues 7 and [ (r > 0 and [ < 0) with r +1 = XA — p and
rl=u—k.

There are some known necessary conditions for the existence of a srg(v, k, A\, ). We
will summarize the most important ones in the next theorem. For the proofs and more
information on strongly regular graphs, we refer to Bose [1963], Van Lint and Seidel
[1969], Cameron [1978], Seidel [1979], Cameron and Van Lint [1980], and Brouwer and
Van Lint [1984].

THEOREM 2. If I' is a srg(v, k, A\, i) then the following is true.
(D) v—2k+p—-220.
2) k(k—X—=1)=puwv—k—1).
(3) The multiplicities of the eigenvalues v and | of A are, respectively,

_ kA DE=D k4 Dk 1)
f= G+ -0 " IT  Grmr—1)

They clearly have to be integers.

(4) The eigenvalues r > 0 and | < O are both integers, except for one family of
graphs, the so-called conference graphs, which are stg(2k + 1,k,k/2 — 1,k/2).
In this case the number of vertices can be written as a sum of two squares, and
the eigenvalues are (1 ++/v)/2.

(5) The Krein conditions:

(r+D(k+7r+2rD) < k+rd+ 1)

A+ D(k+14+2r) < (k+D(r+ D2

(6) The absolute bound.:

v< 3 f(f+3),  v<59(9+3).

(7) The claw bound: if pu # 12, p # I + 1), then 2(r + 1) < I + D(p + 1).
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There are a lot of examples of strongly regular graphs known, see, e.g., Hubaut
[1975] and Brouwer and Van Lint [1984]. We shall give here a short description of
some examples which are important for the rest of this chapter. For information on the
automorphism group of these graphs, we refer to Section 6.3 (see Table 1).

1. The pentagon Pn(5) is the unique srg(5,2,0, 1).

2. The line graph of the complete graph K, is called the triangular graph and is
denoted by 7'(n). This graph is a srg(%n(n —1),2(n—2),n —2,4). If n # 8 then every
strongly regular graph ' with these parameters is indeed a triangular graph. if n = §
there are exactly three nonisomorphic graphs with the same parameters but not triangular,
these graphs are known as the graphs of Chang [1959], see also Seidel [1967].

3. The strongly regular graph T'(5)° is better known as the Petersen graph Pe(10); it
is the unique srg(10, 3,0, 1). This graph can also be constructed by taking as vertices the
10 points of a Desargues configuration, two vertices being adjacent if they are not on a
line of the Desargues configuration.

4. The Clebsch graph CI(16) is a srg(16, 5,0, 2).

There is only one graph with these parameters (easy exercise). The graph can be
constructed as follows. Take a set C' of cardinality 5. The vertices of the graph are the
set C and the subsets of cardinality 1 and 2. The vertex C is adjacent to the 5 singletons,
a singleton is adjacent to C and to all the pairs containing it, a pair is adjacent to the 2
singletons it contains and to the 3 pairs of C' that are disjoint from it. Other constructions
of this graph are known. Another simple construction goes as follows. The vertices of
the graph are the elements of GF(16), two vertices are adjacent whenever their difference
is a 3rd power in GF(16). The name comes from the fact that this graph corresponds t
the 16 lines on the Clebsch quartic surface (see Clebsch [1868] or Coxeter [1950]).

5. The graph HoS(50) (see Hoffman and Singleton [1960]).

A lot of constructions of this graph are known. This graph is a srg(50,7,0,1), and is
uniquely defined by its parameters. We shall give only one construction which will be
useful later on. It is commonly known that there is a bijection between the 35 unordered
iriples of a 7-set and the 35 lines of PG(3,2), such that lines intersect if and only if
the corresponding triples have exactly one element in common. The graph HoS(50)
is constructed as follows. The vertices are the 15 points together with the 35 lines of
PG(3,2). Points are mutually nonadjacent. A point is adjacent to a line whenever the
point lies on that line. Two lines are adjacent whenever the corresponding two triples
are disjoint.

6. The Higman—Sims family (see, e.g., Hubaut [1975]).

These graphs are constructed using the Steiner system S(3, 6,22). This Steiner system
is the uniquely defined extension of the projective plane PG(2,4). Hence this Steiner
system has as other parameters b = 77,7 = 21, A\, = 5 and two different blocks intersect
in O or 2 points.

(a) The Higman—Sims graph HS(100).

Take as vertices of the graph a symbol co, together with the 22 points and the 77
blocks of 5(3,6,22). The symbol oo is adjacent to all the 22 poinis but to no block.
Points are never adjacent and a point is adjacent to a block whenever it is contained
in that block. Two blocks are adjacent whenever they are disjoint. This graph is a
srg(100,22, 0, 6), and is uniquely defined by its parameters, see Gewirtz [1970].
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(b) The Higman—Sims graph HS(77).
This graph is the subgraph defined on the set I3(c0) of the vertices of HS(100) that
are not adjacent to co. It is a srg(77, 16,0,4), and 1s uniquely defined by its parameters,

see Brouwer [1983].

(c) The graph Gew(56) of Gewirtz [1969].

Delete from S(3, 6,22) all the 21 blocks through a fixed point. Take as vertices the 56
other blocks which are adjacent whenever they are disjoint. This graph is a srg(56,10,0,2),
and is also uniquely defined by its parameters.

1. Partial geometries
1.1. Definitions

A (finite) partial geometry S = (P, B,]) is a partial linear space of order (s, t) such that
for all antiflags (x, L) the incidence number a(zx, L) is a constant « (% 0). The numbers
s, t and « are called the parameters of S. This incidence structure was introduced by

Bose [1963].
1.2. Remarks

1. If § = (P, B,]) is a partial geometry with parameters s, ¢, «, then the dual structure
SP — (PD, BP 1Py = (B, P,]),is a partial geometry with parameters sP =t tP =5
and o = a.
2. |[Pl=v=(s+1) and [B|=b=(t+1)
3. The partial geometries can be divided into four (nondisjoint) classes.
(a) The partial geometries with oo = 1, the generalized quadrangles. See Chapter 9
and Payne and Thas [1984].

(b) The partial geometries with & = s+ 1 or dually a =t + 1, 1.e. the 2-(v,s + 1, 1)
designs and their duals. See Chapter 8.

(c) The partial geometries with a = s or dually a = ¢. The partial geometries with
o = t are the Bruck nets of order s + 1 and degree t + 1; Bruck [1963].

(d) Finally, the so-called proper partial geometries with 1 < a < min(s,t). We shall

mainly deal with this class of partial geometries.

(st + @) (st + @)

1.3. The point graph of a partial geometry
THEOREM 3 (Bose [1963]). The point graph I'(S) of a partial geometry S is a

(st + )
«

srg ((s+1) ,s(t+1),s—1+t(a—1),a(t+1)).

(If a = s + 1, the graph is a complete graph.) Each strongly regular graph I' having
parameters in this form witht > 1, s> I, I <a<s+1land 1 <a < t+11iscalled a
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pseudo-geometric (t, s, a)-graph. If the graph I indeed is the point graph of at least one
partial geometry, then I" is called geometric. Given a pseudo-geometric (%, s, a)-graph
I', the problem is to find a subset B of cliques of s+ 1 vertices of I", such that any two
adjacent vertices of I' are in exactly one element of B. In Bose [1963] the following
condition for a pseudo-geometric (%, s, @)-graph to be geometric is proved.

THEOREM 4 (Bose [1963]). A pseudo-geometric (t, s, a)-graph I is geometric if
2(s + 1) > t(t + 1) + a(t + 2)(E* + 1).

This condition however is in general too strong in order to construct partial geometries
from the graph I'. In Cameron, Goethals and Seidel [1978] it is proved (using the Krein
condition on the point graph of the dual geometry) that for a pseudo-geometric (Z, s, &)-
graph I’ satisfying the Bose inequality in the above theorem, ¢ < 2a — 1 holds.

Attempts to construct a partial geometry from a pseudo-geometric (¢, s, a)-graph I”
were in most cases unsuccessful; we refer, e.g., to Spence [1992], De Clerck and Tonchev
[1992], and De Clerck, Gevaert and Thas [1988], an exception however is the sporadic
partial geometry of Haemers [1981] (see 1.4.5).

If we transiate the necessary conditions for strongly regular graphs in Theorem 2
in terms of the parameters of a pseudo-geometric (%, s, @)-graph, then this yields the

following theorem.

THEOREM 5. If I' is a pseudo-geometric (t, s, a)-graph, thenr =s — o, [ = —t —1,

st(s+ D+ 1)
als+t+1—a)

f=

Moreover:
(1) v is an integer, hence o | (s + 1)st.
(2) The multiplicities of the eigenvalues of the adjacency matrix are integers, hence

als+t+1—a)|st(s+ D(E+ 1).
(3) The Krein inequalities for strongly regular graphs are satisfied, hence
(s+1—-2a)t<(s—D(s+1—a)?

REMARK. If @ = 1 (and s # 1), then the Krein inequality is better known as the
Higman inequality ¢ < s?, Higman [1971]. Moreover, Cameron et al. [1978] proved that
any pseudo-geometric (s2, s, 1)-graph is geometric (see also Haemers [1980]). It is not
known whether this theorem also holds for pseudo-geometric (¢, s, «)-graphs satisfying
the Krein equality in the case o > 1.

OPEN QUESTION. There exists a pseudo-geometric (27,4, 2)-graph, the McLaughlin
graph, see, e.g., Goethals and Seidel {1975]. This graph does saiisfy the Krein equality;
however although several attempts have been made, e.g., by Van Lint [1984], it is not
known whether this graph is geometric or not. For the moment, there is no known partial
geometry with these parameters.
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1.4. The known models of proper partial geometries

1.4.1. The partial geometry S(K)

This infinite family was constructed by Thas [1973, 1974] and independently by Wallis
[1973]. Let K be a maximal arc of degree d in a projective plane 7w of order g, i.e.
a {qd — q + d;d}-arc (see Chapter 7 for the definitions and examples). We define the
incidence structure S(K) = (P, B,I). The points of S(K) are the points of 7 that are
not contained in K. The lines of S(K) are the lines of 7 that are incident with d points
of L. The incidence is the one of 7. Then S(K) is a partial geometry with parameters

t=q—q/d,s=q—d,a=q—q/d—d+ 1.

REMARKS. As there exist {2"T™ — 2h 4 2™:2™} arcs, whenever 0 < m < h, in
PG(2,2™), there exists a class of partial geometries S(KC) with parameters

s=2h_om =20 _2h ™ 4= _ D™ -1.

This is a generalized quadrangle if and only if A = 2, and then it is the unique quadrangle
of order 2.

Suppose m = h — 1,h > 2. Then the point graph of S(K) is T(2" +2)C, the
complement of the triangular graph T'(2" 4 2). Hence T'(2" + 2% is a geometric (2" —
2,2P=1 2h=1_1)-graph. Although these graphs are uniquely defined by their parameters,
this does not imply that the geometry is unique. For instance, Mathon [1981] proved
by computer that there exist exactly two partial geometries with parameters ¢ = 6, s =
4, a = 3 (and point graph T’ (10)°). All the complements of the triangular graphs 7'(2n)
are pseudo-geometric (2(n —2),n— 1, n —2)-graphs. However it is possible to prove that
T'(8)¢ and the complements of the Chang graphs (having the same parameters as T(8)°)
are not geometric (De Clerck [1979]). Moreover, Lam, Thiel, Swiercz, and McKay
[1983] proved that T(12)C 1s not geometric.

1.4.2. The partial geometry 15 (K)

Let K be a maximal arc of degree d in the projective plane PG(2, q) over GF(q) (¢ = p",
p prime). As K has only passants and d-secants, it will yield a linear representation
of a partial geometry in AG(3,q). This partial geometry 75 (K) has parameters ¢t =
(g+ 1)(d—-1),s=q—1,a=d— 1. This infinite family was constructed for the first
time by Thas [1973, 1974].

REMARK. The partial geometry 75°(K) using a maximal arc of degree 2™, 0 < m < h,
in PG(2,2") has parameters s = 2" — 1, t = 2" + ) 2™ — 1), a = 2™ — 1. This is a
generalized quadrangle if and only if m = 1, i.e. if and only if K is a hyperoval. (See
Chapter 9).

1.4.3. The partial geometries PQt(4n —1,q), g=2o0rq=3

1. Some properties of hyperbolic quadrics in PG2m — 1,q). Let QT = QT(2m — 1, q),
m > 2, be the hyperbolic quadric in PG(2m — 1, q) (the quadric with projective index
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m—1). The set of maximal totally isotropic or singular subspaces on a hyperbolic quadric
QT is divided into two disjoint families D; and D,. Two maximal totally isotropic or
singular subspaces on the quadric are in the same family if and only if the codimension
of their intersection has the parity of m — 1 (see Chapter 2 for more details on quadrics).

Assume ¢ is odd, let z and y be two points of PG(2m — 1,¢)\ Q. Then z and y are
called equivalent if and only if there exists a point z € PG(2m — 1,q) \ Q™ such that the
lines zz and yz are tangent lines of Q1. This relation can also be defined as follows.
Embed Q™ in the nonsingular hyperquadric @ of PG(2m, q). The pole of PG(2m — 1, q)
with respect to ) is denoted by p. Then = and y are equivalent if and only if the lines
xp and yp are both secants or are both exterior lines of (). The proof that this relation
indeed is an equivalence relation was given by Thas [1981b]. There are two equivalence
classes F1 and E,. For some i, QT UE; is the projection of the nonsingular hyperquadric
() of PG(2m, q), from the point p onto PG(2m — 1, q).

2. The partial geometry PQ™(4n — 1,2). De Clerck, Dye and Thas [1980] constructed
an infinite class of partial geometries as follows. Define a spread 2. of the nonsingular
hyperbolic quadric Q* = Q" (4n — 1,2), n > 2, in PG(4n — 1,2) to be a (maximal) set
of 22"~1 4+ 1 disjoint (2n — 1)-dimensional spaces on QT. Let X be a spread of Q1 =
Q" (4n —1,2) and let £2 be the set of all hyperplanes of the elements of 5. Consider the
incidence structure PQ1T(4n — 1,2) = (P, B, 1) with P the set of points of PG(4n — 1,2)
not on the quadric, B = {2 and zIL, x € P and L € B, if and only if z is contained
in the polar space L* of L with respect to Q1. One can prove that PQ"(4n — 1,2) is a
partial geometry with parameters s = 22"~1 — 1, ¢t = 22"~1 o = 222,

If n = 2, then the parameters of PQ"(7,2) are s = 7,t = 8, & = 4. Cohen [1981b]
was the first to construct a partial geometry with these parameters using the root system
Egs. In Haemers and Van Lint [1982] a partial geometry with parameters s = 8, t =
7, o = 4, was constructed using coding theory. Kantor [1982a] proved that PQ™(7,2)
and the dual of the geometry of Haemers—Van Lint are isomorphic. Later on Tonchev
[1984] showed with the help of a computer that the model of Cohen and the dual of
the geometry of Haemers—Van Lint are isomorphic. In De Clerck et al. [1988] this
isomorphism is proved without the use of a computer. Actually, L. Soicher (private
communication) has checked by computer that PQ*(7,2) is uniquely determined by its
point graph, as is its dual. Note that this partial geometry also appears as a residue
of an element of type 2 in a rank 3 geometry for the Thompson group F3 = Th (see
Buekenhout [1985]) with diagram

4,3,4 6

G
7

oo O

0)
2

(see also Chapter 22).

The residue of an element of type O in this rank 3 geometry is isomorphic to the
(unique) generalized hexagon of order (8,2) (see Chapter 9).

Remark that nonisomorphic spreads of the quadric PQ*(4n — 1, 2) will produce noniso-
morphic partial geometries. If 2n—1 is composite then PQ™ (4n— 1, 2) has nonisomorphic
spreads, and probably this is true for all n > 2 (see Kantor [1982b]).
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3. The partial geometry PQ™ (4n —1,3). For ¢ = 3 an analogous construction is given by
Thas [1981b]. Again let X' be a spread of Q* = Q7 (4n — 1,3) and let {2 be the set of
all hyperplanes of the elements of Y. Consider the incidence structure PQ*(4n —1,3) =
(P, B,I) with P one of the sets F;, B = (2 and with zIL, x € P and L € B, if and
only if z is contained in the polar space L* of L with respect to Q*. One can prove
that PQ™(4n — 1,3) is a partial geometry with parameters s = 32%~! — 1, ¢ = 32n—1
a=2-32n"2

Up to now it is only known that Q7 (7,3) has a spread. This yields a geometry
PQ™(7,3) with parameters s = 26, t = 27, o = 18 (v = 1080, b = 1120).

OPEN QUESTION. Do there exist partial geometries of type PQ™(4n — 1,3), n > 2?

1.4.4. The sporadic partial geometry of Van Lint—Schrijver

Van Lint and Schrijver [1981] constructed the following sporadic proper partial geometry.
We will sketch two constructions of this geometry. Let § be a primitive element of
GF(3%). Then v = (316 is a primitive 5-th root of the unity. Let P = GF(81), let B be
the set

{(b,1+b,7+b,7v + b~ + b~ +b): be GF@B},

I is the natural incidence, namely inclusion. Then § = (P, B,]) is a partial geometry
with s = ¢ = 5 and o = 2. The point graph of this geometry has parameters v = 81,
k=30, =9, u =12, and is a graph which was not known before.

Another construction of this geometry is given by Cameron and Van Lint [1982]. Let
C' be the ternary repetition code of length 6, i.e.

C = {(0,0,0,0,0,0),(1,1,1,1,1,1),(2,2,2,2,2,2)}.

Any coset of C' in GF(3)® has a well-defined type i in GF(3), i.e. the sum 4 of the
coordinates of any vector in the coset. Let A; be the set of cosets of type ¢. Define a
tripartite graph I" by joining the coset C' + v to the coset C' + v + w for each vector w
of weight 1. Any element in .A; has 6 neighbours in A;; and 6 in 4;,, (indices taken
mod 3).

Consider the incidence structure with point set .4;, and line set A;;, in which inci-
dence is defined by adjacency in I'. Then this incidence structure is the partial geometry
of Van Lint—Schrijver.

For example, suppose ¢ = 0, and p is the point with coset representative (0, 0,0, 0, 0, 0).
The six lines incident with p have representatives of the form (1,0,0, 0,0, 0), hence the
30 points (£ p) collinear with p have representatives of the form (1,2,0,0,0,0). It is
immediately clear that two points are incident with at most one line. A line not incident
with p has a representative of the form (2,2,0,0,0,0) or (2,1, 1,0,0,0); in both cases,
it is incident with two points collinear with p.

REMARK. Assume S is a proper symmetric partial geometry with @ = 2, then the
numerical conditions of Theorem 2 yield s = 5. It is not known whether this geometry
is unique. There is a great doubt that this geometry is a member of an infinite family.
However the point graph is a member of an infinite family of so-called cyclotomic type
(see Calderbank and Kantor [1986]).
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1.4.5. The sporadic partial geometry of W. Haemers
Haemers [1981] constructed another sporadic proper partial geometry. It has parameters
=4,t = 17, o = 2. The point graph I' however was known before (see, e.g.,
Hubaut [1975]). This graph I' is constructed as follows. The vertices of I" are the
175 edges of the Hoffman—Singleton graph HoS(50). Two vertices of I' are adjacent
whenever the corresponding edges of HoS(50) have distance two (i.e. the two edges are
disjoint and there exists an edge connecting both). One can prove that this graph is a
srg(175,72,20,36), moreover I’ is a pseudo-geometric (17,4, 2)-graph. Haemers proved
that I" is indeed geometric. First of all we remark that a line of the partial geometry
will be a set of 5 disjoint edges pairwise at distance two in the Hoffman—Singleton graph
HoS(50). It is easy to see that in a Petersen graph there are 6 such sets. If we can find
105 Petersen graphs in the Hoffman—Singleton graph, then we have the right number of
lines. However there are more than 105 Petersen graphs in HoS(50). W. Haemers was
able to find a good subset of 105 special Petersen graphs in the Hoffman—Singleton graph,
such that every pentagon of HoS(50) is contained in exactly one such special Petersen
graph. Note that any two edges at distance two in HoS(50) are in a unique pentagon,
so in a unique special Petersen graph, hence they define a unique set of 5 disjoint edges
pairwise at distance two. In other words, the incidence structure of the 175 vertices
of I' and the 630 so-called 1-factors of the special Petersen graphs of HoS(50) has the
property that any two adjacent vertices define a unique line. This is enough to conclude
that the pseudo-geometric graph I' indeed is geometric. The geometry is the unique one
with this point graph (L. Soicher, private communication).

REMARKS.

1. The point graph of the dual of this geometry has parameters v = 630, £ = 85,
A =20, p = 10 and was not known before. This graph has exactly 175 cliques of size
18, and so this graph uniquely determines the dual of the Haemers geometry (L. Soicher,
private communication).

2. Another construction of this geometry is related to the Steiner system S(5, 8, 24)
and was given by Calderbank and Wales [1984].

3. There are reasons enough to conjecture that this partial geometry is not a member
of an infinite family.

4. Haemers [1991] proved that this partial geometry has a one point extension to a
rank 3 geometry for the Mathieu group My;.

1.5. Some characterization theorems for partial geometries

1.5.1. The graphs with o = s — 1
If Sisa partial geometry with o = s — 1, then the complement of its point graph

,
lhao o tnmaccnticra AsrrAar Tav 9] ATl ¢l ot 1 2 la
ias a ucgauvc C;gcuvaxuc —<, i uilC SUONg:y régusar 5“‘}:’“‘ with smallest @Igﬁﬁ value

—2 however are classified by Seidel [1968]. Using this theorem a classification of the
pseudo-geometric (¢, s, s — 1)-graphs can be given. Moreover a lot of information on
geometric (¢, s, s — 1)-graphs is known.
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THEOREM 6 (De Clerck [1979]). If I' is a pseudo-geometric (t, s, s — 1)-graph, then one
of the following cases occurs.

(1) s=2andt =1, 2 or4. Then I' is geometric and the corresponding generalized
quadrangles are unique.

(2) s=3andt=1,2 or 4.
(a) If t = 1, then I' is geometric and the corresponding partial geometry is the
unique dual 2-design with these parameters.

(b) If t = 2, then I' is geometric and there are exactly two possibilities, i.e. the
corresponding nets are the two nets of order 4 and degree 3.

(c) If t = 4, then I never is geometric.

(3) s >3,t=s—1and I' is geometric if and only if there exists an affine plane of
order s + 1. The corresponding net is obtained by deleting two parallel classes
from the affine plane.

4) s > 3,t = 2(s — 1). If there exists a hyperoval O in some projective plane of
order 2s then I is geometric, the geometry being the dual of S(O).

1.5.2. Partial geometries and the axiom of Pasch
Let us first introduce the axiom of Pasch ('P), also called the axiom of Veblen and Young.

If Li1xIL,, Ly 7£ Lo, M, /ILL'/IMQ, L; ~ Mj for all 1,] € {1,2}, then M ~ M.

We remark that the dual axiom is called the diagonal axiom (D). For a generalized
quadrangle both (P) and (D) are satisfied in a trivial way. Evidently a 2-(v, s+1, 1) design
satisfies (D). A 2-(v,s + 1,1) design with s > 1 satisfying (P), is an n-dimensional
projective space (n > 2). The only known partial geometry with o & {1,s + 1,¢ + 1}
and satisfying the axiom of Pasch is the dual net H ;“H. This dual net is constructed as
follows. Let H = PG(n—1, q) be a subspace of a projective geometry ' = PG(n+1, q).
Then H g“ is the incidence structure of points of X'\ H and lines of X' skew to H, the
incidence being the one of 2. The parameters are s = q, t = ¢" — 1, a = q. In Thas
and De Clerck [1977] it was proved that this dual net is the only one that satisfies the
axiom of Pasch.

THEOREM 7 (Thas and De Clerck [1977]). Let S be a dual net of order s+ 1 and degree
t+1 &+ 1> ). If S satisfies (P), then S is isomorphic to Hg‘“ (hence q = s,
t+1=4q").

REMARKS.
1. Note that H g“ may be seen as the complement of a singular symplectic geometry

in X = PG(n + 1, q) with radical H. Moreover the dual, (H gH)D, is also known as a
regulus net, see De Clerck and Johnson [1992].

2. For a more general characterization theorem for partial geometries satisfying the
axiom of Pasch, we refer to Thas and De Clerck [1977]. Moreover we remark that
partial linear spaces satisfying both (P) and (D) are classified by Sprague [1981], see
also Chapter 3.
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1.5.3. Partial geometries embedded in projective and affine spaces
There exists a complete classification of partial geometries embedded in a projective
space.

THEOREM 8 (De Clerck and Thas [1978]). If S = (P, B, 1) is a partial geometry with pa-
rameters s, t, o, which is embedded in a projective space PG(n, s), but not in a PG(n/, s),
with n’ < n, then the following cases may occur.
(1) a=s | 1, and S is the design of points and lines of PG(n, s).
(2) a =1, and S is a classical generalized quadrangle (see Buekenhout and Lefevre
[1974]).
3) a=t+1,n=2and S is a dual design in PG(2, s).

H?(n = 3).
\ -~ 7/

4) a=sand § =

There also exists a complete classification of partial geometries embedded in an affine
space by Thas [1978]. For the case of a generalized quadrangle, we refer to Chapter 9,
in this case some sporadic embeddings can occur. We will however restrict ourselves
here to the case of proper partial geometries.

THEOREM 9 (Thas [1978]). If S is a proper partial geometry embedded in an affine
space AG(n, s+ 1), but not in an AG(n', s+ 1) withn' < n, then n =3 and S = T;(K)
with K a maximal arc in the plane at infinity.

COROLLARY. If we combine the results on the affine embedding of generalized quadran-
gles in Chapter 9 and the above theorem we can conclude that if T;(KC) (n > 1) is a
linear representation of a partial geometry of order (s, t), then either IC is the complement
of a hyperplane (hence o« = s), or n = 2.

For more characterization theorems, especially regarding geometries of type S(K) and
of type T5(K), we refer to De Clerck, De Soete and Gevaert [1987], Gevaert [1987] and
De Clerck et al. [1988].

2. Semipartial geometries
2.1. Definitions

A semipartial geometry (Debroey and Thas [1978a]) with parameters s, ¢, o, p 1s a partial
linear space S = (P, B, 1) of order (s, 1), such that for each antiflag (z, L), the incidence
number a(z, L) equals 0 or a constant a(> 0) and such that for any two points which
are not collinear, there are u (p > 0) points collinear with both (u-condition).

REMARKS.
1. A semipartial geometry is a (0, a)-geometry such that, because of the p-condition,
the point graph is strongly regular. Besides the parameter u, the other parameters of the
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graph are

N &+ Ds(u+tls —a+1))
L

v=1 s k=0+Ds, A=s—1+1t(a—1).

2. A semipartial geometry with o = 1 is called a partial quadrangle and was intro-
duced by Cameron [1974] as a generalization of the generalized quadrangles. Semipartial
geometries generalize at the same time the partial quadrangles and the partial geometries.
It is immediately clear that a semipartial geometry is a partial geometry if and only if
uw = (t + 1a. If we want to exclude the partial geometries we will speak about proper
semipartial geometries. In any case, for the rest of this section we will suppose, unless
the contrary is stated, that S is not a 2-design, hence that o < min(t + 1, s).

3. The dual of a semipartial geometry again is a semipartial geometry if and only if
either s =t or S is a partial geometry (see Debroey and Thas [1978a]).

Using the fact that the point graph is strongly regular, and using other counting ar-
guments, one can deduce a lot of conditions between the parameters of a semipartial
geometry. We will give a summary of the most important ones in the next theorem.

THEOREM 10. Let S = (P, B,1) be a proper semipartial geometry with parameters s, t,
o, W, then

(1) t > s, hence |B| =b = vt +1)

s+1
(2) D= #(a—1)+5—1—p)?+4((t+ 1)s — ) is either a square or equals 5 (then
S is isomorphic to the pentagon) and

= U,

2t +Ds+@—Dta—1)+s—1—pu++D)
2v/D

s an integer;
B) < pu<<t+ Daand a| p;
@ p| @+ Dst(s+ 1 — a);
(3) a|ts@t+ 1) and o | ts(s + 1);
(6) o | pst;
(7) o | #((t + Da — p);
(8) 2 | v(t+ 1)s;
(9) 3| v(t+ 1)s(s— 1) and 3 | v(t + Dst(a — 1);
(10) 8 | v(t + Ds(s — 1)(s — 2);
(11) 8 | vt + Dsta — D& — D(a— 1) — (@ —2)) +#(s + 1 — a)(u — 2a + 1)).

REMARK. The Krein inequalities for strongly regular graphs also yield some extra
conditions, but these are rather complicated formulae.
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2.2. A first list of examples of proper semipartial geometries

2.2.1. The thin partial quadrangles

Let I" be a strongly regular graph with A = 0. Then this graph is a partial quadrangle
with s = 1 and ¢t = k— 1, hence a thin geometry. Up to now the only known examples of
such graphs are the pentagon Pn(5), the Petersen graph Pe(10), the Clebsch graph CI(16),
the Hoffman—Singleton graph HoS(50), and the graphs from the Higman—Sims family
(i.e. Gew(56), HS(77) and HS(100)). The parameter sets (v, k, ) for these graphs are,
resp., equal to (5,2, 1), (10,3, 1), (16,5,2), (50,7, 1), (56,10, 2), (77,16,4), (100, 22, 6).
All these graphs are uniquely defined by their parameters.

2.2.2. The semipartial geometries M(k), k € {2,3,7,57}
The three thin partiai quadrangles with 1 = 1 are better known as Moore graphs. These

graphs are the graphs with valency &£ > 1, girth 5 (i.e. they have no 3-cycles nor 4-cycles
but they do have 5-cycles) and with the minimum number of vertices, which is k% + 1.
It is known that necessarily k& € {2,3,7,57}. However a Moore graph with k£ = 57 is
not known to exist.

With each Moore graph I' there is associated another semipartial geometry, which
we will denote by M (k). The point set P is the set of vertices I, the line set B is
the set {I'(z): * € P}, with I'(x) the set of vertices adjacent to z, I is the natural
incidence relation. Then M (k) = (P, B,I) is a semipartial geometry with parameters
s=t=a=k—1, p=(k—1)? (Debroey and Thas [1978a]).

2.2.3. The semipartial geometries Up3(n)

Let U be a set of cardinality n. Let P be the set of pairs, let B be the set of unordered
triples of U, and let I be the inclusion relation. Then Uy 3(n) = (P, B, 1) is a semipartial
geometry with parameters s = o = 2, t = n — 3, u = 4 (Debroey and Thas [1978a]).
The point graph of this geometry is the triangular graph 7'(n).

2.2.4. The semipartial geometries LP(n, q)
Define P as the set of lines of PG(n,q) (n > 4), B as the set of planes of PG(n, q), and
I as the inclusion relation. Then (P, B,]) is a semipartial geometry with parameters

n—1 __

g -1
g—1
(Debroey and Thas [1978a]). Remark that for n = 3 this construction yields the dual

design of lines and planes of PG(3, g).

s=q(qg+1), t= —1, a=q+1, p=(g+1)?

2.2.5. The semipartial geometries W(2n + 1, q)

Let o be a symplectic polarity of PG(2n + 1,g9), n > 1. Let P be the point set of
PG(2n + 1, q), B the set of lines which are not totally isotropic (i.e. hyperbolic) with
respect to o, and I the incidence relation of PG(2n+1, ¢). Then W(2n + 1, q9) = (P, B,I)

1s a semipartial geometry with parameters

s=¢t=¢"—1, a=q p=q¢"g-1)
(Debroey and Thas [1978a]).
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2.2.6. The semipartial geometries NQi(Zn —-1,2)

Let () be a (nonsingular) hyperquadric in PG(2n — 1, 2). Let P be the set of points off
the quadric, let B be the set of nonintersecting lines of (), and let I be the incidence of
PG(2n — 1,2). Then (P, B,I) is a semipartial geometry with parameters

s=a=2,t=2"3_gn2_1, =223 g1,

where € = +1 for the hyperbolic quadric and € = —1 for the elliptic quadric (we will
denote these geometries by NQ*t(2n—1,2) and NQ ™ (2n —1,2), respectively). This was
first remarked by H. Wilbrink (private communication).

2.2.7. The semipartial geometries H{+D*

This semipartial geometry is defined by taking as point set P the set of lines of a
projective space 3 = PG(n + 1, q) skew to a fixed projective space H = PG(n — 1,q)
and as line set B the set of the planes of 3 which intersect H in exactly one point. This
semipartial geometry has parameters

q" — 1
q—1

s:qz—l,t: —1, a=q, u=q(qg+ 1).

REMARK. It is known that a (semi)partial geometry S satisfying the diagonal axiom,
gives rise to a semipartial geometry S satisfying the diagonal axiom (see De Clerck and
Thas [1978] and Debroey [1979]). Indeed, let x and y be two collinear points. We
denote by Di,y the set of points collinear with z and y but not on the line L, , joining
z and y and by ch’y the set of points of L., which are collinear with a point (hence
with all points) of D}B’y. Then Dy = D}E,y UD%,y is a maximal set of pairwise collinear
points, any such a set D, is called a diagonal cliqgue. The incidence structure S with
the same point set as S and with line set, the set of diagonal cliques of S is a semipartial
geometry with parameters

t=s/(a—1)—-1,5=0Ct+D)a—-1),a=a G=pu

which satisfies the diagonal axiom. Note that S has the same point graph as S and that
S = S. In this way the dual of H}*! is related to the semipartial geometry H{*T1*.

2.3. The linear representations of semipartial geometries

If T*(K) is a linear representation of a semipartial geometry, then one easily proves that
K has to be a set of points in PG(n, g) such that each line of the projective space is either
a passant, a tangent or an (« + 1)-secant and such that, because of the u-condition, each
point of PG(n, q) \ K is on u(a(a + 1)~! (o + 1)-secants. The following examples are
known.
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2.3.1. Linear representations of proper partial quadrangles

In this case the set K is a (¢ + 1)-cap with the property that each point not in X is on
t + 1 — p tangents. Calderbank [1982] has given an almost complete classification of
partial quadrangles with a linear representation. His proof is a number-theoretic proof.
He lists the possible parameter values of the associated strongly regular graph.

The following cases occur.

1. T5(O) with O an ovoid of the projective space PG(3, ¢). It is a partial quadrangle
with parameters s = q¢ — 1, £ = ¢°, 4 = q(g — 1) and was first construcied by Cameron
[1974].

2. Suppose ¢ = 3 and assume that K is not an ovoid. Then K is either an 11-cap
in PG(4, 3), see, e.g., Coxeter [1958] and Pellegrino [1974] for a description, the partial
quadrangle 7,*(K) has parameters s = 2, t = 10, o = 2, or K is the unique 56-cap in
PG(5,3) in which case the partial quadrangle has parameters s = 2, £ = 55, u = 20.
This 56-cap was first constructed by Segre [1965] but was also studied by several other
authors, e.g., by Berlekamp, Van Lint and Seidel [1973], Bruen and Hirschfeld [1978],
Hill [1973], McLaughlin [1969], and Thas [1981a].

3. Suppose g = 4. Then either K is an ovoid in PG(3,4) or it is a 78-cap in PG(5,4)
such that each external point is on 7 secants, or a 430-cap in PG(6,4) such that each
external point is on 55 secants. If K is a 78-cap, the partial quadrangle 75" (K) has
parameters s = 3, t = 77, p = 14. At least one example exists and was discovered by
Hill [1976]. If K is a 430-cap then the partial quadrangle has parameters s = 3, t = 429,
1 = 110. Up to now however, the existence of such a cap is not known.

4. Suppose g > 5. Then it was proved by Tzanakis and Wolfskill [1987] that the
partial quadrangle has to be 75 (O) with O an ovoid.

REMARKS.

1. If T*(K) is a linear representation of a partial quadrangle with ¢ = 2, then the
partial quadrangle coincides with its point graph, and Calderbank [1982] proved that
there is only one solution, the strongly regular graph srg(v = 16,k = 5,2 =0, u = 2)
which is the Clebsch graph CI(16) and is of type 75 (0) with O the elliptic quadric in
PG(3,2).

2. The existence of a cap K in PG(n, q), such that every exterior point is on a constant
number of tangents, implies the existence of a uniformly packed [|K|, || —n—1,4] code
C, which means that the dual code C is a [|K]|,n + 1] code over GF(q) with exactly 2

weights (see Calderbank [1982] and Calderbank and Kantor [1986]).

2.3.2. Linear representations of proper semipartial geometries with o > 1
In this case the following models are known.

1. The set K is a unital { in the projective plane II,, = PG(2,¢?) at infinity, and
T (U) has parameters s = q> — 1, t = ¢°, a = q, u = ¢*(g* — 1).

2. If K is a Baer subspace B of the projective space IT., = PG(n, ¢*) at infinity, then
T>(B) has parameters

qn—H _

s=q¢*—1, t= —1, a=gq, p=q(@+ 1).

qg—1

Note that this geometry is isomorphic to H{**2*,
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2.4. Semipartial geometries and generalized quadrangles

It is known that if S = (P, B,]) is a generalized quadrangle, then one can construct in
the following way a (0, 1)-geometry. Let p be any point of S, let p~ be the set of all
points of S collinear with p (the trace of p) and let B(p) be the set of lines of S through
p, then the incidence structure S, = (P, Bp,1,) with P, = P\ pt, B, = B\ B(p), and
with I, = I N (P, x By) is clearly a (0, 1)-geometry of order (s — 1,%). Moreover S,
satisfies the following property.

(x) If L and M are two disjoint lines of .S}, then there are either O, s — 1, or s lines of
S, concurrent to both L and M.

Note that this property of course is trivial in the case s = 2. The point graph I'(S,) of
S, will be a strongly regular graph with parameter p if and only if for any 2 noncollinear
points  and y in F,, the set {p, T, y}L of points in S collinear with p, x and y has
cardinality ¢+ 1 — p. It is known (see Bose and Shrikhande [1972] and Cameron [1974])
that in a generalized quadrangle S, |{z,y, z}*| is a constant for any triad {z,vy, 2} of
noncollinear points, if and only if S has order (s, s*), moreover in this case |{z,y, 2} | =
s+ 1. Hence the only partial quadrangles of type S, have parameters (s — 1, s2, s(s — 1)).

There are a lot of generalized quadrangles of order (s, s*) known. In all of them s is
a prime power q and we will therefore in the sequel use q instead of s.

First of all there is the semiclassical example 75(0), constructed by Tits [1959], see
Chapter 9. If p is the special point co in 73(Q) then the resulting partial quadrangle has
a linear representation in AG(4, g); it is the partial quadrangle 75 (O) with O an ovoid in
the hyperplane I1,. If p is any other point of 75(0) then the resulting partial quadrangle
might be nonisomorphic to 75(0). On the other hand, any flock of a cone in PG(3, q)
implies the existence of a generalized quadrangle of order (g, ¢*) (see Chapter 9) and
these generalized quadrangles give rise to a lot of nonisomorphic partial quadrangles
with parameters (g — 1, ¢%, g(q — 1)).

Ivanov and Shpectorov [1991] prove that every partial quadrangle with parameters
(g —1,4% q(qg — 1)) is of type S, and is uniquely extendible to a generalized quadrangle
S. For this they prove that such a partial quadrangle always satisfies property (x). In
fact they even prove a more general result: every strongly regular graph

srg (¢*, (> + (@ — 1),q — 2,q(g — 1)),

such that every 2 adjacent vertices are contained in a clique of order g, is the point graph
of a partial quadrangle of type S,, and this partial quadrangle is uniquely extendible to a
generalized quadrangle of order (g, g*). Remark that this implies that the srg(81,20, 1, 6)
is unique; see, e.g., Brouwer and Haemers [1992] where another proof of the result of
Ivanov and Shpectorov is given.

Anyhow, it follows from the theorem of Calderbank that the linear representation of
a partial quadrangle with parameters (g — 1, g%, g(q¢ — 1)) should be in AG(4, g), hence it
should be 75 (0), with O an ovoid in I/.

In De Clerck and Van Maldeghem [1994] the following theorem is proved.
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THEOREM 11. Let T)(KC) (n = 3) be a linear representation of a (0, 1)-geometry, of
order (q — 1,1), q > 2, that satisfies (x). If K spans the hyperplane Il then T, (K) is
the partial quadrangle T3 (O).

REMARK. It is clear that the (0, 1)-geometries of order (¢ — 1,t) of type T7*(K) are
the grids of order ¢ — 1, i.e. the generalized quadrangles of order (g — 1,1). If S is a
(0, 1)-geometry of type 75°(K), then [ is a set of points in the plane I/, such that every
line intersects in 0,1 or 2 points, i.e. K is an arc in [l,. 75 (K) satisfies (*) if and only
if |KC|is g+ 1 or g+ 2.

There is another way to construct semipartial geometries from generalized quadrangles.
Suppose that S is a generalized quadrangle embedded in a projective space PG(n, g),
hence S is classical. Suppose that p is a point of PG(n, ¢) and that I7 is a hyperplane of
PG(n, q) not containing p. Let P; be the projection of the point set of S from p on II
and let P, be the set of points of IT on a tangent through p at S. Let S be the geometry
with point set P the set P, \Fg, whereas the line set B is the set of lines of 77 which
intersect P; in at least two points. The incidence is the one of the projective space. It
turns out that if § is Q7 (5, ¢) or H(4, ¢*) one gets semipartial geometries. Of course it
depends on whether p is a point on S or not.

If S = Q~(5,q) and p is a point on the quadric, the semipartial geometry S is T3 (0),
with O the elliptic quadric in PG(3, q¢). However if p is not on the quadric, it yields a

semipartial geometry with parameters
s=q—1,t=q¢, a=2, p=2q(q—1).

This construction is due to Hirschfeld and Thas [1980]. Another construction of this
partial geometry was given by R. Metz (private communication). Let () be a nonsingular
hyperquadric of the projective space PG(4, g). If we define P as the set of 2-dimensional
elliptic quadrics on (J, B as the set of bundles of such elliptic quadrics which are
tangent to each other in a common point, and I as the natural incidence relation, then
S = (P, B,]) is isomorphic to the one we just described.

If S = H(4,q¢%) and p is a point on H(4,q?), the semipartial geometry S is Ty (U),
with 2/ the Hermitian unital in PG(2, ¢*). However if p is not on H(4,¢?), it yields a
semipartial geometry with parameters

3

2 2
s=q¢ —-Li=qg,a=q+1, p=gqglg+ (@ — 1.

This example is due to J.A. Thas (private communication).
2.5. Semipartial geometries and SPG reguli

In Thas [1983] a new construction method for semipartial geometries is introduced. We
will give here a brief description of this construction but refer to Thas [1983] for the
proofs and more details.

An SPG regulus is a set R of m-dimensional subspaces PG(l)(m, qQ),- .. ,PG<T)(m, q)
of PG(n, q), satisfying:
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(1) PGP (m, ) N PGP (m, q) = @ for all i # j.

(2) If PG(m+ 1, g@) contains PG® (m, q), then it has a point in common with either O or
a (o > 0) spaces in R\ {PG®(m, q)}. If this PG(rmn + 1, ¢) has no point in common with
PGY(m, q) for all j # 14, then it is called a tangent (m + 1)-space of R at PG®(m, ¢).

(3) If the point z of PG(n, q) is not contained in an element of R, then it is contained
in a constant number 6 (6 > 0) of tangent (m + 1)-spaces of R.

By considering all the (m -+ 1)-dimensional spaces through PG®(m,q) we obtain
that au(g — 1) has to divide (r — 1)(¢g™*! — 1), and we see that the number of tangent
(m + 1)-spaces of R at PG(i)(m, q) equals

qn—m_l T—l.qm—H—l
q—1 0% qg—1

By counting the number of ordered pairs (M, zx), with M a tangent (m + 1)-space
PG(m + 1,q) of R, and = a point of M which is not in an element of R, we obtain:

(a(@™™™ — 1) — (r — (g™ — 1))rg™*!
a((@! = 1) —r(@™! - 1) '

Note that by 7 > 1 and by the first condition in the definition of R we have n > 2m + 1.
If n = 2m + 1, then there are no tangent (m + 1)-spaces, and « = r— 1. If n = 2m + 2,
then any two tangent (m + 1)-spaces at distinct elements of R intersect.

Given an SPG regulus R, with » > 1, one can construct a semipartial geometry
S = (P, B,]) as follows. Embed PG(n, q) as a hyperplane in PG(n + 1, q). The points
of S are the points in PG(n+1, @) \ PG(n, ¢). The lines of .S are the (m+ 1)-dimensional
subspaces of PG(n-+1, g) which contain an element of R but are not contained in PG(n, g).
Incidence is that of PG(n + 1,q). Then S is a semipartial geometry with parameters

0 =

s:qm“—l, t=r—1, a=a, pu=(r—0)q,
see Thas [1983].

REMARKS.

1. This geometry is a partial geometry if and only if & = 0, hence if § # 0, which
implies that > ¢™1!, then S is a proper semipartial geometry.

2. If n=2m -+ 1, then S is a net of order s + 1 = ¢™*! and degree t + 1 = r.

SPG reguli and polar spaces

A spread R of the nonsingular elliptic quadric @~ (2m + 3,q9) (m > 0) contains
g™ 2 + 1 elements (of dimension m) and is always an SPG regulus. The parameters of
the corresponding semipartial geometry are

S = qm+1 o 1’ t — qm—}—z’ o = qm, U= qm+1(qm+1 . 1)

For m = 0, this is the partial quadrangle 75(0). For m = 1, the semipartial geometry
has parameters

s=q¢ -1, t=¢, a=q, p=g (@ — 1)
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which also are the parameters of the semipartial geometry T5°(2f). Indeed T5(Uf) is
isomorphic to the semipartial geometry arising from a regular spread R (see Chapter 7) of
@~ (5, q). However if the spread is nonregular, then the associated semipartial geometry
is not isomorphic to 75°(U). If m > 1, and q is even, then the quadric )~ (2m + 3,q)
has spreads, hence this yields new semipartial geometries. If g is odd, no spread of the
quadric @~ (2m + 3,q) (m > 1) is known.

If the nonsingular quadric Q(2m + 2, q) (of PG(2m + 2, q)), m > 0, has a spread R,
then it is not an SPG regulus.

If R is a spread of the quadric QT(2m + 1,q), m > 1, then necessarily m is odd,
moreover this spread is an SPG regulus, but the associated semipartial geometry is a net.

Let H(n,q?) be a nonsingular Hermitian variety of PG(n,¢?), n > 2. If n is odd,
the Hermitian variety has no spread (see Bruen and Thas [1976] for the case n = 3 and
Thas [1989] for n > 5). Assume that n is even. Then R is aiways an SPG regulus with
m = (n/2) — 1 and |R| = ¢™*! 4 1. Hence there corresponds a semipartial geometry S
with parameters

s=q"—1,t=q¢""", a=¢""!, u=q"@q" - 1).

However if n = 2 then this semipartial geometry is 75°({/). Unfortunately for n > 2 no
spread of H(n,g?), n even, is known. Brouwer (private communication, 1981) proved
that H(4,4) has no spread. For more details on spreads of polar spaces, we refer to
Chapter 7.

2.6. Some characterization theorems for semipartial geometries

THEOREM 12 (Debroey and Thas [1978a]). If S is a proper semipartial geometry with
a=t,then § = M(t + 1), hence s =t, u = o and t € {1,2,6,56}.

THEOREM 13 (Debroey [1979], Wilbrink and Brouwer [1984]). Let S be a proper semi-
partial geometry with |1 = o

() If a=2, then S = Uy 3(n).

Q) If2<a=sthena=te{1,2,6,56} and S = M(t+1).

(3) If2 < a < s then S = LP(n, q).

THEOREM 14 (Debroey [1979]). Let S be a proper semipartial geometry with parameters
s, t, @« (> 1) and n = ala + 1). If S satisfies the diagonal axiom (D), then S is
isomorphic to a semipartial geometry of type H énH)*.

REMARK. In Wilbrink and Brouwer [1984] it is proved that all proper semipartial
geometries with © = o? and 2 < a < s satisfy the diagonal axiom. Moreover, they
proved that up to possibly a finite number of exceptions, all proper semipartial geometries
with 1t = a(a + 1) satisfy the diagonal axiom. Cuypers [1992] observed that by adding
some extra combinatorial conditions, their proofs can even be generalized to (0, @)-
geometries.
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THEOREM 15 (Cuypers [1992]). Let S be a finite (0, o)-geometry with o ¢ {1,3}. Sup-
pose that S satisfies the following conditions.
(1) If o # 2 then s > f(a) where f(4) = 12, f(5) =6, f(6) = f(7) =17, f(8) = 18,
f(9) =19, f(10) =21, f(11) =23 and f(a) = 2a for o > 12;
(2) t > max(s + 1, ala + 1));
(3) Two noncollinear points have either 0, o or a(a + 1) common neighbours, and
the last two cases both do occur;
(4) Let (z, L) be an antiflag, such that o(x, L) = . Then for every two points y and
zon L\ zt, |zt Nyt = |zt Nzt

Then o = 2 and S satisfies the diagonal axiom.

On the embedding of semipartial geometries in projective and affine spaces the fol-
lowing results are known.

THEOREM 16. If S is a proper semipartial geometry with parameters s, t, a (> 1), u,
embedded in PG(n, s), n > 3 and s > 2, but not in PG(n/, s), n’ < n, then n is odd and
S is the semipartial geometry W(n, s).

REMARK. This theorem was proved by Debroey and Thas [1978b] for the case n = 3
and by Thas et al. [1984] for n > 3. If S is any semipartial geometry with a = s = 2,
then S is a cotriangle space and those are classified (see Theorem 19). A complete
classification of the embedded cotriangle spaces exists for n = 3 (Debroey and Thas
[1978b]) and for n = 4 (Thas et al. [1984]). In Leféevre-Percsy [1983] an embedding
of Uy3(n + 2) in PG(n,2) is given. The lines of this geometry are hyperbolic lines, i.e.
lines which are not totally isotropic, for some symplectic polarity. Also an embedding of
Uz3(n + 3) in PG(n,2) is described. The lines of this geometry are hyperbolic for some
symplectic polarity if and only if n is odd. The problem of determining all embeddings
of Uy 3(n) in PG(d, 2) is equivalent to determining (up to equivalence) all binary codes
of length n with all weights even and minimum weight greater than 4, see Hall [1983].

THEOREM 17 (De Clerck and Thas [1983]). If S is the dual of a semipartial geometry
S with oo > 1, and if SP is embedded in a projective space PG(n, s), n > 3, but not in
PG(n',s), n' < n, then n = 3 and SP is the design of points and lines in PG(3,q), or
SP = H? or SP = NQ™(3,2) (see 2.2.6).

OPEN QUESTION. Let H be a nonsingular Hermitian variety in PG(3, ¢?). The incidence
structure S' = (P, B, 1), defined by taking as point set P the point set of H and as line
set B the set of lines of H minus all the lines concurrent with a given line L, is a dual
partial quadrangle embedded in PG(3, g%). One can prove that the dual of this geometry
is isomorphic to 73(O), with O an elliptic quadric. It is not known whether this is the
only proper dual partial quadrangle embedded in a projective space.

A complete classification of all proper semipartial geometries embedded in affine
spaces is still open. However the problem is solved by Debroey and Thas [1977] for
dimensions 2 and 3.



458 F. De Clerck and H. Van Maldeghem

THEOREM 18. A proper semipartial geometry S with parameters s, t, a, [ is not em-
beddable in an affine plane AG(2,s + 1). If S is embedded in AG(3,s + 1), then S is
either the pentagon embedded in AG(3,2) (trivial case) or a linear representation and
S =T5;U) or S =T5(B) (hence s + 1 is a square).

3. Copolar spaces

A copolar space (see Hall [1982]) is a partial linear space S = (P, B, 1) such that for
each antiflag (z, L), the incidence number a(x, L) equals O or |L| — 1.

A partial linear space with this property has been called a proper A-space by Higman
[1979]. He observed that the above property is more or less the converse of the defining
property of a polar space. This is the reason why J.I. Hall calls it a copolar space.

It is easily seen that the copolar spaces of order (1,t) are precisely those graphs which
contain no triangles. A copolar space of order (2,t) is better known as a cotriangle space.

The copolar space S is called indecomposable if and only if S is not the union
of two or more copolar spaces on disjoint point sets. A reduced copolar space is an
indecomposable copolar space such that for all vertices x and y in the point graph I'(S),
I'(x) = I'(y) implies x = y.

Remark that a semipartial geometry with parameters s, ¢, o = s is indeed a copolar
space of order (s,t). Of course the dual of a net is a copolar space, and since there is
no hope to classify them, we assume from now on that there exists at least one antiflag
(x, L) such that a(x, L) = 0.

In Hall [1982] the finite reduced copolar spaces of order (s, t), s > 2, are classified up
to isomorphism. It turns out that the reduced copolar space of order (s,t) is a (proper)
semipartial geometry.

We summarize the results in the next theorem.

THEOREM 19 (Hall [1982)). If S = (P, B, 1), is a finite reduced copolar space of order
(s,t) s > 2, then S is isomorphic to one of the following semipartial geometries:

(1) M), k € {2,3,7,57},
(2) Up3(n),

(3) W2n+1,9),

(4) NQ*(2n — 1,2).

REMARK. The cotriangle spaces were in fact classified by Shult [1975], an earlier
version of which was proved by Seidel [1973].

4. Near n-gons

4.1. Definitions

A partial linear space S is called a near n-gon if and only if the following axioms hold:
(1) n is an even integer and the diameter of the point graph is at most n/2,
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(2) given any point p and any line L, L contains a unique point nearest to p.

This incidence structure was introduced by Shult and Yanushka [1980] because of their
interest in line systems with few angles. See also Shad and Shult [1979].

Any generalized n-gon with n even can easily be seen to be a near n-gon. In the case
n = 4, the converse is true: any near 4-gon is a generalized quadrangle. This is not true
for n > 4.

A thin near n-gon (i.e. all lines have size 2) is just a connected bipartite graph. We
will not discuss them here (see for instance Shad and Shult [1979] and Shad [1984]).
We will assume from now on that the near n-gon is thick. However some of the next
theorems still hold (possibly under some extra conditions) if one assumes that there are
thin lines.

4.2. Classical and sporadic near n-gons

A subset Y of the point set P is called geodetically closed if for any two points y1,y2 € Y
all the shortest paths between y; and 1y, are contained in Y. A quad is a geodetically
closed subset of P of diameter 2 such that not all its points are adjacent to one fixed
point. This quad is a near 4-gon, hence a generalized quadrangle. In Shult and Yanushka
[1980] it is proved that for any thick near n-gon, any two points = and y at distance 2
with at least two common neighbours determine a unique quad ()(z, y) containing them.
Even more can be said.

THEOREM 20 (Brouwer and Wilbrink [1983a]). If x and y are two points at distance i of
a (thick) near n-gon, then they are contained in a unique geodetically closed sub-2i-gon.

The existence of those geodetically closed sub-2i-gons has been very important for
the characterization theorems, as we will illustrate by the next theorems.

THEOREM 21 (Shult and Yanushka [1980]). Let Q be a quad in a thick near n-gon
S = (P, B,1). Then for any point x not lying in @), either
(1) x has distance d to exactly one point y in QQ, distance d + 1 to all points of Q)
collinear with vy, and distance d + 2 to all points of QQ at distance 2 from v,
(2) x has distance d to all points of an ovoid in Q and distance d+ 1 to all remaining
points.

In the first case the pair (z, Q) is said to be of classical type, in the second case
the pair (z, Q) is said to be of ovoidal type. A near n-gon is called classical if all its
(nonincident) point-quad pairs are classical, otherwise it is called sporadic.

THEOREM 22 (Cameron [1982]). A classical (thick) near n-gon with quads is a dual polar
space (i.e. a partial linear space whose points and lines are respectively the maximal and
second-maximal singular subspaces of a polar space of rank n/2, reverse containment
signifying incidence).

The embedding problem for near n-gons is settled by the next theorem.
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THEOREM 23 (Cameron [1981]). A (thick) near n-gon which is not a generalized n-gon,
embedded in a projective space of order q, is classical and is of type On11(q) (n > 4)
(i.e. the polar space is the quadric QQ(n, q)).

REMARK. For a detailed discussion on polar spaces, and dual polar spaces, we refer to
Chapter 12.

4.3. Regular near n-gons

A near n-gon will be called regular with parameters (s, ty,%s,...,t, = t) if and only
if (i) it is a thick near n-gon of order (s,t) and (ii) whenever two points = and y are
at distance d > 1, exactly {4 + 1 lines through y contain points at distance d — 1 from
x. The point graph I'(S) of a regular near n-gon is distance regular. Hence a lot of
graph-theoretical results can be used in this case. For more details, we refer to Brouwer
and Wilbrink [1983a] and Brouwer et al. [1989].

THEOREM 24 (Shult and Yanushka [1980]). Let S be a (thick) regular near n-gon and
let IT'y(x) be the set of points at distance d from x. Then

| I(@)| = st + 1),

| Tu(@)| (st — ta)) = | Tpa (@)

(tgv1 + D).

Hence

UL+ Dt — )t —t3) -+t — ta—1)
(1+t2) (1 +tq)

| Ty()| = 2 L od>2.

Ifty # 0, then tg > tg_y, d = 3,4,...,n, each point lies in t(t + 1)(ta(ty + 1))7!
quads of order (s,ty) and each line lies in t/ty quads (hence t(t + 1)(t2(t2 + 1))~ and
t/t, are integers). The set of all lines through a point p together with the set of all quads
containing p form a 2-(t 4+ 1, 1, + 1, 1)-design.

The regular near hexagons (i.e. 6-gons) with s = 2, i.e. with parameters (2,12,%)
are completely classified. By the above theorem, if ¢; # 0, the near hexagons contain
generalized quadrangles of order (2, ?,), and hence (see Chapter 9), 1, = 1, 2, or 4 and
in each of the cases the generalized quadrangle is unique up to isomorphism.

We summarize the results in the next theorem.
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(2) S is a generalized hexagon, t, = 0, and t = 1,2 or 8 (v is equal to 21,63 and

819, resp.).
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(3) S is a proper regular near hexagon and the following cases occur:
(a) (X, t) = (2, 1), v =27
(b) (¢, tp) = (11,1), v = 729.
(c) (t,tp) = (6,2), v = 135.
(d) (¢, tp) = (14,2), v = T759.
(e) (t,tr) = (20,4), v = 891L.

REMARKS. These regular near hexagons with 3 points on a line are uniquely defined
by their parameters. For the generalized quadrangles and hexagons with s = 2, we
refer to Chapter 9. The proper regular near hexagons with (¢, ;) = (6,2), v = 135 and
(t,t2) = (20,4), v = 891 both are of classical type, they are the dual of the polar spaces
Sp(6,2) and U(6,4). Each regular near hexagon with parameters (s, t2,t) = (s, 1, 2), for
instance the one with v = 27, is of Hamming type (or a generalized cube): the point set
is the set of all ordered triples from a set X, |X| = s + 1, the lines are the maximal
cliques in the Hamming graph on X, i.e. two triples are collinear if and only if they differ
in only one coordinate. More generally one can define in the same way near n-gons of
Hamming type by taking the ordered n-tuples from a set X; they are uniquely defined by
their parameters (see Shult and Yanushka [1980], Egawa [1981], Brouwer and Wilbrink
[1983a]). The near hexagon with 729 points is derived from the extended ternary Golay
code, its uniqueness is proved by Brouwer [1982a]. The uniqueness of the near hexagon
on 759 points is also proved by Brouwer [1982b]. The points of this near hexagon are
the 759 octads (i.e. the blocks of size 8) of the unique Steiner system S(5, 8,24). Two
blocks are called collinear if they are disjoint. Since the complement of the union of two
disjoint octads is an octad, a line of the near hexagon will be a set of 3 pairwise disjoint
octads. This near hexagon has also a nice combinatorial characterization.

THEOREM 26 (Brouwer and Wilbrink [1983a]). If a regular near hexagon satisfies s > 1,
th > 0,and 1+t = (1 +t)(1 + sty) then it is the unique regular near hexagon with
s=t=2, v="759.

This near hexagon cannot be a (geodetically closed) sub-hexagon of a regular near
n-gon (n > 8), from which it follows that any sporadic regular near n-gon will have
1 +t3 > (1 +t)(1 4 stp). For the regular near octagons one might even conjecture that
they almost never exist (see Brouwer and Wilbrink [1983a] and Brouwer et al. [1989]).
A sporadic regular near octagon with parameters (s, t2,t3,t) = (2,0, 3,4) is constructed
by Cohen [1981a]. The Hall-Janko group J, acts on this geometry, the point graph is a
distance regular graph, which is uniquely defined by its parameters (see Cohen and Tits
[1985]). This near octagon contains no quads but does contain generalized hexagons
of type G(2). It has 315 points and 525 lines. It has generalized octagons of order
(2,1) and generalized hexagons of order (2,1) and (2,2) as subgeometries. It is itself a
subgeometry of the dual of the classical generalized hexagon of order (4,4) arising from
G,(4) (see Chapter 9).
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REMARKS. Regular near hexagons with 4 or 5 points on each line and regular near oc-
tagons with 3 points on each line are discussed in Shad and Shult [1979]. For more con-
structions of regular near n-gons and their distance regular graphs, we refer to Brouwer
et al. [1989].

We finally remark that nonregular near n-gons do exist. For instance, consider the
graph T(2n); the maximal cliques in this graph have n vertices. If one takes as points
these maximal cliques and as lines the cliques with n — 2 vertices, then the geometry
with respect to the natural incidence is a near 2(n — 1)-gon of order (2,n(n — 1)/2 — 1)
and is nonregular for n > 4 (see Brouwer and Wilbrink [1983b]).

In Theorem 25 the classification of the regular near-hexagons with line size 3 is given.
However the nonregular hexagons with line size 3 having quads are also completely
classified.

THEOREM 27 (Brouwer, Cohen and Wilbrink [1983], Brouwer [1985]). Let S be a non-
regular near hexagon with lines of size 3 having quads, then the following cases occur,
and in each case the near hexagon is unique for given v,t,1,.

(D) (v,t,t) = (45,3,1 or 2),

(2) (v,t,t) = (81,5,1 or 4),

3) (v,t,t) = (105,5,1 or 2),

4) (v,t,ty) = (243,8,1 or 4),

(5) (v,t,tp) = (405,11,1 or 2 or 4),
(6) (v,t,t) = (567,14,2 or 4).

REMARK. The classification of the near hexagons with lines of size 3 has been repub-
lished by Brouwer, Cohen, Hall and Wilbrink [1994].

5. Moore geometries
5.1. Moore graphs

In Section 1 we have introduced the Moore graphs of diameter 2. In fact they can be
defined for any diameter d. Indeed, for a regular graph of valency k and diameter d one
has the inequality

v<14+k+k(k—1D+ - +k(k—12%"!

(proved by Moore, see Hoffman and Singleton [1960]), and graphs for which equality
holds are called Moore graphs. The girth of a Moore graph is odd and satisfies g = 2d+1.
Singleton [1968] proved that a connected graph with diameter d and girth 2d + 1 is
necessarily reguiar and moreover is a Moore graph. As we have done in Section 1 for
the special case of girth 5, one can also define Moore graphs with respect to a lower
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bound. Indeed, the number of vertices v of a regular graph of valency k£ and odd girth
g satisfies

’U}1—!—/43—}—]6(]6—-1)+..._{_k(k_1)(g—3)/2,

and graphs for which the equality hold are the Moore graphs.

Remark that a (2d 4 1)-gon is a Moore graph of diameter d and valency 2. The fact
that we restricted ourselves in Section 1 to the diameter 2 case, is not that restrictive, as
we can notice in the next theorem.

THEOREM 28 (Damerell [1973]). A Moore graph with valency k = 2 is a polygon. A
Moore graph with valency k > 3 has diameter 2 and k € {3,7,57}.

As we already remarked in Section 2.2, no example with k¥ = 57 is known, and if £k = 3
the graph is the Petersen graph, whereas for £ = 7, the graph is the Hoffman—Singleton
graph.

5.2. (Generalized) Moore geometries

The concept of a Moore graph was generalized by Bose and Dowling [1971], they defined
a Moore geometry of diameter d. This was even more generalized by Roos and Van
Zanten [1982]: they introduced the concept of generalized Moore geometries.

A generalized Moore geometry of type GMy(s, t, ¢) is a (finite) partial linear space of
order (s, t), such that the point graph has diameter d, any two points at distance ¢ < d are
joined by a unique shortest path, and any two points at distance d are joined by exactly
c shortest paths. In order to exclude various trivial structures, st > 1 is assumed. These
geometries include as special cases the Moore graphs (s = ¢ = 1), the Moore geometries
(c = 1), and the generalized 2d-gons (c = t + 1). Another subfamily, namely, those with
c = s+ 1, is proved to exist only for small values of the diameter d, in a series of papers,
the last of which by Damerell, Roos and Van Zanten [1989].

THEOREM 29. A generalized Moore geometry of type GMy(s, t, s+ 1) with st > 1, cannot
exist for diameter d > 3.

The proof is by using the fact, that if the geometry does exist, then the point graph is
distance regular, and the eigenvalues of the adjacency algebra have to be rational.

Known examples of generalized Moore geometries of type GMy(s, t, s+ 1) with st > 1
and d < 3 are the Clebsch graph (d = 2, s = 1, t = 4), the Gewirtz graph (d = 2,
s =1,t =9), the odd graph O4 (d = 3, s = 1, t = 3) (the vertices are the 35 unordered
triples from a set X of cardinality 7, two triples being adjacent if and only if they are
disjoint) and the generalized 2d-gons, d = 2 or 3, with s = t.

Also, for other types of generalized Moore geometries it is proved that the diameter
of the point graph (which is distance regular) should be small, but a discussion of these
theorems would bring us too far. For more information and references we refer to
Brouwer et al. [1989].



464 F De Clerck and H. Van Maldeghem

We only will state the theorem for the case ¢ = 1, i.e. the Moore geometries as they
were defined by Bose and Dowling [1971]. The proof again is a combination of several
papers by Fuglister, Damerell and Georgiacodis, references of which can be found in
Brouwer et al. [1989].

THEOREM 30. A Moore geometry of diameter d is either a (2d + 1)-gon (st = 1) or
d< 2.

Note that if s = 1 we have the Moore graphs. Moore geometries of diameter 1 are
the Steiner systems S(2, s + 1,v), there is no example of a nontrivial Moore geometry
of diameter 2. We finally remark that also another generalization of the Moore graphs
exists, see Kantor [1977].

6. (g,dp,d;)-gons
6.1. Definitions

Recall that one of the main motivations for studying geometries is provided by the fact
that it gives ways to study groups by their flag-transitive action on geometries. This
group action implies a certain regularity in the geometry .S, such as the number of points
on a line is constant, etc. If we have a group transitive on longer geodesics then we
also have more regularity properties. Note that a flag is here considered as a geodesic
of length 1.

From now on assume that S is a (g, dp, d;)-gon. Denote by I' the incidence graph of
S. Buekenhout and Van Maldeghem [1992] call S a regular (g, d,, d;)-gon if

| Ti(@) N Tw)| = | Tiz) N Tiw)

v\tn : YX7 7 ’ ey

Loam 11 P N TS Save 5 A oA 11 Alarna ny o~ ¥ noax a —
for all positive integers ¢, j and all elements z, y, z, u whenever d(z,y) = d(z,u) an

and z are either both points or both lines.
6.2. Examples

We first show how all this fits into the geometries of the preceding sections. Afterwards,
we will give some other notable examples.

Some classical examples
Probably the most important class of (g, dp, d;)-gons is the class of generalized polygons,
see Chapter 9. A generalized n-gon is an (n, n, n)-gon.

Another large class is the class of linear spaces; these are either projective planes or
(3,3,4)-gons. Let us just mention a trivial example: every set F is the set of points of a
linear space L(F’) by declaring all pairs of points to be the lines. In fact, this is a circle
geometry in the sense of Buekenhout [1979].

A symmetric 2-(v, k, A)-design with 1 < A < k is a regular (2, 3, 3)-gon. If A = k it is
a generalized digon. If A = 1, then it is a projective plane, hence a regular (3, 3, 3)-gon.



Some classes of rank . geometries 40D

In general, every design which is not a linear space, can be regarded as a (2, 3, d)-gon
with d € {3,4}. The case d = 3 corresponds exactly to the symmetric designs.

The diameter of a partial geometry S is at most 4 and we have the following possi-
bilities.

(1) S is a regular (3,3,3)-gon, that is, a generalized triangle or a projective plane,
hence S has parameters (s, s, s) for some positive integer s.

(2) S is a regular (3,3,4)-gon or its dual, i.e. S is a regular proper linear space or a
regular proper dual linear space.

(3) S is a regular (3,4, 4)-gon. Among these, we have the nets and the dual nets. The
other members in this class are the proper partial geometries. /

(4) S is a generalized quadrangle. .

A partial quadrangle S with parameters s,t,p is in general a (4,5, 6)-gon, but if
i =t + 1, then we have a generalized quadrangle, hence a (4,4,4)-gon; if © = 1, then
we have a (5,5,6) or (5,5,5)-gon; if S is also a dual partial quadrangle, then it is a
regular (4,5, 5)-gon.

A proper Moore geometry 1s a (g, g, g+ 1)-gon for g > 3 and g odd. By Theorem 30,
g = 3 or 5. A generalized Moore geometry of type GMy(s, t, ¢) which is not a Moore
geometry or a generalized 2d-gon can be a regular (2d,2d + 1,2d + 1)-gon (if s = t) or
a regular (2d,2d + 1,2d + 2)-gon (in the other cases).

A near n-gon is in general a (4, n,n)-gon.

Some more examples

The near hexagon on 759 points (see Theorem 25 and its remarks) provides three exam-
ples of (g,d,, d;)-gons. The geometry itself is a (4,6, 6)-gon (as mentioned above). If
we take the quads as new lines and remove the old lines, then one obtains a (3,4, 4)-gon
of order (14,34). We can also keep the old lines, remove the points and take as new
points the quads. This constitutes a (3, 5, 5)-gon of order (6, 14).

The sporadic group J; of Janko acts on a regular graph of valency 11 with 266 vertices.
Take as points the vertices of this graph. Define the lines to be the pairs of opposite
vertices. Then we obtain a (5, 7, 8)-gon of order (1,11).

Consider the Steiner system S(5,6,12). Take as points of a geometry the triads and
as lines the linked threes (i.e. 4 triads every 2 of which form a hexad); incidence is the
natural one. We obtain a (nonregular) (5,6, 6)-gon of order (3,3) with the group My,
acting as an automorphism group. The geometry is self-dual (the outer automorphisms
of M, interchange points and lines).

The Hall-Janko group J; acts on the sporadic regular near octagon of Cohen—Tits
which is a (6, 8, 8)-gon.

The group McL of McLaughlin acts on Us(5) as a rank 5 group. The induced graph
has triangles, but no 4-cliques with one edge removed. If we take as points the vertices
of that graph and as lines the triangles, we obtain a (4,6,6)-gon of order (2,125) of 7128
points. A similar construction with Cos; acting on HS yields a (4,6,6)-gon of order
(2,175) consisting of 11178 points (due to Soicher, private communication).
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6.3. Characterizations by automorphisms

Let G be a (type preserving) automorphism group of the (g, dp, d;)-gon S. We shall use
the following terminology.

(1) Suppose G acts transitively on the set of pairs (z,y) of points at distance ¢ from
each other, for all even positive integers i. We call (S, G) a point distance transitive
(g, dp, dp)-pair, dually a line distance transitive (g, dp, d;)-pair. If (S, G) is both point
distance transitive and line distance transitive, then we call (S, G) a weakly distance
transitive (g, dp, d;)-pair. If G acts transitively on each set of pairs of elements at distance
4 from each other and having fixed type, for all positive integers j, then (S, G) is called
a distance transitive (g, dp, d;)-pair.

(2) Suppose G acts transitively on each set of geodesics based at some point x of S
and ending in a point y at maximal distance, for all points « € P, then we call (S,G) a
point geodesic transitive (g, dp, d;)-pair. Similarly as above we can define line geodesic
transitive (g, dp, d;)-pairs, respectively weakly geodesic transitive and geodesic transitive.

(3) If G acts transitively on each set of geodesics of length ¢ based at some fixed variety
z, for all varieties z, then (S, G) is called a locally i-arc transitive (g, dp, d;)-pair.

It is easy to see that, if S is a (g,dp,d;)-gon and if 2 < g < dp, < d; < g+ 1, then
each of the above assumptions on GG implies that S is regular. Hence from now on we
assume that all geometries are regular.

With this terminology, one can classify large classes of geometries with groups acting
transitively on sets of relatively long geodesics. The following results are proved in
Buekenhout and Van Maldeghem [1992, 1993], using the classification of finite single
groups. The symbol g denotes a prime power and we follow the ATLAS (Conway,
Curtis, Norton, Parker and Wilson [1985]) for the notation of the groups.

THEOREM 31. Let (S, G) be a finite geodesic transitive (g, dy, d;)-pair, 2 < g < dp <
d; < g + 1; then one of the following holds.

(1) S is a generalized polygon related to an irreducible finite adjoint or twisted
adjoint Chevalley group or Ree group of type *F4 and X, (q) < G < Aut(X,.(q)),
where X,(q) is the corresponding Chevalley group, or G = Ag and S is the
unique generalized quadrangle of order (2,2), or S is the flag complex of a
self-dual classical generalized polygon and G is as above extended by a graph
automorphism, or S is an ordinary polygon.

(2) S can be identified with the Petersen graph Pe(10), resp., the Hoffman—Singleton
graph HoS(50); the lines are the edges of the graph and G = Ss, resp., Uz(5) <
G < Us(5) : 2. Here, S is considered as a Moore geometry, in particular a
(5,5,6)-gon of order (1,2), resp., (1,6).

(3) Sisa (3,4,4)-gon. The following cases occur.

(3.1) S is a nei of order q and degree g obiained from the Desarguesian
projective plane PG(2,q) by deleting a flag (x,l) and all varieties incident
with one of z,l, and G contains the stabilizer in PGL3(q) of the flag (x,l) in
PG(2, q).
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(3.2) S is the net (H ZI“FI)D of order q" and degree q + 1 and G contains a
group isomorphic to the semidirect product of an elementary Abelian group
q*" with a group isomorphic to

(a) (SLa(q) % SLn(9))/Z(SLa(q) X SL,(q)) if n > 2, or

(b) (SLa(g) x GL2(9))/Z(SLa(g) X GLa(q)) if n =2, or

(©) SLa(2) x A7 if (n,q) = (4,2).
(3.3) S is the dual of 3.2.
(3.4) S is a net of order 16 and degree 9 whose points can be identified
with the points of an affine space AG(8,2) and whose lines are the affine
4-subspaces whose 3-spaces at infinity constitute a 2-transitive spread of a hy-
perbolic quadric in PG(7,2); G contains the full translation group of AG(8, 2),
and its kernel ‘at infinity’ is Ao.
(3.5) S is the dual of 3.4.

(4) S is a (3,3,4)-gon. Three cases occur.
(4.1) S is the linear space consisting of the points and lines of PG(d, q), ¢ > 3,
and Lg11(q) < G < PT'Lg11(9).
(4.2) S is the Desarguesian affine plane AG(2, q); G contains all translations
and its kernel ‘at infinity’ contains Ly(q).
(4.3) G is a group acting 4-transitively on the set of points of S and the lines
of S can be identified with the pairs of points.
(5) S is a(2,3,3)-gon. Here, S is a symmetric 2-design with \ > 1 and four cases
occur (see also Chapter 8).

(5.1) S can be identified with PG(d,q),d > 3, the blocks are either the
hyperplanes or their complements and Lg11(q) < G < PI'Lg11(q) @ 2 or
G = A7 or S7 (if (d,q9) = (3,2) and blocks are the hyperplanes).
(5.2) S is the (unique) Paley (or Hadamard) design on 11 points and 1.5(11) <
G < Ly(11): 2.
(5.3) S is isomorphic to one of Kantor’s designs S*(n) and G > 2*" : Sp,, (2)
(see Kantor [1975]).
(5.4) S is the design with some point set P and with blocks the complements
of the singletons {p} in P. The group G acts 3-transitively on P.

(6) S is a generalized quadrangle of order (1, s) or (s, 1) and there is an almost simple
2-transitive group To of degree s+1 with socle T such that T xT < G < TowrS,.

(7) S is a generalized digon.

For various subclasses of geometries, they obtain more general results by weakening
the hypothesis on G. We start with the class of generalized polygons.

THEOREM 32. Let S be a thick generalized n-gon, n > 3, and suppose G is a group of
automorphisms acting point distance transitively on S; then (S, G) is one of the thick
examples in Theorem 31(1) above and G is the corresponding Chevalley group or its
derived group, or S is the unique generalized quadrangle of order (3,5) and G contains
a group isomorphic to 25 : 3 : As.
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- We say that the pair (S, G) has the Tits property if G acts transitively on the set of
ordered circuits of minimal length (in which case the length is twice the girth). For

a definition of the Moufang property and the half Moufang property for generalized

polygons, we refer to Chapter 9. The next result is a corollary to Theorem 31.

THEOREM 33. Let S be a finite thick generalized polygon and let G < Aut(S). Then the
following conditions are equivalent.

(1) (8, G) has the Tits property.

(2) (S, G) has the Moufang property.

For generalized hexagons and octagons every distance transitive group induces both
the Tits and the Moufang property; for point distance transitive groups and for general-

sl oo o Al oot A oc)

ized guadrangles there are a few exceptions (namely, the simallest ones).
The following result is also proved by Buekenhout and Van Maldeghem [1993].

THEOREM 34. Let S be a thick finite generalized hexagon or octagon and G an au-
tomorphism group of S. The pair (S,G) is half Moufang if and only if it is point
distance transitive or line distance transitive, depending on the type of Moufang roots in
S. In particular, half Moufang implies Moufang whenever (s,t) # (2,2) (for generalized
hexagons) or (s,t) # (2,4),(4,2) (for generalized octagons). Also, S is Moufang with
respect to some automorphism group if and only if it is half Moufang with respect to
some (possibly other) automorphism group. Finally, (S, G) is half Moufang if and only
if G is flag-transitive on S.

Note that for generalized quadrangles this result already was proved in Thas, Payne
and Van Maldeghem [1991], without the classification of the finite simple groups, see
also Chapter 9.

We now consider partial geometries and partial quadrangles. For proofs, see Bueken-
hout and Van Maldeghem [1992].

THEOREM 35. Let S be a proper partial geometry and suppose that G < Aut(S) acts
weakly distance transitively on S. Then the points of S can be identified with the points
of an affine line AG(1,q) and G < AT'L{(q).

1

No examples satisfying the hypothesis of the above theorem are known though.

THEOREM 36. Let S be a partial quadrangle which is not a generalized quadrangle and
let G < Aut(S) act point distance transitively on S. Then either the point set of S
can be identified with the affine line AG(1,q) and G < AI'L;(q), or Aut(S) acts point
geodesic transitively and one of the following possibilities occurs.

s a) 2

(1) s =1 and S is a rank 3 sirongly regular graph. The possibilities for (S, G) are
listed in Table 1.

(2) S has a linear representation in the affine space AG(n, q), G' acts point geodesic
transitively, it contains the full translation group of AG(n,q) and the centre of
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the stabilizer of a point is an almost simple group M, (i.e. M contains a normal
simple group and is included in its automorphism group) where the possibilities
for S,n,q, M are given in Table 2.

Table 1
Point distance transitive partial quadrangles with s = 1

S G (s,t, ) Remarks
Pn(5) Do (1,1, G is geodesic transitive;
Pe(10) As G L Ss (1,2,1) G is point geodesic transitive;

S5 is geodesic transitive
HoS(50) Us(5) <G K Us(5):2 (1,6,1) G is point geodesic transitive

and geodesic transitive
Gew(56) L3@) < G < PI'L3(4) (1,9,2) G is point geodesic transitive

but not geodesic transitive

HS@77) My, <G <My i 2 (1,15,4) @G is point geodesic transitive
but not geodesic transitive
HS(100) HS <G HS:2 (1,21,6) @G is point geodesic transitive

and geodesic transitive
CI(16) 24 Dip<G<K24: S (1,4,2) 24 : (5 : 4) is point geodesic

transitive;

24 . As is geodesic transitive

Table 2
Point geodesic transitive partial quadrangles with s > 1

S AG(n,q) M Restrictions

T7(Q) AG4,q) L,(g?) Q an elliptic quadric in PG(3, q)
T3 (0) AGH4,q)  Szg) O the Suzuki-Tits ovoid in PG(3, q), ¢ = 22¢t!
T5(K) AG(5,3) My K the 11-cap in PG(5, 3) arising from M

This has the following immediate consequence:
THEOREM 37. No locally 4-arc transitive (4,5, 5)-pair exists.

Note that from Theorem 31 it follows that there do not exist geodesic transitive (g,
g+ 1,9 + 1)-pairs with g > 4. It is a conjecture that there exist no such geometries at
all.

It is appropriate also to mention in this context a result which follows almost immedi-
ately from the classification of flag-transitive linear spaces by Buekenhout, Delandtsheer,
Doyen, Kleidman, Liebeck and Saxl [1990].

THEOREM 38. Every linear space listed in Table 3 gives rise to a locally 3-arc transitive
(3, 3,4)-pair. Conversely, if (S, G) is a locally 3-arc transitive (3,3, 4)-pair with G type
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preserving, then it is one of the examples of Table 3. If (S, G) is a geodesic transitive
(or equivalently a weakly geodesic transitive) (3, 3,4)-pair with G type preserving, then

it is one of the first 3 examples in Table 3.

Finally, we mention a characterization of a class of Moore geometries.

THEOREM 39. If (S, G) is a point distance transitive (g,9, 9 + 1)-pair, g > 5, with G
type preserving, then it is one of the two examples of Table 4. Moreover, if S is HoS(50)
then G acts geodesic transitively, if S is Pe(10) then G acts geodesic transitively if and

only if G = Ss.

Table 3

Geodesic transitive and locally 3-arc transitive linear spaces

S G Restrictions and remarks
PG(n,q) Lpt1(@) SG<KPIL,41(g) n>3
AGQ2,q) Li(qg) <Gy <TLy(g) GG contains all translations
S(P) G G is almost simple and
acts 4-transitively on P
PG3,q) Ay (G contains all translations
Ug(g) PGUj(g) < G < PT'U;(q) Hermitian unital in PG(3, ¢?)
AG(n,q) Ln(9) < Go <TLn(q) n >3 and
G contains all translations
AG@,2) G=2*: Ay
S(P) G G is almost simple and

acts 3-transitively on P

Point distance transitive Moore geometries with d > 2

S G Remarks
Pe(10) As <G S5 S5 is geodesic transitive
HoS(50) Usz(5) < G < Ujs(5):2 @ is geodesic transitive

¥

THEOREM 40. If we allow diameter 1 for Moore geometries, then a point distance transi-
tive (g9, g, g+ 1)-pair is one of the examples in Tables 3 and 4 or it is one of the following

linear spaces:
— the Hermitian unital with G = Us(q);

— the Ree unital and G is an automorphism group of the corresponding Ree group;

— the affine space AG(n, q) with AL{(q™) <

G < AI'Li(¢"™).

— the Hering plane of order 27 or the nearfield plane of order 9 (see Chapter 5);

— a Hering space (see Chapter 22, 1.9.8);

— a circle geometry with a 2-transitive almost simple group acting.
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