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INTRODUCTION

In this paper we calculate explicitly the coordinatizing algebraic
structures of the classical generalized quadrangles and give some
applications. Although we restrict to finite structures, similar

results for the infinite case can be derived.

A (finite) generalized quadrangle (GQ) is an incidence structure
S = (P,B,I) in which P and B are disjoint (nonempty) sets of objects
called points and lines (respectively), and for which I is a symme-

tric point-=1line incidence relation satisfying the following axioms

(i) each point is incident with 1+t lines (t > 1) and two

distinct points are incident with at most one line ;

(ii) each line is incident with 1+s points (s > 1) and two

distinct lines are incident with at most one point ;

(iii) if x is a point and L is a line not incident with x, then

there is a unique pair (y,M) € P X 8 for wich x I MI y I L.
Generalized quadrangles were introduced by J. Tits,. [7}

The integers s and t are the parameters of the GQ and S is said to

have order (s,t); if s = t, S is said to have order s,

Given two points p and q of S, we write p L q and say that p and q are
collinear provided that there is some L incident with both. If this

is not the case, we write p }.q.

For p € P, put p* ={qe P| q 4+ p}and note that p ¢ p‘i Is Ac?P,
we write AY = N p*/ p € A . For distinct points p and q, (p,q’j‘L is
called the trace of p and q and {p,q}*lthe span.

For details we refer to [5].

We recall briefly how coordinates are introduced in [2], for a finite

GQ of order (s,t),s,t > 1.

We use a set R,l (resp.Rz) of cardinality s (resp t) not containing the

symbol @, but containing two distinguished elements O and 1.



We choose a point (a0) (resp line [@] ) of S, (0)I[®], and take

(a),a € (resp.[k], k € RZ) as remaining points on [oo] distinct from

Rﬁ
() (resp. remaining lines on (c0) distinct from [o0] ).

Now we complete the elements (00),[2],(0),[0] to a non-degenerate qua-
drangle (00),[0d],(0),(0)A,A,AB,B,[0]. Like before we choose a bijection
between RJ1 and the points of the line (0)A with the only restriction

that A corresponds to 0. The point of (0)A corresponding to a' € R

1
will have coordinate (0,0,a') € RﬂXR2XRQ Dually, we give coordinates
[an,kf:lé RQXRQXRZ to the lines on B different from [0], with the

restriction that BA has coordinate [OQO,O].

We define next the points with two coordinates : a point P collinear
with (00), but not lying on [ed] has coordinate (k,a) & RZXR1 if and
only if P lies on [k] and is collinear with (0,0,a). Dually lines meeting

(%] not passing through (e0) are given coordinates [a,k]é€ R, xR, .

Finally, consider a point P not collinear with (). Because S is a
GQ, there is exactly one line on P meeting [@]. This line must have
two coordinates, say [a,l]. On the other hand, P is collinear with
exactly one point (0,a') on [0]. Now P is given the coordinate

(a,1,a").

Conversely, let (a,l,a') be any element of R{XRZXRQ’ then we construct
a point P having this element as coordinate., Indeed, given the line
[a,l] and the point (0,a') not incident with it, then there is exactly

one point collinear with (0,a') and lying on [a,l] for S is a GQ.

The coordinate of a line [k,b,k'] is defined dually.

We define two quaternary operations Q1 and Q2 as follows : if
a,a',b e Rq and k,k',1 & RZ’
Qq(k,a,l,a') = b
=1

Qz(a,k,b,k')

if and only if (a,l,a') is on [k,b,k'].

If the GQ S is coordinatized in this way we call (RQ’RZ’Qi’QZ) a qua-

dratic quaternary ring.



We mention here that this coordinatization of the classical examples
for s = t is equivalent to that given by S.E. Payne [4] . A detailed

comparison will be worked out in a forthcoming paper.

2. THE SYMPLECTIC GENERALIZED QUADRANGLE W(q)

2.,1. Definition
The points of PG(3,q), together with the totally isotropic
lines with respect to a symplectic polarity, form the G0 W(q)

with parameters s =t = q.

2.2. Coordinatization

We can choose our simplex in PG(3,q) such that the symplectic

polarity has the following bilinear form :

XoYq %1V % V3=%3Yy = O

Choose ©9) (1,0,0,0),

(0)'= (0,0,1,0).

Let R1 = R2 = GF(q) then we can take

(a) = (a,0,1,0),

[k] the line on (1,0,0,0) and (0,0,k,1).
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Finally, we choose
(0,0,a') = (0,1,a',0),

[0,0,k'] the line on (0,0,041) and (k',1,0,0).
We compute the points and lines with two coordinates

(k,a) = (agogkgi);
[a,k] the line on (a2,0,1,0) and (k,1,0,-a),

and next those with three coordinates
(a,1,a') = (1+aa',1,a',=a),

[k,b,k'] the line on (b,0,k,1) and (k',1,b,0).

Quadratic quaternary ring.

We will find Qi and Q2 by expressing that for some A e GF(q)

there holds

(14+aa',1,a',=a) = A(b,0,k,1)+(k',1,b,0)

and solving for b and 1. We obtain A = =a and
l14+aa' = -ab+k'
a' = -aktb,
hence Qi(k,aal,a') =b = ka+ta',
Q) (a,k,b,k') = 1 = a2yqk'2ab,




3. THE QUADRICS Q(4,q) and Q(5,q).

3.1. Definition

Let Q(4,q) resp. Q(5,9) be a non singular quadric
of projective index 1 of the projective space
PG(4,q) resp. PG(5,9). Then the points of Q
together with the lines on Q (subspaces of maxi-

mal dimension on Q) form a GQ with parameters

(s,t) = (q,q) resp. (q,9%).

3.2. Coordinatization of Q(5,q)

Recall that the quadric Q(5,q) has the following

canonical equation
—f(xo,x1)+xox3+x4x5 =0,

where f is an irreducible binary quadratic form,

say xé+px0x1+rx?.

For X = (XO,X1) € (GF(q))Z, write f(X) in nlace
of £(x,,x;), and X.y for the bilinear form asso-

ciated with the quadratic form f, i.e.
X.y = 2x0y0+p(x0y1+x1y0)+2rx1y1

for x = (XO’X1) and y = (yo,y1).
Choose (00) = (0,0,1,0,0,0)
(0) = (0,0,0,0,1,0).

Let R1 =‘GF(q) and R2 = (GP(q))Z, then we take
(a) = (0,0,-2,0,1,0),
[k] the line through (0,0,1,0,0,0) and
(k,0,0,£(k),1).

Finally, we choose
(0,0,a') = (0,0,0,1,a',0),

[0,0,E'J the line through (0,0,0,0,0,1) and
(k,£(k),1,0,0).




From these follow the points with two coordinates

namely (E,b) is the point on the line described by
(K,4,0,£(k),1), A &GF(q)

collinear with (0,0,0,1,-b,0), i.e. lying in
xz—bx5 = 0.

We find
(k,b) = (k,-b,0£(k),1).

The lines with two coordinates follow analogously

[a,i] the line through (0,0,-a,0,1,0) and
(I,£(1),1,0,a),

Now we can look for elements with three coordinates
(ayi,a') = (I,f(i)—aa’,T ’a' aa) )

[k,b,k'] the line through (k,-b,0,f(k),1) and
(k',f(k"),1,b+k.k",0).

3.3. Quadratic quaternary ring for Q(5,q)

We express now that (a,l,a') and [E,b,i'l are incident,
1.e. for some A€ GF(q) we have

1 =/AE+E',

f(l)-aa' = -ub+f(k'),

a' = pf(k)+b+k.k,

a = u,

or equivalently

1 = a.i+£’,
f(1)-aa' = -ab+f(k'),
a' = af(k)+b+k.k'.

Solving for b and 1 we get

af(k)+a'-k.1,

b
i a_F+E'.
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Coordinatization of Q(4,q)

If we intersect Q(5,q) with the hyperplane X, = 0,

we get a quadric Q(4,q) with equation

XZ— Xo=X,Xc =0

07%2%37%4 %5 :
We obtain a coordinatization of Q(4,q) by taking
Py = R, = GF(q) and projecting k =(ky,k,) onto its

first coordinate ko.

Writing k in place of kO’ and
£ = £(k,0) = &7,
k.1 = 2k1,

it is clear that, with the natural adjustments,
the QQR is given by

b = Q(k,a,l,a") = ak®+a'-2k1,
1 = Qz(a,k,b,k') = ak+a'.
Corollary

It is clear from the corresponding QQR that Q(4,q)
is isomorphic to the dual of W(q).




4. THE HERMITIAN VARIETIES H(3,q2) and H(A,qz)

4.1. Definition

Let H be a nonsingular hermitian variety of the projective space
2 2
PG(3,q ) resp.PG(4,q"). Then the points of H together with the

2 2 3
lines on H form a GQ with parameters (s,t) = (q ,q) resp (q ,q ).

4.,2. Coordinatization of H(4,q2)

We may suppose that H has the following canonical equation :

q q,.4g q+tl _
X0x2+x0x2+x1x3+31x3+x4 0.

We choose

() (1,0,0,0,0)

(0) = (0,0,0,1,0).

2
Let R,L = GF(q ), then we put

(a):: (a,0,0,1,0).

2
For R2 we take GF(q )XK where K is the set of q solutions of

the equation

t34¢e = 0.

2
Further, @ denotes a fixed non zero element of GF(q”) satisfying

the equation (’l+ﬂ)q+1 =1,

We choose then

[x] = [(k )] the line on (1,0,0,0,0) and
q+4
(0,1,0,0k, " "+k, ,6k,) .

Next, take

(0,0,a") = (0,031,"(a'9)q,0)



[0,0,k] =[0,0,(k},k)] the line on (0,1,0,0,0) and

+ .,
(6’k(')q +),0,1,0,-0K]) -

We find now for the points and lines with two coordinates

= (F q+
(kh.) (b.9,'1,0,9k0 +k,l,9ko)

+
[a,6] the line on (a,0,0,1,0) and (988 1+e,,—aq,1303a920).

Finally we obtain those with three coordinates :

(a, 1l,a ") (elg_l!l'}‘l,f'a(a'é)q:”aq:] :"‘(a'g)q,-alob)

[k,b,k"] [(kQ,kl),b,(k',ki)] the line on

q+1

<i§e,1,o,6k0 +k, .0k ) and

+1 a+1
61 k0,1, - (b8) T 6T Tk 50Ky .

2
4.3. Quadratic quaternary ring for H(4,q")

As before, we obtain Q. and Q, by elminatin de GF(q2) in :
1 2 > &

(91q+1 14_ _a(a'@)q)“aq"] ’_(a'e)q’_alo)

+
0

= qﬂ )
A (b 11,0,6k3" Hk, 6k )

1qt+l 1 - q q+] v _a1
+ (eko +k!,0,4, -(bO) H+6 koko, ek(‘))

43

It is easily seen that

hence

q+l N ad - .G Gt
elo +14 a(a'e) a b9+ék0 , +kj,

L a- q,,.,q+1 A~ +1
-(a'g)d= -2 Bk, k) - (b§) L+ g1 kgké,

- = _.9%1 -
910 a6k 9k(').



We can write this as follows

- 44 '
1O a k0+k0,

- a4 q.a+1_ q q_.14

1. = a(a9@k3 +x )+ (00 =697 kK1) -gaTprpr 1 4™
1 0 1 00 0
v _ q ' q q
+k1 O(a k0+k0)(ak0+ké ).
Remark that @+4971 = -4%,then we obtain

k
- atl, “n, v, 4, .9
b a(ko +9-—)+a +8 kolo

—
Il

q '
+
akO kO

q+1 g4 1y, A 1954
. =2 k,l+lg1 fa (b+k0k0 Y+6 a(b+k0k O)
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4.4. Coordinatization of H(3,q2).

2
We obtain the non singular hermitian variety H(3,q ) in three
2
dimensions if we intersect H(4,q") having canonical equation
as in 4.2 with x, = 0.

4

2
Let‘#,be a fixed element of GF(q ) satisfying fb# 0 and

plap =0,
then we can identify the set K in 4.2 with GF(q) since /Lk €K

for k € GF(q).

2
On the other hand, we can see GF(q ) as a quadratic extension of

GF(q), i.e.
2 , ) 2 -
GF(q”) = GF(q)(4) with A"-pp+r = 0.

It follows that both A and Aq are roots of the equation

2
x =px+r = 0, hence,

A+ AL =p
Al =,

2
An element a of GF(q ) can be written as

a = a0+a4A,

This allows us to take R/1 = GF(q) and R, = GF(q)z. Following

analogous computations as in the previous case, but for ko = ké
we obtain :
= 4 1
b =a’ g kta',
+1
Ml = at ik +alpd-ab,
Normalizing this QQR we get

b = ak+a'

a9 e a%p-apd

—
1l
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4.5, Corollary

We can work out the above expressions in the following way :

q+1 _ ; A G
a (a0+a,1A)(aO+aq_A )
=’y 1qa’
ajtpagya,+qa,
= f(a),
a%ptab? = (a _+a Aq)(b +b A d)+(a +a A)(b _+b AD
o 1 0 1 0 1 o 1

a;b
2a0b0+pa0bi+paqbo+2a1 1

.-

_ 3.b.

So, b = ak+a',

-

f(a)k+k'-3.b

1

2
This showsthat H(3,q ) is isomorphic to the dual of Q(5,q).
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SOME APPLICATIONS

5.1. Regularity

5.2.

5.3.

A pair of points (p,q) is called regular if p L q and p # q,
or if p £ q and for any pair of distinct points a,b e {p,q}‘L
we have that each point of (p,q}* is collinear with each point
of {a,b}t. If the GQ S is finite with parameters (s,t), then

(p,q) is regular if and only if |{p,q}*t)= t+l provided p Lq

The point p is regular if (p,q) is regular for all points q # p.

Proposition ([Zli[q])

Let S be a GQ coordinatized by a QQR (Ri’RZ’QQQQZ)' Then the
point (e0) is regular if and only if Qi is independent of the

third argument, i.e.

Qy(ka,Lat) = Q (k,2,0,2")

for all a,a' € R, and k,1 € R Dually the line [00] is regular

1 2°
if and only if Q2 is independent of the third argument,

Let S be a finite GQ of order s having (®) as regular point.

Then the incidence structure'ﬂhx) with pointset Gﬂ)l', with

lineset the set of spans {p,q}J“L, where p,q & (ao)‘Ls p # q, and
with the natural incidence, is a projective plane of order s
coordinatized by the PTR T(k,a,a') = Qi(k,a,o,a') (Coordinatization

Method of Hall E4] ), if R,l and R2 are identified by
k = Q1(k,1,0,0).

Regularity in the classical GQ.

It is a well known fact that the group of automorphisms of a clas-
sical GQ acts transitively on the points and on the lines. There-
fore every point resp. line is regular if and only if (®) resp.

[oo] is regular.

Using proposition 5.2 it follows immediately that W(q) has only

regular points, and has regular lines if and only if the charac-
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teristic of the field is two. In particular W(q) is self-dual

if and if the characteristic is two. Also, Q(5,q) has regular
lines but no regular point, while H(4aq2) has no regular points
nor lines. The results for Q(4,q) resp. H(3,q2) are the dual of
W(q) resp. Q(5,q9).

Ovoids, spreads and polarities.

An ovoid of the GQ S is a set O of points of S such that each line
of S is incident with a unique point of 0. A spread of S is a
set R of lines of S such that each point of S is incident with a

unique line.

It is not so hard to show that the set of all absolute points
(resp. lines) of a polarity (i.e. an anti-automorphism of order

two) of S is an ovoid (resp.a spread), (see also [4]),

. Proposition

The QQR of W(q) as computed in section 2 is independent of the
choice of the quadrangle (00),(0),(0,0,0),(0,0) and the point (1)
and line [11].

Proof.

It is always possible to choose in PG(3,q) the simplex as follows

() = (1,0,0,0)

(0) = (0,0,1,0)
(0,0,0) = (0,1,0,0)
(0,0) = (0,0,0,1).

Moreover the unit point can be chosen such that
(1) = (1,0,1,0)
[1] the line on (1,0,0,0) and (0,0,1,1).

However, the bilinear form defining the symplectic polarity re=-

mains the same. So the computations of section 2 also remain

equal and hence the QQR.
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5.6. Theorem ([6])
2h+1
The GQ W(q) is self-polar if and only if q = 2 s h> 0.

The ovoid that arises from the polarity has the following explicit

ot
form in W(q), with 6" € Aut GF(q) such that xT = x* +§

0= {(a,a “’b)la,be GF(Q)] U {@].

Proof

If W(q) isself-polar then in particular it is self-dual, hence the
characteristic of the field is two. In view of the forégoing
proposition, we can assume that the polarity @ switches (00) and

[®], (0,0,0) and [0,0,0], (1) and [1].

We define a permutation ¢ of GF(q)

é
(a) =[a7]
é -1
so [k] = (k" 7).
8 g
Because (1) = Ld], (1,0,0) =[1,0,0], and the elements (a) L p L
(0,a) with p € [1,0,0] are transformed into [aEJ.L PL [0,a¢]
for (1,0,0)€ P. Hence,
e
(0,a) = [0,a"]
0,11 = (0,1,
It follows that
4
(0,0,a) =[0,0,a"].
. _ o -1 o1 4
Now [k] I (k,a) L (0,0,a) is transformed into (k' ") I [k ,a%]
l.[0,0,dﬂw, so

(k,a)e = [k”—i,a¢J

4 -
[aﬁk] = (aﬂ"kO' 1).
Finally, we get from [a,l] I (a,1l,a') L (0,a') that (a¢,1¢—1) I
[dﬁlw—l,a'G‘]L[O,a'wj, and (a,l,a')e [af,lv_i,a'v]

6 - i
[k,b,x']" = 7 ERSAAL AL
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Expressing incidence of these elements in W(q), we obtain for all
a,b,a',k & GF(q)
b7 = aw(k“_1)2+a'¢
with b = ak+a'.
Hence, (ak+a')¢ = a (k“r1)2+a'¢.
Putting a =71 and a' = 0, we see that
2

-1

k= kT

Substituting this expression, it follows from

(ak+a')¢ = %k a7

that ¢ is an automorphism of GF(q) satisfying

-1
o =20,
2
or T = 2.
2h+1
Therefore q = 2 s
2h+4
and xT=x" , for all x € GF(q)

Apart from (), all absolute points of @ have three coordinates
satisfying
(a,1,a") I [av,lv_l,a'G]

-1
a¥a+a’

or 1°

26 0
= a agata'.

=
l

We conclude that the ovoid consists of the point (@) together with

a+2
the points (a,a  +b7,b) for a,b & GF(q).

Equation of the ovoid in PG(3,q)

We obtein the equation in PG(3,q) using 3.2.

c+2 oc+2

T T
(a,a “4+b ,b) = (a “+b +ab,1,b,a)
It is an easy exercise to see that this cannot represent a quadric.

J. Tits also proves that the associated inversive plane admits the

Suzuki group Sz(q) as automorphism group. Finally, the spread that
arises by dualizing the ovoid is the Liineburg-spread giving rise

to the non-desarguesion Ltneburg-plane [3].
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