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III. METASYMPLECTIC SPACES3
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Abstract. We classify all domestic collineations, that is, collineations mapping no chamber to

an opposite one, of all spherical buildings of type F4. Besides obvious cases like central elations
and products of two perpendicular such elations, we find collineations that pointwise fix certain

subspaces, also of type F4, but over a smaller algebra, or even non-thick as a building. We also

find examples that pointwise fix Moufang quadrangles, and these inclusions are new: Moufang
quadrangles of absolute type D5 are contained in buildings of type F4 of absolute type E6, and

exceptional Moufang quadrangles of type E6 are found inside buildings of relative type F4 and

absolute type E7 (the so-called quaternion metasymplectic spaces). Together with the already
established Moufang quadrangles of mixed type inside mixed buildings of type F4, our results

imply that domestic collineations give rise to inclusions of the three different types of Moufang
quadrangles inside metasymplectic spaces: Moufang quadrangles of classical, exceptional and

mixed type.
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1. Introduction41

This paper fits into a series of papers classifying so-called domestic automorphisms of spherical42

buildings. Before we sketch the situation, let us recall some motivation. A domestic automorphism43

of a spherical building is an automorphism that does not map any chamber onto an opposite44

chamber—hence this is very specific to spherical buildings. As soon as there are no rank 2 residues45

defined over the smallest field F2, every domestic automorphism comes with an opposition diagram,46

which encodes the types of simplices that are mapped onto an opposite. These diagrams are47

classified in [16] and the result is—very roughly— that ignoring the arrows these diagrams coincide48

with the Tits indices [30] for which the Galois group is an involution (the exceptions occur in rank49

2 and for type F4; in the latter case, however, we can appeal to the mixed Galois descent introduced50

in [14]). Tits indices generalise to fix diagrams—encoding the types of simplices that are fixed by51

the automorphism. The initial crucial observation is that the fix diagram and opposition diagram52

of each domestic duality of any spherical buildings of the second half of the second row of the53

Freudenthal-Tits Magic Square coincide with the Tits indices of the corresponding cells in the54

relative Magic Square and those of the cells lying symmetric with respect to the main diagonal.55

This led to the conjecture that the nonsplit Magic Square encodes all domestic automorphisms of56

the buildings of exceptional type in the split Magic Square that do not fix a chamber, see [35].57

This conjecture did not turn out to be be correct, but only a slight adaptation is necessary, see58
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Figure 1. The Tits indices 2D
(2)
5,2 and 2E16′

6,2.

[15, 20]. In any case, domestic automorphisms seem to be related to automorphisms fixing a large59

substructure, in particular linearisations of Galois descent, called linear descent in [35]. This linear60

descent provides ways to see certain buildings inside others as a larger fix point structure than is61

the case in the corresponding Galois descent. For example, the quaternion buildings of type F462

(with Tits index E9
7,4), which are (Galois) forms of E7, arise as fixed point structures of groups of63

domestic automorphisms in buildings of type E8.64

The situation in buildings of type F4 is particularly interesting. Not in the least because it is the65

unique type of exceptional buildings of rank at least 3 admitting non-split examples. But on the66

level of Tits indices and fix diagrams: On the one hand, there are not many Tits indices; on the67

other hand, there are fix diagrams that are not Tits indices, and they correspond to the mixed68

Galois descent introduced and explained in [14], giving rise to the exceptional Moufang quadrangles69

of type F4. In the same paper [14], the linearization of this mixed Galois descent is presented, and70

the full fix group is determined in [23]. We will show that an automorphism of a mixed building71

of type F4, fixing no chamber, is domestic if, and only if, it belongs to such a linear descent group.72

We also pin down the domestic collineations that do fix a chamber. The situation in non-mixed73

buildings of type F4 is also very intriguing. Besides an explicit list of unipotent and torus elements,74

we obtain two new classes of linear descent groups. One is related to the Tits index 2D
(2)
5,2 (see75

Fig. 1), which we disclose in the buildings of type F4 having Tits index 2E
2
6,4 and the other is related76

to the Tits index 2E16′

6,2 (an exceptional Moufang quadrangle of type E6, see Fig. 1 again), which we77

find in buildings of type F4 having Tits index E9
7,4. Both correspond to the opposition diagrams78

F4;2. Note that it was generally believed among experts that Moufang quadrangles arising like this79

in metasymplectic spaces were a characteristic 2 phenomenon, see Remark 2.2 of [26]. The new80

examples in the present paper refute this conjecture.81

We mention in passing an interesting consequence of our construction: Since the exceptional Mo-82

ufang quadrangles of type E6 appear now in quaternionic metasymplectic spaces, their automor-83

phism group can be written with quaternionic 27× 27 matrices, see [8] and [36].84

More exactly, with the notation and conventions of Section 2, we will show the classification of the85

Main Result below, where we use the following terminology. By [31, Theorem 10.2], thick buildings86

of type F4 are classified by the pairs (K,A), where K is a field and A a quadratic alternative division87

algebra over K, and we denote the corresponding building by F4(K,A). Recall from Theorem 20.388

in [33] that A is either89

Class (K) equal to K and char (K) 6= 2,90

Class (L) a separable quadratic extension of K,91

Class (H) a quaternion division algebra over K,92

Class (O) a Cayley algebra (octonionic division algebra) over K, or93

Class (M) a (purely inseparable but possibly trivial) extension of K, char (L) = 2, with A2 ⊆ K94

(where A2 denotes the field of all squares of A).95

We number the vertices of the building as in Fig. 3. This numbering allows to consider the Lie96

incidence geometries Γ1 := F4,1(K,A) and Γ4 := F4,4(K,A) (see Section 2 for more details), and97
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F1
4;1 = • • • • F4

4;1 = • • • • F4;2 = • • • •

Figure 2. The possible opposition diagrams for nontrivial domestic collneations
of F4(K,A).

also gives a precise meaning to the opposition diagrams F1
4;1 and F4

4;1 (see Fig. 2 for the list of98

opposition diagrams of type F4 of nontrivial domestic collineations), and also to long and short99

root elations (a long root elation being a central elations with centre a vertex of type 1, and a short100

root elation being an elation where the corresponding root has a type 4 vertex as central vertex).101

To understand the Main Result, it suffices to know for now that in the opposition diagram (only)102

the types of the elements that are mapped onto opposites are encircled (see Section 2.11 for more103

details). Note that the Main Result for the split case (class (K)) has already been proved in [18].104

Main Result. Let, with the above notation, θ be a nontrivial automorphism of F4(K,A), |K| > 2.105

Then θ is domestic if, and only if, it has opposition diagram either F1
4;1, or F4

4;1, or F4;2. More106

exactly,107

(Dom1) θ has opposition diagram F1
4;1 if, and only if, θ is a long root elation;108

(Dom4) θ has opposition diagram F4
4;1 if, and only if, one of the following occurs in the corre-109

sponding class:110

(K) θ is an involution with fix structure the weak subbuilding corresponding to an extended111

equator geometry and its tropics geometry in F4,4(K,K);112

(L) θ is an involution pointwise fixing a subbuilding canonically isomorphic to F4(K,K);113

(M) θ is a (central) short root elation;114

(Dom14) θ has opposition diagram F4;2 if, and only if, either115

(i) θ is the product of two perpendicular long root elations, or116

(i′) θ is the product of two perpendicular central short root elations in Class (M), or117

(ii) θ pointwise fixes some apartment and one of the following occurs in the corresponding118

class:119

(L) the fix structure of θ is the weak subbuilding corresponding to an extended120

equator geometry and its tropics geometry;121

(H) the fix structure is a thick subbuilding of class (L) (isomorphic to F4(K,L) for122

some quadratic field extension of K) canonically embedded in F4(K,A), and L123

is a subalgebra of A of dimension 2 fixed under some automorphism of A, or124

(iii) the fix structure of θ consists of vertices of types 1 and 4 only, naturally defining a125

Moufang generalised quadrangle Γ in such a way that the fixed vertices of type i inci-126

dent with a fixed vertex of type j, {i, j} = {1, 4}, forms an ovoid in the corresponding127

symplecton of F4,i(K,A) and we have the following cases:128

(L) Γ is a classical Moufang quadrangle with Tits index 2D
(2)
5,2;129

(H) Γ is an exceptional Moufang quadrangle with Tits index 2E16′

6,2;130

(M) Γ is a mixed Moufang quadrangle and θ is an involution.131

In particular, the only domestic collineations of F4(K,O), with O a Cayley division algebra over132

K, are the central elations and the products of two perpendicular central elations. Also, there do133

not exist domestic dualities of any building of type F4.134

We will also construct collineations in each of the cases displayed in the Main Result. Our tool to135

do so will be Tits’ extension Theorem 4.16 of [31], together with the construction of some specific136

subgeometries in Γi, i = 1, 4, taking advantage of the duality between those two. In particular we137
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will explicitly show that Γ1 admits all central elations and Γ4 does not admit any central elation138

except if it is in Class (M).139

The case |K| = 2 is a true exception but we are allowed to disregard it since all domestic140

collineations in this case are classified in [17].141

Structure of the paper—In Section 2 we define the metasymplectic spaces that we will work142

with, define equator and extended equator geometries, the corresponding tropics geometry and143

derive from this fully embedded polar spaces of a certain type in Γ1. This allows us to define144

imaginary lines, which play a prominent role in the proof of our main result. All results are new145

and interesting in their own right, although certain versions in the split case (and sometimes under146

the additional hypothesis of the underlying field being algebraically closed) of some of the results147

obtained exist in the literature (for instance in [25]). In Section 3 we prove some lemmas for148

polar spaces, which appear in the metasymplectic spaces as symplecta, point residuals, equator149

geometries and extended equator geometries. In Section 4 we prove the converse of our Main150

Result, namely, that all automorphisms in the conclusion of the Main Result are really domestic.151

Section 5 then contains the full proof of our Main Result. In Section 6 we construct all the152

examples, showing that all cases do exist. This section is completely independent of the others153

and could be read first.154

2. Preliminaries155

In this section we review the basic notation and terminology that we will use in this paper. Many156

proofs are geometrical, using the Lie incidence geometries Γ1 and Γ4 mentioned in the introduction.157

A crucial notion in this approach is that of an equator geometry, an extended equator geometry158

and the corresponding tropics geometry. These have been defined in F4,4(K,K), see [10, 7] and in159

F4,4(K,A) for general A in [22]. However, the proofs in loc. cit. are rather sketchy and incomplete160

concerning the tropics geometry, so we provide full proofs here. We also define equator geometries161

in F4,1(K,A) with corresponding proofs (which is also missing in the literature).162

Concerning buildings of type F4, we refer to the literature, e.g. [31], for a formal definition. In this163

paper, we content ourselves with defining the Lie incidence geometries F4,1(K,A) and F4,4(K,A)164

in an axiomatic way, so that we are able to provide full and precise proofs, based on these axioms.165

We also review all relevant notions on domesticity and opposition. The split case was already166

treated in [18], but we also include it here as it not only goes without any additional effort, but167

it would generate artificial arguments in trying to avoid this case. We start, however, with some168

necessary basics of incidence geometry.169

2.1. A crash course on point-line geometries.170

Definition 2.1.1. A point-line geometry is a pair ∆ = (P,L ) with P a set and L a set of171

subsets of P. The elements of P are called points, the members of L are called lines. If p ∈P172

and L ∈ L with p ∈ L, we say that the point p lies on the line L, and the line L contains the point173

p, or goes through p. If two (not necessarily distinct) points p and q are contained in a common174

line, they are called collinear, denoted p ⊥ q. If they are not contained in a common line, we say175

that they are noncollinear. For any point p and any subset P ⊆P, we denote176

p⊥ := {q ∈P | q ⊥ p} and P⊥ :=
⋂
p∈P

p⊥.
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A partial linear space is a point-line geometry in which every line contains at least three points,177

and where there is a unique line through every pair of distinct collinear points p and q. That line178

is then denoted with pq.179

Example 2.1.2. Let V be a vector space of dimension at least 3. Let P be the set of 1-spaces of180

V , and let L be the set of 2-spaces of V , each of them regarded as the set of 1-spaces it contains.181

Then (P,L ) is called a projective space (of dimension dimV − 1) and denoted by PG(V ), or182

PG(n,K) if V is defined over the field K and had dimension n+ 1.183

Definition 2.1.3. Let ∆ = (P,L ) be a partial linear space.184

(i) A path of length n in ∆ from point x to point y is a sequence (p0, p1, . . . , pn−1, pn), with185

(p0, pn) = (x, y), of points of ∆ such that pi−1 ⊥ pi for all i ∈ {1, . . . , n− 1}. If n is minimal,186

then it is called the distance between x and y in ∆.187

(ii) The partial linear space ∆ is called connected when for any two points x and y, there is a188

path (of finite length) from x to y. If moreover the set of distances between points has a189

supremum in N, this supremum is called the diameter of ∆.190

(iii) A subset S of P is called a subspace of ∆ when every line L ∈ L that contains at least two191

points of S, is contained in S. A subspace that intersects every line in at least a point, is192

called a (geometric) hyperplane; it is proper if it does not coincide with P. A subspace is193

called convex if it contains all points on every path of minimal length that connects any two194

points in S. We usually regard subspaces of ∆ in the obvious way as subgeometries of ∆.195

(iv) A subspace S in which all points are collinear, or equivalently, for which S ⊆ S⊥, is called a196

singular subspace. If S is moreover not contained in any other singular subspace, it is called197

a maximal singular subspace. If it is contained in at least one other singular subspace, but198

al such singular subspaces are maximal, then we call it submaximal. A singular subspace is199

called projective if, as a subgeometry, it is a projective space (cf. Example 2.1.2). Note that200

every singular subspace is trivially convex.201

(v) For a subset P of P, the subspace generated by P is denoted 〈P 〉∆ and is defined to be202

the intersection of all subspaces containing P . The convex hull of P is defined to be the203

intersection of all convex subspaces that contain P . A subspace generated by three mutually204

collinear points, not on a common line, is called a plane. Note that, in general, this is205

not necessarily a singular subspace; however we will only deal with geometries satisfying206

Axiom (GS) (see below), which implies that subspaces generated by pairwise collinear points207

are singular; in particular planes will be singular subspaces.208

Polar and parapolar spaces—We recall the definition of a polar space, mainly to fix notation209

and vocabulary. We take the viewpoint of Buekenhout–Shult [2]. All results in this section are well210

known. Since we are only interested in polar spaces of finite rank, we include this in our definition.211

Definition 2.1.4. A polar space is a point-line geometry Γ in which for every point p the set p⊥212

is a proper hyperplane, and each maximal nested family of singular subspaces is finite and had size213

r + 1 at least 3. The integer r is the rank of the polar space.214

One shows that a polar space Γ is partial linear, and that each singular subspace is a projective215

space, see [2]. The maximal singular subspaces of a polar space of rank r have dimension r − 1.216

Two singular subspaces are called Γ-opposite if no point of either of them is collinear to all points217

of the other. This coincides with the building theoretic notion of opposition, see chapter 3 of [31].218

Example 2.1.5. Let K be a field, n an integer at least 2, V0 a vector space over K and let q : V → K219

be an anisotropic quadratic form, that is, a quadratic form without nontrivial isotropic vectors. Let220

V be a vector space of dimension 2n. Then, with respect to any reference system, the set of points221
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p of PG(V ⊕V0) with p = 〈(v, v0)〉 having coordinates satisfying X−1X1 +X−2X2 + · · ·+X−nXn =222

f(v0), forms a nondegenerate quadric the points and lines of which form a polar space of rank n.223

The singular subspaces are precisely the projective subspaces of PG(V ⊕ V0) entirely contained in224

the quadric.225

We also recall the definition of a parapolar space—for more details (and unproved claims in tis226

section) see Chapter 13 of the book of Shult [24].227

Definition 2.1.6. A parapolar space ∆ is a connected point-line geometry, which is not a polar228

space, and for which every pair {p, q} of points with |p⊥∩q⊥| ≥ 2 is contained in a convex subspace229

isomorphic to a nondegenerate polar space. Any such convex subspace is called a symplecton of ∆230

(which is short for symplecton).231

A pair of points p and q is called special if |p⊥ ∩ q⊥| = 1. A pair of noncollinear points p and q is232

called symplectic if |p⊥ ∩ q⊥| ≥ 2. In this case, the convex hull of p and q is a nondegenerate polar233

space.234

If all symplecta have the same rank r, then we say that ∆ has uniform (symplectic) rank r. If this235

is the case, and if r ≥ 3, then automatically all singular subspaces are projective spaces.236

Example 2.1.7. If Γ is a polar space of rank at least 3, then the corresponding dual polar space237

is the point-line geometry with point set the set of singular subspaces of dimension r − 1 and set238

of lines the sets of singular subspaces of dimension r− 1 containing an arbitrary but fixed singular239

subspace of dimension r − 2. If this geometry has thick lines, that is, each line contains at least240

three points, then it is a parapolar space of uniform rank 2.241

Remark 2.1.8. The definition of parapolar space immediately implies that it is a partial linear242

space. Also, parapolar spaces are so-called gamma spaces, that is, they satisfy the following axiom,243

which is sometimes superfluously added in the definition.244

(GS) Every point is collinear to zero, one or all points of any line.245

Definition 2.1.9. Let Γ be a polar or parapolar space of (uniform) rank r and let U be a singular
subspace of Γ of dimension at most r−3. We define ResΓ(U) to be the point-line geometry (P,L )
with

P := {singular subspaces K of Γ with U ⊂ K and codimK(U) = 1},
L := {singular subspaces L of Γ with U ⊂ L and codimL(U) = 2},

where any element of L is identified with the set of elements of P contained in it.246

If U is a point, then we say that ResΓ(U) is a point residual.247

Point residuals of polar and parapolar spaces of (uniform) rank r ≥ 3 are polar and parapolar248

spaces, respectively, of (uniform) rank r − 1.249

2.2. Families of buildings of type F4. As noted in the introduction, due to Chapter 10 of250

[31], a building of type F4 is completely determined by a pair (K,A), where K is a field and A251

is a quadratic alternative division algebra A over K. We label the diagram as explained in the252

introduction and denote the corresponding building by F4(K,A).253

We list the properties of the different classes of quadratic alternative division algebras in Table 1,254

introducing the notation we will adopt for these algebras. Then we fetch the first four rows—255

Classes (K), (L) , (H) and (O)—under the name separable and Class (M) is referred to as the256

inseparable case (“M” stands for Mixed). Note that the latter includes the case K = A with257
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Notation dimK(A) char(K) Class Properties
K 1 6= 2 (K) commutative, associative
L 2 (L) commutative, associative
H 4 (H) non-comm, associative
O 8 (O) non-comm, non-ass, alternative
K′ 2h,∞ 2 (M) commutative, associative

Table 1. Quadratic alternative division algebras over K

charK = 2. Also, we refer to the case A = K in either characteristic as the split case; the other258

cases then are nonspilt. We also use these notions for the symplecta.259

Cayley-Dickson process—Let, with the notation of Table 1, (A,B) be one of (K,L), charK 6= 2,260

(L,H), (H,O). So L is a quadratic (Galois) extension of K, H is a quaternion division algebra over261

K and O is an octonion division algebra over K. Then A can be obtained from B by the so-called262

Cayley-Dickson process, see [12], as follows. Let x 7→ x be the standard involution in B (for B = K263

this is just the identity), and let b ∈ K be such that it cannot be written as xx, for any x ∈ B.264

Then A consists of all pairs (u, v) ∈ B×B with standard addition and multiplication given by the265

rule266

(u, v) · (u′, v′) = (uu′ + bv′v, uv′ + u′v),

for all u, v, u′, v′ ∈ B. The new standard involution is given by (u, v) 7→ (u,−v).267

Standig hypothesis. From now on we denote by K an arbitrary field, and A is a quadratic268

alternative division algebra over K.269

2.3. Two families of polar spaces. Now we define the two families of polar spaces which we270

will need in the definition of the metasymplectic spaces we are concerned with.271

Definition 2.3.1. The polar space Br,1(K,A) is the quadric in PG(n,K) = PG(V), with n =272

2r − 1 + dimK(A) and V = K2r ⊕ A, with equation273

x−rxr + · · ·+ x−2x2 + x−1x1 = N(x0),

where x−r, xr, . . . , x−2, x2, x−1, x1 ∈ K, x0 ∈ A and N the natural norm form of A.274

Definition 2.3.2. The polar space C3,1(A,K), with A not equal to K and not an octonion division275

algebra, is the hermitian polar space in PG(5,A) with point set the points the coordinates of which276

satisfy277

x−3x3 + x−2x2 + x−1x1 ∈ K,

where x−3, x3, x−2, x2, x−1, x1 ∈ A and x 7→ x the standard involution of A. If A = K, then278

C3,1(K,K) is the symplectic polar space of rank 3 corresponding to the standard alternating form279

x−3y3 + x−2y2 + x−1y1 − x1y−1 − x2y−2 − x3y−3. If A = O is an octonion division algebra, then280

C3,1(O,K) is the non-embeddable polar space with planes over O, see chapter 9 of [31].281

We will not need a precise definition of the non-embeddable case. An explicit construction with282

coordinates is provided in [6].283
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2.4. Metasymplectic spaces. Now we can finally define the metasympletic spaces. Sometimes,284

for example in [7] and [22], the axioms used in the following definition are referred to as facts which285

can be proven from the building-theoretic definition, as stated in [34] p. 80 or proved in [4].286

Definition 2.4.1 (Metasymplectic space). A metasymplectic space Γi = F4,i(K,A) (i ∈ {1, 4}) is287

a parapolar space of uniform rank 3 whose points, lines, planes and symplecta satisfy axioms 2.4.2,288

2.4.3, 2.4.4, 2.4.5 and 2.4.6, where A is a quadratic alternative division algebra over K.289

Axiom 2.4.2 (Symp residue). The points, lines and planes of Γi contained in a given symplecton ξ,290

endowed with the natural inherited incidence relation, are the points, lines and planes, respectively,291

of a polar space ResΓi(ξ) isomorphic to B3,1(K,A) if i = 1, and C3,1(A,K) if i = 4.292

Axiom 2.4.3 (Point residue). The symplecta, planes and lines of Γi through a given point p,293

endowed with the natural incidence relation, form a polar space ResΓi(p) isomorphic to C3,1(A,K)294

if i = 1, and B3,1(K,A) if i = 4, where the points of that polar space are the symplecta through p,295

the lines are the planes through p, and the planes are the lines through p.296

In particular, it follows that the isomorphism class of the geometry ResΓi(p) does not depend on p.297

It also follows that the point residual at p as defined earlier is the dual polar space corresponding298

to ResΓi(p).299

Axiom 2.4.4 (Point-point relation). Let x and y be two points of Γi. Then exactly one of the300

following situations occurs:301

(0) x = y;302

(1) there is a unique line incident with both x and y;303

(2) there is a unique symplecton incident with both x and y. In this case, there is no line inci-304

dent with both x and y, and we call x and y symplectic. We denote the unique symplecton305

by ξ(x, y) and write x ⊥⊥ y;306

(3) there is a unique point z collinear to both x and y. In this case, x and y are special. We307

denote xony and z = c(x, y);308

(4) there is no point collinear to both x and y. In this case, x and y are at distance 3 and we309

say that they are opposite.310

Axiom 2.4.5 (Point-symp relation). Let x be a point and let ξ be a symplecton of Γi. Then311

exactly one of the following situations occurs:312

(0) x ∈ ξ;313

(1) the set of points of ξ collinear to x is a line L. Every point y of ξ \L which is collinear to314

each point of L is symplectic to x and ξ(x, y) contains L. Every other point z of ξ (i.e.,315

every point z of ξ collinear to a unique point z′ of L) is special to x and c(x, z) = z′ ∈ L.316

We say that x and ξ are close;317

(2) there is a unique point u of ξ symplectic to x and ξ ∩ ξ(x, u) = {u}. All points v of ξ318

collinear to u are special to x and c(x, v) /∈ ξ. All points of ξ not collinear to u are opposite319

x. We say that x and ξ are far.320

Axiom 2.4.6 (Symp-symp relation). The intersection of two symplecta is either empty, or a point,321

or a plane.322

•
1

K
•
2

K
•
3

A
•
4

A

Figure 3. The Dynkin diagram of type F4 with Bourbaki labeling
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2E2
6,4 E9

7,4 E28
8,4

Figure 4. The Tits indices corresponding to Class (L), (H) and (O), respectively

Remark 2.4.7. Defining the dual point-line geometry to Γi as the geometry with point set the323

set of symplecta of Γi and line set the set of sets of symplecta sharing a given plane, we deduce324

from the diagram that the dual of Γ1 is Γ4 and vice versa. We will refer to this correspondence325

as the natural duality. Lemma 2.8.4 is the key ingredient to deduce this natural duality from the326

axioms above, but we will not do so explicitly.327

Remark 2.4.8. The split buildings of type F4 have trivial Tits index—every node of the F4328

diagram is encircled; those of Class (M) are of mixed type (and have no Tits index if K 6= A). The329

Tits indices of those of Classes (L), (H) and (O) are gathered in Fig. 4. This is purely informative330

and shall not be used in this paper; hence we do not define Tits indices in a formal way, but refer331

to [30].332

2.5. Some properties of metasymplectic spaces. The axioms in the previous section have333

some immediate corollaries, which are stated in e.g. [7] and [22].334

Corollary 2.5.1. Every singular subspace of Γi is contained in some symplecton, and hence is335

either empty, a point, a line or a projective plane.336

Corollary 2.5.2 (Point-line relation). Let x be a point and let L be a line in a metasymplectic337

space. Then precisely one of the following situations occurs:338

(0) x ∈ L;339

(1) x ⊥ L;340

(2) x ⊥ p ∈ L for exactly one point p, and x ⊥⊥ q for all q ∈ L \ {p};341

(3) xonp ∈ L for exactly one point p, and x is opposite q for all q ∈ L \ {p};342

(4) x ⊥ p ∈ L for exactly one point p, and xonq for all q ∈ L \ {p}, with evidently c(x, q) = p;343

(5) x ⊥⊥ p ∈ L for exactly one point p, and xonq for all q ∈ L\{p}, with c(x, q) = a with a ⊥ L344

independent of q;345

(6) x on L, with M = {z|z = c(x, p), p ∈ L} a line.346

Corollary 2.5.3. If a ⊥ b ⊥ c ⊥ d is a path in Γi, then aonc and bond if, and only if, a is opposite347

d.348

We can also prove the following.349

Corollary 2.5.4. Let ξ be a symplecton of Γi and let p, q be two points close to ξ. Then p and q350

are opposite if, and only if, the lines L := p⊥ ∩ ξ and M := q⊥ ∩ ξ are opposite in the polar space351

ξ.352

Proof. Suppose first that L and M are not opposite. Let x be a point of L collinear to all points353

of M . Then q ⊥⊥ x by (1) of Axiom 2.4.5 (point-symp relation). Now p must be close to ξ(q, x),354

which implies that p is not opposite q.355
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Suppose now that L and M are opposite. Let a be a point of L and denote by b the unique point356

of M collinear to a. Then by the point-symp relations, ponb and qona. With Lemma 2.5.3 we find357

that p and q are indeed opposite. �358

2.6. The equator and extended equator geometries. In this section, we will define some359

geometries which are included in a metasymplectic space. Among these are the equator geometries.360

As remarked in [22], these have been treated in the split case in [7]. This was generalised in [22]361

to all metasymplectic spaces Γ4. In the present paper, we define the equator geometry for both362

metasymplectic spaces Γ1 and Γ4, and this requires a sightly different approach. For the extended363

equator geometries, we have to restrict ourselves to metasymplectic spaces Γ4, which we will364

motivate below. Concerning the tropics geometries, the authors of [22] claim that the proof of365

Lemma 2.6.17 remains the same as in the split case. However, this does not seem to be entirely366

true, and so we provide a detailed, different proof. Along the way, we also prove some more367

properties of the interaction of the equator geometry with hyperbolic lines.368

Definition 2.6.1 (Equator geometry). Let p, q be two opposite points of Γi (i ∈ {1, 4}). The369

equator geometry E(p, q) is the point-line geometry with point set the points symplectic to p and370

q and line set the sets of points corresponding to symplecta through a fixed plane through p.371

Note that this definition differs from the one in [7] since we also want to include Γ1. Also, the372

definition (of the line set of E(p, q)) is not symmetric in p and q; see however Lemma 2.6.4 below.373

Proposition 2.6.2. Let p, q be two opposite points of Γi. The equator geometry, E(p, q), is374

isomorphic to the point residue ResΓi(p) and is consequently a polar space of rank 3. If i = 1, then375

E(p, q) ∼= C3,1(A,K) and if i = 4, then E(p, q) ∼= B3,1(K,A).376

Proof. Define the map377

φ : E(p, q)→ ResΓi(p) : x 7→ ξ(x, p).

We prove that φ is an isomorphism of point-line geometries. The injectivity follows from the378

possible point-symp relations (Axiom 2.4.5). Suppose x, y ∈ E(p, q) and ξ = ξ(x, p) = ξ(y, p), then379

q is far from ξ, because ξ contains a point opposite q. But x and y are symplectic to q, so x = y.380

Also the surjectivity follows from this axiom. Let ξ be a symplecton through p. Then ξ is far from381

q and there exists a unique point a of ξ symplectic to q, so ξ = ξ(a, p) = φ(a) with a ∈ E(p, q). It382

is clear that lines are preserved, because they are defined in the same way in E(p, q) and ResΓi(p).383

�384

The lines in a equator geometry will also briefly be called lines and it should be clear from the385

context which kind of lines is meant. However, we will frequently write the word “line” within386

quotation marks when we mean a line in the equator geometry. Similarly we will refer to a plane387

of an equator geometry writing “plane”.388

Lemma 2.6.3. Let p, q be opposite points of Γi, and let x 6= y be two points in E(p, q). Then x389

is collinear to y in E(p, q) if, and only if, x ⊥⊥ y in Γi. Also, if x ⊥⊥ y, then x⊥ ∩ y⊥ ∩ p⊥ is a390

line in the plane α := ξ(x, p) ∩ ξ(y, p), and that line coincides with qon ∩ α.391

Proof. If x is collinear to y in E(p, q), then the symplecta ξ(x, p) and ξ(y, p) intersect in a plane392

α. Since a symplecton is a polar space of rank 3, x is collinear to a line L ⊆ α and y is collinear393

to a line M ⊆ α. If L = M , then x and y are symplectic (and then L = M = x⊥ ∩ y⊥ ∩ p⊥)394

or collinear. If they were collinear, we would have a singular subspace of dimension 3, which395

contradicts Corollary 2.5.1. If L 6= M , then x and y are special, with c(x, y) = L ∩M which is396

in particular collinear to p. By the point-symp relations, y has to be close to ξ(x, q), because y397
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is symplectic to q and special to x, but these two are not collinear. Let M ′ be the unique line of398

ξ(x, q) collinear to y. But then the plane containing q and M ′ is contained in ξ(x, q) ∩ ξ(y, q) and399

similarly to the first part of this paragraph we get c(x, y) ⊥ q, which contradicts the opposition400

between p and q.401

If x ⊥⊥ y in Γi, then x is close to ξ(p, y), because of the possible point-symp relations and the402

fact that x is symplectic to at least two points of ξ(p, y), but not contained in ξ(p, y) (that would403

contradict the opposition of p and q). Let L be the line of ξ(p, y) collinear to x. Since x ⊥⊥ p and404

x ⊥⊥ y, we get that p ⊥ L and x ⊥ L by the point-symp relations and therefore L ⊆ ξ(x, p)∩ξ(y, p).405

By the symp-symp relations the intersection is a plane α containing L. Corollary 2.5.3 yields406

L ⊆ qon and the lemma follows. �407

Lemma 2.6.4. Let p, q be opposite points of Γi. Then E(p, q) coincides with E(q, p).408

Proof. Let α be a plane through p and let x, y be points in E(p, q) corresponding to symplecta409

through α. Then, Lemma 2.6.3, x and y are symplectic and x⊥ ∩ α = y⊥ ∩ α =: L. By applying410

the same lemma to E(q, p), the symplecta ξ(x, q) and ξ(y, q) intersect in a plane β and x⊥ ∩ β =411

y⊥ ∩ β =: M . Let now ζ be an arbitrary symplecton through α corresponding to some point z412

in E(p, q). Then x, y and z are pairwise symplectic and again by Lemma 2.6.3 the corresponding413

symplecta through q pairwise intersect in planes which, by Axiom 2.4.3, have at least one common414

line K (through q). Lemma 2.6.3 yields a point r ∈ K ∩ x⊥ ∩ y⊥ ∩ z⊥ ⊆ β ∩ x⊥ ∩ y⊥ = M . Hence415

ξ(x, y), which clearly contains L and M , also contains z. Since z ⊥⊥ q, the point-symp relations416

applied to q and ξ(x, y) imply that z ⊥ M and so ξ(z, q) contains β. Similarly a symplecton417

through β corresponds to a symplecton through α. �418

Lemma 2.6.5. Let p, q be opposite points of Γi and let x, y be points in E(p, q). Then either419

x = y, or x ⊥⊥ y, or x is opposite y.420

Proof. Suppose x ⊥ y, then x is close to ξ(y, p) and x is collinear to a line L of ξ(y, p) through y.421

Since x ⊥⊥ p, p has to be collinear to L by the point-symp relations and this contradicts p ⊥⊥ y.422

Suppose for a contradiction that xony. Then x has to be close to ξ(p, y) by the point-symp relations,423

because it is special to y and symplectic to p, but p is not collinear to y. Then z = c(x, y) must lie424

in ξ(x, p) and similarly in ξ(x, q), so z = x, a contradiction. �425

Lemma 2.6.6. Let p, q be opposite points of Γi. Then every line in E(p, q) is contained in a426

unique symplecton in Γi. In particular, if x and y are contained in a “line”, then the symplecton427

is ξ(x, y).428

Proof. Let α be a plane through p corresponding to a line h in E(p, q) and let β be the corresponding429

plane through q, according to Lemma 2.6.4. Lemma 2.6.3 implies that every point of h is collinear430

to both lines qon ∩ α and pon ∩ β, which then are contained in ξ(x, y) for distinct x, y ∈ h. Then431

clearly h ⊆ ξ(x, y). �432

Lemma 2.6.7. Let p, q be two opposite points of Γi and let ξ be a symplecton. Then the intersection433

ξ ∩ E(p, q) is either empty, or a point, or a line of E(p, q).434

Proof. If the intersection contains two points x, y, these have to be symplectic by the possible435

relations between two points in a symplecton and the possible relations between two points in436

E(p, q) (Lemma 2.6.5). By Lemma 2.6.6 the symplecton contains then every point z ∈ E(p, q)437

with ξ(x, p) ∩ ξ(y, p) =: α ⊆ ξ(z, p), which is by definition the “line” containing x and y.438
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Now we prove that the intersection cannot contain more. When the intersection contains the line439

in E(p, q) through x and y, then p and q must be close to ξ; denote by L and M the unique line440

of ξ collinear to p and q, respectively. Since p and q are opposite in Γi, by Corollary 2.5.4 M and441

L are opposite in the polar space ξ. Now every point z in ξ ∩ E(p, q) must be collinear to L and442

M and so the symplecton ξ(x, z) contains the plane 〈L, p〉 which defines the line through x and y443

in E(p, q). So z is contained in the “line” through x and y. �444

Now we will see that we can define the lines in E(p, q) in a different way, if we are in a metasym-445

plectic space Γ4. This is because the symplecta are then polar spaces isomorphic to C3,1(A,K).446

We will see that in this case the so-called hyperbolic lines (Definition 2.6.8) will correspond to sets447

of points given as the common perp of two opposite lines in a symplecton (Lemma 2.6.9), which448

will allow us to identify these lines with the lines in E(p, q) (Proposition 2.6.11). This will then449

also show that the defintion of the equator geometry in Γ4 in the present paper is equivalent with450

that in [22].451

Definition 2.6.8 (Hyperbolic line). Let ξ be a polar space and let x, y be two opposite points in452

ξ. The hyperbolic line h(x, y) is the set of points (x⊥ ∩ y⊥)⊥.453

Lemma 2.6.9. Let ξ be the polar space C3,1(A,K). If x, y are two opposite points in ξ and L,M454

are two opposite lines in x⊥ ∩ y⊥, then h(x, y) = L⊥ ∩M⊥ and the number of points on h(x, y) is455

|K|+ 1.456

Proof. It is clear that h(x, y) ⊆ L⊥ ∩M⊥, so it suffices to prove that L⊥ ∩M⊥ ⊆ h(x, y). We457

provide two proofs: First we will give a proof that is applicable to the embeddable polar spaces,458

i.e. the polar spaces C3,1(A,K), with A not an octonion division algebra. Then we will give a459

prove that can be applied to the separable case only, i.e. A is not an inseparable field extension in460

characteristic 2.461

Suppose first that ξ is an embeddable polar space C3,1(A,K). Then by Definition 2.3.2 and the462

general theory of polar spaces (see for example Chapter 8 in [31]), ξ is a polar space embeddable463

in (the absolute elements of) a nondegenerate polarity ρ in PG(5,A). Let z ∈ L⊥∩M⊥ be a point.464

The polar space x⊥∩y⊥ is embeddable in dimension 3 and is consequently spanned by two opposite465

lines. In other words every point of x⊥ ∩ y⊥ lies on a line of the underlying projective space that466

intersects L and M . Since z is collinear to these points and zρ is a subspace in the underlying467

projective space, z is collinear to each point of x⊥ ∩ y⊥. The number of points on h(x, y) is now468

equal to the number of planes through a line in the polar space, because each plane through L469

contains exactly one point collinear to M . This, in turn, is equal to the number of lines through a470

point in any point residual, and equals |K|+ 1 by Proposition 2.3.5 of [34]..471

Suppose now that ξ is not isomorphic to C3,1(A,K) with A an inseparable field extension in char-472

acteristic 2. By Theorem 5.9.4 of [34], the quadrangle x⊥∩y⊥ has no proper thick subquadrangles473

with full lines. So the quadrangle spanned by L and M must be the whole quadrangle or a grid.474

The latter is impossible by Lemma 5.5.8 of [34] and our assumption on ξ. So the quadrangle475

spanned by L and M is the whole quadrangle x⊥ ∩ y⊥. If a point z is now collinear to both L and476

M , it is collinear to x⊥ ∩ y⊥. The number of points on h(x, y) in the octonion case is now also the477

number of planes through a line, which equals |K|+ 1, as follows from the construction in [6]. �478

Lemma 2.6.10. Let ξ be the polar space B3,1(K,A) and assume that the latter is separable. If x, y479

are two opposite points in ξ, then h(x, y) = {x, y}.480

Proof. By the definition of B3,1(K,A), we may look at the underling projective space PG(n,K) of481

this polar space. By Proposition 3.20 of [22], ⊥ defines a nondegenerate polarity ρ in PG(n,K).482
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Hence (x⊥∩y⊥)ρ is a line intersecting the quadric in the two points x and y, implying (x⊥∩y⊥)⊥ =483

{x, y}, which proves the statement. �484

Proposition 2.6.11. Let p, q be two opposite points of Γ4, and let x, y be collinear points in485

E(p, q). Then the line through x and y in E(p, q) is exactly the hyperbolic line h(x, y). In particular486

E(p, q) is closed under taking hyperbolic lines of pairs of symplectic points.487

Proof. Let z be a point on the line through x and y in E(p, q). Then z is contained in the488

symplecton ξ(x, y) by Lemma 2.6.6. By the point-symp relations p is collinear to some line L of489

this symplecton and L is collinear to the points x, y, z. Similarly q is collinear to such a line M490

and because p and q are opposite in Γ4, L and M are opposite in ξ(x, y). With Lemma 2.6.9 we491

now have that z ∈ h(x, y).492

Let z′ now be a point on h(x, y). Then z′ is collinear to the unique line L of ξ(x, y) collinear493

to p, because this line is contained in x⊥ ∩ y⊥. So z′ is symplectic to p and similarly to q, so494

z′ ∈ E(p, q). The symplecton ξ(p, z) also contains the plane 〈p, L〉 = ξ(x, p) ∩ ξ(y, p), and z′ is495

consequently contained in the line through x and y in E(p, q). �496

Now we can define the extended equator geometry in the case of metasymplectic spaces Γ4. The497

reason that we are not able to do this in general for Γ1, is that hyperbolic lines are no longer498

determined by the common perp of two distinct lines, like in Lemma 2.6.9.499

Definition 2.6.12 (Extended equator geometry). Let p, q be two opposite points of Γ4. Then

define the extended equator geometry Ê(p, q) as the point-line geometry with point set⋃
{E(x, y)|x, y ∈ E(p, q), x opposite y},

and line set all the hyperbolic lines contained in this point set.500

Note that, by Lemma 2.6.5 and Proposition 2.6.2, E(p, q) contains pairs of opposite points, so501

Ê(p, q) is nonempty. We also get directly that p, q and E(p, q) are contained in Ê(p, q).502

The following three results come from [22].503

Lemma 2.6.13. Let p, q be two opposite points in Γ4 and let x be a point in Ê(p, q). Then the504

set of points of E(p, q) symplectic to or equal to x is a geometric hyperplane of E(p, q), viewed as505

a polar space, or coincides with it.506

Proof. This is Corollary 3.16 of [22]. �507

Lemma 2.6.14. Let p, q be two opposite points in Γ4 and let x, y be two points in Ê(p, q). Then508

either x = y, or x ⊥⊥ y, or x is opposite y. If, moreover, x ⊥⊥ y, then there exist opposite509

a, b ∈ E(p, q) so that h(x, y) ⊆ E(a, b) and h(x, y) is consequently completely contained in Ê(p, q).510

Proof. This is Lemma 3.17 of [22]. �511

Proposition 2.6.15. Let p, q be two opposite points in Γ4. The extended equator geometry Ê(p, q)512

is a polar space isomorphic to B4,1(K,A).513

Proof. This is Proposition 3.18 of [22]. �514

We now provide some additional properties of the extended equator geometries, either only proved515

in the split case (in [7]) and stated without proof in [22], or new.516
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Lemma 2.6.16. Let p, q be two opposite points in Γ4 and let ξ be a symplecton intersecting Ê(p, q)517

in at least a point. Then ξ ∩ Ê(p, q) contains a hyperbolic line.518

Proof. Suppose that ξ intersects Ê(p, q) in a point x. If x = p or x = q it is clear that ξ ∩ Ê(p, q)519

contains at least the hyperbolic line h(x, y) with y = ξ ∩ E(p, q) by the fact that p, q and E(p, q)520

are contained in Ê(p, q) and Lemma 2.6.14. If x ∈ E(p, q), we can find a point y opposite x in521

E(p, q) and then the hyperbolic line h(x, z) with z = ξ ∩ E(x, y) is similarly as the previous case,522

using Lemma 2.6.14, contained in Ê(p, q). So we can assume without loss of generality that x is523

opposite p. Then p is far from ξ and we denote by y the unique point of ξ symplectic to p. By524

the previous case, the symplecton ξ(p, y) intersects Ê(p, q) at least in a hyperbolic line h. Because525

Ê is a polar space, this hyperbolic line has at least one point symplectic to x. But because x is526

far from the symplecton ξ(p, y), with y the unique point symplectic to x, the point y has to be527

contained in h ⊆ Ê(p, q). Now again by Lemma 2.6.14, h(x, y) has to be contained in Ê(p, q) and528

consequently in the intersection of Ê(p, q) ∩ ξ. �529

Lemma 2.6.17. Let p, q be two opposite points in Γ4 and let a, b ∈ Ê(p, q) be opposite points.530

Then, Ê(a, b) = Ê(p, q).531

Proof. We start by showing that E(a, b) ⊆ Ê(p, q). Let x be an arbitrary point of E(a, b). Consider532

the symplecton ξ(a, x). By Lemma 2.6.16, this has a hyperbolic line h in common with Ê(p, q).533

By Proposition 2.6.15 b must be symplectic to some point of this line h. It is however clear that534

b is far from ξ(a, x) and the only point of that symplecton symplectic to b is x. So x has to be535

contained in h ⊆ Ê(p, q). By the arbitrariness of x, we get that E(a, b) ⊆ Ê(p, q).536

Now an arbitrary point w of Ê(a, b) is by definition contained in E(x, y) for some opposite points537

x, y ∈ E(a, b). Applying the previous paragraph to x, y as opposite points in Ê(p, q), one gets that538

w ∈ E(x, y) ⊆ Ê(p, q). By the arbitrariness of w, we get that Ê(a, b) ⊆ Ê(p, q).539

Now note that E(a, b)∩E(p, q) is a geometric hyperplane of b⊥⊥ ∩E(p, q), a geometric hyperplane540

of E(p, q) by Lemma 2.6.13. Now E(a, b) ∩ E(p, q) contains two opposite points x, y (cf. Lemma541

4.2.3 of [7]). But then p, q ∈ E(x, y) ⊆ Ê(a, b) and we can apply the previous two paragraphs542

switching the roles of a, b and p, q to obtain Ê(p, q) ⊆ Ê(a, b). �543

Lemma 2.6.18. Let p, q be two opposite points in Γ4 and let ξ be a symplecton. Then either ξ is544

disjoint from Ê(p, q) or ξ ∩ Ê(p, q) is a hyperbolic line. Hence every symplecton that has a point x545

in common with Ê(p, q) intersects it in a hyperbolic line through x. In particular, any hyperbolic546

line in Ê(p, q) appears as the intersection of Ê(p, q) and a unique symplecton.547

Proof. By Lemma 2.6.16 it suffices to prove that ξ does not intersect Ê(p, q) in more than a548

hyperbolic line. As a hyperbolic line defines a unique symplecton containing it, the rest of the549

lemma follows then immediately.550

Suppose now for a contradiction that the said intersection is more than a “line”, namely at least a551

hyperbolic line h(u, v) and a point w /∈ h(u, v). By Lemma 2.6.14 we find some opposite points a, b552

in E(p, q) with h(u, v) ⊆ E(a, b). By Lemma 2.6.17, we get that Ê(p, q) = Ê(a, b). By the definition553

of the extended equator geometry we now find some opposite points x, y ∈ E(a, b) such that w is554

symplectic to x and y. In E(a, b), x is symplectic to a point of h(u, v) and so x is symplectic to555

two points of the symplecton ξ. Consequently x is close to ξ and similarly also y is close to ξ. But556

by case (1) of Axiom 2.4.5 (the point-symp relations) and Lemma 2.6.14 (the point-point relations557
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in Ê), x and y must be symplectic to every point of Ê(p, q) ∩ ξ. Now Ê(p, q) ∩ ξ ⊆ E(x, y) and so558

E(x, y) ∩ ξ contains more than a hyperbolic line, contradicting Lemma 2.6.7. �559

2.7. The tropics geometries. Another geometry living in the metasymplectic spaces, the so560

called tropics geometry, is defined starting from the extended equator geometry. This section is561

strongly based on Section 5.3 in [7]. As noted in [22], most of the results stay valid in the non-split562

case. There are however some subtleties that are no longer valid as hyperbolic lines are no longer563

always lines in a underlying projective space, and which were overlooked in [22]. Therefor we564

display the full proofs.565

Before defining those tropics geometries, the next lemma is very useful. A so called hyperbolic solid566

in the next lemma is just a solid (a singular subspace of projective dimension 3) in the polar space567

Ê(p, q), where the lines are the so called hyperbolic lines. Similarly, one can define a hyperbolic568

plane.569

Lemma 2.7.1. Let p, q be two opposite points of Γ4. Let x be a point of Γ4 which is collinear to570

at least two points of Ê(p, q). Then x⊥ ∩ Ê(p, q) is a hyperbolic solid.571

Proof. By Lemma 2.6.17 and Proposition 2.6.15, we may assume that p ⊥ x. Let a be a second572

point of Ê collinear with x. By the possible relations between points in Ê(p, q) (Lemma 2.6.14),573

we get that p ⊥⊥ a. Hence, by Lemma 2.6.17 and Proposition 2.6.15, we can choose q opposite p574

and symplectic to a. So we have that a ∈ E(p, q) and x ∈ ξ(a, p). By Proposition 2.6.11, the set of575

intersections with E(p, q) of the symplecta through the line px is a hyperbolic plane π of E(p, q).576

Let b ∈ π be a point different from a. Since a is collinear with x and x ∈ ξ(b, p), the point a is577

close to ξ(b, p). Since b ⊥⊥ a, the possible point-symp relations (Axiom 2.4.5) imply that x ⊥ b.578

Hence all points u of π are collinear with x. But x belongs to ξ(u, p), and in the latter symplectic579

polar space, u and p belong to x⊥; hence, by the definition of the hyperbolic line h(u, p), all points580

of h(u, p) are collinear with x, implying that all points of the maximal singular hyperbolic subspace581

of Ê(p, q) spanned by π and p are collinear with x. Every two points in x⊥∩ Ê(p, q) lie at distance582

at most two, so they must be symplectic by the possible relations between points in Ê(p, q). As583

two points are symplectic if, and only if, they are contained in a hyperbolic line, this implies that584

the singular hyperbolic subspace of Ê(p, q) spanned by π and p is exactly x⊥ ∩ Ê(p, q). �585

Definition 2.7.2 (Tropics Geometry). Let p, q be two opposite points of Γ4. Then define the

tropics geometry T̂ (p, q) as the point-line geometry with point set

{x ∈ Γ : |x⊥ ∩ Ê(p, q)| ≥ 2},

and line set the set of all the lines of Γ4 contained in this point set.586

Remark that the big difference with the (extended) equator geometry, is that the lines in this587

geometry T̂ (p, q) are no longer hyperbolic lines, but really the lines of the metasymplectic space.588

Note also that this construction is only possible in the metasymplectic space Γ4, as it relies on the589

extended equator geometry which is only defined there. Also remark that by the possible relations590

between points in Ê(p, q), we see that Ê(p, q) ∩ T̂ (p, q) = ∅.591

Lemma 2.7.1, allows us now to introduce the next notation. This is actually the core idea of the592

rest of this section. To track down the structure of the tropics geometry, we will define a map593

between this geometry and the dual of the extended equator geometry. This map is in fact the β594

defined here.595
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Remark 2.7.3. Let p, q be opposite points of Γ4 and let x be a point of the tropics geometry596

T̂ (p, q). Then we denote by β(x) the hyperbolic solid Ê(p, q) ∩ x⊥.597

First of all we give a lemma that follows immediately from these definitions.598

Lemma 2.7.4. Let p, q be two opposite points of Γ4. Then no point of T̂ (p, q) is opposite nor599

symplectic to any point of Ê(p, q).600

Proof. Let x ∈ T̂ (p, q) and y ∈ Ê(p, q) be arbitrary points, y /∈ β(x). Then y is symplectic to a601

hyperbolic plane π of β(x) in the polar space Ê(p, q). Now x is not opposite y as it lies close to the602

symplecton ξ(y, z), for all z ∈ π. This also implies that x is not symplectic to y as the point-symp603

relation would then yield z ⊥ y, for each z ∈ π, contradicting Lemma 2.6.14. �604

Now we will show that β is a bijection between T̂ (p, q) and the dual of Ê(p, q) as a polar space.605

Lemma 2.7.5. Let p, q be two opposite points of Γ4. Let U be a hyperbolic solid of Ê(p, q). Then606

there exists exactly one x ∈ T̂ (p, q) such that β(x) = U . Moreover, this is the only point in Γ4607

collinear with U .608

Proof. By Lemma 2.6.17, we may suppose that p belongs to U . Then U ∩ E(p, q) is a hyperbolic609

plane π. The intersection of all symplecta ξ(p, z) with z ∈ π is by the definition of E(p, q) a line610

L through p.611

We first prove the uniqueness. Suppose there are two points x, y ∈ T̂ (p, q) with β(x) = β(y) = U .612

Then, both x and y must be contained in all the symplecta through p and a point of π, hence both613

are on L. Let z ∈ π be arbitrary. Then in ξ(z, p), the point z is collinear with exactly one point614

of L and this point must be x = y.615

Now we prove the existence. Let a, b ∈ π be arbitrary but distinct. Then b is not contained in616

ξ(a, p) and hence is close to it. So b is collinear with a line M ⊆ ξ(a, p) and by the point-symp617

relations a and p must also be collinear with M . Clearly, L is contained in the plane generated by618

p and M , which is the intersection of ξ(a, p) and ξ(b, p). So x := L ∩M is collinear with both a619

and b. Since x is the unique point of L collinear with a, we see, by varying b ∈ π, that x is collinear620

with all points of π. Since also x ⊥ p, we see that x is collinear to the hyperbolic subspace spanned621

by p and π, as x is collinear to every point of a hyperbolic line that has at least two points collinear622

to x. This means β(x) = U .623

The last assertion follows from the uniqueness combined with the fact that any point in Γ4 collinear624

with U is of course collinear with at least two points of Ê(p, q) and belongs consequently to T̂ (p, q).625

�626

The next proposition relates the mutual position between two hyperbolic solids on Ê(p, q) and627

their preimages under β. In fact it checks that β preserves indeed the structure.628

Proposition 2.7.6. Let p, q be two opposite points of Γ4 and let β(a) = U , β(b) = V be two629

different hyperbolic solids in Ê(p, q), with a, b ∈ T̂ (p, q). Then630

(i) U ∩ V is a hyperbolic plane π if, and only if, a ⊥ b in Γ4. In this case, some point x is631

collinear with all points of π if, and only if, x belongs to ab;632

(ii) U ∩ V is a hyperbolic line if, and only if, a ⊥⊥ b in Γ4. In this case, every point of h(a, b)633

belongs to T̂ (p, q) and is collinear with all points of U ∩ V ;634

(iii) U ∩ V is a singleton {z} if, and only if, aonb in Γ4. In this case, z = c(a, b);635
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(iv) U ∩ V = ∅ if, and only if, a and b are opposite in Γ4.636

Proof. By Lemma 2.6.17, Proposition 2.6.15 and the assumption that U 6= V , we may assume that637

p ∈ U \ V and q ∈ V \ U . We get then that (U ∩ V ) ⊆ E(p, q). We assume this throughout the638

proof.639

(i) Suppose first that a ⊥ b. By the above assumption and Lemma 2.7.4, we infer aonq and640

bonp. Let ξ be any symplecton through bq, and denote {x} := E(p, q) ∩ ξ. Then p ⊥⊥ x641

and p and ξ are far. Since p is special to b, the point-symp relations imply b ⊥ x. Now b642

is close to ξ(p, x), hence there is a line L in ξ(p, x) containing x such that L is collinear643

with b. As p is collinear to a point of this line, a = c(b, p) is also contained in L. So a is644

collinear to x. Varying ξ over all symplecta through bq, the point x varies over a plane of645

E(p, q). This plane must coincide with U ∩ V as x ⊥ a, x ⊥ b and the intersection U ∩ V646

is at most a hyperbolic plane.647

By Lemma 2.5.2, no point of the line ab is symplectic to or opposite p. Lemma 2.6.14648

then implies that the line ab has empty intersection with Ê. Let z now be any point of649

U ∩ V . Then a ⊥ z ⊥ b, and so every point of the line ab is collinear with z and hence650

with all points of π. Hence every point of the line ab is collinear with all points of π.651

Now assume that U and V intersect in a plane π. Consider two points x, y ∈ π. Then652

both a and b are collinear with both x, y and hence both are contained in ξ(x, y). It653

follows that a, b are either symplectic or collinear. If they were symplectic, then ξ(a, b)654

would contain π, contradicting Lemma 2.6.18, so a ⊥ b.655

Suppose now that some point c is collinear with all points of π. Then c ∈ T̂ (p, q) and656

we have just shown that a ⊥ c ⊥ b. Suppose for a contradiction that c does not belong to657

the line ab. Then take two points u, v ∈ π. It follows that a, b, c ∈ ξ(u, v), contradicting658

the fact that ξ(u, v) is a polar space of rank 3 and hence no plane can be contained in the659

intersection u⊥ ∩ v⊥.660

(ii) Assume first that U and V intersect in a hyperbolic line h. We then have that h ⊆ E(p, q).661

Consider two points x, y ∈ h. Then both a and b are collinear with both x, y and hence662

contained in ξ(x, y). It follows that a, b are either symplectic or collinear. But they are663

not collinear by (i), so they must be symplectic.664

Now assume that {a, b} is a symplectic pair. Then by (i), we know that U ∩V is at most665

a hyperbolic line. Both p and q are close to ξ(a, b). Hence p is collinear with the points666

of a line L ⊆ ξ(a, b), and q is collinear with the points of a line M ⊆ ξ(a, b) and these are667

opposite viewed as lines of the polar space ξ(a, b) by Corollary 2.5.4. With Lemma 2.6.9,668

this implies that ξ(a, b) contains a unique hyperbolic line h all of whose points are collinear669

with L and M , i.e., h = L⊥∩M⊥. In particular, h is contained in a⊥∩b⊥. By Axiom 2.4.5670

(1), all points of h are symplectic to both p and q, hence h ⊆ E(p, q). So h ⊆ U ∩ V ,671

implying h = U ∩ V .672

Let z now be a point on the hyperbolic line h(a, b). Then z is collinear to the intersection673

a⊥ ∩ b⊥, which contains U ∩ V . Hence it follows immediately that z is collinear to U ∩ V674

and so z is also a point of T̂ (p, q).675

(iii) Suppose first that U and V intersect in a point. Then a and b are collinear with a common676

point and hence cannot be opposite. Moreover, they are neither symplectic nor collinear677

by (i) and (ii). Consequently, they are special.678

Now suppose that a and b are special. We show that z = a on b belongs to Ê(p, q),679

which will complete the proof of (iii) taking the previous two statements into account.680

Note that no point of U ∪ V can be special to z as this would give with Lemma 2.5.3681

that this point is opposite a or b, contradicting Lemma 2.7.4. So z must be collinear or682
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symplectic to the points of U ∪ V . Suppose z is collinear to at least two points of U ∪ V ,683

then z is contained in T̂ (p, q) and by (i) the intersections β(z) ∩ β(a) and β(z) ∩ β(b) are684

hyperbolic planes in β(z), contradicting the fact that the intersection β(a)∩ β(b) contains685

at most one point by (i) and (ii). So z is collinear to at most one point of U ∪V . Without686

loss of generality, we may assume that z is symplectic to every point in U and at least687

one point y of V . It is easy to see that U contains a point y′ not symplectic to y, as688

otherwise U and y would be contained in a singular hyperbolic subspace of Ê(p, q) with689

dimension at least 4, a contradiction. But then, y and y′ are opposite by Lemma 2.6.14690

and z ∈ E(y, y′) ⊆ Ê(y, y′) = Ê(p, q) by Lemma 2.6.17.691

(iv) This follows by elimination and the previous cases. �692

This proposition has an immediate corollary.693

Corollary 2.7.7. Let p, q be opposite points in Γ4. Then T̂ (p, q) is a subspace of Γ4.694

Proof. Let a, b be two collinear points in T̂ (p, q). By (i) of Proposition 2.7.6, we see that all the695

points of the line ab are contained in T̂ (p, q). �696

However, the most important corollary is of course that we know now the structure of this tropics697

geometry.698

Corollary 2.7.8. Let p, q be opposite points in Γ4. Then the tropics geometry T̂ (p, q) is isomorphic699

to the dual polar space B4,1(K,A).700

Proof. This follows immediately from Proposition 2.6.15 combined with the fact that β is an701

isomorphism, which follows from Lemma 2.7.5 and Proposition 2.7.6. �702

2.8. Opposition and projection. Opposition is a very important notion in the theory of spher-703

ical buildings, and it is of course also central in the idea of domesticity. Also typical in spherical704

buildings is the notion of projection. Opposition and projection are also intimately related, in705

particular by Theorem 3.28 of [31]. We review some basics here. We refer to Chapter 3, Sections706

3.22–3.32 of [31] for more details.707

Definition 2.8.1 (Opposition). The opposition of singular spaces and symplecta in a polar space708

or a metasymplectic space Γi is defined as follows.709

(1) Two points are opposite if they are at maximal distance from each other: not collinear in polar710

spaces, distance 3 in metasymplectic spaces (this agrees with Axiom 2.4.4);711

(2) Two singular subspaces or symplecta are opposite if every point of one of them is opposite712

some point of the other.713

Remark 2.8.2. We will sometimes speak about locally opposite spaces or symplecta in polar or714

metasymplectic spaces. Then there will always be a residue obvious from the context containing715

both (for example the intersection of these elements) and we mean that they are opposite in this716

residue.717

For lines and planes of Γi, i = 1, 4, we can be more precise.718

Lemma 2.8.3. Two lines are opposite in Γi if, and only if, every point is special to exactly one719

point of the other line and opposite all the other ones. Two planes are opposite in Γi if, and only720

if, every point is special to the point set of exactly one line of the other plane and opposite all the721

other points.722
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Proof. The statement about the opposite lines follows immediately from the definition above and723

the possible point-line relations in Lemma 2.5.2. The statement about the planes follows from the724

same lemma: It is clear that, if α1, α2 satisfy the stated condition, then the planes are opposite.725

Suppose conversely that the planes are opposite. Let p ∈ αk be a point and denote by p′ an726

opposite point in αl, l 6= k. Then by Lemma 2.5.2 every line M through p′ has an unique point727

special to p and all the other points of M are opposite p. We now claim that the set of these points728

special to p is exactly a line. This is the case, because every line through two of these points has729

to be completely special to p, by Lemma 2.5.2 and the fact that αl contains only points opposite730

and special to p. �731

For symplecta, we could appeal to the duality between Γ1 and Γ4, as already mentioned, and732

as follows from the connection with buildings. However, for foundational reasons, we prove the733

following lemma merely using the axioms.734

Lemma 2.8.4. Let ξ1, ξ2 be two symplecta of Γi. Then ξ1, ξ2 are opposite if, and only if, the735

intersection of ξ1 and ξ2 is empty and there is no symplecton which intersects both in a plane. If736

ξ1 and ξ2 are disjoint and not opposite, this symplecton intersecting both in a plane is unique.737

Proof. First suppose that ξ1 and ξ2 are opposite. If there was a point in the intersection, it would738

not have an opposite point in one of the symplecta, so their intersection must be empty. If there739

was a symplecton intersecting both in a plane, every point in such a plane would be collinear to a740

line of the other plane and consequently be close to the other symplecton. This makes it impossible741

to have an opposite point in the other symplecton and contradicts our assumption.742

Now suppose conversely that the intersection of ξ1 and ξ2 is empty and there is no symplecton743

which intersects each of them in a plane. Then we claim that every point of ξk has to be far from744

ξl, l 6= k, from where it follows immediately that the symplecta are opposite, by the point-symp745

relations. Suppose for a contradiction without loss of generality that there is a point p ∈ ξ1 close746

to ξ2. Then this point is collinear to some line L of ξ2. Let p1, p2 ∈ L be two different points747

which are now collinear to lines through p in ξ1, say respectively L1, L2. If L1 = L2, this line is748

collinear to the line L and they span consequently a projective plane, which contradicts the empty749

intersection of ξ1 and ξ2. So we may suppose that L1 6= L2. Let q be a point of L1 different from750

p. Then q is clearly symplectic to p2, as p and p1 are collinear to both of them. The symplecton751

ξ(p2, q) now has the lines L and L1 in common with the symplecta ξ2 and ξ1, respectively. By the752

symp-symp relations, this contradicts our assumption.753

Suppose now that ξ1 and ξ2 are disjoint, but not opposite. Suppose for a contradiction that there754

exist two different symplecta ζ and ζ ′ intersecting both in a plane. Denote by π
(′)
i := ζ(′) ∩ ξi, i =755

1, 2. We will now take a closer look at the different possibilities for the intersections of the planes756

π1 and π′1.757

• Suppose π1 and π′1 share at least a line. Two distinct points of such line are collinear to758

two distinct respective lines, both lying in both π2 and π′2. By the possible point-symp759

relations these lines and hence these planes coincide. Now interchanging ξ1 and ξ2, also π1760

and π′1 coincide.761

• Suppose π1 ∩ π′1 is a point. Then that point is collinear to a line of both π2 and π′2; hence762

these intersect in at least a line and we are reduced to the previous case.763

• Suppose π1∩π′1 is empty. By the previous case, we may also assume that π2∩π′2 is empty.764

Let p be a point in π1. Then, since ξ1 and ζ are polar spaces, p is collinear to a line L1765

of π′1 and a line L2 of π2. Let now p′ be a point of π′2. Then similarly p′ is collinear to a766

line M1 of π′1 and a line M2 of π2. Now the points p and p′ have (at least) two points in767
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their common perp, namely L1 ∩M1 and L2 ∩M2 and are consequently symplectic. The768

symplecton ξ(p, p′) intersects the symplecta ξ1, ξ2, ζ and ζ ′ in respective planes. Applying769

the previous cases now twice (once to ξ(p, p′) and ζ, and once to ξ(p, p′) and ζ ′), yields770

again the contradiction that ζ = ζ ′. �771

The concept of projection is again something that descends from building theory and which has772

very strong properties as proved in [31], for example Theorems 3.28 and 3.29, see also below. Let773

us define the projections in the metasymplectic spaces Γ1 and Γ4 that we will need.774

Definition 2.8.5. Let p and q be two opposite points of Γi. The projection from ResΓi(p) onto775

ResΓi(q) is the collineation that maps each symplecton ζ through p to the unique symplecton776

through q that intersects ζ in a point; that maps each plane α through p to the unique plane777

through q containing a line that lies in a symplecton together with a line of α and that maps each778

line L through p to the unique line through q having a point collinear to a point of L. We denote779

this by projpq .780

Dually, one defines the projection of a symplecton ξ onto an opposite symplecton ζ. This, however,781

can also be defined as the isomorphism from ξ to ζ determined by mapping a point x ∈ ξ to the782

unique point y ∈ ζ symplectic to x, that is, x ⊥⊥ y.783

The uniqueness and existence of projpq follows almost immediately from the point-line relations in784

Lemma 2.5.2(3) and the reasoning in the proof of Proposition 2.6.2. From this definition it is785

immediately clear that the types of elements are preserved, so we only have to check that inclusion786

is preserved to conclude that this is indeed a collineation. We leave this to the interested reader,787

being aware that this also follows from the general theory in chapter 3 of [31].788

With the notion of projection, we can define a collineation on the residue from some collineations789

on a metasymplectic space. We define this here.790

Definition 2.8.6. Let θ be a collineation of a metasymplectic space Γi mapping a point p to an791

opposite point pθ. Then θp is the composition of θ|ResΓi (p) with the projection from ResΓi(p
θ) to792

ResΓi(p), in symbols: θp := projp
θ

p ◦ θ|ResΓi (p).793

Remark that this is well-defined by the previous reasoning. Then we have the following connection794

between global and local opposition:795

Lemma 2.8.7. Let p and q be two opposite points of some metasymplectic space Γi. Let U and796

V be two elements of the same type through p and q respectively. Then U is opposite V in Γi if,797

and only if, projqp(V ) is opposite U in ResΓi(p), that is, projqp(V ) and U are locally opposite.798

Proof. This follows directly from Theorem 3.28 of [31]. �799

2.9. A polar line grassmannian and a hexagon. Using Lemma 2.8.4, one shows from the800

axioms that Γ1 and Γ4 are dual to each other in the sense of Remark 2.4.7. We will not do801

this explicitly, as we already proved all necessary ingredients. This now allows and motivates the802

following terminology.803

Definition 2.9.1. Let ξ1, ξ2 be two symplecta of a metasymplectic space, then we call ξ1 and ξ2804

(0) equal if ξ1 = ξ2;805

(1) collinear if the intersection ξ1 ∩ ξ2 is a plane;806

(2) symplectic if the intersection ξ1 ∩ ξ2 is a point;807
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(3) special if the intersection ξ1 ∩ ξ2 is empty and there is unique symplecton ζ intersecting808

both in a plane;809

(4) opposite if the intersection ξ1 ∩ ξ2 is empty and there is no symplecton intersecting both810

in a plane.811

The duality between Γ1 and Γ4 makes it possible to define some more geometries embedded in812

metasymplectic spaces. These will be used later on.813

We start by embedding the line grassmannian of the extended equator geometry into Γ1. Therefor,814

we have to prove some properties of mutual positions of hyperbolic lines of an extended equator815

geometry of Γ4. However, we will also need the corresponding properties of Γ1, so we initially816

phrase it more generally in the next lemma.817

Lemma 2.9.2. Let p, q be opposite points in a metasymplectic space Γi. Let L,M be two “lines”818

of E(p, q) and let ξ, ζ be the symplecta containing L,M , respectively. Then:819

(i) L and M are contained in a plane of E(p, q) if, and only if, ξ and ζ are collinear;820

(ii) L and M intersect in a point, but are not coplanar in the polar space E(p, q) if, and only821

if, ξ and ζ are symplectic;822

(iii) L and M are disjoint but not opposite in the polar space E(p, q) if, and only if, ξ and ζ823

are special;824

(iv) L and M are opposite in the polar space E(p, q) if, and only if, ξ and ζ are opposite.825

Proof. (i) Suppose L and M lie in a “plane” of E(p, q) and denote by x the intersection of826

both lines. Let m be a point of M \ {x}. Then all points of L are collinear to the line827

m⊥ ∩ ξ and consequently this line is also contained in x⊥ ∩m⊥ ⊆ ζ. So there is at least a828

line contained in the intersection ξ ∩ ζ. By Definition 2.9.1, we see that this means indeed829

that the symplecta are collinear.830

Suppose now that the symplecta ξ and ζ intersect in a plane. Then it is clear that every831

point of L is close to ζ and by the possible relations between points in E(p, q), every point832

of L must be symplectic to every point of M . So L and M are contained in a “singular833

subspace” of E(p, q), which is a “plane” by the rank of that polar space.834

(iv) First suppose that ξ and ζ are opposite symplecta of Γi. Then each point of ξ is symplectic835

to a unique point of ζ. In particular, no point of L can be symplectic (or collinear in the836

polar space E(p, q)) to all points of M . Hence L and M are opposite in E(p, q).837

Now assume that L and M are opposite lines in E(p, q). We consider the possible838

relations between symplecta, taking Lemma 2.8.4 into account. The symplecta ξ and ζ do839

not meet in a plane as otherwise no point of ξ is opposite any point of ζ. Suppose that840

they meet in a point s. Points x ∈ ξ and y ∈ ζ are opposite if, and only if, x 6⊥ s 6⊥ y,841

by the possible point-symp relations. So given that each point of L is opposite some point842

of M , we deduce that all points of L are opposite all points of M , a contradiction. Now843

suppose that there is a symplecton ω intersecting ξ in a plane α and ζ in a plane β, with844

ξ and ζ disjoint. Since each point of L is opposite some point of M , all points of L belong845

to ξ \α and likewise M ⊆ ζ \ β. But then, again, there are no symplectic point pairs from846

L×M since the unique point of ζ symplectic to a point of ξ \ α is contained in β and we847

have again a contradiction. Hence ξ is opposite ζ.848

(ii) Suppose L and M intersect in a point, but are not contained in a “plane”. Then the849

symplecta ζ and ξ must at least contain this intersection point and by (i), this is exactly850

their intersection, which means that the symplecta are symplectic.851

Suppose now ξ and ζ intersect in a point x. By (iv), there must be a point l ∈ L which852

is symplectic to all points of M and a point m ∈ M which is symplectic to all points of853
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L. It is clear that l is contained in or close to ζ; we will exclude the latter, which implies854

l = x. Suppose for a contradiction that l 6= x, then l ⊥⊥ x or l ⊥ x. Suppose first that855

l ⊥⊥ x, then the line l⊥ ∩ ζ must be collinear to x and so the intersection ξ ∩ ζ contains a856

plane, contradicting (i). Suppose now that l ⊥ x, then every point of M must be collinear857

to x and consequently close to ξ, implying that every point of M must be symplectic to858

every point of L, again contradicting (i). Similarly it follows that m = x, which proves the859

statement.860

(iii) This follows by elimination and the previous cases. �861

The previous lemma can be adapted to extended equator geometries.862

Corollary 2.9.3. Let p, q be opposite points in a metasymplectic space Γ4. Let L and M be two863

lines of the polar space Ê(p, q) and let ξ, ζ be the corresponding symplecta containing L and M864

respectively. Then:865

(i) L and M are contained in a plane of Ê(p, q) if, and only if, ξ and ζ are collinear;866

(ii) L and M either intersect in a point, but are not coplanar in the polar space Ê(p, q), or are867

contained in a “solid”, but don’t intersect, if, and only if, ξ and ζ are symplectic;868

(iii) L and M are disjoint but not opposite in the polar space Ê(p, q) if, and only if, ξ and ζ869

are special;870

(iv) L and M are opposite in the polar space Ê(p, q) if, and only if, ξ and ζ are opposite.871

Proof. By Lemma 2.9.2 it suffices to prove that every pair of lines of Ê(p, q) is embedded in872

a common equator geometry E(a, b), except when the lines are contained in a common “solid”873

but not in a common “plane” and that in this particular case the corresponding symplecta are874

symplectic.875

If L and M span a “plane” π of Ê(p, q), then we can take two different maximal singular subspace876

through this submaximal singular subspace, that give rise to two opposite points a, b symplectic877

to every point of π. Suppose now that L and M intersect in a point, but are not contained in a878

“plane”. Let then α and β be two locally opposite “planes” through L. Define now a, b as points on879

the respective projections of M onto α, β not on L. Subsequently, let L and M be nor contained in880

a solid, nor opposite in Ê(p, q) and denote by l and m the respective points of L and M symplectic881

to all points of the other line. Consider now opposite points l′ ∈ L\{l} and m′ ∈M \{m}. Then in882

the rank 3 polar space m′⊥⊥ ∩ l′⊥⊥ = E(l′,m′) we can consider two locally opposite planes through883

lm giving rise to opposite points a and b symplectic to all points of L and M . Suppose finally that884

L and M are opposite in Ê(p, q). Then one can choose two opposite points in the rank 2 polar885

space L⊥⊥ ∩M⊥⊥.886

Let now L and M be two lines contained in a common “solid” but not in a common “plane”. Then887

it is clear that the symplecta ξ and ζ cannot be disjoint as they contain both the point of T̂ (p, q)888

corresponding to this “solid”. So we may suppose for a contradiction that ξ and ζ are collinear,889

and denote π := ξ ∩ ζ. Then, since every pair of points of L∪M is symplectic, all points of L and890

M are collinear to the same line K of π. Remark now that every point y in the “solid” spanned891

by L and M , must lie in a symplecton through this line K, as a solid is spanned by two opposite892

lines and each symplecton through a point l ∈ L and a point m ∈ M contains clearly the line K.893

Similar as above, y must now be collinear to K, but then each point of the line K is collinear to894

the same hyperbolic solid of Ê(p, q), contradicting Lemma 2.7.5. By elimination we now see that895

ξ and ζ are symplectic in this case. �896
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Now we will see that the previous lemma and corollary allow us to embed some more geometries897

in a metasymplectic space.898

Definition 2.9.4. The polar (line) Grassmanian B4,2(K,A) is the point-line geometry with point899

set the lines of the polar space B4,1(K,A) and line set the planar line pencils of B4,1(K,A) (i.e. all900

the lines in a certain plane π through a certain point v ∈ π; v is called the vertex of the pencil; π901

is called the base plane).902

Lemma 2.9.5. The polar line Grassmanian B4,2(K,A) is a parapolar space of diameter 3 and with903

uniform symplectic rank 3.904

Proof. See Paragraph 17.1.1 of [24]. �905

Points of B4,2(K,A) at distance 3 shall be called opposite; they indeed correspond to opposite lines906

of B4,1(K,A).907

Proposition 2.9.6. All points of any two arbitrary opposite symplecta of Γ1 are contained in a908

subspace Ω of Γ1 which, viewed as a point-line geometry, is isomorphic to B4,2(K,A) enjoying the909

following property:910

(Isom) Two points of Ω are collinear, symplectic, special or opposite in Ω if, and only if, they are911

collinear, symplectic, special or opposite, respectively, in Γ1.912

Proof. Let, under the natural duality between Γ1 and Γ4, the two given opposite symplecta of913

Γ1 correspond to the two opposite points p, q of Γ4. Then let Ω be the set of points of Γ1 cor-914

responding (under the natural duality) to the symplecta of Γ4 intersecting Ê(p, q) nontrivially.915

Note that Lemma 2.6.18 implies that these symplecta intersect Ê(p, q) in hyperbolic lines and that916

by definition all points of the the given opposite symplecta belong to Ω. We claim that Ω is a917

subspace. Indeed, let ξ and ζ be two collinear symplecta intersecting Ê(p, q) nontrivially. Then918

by Corollary 2.9.3, the intersection contains a point of Ê(p, q), and hence all symplecta containing919

ξ ∩ ζ intersect Ê(p, q) nontrivially, proving the claim. Now, identifying a symp of Γ4 intersecting920

Ê(p, q) in a hyperbolic line with that hyperbolic line, all assertions follow from Corollary 2.9.3. �921

Let ∆ be a parapolar space of diameter 3, and call points at distance 3 oppposite. A subspace Ω,922

structured as a geometry where pairs of points are either collinear, symplectic, special or opposite,923

enjoying Property (Isom) (with Γ1 replaced with ∆) shall be referred to as an isometric subspace.924

Definition 2.9.7. The generalised hexagon A2,{1,2}(K) is the point-line geometry with point set925

the flags of PG(2,K) (that is, the point-line pairs (p, L) with p ∈ L), where a typical line is the set926

of flags containing a fixed point or a fixed line. Two points of A2,{1,2}(K) will be called special or927

opposite if their distance is 2 or 3, respectively. When working with A2,{1,2}(K), we often denote928

the projective plane PG(2,K) by A2,1(K) and the dual by A2,2(K), where we tacitly identify a point929

of A2,1(K) with the line of A2,{1,2}(K) consisting of all flags containing that point, and similarly930

for the lines of A2,1(K) and the points and lines of A2,2(K).931

By now proving that A2,{1,2}(K) can be embedded in the geometry B4,2(K,A), we can conclude932

that A2,{1,2}(K) can also be embedded in F4,1(K,A).933

Lemma 2.9.8. Two opposite lines of B4,2(K,A) are contained in a unique isometric subspace934

isomorphic to A2,{1,2}(K).935
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Proof. Let the two given opposite lines be given as the planar line pencils of B4,1(K,A) with vertices936

u, v and base planes π, ω, respectively. Then the planes α := 〈u, u⊥ ∩ ω〉 and β := 〈v, v⊥ ∩ π〉937

of B4,1(K,A) are opposite. Let P be the set of points of B4,2(K,A), viewed as set of lines of938

B4,1(K,A), consisting of those lines that intersect both α and β nontrivially (that is, in respective939

points). It is an elementary exercise in polar spaces to show that P is a subspace of B4,2(K,A)940

isomorphic to A2,{1,2}(K). Obviously, P contains each line through u or v in the plane π or ω,941

respectively.942

Next we show that P is isometric. Since collinearity is preserved, we only have to show that being943

special and being opposite is preserved. So suppose that K1,K2 ∈ P are special in A2,{1,2}(K).944

Then, without loss of generality, there is a line K with K ∩ α = K1 ∩ α and K ∩ β = K2 ∩ β.945

Clearly K1 and K2 are disjoint, and if they were contained in a singular 3-space, then the line946

〈K ∩ α,K2 ∩ α〉 would be collinear to the line 〈K ∩ β,K1 ∩ β〉, contradicting opposition of α and947

β (indeed, a point of α \K⊥2 is collinear to some point of the line K⊥1 ∩ β, which would then be948

collinear to all points of α). Hence K1 and K2 are also special in B4,2(K,A). Conversely, suppose949

K1,K2 ∈ P are special in B4,2(K,A). Then there is a unique point xi ∈ Ki collinear to all the950

points of Kj with {i, j} = {1, 2}. If x1 ∈ β, then x1 ⊥ q2 with q2 := K2 ∩ α. Now q2 = x2 as it is951

collinear to the two different points x1 and q1 := K1 ∩ α of K1. Then K1 and K2 are special in952

A2,{1,2}(K). So we may assume that x1 /∈ β. But then two different points of K1 are collinear to953

K2 ∩ β and consequently the latter point is collinear to K1. This leads similarly to special points954

in A2,{1,2}(K). Opposition is now also preserved by elimination and the previous arguments.955

Left to show is uniqueness. Let P ′ be a second isometric subspace containing the two given opposite956

lines. Since the subspace is isometric, it is closed under taking the centre of each special pair. This957

implies that the set P∩P ′ defines a subplane of A2,1(K) containing a point and a line not through958

that point, and such that, if a point x belongs to it, then also all lines of A2,1(K) through x, and959

similarly for the lines in that intersection. It readily follows that P = P ∩P ′ = P ′.960

The lemma is proved. �961

Corollary 2.9.9. Two arbitrary opposite lines K1,K2 of F4,1(K,A) are contained in a unique962

subspace isometric and isomorphic to A2,{1,2}(K).963

Proof. Since two planes in Γ4 contain a pair of opposite points, by duality two opposite lines of Γ1964

are contained in opposite symplecta. Now Proposition 2.9.6 and Lemma 2.9.8 yield existence a sub-965

space isometric and isomorphic to A2,{1,2}(K) containing the two given opposite lines. Uniqueness966

then follows similarly as in the last part of the proof of Lemma 2.9.8. �967

2.10. Imaginary lines. The next lemmas are beautiful examples of how these embeddings can968

be used to prove properties of metasymplectic spaces. First some terminology: two opposite lines969

L,M of a nondegenerate quadric define a unique set of lines intersecting all lines that intersect970

both L and M ; it is a so-called regulus of the hyperbolic quadric spanned by L and M in the971

ambient projective space. We hence call this set the regulus (defined by L and M). The set of lines972

intersecting each member of that regulus is called the opposite regulus (defined by L and M) and973

is indeed a regulus itself.974

Lemma 2.10.1. Let p, q be two opposite points in Γ1 and denote by L and M two opposite975

lines having a point collinear to both p and q. Denote by IL,M the set of points x such that976

|x⊥ ∩ (L ∪M)| = 2. Then IL,M only depends on p and q.977

Proof. Let L∗p,M
∗
p and L∗q ,M

∗
q be the unique lines through p and q, respectively, intersecting the978

respective lines L,M . Let π be an arbitrary plane through M∗p . Let ξp be a symplecton containing979
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π. Then we can find (as before by considering the standard duality) a symplecton ξq containing L∗q980

opposite ξp. Proposition 2.9.6 yields an isometric subspace Ω isomorphic to B4,2(K,A) containing981

(all points of) ξp and ξq.982

In the corresponding polar space B4,1(K,A), the points p and q are represented by lines Ap and Aq.983

The lines L and M are represented by planar line pencils Px,α and Py,β with (opposite) vertices984

x, y and (opposite) base planes α and β, respectively. Each member K of Px,α is not opposite985

a unique member N ∈ Py,β and the unique line intersecting both K and N obviously intersects986

both lines x⊥ ∩ β and y⊥ ∩ α. Conversely, each line intersecting both latter lines also intersects987

a member of Px,α and one of Py,β . We conclude that IL,M corresponds to the regulus R defined988

by Ap and Aq, and hence is independent of L and M . In particular, the set IL,M coincides with989

IL,M ′ , for each line M ′ intersecting π, opposite L and containing a point collinear to q. Since π990

was arbitrary, this is true for every line M ′ opposite L such that p⊥∩M and p⊥∩M ′ are collinear,991

and q⊥ ∩M ′ is nonempty.992

The lines through p form the point set of C3,3(A,K), and locally opposite lines correspond to993

opposite points therein. The geometry of points opposite a given point in C3,3(A,K) is connected (as994

follows, using standard arguments, from the connectivity of the so-called opposite-point geometries995

of generalised quadrangles, see Remark 1.7.14 of [34]). Hence IL,M is independent of M . Now let996

L0,M0 be two arbitrary opposite lines with the property stated in the lemma. Let L∗0 and M∗0 be997

the lines through p intersecting L0 and M0, respectively. Then there exists a line R∗ through p998

locally opposite both L∗0 and L∗, by Proposition 3.30 of [31] (alternatively, this is an easy exercise in999

(dual) polar spaces). Let R be the unique line concurrent with R∗ and containing a point collinear1000

to q. Then IR,L = IR,L0
by the foregoing. Similarly, IL0,R = IL0,M0

and IL,R = IL,M . It1001

follows that IL0,M0
= IL,M , which completes the proof of the lemma. �1002

We now can introduce a rather important definition.1003

Definition 2.10.2. For opposite points p, q of Γ1 we denote the set of points x such that x⊥1004

intersects each line L with p⊥ ∩L 6= ∅ 6= q⊥ ∩L by I (p, q) and call it the imaginary line (through1005

p and q). We also say it is determined by p and q.1006

We record an immediate consequence of this definition and the second paragraph of the proof of1007

Lemma 2.10.1.1008

Corollary 2.10.3. Let p, q be two opposite points of Γ1 and let ξ, ζ be the corresponding symplecta1009

in Γ4, using the standard duality. Let a ∈ ξ and b ∈ ζ be opposite points of Γ4. Then the image1010

under the standard duality of I (p, q) is the set of symplecta corresponding to the regulus of E(a, b)1011

defined by the hyperbolic lines ξ ∩ Ê(a, b) and ζ ∩ Ê(a, b). �1012

Lemma 2.10.4. Let p, q be two opposite points in Γ1. Then every member of I (p, q) is symplectic1013

to every point of E(p, q). In other words, E(p∗, q∗) = E(p, q) for every pair of distinct points p∗1014

and q∗ of I (p, q).1015

Proof. Let a be an arbitrary point of E(p, q). Let M∗ be a line through p in ξ(p, a) and let M1016

be the unique line intersecting this line and containing a point collinear to q. Also, let M ′ be the1017

line through q intersecting M . Then we can take a line L∗ through p locally opposite M∗ giving1018

similarly rise to a line L opposite M having a point collinear to q. Now a is collinear with M , as1019

it must be collinear to a point of M∗ in ξ(a, p) and this can only be M ∩M∗ (since all the other1020

points are opposite q) and similarly it must be collinear to M ∩M ′. Hence there is a plane α1021

containing a and M .1022
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Now exactly as in the first paragraph of the proof of Lemma 2.10.1 we find an isometric subspace1023

Ω isomorphic to B4,2(K,A) containing α and L, and hence also I (p, q) (by its very definition1024

based on Lemma 2.10.1). Let p, q and a correspond to the lines Kp,Kq and Ka, respectively, of1025

B4,1(K,A). Then a being symplectic to both p and q implies by Corollary 2.9.3 that either Ka1026

and Kp is contained in a singular 3-space, and similarly for Ka and Kq, or Ka belongs to the1027

opposite regulus defined by Kp and Kq. In both cases Ka is obviously symplectic to each member1028

of the regulus defined by Kp and Kq, and, as we know, this regulus corresponds to I (p, q). This1029

completes the proof of the lemma. �1030

We now come to a beautiful geometric characterization of the imaginary lines. Recall that, for1031

two opposite points p and q of Γ1, the equator geometry E(p, q) is isomorphic to the polar space1032

C3,1(A,K) and as such admits nontrivial “hyperbolic lines”, indeed between quotes as to avoid1033

confusion with the hyperbolic lines of Γ4 which consist of points in a symplecton, whereas now the1034

points of a “hyperbolic line” are mutually opposite.1035

Proposition 2.10.5. Let p, q be two opposite points of Γ1 and let a, b ∈ E(p, q) also be opposite,1036

but for the rest arbitrary. Then I (p, q) = E(p, q)⊥⊥ = {p, q}⊥⊥⊥⊥. Also, I (p, q) coincides with the1037

“hyperbolic line” of E(a, b) defined by p and q.1038

Proof. For ease of notation, we set A = {p, q}⊥⊥⊥⊥, B = I (p, q) and C is the “hyperbolic line”1039

defined by p and q in E(a, b).1040

We first assume that we are in the inseparable case. Then the extented equator geometry1041

Ê(p, q) exists.1042

By the definition of a hyperbolic line (Definition 2.6.8) and the fact that E(p, q) ⊆ Ê(p, q), we1043

already conclude A = C. Also, by Lemma 2.10.4 we already have B ⊆ A. We now prove A ⊆ B.1044

Let z ∈ E(p, q)⊥⊥ be a point. Then z ∈ Ê(p, q). Pick any line N∗ through p and let N be the line1045

intersecting N∗ (say, in the point p′) and containing a point collinear q′ collinear to q. Considering1046

a symplecton through N∗, we find that p′ ∈ T̂ (p, q). Similarly q′ ∈ T̂ (p, q). hence N ⊆ T̂ (p, q).1047

Let π be the “plane” of Ê(p, q) all points of which are collinear to N . All points of π are clearly1048

symplectic to both p and q, hence, since z ∈ Ê(p, q) is symplectic to all points of E(p, q), it is1049

symplectic to all points of π and lies in a “solid” together with π. Now Proposition 2.7.6 implies1050

that all points of that “solid” are collinear to some point of N . Hence z is collinear to some point1051

of N . By the arbitrariness of N , we conclude that z ∈ B, which concludes the proof in this case.1052

Secondly, assume we are in the separable case. Since we do not have an extended equator1053

geometry to our disposal now in Γ1, the proof is slightly more technical. We again first show that1054

A = B. By Lemma 2.10.4 we already have B ⊆ A. We now prove A ⊆ B.1055

So let x ∈ A be a point and let L be a line with p⊥ ∩L 6= ∅ 6= q⊥ ∩L. Let π be an arbitrary plane1056

containing p and p⊥ ∩ L. This plane corresponds to a “line” h in E(p, q). If we denote by ξ the1057

symplecton containing h, then h = K⊥ ∩ J⊥, with K = ξ ∩ p⊥ ⊆ π and J = ξ ∩ q⊥. The lines K1058

and J contain the respective points p⊥∩L and q⊥∩L, as the lines K and J consist of the points in1059

〈p,K〉 and 〈q, J〉, respectively, which are collinear to a point of the other plane. Suppose now first1060

for a contradiction that x ∈ ξ. Then a point y ∈ E(p, q)\h opposite some point z ∈ h must be close1061

to ξ as it is symplectic to two points of ξ (x and some point of h), contradicting the opposition to1062

z ∈ ξ. Hence, as x is symplectic to each point of h, the set x⊥ ∩ ξ is a line which is contained in1063

h⊥. As ξ ∼= B3,1(K,A) separable, h⊥ is a grid (a hyperbolic quadric in a 3-dimensional projective1064

space), spanned by K and J . Now there are two possibilities: x⊥ ∩ ξ is a line intersecting L (since1065

L is contained in that grid) or x⊥∩ξ is a line intersecting K and J . We eliminate the latter, which1066
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proves the assertion. Suppose x⊥ ∩K is a point p′ ⊥ p and x⊥ ∩ J is a point q′ ⊥ q. Select some1067

point p′′ ∈ K \p′ and let q′′ ∈ J be collinear to p′′ (which differs obviously from q′). Let now z /∈ h1068

be a point in the “plane” through h corresponding to p′′q′′ (so each point of that “plane” is the1069

intersection of a symplecton through pp′ and one through qq′). Then z is a point in E(p, q) \ h1070

collinear to p′′q′′, but by Corollary 2.5.4, x is then opposite z contradicting the fact that x ⊥⊥ z1071

by assumption. Hence A = B.1072

In E(a, b), the “hyperbolic line” through p and q is by definition the set of points symplectic to all1073

points symplectic to both p and q. The latter set belongs to E(p, q) and hence A ⊆ C. We now1074

show that C ⊆ A, which will prove the proposition.1075

Let x ∈ C be arbitrary. Then x is symplectic to each point of E(p, q)∩E(a, b), and to a and b. We1076

claim that, if x is symplectic to a point u ∈ E(p, q) and to all points of two “lines” h1, h2, which1077

are themselves symplectic to u, intersect in a unique point w and are not contained in a common1078

“plane”, then x is symplectic to all points of the “line” uw. Let ξi be the symplecton containing1079

hi, i = 1, 2. Let p⊥ ∩ ξ(u,w) = L and q⊥ ∩ ξ(u,w) = M . Also, set Li = p⊥ ∩ ξi and Mi = q⊥ ∩ ξi,1080

i = 1, 2. Then the assumptions imply that L1 and L2 intersect L in distinct points a1, a2. Also,1081

as before, x⊥ ∩ ξi is contained in the grid defined by Li and Mi, and hence intersects two distinct1082

lines of the grid defined by L and M . This implies that x⊥ ∩ ξ is a line of the grid defined by L1083

and M and hence belongs to (uw)⊥. The claim follows.1084

Applying the previous paragraph to u = a and h1, h2 two intersecting “lines” in E(p, q) ∩ E(a, b),1085

we deduce that each point of E(p, q) symplectic to a (and similarly to b) belongs to x⊥⊥. Now let1086

v be an arbitrary point of E(p, q) not in a⊥⊥ ∪ b⊥⊥, and not in the hyperbolic line defined by a and1087

b. Then there is a “plane” α1 through v intersecting E(a, b) ∩ E(p, q) in a unique point v′. Then1088

α1 ∩ a⊥⊥ and α1 ∩ b⊥⊥ are two distinct “lines” k1, k2 intersecting in v′. Pick a point u′ ∈ k2 \ {v′},1089

and choose a plane α2 through vu′ distinct from α1. Then b⊥⊥ ∩ α2 is a line through u′. By our1090

claim above, x is symplectic to v. Hence x is symplectic to all points of E(p, q), except possibly1091

the hyperbolic line through a and b. But that now also easily follows. �1092

2.11. Chambers and apartments; domesticity. Finally we need some results that come from1093

Tits’ theory of spherical buildings, since we prove existence of the domestic collineations using that1094

theory.1095

Definition 2.11.1. A chamber of a metasymplectic space is a set {p, L, α, ξ}, with p a point, L a1096

line, α a plane and ξ a symplecton, satisfying p ∈ L ⊆ α ⊆ ξ. A flag (of a metasymplectic space)1097

is a subset of a chamber.1098

Definition 2.11.2. A panel of a metasymplectic space is the set of all the elements which can be1099

added to a flag, consisting of all the elements of a chamber except one, to form a chamber.1100

Definition 2.11.3. An apartment of a metasymplectic space is an isometrically embedded thin1101

metasymplectic space, i.e. a metasymplectic space where every panel has only two elements.1102

We assume that the reader is familiar with apartments of polar spaces of rank n. These consist1103

of the singular subspaces generated by the points of skeleton, that is a set of 2n points such that1104

each point of that set has a unique opposite in that set.1105

An important (defining) property of spherical buildings, and hence of metasymplectic spaces, is1106

that every pair of chambers is contained in an apartment, which is unique as soon as the chambers1107

are opposite.1108

Next to these general properties of apartments in buildings, we will also use the following two1109

lemmas, the first of which is specific for apartments in metasymplectic spaces.1110
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Lemma 2.11.4. Let p, q be two opposite points of a metasymplectic space Γi. If Λ′ is an apartment1111

of the equator geometry E(p, q), then p, q and Λ′ are contained in a unique apartment Λ of Γi.1112

Proof. Let x1, x2, x3, y1, y2, y3, with xi opposite yi, i = 1, 2, 3, be the skeleton of Λ′. Then these1113

points span eight “planes” in E(p, q). Each such plane α corresponds to a line Lα through p1114

and a line Mα through q. Denote by pα the unique point of Lα special to q, and similarly1115

by qα the unique point of Mα special to p. Now we determine a unique apartment by the set1116

A := {p, x1, . . . , y3, q} as follows. Let C = {p, L, π, ξ} be the chamber consisting of the point p, the1117

line L := ppα, the plane π := 〈p, pα, pβ〉 and the symplecton ξ := ξ(p, x1) (where α := 〈x1, x2, x3〉1118

and β := 〈x1, x2, y3〉) and let C ′ = {q, L′, π′, ξ′} be the chamber consisting of the point q, the line1119

L′ := qqα′ , the plane π′ := 〈q, qα′ , pβ′〉 and the symplecton ξ′ := ξ(p, y1) (where α := 〈y1, y2, y3〉1120

and β := 〈y1, y2, x3〉). These chambers are clearly opposite and hence they determine a unique1121

apartment (which must be included in an apartment spanned by A.) So it suffices to prove that1122

A is contained in this apartment. By projecting the chambers to each other, one sees immediately1123

that p, q, x1, y1 are contained in the apartment. As also the “lines” x1x2 and y1y2 corresponding to1124

π and π′, respectively, must be contained in the apartment, also the projection y2 of x1 onto y1y21125

is contained in the apartment (and similarly also x2). Projecting these “lines” on the “planes”1126

α′ and α, respectively, gives that also x3, y3 are contained in the apartment, which concludes the1127

proof. �1128

Lemma 2.11.5. Given some point p and some apartment Λ of a metasymplectic space Γi. Then1129

there exists a point p′ ∈ Λ opposite p.1130

Proof. This follows from the fact that every chamber outside a given apartment has at least two1131

opposite chambers inside the apartment, see Proposition 3 in [32]. However, the interested reader1132

can easily prove this statement only using the axioms of a metasymplectic space. �1133

We can now define domesticity. We start very general, but then restrict ourselves to polar spaces1134

and metasymplectic spaces.1135

Definition 2.11.6. (i) A domestic automorphism of a building is an automorphism that does1136

not map any chamber to an opposite one.1137

(ii) A collineation of a polar or metasymplectic space that does not map an object of type ∗ to1138

an opposite is called a ∗-domestic collineation. This in particular applies to ∗ ∈ {point, line,1139

plane, solid, symplecton}.1140

(iii) A collineation of a polar or metasymplectic space is capped if, whenever it maps two object1141

of types `1 and `2, respectively, to an opposite, then it maps an incident pair of objects of1142

these respective types to an opposite.1143

It is shown in [16] that, whenever a building has no residue isomorphic to the projective plane with1144

3 points per line (that is, the so-called Fano plane), then any automorphism is capped. On the1145

other hand, all domestic automorphisms of metasymplectic spaces with Fano planes are classified1146

in [17]. Hence in the present paper we may assume that |K| > 2 and hence that the considered1147

collineations are capped. Then it is proved in [16] that there are three types of nontrivial domestic1148

collineations (and no dualities) in metasymplectic spaces, and these correspond to the opposition1149

diagrams given in Fig. 2. All possible opposition diagrams are explained in Table 2. A point-symp1150

flag is a symplecton containing the point. We just additionally note that, for diagram F4;2, other1151

symplecta might exist that are also mapped to an opposite, but do not contain any point mapped1152

to an opposite, and likewise for points.1153
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Notation Diagram Interpretation in Γ1

F4;4 •© •© •© •© Some chamber is mapped to an opposite chamber.
The collineation is not domestic.

F4;2 •© • • •© Some point-symp flag is mapped to an opposite.
No line nor plane is mapped to an opposite.

F1
4;1 •© • • • Some point is mapped to an opposite.

No line, plane nor symp is mapped to an opposite.

F4
4;1 • • • •© Some symp is mapped to an opposite.

No point, line nor plane is mapped to an opposite.

F4;0 • • • • Nothing is mapped to an opposite. The collineation
is the identity.

Table 2. Opposition diagrams of metasymplectic spaces

Remark 2.11.7. It is a general fact that, if the opposition diagram is “empty”, that is, if no1154

element is mapped onto an opposite, then the collineation is the identity. This was already proved1155

by Leeb [11] and Abramenko & Brown [1].1156

We end this section with defining what we mean with central elation, long root elation, central1157

short root elation and perpendicular central elations, so that the statement of the Main Theorem1158

is clear.1159

Definition 2.11.8. (i) A central elation of Γi (with centre c) is a collineation that fixes the1160

point c and stabilises all the lines that have at least one point collinear to c. The group of1161

central elations with centre c is called the root group with centre c.1162

(ii) Perpendicular central elations of a metasymplectic space are central elations with symplectic1163

corresponding centres.1164

(iii) A long root elation is a central elation in Γ1; a central short root elation is a central elation1165

in Γ4 in Class (M).1166

We already note the following property of central elations (more properties are proved in Section 6):1167

Lemma 2.11.9. A central elation of Γi with centre c fixes all points symplectic to c. Also, θ1168

preserves each imaginary line containing c.1169

Proof. Indeed, a point x symplectic to c is contained in at least two distinct lines that have a point1170

collinear to c (look in ξ(c, x)). The second assertion follows directly from Proposition 2.10.5. �1171

3. Some results in polar spaces1172

In this section, we prove some auxiliary results on polar spaces. As it will turn out that domestic1173

collineations of metasymplecic spaces induce under certain circumstances domestic collineations of1174

symplecta, equator and extended equator geometries, we also include some specific results concern-1175

ing domesticity in polar spaces (and which can not be found in [19]). Also, in order to recognise or1176

rule out certain collineations in metasymplectic spaces, we need to know something about existence1177

and uniqueness of their counterparts in polar spaces. So this section is mainly about classes of1178

collineations of polar spaces. However, we begin with some purely geometric properties.1179
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Note that in this section (and the rest of the paper), we will speak about separable polar spaces.1180

In the orthogonal case, these are the quadrics for which the associated polarity ρ in the ambient1181

projective space is nondegenerate. In the Hermitian case, we will only need the polar spaces1182

C3,1(A,K), see Definition 2.3.2, with A not an inseparable field extension of K.1183

3.1. Two geometric lemmas. The first lemma proves a correspondence between subspaces of1184

an embeddable polar space and those of the underlying projective space. We only need it for rank1185

4, but the proof does not become simpler in this specific case, so we present the result in full1186

generality. First some definitions.1187

Definition 3.1.1. A subspace S of a polar space of rank n ≥ 2 is said to have corank r, 0 ≤ r < n,1188

if every singular subspace of dimension r intersects S nontrivially, and some singular subspace of1189

dimension r−1 is disjoint from S. An ovoid is a subspace of corank n−1 without lines. Equivalently,1190

and more traditionally, it is a set of points intersecting every maximal singular subspace in a unique1191

point.1192

Due to Tits’ classification of polar spaces of rank at least 3, these come in two flavours: the1193

embeddable ones and the nonembeddable ones. The latter are either related to projective 3-spaces1194

over noncommutative skew fields, or are isomorphic to C3,1(O,K). The former are related to so-1195

called pseudoquadratic forms (including Hermitian and quadratic forms). For every such polar1196

space, there exists a so-called universal embedding, which can be thought of as the embedding from1197

which each other embedding is derived by projection. For instance, for orthogonal polar spaces,1198

the universal embedding is the one realised as a quadric; for C3,1(A,K), A 6= O, the universal1199

embedding happens in PG(5,A) (see chapter 6 of [31], where this is called a dominant embedding).1200

The next lemma will be used only in the rank 3 and 4 cases, but we state and prove it for general1201

rank.1202

Lemma 3.1.2. (i) Let ∆ be a polar space of rank r with universal embedding in the projective1203

space Ω. Let S be a subspace of ∆ such that some line of S is disjoint from some maximal1204

singular subspace of S. Let 〈S〉 be the subspace of Ω generated by S. Then we have that1205

〈S〉 ∩∆ = S. Furthermore S has corank i < r if, and only if, 〈S〉 has codimension i in Ω.1206

(ii) Let ∆ be a polar space of rank r embedded in a projective space Ω. Let T be a subspace of1207

Ω of codimension i at most r − 1, and let S be the intersection of T with the point set of1208

∆. Then the corank of S in ∆ is equal to the codimension of T in Ω.1209

Proof. In [3] the authors prove that in Case (i) under the stated assumption, 〈S〉 ∩ ∆ = S. We1210

prove the other statement and (ii) simultaneously by induction on i. Since in (ii) the codimension1211

of T is at least the corank of S, it suffices to show indeed that codim(〈S〉) is equal to the corank1212

of S (with generation in Ω). Hence, we can use the notation 〈S〉 throughout and ignore T .1213

If i = 0, a geometric subspace S of corank 0 spans by the definition of an embedding the whole1214

space, so 〈S〉 = PG(V ), and is consequently a subspace of codimension 0. The converse statement1215

is trivial in this case.1216

Suppose now that the statement is true for every j ≤ i and that S is a subspace of ∆ of corank i+1.1217

Then by the induction hypothesis, we may assume that 〈S〉 has codimension at least i+1. Suppose1218

now that the codimension of 〈S〉 is strictly bigger than i+1. Let x be a point of ∆\S. Then 〈S, x〉1219

is a subspace of codimension at least i + 1, so by the induction hypothesis it is impossible that1220

S′ := 〈S, x〉 ∩∆ has corank strictly smaller than i+ 1. Let U be an arbitrary singular subspace of1221

∆ of dimension i and let V be a singular subspace of ∆ of dimension i+ 1 containing U . Then by1222
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the assumption that S is a geometric subspace of corank i+ 1, there is a point y contained in the1223

intersection S ∩ V .1224

If x ∈ U , then clearly U∩S′ is nonempty. However if x /∈ U and U ⊆ x⊥, then 〈U, x〉 has dimension1225

i + 1 and intersects S in at least a point s. Now S′ intersects 〈U, x〉 in at least the line xs and1226

again U ∩ S′ is nonempty. We now prove that this is also the case if U * x⊥.1227

If x is not collinear to y, one can look at the projection of x onto V , spanning a singular subspace1228

of dimension i + 1 together with x, to get a point x′ collinear to x contained in S. Now the line1229

xx′ is contained in S′, intersecting V in y′. The line yy′ is similarly contained in S′, but also in V1230

and contains consequently a point of U ∩ S′.1231

If x is collinear to y, we look at the space W spanned by x and its projection on U . This space1232

has dimension i and y corresponds to an i + 1-space through it. So in the residue of W we can1233

take a point opposite to the point corresponding to y. This point corresponds to an i + 1-space1234

W ′ through W for which the set of points collinear to y is exactly W . Now W ′ has a point ỹ in S1235

by assumption on S. If ỹ is contained in W , then the line xỹ is contained in W ∩S′ and intersects1236

the hyperplane U ∩W of W in a point. So U contains a point of S′. If ỹ is not contained in W , we1237

can replace x by x̃ ∈ xỹ \ {x, ỹ} and apply the previous paragraph as now x̃ is not collinear to y.1238

In every case an arbitrary singular subspace of ∆ of dimension i intersects S′, so S′ has corank at1239

most i, which is a contradiction.1240

Suppose now that 〈S〉 is a subspace of Ω of codimension i. Then of course every subspace of1241

dimension i + 1 intersects 〈S〉, and in particular every singular subspace of ∆ of dimension i + 11242

intersects S. The corank of S is consequently at most i+ 1 and by the induction hypothesis it is1243

also at least i+ 1, so the corank of S is exactly i+ 1. �1244

There is also a counterpart of this lemma for the inseparable case.1245

Lemma 3.1.3. Let O be an ovoid of a polar space ∆ of rank r ≥ 3. Then there is no point x ∈ ∆1246

collinear to all the points of O.1247

Proof. Suppose every point of O is collinear to x ∈ ∆, then x is clearly not contained in O. Let M1248

be an arbitrary maximal singular subspace through x and denote by f the point of O in M . Let U1249

be a hyperplane in M not through x nor f and let M ′ be a maximal singular subspace containing1250

U but distinct from M . Then by our hypothesis, the point of O in M ′ must be contained in U .1251

But then M would contain two points of O, a contradiction. �1252

3.2. Central and axial elations. The first type of collineations we will discuss here are the so1253

called central (axial) elations or collineations. The basic idea is that they fix everything “close” to1254

something.1255

Definition 3.2.1. A central elation of a polar space with centre c is a collineation that fixes the1256

point c and all points collinear to c. Two central elations are called perpendicular if their respective1257

centres are distinct but collinear.1258

Lemma 3.2.2. Let θ be a central elation of a polar space ∆ of rank r ≥ 3 with centre c fixing a1259

point q not collinear to c. Then θ is the identity.1260

Proof. First we claim that the set of fixed points is a subspace. Indeed, let x and y be two collinear1261

fixed points; we may assume that the line xy is not collinear to c. Then we may assume that x ⊥ c.1262

A line L through c locally opposite cx is obviously opposite xy and so each point of L is collinear1263
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to a unique point of xy, which is fixed. The claim is proved. Now c⊥ is a maximal geometric1264

hyperplane and so the unique subspace containing c and q is the whole polar space. �1265

This lemma has a quite strong consequence for general collineations, which we will use regularly.1266

Corollary 3.2.3. Let ξ be a polar space of rank at least 3. Let p, q be two noncollinear points. Let1267

θ be a collineation of ξ that pointwise fixes (p⊥ ∩ q⊥)∪ {p, q} and an additional point x ∈ p⊥ \ q⊥.1268

Then θ is the identity.1269

Proof. Every plane through px is pointwise fixed as it contains a pointwise fixed line and two1270

points not contained in this line. By the connectivity of the residue of p, we see similarly that p⊥1271

is pointwise fixed and so θ is a central elation of ξ with centre p fixing the point q not collinear to1272

p. Then, by Lemma 3.2.2, θ is the identity. �1273

Lemma 3.2.4. Let ∆ be a separable orthogonal polar space of rank r ≥ 2. Then there are no1274

nontrivial central elations in ∆.1275

Proof. Suppose θ is a central elation in ∆. Denote by ρ the defining nondegenerate polarity. Then1276

c⊥ spans cρ and so cρ is pointwise fixed. Dually every hyperplane through c is stabilised and so1277

every line through c is stabilised. Now an arbitray point p not collinear to c is also fixed as the line1278

cp in the underlying projective space is stabilised and intersects the quadric only in c and p. �1279

Now we take a closer look at axial elations in these polar spaces.1280

Definition 3.2.5. An axial elation of a polar space with axis L is a collineation that stabilises the1281

line L and all lines intersecting L. Two axial elations are called perpendicular if their axes either1282

intersect but are not coplanar, or are collinear but do not intersect.1283

This definition has immediately an equivalent formulation given in the next corollary.1284

Corollary 3.2.6. A collineation of a polar space is an axial elation with axis L if, and only if, it1285

pointwise fixes L and all points collinear to L and maps any other point p to a collinear point q1286

such that the line pq intersects L nontrivially.1287

Lemma 3.2.7. Let ∆ be a separable orthogonal polar space of rank r ≥ 3 and let θ be a collineation1288

that fixes pointwise some line L and all points collinear to L. Then θ is an axial elation of ∆ with1289

axis L.1290

Proof. By Corollary 3.2.6, it suffices to prove that every line intersecting L, but not coplanar with1291

L, is stabilised under θ. Let M be such a line and denote by p the intersection of L and M . In the1292

residue of p, L corresponds to a point l and θ fixes l⊥ pointwise. By Lemma 3.2.4 the residue is1293

now pointwise fixed. Hence the line M corresponding to any point m of the residue not collinear1294

to l is stabilised. �1295

Lemma 3.2.8. Let UL be the group of axial elations of an orthogonal polar space ∆ of rank r ≥ 21296

with axis L. Let M be a line intersecting L in p, but not coplanar with L. Then UL acts sharply1297

transitively on M \ {p}. In particular the only element of UL fixing a point not collinear to L is1298

the identity.1299
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Proof. We may suppose by coordinatisation over the field K that there exist a fixed n so that L is1300

given by x1 = x3 = xi = 0 for all 5 ≤ i ≤ n, M is given by x1 = x4 = xi = 0 for all 5 ≤ i ≤ n and1301

∆ is given by x1x2 +x3x4 + . . . = 0. Then every axial collineation acts trivially on the coordinates1302

xi for 5 ≤ i ≤ n and it is an elementary exercise to calculate that the action on the first coordinates1303

is given by a matrix of the form Ak:1304

Ak =


1 0 0 0
0 1 k 0
0 0 1 0
−k 0 0 1

 ,

with k ∈ K arbitrary. It is clear that these matrices act sharply transitively on M \ L. �1305

Lemma 3.2.9. Let ∆ be a separable polar space isomorphic to C3,1(A,K). Then there are no1306

nontrivial axial elations in ∆.1307

Proof. We prove this by contradiction, so assume that θ is a nontrivial axial elation of ∆. This1308

implies with Corollary 3.2.6 that there exists a grid spanned by the axis L and some opposite line1309

L′. We will now proof that such a grid doesn’t exist in ∆.1310

First let ∆ be a nonsplit polar space. As every quaternion and octoninion division algebra contains
a quadratic Galois extension as a subalgebra, we may assume that A = L with the notation taken
from Table 1. So ∆ is given by x−3x3 +x−2x2 +x−1x1 ∈ K. We order the coordinates of PG(5,L)
according to increasing indices. Denote now:

L := 〈(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)〉,
L′ := 〈(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0)〉,
M := 〈(0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0)〉,
M ′ := 〈(0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)〉.

It is clear that L′ is a line opposite L, with the point (0, 1, a, 0, 0, 0) of L collinear to the point1311

(0, 0, 0, 1,−a, 0) of L′ for every a ∈ L. It is also clear that the lines M and M ′ are opposite,1312

belong to the grid spanned by L and L′ and the point (0, 1, 0, b, 0, 0) of M is collinear to the1313

point (0, 0, 1, 0,−b, 0) of M ′ for every b ∈ L. Expressing now that the lines 〈(0, 1, a, 0, 0, 0),1314

(0, 0, 0, 1,−a, 0)〉 and 〈(0, 1, 0, b, 0, 0), (0, 0, 1, 0,−b, 0)〉 must intersect gives that ab = ab, contra-1315

dicting the arbitrariness of a and b.1316

Now if ∆ is a split polar space, then, using a standard alternating form, collinearity on ∆ is1317

given by x−3y3 − x3y−3 + x−2y2 − x2y−2 + x−3y3 − x3y−3 = 0. By using the same definitions for1318

L,L′,M,M ′, we can apply the previous paragraph by remarking that the point (0, 1, a, 0, 0, 0) of L1319

is now collinear to the point (0, 0, 0, 1,−a, 0) of L′ and the point (0, 1, 0, b, 0, 0) of M is now collinear1320

to (0, 0, 1, 0, b, 0). Expressing now the intersection of the corresponding lines gives that ab = −ab,1321

which contradicts the arbitrariness of a and b combined with the fact that the characteristic is not1322

2 in the split separable case. �1323

3.3. (Generalised) Baer collineations. Some examples of domestic collineations in metasym-1324

plectic spaces are analogues of the generalised Baer collineations in polar spaces introduced in1325

Section 6 of [28]. We repeat the definition and prove some (new) facts.1326

Definition 3.3.1. (i) A Baer subplane π′ of a projective plane π is a proper subplane with the1327

property that every line of π \ π′ contains exactly one point of π′ and every point of π \ π′ is1328

contained in exactly one line of π′.1329
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(ii) A Baer collineation of a projective plane is a collineation that has as fix structure a Baer1330

subplane.1331

The following examples are perhaps less familiar, so we provide a short proof.1332

Example 3.3.2. Let (B,A) be one of (K,L), (L,H) or (H,O). Then PG(2,B), viewed as a subplane1333

of PG(2,A) by restricting coordinates, is a Baer subplane of PG(2,A). Moreover, there exists a1334

Baer collineation of PG(2,A) with fix structure PG(2,B).1335

Indeed, this is easy and well known for A = L. So let A ∈ {H,O}. It suffices to show that every1336

line of PG(2,A) has a point in PG(2,B); the dual then also holds. It is also easy to see that, after1337

introducing affine coordinates in the standard way, this is equivalent to showing that for every1338

q ∈ A and every m ∈ A \ B there exist x, y ∈ B such that y = mx+ q. Writing elements u ∈ A as1339

pairs (u1, u2) ∈ B×B and using the Cayley-Dickson process mentioned in Section 2.2, we see that1340

this is equivalent with showing that the following system of equations in the unknowns x1, y1 ∈ B,1341

with m2 6= 0, has a (unique) solution in B:1342 {
y1 = m1x1 + q1,

0 = x1m2 + q2.

This is of course obvious, as m2 6= 0, and B is associative.1343

As Baer collineation we can take for instance the automorphism θc : A→ A : (x, y) 7→ (x, yc), for1344

all x, y ∈ B and c ∈ B× with cc = 1. Note that this is not necessarily an involution.1345

Lemma 3.3.3. A Baer collineation θ of a projective plane π ∼= PG(2,L) over a field L is an1346

involution.1347

Proof. Let π′ ∼= PG(2,K) be the pointwise fixed subplane of π ∼= PG(2,L) under θ. Then we can1348

see L as a field extension of K (extend a coordinatisation of π′ to one of π). We now claim that L1349

is quadratic over K. Indeed, suppose not and let 1, e1, e2 be independent elements of L viewed as1350

vector space over K. Expressing that every line of π contains a point of π′ means that for every1351

q ∈ L and every m ∈ L \K there exist x, y ∈ K such that y = mx+ q. But now we see that there1352

does not exist such x and y for m = e1 and q = e2, proving the claim.1353

Now choosing a suitable basis, we can assume that θ is given by the identity matrix and a companion1354

nontrivial field automorphism σ fixing K pointwise. Then σ belongs to the Galois group of the1355

extension L/K of degree 2 and hence has order 2. �1356

These Baer collineations of projective planes can be generalised to collineations of polar spaces of1357

rank 3.1358

Definition 3.3.4. A generalised Baer collineation of a polar space of rank 3 is a collineation1359

satisfying the following properties:1360

(i) it induces a Baer collineation in every stabilised plane;1361

(ii) it stabilises all planes through any stabilised line;1362

(iii) it stabilises at least one plane.1363

Lemma 3.3.5. A generalised Baer collineation θ of a polar space ∆ of rank 3 with planes over a1364

field L is an involution.1365
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Proof. It is easy to see that there exist opposite fixed points p and q in ∆. Then every fixed point1366

c in p⊥ ∩ q⊥ corresponds to a stabilised line pc through p. Now by Definition 3.3.4 every plane1367

through pc is stabilised and θ induces a Baer collineation in it, hence by Lemma 3.3.3 θ2 acts1368

trivially on those planes. Consequently θ2 acts trivially on all the lines through c in p⊥ ∩ q⊥ and1369

so the pointwise fixed subquadrangle of p⊥ ∩ q⊥ is ideal and full in the terminology of Section 1.81370

of [34] and θ2 fixes p⊥ ∩ q⊥ pointwise (use Propositions 1.8.1 and 1.8.2 of [34]).1371

As the argument in the previous paragraph shows that θ2 also fixes the line pc pointwise, we can1372

now appeal to Corollary 3.2.3 to see that θ2 fixes indeed all points of ∆. �1373

With arguments quite similar to those in the proof of the previous lemma, we can show that Baer1374

collineations don’t always exist. We will do this for some polar space in the next lemma. After1375

that, we show existence in some cases.1376

Lemma 3.3.6. A symplectic polar space of rank 3, over a field of characteristic different from 2,1377

does not admit any generalised Baer collineation.1378

Proof. Suppose for a contradiction that θ is a generalised Baer collineation of a symplectic polar1379

space ∆ of rank 3, over a field of characteristic different from 2. Then we claim that the fix structure1380

of the quadrangle p⊥ ∩ q⊥, with p and q opposite fixed points, is an ideal subquadrangle. This is1381

the case as every line in p⊥ ∩ q⊥ through a fixed point c ∈ p⊥ ∩ q⊥ corresponds to a plane through1382

the stabilised line pc in ∆. So by Definition 3.3.4 it corresponds to a stabilised plane and these1383

lines of p⊥ ∩ q⊥ are consequently also stabilised, which proves the claim. But by Proposition 5.9.41384

of [34], symplectic quadrangles not over a field of characteristic 2 don’t have (proper and thick)1385

ideal subquadrangles. So p⊥ ∩ q⊥ is pointwise fixed and with Lemma 3.2.3 θ must be the identity,1386

a contradiction. �1387

Lemma 3.3.7. If a collineation of a polar space C3,1(A,K), with A a separable quadratic extension1388

of K or a quaternion division algebra over K, fixes exactly a sub polar space C3,1(B,K), with1389

dimB(A) = 2; then it is a generalised Baer collineation.1390

Proof. Property (iii) of Definition 3.3.4 is trivially satisfied and Property (i) holds by Exam-1391

ple 3.3.2. So we must only prove the second property, i.e. that every plane from C3,1(A,K) through1392

a line L from C3,1(B,K) is in fact a plane of C3,1(B,K). Recall that C3,1(A,K) is the hermitian1393

polar space in PG(5,A) with point set1394

x−3x3 + x−2x2 + x−1x1 ∈ K.
So by choosing a coordinatisation so that L = 〈e−1, e−2〉, we see that every plane corresponds to1395

a unique point collinear with the opposite line L′ = 〈e1, e2〉 and that are exactly the points of the1396

form 〈e−3 + ke3〉, with k ∈ K. As these points are independent from A, these planes through L1397

are exactly the same in C3,1(A,K) as in C3,1(B,K), which concludes the proof. �1398

Letting the automorphism θc defined in Example 3.3.2 act on the (affine) coordinates of C3,1(A,K)1399

as given in [6] produces examples of generalised Baer collinations.1400

3.4. Two lemmas for inseparable polar spaces. Certain examples of domestic collineations of1401

separable metasymplect spaces will have no analogue in the inseparable case. The main reason is1402

the next lemma. Also, in the inseparable case the metasymplectic spaces Γ1 and Γ4 both play the1403

same role, so we will have to recognise certain examples through the dual setting. Proposition 3.4.21404

will be used to recognise products of central elations in Γ1 through products of axial elations of an1405

extended equator geometry in Γ4. Note that it will follow independently from Lemma 3.5.1 that1406
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a central elation does not map any point to a distinct collinear one (because a central elation is1407

clearly line domestic).1408

Lemma 3.4.1. If θ is a collineation of an inseparable polar space ∆ ∼= C3,1(A,K) pointwise fixing1409

a hyperbolic line h and its perp, then θ is the identity.1410

Proof. If A = K, let ∆ be the symplectic polar space in PG(5,A) corresponding to the alternating
form

x−3y3 + x3y−3 + x−2y2 + x2y−2 + x−1y1 + x1y−1,

and if A 6= K, let ∆ be the polar space in PG(5,A) given by

x−3x3 + x−2x2 + x−1x1 ∈ K.

Then we can assume that p−3 = (1, 0, 0, 0, 0, 0) and p3 = (0, 0, 0, 0, 0, 1) are contained in h. So
the matrix corresponding to θ is diagonal and the field automorphism corresponding to θ is trivial
(as this subspace contains a line). Now expressing that also the point (1, 0, 0, 0, 0, 1) is fixed, gives
that the matrix is of the form 

k 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 k

 .

Expressing finally that the points (0, 1, 0, 0, 0, 1) and (1, 0, 0, 0, 1, 0) must stay collinear after ap-1411

plying θ, yields k2 + 1 = 0, which is equivalent to k = 1 in characteristic 2. �1412

Proposition 3.4.2. Let ∆′ be the rank 4 polar space with equation x−4x4+x−3x3+x−2x2+x−1x1 ∈1413

K in PG(7,K′), where K′ is a nontrivial inseparable quadratic field extension of K (necessarily in1414

characteristic 2), i.e. K′2 ≤ K < K′, and let ∆ be the associated ambient symplectic polar space1415

whose point set coincides with the point set of PG(7,K′). Let θ1 and θ2 be two perpendicular central1416

elations of ∆ so that the product θ1θ2 =: θ is a nontrivial collineation of ∆′ with the property that at1417

least one maximal singular subspace through each fixed submaximal singular subspace is stabilised.1418

Then exactly one of the following holds.1419

(i) θ fixes each point collinear with its image and the centres of both θ1 and θ2 are points of ∆′.1420

In this case both θ1 and θ2 act on ∆′ and θ is not the product of two perpendicular axial1421

elations with axes in ∆′.1422

(ii) θ fixes each point collinear with its image and the centres of both θ1 and θ2 do not belong to1423

∆′. Then the fix structure of θ is a generalised quadrangle obtained by intersecting ∆′ with1424

the perp of the line joining the centres of θ1 and θ2.1425

(iii) θ maps some point to a distinct but collinear one and the centres of both θ1 and θ2 belong1426

to ∆′. In this case θ is always a product of two perpendicular axial elations with both axes1427

belonging to ∆′ and a product of two perpendicular axial elations with both axes not belonging1428

to ∆′.1429

(iv) θ maps some point to a distinct but collinear one and the centres of both θ1 and θ2 do not1430

belong to ∆′. In this case θ is the product of two perpendicular axial elations with both axes1431

belonging to ∆′.1432

Proof. We order the coordinates of PG(7,K′) according to increasing indices. Let L be the line1433

joining the centres e1 and e2 of θ1 and θ2, respectively. There are three possibilities.1434
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Remark first that θ is in every case an involution, which can be easily seen by choosing the two1435

centra as first and second base points of ∆. Then the product is a matrix as in (1) below, which1436

is an involution in characteristic 2. Furthermore we see from this matrix that the fixed points of1437

θ are exactly those of L⊥, where ⊥ is the defining polarity of ∆.1438

(1) The line L is a line of ∆′. Then we take e1 = p−4 and e2 = p−3. The matrix of θ looks like1439 
1 0 0 0 k
0 1 0 ` 0
0 0 I4 0 0
0 0 0 1 0
0 0 0 0 1

 , (1)

with k, ` ∈ K \ {0} (as the images of the points p3 and p4 under θ have to belong to ∆′).1440

One calculates that the point (x−4, x−3, . . . , x4) is mapped onto a collinear but distinct point1441

if, and only if, (x3, x4) 6= (0, 0) and kx2
4 = `x2

3. If k` /∈ (K′)2, then the assumptions of (i)1442

are satisfied. We claim that also the conclusions are satisfied. Indeed, θ1 (obtained from the1443

above matrix by setting ` equal to 0) and θ2 (setting k equal to 0) clearly act on ∆′. Suppose1444

now that θ would be a product of two perpendicular axial elations. If θ was the product of1445

two axial elations with intersecting axes, then all points collinear with this intersection point1446

would be mapped to collinear points, hence are fixed, contradicting the fact that θ is not a1447

central elation (indeed, no point on the line p3p4 is fixed as (k, `) 6= (0, 0)). The set of fixed1448

points of the product of two axial elations with nonintersecting collinear axes is precisely the1449

solid spanned by the axes, and so this can never be a geometric subhyperplane. This shows1450

(i).1451

Next suppose that k` ∈ (K′)2. By rescaling, we may assume without loss of generality that1452

k = `. Hence clearly some point is mapped to a distinct collinear point. We claim that we are1453

in Case (iii). Now the matrix of θ equals the product1454 
0 1 0 d 0
1 0 0 0 d
0 0 I4 0 0
0 0 0 0 1
0 0 0 1 0

 ·


0 1 0 d′ 0
1 0 0 0 d′

0 0 I4 0 0
0 0 0 0 1
0 0 0 1 0

 ,

with d+ d′ = k, which induce axial elations with axes 〈(1, 1, 0, 0, 0, 0, 0, 0), (0, d, 0, 0, 0, 0, 1, 1)〉1455

and 〈(1, 1, 0, 0, 0, 0, 0, 0), (0, d′, 0, 0, 0, 0, 1, 1)〉, respectively. Since k ∈ K, it is clear that either1456

both d and d′ belong to K or both do not. This concludes Case (iii).1457

(2) The line L does not belong to ∆′, but has a (unique) point p in common with ∆′. First we1458

prove that it is impossible that p is the centre of one of our central elations. Suppose for a1459

contradiction that p is the centre of θ1. Then projecting e2 onto a solid Σ of ∆′ through p1460

gives a fixed plane π through p. However there are no stabilised solids through this plane, as a1461

central elation with centre e2 does not map any point of Σ \ π to a collinear one (as we noted1462

in the beginning of this subsection), a contradiction to our assumptions.1463

So without loss of generality we may take e1 = (1, 0, . . . , 0, a), with a ∈ K \ K′, p =1464

(0, 1, 0, . . . , 0) and e2 = (1, 1, 0, . . . , 0, a). The matrix of a central elation with centre e1 looks1465

like1466 
1 + a` 0 0 0 `

0 1 0 0 0
0 0 I4 0 0
0 0 0 1 0
a2` 0 0 0 1 + a`

 .
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Indeed, all points collinear to e1 have coordinates of the form (x−4, x−3, . . . , x3, ax−4) and1467

are obviously fixed, expressing that the elation must preserve collinearity gives that the ` on1468

the first row is the same as on the last row and expressing that ∆′ is preserved gives that1469

a+ `−1 ∈ K. Likewise, the following matrix represents an arbitrary central elation with centre1470

e2:1471 
1 + a`′ 0 0 `′ `′

a`′ 1 0 `′ `′

0 0 I4 0 0
0 0 0 1 0
a2`′ 0 0 a`′ 1 + a`′

 .

The product has then as matrix1472 
1 + a(`+ `′) 0 0 `′ `+ `′

a`′ 1 0 `′ `′

0 0 I4 0 0
0 0 0 1 0

a2(`+ `′) 0 0 a`′ 1 + a(`+ `′)

 .

Now θ pointwise fixes the plane 〈p−1, p−2, p−3〉 through p and so it has to stabilise a solid1473

through p. Let q belong to that solid S, and choose q so that it is not collinear to e1. Then qθ1474

belongs to the plane 〈q, L〉, as each projective plane through L is stabilised, since all hyperplanes1475

through L are stabilised as their images under ⊥, i.e. the defining polarity of ∆, are contained1476

in L⊥ and consequently fixed. The plane 〈q, L〉 intersects S in the line pq, so q is mapped to1477

a point on that line and consequently that line is stabilised. A generic point collinear to p has1478

coordinates (x−4, x−3, ∗, 0, x4) and is mapped onto a collinear point if, and only if,1479

(1 + a(`+ `′))x−4x4 + (`+ `′)x2
4 + a2(`+ `′)x2

−4 + (1 + a(`+ `′))x4x−4 = 0,

which is equivalent to1480

(`+ `′)(x4 + ax−4)2 = 0.

As q is not fixed (since it is not collinear to e1 and we remarked at the begin of the proof that1481

all the fixed points are collinear to both centra), we have that x4 + ax−4 6= 0, and so ` = `′.1482

This implies that all points collinear to p are mapped onto collinear ones, once one non fixed1483

point is. Now the matrix of θ becomes1484 
1 0 0 ` 0
a` 1 0 ` `
0 0 I4 0 0
0 0 0 1 0
0 0 0 a` 1

 =


1 0 0 `c 0
`d 1 0 0 `c
0 0 I4 0 0
0 0 0 1 0
0 0 0 `d 1

 ·


1 0 0 `c′ 0
`d′ 1 0 0 `c′

0 0 I4 0 0
0 0 0 1 0
0 0 0 `d′ 1

 ,

as soon as1485 
c+ c′ = 1,

d+ d′ = a,

cd′ + c′d = `−1,

⇐⇒


c′ = 1 + c,

d = `−1 + ac,

d′ = a+ `−1 + ac.

Now the above matrix in c and d is an axial elation with axis spanned by p and the point1486

(c, 0, . . . , 0, d). Hence the axis belongs to ∆′ if and only if cd ∈ K. So if we want θ to be the1487

product of two axial elations of ∆′, then cd ∈ K and c′d′ ∈ K. Examples are given by1488

(c, d, c′, d′) = (1, `−1 + a, 0, `−1) and (c, d, c′, d′) = (a−1`−1, 0, 1 + a−1`−1, a).

This is Case (iv).1489
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(3) The only remaining case is when L has no points of ∆′. In this case θ pointwise fixes the1490

geometric subhyperplane L⊥ ∩∆′. This clearly contains (opposite) lines, but no planes as the1491

span of such a plane and L would be a 4-dimensional singular subspace, a contradiction. If θ1492

mapped a non fixed point p ∈ ∆′ to a collinear one, then the line ppθ would be stabilised (since1493

θ is an involution). No point of that line belongs to L, hence there are fixed points collinear1494

with a unique point of ppθ, implying that ppθ contains a fixed point x. Since x /∈ L, L⊥ * x⊥1495

and we find a second fixed point on ppθ. So ppθ ⊆ L⊥, contradicting that p 6= pθ. Hence1496

the fix structure is exactly L⊥ restricted to ∆′. Since this structure is a subspace of a polar1497

space, not containing planes, but containing two opposite lines, this must be a (nondegenerate)1498

generalised quadrangle. This is Case (ii)1499

This completes the proof of the proposition. �1500

3.5. Domestic collineations in polar spaces. We will also have to deal with domestic collineations1501

of some polar spaces. A lot of properties are proved in [19] and [28], and we will refer to those1502

when needed. We also need a more detailed version of one of the results there, and a new, more1503

specific result for separable orthogonal polar spaces. We prove these two results here.1504

Note that we freely use the notation for opposition diagrams as established in [16]. However, we1505

will always shortly explain when we mention a specific opposition diagram for the first time.1506

Lemma 3.5.1. The set of fixed points of any line-domestic collineation θ of any polar space is a1507

geometric hyperplane. Also, if a point is not fixed, it is mapped onto an opposite one. Each line1508

that is stabilised is pointwise fixed.1509

Proof. If θ is trivial, then so is the assertion. If θ is nontrivial, then Theorem 5.1 of [28] asserts1510

that the set of fixed points is a hyperplane H. Let L be a stabilised, but not pointwise fixed line.1511

Then L contains a unique fixed point x. Since no other point of L is fixed, all fixed points are1512

collinear to x. Take a line M intersecting L not in x and such that M * x⊥. Then M does not1513

contain a fixed point, a contradiction.1514

If now a point x were mapped onto a collinear one, then, since the line xxθ contains a fixed point,1515

that line would be preserved, but not pointwise fixed, contradicting the previous paragraph. �1516

The next proposition will be applied to extended equator geometries in Γ4. Nevertheless we phrase1517

it for general rank as the proof remains the same.1518

First some definitions.1519

Definition 3.5.2. (i) A subhyperplane of a polar space is a subspace that intersects each sin-1520

gular plane nontrivially, and such that some line is disjoint from it.1521

(ii) We say that a subspace (in particular, a hyperplane) of a polar space is nondegenerate (of1522

rank r) if it defines itself a polar space of rank r (hence is not contained in p⊥ for some of1523

its points p).1524

(iii) A skeleton of a polar space of rank r is a set of 2r points with the property that each of these1525

points is opposite a unique other point of the set. Equivalently, it is the set of points of an1526

apartment.1527

(iv) A generalised homology in a polar space of rank r is a collineation that pointwise fixes a1528

skeleton and also (pointwise fixes) at least one line determined by two collinear points of the1529

skeleton.1530
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Proposition 3.5.3. Let θ be a plane-domestic and solid-domestic nontrivial collineation of a1531

separable orthogonal polar space ∆ = (Q,L ) of rank r ≥ 4. Then exactly one of the following1532

holds.1533

(1) θ is point-domestic and is an axial elation;1534

(2) θ is line-domestic and the set of fixed points is a nondegenerate geometric hyperplane,1535

necessarily of rank r or r − 1;1536

(3) θ is neither point-domestic nor line-domestic and exactly one of the following holds.1537

(i) θ is the product of two perpendicular axial elations;1538

(ii) θ is a generalised homology;1539

(iii) θ fixes a nondegenerate subspace of rank r − 2 or r − 1 which is at the same time a1540

geometric subhyperplane.1541

Proof. Since θ does not map planes and solids to opposites, the opposition diagram is one of B1
n;11542

(there is a point mapped to an opposite one, no element of another type is mapped to an opposite1543

one), B2
n;1 (there is a line mapped to an opposite one, no element of another type is mapped to an1544

opposite one) or B1
n;2 (there is a point-line flag mapped to an opposite one, no element of another1545

type is mapped to an opposite one), by Corollary 4 of [16].1546

• The opposition diagram is B1
n;1.1547

Then θ is line-domestic and so, by Lemma 3.5.1, the fixed points form a geometric hyper-1548

plane H. Assume for a contradiction that H is not nondegenerate. Then θ is a central1549

elation, which must be the identity by Lemma 3.2.4, a contradiction. So H is nondegener-1550

ate and this now leads to (2).1551

• The opposition diagram is B2
n;1.1552

Then θ is point-domestic. It follows from Proposition 3.11 in [19] that θ is an axial elation.1553

This is (1).1554

• The opposition diagram is B1
n;2.1555

By Theorem 6.1 of [28] θ pointwise fixes a subhyperplane S of ∆. The subspace 〈S〉1556

viewed in the ambient projective space Ω has codimension 2 (by Lemma 3.1.2(i)). By the1557

assumption of the nondegeneracy of the underlying polarity ρ, the subspace L := 〈S〉ρ is1558

a line. There are now four possibilities.1559

– L ∈ L .1560

Then θ is an axial elation by Lemma 3.2.7 and hence point-domestic, contradicting1561

the opposition diagram.1562

– |L ∩Q| = 2.1563

Set {p, q} = Q∩L. Hence S = p⊥ ∩ q⊥ is pointwise fixed. There are two possibilities.1564

∗ The points p and q are interchanged by θ, that is, pθ = q and qθ = p.1565

We may assume that p = p1 and q = p2 for a basis (p1, p2, . . .) where Q has1566

equation X1X2+X3X4+. . . = 0. Since Q is preserved and p⊥∩q⊥ is fixed point-1567

wise, one checks that θ acts on the coordinates as follows: (x1, x2, x3, x4, . . .) 7→1568

(ax2, a
−1x1, x3, x4, . . .), with a ∈ K×. It follows that the points with coordi-1569

nates (ax1, x1, x3, x4, . . .) are fixed. Hence θ fixes a hyperplane pointwise and1570

consequently θ is line-domestic, contradicting the opposition diagram.1571

∗ The points p and q are fixed.1572

Choosing a skeleton in p⊥∩ q⊥, we can complete it to a skeleton in ∆ pointwise1573

fixed by θ. By considering some pointwise fixed line in p⊥ ∩ q⊥, we see that θ1574

is a generalised homology. This implies Case (3)(ii).1575

– L ∩Q = {p}.1576

Select q ∈ L \ {p} and choose x ∈ (Q ∩ p⊥) \ qρ. Then the plane 〈x, L〉 intersects Q1577
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in a pair of lines, as it is a conic containing a line (M := px) and a point not on that1578

line (on qx different from x, since qx is not a tangent). Since x and q are contained1579

in pρ (note that L is a tangent since it intersects Q in exactly one point), we deduce1580

that the second line M ′ in the intersection of that plane with Q contains p. Choose1581

z ∈ Q \ p⊥. Then the solid 〈z, x, L〉 intersects Q in a hyperbolic quadric Q′ (as it1582

contains two intersecting lines and a point opposite to their intersection). Moreover,1583

Q′⊥ ⊆ Lρ = 〈S〉, so that we can choose the basis in such a way that Q has equation1584

X1X2 + X3X4 + X5X6 + · · · = 0, with {p1, p2, p3, p4} ⊆ 〈x, z, L〉, and the subspace1585

〈p5, p6, . . .〉 pointwise fixed by θ. We can also assume p = p3 and q = (a, b, 0, 0, . . .),1586

a, b ∈ K×. The action of θ on the coordinates xi, i ≥ 5, is trivial and consequently1587

also the corresponding field automorphism is trivial. So we may concentrate on the1588

(matrix-)action of θ on (x1, x2, x3, x4). After some elementary calculations, expressing1589

that p and the points with coordinates (a,−b, 0, 0, ∗, ∗, . . .) belong to Lρ, and that θ1590

preserves the quadric Q, we see that there are two possibilities.1591

∗ Case 1: θ is of the form
x1

x2

x3

x4


θ

=


1 0 0 −a
0 1 0 −b
b a 1 −ab
0 0 0 1



x1

x2

x3

x4



=


1 0 0 −a
0 1 0 0
0 a 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 −b
b 0 1 0
0 0 0 1



x1

x2

x3

x4

 .

In this case θ is the product of two axial elations with respective axes x2 = x4 =1592

x5 = . . . = 0 and x1 = x4 = x5 = . . . = 0, by Lemma 3.2.7. It is clear that these1593

axes intersect in the point p, and that they are not coplanar. Hence, according1594

to Definition 3.2.5, the axial elations are perpendicular. We are in Case (3)(i).1595

∗ Case 2: θ is of the form
x1

x2

x3

x4


θ

=


0 −ab−1 0 a

−ba−1 0 0 b
b a 1 −ab
0 0 0 1



x1

x2

x3

x4

 .

Now θ is clearly an involution fixing all points of a hyperplane whose coordinates1596

satisfy bx1 +ax2 = abx4. Hence θ is line-domestic, contradicting the opposition1597

diagram.1598

– L ∩Q = ∅.1599

Since Lρ = 〈S〉 has codimension 2 in Ω, the singular subspaces contained in S have1600

maximal dimension at least r − 3. Suppose for a contradiction that S is degenerate,1601

say S ⊆ s⊥, for some s ∈ S. Since L∩Q = ∅, obviously s /∈ L and so 〈L, s〉 is a plane.1602

But S ⊆ 〈L, s〉⊥, and as the latter spans a subspace of codimension 3, we obtain a1603

contradiction. Hence S is nondegenerate.1604

∗ If S has rank r, then selecting the points of a skeleton in two pointwise fixed1605

opposite singular subspaces of dimension r−1, we see that θ is a homology, and1606

we are in Case (3)(ii).1607

∗ If S has rank r − 1 or r − 2, then we deal with Case (3)(iii).1608

The proposition is proved. �1609
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4. Domesticity of certain collineations1610

Here we show that the relevant collineations of the Main Result are actually domestic with given1611

opposition diagram.1612

4.1. Central elations and products.1613

Proposition 4.1.1. A nontrivial central elation θ in a metasymplectic space Γi is a domestic1614

collineation with opposition diagram Fi4;1.1615

Proof. Let θ be a central elation in Γi with centre c. Then θ is symp-domestic as every symplecton1616

contains at least one point symplectic to c, which is fixed by the definition of a central elation. So1617

it follows from Table 2 that the opposition diagram is Fi4;1.1618

�1619

Proposition 4.1.2. The product of two perpendicular central elations in Γ1 is a domestic collineation1620

with opposition diagram F4;2.1621

Proof. Let θ be the product of two perpendicular central elation θ1, θ2 in Γ1. Denote by cj the1622

centre of θj , j = 1, 2 and set ξ := ξ(c1, c2). First we prove that θ maps a point to an opposite one.1623

Let ζ be a symplecton though c1 locally opposite ξ and let p be a point in ζ opposite c2. Then1624

p is mapped to an opposite point since it is preserved by θ1 and mapped to an opposite by θ2 by1625

Lemma 6.5.1.1626

Now we claim the dual, i.e. that θ maps a symplecton to an opposite one. Let ζ ′ be a symplecton1627

opposite ξ. Denote the projection of cj on ζ ′ by xj , j = 1, 2. By the previous paragraph, θ1 maps1628

ζ ′ to a symplecton ζ ′′ locally opposite ζ ′ through x1, that is, ζ ′ and ζ ′′ are symplectic. As x1 is not1629

collinear to x2 (since c1 is not collinear to c2), it is opposite c2. Consequently, ζ ′′ is far from c2.1630

Then θ2 maps ζ ′′ again to a symplecton ζ ′′′ locally opposite ζ ′′ through the projection of c2 onto1631

ζ ′′. Now by the dual of Axiom 2.4.5(2), the symplecton ζ ′ is opposite the symplecton ζ ′′′ = ζ ′θ.1632

Finally we claim that θ maps no plane to an opposite. Let π be a plane. Note that every symplecton1633

collinear to ξ is stabilised. Now every plane corresponds to a line in the dual and consequently,1634

by the dual of Corollary 2.5.2, either there exists a symplecton through π collinear to ξ or there1635

exist two (mutually) collinear symplecta ζ1, ζ2 with π ⊆ ζ1 and ζ2 collinear to ξ. In the first case1636

it is clear that π cannot be mapped to an opposite plane, so suppose we are in the second case.1637

Denote by π′ the intersection of ζ1 and ζ2. By the dual of Corollary 2.5.3, it suffices to prove that1638

π′ is not mapped to an opposite plane in ζ2.1639

First note that θj , j = 1, 2, induces in ζ2 an axial collineation, as immediately follows from1640

Definitions 2.11.8(i) and 3.2.5 (possibly trivial, in particular when cj ∈ ζ2) with axis c⊥j ∩ ζ2.1641

Hence θ induces in ζ2 the product of two axial collineations. If their axes coincide, we see that θ1642

acts point-domestically on ζ2 and by the possible opposition diagrams of B3,1 in Corollary 4 of [16]1643

it must also act plane-domestically. So suppose now that these axes intersect in a point (they are1644

of course contained in the plane ξ ∩ ζ2). Then this point is collinear to a line L of π′ and this line1645

is consequently mapped to an intersecting line. This proves that π′ is not mapped to an opposite1646

plane in ζ2.1647

The above claims prove the statement, recalling the possible opposition diagrams of Table 2. �1648
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4.2. The fix structure is a generalised quadrangle.1649

Proposition 4.2.1. Let θ be a collineation of a metasymplectic space Γi such that its fix structure1650

consists of points and symplecta only, and these form a generalised quadrangle. Assume additionally1651

that the set of fixed points in some symplecton forms an ovoid and dually, the fixed symplecta1652

through some point form an ovoid in the residue. We also assume that these ovoids in the symplecta1653

or point residuals isomorphic to C3,1(A,K) are closed under taking the hyperbolic line through two1654

distinct points. Then θ is domestic with opposition diagram F4;2.1655

Proof. We argue in Γ4.1656

Let ξ and ξ′ be two fixed symplecta in Γ4 sharing no fixed points. Then ξ and ξ′ are disjoint1657

(otherwise the intersection is fixed, and the intersection is either a plane or a point). If ξ and ξ′ are1658

not opposite, then the unique symplecton intersecting both ξ and ξ′ in respective planes is fixed,1659

and so are these planes, a contradiction. Hence ξ and ξ′ are opposite. Using projections, we now1660

see that the fixed points in each fixed symplecton form an (isomorphic) ovoid. Also the dual holds.1661

Now let, for a contradiction, C be a chamber of Γ4 mapped onto an opposite chamber Cθ. Let1662

p ∈ C be a point. We first claim that there is a fixed point f opposite p. Indeed, remark that p1663

cannot be contained in a fixed symplecton, as it is mapped to an opposite point by assumption. So1664

now p is close or far from any fixed symplecton. Suppose that p is close to some fixed symplecton1665

ξ, then ξ contains a fixed point q special to p, as an ovoid can never be collinear to a point1666

(Lemma 3.1.3). Now another fixed symplecton through q must be far from p, as the centre c(p, q)1667

is not contained in this symplecton. So p is far from at least one fixed symplecton ζ. Again by the1668

fact that an ovoid cannot be collinear to a point, we see that ζ contains a fixed point f opposite p1669

and the claim is proved.1670

We now claim that p is symplectic to two mutually opposite fixed points. By the previous para-1671

graph, we may assume that some fixed point f is opposite p. Consider an arbitrary fixed symplecton1672

ξ through f , then p must be far from ξ. So there is a unique point x ∈ ξ symplectic to p. If x1673

is fixed for at least two choices of ξ through f , then the claim again follows (since a generalised1674

quadrangle does not contain triangles). So we may assume that x is not fixed. Then p is special1675

to at least two fixed points x1, x2 of ξ. Let Li be the unique line containing xi, i = 1, 2, and1676

containing ponxi. Then, by assumption, there is at least one fixed symplecton ξi containing Li.1677

Now p is close to ξi for all i ∈ {1, 2} and it is clear that each ξi contains at least two fixed points1678

ai, bi symplectic to p (note that p⊥ ∩ ξi can not have fixed points and then we can look at the1679

fixed points in two locally opposite planes through this line). It is also obvious that the symplecta1680

ξ1 and ξ2 are opposite as a generalised quadrangle does not contain triangles. Now a1 can’t be1681

symplectic to both a2, b2 in the generalised quadrangle and so we find two mutually opposite fixed1682

points symplectic to p.1683

Hence let x1, x2 be two opposite fixed points symplectic to p. Then x1, x2 ∈ E(p, pθ), and hence1684

Ê := Ê(x1, x2) = Ê(p, pθ) is fixed by θ. Let S be a “solid” of Ê. We claim that S contains a1685

fixed point. Indeed, we may assume that S does neither contain x1, nor x2. Let S1 be the solid1686

of Ê generated by x1 and the plane π1 := x⊥⊥1 ∩ S. Let π be the plane x⊥⊥2 ∩ S1 of Ê, but also of1687

E(x1, x2). Then, by definition of E(x1, x2), there exists a line L1 3 x1 such that π is the set of1688

points symplectic to x2 and contained in a symplecton through L1. By assumption, there exists a1689

unique symplecton ξ1 ⊇ L1 fixed under θ. Since x2 is also fixed, the unique point x ∈ ξ1 symplectic1690

to x2 is also fixed and belongs to π. Again by assumption, each point of the hyperbolic line h1691

through x1 and x, is fixed. By definition of Ê(x1, x2), it is a line of the polar space, contained in1692

S1, and so it contains a point y ∈ π1 ⊆ S. Our claim is proved.1693
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Now let L be the line in the chamber C. As above, it defines a plane α in E(p, pθ), and hence a1694

solid S of Ê generated by α and p. The previous paragraph yields a fixed point x ∈ S. Hence the1695

symplecton ξ(p, x) is mapped onto ξ(pθ, x), which implies x ∈ α. Consequently, the symplecton1696

ξ(p, x) contains L. This, in turn, implies that x is collinear to a point y of L. So the point y ∈ L is1697

close to ξ(x, pθ) = ξ(x, p)θ and therefore cannot be opposite any point of it; in particular it is not1698

opposite any point of Lθ. But then L and Lθ are not opposite, the final contradiction implying1699

that θ is domestic.1700

Now we claim that the opposition diagram is F4;2. Let ξ be a fixed symplecton. As θ does not fix a1701

geometric hyperplane in ξ, but only a geometric subhyperplane, the contraposition of Lemma 3.5.11702

implies that θ is not line-domestic in ξ. Then let L be a line of ξ mapped to an opposite line of1703

ξ. Then a point x of Γ4 collinear to L, but not contained in ξ is mapped to an opposite one by1704

Corollary 2.5.4. Dually there is also a symplecton mapped to an opposite one, which concludes1705

the proof. �1706

4.3. When an apartment is pointwise fixed.1707

Proposition 4.3.1. (i) If in Class (K), the collineation θ of F4,4(K,K) has fix structure an1708

extended equator geometry and its tropics geometry, then θ has opposition diagram F4
4;1.1709

(ii) If in Class (L), the collineation θ of F4,1(K,L) has fix structure a metasymplectic (sub)space1710

canonically isomorphic to F4,1(K,K), then θ has opposition diagram F4
4;1.1711

(iii) If in Class (L), the collineation θ of F4,4(K,L) has fix structure an extended equator ge-1712

ometry and its tropics geometry, then θ has opposition diagram F4;2.1713

(iv) If in Class (H), the collineation θ of F4,1(K,H) has fix structure a metasymplectic (sub)space1714

canonically isomorphic to F4,1(K,L), with L a separable quadratic extension of K contained1715

in H as a 2-dimensional subalgebra and pointwise fixed under some automorphism of A,1716

then θ has opposition diagram F4;2.1717

Proof. We first claim that in Cases (i) and (iii) every fixed symplecton in Γ4 has as fix structure1718

a hyperbolic line and its perp. Let ξ be a fixed symplecton intersecting the fixed extended equator1719

geometry Ê, then θ clearly fixes the hyperbolic line, say h(x, y), appearing as intersection ξ ∩ Ê1720

(see Lemma 2.6.18) and the perp of this hyperbolic line, i.e. x⊥ ∩ y⊥ =: S, as all these points1721

are contained in T̂ . Suppose now that there is some other point z also fixed. This point cannot1722

be contained in Ê, again by Lemma 2.6.18, so it must be contained in T̂ . If z ⊥ S, it would1723

be contained in h(x, y), so we may pick s ∈ S not collinear to z. Then ξ = ξ(z, s) and by1724

Proposition 2.7.6 (ii), the hyperbolic line β(z)∩ β(s) must be contained in this symplecton, again1725

a contradiction. Now suppose that ξ is a fixed symplecton not containing a point of Ê. Pick1726

arbitrarily two opposite points p, q ∈ Ê and extend an apartment of E(p, q) as in Lemma 2.11.4 to1727

an apartment of Γ4 containing p and q. Note that all the 24 symplecta in this apartment contain1728

a point of Ê and have consequently a fix structure as described above. So by projection, it suffices1729

to prove that ξ is opposite some symplecton of Λ. But that is exactly the dual of Lemma 2.11.5.1730

We now claim that the fixed points in a fixed symplecton of Γ1 form a hyperplane in Cases (i)1731

and (ii) and they form a subhyperplane in Case (iii) and (iv). In Cases (ii) and (iv) this follows1732

quite easily: Denote by ζ ′ the fix structure in a fixed symplecton ζ. In Case (ii) we have that1733

ζ ′ ∼= B3,1(K,K) is clearly a geometric hyperplane of ζ ∼= B3,1(K,L) by Definition 2.3.1 and the fact1734

that dimK(L) − dimK(K) = 1. In Case (iv) we have that ζ ′ ∼= B3,1(K,L) is clearly a geometric1735

subhyperplane of ζ ∼= B3,1(K,H) by Definition 2.3.1 and the fact that dimK(H)− dimK(L) = 2. In1736

Cases (i) and (iii), we look at the dual space Γ4. A fixed symplecton ζ of Γ1 corresponds to a fixed1737

point z of Γ4, which must lie in the fixed extended equator geometry or its corresponding tropics1738
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geometry. If z is contained in Ê, then every symplecton through z is stabilised by Lemma 2.6.181739

and consequently every point in ζ is fixed. If z is contained in T̂ , the set of symplecta containing1740

a hyperbolic line of β(z) define a polar space isomorphic to a Klein quadric (that is, a hyperbolic1741

quadric in PG(5,K)), taking Lemma 2.7.1 into account. Remark that all these symplecta also1742

contain the point z, so they form a subspace of the residue of z, which is B3,1(K,A). If A = K, this1743

is a quadric in PG(6,K), and if A is a quadratic field extension over K, this is a quadric in PG(7,K).1744

So by dimensional arguments, the fixed Klein quadric is a geometric hyperplane in the first case and1745

a geometric subhyperplane in the second case. We now claim that no other symplecton through1746

z can be fixed. Indeed, every such symplecton must contain a fixed point symplectic to z by the1747

first paragraph. This point cannot be contained in Ê by Lemma 2.7.4. So every fixed symplecton1748

through z is of the form ξ(z, z′), with z′ ∈ T̂ . Such a symplecton then contains β(z) ∩ β(z′) and1749

is consequently contained in the Klein quadric described before. This proves the claims and hence1750

every plane of a fixed symplecton contains a fixed point.1751

Dually we claim that in every fixed symplecton of Γ4 each plane contains a fixed point. For Cases1752

(i) and (iii) this follows immediately from the first paragraph, noticing that, with the notation of1753

that paragraph, x⊥∩y⊥ is a subhyperplane. For Cases (ii) and (iv), the symplecta are isomorphic1754

to C3,1(A,K) and the fix structure is a (canonical) sub polar space C3,1(B,K) (with dimB(A) = 2).1755

Then from Lemma 3.3.7 we infer that θ induces in this residue a generalised Baer collineation.1756

Theorem 7.1 of [28] implies that every plane of this residue contains a fixed point, which proves1757

the claim.1758

If the fix structure in some symplecton of Γi is not a hyperplane, then as in the previous proposition,1759

we can use Corollary 2.5.4 and Lemma 3.5.1 to conclude that some point of Γi is mapped onto an1760

opposite. Hence the previous paragraphs already show that, if θ is domestic, then the opposition1761

diagram is F4;2 in Cases (iii) and (iv), and either F4;2 or F4
4;1 in Cases (i) and (ii). So it suffices to1762

show that, in Cases (i) and (ii) no point of Γ1 is mapped onto an opposite, and in the other cases,1763

no point-line flag of Γ1 is mapped onto an opposite.1764

To that purpose, let p be any point of Γ1. If p is contained in a fixed symplecton, then it cannot1765

be mapped onto an opposite, nor can any line through it be mapped onto an opposite.1766

We now assume that p is not contained in any fixed symplecton. We claim that p is close to some1767

fixed symplecton ξ of Γ1. By assumption we know that there is some pointwise fixed line and so we1768

find a fixed point x special, symplectic or collinear to p. Suppose first that p and x are collinear.1769

Then p is close to any fixed symplecton through x (which exists in abundance by the first part of1770

the proof). Suppose now that p and x are at distance 2 and let L be a line through x containing1771

a point collinear to p. By the third claim above, there is a fixed symplecton ξ containing L. Since1772

p is collinear to some point of L, it is close to ξ and the claim is proved.1773

Now set K := ξ∩p⊥. In Cases (i) and (ii), the line K has a fixed point by the second claim. Hence1774

pθ is at distance at most 2 from p for every point p and this shows (i) and (ii) by the possible1775

opposition diagrams in Table 2.1776

Now assume we are in Case (iii) or (iv). Let P be any line through p and assume that {p, P} is1777

mapped onto an opposite flag. Since every plane in ξ through K contains a fixed point, by the1778

second paragraph, we can select a fixed point y in ξ collinear to K. Set ζ := ξ(p, y). Suppose1779

first that P is contained in ζ. Then the projection of P θ from pθ onto p is not locally opposite P ,1780

as both are contained in ζ (as the projection is an isomorphism and ξ(pθ, y) is projected onto ζ).1781

Hence by Lemma 2.8.7 the lines P and P θ are not opposite. Now suppose that P is not contained1782

in ζ. Then there is a unique line P ′ in ζ coplanar with P and by the first part of the proof we find1783

a fixed symplecton ξ′ containing y and some point u′ of P ′. Note that P is collinear to u′, and1784
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consequently we find a symplecton ζ ′ containing P and intersecting ξ′ in a plane α′ (indeed, set1785

ζ ′ = ξ(p, b), with a ∈ P \ {p} and b ∈ (ξ′ ∩ a⊥) \ {u′}). Let y′ be a fixed point in α′ and let w ∈ P1786

be collinear to y′ (w exists since y′ and P are contained in the same polar space ζ ′). Again, there1787

exists a fixed symplecton through wy′, and this implies that w and wθ are contained in the same1788

symplecton, contradicting the assumption that P θ is opposite P .1789

Hence no point-line flag is mapped onto an opposite and so θ is domestic. As argued above, this1790

proves all assertions. �1791

5. Proof of the Main Result1792

In this section we classify all domestic collineations of Γi. There are two levels of preparations: First1793

we prove some general properties of collineations (Section 5.1), mainly to be able to recognise some1794

specific (domestic) collineations in a geometric way. Secondly, we prove some general properties of1795

domestic collineations (Section 5.2), mainly to restrict the displacement of points and symplecta,1796

to derive other geometric properties of domestic collineations and to allow us to use the results on1797

polar spaces by reducing to equator and extended equator geometries.1798

5.1. Some general properties of collineations of metasymplectic spaces.1799

Lemma 5.1.1. Let θ be a collineation of the metasymplectic space Γi that fixes some point c and1800

all the points collinear or symplectic to c. Then θ is a central elation of Γi with centre c. Also, θ1801

induces an axial elation in every symplecton close to c.1802

Proof. Using Corollary 2.5.2 and Definition 2.11.8, it suffices to prove that every line with exactly1803

one point collinear to c and all the other points special to c is stabilised. Let M be such a line,1804

with m the unique point collinear to c and denote by ξ a symplecton through M . Then c is close1805

to ξ and by taking two locally ξ-opposite planes through c⊥ ∩ ξ in ξ, we get two symplectic fixed1806

points in ξ and hence ξ is stabilised. By the arbitrariness of ξ, we see that M is stabilised.1807

The argument in the previous paragraph shows that every symplecton ξ close to c is stabilised. By1808

the definition of central elation, all lines of ξ meeting c⊥ ∩ ξ are stabilised and so the last assertion1809

follows. �1810

Lemma 5.1.2. Let θ be a central elation of a metasymplectic space Γi with centre c. If θ fixes one1811

more point q (special to or opposite c), then θ is the identity.1812

Proof. If q is special to c, then it lies on a line L containing a point collinear to c. Let L′ be1813

opposite L and also containing a point collinear to c. Then also the point q′ ∈ L′ special to q is1814

fixed, and so is the point c(q, q′), which is opposite c. So we may assume that q is opposite c.1815

Using Lemma 2.11.4 with respect to c, q and E(c, q), we find a pointwise fixed apartment containing1816

c. Since also all points symplectic to c are fixed, we deduce from Theorem 4.1.1 of [31], see also1817

Theorem 6.3.1, that θ is the identity. �1818

Lemma 5.1.3. Let Γ4 be a separable metasymplectic space. Then there are no nontrivial central1819

elations in Γ4.1820

Proof. Let θ be a central elation of Γ4 with centre c. The last assertion of Lemma 5.1.1 combined1821

with Lemma 3.2.9 yields the trivial action of θ on each symplecton close to c. Consequently also1822

all points special to c are fixed. Either using Lemma 5.1.2, or directly showing that also all points1823

of Γ4 opposite c are fixed (which is easy), we conclude that θ is the identity. �1824
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Lemma 5.1.4. Let p, q be opposite points of Γ1. Let {x, y} be a pair of opposite points in E(p, q)1825

and let ξ be a symplecton through p intersecting E(p, q) in a point z ∈ x⊥⊥ ∩ y⊥⊥.1826

(i) Each collineation pointwise fixing E(p, q) ∪ (E(x, y) ∩ ξ) is a central elation with centre p.1827

(ii) Each collineation pointwise fixing E(p, q) ∪ ξ is a central elation with centre p.1828

(iii) Each collineation pointwise fixing {q} ∪ E(p, q) ∪ (E(x, y) ∩ ξ) is the identity.1829

(iv) Each collineation pointwise fixing the union of the two “perpendicular” equator geometries1830

E(p, q) and E(x, y) is the identity.1831

Proof. Under the hypotheses of (i), we have to show that the said collineation θ pointwise fixes1832

{p} ∪ p⊥ ∪ p⊥⊥. We first claim that θ pointwise fixes ξ, thus reducing (i) to (ii). Indeed, since1833

θ pointwise fixes E(p, q), it stabilises each symplecton through p, and so it stabilises every line1834

through p. Hence, by projecting, it stabilises every line through z, and so it fixes p⊥∩z⊥ pointwise.1835

Since {p, z} ⊆ {x, y}⊥⊥, the points x and y are close to ξ and so, if we denote L = x⊥ ∩ ξ and1836

M = y⊥ ∩ ξ, we see that E(x, y) ∩ ξ = L⊥ ∩M⊥.1837

By definition the symplecta of Γ1 are polar spaces B3,1(K,A) and we can look at this situation1838

in the ambient projective space PG(`,K) of ξ corresponding to the universal embedding. This is1839

a projective space of dimension ` ≥ 6. The subspace U1 generated by p⊥ ∩ z⊥ has dimension1840

`− 2 and is pointwise fixed; the set L⊥ ∩M⊥ spans a subspace U2 of dimension `− 4 and is also1841

fixed pointwise. By the Grassmann identity, and since U1 ∪ U2 spans PG(`,K) (because this span1842

contains z, p and z⊥ ∩ p⊥), these spaces intersect in a subspace of dimension ` − 6. Hence they1843

share a point and so θ fixes ξ pointwise. The claim is proved.1844

Now, if ξ′ is a symplecton through p intersecting ξ in a plane, denote z′ := ξ′ ∩ E(p, q); then1845

similarly p⊥ ∩ z′⊥ is fixed pointwise and since the plane ξ ∩ ξ′ is pointwise fixed, Corollary 3.2.31846

implies that also ξ′ is pointwise fixed. By connectivity of the residue at p, we conclude that1847

every symplecton through p is pointwise fixed, which concludes the proof of the first assertion by1848

Lemma 5.1.1. The other assertions (iii) and (iv) now follow from Corollary 5.1.2. �1849

Lemma 5.1.5. Let p, q be opposite points of Γ4.1850

(i) Each collineation pointwise fixing E(p, q) and a symplecton ξ that contains p is a central1851

elation with centre p (and hence trivial in the separable case).1852

(ii) Each collineation pointwise fixing Ê(p, q) and a symplecton that intersects Ê(p, q) nontrivially1853

is the identity.1854

(iii) Each collineation pointwise fixing Ê(p, q) is the identity as soon as we are in the inseparable1855

case.1856

Proof. First assume that θ is a collineation pointwise fixing E(p, q) and a symplecton ξ that contains1857

p. Copying the proof of Lemma 5.1.4(ii) we find that θ pointwise fixes each symplecton through1858

p; hence Lemma 5.1.1 implies (i).1859

Now assume θ pointwise fixes Ê(p, q) and some symplecton ξ that intersects Ê(p, q) nontrivially.1860

We may assume p ∈ ξ. Then (i) imlies that θ is a central eleation with centre p, and since also q1861

opposite p is fixed, Lemma 5.1.2 shows that θ is the identity.1862

Suppose now that we are in the inseparable case and that θ pointwise fixes Ê(p, q). To prove (iii),1863

it suffices to show that θ pointwise fixes some symplecton with nontrivial intersection with Ê(p, q).1864

Let ξ be a symplecton containing p. Then by Lemma 2.6.18, the intersection ξ ∩ Ê(p, q) =: h is1865

a hyperbolic line. Now each point of h⊥ belongs to T̂ (p, q) and is hence fixed. Now Lemma 3.4.11866

concludes the proof. �1867



METASYMPLECTIC SPACES 49

The next lemma does not hold in the separable case as the constructions in Proposition 6.5.2 are1868

counterexamples, with an induced trivial axial elation.1869

Lemma 5.1.6. A collineation of an inseparable metasymplectic space Γ1, which induces an axial1870

elation θ in an extended equator geometry of Γ4, is a central elation.1871

Proof. Let θ have axis A, contained in the unique symplecton ξ of Γ4. Since all hyperbolic lines1872

of the extended equator geometry, and hence all symplecta of Γ4, sharing a point with A are1873

stabilised, all planes of ξ through any point of A are stabilised. This implies that A⊥ is pointwise1874

fixed. Since also A is pointwise fixed, Lemma 3.4.1 implies that ξ is pointwise fixed. Let a be the1875

point of Γ1 corresponding to ξ. Then we just argued that all symplecta through a are stabilised.1876

Now let B be an arbitrary “line” opposite A in the extended equator geometry, and let b be the1877

point of Γ1 corresponding to B. Then Bθ is clearly contained in the regulus defined by A and1878

B. Corollary 2.10.3 implies that bθ ∈ I (a, b) and so E(a, b) = E(a, bθ). Together with what we1879

proved in the first paragraph this implies that E(a, b) is pointwise fixed.1880

By the definition of axial elation, all symplecta in Γ4 through an arbitrary point of A are stabilised;1881

hence the corresponding symplecton in Γ1, which contains a, is pointwise fixed. Lemma 5.1.5(i)1882

completes the proof. �1883

5.2. Some general properties of domestic collineations of metasymplectic spaces. We1884

now finally come to the core of tis paper: proving properties of domestic collineations that will1885

allow us to classify these objects.1886

Lemma 5.2.1. A domestic collineation θ of any metasymplectic space Γi does not map any point1887

to a special one. In particular, it (dually) induces in each fixed symplecton a plane-domestic1888

collineation.1889

Proof. Suppose for a contradiction that θ maps a point x to a special point xθ and set p = c(x, xθ).1890

Let L be a line through x locally opposite both xp and xpθ
−1

. This line corresponds to a plane1891

in the polar space ResΓi(x) opposite the planes corresponding to xp and xpθ
−1

. Such a plane1892

exists in a thick polar space of rank 3 (this is an easy exercise on the theory of polar spaces, or1893

use Proposition 3.30 in [31]). Now every point of L \ {x} is special to p. By Lemma 2.5.3, every1894

such point is opposite xθ and similarly x is opposite every point of Lθ \ {xθ}. We conclude, with1895

Definition 2.8.1(2), that L is opposite Lθ, which contradicts the possible opposition diagrams for1896

domestic collineations in Table 2.1897

Suppose some plane π of a fixed symplecton ξ is mapped onto a ξ-opposite one. Then each1898

symplecton ζ distinct from ξ through π is mapped onto a special symplecton contradicting the dual1899

of the first statement. Remark that ζ and ζθ are indeed disjoint as a point in their intersection1900

would also be contained in ξ, since it would be collinear to a symplectic pair of points from π and1901

πθ. �1902

Corollary 5.2.2.1903

(i) If a symplecton ξ is mapped onto an adjacent symplecton ξθ by a domestic collineation θ1904

of a metasymplectic space Γi, then1905

(a) the intersection ξ ∩ ξθ of the two symplecta is fixed pointwise;1906

(b) at least one symplecton containing ξ ∩ ξθ is fixed.1907

(ii) If a point p is mapped onto a collinear point pθ by a domestic collineation θ of a metasym-1908

plectic space, then1909
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(a) all planes and symplecta containing the line ppθ are stabilised by θ (in particular the1910

line ppθ is stabilised);1911

(b) at least one point on the line ppθ is fixed.1912

(iii) If a symplecton ξ is mapped onto a symplectic symplecton ξθ by a domestic collineation θ1913

of a metasymplectic space, then the intersection point ξ ∩ ξθ of the two symplecta is fixed.1914

(iv) If a point p is mapped onto a symplectic point pθ by a domestic collineation θ of a meta-1915

symplectic space, then the symplecton ξ(p, pθ) containing these two points is stabilised.1916

Proof. We will start by proving the statements in (i)(a) and (iii). The statements in (ii)(a) and1917

(iv) then follow by standard duality. Afterwards we will prove (ii)(b) and again, by dualising,1918

(i)(b) follows immediately.1919

Suppose the symplecton ξ is mapped onto the adjacent symplecton ξθ and set π = ξ∩ξθ. Assume for1920

a contradiction that some line L ⊆ π is not fixed. Then, since each line of a symplecton is contained1921

in at least three planes of the symplecton, we can find a plane α 6= π in ξ containing L such that1922

αθ ∩π = Lθ ∩π. Now we pick a point qθ ∈ αθ \Lθ not collinear to L. Then L = q⊥∩π 6= (qθ)⊥∩π1923

and, by the possible point-symp relations, q and qθ are special, contradicting Lemma 5.2.1. Hence1924

each line of π is stabilised and so each point of π is fixed.1925

Now suppose a symplecton ξ is mapped onto a symplectic symplecton ξθ and set p = ξ∩ξθ. Assume1926

for a contradiction that p 6= pθ. Then in the polar space ξθ we can pick a point qθ collinear to pθ,1927

but not to p. Then q ⊥ p is close to ξθ, but qθ is special to q as qθ is not collinear to p, again1928

contradicting Lemma 5.2.1.1929

Suppose finally that a point p is mapped onto a collinear point pθ. Consider an arbitrary plane1930

π through L := ppθ, which is stabilised by (ii)(a). If every point in π \ L is fixed, it is clear that1931

also L must be pointwise fixed, contradicting the fact that p 6= pθ. So we may assume that some1932

q ∈ π \L is not fixed and as π is stabilised q must be collinear to its image. Applying (ii)(a) again1933

yields the stabilised line qqθ. So the intersection qqθ ∩ ppθ is a fixed point on the line ppθ. �1934

Corollary 5.2.3. Let p, q be two opposite points of Γ4. A domestic collineation θ of Γ4 that1935

stabilises Ê(p, q) stabilises a hyperbolic solid through every stabilised hyperbolic plane of Ê(p, q).1936

Proof. Let π be a stabilised hyperbolic plane of Ê(p, q) and let L be the stabilised line of T̂ (p, q)1937

corresponding to π by Proposition 2.7.6. Then L must contain a fixed point by Corollary 5.2.2.1938

This means that the hyperbolic solid corresponding to this point must be stabilised. �1939

Corollary 5.2.4. Let Ω be a subspace of Γ1 isometric and isomorphic to A2,{1,2}(K) and suppose1940

that a domestic collineation stabilises Ω. Then θ acts type-preserving on the underlying projective1941

plane PG(2,K), and is either a Baer involution, an elation or a homology.1942

Proof. As Ω is not isomorphic to the smallest projective plane, it does not admit domestic dualities1943

by Theorem 3.5 of [16]; this implies that, if θ induced a duality in PG(2,K), then it would map some1944

point to an opposite line. This would mean that θ would map a line to an opposite, contradicting1945

domesticity. Now let z be a point of PG(2,K) and suppose it corresponds to the line Z of Ω. We1946

claim that zzθ is stabilised. Indeed, z, zzθ and zθ correspond to three lines Z,W,Zθ of Ω such1947

that Z,W and W,Zθ are locally opposite. The intersection point Z ∩W is mapped to a point of1948

Zθ which must coincide with W ∩ Zθ by Lemma 5.2.1. By Lemma 5.2.2(ii)(a) this means that1949

the line W in Γ1 is stabilised. Consequently also the line zzθ in PG(2,K) is stabilised. So we can1950

apply Proposition 3.3 of [19] and the result follows. �1951
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Now we prove the analogue to Lemma 5.3 in [18]. We provide a detailed proof as the special case of1952

a building of F4 imposes some simplifications, whereas the assumption of not being necessarily split1953

causes some complications. It is exactly this proposition that allows us to use the earlier derived1954

results of domestic collineations of polar spaces applied to the equator and extended equator1955

geometries. It provides the basis of our classification.1956

Proposition 5.2.5. Let θ be a domestic collineation of Γi = F4,i(K,A), i = 1, 4. Suppose θ maps1957

some point p to an opposite.1958

(i) If i = 1 and A is separable, then θ stabilises E(p, pθ).1959

(ii) If i = 1, the opposition diagram of θ is F1
4;1 and A is separable, then θ pointwise fixes1960

E(p, pθ).1961

(iii) If i = 4 and the opposition diagram of θ is F4
4;1, then θ stabilises Ê(p, pθ).1962

Proof. We will denote the residue of Γi in p as ∆. Recall that θp, from Definition 2.8.6, is a1963

collineation of the polar space ∆. From the classification in Table 2, neither lines nor planes are1964

mapped to opposite ones by θ in Γi. Together with Lemma 2.8.7, it follows that θp is line-domestic1965

and by Lemma 3.5.1 θp is the identity or pointwise fixes a hyperplane H of ∆.1966

We argue in ∆ (which is easier since we can then think of points, lines, planes instead of symplecta,1967

planes and lines). By Corollary 3.5.1, we get that if some plane π or some line L of ∆ is stabilised1968

by θp, then it is pointwise fixed.1969

We claim that, under the assumptions of (i), (ii) and (iii), if two planes through a pointwise fixed1970

line L in ∆ are (necessarily pointwise) fixed, then all planes through L are (necessarily pointwise)1971

fixed. If the opposition diagram is Fi
4;1 (Cases (ii) and (iii)), we see again by Lemma 2.8.7 that1972

no element is mapped to an opposite and by Remark 2.11.7, θp is then the identity. So the claim1973

is trivially true in these cases. Consequently we may assume that the opposition diagram is F4;21974

and i = 1. In this case, ∆ ∼= C3,1(A,K) and we now have hyperbolic lines defined by the common1975

perp of two opposite lines (Lemma 2.6.9). Let π1 and π2 be the fixed planes through L, let π′ be1976

another plane through L and let L′ be a line opposite L. Then the projections p1, p2 and p′ of1977

L′ onto π1, π2 and π′, respectively, are points not on L. It is clear that p′ lies on the stabilised1978

hyperbolic line h(p1, p2) = L⊥ ∩ L′⊥. By considering now another line L′′ not through p in the1979

plane 〈p′, L′〉, we similarly find a stabilised hyperbolic line h(q1, q2) = L⊥ ∩ L′′⊥. The point p′ is1980

now fixed as the unique point in the intersection of these hyperbolic lines and so the plane π′ is1981

also fixed.1982

Translated to Γi, we have shown that each line through p is contained in a plane through p fixed1983

under θp (as every plane in ∆ contains a fixed line of the geometric hyperplane H), and that each1984

line through p in such a plane is fixed under θp as soon as at least two such lines are fixed. We1985

now forget the notation of the previous paragraphs, in particular L and so on.1986

So, if we want to show that for each line L through p, the unique point of L at distance 2 from pθ1987

is mapped onto the unique point of Lθ at distance 2 from p, it suffices to prove that for each plane1988

π through p fixed under θp, the line π ∩ (pθ)on is mapped onto πθ ∩ pon.1989

Let π be a plane through p fixed under θp. First assume that every line L through p in π is
fixed under θp. Let Mp be the line in π such that Mθ

p = πθ ∩ pon. If Mp = π ∩ (pθ)on, then

there is nothing to prove, so suppose Mp and π ∩ (pθ)on intersect in a unique point z. Then, since
(pz)θp = pz, we see that zθ ⊥ z. Now let L be a line in π through p, but not through z. Since
|K| > 2, we can select a point q ∈ L \ ({p} ∪Mp ∪ (pθ)on). Let K be a line in π through q, and
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set K ∩Mp =: {u}, pu ∩ (pθ)on =: {v} and K ∩ (pθ)on =: {w}. Since (pv)θp = pv, we have v ⊥ uθ.
Hence (qw)θq = (qu)θq = qv. This now yields the equivalence

(qw)θq = qw ⇔ v = w ⇔ u = z or u ∈ pq.

Consequently the collineation θq fixes π and exactly two lines through q in π, which contradicts1990

our earlier observation, replacing p with q, that all lines through q in π are fixed as soon as at1991

least two of them are fixed under θq. Hence Mp = π ∩ (pθ)on. In particular the images of the1992

points on Mp are given by projection inside the symplecton determined by Mp and Mθ
p and hence1993

θ preserved the cross-ratio of collinear points. We say that θ is a linear collineation.1994

Next assume that exactly one line L through p in π is fixed under θp. Since every such fixed1995

line is contained in a fixed plane all of whose lines through p are fixed, we know by the previous1996

paragraph that z := L ∩ (pθ)on is mapped onto zθ = Lθ ∩ pon, and these two points are collinear.1997

Let Mp again be the line of π defined by Mθ
p = πθ ∩ pon. Let, for each x ∈ Mp, x

′ be the unique1998

point of π collinear to xθ. Then, as a product of a linear collineation and a projection, which both1999

preserve the cross-ratio, the correspondence x 7→ x′ is a projectivity from Mp to M ′p := π ∩ (pθ)on.2000

Since z = Mp ∩M ′p is fixed under this correspondence, it is a perspectivity. Let c be the centre of2001

this perspectivity, then c /∈ Mp ∪M ′p is opposite cθ, and clearly θc is the identity restricted to π.2002

By the first case, this implies that M ′c = Mc. Now we note that Mp = Mc as the line Mθ
p is indeed2003

special to c and similarly M ′p = M ′c.2004

Finally, assume that no line through p in π is fixed under θp. Let Mp be as before and assume2005

Mp 6= π ∩ (pθ)on. Set u = Mp ∩ (pθ)on. We can select a point x on Mp such that (xθ)⊥ does2006

not contain u. Set x′ = (xθ)⊥ ∩ π and select q on the line xx′ different from x, x′. Then q is2007

opposite qθ, π is fixed under θq, xx
′ is fixed under θq and pq is not fixed under θq. By the previous2008

case, Mq = M ′q := π ∩ (qθ)on. Similar to the previous paragraph we get that Mq = Mp and2009

M ′q = M ′p := π ∩ (pθ)on.2010

Now let ξ be an arbitrary symplecton through p. Every point of ξ at distance 2 from pθ is collinear2011

to the unique point eξ of ξ symplectic to pθ, which is also the unique point of ξ belonging to2012

E(p, pθ). Hence the above yields that θ maps p⊥ ∩ e⊥ξ to (pθ)⊥ ∩ e⊥
ξθp

.2013

Now if i = 1, then ξθ is isomorphic to B3,1(K,A). If the latter is separable, then pθ and eξθp are2014

the only two points of ξθ collinear to all points of (pθ)⊥ ∩ e⊥
ξθp

, by Lemma 2.6.10. It follows that2015

eθξ = eξθp ∈ E(p, pθ). Hence E(p, pθ) is preserved by θ. This yields (i). Moreover, if the opposition2016

diagram is F1
4;1, then θp is the identity (as above) and we have eθξ = eξ and so E(p, pθ) is fixed2017

pointwise. This yields (ii).2018

Now suppose i = 4. Then it follows that the hyperbolic line determined by p and eξ is mapped2019

onto the hyperbolic line defined by pθ and eξθp which is contained in Ê(p, pθ) by Lemma 2.6.14. So2020

eθξ is contained in Ê(p, pθ) for every symplecton ξ through p. Let now eξ1 and eξ2 be two opposite2021

points in E(p, pθ). Then they determine Ê(p, pθ) by Lemma 2.6.17. As their images eθξ1 and eθξ22022

are still opposite points in Ê(p, pθ), they also determine Ê(p, pθ) and so Ê(p, pθ) is stabilised. This2023

yields (iii) and the proposition is completely proved. �2024

Now we are finally prepared to classify the possible domestic collineations. We will do so by making2025

a distinction between the inseparable and separable case.2026
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5.3. Domestic collineations in inseparable metasymplectic spaces. Here, A = K′ is an
inseparable field extension of K in characteristic 2. This means that the following inclusions
of fields hold: (K′)2 ≤ K ≤ K′. An important property of these metasymplectic spaces is that
F4,1(K,K′) ∼= F4,4(K′2,K). This can be easily proven, when we look at the definitions for B3,1(K,A)
and C3,1(A,K) (i.e. Definitions 2.3.1 and 2.3.2, respectively) and use the isomorphisms:

φ : B3,1(K,K′) → C3,1(K,K′2) :

(x−3, x−2, x−1, x0, x1, x2, x3) 7→ (x−3, x−2, x−1, x1, x2, x3)

and

ψ : B3,1(K′2,K) → C3,1(K′,K) :

(x2
−3, x

2
−2, x

2
−1, x0, x

2
1, x

2
2, x

2
3) 7→ (x−3, x−2, x−1, x1, x2, x3).

This isomorphism between metasymplectic spaces allows us for example to speak about the ex-2027

tended equator geometry and tropics geometry in a metasymplectic space Γ1, as these are the2028

geometries isomorphic to the extended equator geometry and tropics geometry in the isomorphic2029

metasymplectic space Γ4. Therefor in this section, we will speak about Γ instead of Γ1 or Γ4; this2030

Γ is at the same time a Γ1 and a Γ4, but for different pairs of fields. A good example of the power2031

of this isomorphism is the following lemma.2032

Lemma 5.3.1. Let p, q be two opposite points of the inseparable metasymplectic space Γ. Then2033

I (p, q) = E(p, q)⊥⊥ equals the “hyperbolic line” in the polar space Ê(p, q) through the opposite2034

points p and q.2035

Proof. This follows straight from Proposition 2.10.5 noting that the “hyperbolic line” through p2036

and q in Ê(p, q) coincides with the “hyperbolic line” through these points in E(a, b), for each pair2037

of opposite points {a, b} ⊆ E(p, q). �2038

Theorem 5.3.2. Let θ be a domestic collineation of an inseparable metasymplectic space F4,1(K,K′).2039

Then one of the following holds.2040

(i) θ is a central elation and the opposition diagram is F1
4;1 or F4

4;1;2041

(ii) θ is the product of two perpendicular central elations, and then the opposition diagram is2042

F4;2. There are three types of such products: those that are only products of perpendicular2043

central elations in F4,1(K,K′), those that are only products of perpendicular central elations2044

in F4,4(K,K′) and those that are products of perpendicular central elations in both;2045

(iii) θ is an involution with fix structure consisting of points and symplecta forming a Moufang2046

quadrangle of mixed type and the opposition diagram is F4;2. Here the fixed points in a fixed2047

symplecton ξ form an ovoid, which consists of the set of points of the perp of a line L of the2048

unique symplectic polar space in which ξ is fully embedded, but L does not contain points of2049

ξ; however, L is a singular line with respect to the symplectic form. Also the dual holds. This2050

third case does not occur when K′ equals K (i.e. in the split case).2051

Proof. Let θ be a domestic collineation of Γ. Without loss of generality (possibly by going to the2052

dual), we may assume that θ is not point-domestic. Let p be a point mapped onto an opposite.2053

By Proposition 5.2.5, Ê(p, pθ) is preserved by θ. Remark that by similar isomorphisms as above2054

Ê(p, pθ) ∼= B4,1(K,K′) ∼= C4,1(K,K′2), and the latter polar space is embedded in a symplectic polar2055

space ∆ ∼= C4,1(K,K) defined by the standard alternating form in PG(7,K):2056

x−4y4 + x4y−4 + x−3y3 + x3y−3 + x−2y2 + x2y−2 + x−1y1 + x1y−1,

and we denote ρ for the associated polarity.2057
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We claim now that θ induces a plane-domestic collineation in Ê(p, pθ). Suppose for a contradiction2058

that π is a hyperbolic plane in Ê(p, pθ) mapped to an opposite plane πθ. As there are no symplectic2059

polarities in a plane (cf. [27]), there must be a point q ∈ π mapped to an opposite point qθ (otherwise2060

x 7→ (xθ)⊥⊥ ∩ π would be a symplectic polarity of π). Now the “line” π ∩ (qθ)⊥⊥ corresponds to2061

a plane α through q by Proposition 2.6.11 and must be mapped to an opposite “line” in πθ,2062

corresponding to a plane β through qθ. Now again by Proposition 2.6.11, α must be opposite β as2063

the corresponding lines in E(q, qθ) are opposite (as they are contained in π and πθ respectively).2064

Consequently α is mapped to an opposite plane, contradicting domesticity of θ (cf. Table 2). So2065

the claim is proved. Since at least one point is mapped onto an opposite, Corollary 4 of [16]2066

implies that no “solid” is mapped onto an opposite. Then by Theorem 6.1 of [28], θ pointwise2067

fixes a (sub)hyperplane H of Ê(p, pθ), and hence it pointwise fixes a (sub)hyperplane H = 〈H〉2068

(generation in PG(7,K)) of ∆. By Lemma 3.1.2(ii), H = xρ (x a point of ∆) or H = Lρ (L a2069

projective line).2070

Suppose first that H = xρ, for some point x of ∆. We claim that the opposition diagram of2071

θ must be F4;1. Indeed, we already assumed that a point is mapped to an opposite one, so the2072

only other possibility is that the opposition diagram would be F4;2. If that is the case, we can2073

assume that the p we chose at the beginning is part of a point-symp flag {p, ξ} mapped to an2074

opposite one and so the “line” in Ê(p, pθ) corresponding to ξ would be mapped to an opposite one2075

(Corollary 2.9.3), contradicting the fact that there is a pointwise fixed hyperplane in Ê(p, pθ). So2076

the claim is proved.2077

We now claim that x ∈ Ê(p, pθ). Suppose for a contradiction that x /∈ Ê(p, pθ). As a geometric2078

hyperplane of a polar space of rank 4 contains “planes”, we get by Lemma 5.2.3 that θ must have2079

a stabilised “solid” S in Ê(p, pθ). By Lemma 3.5.1 this “solid” S is contained in H, contradicting2080

x /∈ H.2081

This means that θ induces a central elation with centre x in Ê(p, pθ). Lemma 5.3.1 and Lemma 6.5.12082

imply that there is a central elation θ′ with centre x mapping p to pθ. Clearly, θ′ induces a central2083

elation in Ê(p, pθ) mapping p to pθ. Lemma 3.2.2 implies that θ and θ′ coincide over Ê(p, pθ)2084

and Lemma 5.1.5 then implies θ = θ′. The opposition diagram follows from Proposition 4.1.1 and2085

hence we are in Case (i) of the theorem.2086

Suppose now that H = Lρ. As this is the last possible case, we may assume that this is the case2087

for every extended equator geometry determined by an opposite pair {q, qθ} and that there is no2088

pointwise fixed geometric hyperplane in the corresponding ∆. There are now two possible cases2089

for the line L: L can be singular or nonsingular with regard to the underlying polarity ρ of ∆. We2090

prove that also the singularity of L is the same for every extended equator geometry related to an2091

opposite pair {q, qθ}, by proving that θ is an involution if, and only if, L is singular.2092

Suppose first that L is nonsingular, i.e. L * H. Suppose for a contradiction that θ were an invo-2093

lution. Then θ would also induce an involution on the plane α of the underlying projective space2094

of ∆ spanned by L and a point h ∈ H. If now every point in α \ L is fixed, then L is clearly also2095

pointwise fixed and if a point a ∈ α \L is not fixed then the intersection of the stabilised lines aaθ2096

and L is fixed, so in every case L contains a fixed point b. Now θ induces on every line bh, with2097

h ∈ H, a linear involution fixing two points. Hence θ pointwise fixes bh and hence also 〈b,H〉,2098

implying that θ induces in ∆ a central elation with centre b. So by renaming H as this span, we2099

would be in the case H = xρ, contradicting our assumptions.2100

Suppose now that L is singular, i.e. L ⊆ H. Then dually all hyperplanes through L in the under-2101

lying projective space of ∆ are stabilised and consequently also all planes through L are stabilised.2102

Suppose now that y /∈ L is not fixed and set α := 〈y, L〉. As θ pointwise fixes the line L of this2103
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plane, it induces a perspectivity in α. Suppose first that this is a homology and also the point2104

q ∈ α \ {L} is fixed. Let β be a symplectic plane through L, then β is pointwise fixed. Projecting2105

q onto β yields a (pointwise fixed) line M containing a fixed point q′ ∈ β \ {L} collinear to q.2106

Then the line qq′ is stabilised. Now every point q′′ on this line is fixed, as it is the intersection of a2107

stabilised line with a stabilised plane 〈q′′, L〉. Consequently the plane 〈q,M〉 contains at least two2108

pointwise fixed lines and is pointwise fixed. Hence also the plane α contains two pointwise fixed2109

lines, a contradiction. So θ induces an elation in α and by the arbitrariness of y we now have that2110

θ is an involution.2111

We now choose an appropriate skeleton as basis, i.e. two points on L (corresponding to x−2, x−1),
four in H (corresponding to x±3, x±4) and the two others on neither H nor L. Then we see
this choice can be made so that collinearity is given by the standard alternating bilinear form
x−4y4 +x−3x3 +x−2y2 +x−1y1 +x1y−1 +x2y−2 +x3y−3 +x4y−4. By the choice of the coordinates,
θ acts trivially on the coordinates xi with i = ±3,±4 and the associated field automorphism is
trivial. Now one can easily calculate that the action of θ on the subspace 〈e−2, e−1, e1, e2〉 of the
projective space underlying ∆ is given by the following matrix:

A =


1 0 a b
0 1 c a
0 0 1 0
0 0 0 1

 ,

with a, b, c ∈ K′2. Suppose first that b = c = 0. Then we see that θ acts on ∆, and hence also on

Ê(p, pθ), as an axial elation with axis L. This contradicts the fact that the point p is mapped to
an opposite point. So we may suppose without loss of generality that c 6= 0. Then we get that

A =


1 0 a a2

c
0 1 c a
0 0 1 0
0 0 0 1

 ·


1 0 0 b+ a2

c
0 1 0 0
0 0 1 0
0 0 0 1

 .

Now we see that θ is clearly the product of two central elations with respective centres e :=2112

〈ae−2 + ce−1〉 and e′ := 〈e−2〉. Note that these centres are collinear in ∆, in particular they are2113

contained in L. Now we can apply Proposition 3.4.2 on Ê(p, pθ).2114

The Cases (i), (iii) and (iv) of that proposition yield immediately Case (ii) of this theorem, taking2115

Proposition 4.1.2 and Lemma 5.1.6 into account.2116

So we may assume that the fix structure of θ in Ê(p, pθ) is a generalised quadrangle obtained by2117

intersecting Lρ with Ê(p, pθ) and there is no point of Ê(p, pθ) mapped to a “collinear” one.2118

We claim that θ does not fix any line. Indeed, suppose for a contradiction that the line R of Γ is2119

fixed by θ. Suppose first that some point r of R is not fixed by θ. Then select some point q ⊥ r2120

such that rθ ∈ qon. Then qθ ∈ ron (as R is fixed and q is special to all points of R except r) and2121

{q, qθ} is an opposite pair, by Lemma 2.5.3. Clearly the line qr is fixed by θq, implying that the2122

corresponding plane in E(q, qθ) is fixed, a contradiction with the described fix structure of Ê(p, pθ)2123

in the previous paragraph and the fact that we may make the same assumptions on Ê(q, qθ) as on2124

Ê(p, pθ) as remarked above. Hence R is pointwise fixed.2125

Select two “collinear” (in Ê(p, pθ)) fixed points u, v and denote ξ := ξ(u, v). Suppose first that2126

R is contained in ξ. Since at least one point of R is collinear to u, we may even assume that2127

u ∈ R. Select u′ ∈ Ê(p, pθ) opposite u and also fixed by θ. Then the plane of E(u, u′) ⊆ Ê(p, pθ)2128

corresponding to R is stabilised, a contradiction. Hence R does not belong to ξ. If some point2129
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r ∈ R is collinear to a unique line R′ of ξ, which is also fixed we get a contradiction by replacing2130

R with R′. If, lastly no point of R is close to ξ, then by the possible point-line relations, we2131

have that every point of ξ symplectic to a point of R is symplectic to a unique point of R. Now2132

the projections of two points of R onto ξ yield a line R′ in ξ which is stabilised by θ, again a2133

contradiction to the previous cases. The claim is proved.2134

So no line is fixed by θ. Suppose now that a plane π is stabilised by θ. Then as no line is fixed,2135

there is a point mapped to a distinct, necessarily collinear point, but then the line determined by2136

these points is stabilised by Corollary 5.2.2 (ii)(a), a contradiction. It now easily follows that the2137

fixed points and fixed symplecta form the point set and line set of a generalised quadrangle. We2138

now claim that the fixed points in a fixed symplecton form an ovoid O of that symplecton. Indeed,2139

by Lemma 7.4 of [28], it suffices to show that θ restricted to ξ is domestic, which follows from2140

Lemma 5.2.1. The claim is proved and clearly also the dual holds.2141

We claim that we are now in Case (iii) of the theorem. Let a, b be two “collinear” points of the2142

fixed quadrangle in Ê(p, pθ) described above, then clearly the symplecton ξ(a, b) is fixed and we2143

claim that the fixed points in this symplecton are as described in the statement. Indeed, the dual2144

holds by considering two opposite fixed points and noting that the fixed structure in the residue at2145

one of them is isomorphic to the fix structure in the equator geometry defined by them. Since this2146

is the last possibility for an involution, we may assume that also the dual holds. This case does2147

clearly not occur when K = K′, as the unique symplectic polar space wherein ξ is fully embedded2148

is then ξ itself and does not contain singular lines disjoint from ξ. The opposition diagram follows2149

from Proposition 4.2.1. The quadrangle is Moufang of mixed type by the main result in [14].2150

Suppose finally again that L is nonsingular. It suffices now to prove that this leads to a contra-2151

diction. We first claim that no point of Ê(p, pθ) is mapped to a “collinear” point. Suppose for2152

a contradiction that some non-fixed point t is mapped onto a collinear point tθ 6= t. Denote2153

xL := tρ ∩L and xH := txL ∩H. The projective plane π = 〈L, xH〉 is preserved by θ, and so 〈t, tθ〉2154

is contained in π. As all lines through xH in π are singular w.r.t. the polarity ρ and there are no2155

other singular lines in π, since π contains the nonsingular line L, we see that 〈t, tθ〉 = 〈xL, xH〉.2156

Hence θ stabilises 〈t, tθ〉 and so fixes the point xL. So the matrix of θ restricted to Ê(p, pθ), and2157

with respect to an appropriate basis, i.e. a skeleton consisting of the point xL (first base point),2158

another point on L (second base point) and the rest in H (the other base points), is a block matrix2159

of the following form:2160 
a b
0 c

1
. . .

1

 . (2)

The companion field automorphism is trivial since H is fixed pointwise and contains full lines.2161

We may assume that the polar space Ê(p, pθ) is described by the standard equation (as given2162

above, namely x−4x4 +x−3x3 +x−2x2 +x−1x1 ∈ K′2) in this basis. So expressing that the matrix2163

represents a collineation of that polar space Ê(p, pθ), gives that c = a−1 and ab ∈ K′2. Note that2164

a 6= 1 as otherwise we are in the case that a geometric hyperplane is pointwise fixed. Hence we see2165

that θ fixes the additional point yL = (1, ab−1 + a−1b−1, 0, · · · , 0) in Ê(p, pθ) on L.2166

Consequently θ pointwise fixes {xM , yM} ∪ E(xM , yM ) ⊆ Ê(p, pθ). This implies that θ fixes each2167

line through xL and each line through yL. Pick two locally opposite lines M,N through xL and2168

denote xM := yonL ∩M, xN := yonL ∩N, yM := c(yL, xM ), yN := c(yL, xN ). Corollary 2.9.9 implies2169

that these six points are contained in a subspace Ω isometric and isomorphic to A2,{1,2}(K). Since2170



METASYMPLECTIC SPACES 57

θ stabilises the ordinary hexagon given by the six points xL, xM , yM , yL, yN , xN , Corollary 5.2.42171

implies that θ induces either the identity, a Baer involution, or a homology in the corresponding2172

projective plane π. The second option is impossible since θ pointwise fixes hyperbolic lines in2173

Ê(p, pθ), implying it cannot act as a semilinear collineation on the “hyperbolic line” defined by xL2174

and yL.2175

If the lines xMyM and xNyN are pointwise fixed, then I (xL, yL) is pointwise fixed and by2176

Lemma 5.3.1 this means that the line L is pointwise fixed in the underlying projective space2177

of ∆. Then by Lemma 3.4.1 Ê(p, pθ) is pointwise fixed, which contradicts the fact that p 6= pθ.2178

So we may assume that xMyM is not pointwise fixed and consequently θ induces a nontrivial2179

homology in π. Then we see that exactly one of the lines M and N is pointwise fixed. Now we2180

get a contradiction as follows. Take a line K through xL locally opposite both M and N (this is2181

possible by Proposition 3.30 of [31]). Applying now the previous arguments to the sets {M,K}2182

and {N,K}, we see that this line must be at the same time pointwise fixed and not pointwise2183

fixed, which is of course impossible. So in all cases we get a contradiction, hence θ does not map2184

any non-fixed point of Ê(p, pθ) to a collinear point.2185

We now claim that θ does not stabilise any “plane” of Ê(p, pθ). Suppose for a contradiction that2186

Ê(p, pθ) contains a stabilised hyperbolic plane π. By Corollary 5.2.3, there exists a stabilised2187

hyperbolic solid S through π and as no point is mapped to a collinear one in Ê(p, pθ), we deduce2188

that S is pointwise fixed. The geometric subhyperplane H cannot contain S, as this would span a2189

4-space in ∆ with a point of L. So 〈S,H〉 spans at least a hyperplane H
′

in ∆. But then ∆ is fixed2190

or we have a point x ∈ H ′ ∩L, for which xρ ⊇ 〈x,H〉 = H
′
, which contradicts our assumptions on2191

the current case.2192

Now we can apply the last four paragraphs of the case that L is singular (except the last sentence2193

about the quadrangle being Moufang of mixed type). This leads however to a contradiction as by2194

Theorem 6.3 of [23], θ must be an involution in this case. �2195

5.4. Domestic collineations in separable metasymplectic spaces. Now we will classify the2196

domestic collineations in the separable metasymplectic spaces. As noted before, we will make here2197

a distinction between the different nontrivial opposition diagrams.2198

Theorem 5.4.1. If a domestic collineation θ of a separable building F4(K,A) has opposition dia-2199

gram F1
4;1, then θ is a central elation in Γ1

∼= F4,1(K,A).2200

Proof. Considering the corresponding metasymplectic space Γ1
∼= F4,1(K,A), and a point p mapped2201

onto an opposite, Proposition 5.2.5 implies that θ pointwise fixes E(p, pθ). This implies by Propo-2202

sition 2.10.5 that the imaginary line I (p, pθ) is stabilised. Now for every path p ⊥ x ⊥ y ⊥ pθ,2203

the line L := xy is stabilised and hence contains a fixed point f by Corollary 5.2.2(ii)(b). The2204

unique point c of I (p, pθ) collinear to f is consequently also fixed. Now select two such paths2205

p ⊥ xi ⊥ yi ⊥ pθ with corresponding lines Li = xiyi, i = 1, 2, such that L1 is opposite L2 (it2206

suffices to choose px1 locally opposite px2 to achieve that).2207

Corollary 2.9.9 implies that L1 and L2 are contained in a unique common subspace Ω isometric and2208

isomorphic to A2,{1,2}(K) which, by Definition 2.10.2, contains I (p, pθ). Let Mi be the unique line2209

of Ω containing c and intersecting Li in a point, say zi, i = 1, 2. Since Li is the intersection of the2210

symplecta defined by the “lines” in the “plane” of E(p, pθ) consisting of the points corresponding to2211

the symplecta containing pxi, i = 1, 2, the line Li is stabilized by θ. Hence θ induces a collineation2212

in Ω fixing the points c, z1, z2. Using Corollary 5.2.4 we see that, if θ fixes no more points on2213

the lines M1 and M2, then it induces a homology in the underlying projective plane and has to2214
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pointwise fix the lines L1 and L2. This, however, contradicts the fact that p 6= pθ. Hence at least2215

one point on (M1∪M2)\{c, z1, z2}, say of M1, is fixed. But now Corollary 3.2.3 yields a pointwise2216

fixed symplecton ξ through M1. Subsequently Lemma 5.1.4(ii) implies that θ is a central elation2217

with centre c. �2218

Theorem 5.4.2. If a domestic collineation θ of a separable metasymplectic space F4,4(K,A) has2219

opposition diagram F4
4;1, then one of the following holds:2220

(i) A is a quadratic extension of K and θ is an involution pointwise fixing a metasymplectic2221

space canonically isomorphic to F4,4(K,K);2222

(ii) the building is split, i.e. A = K, and θ is an involution with fix structure an extended2223

equator geometry and its tropics geometry in F4,4(K,K).2224

Proof. Considering the corresponding metasymplectic space F4,4(K,A), and a point p mapped onto2225

an opposite, Proposition 5.2.5 implies that θ stabilises Ê(p, pθ). Corollary 2.9.3 (iv) now implies2226

that θ induces a line-domestic collineation in Ê(p, pθ). Hence by Lemma 3.5.1, θ pointwise fixes2227

a geometric hyperplane H of Ê(p, pθ). If H was singular, i.e. H = u⊥ with u ∈ Ê(p, pθ), θ would2228

be a central elation with centre u, which is impossible by Lemma 3.2.4 as Ê(p, pθ) is a separable2229

orthogonal polar space. So H is nonsingular, in particular a polar subspace of rank at least 32230

containing two (pointwise fixed) opposite hyperbolic lines. Lemma 2.9.3 (iv) implies that the2231

corresponding stabilised symplecta ζ, ξ of Γ4 are also opposite. Let a, b be the points of F4,1(K,A)2232

corresponding to ζ, ξ respectively. Now θ induces in ζ a point-domestic collineation as ζ ∼= E(a, b)2233

and opposition in E(a, b) corresponds to opposition in Γ1. With Corollary 4 of [16], we can now2234

apply some propositions of [19].2235

In the nonsplit case, we apply Proposition 3.11 of that article and see that θ induces either an2236

axial elation, or a generalised Baer collineation in ζ. Since the polar space ζ is isomorphic to2237

C3,1(A,K), it does not admit axial elations by Lemma 3.2.9. It follows that θ induces a generalised2238

Baer collineation in ζ.2239

We now claim that each fixed point a∗ in Γ1 (corresponding to a stabilised symplecton ζ∗ in Γ4)2240

admits an opposite fixed point b∗, so we can apply the previous paragraph to these points and the2241

corresponding symplecta. We first show the claim for fixed points collinear to a. Let x be such a2242

point and set L := ax. In E(a, b), the line L corresponds to a stabilised “plane” α. Select, using2243

the previous paragraph, a “stabilised” plane β in E(a, b) opposite α. Then β corresponds to a2244

fixed line M 3 b. Since α and β are opposite, also the lines L and M are opposite (this follows2245

from Lemma 2.8.7). The unique point b′ of M special to a is then opposite x (see Lemma 2.5.3)2246

and is fixed. Hence the claim follows for x ⊥ a. Now let z be an arbitrary fixed point. If z is2247

opposite a, there is nothing to prove. If z is special to a, then the point aonz is also fixed, and the2248

foregoing implies first that c(a, z) admits an opposite fixed point, and then also z ⊥ c(a, z) admits2249

an opposite fixed point. If z ⊥⊥ a, then the symplecton ξ(a, z) is fixed, and hence corresponds to2250

a fixed point f ∈ E(a, b). Selecting a fixed plane of E(a, b) through f (which is possible by the2251

previous paragraph), we obtain a fixed line R through a in ξ(a, z). Now R contains a fixed point2252

collinear to z, and the claim follows again from the previous paragraph. Finally, if z ⊥ a, then we2253

already showed the claim.2254

Let L now be any stabilised line in Γ1 (such a line exists as in the residue of a fixed point a∗2255

we find a stabilised plane corresponding in Γ1 to a stabilised line through a∗). We claim that L2256

is then pointwise fixed. By Corollary 5.2.2 (ii)(b), L contains at least one fixed point c. By the2257

previous paragraph c has an opposite fixed point c′ and θ induces on E(c, c′) a generalised Baer2258
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collineation. So there exists a symplecton through L that is not fixed and then by Corollary 5.2.22259

(i)(a) we have that L is pointwise fixed and the claim is proved.2260

Since the fixed points and lines in α, the “plane” corresponding to L in E(c, c′), form a Baer2261

subplane, the fixed planes and fixed symplecta through L also form a Baer subplane of the residue2262

of L. So there exist a stabilised plane π and a stabilised symplecton ζ through L and consequently2263

one finds a stabilised chamber C := (x, L, π, ζ), with x ∈ L arbitrary. We also have a fixed point2264

x′ opposite x and as the residue of x′ contains a fixed Baer polar space, we can find a fixed line2265

L′ through x′ opposite L. Similarly we find a fixed plane π′ and a fixed symplecton ζ ′ so that the2266

fixed chamber C ′ = (x′, L′, π′, ζ ′) is opposite C. Now these two chambers span a fixed apartment2267

in Γ1.2268

Now we apply some arguments of [13]. Let G denote the group generated by the automorphism θ.2269

The fact that an apartment is stabilised elementwise means that the group is type preserving and2270

fixes two opposite chambers. Thus, in the terminology of [13], all fixed chambers are G-chambers.2271

Since there are two opposite G-chambers, every G-panel contains at least two G-chambers by2272

22.34(ii) in [13]. Now, since all points on all lines of the fixed apartment are fixed, one can apply2273

22.14(iii) in [13] to conclude that the set of fixed chambers forms a subgeometry of type F4,12274

over K. Hence the fix structure is a metasymplectic space F4,1(K,B), where B is a quaternion2275

subalgebra of A if A is octonion (since Baer subplanes of octonion planes are quaternion planes),2276

B is a quadratic extension of K if A is quaternion (since Baer subplanes of quaternion planes are2277

planes over a quadratic extension), and B = K if A is a separable quadratic extension of K (since2278

Baer subplanes of a plane over a quadratic extension L of K are isomorphic to PG(2,K) (note that2279

the fixed subfield of L must be an algebra over K and hence must coincide with K)).2280

Now we show that A is a quadratic extension of K. Let ξ be a stabilised symplecton of F4,1(K,A).2281

Then the fix structure of θ in ξ is a subquadric ζ ⊆ ξ of Witt-index 3 the anisotropic kernel of2282

which corresponds to the norm of B. If A is octonion or quaternion, then the codimension of 〈ζ〉2283

in the ambient projective space of ξ is 4 or 2, respectively. Hence ζ is not a geometric hyperplane2284

(see Lemma 3.1.2) and so, by Lemma 3.5.1, θ does not act line-domestically in ξ, . Let L be a line2285

of ξ mapped to a ξ-opposite line Lθ. Then Corollary 2.5.4 yields points mapped to opposites in2286

Γ1, a contradiction.2287

So now we may assume that we are in the split case and we can apply Theorem 3.13 of [19]. So2288

ζ is the symplectic polar space corresponding to the alternating form x−3y3 − x3y−3 + x−2y2 −2289

x2y−2 + x−1y1 − x1y−1, and θ acts on ζ ∼= E(a, b) by the following matrix:2290 
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 .

It is now clear that we have a fixed apartment in this symplecton ζ given by the points p−3 =2291

(1, 0, . . . , 0), p−2 = (0, 1, 0, . . . , 0), . . . , p3 = (0, . . . , 0, 1). As above we can use the isomorphism2292

between ζ in Γ4 and E(a, b) in Γ1 to get a similar fixed apartment Λ′ in E(a, b). By Lemma 2.11.42293

this apartment together with the fixed points a and b gives rise to an elementwise fixed apartment2294

Λ of Γ1. We now claim that every line in this apartment Λ is pointwise fixed (and consequently2295

also every plane is pointwise fixed as an apartment of a projective plane exists of three lines). Let2296

L for instance be the line in ξ(a, p1) collinear to both a and p1 corresponding to the “line” p1p22297

in E(a, b). This line is pointwise fixed as every point on the line corresponds to a “plane” through2298
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p1p2 and these planes are stabilised as θ acts point-domestic on E(a, b), as noticed in the first2299

paragraph. Similarly as in the last paragraph of the proof of Theorem 5.4.3, one now shows that2300

θ fixes exactly an extended equator geometry and its tropics geometry of Γ4.2301

We finally show that θ is in both cases an involution. As the hyperplane H from the first2302

paragraph is nonsingular, H = vρ ∩ Ê(p, pθ), with v a point in the underlying projective space of2303

Ê(p, pθ) and ρ the polarity in that space defining the polar space Ê(p, pθ). As Ê(p, pθ) is a quadric,2304

every line through v intersects Ê(p, pθ) in at most two points which can be fixed or swapped. In2305

every case θ2 acts trivial on Ê(p, pθ). In both cases θ2 also fixes the symplecton ζ of F4,4(K,A)2306

(remark that in the nonsplit case, θ acts involutive on ζ by Lemma 3.3.5). It follows then by2307

Lemma 5.1.5 that θ2 is the identity. �2308

Theorem 5.4.3. Let θ be a domestic collineation of a separable metasymplectic space F4,1(K,A)2309

with opposition diagram F4;2. Then one of the following holds:2310

(i) θ is the product of two perpendicular central elations in F4,1(K,A);2311

(ii) the fix structure of θ consists of points and symplecta forming a generalised quadrangle.2312

Here the fixed points in a fixed symplecton form an ovoid, which arises as the intersection2313

with a subspace, in the unique projective embedding. Dually the fixed symplecta through a2314

fixed point form an ovoid in the residue of that point and in the corresponding F4,4(K,A)2315

these ovoids in symplecta are closed under taking hyperbolic lines. This second case does2316

neither occur when A is an octonion division algebra, nor in the split case;2317

(iii) A is a separable quadratic extension of K and θ is a generalised homology with fix structure2318

an extended equator geometry and its tropics geometry in F4,4(K,A);2319

(iv) A is a quaternion division algebra over K and θ is a generalised homology pointwise fixing2320

a metasymplectic space canonically isomorphic to F4,1(K,L), where L is a subalgebra of A2321

of dimension 2 fixed under some automorphism of A (hence L is a field).2322

Proof. Consider the corresponding metasymplectic space Γ1 := F4,1(K,A), and a point-symp pair2323

(p, ν) mapped onto an opposite. Proposition 5.2.5 implies that θ stabilises E(p, pθ) and the opposi-2324

tion diagram implies that θp (see Definition 2.8.6) is line-domestic by Lemma 2.8.7, so θ induces a2325

nontrivial line-domestic collineation in E(p, pθ). It follows from Lemma 3.5.1 that the fix structure2326

of θ in E(p, pθ) is a geometric hyperplane H. There are two possibilities.2327

Suppose first that H is singular, that is, H is the perp of a point x ∈ E(p, pθ), so2328

H = x⊥⊥ ∩ E(p, pθ). Let ξ be any symplecton through x intersecting E(p, pθ) in a line O of2329

E(p, pθ). As in the proof of Lemma 2.6.7, O = L⊥∩ (Lθ)⊥, with L = p⊥∩ ξ. Since every line M in2330

the plane 〈p, L〉 through p corresponds to a plane α of E(p, pθ) through x, and each such plane is2331

(even pointwise) fixed by θ, we conclude that Mθ = projp
pθ

(M). From there we deduce that z ⊥ zθ,2332

for each point z ∈ L. By Corollary 5.2.2(ii), at least one point u ∈ zzθ is fixed, giving rise to a2333

fixed point q in the imaginary line I (p, pθ).2334

Now select a point y ∈ E(p, pθ) opposite x (for instance y = ν∩E(p, pθ)). Since y /∈ H, yθ is oppo-2335

site y by Lemma 3.5.1 and we can consider E(y, yθ). Since p ∈ E(y, yθ), the induced collineation2336

of E(y, yθ) is nontrivial, but line-domestic (as in the first paragraph). The corresponding fixed2337

geometric hyperplane H ′ contains y⊥⊥ ∩ (yθ)⊥⊥ ∩E(p, pθ) = y⊥⊥ ∩ x⊥⊥ ∩E(p, pθ) and q ⊥⊥ E(p, pθ).2338

Hence, since H ′ is a subspace, H ′ is again singular and collinear to q as every line L through q in2339

E(y, yθ) contains two fixed points, namely q and the projection of p onto it (i.e. L∩E(p, pθ)); use2340

also Lemma 7.5.1 of [24] that says that the complement of a hyperplane of a polar space of rank2341

at least two is always connected and consequently there are no hyperplanes properly contained in2342

proper hyperplanes.2343
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Now θ composed with the product of the inverse of two suitable central elations of Γi with centres2344

x and q pointwise fixes E(p, pθ) ∪ E(y, yθ), the union of two perpendicular equator geometries.2345

Hence this composition is the identity by Lemma 5.1.4 and θ is the product of two perpendicular2346

central elations of Γ1. This is (i).2347

We now claim that we are in the previous case, as soon as we find an imaginary line2348

C stabilised by θ but not pointwise fixed, and a point c ∈ C fixed by θ. We may then2349

assume p ∈ C , but we cannot longer assume that some symplecton through p is mapped onto an2350

opposite, so θp may as well be trivial.2351

Suppose for a contradiction that H (as defined above) is nonsingular and proper and let O be a2352

pointwise fixed “line” in E(p, pθ). That line corresponds to a plane π of Γ1 through c, containing2353

a unique line L all points of which are collinear to all points of O (so L is the intersection of the2354

symplecton containing O and c⊥). Clearly Lθ = L. Corollary 5.2.2(ii) implies that L contains2355

some fixed point f . Then the line cf is stabilised, and so is the corresponding “plane” of E(p, pθ)2356

through O. But this now contradicts Lemma 3.5.1 and the fact that H is nonsingular and as such2357

does not contain planes (since H is obtained from the intersection of a hyperplane of PG(5,A) with2358

the embedded hermitian polar space by Lemma 3.1.2(i), it does not contain two opposite planes;2359

note A is not octonion since by [5], see also [21], a thick non-embeddable polar space does not2360

contain nonsingular hyperplanes).2361

So we may assume that H coincides with E(p, pθ). Select two locally opposite lines L1, L2 through c2362

(remark that these are stabilised as every symplecton through c is stabilised) and complete them to2363

a unique isometric subspace isomorphic to A2,{1,2}(K) containing p and pθ. Using Corollary 5.2.4,2364

we conclude similarly as in the proof of Theorem 5.4.1 that there exists at least one fixed point f2365

on L1 or L2 different from c and opposite p.2366

Hence there is a symplecton ξ through c stabilised by θ, and containing a fixed point f collinear2367

to c, but not to e := ξ ∩ p⊥⊥. As each symplecton through c is stabilised, each line through c is2368

stabilised and consequently e⊥∩ c⊥ is fixed pointwise. So we can apply Corollary 3.2.3 to conclude2369

that ξ is pointwise fixed. Lemma 5.1.4(ii) then implies that θ is a central elation. However, θ then2370

has opposition diagram F1
4;1 by Proposition 4.1.1, a contradiction.2371

So we may from now on assume that H is (always) nonsingular and that each stabilised2372

imaginary line is either pointwise fixed, or contains no fixed points. In particular A 6= O2373

from now on. Select two pointwise fixed “lines” A and B of E(p, pθ) which are opposite; their2374

symplecta ξ and ζ are also opposite by Lemma 2.9.2(iv) and they represent opposite points a and2375

b, respectively, of the dual Γ4 := F4,4(K,A). The corresponding extended equator geometry Ê(a, b)2376

is stabilised by θ and we claim that the latter induces a plane-domestic collineation in Ê(a, b).2377

Indeed, suppose for a contradiction that π is a plane mapped onto an opposite plane πθ. By2378

Proposition 2.7.6(1) these planes correspond to lines L and Lθ in T̂ (a, b). Again Proposition 2.7.62379

implies easily that L and Lθ are opposite, a contradiction.2380

Now we claim that θ maps some point of Ê(a, b) to an opposite. Indeed, recall that A and B are2381

two opposite pointwise fixed “lines” of E(p, pθ). Let r ∈ A⊥⊥ ∩ B⊥⊥ be a point. Then, since the2382

“plane” spanned by r and A is not pointwise fixed (as H is nonsingular and consequently does2383

not contain planes), Lemma 3.5.1 says that r is opposite rθ. Then ξ(p, r) and ξ(p, rθ) are locally2384

opposite in p. Since ξ(p, rθ) is the projection of ξ(pθ, rθ) onto ResΓ1
(p), Lemma 2.8.7 implies that2385

ξ(pθ, rθ) is (globally) opposite ξ(p, r) in Γ1. Hence we may redefine ν as ξ(p, r). Recall that ξ is the2386

symplecton corresponding to A. Suppose for a contradiction that ν and ξ are disjoint. Pick a ∈ A.2387

Then a ⊥ L ⊆ ν and r ⊥ M ⊆ ξ. Since r ⊥⊥ a, we also have r ⊥ L and a ⊥ M . Then the planes2388

〈r, L〉 and 〈a,M〉 are contained in the symplecton ξ(a, r). It follows that ν and ξ are special. But2389
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interchanging the roles of r and p, we obtain a different plane in ν (namely, one through p) which2390

lies together with a plane of ξ in a common symplecton, a contradiction. Remark that ν and ξ2391

also don’t intersect in a plane, as then p, r and every point of A must be collinear to the same line2392

of this plane, which implies that r ∈ A. Hence ν and ξ intersect in a point d. Similarly ζ and ν2393

intersect in some point e. Hence there is a point n of Ê(a, b) corresponding to ν, and since νθ is2394

opposite ν, the point n is mapped onto an opposite. The claim is proved.2395

So the opposition diagram of θ on Ê(a, b) has the first node encircled, and not the third. It follows2396

from the list of feasible opposition diagrams in [16] that the fourth node is not encircled, that is,2397

θ acts both plane- and solid-domestically on Ê(a, b). So we can apply Proposition 3.5.3. We refer2398

to “Case X of Proposition 3.5.3” briefly by “Case X”. We claim that θ either induces in Ê(a, b)2399

a generalised homology or pointwise fixes a nondegenerate polar subspace of rank 2. We rule out2400

the other cases.2401

Case (1). We already showed above that there is a point of Ê(a, b) mapped onto an opposite, hence2402

θ is not point-domestic on Ê(a, b).2403

Case (3)(i). Here θ induces the product of two axial elations with respective axes A and A′. Then A2404

and A′ intersect in a point, while not contained in a hyperbolic solid, or they are contained2405

in a hyperbolic solid and don’t intersect, by Lemma 2.9.3.2406

First suppose A and A′ intersect in a point, but are not contained in a hyperbolic solid.2407

Let B be a hyperbolic line intersecting A and opposite A′. Then B is stabilised by the first2408

elation with axis A, by Definition 3.2.5. But B is mapped to a “line” B′ still intersecting A2409

by the second elation with axis A′. Obviously, A,B and B′ are contained in a regulus and2410

by Corollary 2.10.3 the corresponding points in Γ1 are contained in a common imaginary2411

line, which is stabilised, not pointwise fixed, but contains a fixed point, a contradiction to2412

our assumptions.2413

Now suppose A and A′ are contained in a common hyperbolic solid, but don’t intersect.2414

Let B be a hyperbolic line in a common solid with A, but opposite A′. Then B is stabilised2415

by the first elation with axis A, by Definition 3.2.5. But B is mapped to a “line” B′ opposite2416

B, and again A′, B and B′ are contained in a regulus. This leads to the same contradiction2417

as in the previous paragraph.2418

Cases (2) and (3)(iii) with rank 3. Suppose that θ pointwise fixes a nondegenerate polar subspace2419

S of Ê(a, b) of rank 3. Let π and π′ be opposite pointwise fixed “planes” of Ê(a, b). By2420

Corollary 5.2.3 there is a “solid” Σ containing π stabilised by θ. Let f be the projection of2421

π′ onto Σ. Then f is a fixed point not contained in S. Note that θ induces a homology in2422

Σ with axis π and centre f . This homology is nontrivial as otherwise the set of fixed points2423

of θ in Ê(a, b) would either be a degenerate polar subspace, or have rank 4, contradicting2424

our assumption. Let x ∈ S \Σ be a point. As the rank of S is 3, the point x is not collinear2425

to π. So the projection of x onto Σ must contain f , as this projection is stabilised, and2426

only “planes” through f in Σ are stabilised by θ (except for π). So x is collinear to f .2427

Since θ maps all points of Σ \ (π ∪ {f}) to collinear ones, Corollary 3.5.1 implies that θ2428

is not line-domestic on Ê(a, b) . Since f ∈ S⊥, the proof of Proposition 3.5.3 reveals that2429

we are either in Case (3)(i) or (3)(ii) of that proposition (indeed, the line L of that proof2430

contains the point f of the current proof). But we already ruled out Case (3)(i) above, so2431

θ again induces a generalised homology in Ê(a, b). The claim is proved.2432

Case (2) with rank 4. Then we have a generalised homology as θ clearly fixes an apartment and a2433

line in the nonsingular fixed hyperplane of rank 4.2434
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First suppose that θ pointwise fixes a nondegenerate polar subspace S of rank 2 in Ê(a, b).2435

Then the proof of Proposition 3.5.3 reveals that S⊥ (considered in the ambient projective space of2436

Ê(a, b)) is a line disjoint from Ê(a, b), so that θ does not fix any point of Ê(a, b) \S. Indeed, every2437

other fixed point s would give rise to a stabilised hyperplane in the ambient projective space, which2438

must intersect the line S⊥ in a fixed point. So we would have two fixed points and a pointwise fixed2439

subhyperplane in our hyperplane, but then the hyperplane must be pointwise fixed, contradicting2440

our assumption.2441

We claim now that θ does not fix any line of Γ4. Indeed, assume for a contradiction that θ fixes2442

the line L. By Corollary 5.2.2(ii)(b), θ fixes a point x on L. Consider any fixed point y in Ê(a, b).2443

If x = y, then some line through y is fixed (namely, L). If x ⊥ y, then again some line through y is2444

fixed (namely, xy). If xony, then again some line through y is fixed (namely, the line joining c(x, y)2445

with y). If x is opposite y, then θ fixes the projection of L onto y and so again some line through2446

y is fixed. If x is symplectic to two opposite points of S, then it belongs to Ê(a, b) and so θ again2447

fixes some line through some point of S. So we may assume that L contains some point s ∈ S. Let2448

s′ ∈ S be opposite s. Let t be in E(s, s′) fixed, en let ξ = ξ(s, t) be the corresponding symplecton.2449

By possibly projecting L into ξ, we may assume that L ⊆ ξ. But L corresponds to a “plane” α2450

in E(s, s′), which is stabilised by θ. Since every “plane” in E(s, s′) contains a unique point of S,2451

we see that every “line” M 63 t of α is stabilised (consider any “plane” of E(s, s′) through M ; it2452

contains some point of S and hence M is stabilised). Hence α is pointwise fixed, contradicting our2453

assumptions on S. Our claim is proved.2454

We can now repeat the argument that we also used in the proof of Theorem 5.3.2: Suppose2455

that a plane π is stabilised by θ. Then as no line is fixed, there is a point of π mapped to a2456

distinct, necessarily collinear point, but then the line determined by these points is stabilised by2457

Corollary 5.2.2 (ii)(a), a contradiction.2458

This shows that θ only fixes points and symplecta. Hence the fix structure is a generalised quadran-2459

gle as every fixed point not incident to a fixed symplecton is far from that symplecton (otherwise,2460

there would be a fixed line) and so there is a unique symplecton through that point intersecting2461

that symplecton. So the basic property of generalised quadrangles is satisfied. Since the fix struc-2462

ture in Ê(a, b) is a generalised quadrangle, the complete fix structure will also contain opposite2463

points and opposite lines, hence it is a generalised quadrangle.2464

Now we claim that θ fixes an ovoid in each fixed symplecton and dually. Indeed, θ can’t fix two2465

collinear points (giving rise to a fixed line), but there must be a fixed point in every plane (by2466

Lemma 5.2.1 combined with Theorem 7.2 of [28] using that there are no fixed planes). The claim2467

follows. So it remains to show that in Γ1 these ovoids arise as intersections of subspaces in their2468

natural embeddings in projective space, and in Γ4 these ovoids are closed under taking hyperbolic2469

lines. It suffices to show this in one symplecton of each duality type, and then by projection, this2470

is true in every fixed symplecton.2471

Note that S (defined earlier) is the intersection of Ê(a, b) with a subspace (in its natural embedding)2472

by Lemma 3.1.2(i). It follows that the same is true for E(s, s′), as this is a part of Ê(a, b). Since2473

E(s, s′) is canonically isomorphic to the symplecton of Γ1 corresponding to the point s of Γ4, we2474

obtain the assertion for symplecta of Γ1.2475

Now we show that in Γ4 the said ovoids are closed under taking hyperbolic lines. Hence consider2476

two fixed points x, x′ in some symplecton ξ of Γ4. It is easy to find a fixed point y symplectic to2477

x′ and opposite x. Then Ê(x, y) is stabilised and θ induces a plane-domestic and solid-domestic2478

collineation in it. Then the set of fixed points of θ in Ê(x, y) is a subspace, except if θ induces2479

a generalised homology (but we treat that case below), see earlier. Hence the hyperbolic line2480
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h(x, x′) is pointwise fixed and we obtain (ii). Remark that A 6= K in this case, i.e. we are in the2481

nonsplit case as otherwise the hyperbolic line h(x, x′) corresponds to a line of the projective space2482

underlying the symplectic polar space ξ. Then a plane disjoint to this line gives rise to a fixed2483

point not contained in this line, but collinear to a point of this line, contradicting that the set of2484

fixed points form an ovoid.2485

Hence from now on we may assume that θ induces a (possibly trivial) generalised homology in2486

Ê(a, b). Suppose θ is as such; in particular it fixes the points p1, p2, p3, p4, q1, q2, q3, q4 of a skeleton,2487

with pi opposite qi, i = 1, 2, 3, 4. Consider the symplecton ξ(p1, p2) and E(p1, q1). Then the fixed2488

hyperbolic plane 〈p2, p3, p4〉 in E(p1, q1) corresponds to some line L in ξ(p1, p2) through p1, which2489

is also fixed by θ. So is the point L ∩ qon1 . Doing this for each plane 〈p2, p3, q4〉, 〈p2, q3, p4〉 and2490

〈p2, q3, q4〉, we obtain a fixed skeleton (and consequently also apartment) in ξ(p1, p2). In particular2491

we find a fixed chamber C in ξ(p1, p2). We find a fixed chamber D opposite C by taking a locally2492

opposite flag to the {point,line,plane}-flag of C in the fixed apartment of ξ(p1, p2) and projecting2493

this on ξ(q1, q2). It is clear that this chamber must be fixed and the opposition follows by the2494

analogue of Lemma 2.8.7 for symplecta. Hence we find a fixed apartment of Γ4.2495

We now consider this situation in Γ1. Let x1 and y1 be two opposite points of a fixed apartment2496

Λ of Γ1. Then θ fixes an apartment Λ′ = Λ ∩ E(x1, y1) of E(x1, y1). Let Λ′ consist of the points2497

x2, x3, x4, y2, y3, y4 with xi opposite yi, i = 2, 3, 4. Consider the symplecton ξ(x1, x2). There is2498

a line L in ξ(x1, x2) contained in x⊥1 ∩ x⊥2 such that the plane 〈x1, L〉 corresponds to the “line”2499

x2x3 of E(x1, y1). Each line through x1 intersecting L in some point x corresponds to a “plane”2500

of E(x1, y1) through x2x3. Note that already at least two such planes are fixed, namely x2x3x42501

and x2x3y4. If any such plane α were not fixed, then the point z := α ∩ (y2y3)⊥⊥ would be2502

mapped onto an opposite point z′, as if z ⊥⊥ z′ the line zz′ would span a “solid” with x2x3 in2503

E(x1, y1). But the imaginary line I (z, z′) corresponds to the hyperbolic line through z and z′ in2504

E(x1, y1) by Lemma 2.10.5, and the latter contains x2x3x4 ∩ (y2y3)⊥⊥ = {x4}, which is fixed, and2505

x2x3y4 ∩ (y2y3)⊥⊥ = {y4}, which is also fixed. Hence I (z, z′) is stabilised. This contradicts our2506

assumption that a stabilised imaginary line is either pointwise fixed, or no point of it at all is fixed.2507

This shows that L is pointwise fixed. Likewise, every line of Λ is pointwise fixed, and hence every2508

plane of Λ is pointwise fixed.2509

Now let α be the “plane” spanned by x2, x3, x4 and let Lα be the line of Γ1 through x1 corresponding2510

to α. Consider an arbitrary point u ∈ α and assume that u is not fixed. Let ξu be the symplecton2511

ξ(x1, u). Since u ∈ α and α is fixed, the image ξθu intersects ξu in a plane by Lemma 2.9.2. Then2512

Corollary 5.2.2(i) implies that the “line” uuθ is stabilised and that it contains at least one fixed2513

point f (since at least one symplecton through ξu ∩ ξθu is fixed). According to Proposition 3.3 of2514

[19] (recalling that α contains three noncollinear fixed points), either θ induces in α a homology,2515

or its fix structure in α is a Baer subplane. Of course, if no such u exists in α, then θ induces the2516

identity in α. Hence there are three possibilities to consider.2517

(a) Suppose θ induces the identity in α. Then the set of fixed points of θ in E(x1, y1) is a polar2518

subspace of rank 3. This follows from the fact that in Λ′ there is a (stabilised) plane opposite2519

α and this is consequently also pointwise fixed. So the set of fixed points contains two disjoint2520

planes. The other axioms of a polar space are inherited from the polar space E(x1, y1) (keeping2521

in mind that a stabilised line is pointwise fixed by its projection on a pointwise fixed plane).2522

This fixed polar space necessarily has to coincide with E(x1, y1) since geometric subspaces of2523

that polar space conform with subspaces of the ambient projective space of dimension 5 (which2524

is generated by two opposite planes of the polar space). Now every line of ξ(x1, x2) through x12525

is fixed and at least one plane through it belongs to Λ and is hence pointwise fixed. Since also2526

x2 is fixed, and hence x⊥1 ∩ x⊥2 is pointwise fixed, Corollary 3.2.3 asserts that θ acts trivially2527



METASYMPLECTIC SPACES 65

on ξ(x1, x2). Lemma 5.1.4(ii) implies that θ is a central elation. Since θ fixes y1, which is2528

opposite x1, this elation is trivial by Lemma 5.1.2. Hence this case leads to the identity, which2529

contradicts clearly the opposition diagram.2530

(b) Secondly we may assume that θ induces a Baer collineation in α. As the residue of x1 as a2531

symplecton of Γ4 is isomorphic to E(x1, y1) in Γ1, we see that θ induces a Baer collineation2532

in a plane of the symplecton x1. Now we see that θ induces a generalised Baer collineation in2533

this symplecton as this is the only non-linear domestic collineation of a hermitian rank 3 polar2534

space by Theorem 7.2 of [28]. Remark that this is impossible in the split case by Lemma 3.3.6.2535

Then we claim that θ induces a generalised Baer collineation in every stabilised symplecton2536

of Γ4. This follows from the following connectivity argument. If two adjacent fixed symplecta2537

intersect in a fixed plane and θ induces a generalised Baer collineation in one of them, then2538

θ induces also a generalised Baer collineation in the other. Similarly, if two fixed symplecta2539

share a unique point x, and θ induces a generalised Baer collineation in one of them, then2540

there is a fixed line through x in that symplecton, and hence some fixed plane sharing a line2541

through x with each of the symplecta. Since the plane is not pointwise fixed (the lines are2542

not), the contraposition of Corollary 5.2.2(i)(b) implies that all symplecta through that plane2543

are fixed and so the previous argument implies that θ induces a generalised Baer collineation2544

in both symplecta. If the two symplecta are special, then we apply the first argument with2545

these symplecta and the unique symplecton adjacent to both. Finally, if the two symplecta2546

are opposite, then the fix structures are isomorphic by projection. The claim follows.2547

Now we can apply the arguments in the third and fourth paragraph of the nonsplit case2548

of the proof of Theorem 5.4.2 and conclude that θ pointwise fixes a subspace isomorphic to2549

F4,1(K,B), for B a subalgebra half the dimension over K of A. If A is a separable quadratic2550

extension of K, then we are dealing with the opposition diagram F4
4;1 by Proposition 4.3.1.2551

Since A is not octonion either, it is quaternion and we find (iv).2552

(c) Finally we may assume that θ induces a central collineation in α. Since the point x4 is also2553

fixed, it must be a homology, and the centre is one of x2, x3, x4. Without loss of generality,2554

we may assume that x2 is the centre. Then no point of the “line” x2x3 other than x2 and x32555

themselves, is fixed by θ. In the symplecton ξ(x2, x3) this means that θ fixes x2 and x3, it2556

also pointwise fixes the lines Lx := ξ(x2, x3) ∩ x⊥1 and Ly := ξ(x2, x3) ∩ y⊥1 , and pointwise the2557

planes 〈Lx, x2〉, 〈Lx, x3〉, 〈Ly, x2〉 and 〈Ly, x3〉 (since these belong to the apartment Λ). Hence2558

θ induces a nontrivial linear collineation in ξ(x2, x3) and its ambient projective space PG(n,K),2559

with n ∈ {6, 7, 9, 13}. By Lemma 5.2.1, θ induces a plane-domestic collineation in ξ(x2, x3)2560

and, as θ induces a linear collineation in α and has a stabilised plane in Λ′, Theorem 7.2 of2561

[28] implies that ξ contains a pointwise fixed hyperplane or subhyperplane (consisting of all2562

fixed points contained in a pointwise fixed line). This is the intersection of the quadric with a2563

hyperplane or subhyperplane H of PG(n,K), respectively, by Lemma 3.1.2(i). Then H contains2564

the span of the four planes mentioned above, which has dimension 5, and must intersect the2565

space L⊥x ∩ L⊥y , which has dimension n− 4, in a subspace W of dimension at least n− 6. We2566

now show that the dimension of W is 1, by looking at the intersection with the quadric Q.2567

First we prove that the intersection W ∩Q spans W . Let p ∈W be an arbitrary point. If p is2568

contained in Q, then p is obviously contained in the span of Q. If p is now neither contained2569

in Q nor in the tangent space to Q at x2, then the line px2 intersects Q in two points and so p2570

is contained in 〈W ∩Q〉. If p is finally not contained in Q, but contained in the tangent space2571

at x2 to Q, then every point of the line px3 distinct from p is contained in the span by the2572

previous arguments and so also p ∈ 〈W ∩Q〉. By assumption W ∩Q only contains the points2573

x2 and x3, as every other point would be contained in ξ∩E(x2, x3), which is exactly the “line”2574

x2x3 by Lemma 2.6.7. Hence the dimension of W is 1, which implies that n ∈ {6, 7}.2575
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As it is clear that θ can’t imply one of the previous two collineations (considered in (a) and2576

(b)) in the planes spanned by the triangles2577

{x2, x3, y4}, {x2, y3, x4}, {x2, y3, y4}, {y2, x3, x4}, {y2, x3, y4}, {y2, y3, x4}, {y2, y3, y4},

we may assume that it induces a homology and consequently fixes exactly one line pointwise in2578

these triangles. It is now an elementary exercise to conclude that we may assume that the lines2579

x3x4, x3y4, y3x4 and y3y4 are pointwise fixed (use also the fact that, if a line is pointwise fixed,2580

then so is every opposite line that is stabilised). Now we consider the symplecton ξx = ξ(x3, x4)2581

and denote Lx := ξ(x3, x4) ∩ x⊥1 and Ly := ξ(x3, x4) ∩ y⊥1 . Again θ pointwise fixes the planes2582

〈Lx, x3〉, 〈Lx, x4〉, 〈Ly, x3〉 and 〈Ly, x4〉, and these generate a (pointwise fixed) 5-space U in the2583

ambient projective space PG(n,K). Furthermore, θ now also pointwise fixes W := 〈L⊥x ∩ L⊥y 〉2584

and this has dimension n − 4. Clearly U ∩W = x3x4 and so U and W generate PG(n,K).2585

Since both U and W are pointwise fixed and they are not disjoint, θ pointwise fixes ξ(x3, x4).2586

Likewise θ pointwise fixes the symplecta ξ(y3, y4), ξ(x3, y4) and ξ(y3, x4). This implies that2587

in the extended equator geometry Ê(s, t) defined by the points of F4,4(K,A) corresponding2588

to these symplecta, θ pointwise fixes two perpendicular equator geometries. Hence in the2589

corresponding quadric Ê(s, t), one pointwise fixes (s⊥ ∩ t⊥) ∪ (u⊥ ∩ v⊥), for points s, t, u, v2590

with s not collinear to t, u not collinear to v, and both s, t collinear to both u, v. This implies2591

that θ acts trivially on Ê(s, t) using Corollary 3.2.3 taking a pointwise fixed line through s in2592

(u⊥ ∩ v⊥), and hence θ also acts trivial on the corresponding tropics geometry. Remark that2593

this means that θ does not fix any other point in Γ4 \ (Ê(s, t) ∪ T̂ (s, t)). This follows from2594

the fact that Ê(s, t)∪ T̂ (s, t) is a geometric hyperplane, by Proposition 3.10 of [8] and the fact2595

that a geometric hyperplane does not properly contain another geometric hyperplane in this2596

case by Proposition 2.5 of [9]. This leads to (iii), taking Proposition 4.3.1 into account.2597

The theorem is proved. �2598

Remark 5.4.4. Ovoids of C3,1(K,L) closed under hyperbolic lines have the property that they2599

arise as the intersection with a subspace in their unique projective embedding in PG(5,L). This2600

can be shown with some elementary calculations. However, this ovoids of C3,1(K,H) closed under2601

hyperbolic lines do no longer necessarily have that property. In fact, our examples in Section 6.2.42602

are examples of this phenomenon.2603

6. Constructions2604

6.1. Outline of the methodology. In this section we prove that each type of domestic collineation2605

mentioned in the Main Result really exists. Despite the fact that it might look obvious for most2606

cases, a rigorous proof is required as, for instance, Lemma 5.1.5(iii) witnesses. Indeed, it is not2607

entirely clear that for certain fields or in certain characteristics, nontrivial collineations exist that2608

have the prescribed fix structure.2609

However, the most intriguing cases are of course those of (Dom14)(iii) of the Main Result. Con-2610

cerning Class (M), the job has already been done in [23], where it is proved in Proposition 5.1 and2611

Theorem 6.3, that the fix structure of a collineation θ of an inseparable building F4(K,K′) consists2612

of vertices of types 1 and 4 only, such that , for {k, `} = {1, 4}, the fixed vertices of type k incident2613

with a fixed vertex of type ` form an ovoid in the corresponding residual polar space of rank 3,2614

if, and only if, θ is conjugate to a certain explicitly defined involution denoted θ0 in Section 5 of2615

[23]. The corresponding fixed quadrangle is Moufang of mixed type. The full fix group is also2616

determined and is surprisingly large.2617
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So, for the Case (Dom14)(iii) we are left with Classes (L) and (H). Concerning the other cases, the2618

ones definitely requiring a proof are (Dom4), Class (L), and (Dom14)(ii) (Classes (L) and (H)).2619

Class (K) in Case (Dom4) has been treated in [18], and the existence of central elations in Γ1,2620

so-called long root elations can be attributed to folklore, see also Chapter 2 and 3 of Timmesfeld’s2621

book [29]. For completeness’s sake we include a construction here.2622

All our existence proofs rely on Tits’ extension theorem 4.16 of [31]. We translate it to our setting2623

in Theorem 6.3.1. The method is then described in detail in Section 6.3.1. In short, it suffices2624

to find two collineations g, g′ acting respectively on the residues of a point p and a symplecton2625

ξ 3 p, agreeing on the intersection of these two residues and two apartments Λ and Λ′ containing2626

this point and symplecton such that the union of g and g′ is compatible with an isomorphisms2627

Λ → Λ′. Then we can conclude by Tits’ extension theorem that the union of these three maps2628

(g, g′,Λ 7→ Λ′) extends uniquely to a collineation of the metasymplectic space. The only thing to2629

check then is that this collineation is indeed of the wanted form.2630

We carry out this scheme in detail for the most involved and most interesting cases, namely2631

(Dom14)(iii), Classes (L) and (H). It will then be clear how this works and we can treat the other2632

cases more quickly, only concentrating on the essentials.2633

Case (Dom14)(iii) will occupy the first three subsections of this section. In the first subsection2634

we will construct a collineation in the residue of a point and a collineation in the residue of a2635

symplecton, which act well together, i.e. the point is contained in the symplecton and the actions2636

of the collineations coincide on the intersection of these residues. In the second section we will then2637

prove that such collineation extends to a domestic collineation fixing a generalised quadrangle as2638

in Proposition 4.2.1 and (ii) of Theorem 5.4.3. In the third subsection we will then identify the2639

type of these fixed quadrangles. Note that we not only get a collineation that fixes exactly the said2640

Moufang quadrangle, but a whole group of collineations. Nevertheless we do not determine the2641

full fix group, as this seems to require more detailed calculations which we did not perform (yet).2642

In the next three subsections, we assume A ∈ {L,H}, with L a separable quadratic extension of2643

K and H a quaternion division algebra over K. We denote e = dimK A ∈ {2, 4}. We will work in2644

some fixed metasymplectic space Γ1 = F4,1(K,A), where A will be obvious from the context, and2645

C := {p, L, π, ξ} will be a fixed chamber with p a point, L a line, π a plane and ξ a symplecton in2646

Γ1.2647

6.2. Residual collineations. As written above, we will construct some collineations in some2648

residues in this section. As in the statement of Proposition 4.2.1 these collineations will fix an2649

ovoid. Also, as required by Theorem 5.4.3, the ovoid in the symplecton arises as the intersection2650

with a subspace in the ambient projective space, considering the symplecton as a quadric in some2651

projective space. First we will determine a nontrivial group of collineations of the symplecton2652

pointwise fixing this ovoid. Afterwards, we will link the different residues in such a way that there2653

exist nontrivial collineations acting in the same way on the intersection of both residues.2654

6.2.1. Ovoids and collineations of (the residue of) ξ in F4,1(K,A). By definition, (the residue of)2655

ξ is the polar space B3,1(K,A), i.e. a quadric in PG(5 + e,K) with equation2656

x−3x3 + x−2x2 + x−1x1 = z0z0 − bz′oz′0, (3)

where we view the underlying vector space as isomorphic to K3 ⊕ L e
2 ⊕ K3 and b = 0 if e = 22657

(this makes it possible to threat the cases e = 2 and e = 4 at the same time here). Also, z 7→ z2658

is the Galois involution of the separable quadratic extension L/K. That extension is given by the2659

irreducible quadratic polynomial x2 − x+ d. We denote one root of this polynomial in L as i, and2660
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then the other one is ı = 1 − i. The corresponding norm is the map N : L → K : x 7→ N(x) = xx2661

and b /∈ N(L).2662

From Theorem 5.4.3(ii), we know that the fixed ovoid in θ must arise as the intersection with2663

a subspace in PG(5 + e,K). Let now D be the subspace of codimension 2 of PG(5 + e,K) with2664

equations2665 {
x−3 = a(x3 + x2),
x−2 = adx2,

where N(z1) − aN(z2) − bN(z3) = 0 if, and only if, z1 = z2 = z3 = 0, for all z1, z2, z3 ∈ L. The2666

intersection of D with ξ is the ovoid Oξ with equation2667  x−1x1 = z0z0 − bz′oz′0 − a(x2
3 + x3x2 + dx2

2),
x−3 = a(x3 + x2),
x−2 = adx2.

(4)

This is clearly an ovoid because it is a geometric subhyperplane as it is the intersection with a2668

subhyperplane of the underlying projective space, and it does not contain lines, since it can be2669

seen as a polar space of rank 1 due to the first equality in Eq. (4) and the choice of a.2670

We write z0 =: x6 + ix7 and z′0 =: x4 + ix5. We denote the point with all coordinates zero except2671

xj = 1 with pj , j ∈ {−3,−2,−1, 1, 2, 3, 4, 5, 6, 7}. We order the coordinates according to the2672

following ordering of the indices: −2, 2,−3, 3,−1, 1, 4, 5, 6, 7.2673

Let ϕ be a collineation of ξ pointwise fixing Oξ with matrix M (with respect to the basis in which2674

we write the equations of course) and field automorphism τ .2675

The intersection of Oξ with the subspace 〈p−1, p1, p4, p5, p6, p7〉 has equations x−3 = x−2 = x2 =2676

x3 = 0 together with x−1x1 = z0z0 − bz′0z0, which is a quadric spanning this subspace. Since it2677

has to be pointwise fixed by ϕ, we see that the corresponding submatrix is the identity (and the2678

companion field automorphism τ is trivial). Also, since 〈p−1, p1, p4, p5, p6, p7〉⊥ = 〈p−3, p−2, p2, p3〉,2679

the matrix M is of the form2680 (
M ′ 0
0 I2+e

)
,

where I2+e is the (2 + e)× (2 + e) identity matrix and M ′ is a 4× 4 matrix.2681

Now we consider the subspace U spanned by p−1, p1, p−2, p2, p−3, p3, and it is convenient to rewrite2682

the coordinates in this order. The points with coordinates (1,−a, 0, 0, a, 1) and (1− ad, ad, 1, a, 0)2683

are fixed under ϕ, which results in M ′ being of the form2684 
1 +H −adH − aD D −aD
G 1− adG− aC C −aC
F −adF − aB 1 +B −aB
E −adE − aA A 1− aA

 ,

with A,B,C,D,E, F,G,H ∈ K. Since this fixes the generic point (adx2, x2, a(x3 + x2), x3) of
〈p−2, p2, p−3, p3〉, the matrix M as given above pointwise fixes Oξ, and it is a generic matrix doing
so. Now we express that the matrix M preserves ξ. This results in the identity

x−2x2 + x−3x3 =

((1 +H)x−2 − (adH + aD)x2 +Dx−3 − aDx3)(Gx−2 + (1− adG− aC)x2 + Cx−3 − aCx3)

+ (Fx−2 − (adF + aB)x2 + (1 +B)x−3 − aBx3)(Ex−2 − (adE + aA)x2 +Ax−3 + (1− aA)x3),
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which is equivalent with the following system of conditions on the parameters:

0 = G(1 +H) + EF, (5)

0 = (adH + aD)(1− adG− aC)− (adF + aB)(adE + aA), (6)

0 = CD +A(1 +B), (7)

0 = a2CD − (1− aA)aB, (8)

0 = C(1 +H) +DG+AF + E(1 +B), (9)

0 = aC(1 +H) + aDG− F (1− aA) + aBE, (10)

0 = D(1− adG− aC)− C(adH + aD)−A(adF + aB)− (1 +B)(adE + aA), (11)

0 = aC(adH + aD)− aD(1− adG− aC)− (adF + aB)(1− aA) + aB(adE + aA), (12)

1 = (1 +H)(1− adG− aC)−G(adH + aD)− F (adE + aA)− E(adF + aB), (13)

1 = −aCD − aCD − aAB + (1− aA)(1 +B). (14)

Combining (7) and (14), we obtain B = −aA. Then (7), (8) and (14) reduce to CD+A−aA2 = 0.2685

Combining (9) and (10), we obtain F = −aE. Further, if we divide (6) by a and add ad2 times2686

(5), a times (7) and ad times (9) to it, then we obtain2687

d(H + adG+ aE) + (D + aA+ adC) = 0.

Also, if we add (11) to 2a times (7) and ad times (9), then D + aA+ adC = 0. Hence we can set

D = −aA− adC,
H = −aE − adG.

Then (5) becomes G = a(E2 +EG+ dG2), (7) becomes A = a(A2 +AC + dC2) and (9) becomes2688

C + E = a(CE +AG+ 2(AE + dCG)).

One can check that no other conditions can be derived from the above identities. Hence the above2689

system of conditions is equivalent to2690 

B = −aA,
F = −aE,
D = −aA− adC,
H = −aE − adG,
A = a(A2 +AC + dC2),
G = a(E2 + EG+ dG2),

C + E = a(CE +AG+ 2(AE + dCG)).

(15)

So we get the matrix2691 
1− aE − adG a2dE + a2d2G+ a2A+ a2dC −aA− adC a2A+ a2dC

G 1− adG− aC C −aC
−aE a2dE + a2A 1− aA a2A
E −adE − aA A 1− aA

 , (16)

which we only have to complete with an e × e identity part on the z0 and z′0 coordinates to have2692

the full action on the residual quadrangle Qξ in PG(3 + e,K). Note that Qξ is the common perp2693

of the points p−1 and p1.2694
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6.2.2. Ovoids and collineations of the residue of p in F4,1(K,L). Now we consider ResΓ1
(p). As2695

this is isomorphic to a symplecton ξp in Γ4, we will denote this residue by ξp. This is a Hermitian2696

polar space of rank 3, C3,1(A,K). Although it should in principle be possible to treat both cases2697

(e = 2, 4) at the same time, this would only make things less transparent and the computations2698

needlessly complicated. So we first consider the case e = 2, which will be done in this subsection.2699

In this case by the closedness under hyperbolic lines (see Theorem 5.4.3(ii)), the ovoid also arises2700

as the intersection with a subspace in the unique projective embedding (see Remark 5.4.4).2701

The equation of ξp, which is a Hermitian polar space of rank 3 in PG(5,L), where L is as in the
previous subsection, is now

y−3y3 + y−2y2 + y−1y1 = y3y−3 + y2y−2 + y1y−1.

Set t = 1−2i, then t = −t and tt = −t2 = 4d−1. We intersect ξp with the subspace with equations2702 {
y−2 = (1− i)y2,
y−3 = −(1− i)ay3,

with a ∈ L exactly as in the previous subsection. Then Op has equations2703  y−1y1 − y1y−1 = ty2y2 − aty3y3,
y−2 = (1− i)y2,
y−3 = −(1− i)ay3.

Consider the order (y−1, y1, y−2, y2, y−3, y3) of the coordinates and let ϕ be a collineation of ξp2704

pointwise fixing Op. Then the points (1, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0) are fixed, and so are their2705

perps, resulting in a 2 × 2 identity submatrix and trivial borders. Note that also the field auto-2706

morphism is trivial since the points (1, x, 0, 0, 0, 0) with x ∈ K and (1, i, 1− i, 1, 0, 0) are fixed. So2707

we concentrate on the part of the matrix involving the last four coordinates. Expressing that a2708

generic point with coordinates ((1− i)y2, y2,−(1− i)ay3, y3) is fixed, we obtain the matrix2709 
1 +B −(1− i)B F (1− i)aF
C 1− (1− i)C G (1− i)aG
A −(1− i)A 1 + E (1− i)aE
D −(1− i)D H 1 + (1− i)aH

 ,

where A,B,C,D,E, F,G,H ∈ L. Setting2710 
Y−2 = (1 +B)y−2 − (1− i)By2 + Fy−3 + (1− i)aFy3,
Y2 = Cy−2 + (1− (1− i)C)y2 +Gy−3 + (1− i)aGy3,
Y−3 = Ay−2 − (1− i)Ay2 + (1 + E)y−3 + (1− i)aEy3,
Y3 = Dy−2 − (1− i)Dy2 +Hy−3 + (1 + (1− i)aH)y3,

we have the identity2711

y−2y2 − y2y−2 + y−3y3 − y3y−3 = Y −2Y2 − Y 2Y−2 + Y −3Y3 − Y 3Y−3, (17)

by expressing that ξp is preserved. Equating the coefficients of y−2y−2, y2y2 and y−2y2, we obtain2712

the relations2713 {
B = iC,

C − C = tCC +AD −AD.
Equating the coefficients of y−3y−3, y3y3 and y−3y3, we obtain the relations2714 {

E = −iaH,
H −H = −taHH + FG− FG.
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Finally, equating the coefficients of y±2y±3, we obtain the relations2715 
A = −iaD,
F = iG,

D −G = AH +BG− CF −DE.

It can now be checked that Identity (17) is equivalent to the following system of conditions:2716 

A = −iaD,
B = iC,
E = −iaH,
F = iG,

C − C = t(CC − aDD),
H −H = t(GG− aHH),
D −G = t(CG− aDH).

(18)

This yields the matrix:2717 
1 + iC −dC iG adG
C 1− ıC G ıaG
−iaD adD 1− iaH −a2dH
D −ıD H 1 + ıaH

 . (19)

This matrix acts on the residual quadrangle Qp with equation y−2y2− y2y−2 + y−3y3− y3y−3 = 0,2718

that we get again as the common perp of p−1 and p1.2719

6.2.3. Identification of the residual collineations in F4,1(K,L). We now need to find a duality2720

between the quadrangles Qξ and Qp of the previous two subsections, in such a way that there2721

is at least one nontrivial collineation ϕ of ξ fixing the corresponding ovoid pointwise, and one2722

collineation ϕp of ξp fixing the corresponding ovoid pointwise, and such that the action of ϕ on Qξ2723

agrees with the action of ϕp on Qp through the duality.2724

We start from the quadrangle Qp, given by the equation y−2y2 − y2y−2 + y−3y3 − y3y−3 = 0 in2725

PG(3,L) and use the Plücker transformation. One can calculate that the corresponding Plücker2726

coordinates satisfy the equation2727

p−2,2p−2,2 = p−2,−3p3,2 + p−2,3p2,−3. (20)

We check this for a generic line, the exceptional cases can be done similarly. For the first point we
assume that y−2 6= 0, then it is of the form (1, y3y−3 +r, y−3, y3), with y−3, y3 ∈ L and r ∈ K. For a
generic point collinear with it, we may assume that y−2 = 0, and we also assume that y−3 6= 0, then
it has coordinates (0, y3 − sy−3, 1, s), with s ∈ K. The Plücker coordinates of the corresponding
line are now

(p−2,2, p−3,3, p−2,−3, p3,2, p−2,3, p2,−3) =

(y3 − sy−3, sy−3 − y3, 1, y3y3 − s(y3y−3 + sy3y−3)− sr, s, r + sy−3y−3),

which satisfy indeed Eq. (20). Furthermore, note that p−2,−3, p3,2, p−2,3, p2,−3 ∈ K, while p−2,2 =2728

−p−3,3 ∈ L. So Eq. (20) corresponds indeed with the equation of Qξ as the common perp of p−12729

and p1 in (3), with b = 0 (as e = 2).2730
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Now we calculate the corresponding matrix, applying the Plücker transformation to the matrix in
(19).

1− tC 0 G adG
0 1 + taH −D −adD

adD −adG 1 + iC − iaH + i2a(DG− CH) a2d2(DG− CH)
D −G DG− CH 1− ıC + ıaH + ı2a(DG− CH)
−ıD iG H + i(CH −DG) dC + ıad(CH −DG)
iaD −ıaG C + ia(DG− CH) a2dH + ıa2d(DG− CH)

ıaG −iG
−iaD ıD

−a2dH + ia2d(DG− CH) −dC + iad(CH −DG)
−C + ıa(DG− CH) −H + ı(CH −DG)

1 + iC + ıaH + ad(CH −DG) d(DG− CH)
a2d(DG− CH) 1− ıC − iaH + ad(CH −DG)


Since z0 in (3) corresponds to p−2,2 in (20), and in the matrix extending the one in (16), the
corresponding base vector was fixed, we set G = D = 0 and C = −aH. We then obtain

1 + taH 0 0 0
0 1 + taH 0 0
0 0 1− 2iaH + i2a2H2 a3d2H2

0 0 aH2 1 + 2ıaH + ı2a2H2

0 0 H − iaH2 −adH − ıa2dH2

0 0 −aH + ia2H2 a2dH + ıa3dH2

0 0
0 0

−a2dH + ia3dH2 adH − ia2dH2

aH + ıa2H2 −H − aıH2

1− iaH + ıaH − a2dH2 adH2

a3dH2 1 + ıaH − iaH − a2dH2

 ,

with (18) reducing to only one extra restriction H − H = −atHH, which we can also write as2731

H(1 + atH) = H. This implies H2(1 + atH)−1 = HH and (H − iaH2)(1 + taH)−1 = H − iaHH.2732

Since the extra condition yields H − iaHH = H − a(t + i)HH = H − ıaHH, the quantity2733

ζ1 := H − iaHH belongs to K. Likewise ζ2 := H + ıaHH belongs to K. We then see that the2734

above matrix is proportional to the blockmatrix2735 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1− aζ1 − a2dHH a3d2HH −a2dζ1 adζ1
0 0 aHH 1 + aζ2 − a2dHH aζ2 −ζ2
0 0 ζ1 −adζ2 1− a2dHH adHH
0 0 −aζ1 a2dζ2 a3dHH 1− a2dHH

 ,

which is a real matrix (meaning, all entries belong to K). Now we have to match the nontrivial2736

4 × 4 block with the earlier obtained matrix in (19). However, we apply first an isomorphism by2737
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switching the coordinates p−2,3 and p2,−3. This way we obtain2738 
1− aζ1 − a2dHH a3d2HH adζ1 −a2dζ1

aHH 1 + aζ2 − a2dHH −ζ2 aζ2
−aζ1 a2dζ2 1− a2dHH a3dHH
ζ1 −adζ2 adHH 1− a2dHH

 =: M∗.

This matrix corresponds to (19), if you set there:2739 
A = adHH,
C = −ζ2,
E = ζ1,
G = aHH.

Indeed, this is obvious or easy for most entries; we do the explicit calculation for the a priori least
obvious one, namely

a2dE + a2d2G+ a2A+ a2dC = a2d((ζ1 − ζ2) + (adHH + aHH)) =

a2d((−i− ı)aHH + a(d+ 1)HH) = a3d2HH.

One also checks similarly the additional conditions in (15). To conclude that we now have indeed2740

obtained our goal, we need to verify that there really exists an H 6= 0, so that 1 + atH 6= 0 and2741

H −H = −atHH. This is for example satisfied by H = −(ad)−1i.2742

Remark 6.2.1. By the above collineations, no point is mapped to a collinear one (including2743

itself) in the quadrangle Qξ. This can be seen as follows. A general point x of Qξ is given by the2744

coordinates (x−2, x2, x−3, x3, z0) with xi ∈ K and z0 ∈ L and satisfies x−3x3 +x−2x2 = z0z0. Now2745

this point is mapped to the point (y−2, y2, y−3, y3, z0) with2746

(y−2, y2, y−3, y3)′ = M∗(x−2, x2, x−3, x3),

which is a point collinear to x if, and only if (after some elementary calculations),

x−2y2 − x2y−2 + x−3y3 − x3y−3 = 0

⇔ N((x−2 − adx2) + (x−3 − ax3 − ax2)i) = 0

⇔ x−2 − adx2 = 0 ∧ x−3 − ax3 − ax2 = 0,

with N the norm in L. So, recalling Eq. (4), the point must be fixed. But then this yields

x−3x3 + x−2x2 = z0z0 ⇔ aN(x3 + x2i) = N(z0),

which contradicts the choice of a. We say that the collineation is anisotropic.2747

6.2.4. Ovoids and collineations of the residue of p in F4,1(K,H). Now the closedness under hyper-2748

bolic lines does no longer imply that the fixed ovoid in the residue of p in F4,1(K,H) arises as the2749

intersection with a subspace of the underlying projective space. We know that ξp is a Hermitian2750

polar space of rank 3 in PG(5,H), where H is a quaternion division algebra over K containing the2751

subfield L of the previous sections. Let Op be the Hermitian surface in PG(5,L) with equation2752

y−1y1 − y1y−1 = y0y0 − ay′0y′0 − by′′0y′′0 + aby′′′0 y
′′′
0 . (21)

We now have to prove that this is indeed an ovoid in a polar space ξp ∼= C3,1(H,K). It is immediately2753

clear that this does not contain lines. So it suffices to prove that it is a subhyperplane in a polar2754

space C3,1(H,K).2755

First we prove that Op is contained in such a polar space, by looking at the equation over H :=
CD(L, b) instead of L. The choice for b to be the primitive element of the Cayley-Dickson process
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is not coincidental. It is motivated by the fact that the quadrangle over H, which is the point
residual in ξp, is dual to the orthogonal quadrangle appearing as point residual in ξ, which is a
necessary condition. Recall the definition of the multiplication and standard involution in H:

(x, y) · (u, v) = (xu+ byv, xv + yu),

(x, y) = (x,−y),

taking into account that L is commutative. To prove that Eq. (21) is indeed a hermitian polar space2756

over H, we rewrite the equation as a pseudo-quadratic form, since this is needed and unavoidable2757

in characteristic 2. This becomes2758

y−1y1 − y0iy0 + ay′0iy
′
0 + by′′0 iy

′′
0 − aby′′′0 iy′′′0 ∈ K. (22)

This pseudo-quadratic form is indeed equivalent to (21) over L by expressing that the elements of2759

K are exactly those of L that are equal to their conjugate (under the standard involution).2760

We now prove that the residue of p1 (or the common perp of p1 and p−1) is a generalised quadrangle
by coordinatising it as in Chapter 3 of [34]. This residue, which we denote (quite suggestively) as
Qp, is given by the following pseudoquadratic form

f(z−2, z2, z−3, z3) := z−2iz−2 − bz2iz2 − az−3iz−3 + abz3iz3 ∈ K,

and the collinearity is given by the Hermitian form:

x−2iy−2 − bx2iy2 − ax−3iy−3 + abx3iy3 − x−2ıy−2 + bx2ıy2 + ax−3ıy−3 − abx3ıy3.

We order the coordinates as (z−2, z2, z−3, z3). We make the following assignments of coordinates,2761

with the convention that γ := (0, i), u, u′, v ∈ H and `, `′, λ ∈ L:2762

Coordinates in PG(4,H) Coordinates in Qp

(b, γ, 0, 0) (∞)

(bu, γu, b, γ) (u)

(bu′, γu′, bi, γı) (0, u′)

2763

Now we define the points in the common perp of (0, 0) and (0). It is easy to see that the point2764

(0, 0, 0) with coordinates as in the following table is part of Qp and collinear to both. Remark also2765

that this point is not collinear to (∞) in this polar space. However in the underlying projective2766

space, these points are collinear and as the images of (0, 0) and (0) under the defining polarity are2767

two distinct planes, all points collinear to both must be contained in the line of this projective2768

space through (0, 0, 0) and (∞). Expressing that these points must also be contained in Qp gives2769

us that these points can be labeled by (0, `, 0) with ` ∈ K, corresponding to the coordinates below.2770

The reason for the factor a−1 is to obtain later the same incidence relation as for the quadrangle2771

Qξ.2772

Coordinates in PG(4,H) Coordinates in Qp

(bi, γı,0,0) (0, 0, 0)

(bi+ a−1`b, γı+ a−1`γ, 0, 0) (0, `, 0)

2773

We can now calculate the coordinates of the points (u, `, 0) as the unique point on the line2774

〈(0), (0, `, 0)〉 collinear to (u), and also of (u, `, u′) as the unique point on the line 〈(u, `, 0), (u)〉2775

collinear to (0, u′), in the standard way and we obtain:2776
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Coordinates in PG(4,H) Coordinates in Qp

(bi+ a−1`b, γı+ a−1`γ, a−1biu, a−1γı u) (u, `, 0)

(abi+ `b− buu′, aγı+ `γ − γuu′, biu− bu′, γı u− γu′) (u, `, u′)

2777

We now calculate the coordinates of the point (`′, 0) with `′ ∈ K as a point collinear to (∞) and2778

(0, 0, 0), similar to those of (0, `, 0). With the standard way to calculate the coordinates of (`′, u′)2779

as the unique point on 〈(∞), (`′, 0)〉 collinear to (0, 0, u′) we then get:2780

Coordinates in PG(4,H) Coordinates in Qp

(0, 0, bi− b`′, γı− `′γ) (`′, 0)

(bu′, γu′, bi− `′b, γı− `′γ) (`′, u′)

2781

Now we define the lines, one can check that these are indeed lines of Qp:

[∞] := 〈(∞), (0)〉,
[`] := 〈(∞), (`′, 0)〉,

[`, v] := 〈(v), (v, `, 0)〉,
[`, v, `′] := 〈(`, v), (0, `′, v)〉.

This coordinatisation proves that Qp is indeed a generalised quadrangle and consequently the2782

space defined by the pseudoquadratic form (22) over H is a polar space of rank 3. Since it lives in2783

5-dimensional space PG(5,H), Eq. (22) implies that it is isomorphic to the polar space C3,1(H,K)2784

as in Definition 2.3.2, so we can denote it by ξp.2785

Now we prove that Op is a subhyperplane. Let π be an arbitrary plane in ξp. If all points of π are
collinear to p1, then π must contain p1 ∈ Op. So we may suppose that x ∈ π is not collinear to p1,
then the coordinates of x are of the form:

x = (1, k + f(z−2, z2, z−3, z3), z−2, z2, z−3, z3),

with z±2, z±3 ∈ H and k ∈ K. Denote by M the projection of p−1 on π and by L the projection
of p1 on 〈p−1,M〉. Then L is a line of the quadrangle Qp. We suppose that L is of the general
form [`, v, `′] (the other cases are similar). Then L is spanned by the points with coordinates (`, v)
and (0, `′, v) in Qp. Projecting these points onto M yields two points y and z with the following
coordinates in PG(5,H):

y = (0, α, bv, γv, bi− `b, γı− `γ),

z = (0, β, abi+ `′b, aγı+ `′γ,−bv,−γv),

where α and β are completely determined by expressing the collinearity to x. By the definition of
Op it suffices now to prove that there exists a point with coordinates in L in this plane. We prove
this by taking a linear combination of the coordinates of x, y, z with the property that the first
coordinate is 1 and the last four coordinates are contained in L. Then the second one will also be
contained in L since the plane is contained in ξp. So with the map Im : H → L : (v1, v2) 7→ v2 we
have to show that the system of equations corresponding to

Im((bv, γv, bi− b`, γı− `γ) · u+ (abi+ `′b, aγı+ `′γ,−bv,−γv) · w) = Im((z−2, z2, z−3, z3))

has a solution in u,w ∈ H for every v, z−2, z2, z−3, z3 ∈ H and every `, `′ ∈ K. Writing w as
(w1, w2) and u as (u1, u2), this is a linear system of four equations in four variables, so it has a
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solution if, and only if, the corresponding determinant is not zero. One now calculates that this
corresponding determinant, when writing v = (v1, v2), is equal to∣∣∣∣∣∣∣∣

bv2 bv1 0 b(aı+ `′)
v1 bv2 aı+ `′ 0
0 b(ı− `) bv2 −bv1

ı− ` 0 −v1 bv2

∣∣∣∣∣∣∣∣ = b2(vv + (ı− `)(aı+ `′))2.

One gets then easily that the above expression is zero if, and only if, N(v) = aN(` − i), which2786

implies that a = N(h) for some h ∈ H. If we write h = (h1, h2), we see that a = h1h1 − bh2h2,2787

which is impossible by the choice of a in the first subsection. This concludes the proof of the fact2788

that Op is a subhyperplane, and hence an ovoid, of ξp.2789

Now we determine the collineations of ξp fixing Op pointwise. As p−1 and p1 and their perp are
fixed, the corresponding matrix must be of the form(

hI2 0
0 M

)
,

where I2 is the 2 × 2 identity matrix and h ∈ H. By possibly conjugating the associated auto-2790

morphism τ of H with h, we may assume that h = 1. Also every point of the form (1, x, 0, 0, 0, 0)2791

with x ∈ L must be fixed, and consequently τ fixes L. Since also the points (1, i, 1, 0, 0, 0),2792

(1,−ai, 0, 1, 0, 0), (1,−bi, 0, 0, 1, 0) and (1, abi, 0, 0, 0, 1) are fixed, we now see that also M must be2793

the identity matrix. Now τ is completely determined by the image (A,B) of (0, 1) and expressing2794

that τ is a morphism yields A = kt with k ∈ K (and still t = 1 − 2i) and A2 + bBB = b. These2795

collineations clearly fix all points of the ovoid and preserve the polar space.2796

However since one nontrivial collineation will suffice in the following, we will only consider a special2797

type of such collineations, i.e. those with A = 0 and B = u−1u with u ∈ L. It is easy to see that2798

these correspond to collineations with associated matrix uI6 and trivial associated automorphism2799

τ . Since we only need the nontrivial collineations and they are determined up to a factor of K, we2800

can write u as i+λ with λ ∈ K. In the following subsection, we will denote this collineation by θλ.2801

6.2.5. Identification of the residual collineations in F4,1(K,H). In F4,1(K,L), we could use the2802

Plücker transformation to define the duality between Qp and Qξ, however this is impossible in the2803

present case. So we will use coordinatisations of these quadrangles as in Chapter 3 of [34].2804

For Qp this coordinatisation was done in the previous paragraph and by the theory of coordinati-2805

sation as in Chapter 3 of [34], all incidences follow immediately from the coordinates, except for a2806

point (u, λ, u′) and a line [`, v, `′]. One calculates that these are incident if, and only if,2807 {
u′ = v + `u,
`′ = λ− uv − vu− `uu. (23)

Now we coordinatise the quadrangle Qξ given by the equation2808

x−3x3 + x−2x2 = z0z0 − bz′oz′0,

where we previously set z0 = x6 + ix7 and z′0 = x4 + ix5. Hence the equation becomes2809

x−3x3 + x−2x2 = x2
6 + x6x7 + dx2

7 − b(x2
4 + x4x5 + dx2

5).

We order the coordinates as (x4, x6, x−3, x−2, x2, x3, x7, x5). We make the subsequent assignments,2810

after elementary calculations similar to those of the previous section. Set u := (x4, x5, x6, x7), u′ :=2811

(x′4, x
′
5, x
′
6, x
′
7), N(u) := x2

4+x4x5+dx2
5−b(x2

6+x6y7+dx2
7) and N(u, u′) := N(u+u′)−N(u)−N(u′).2812
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Coordinates in PG(7,K) Coordinates in Qξ

(0, 0, 1, 0, 0, 0, 0, 0) (∞)

(0, 0, `, 1, 0, 0, 0, 0) (`)

(0, 0, `′, 0, 1, 0, 0, 0) (0, `′)

(0, 0, 0, 0, 0, 1, 0, 0) (0, 0, 0)

(x4, x6,N(u), 0, 0, 1, x7, x5) (0, u, 0)

(x4, x6,N(u), 0,−`, 1, x7, x5) (`, u, 0)

(x4, x6,N(u)− ``′,−`′,−`, 1, x7, x5) (`, u, `′)

(x′4, x
′
6, 0,N(u′), 1, 0, x′7, x

′
5) (u′, 0)

(x′4, x
′
6, `
′,N(u), 1, 0, x′7, x

′
5) (u′, `′)

2813

The lines here are similarly defined as in the previous coordinatisation and also now we only have2814

to verify the incidence of a point (`, v, `′) and a line [u, λ, u′] := 〈(u, λ), (0, u′, λ− N(u, u′))〉 (note2815

that this is really again the line through (u, λ) intersecting the line 〈(0), (0, u′, 0)〉). This incidence2816

is indeed again equivalent with2817 {
u′ = v + `u,
`′ = λ− N(u, v)− `N(u).

This is exactly (23) and so the coordinatisation of both quadrangles is indeed dual.2818

We now want to verify whether there is a nontrivial collineation of Qξ from the previous subsection2819

that induces through this duality a collineation of Qp from the first subsection. By the above2820

coordinatisation it suffices to know the images from (`, 0, `′) and (u, 0) in Qξ. So we determine2821

the action of the collineations θλ in Subsection 6.2.4, i.e. scalar matrices Mλ with elements of the2822

form i+ λ on the diagonal, on the lines [`, 0, `′] and [u, 0] of Qp.2823

We start with the line [`, 0, `′]. This line is spanned by the points (`, 0) and (0, `′, 0) in Qp. We
denote the transpose of a matrix by a prime. Now we calculate the image under θλ:

θλ((`, 0)) = Mλ · (0, 0, bi− b`, γı− `γ)′

= (0, 0, (1− `+ λ)bi− (d− `λ)b, (1− `+ λ)γı− (d+ `λ)γ)′

=

(
d+ `λ

1− `+ λ
, 0

)
;

θλ((0, `′, 0)) = Mλ · (abi+ `′b, aγı+ `′γ, 0, 0)′

= ((1 + a−1`′ + λ)abi+ (λ`′ − ad)b, (1 + a−1`′ + λ)aγı+ (λ`′ − ad)γ)′

=

(
0,

(λ`′ − ad)a

a+ `′ + aλ
, 0

)
;

θλ([`, 0, `′]) =

[
d+ `λ

1− `+ λ
, 0,

(λ`′ − ad)a

a+ `′ + aλ

]
.

So under the duality this θλ, which we denote by θ∗λ, acts on a point (`, 0, `′) of Qξ as follows:

θ∗λ((`, 0, `′)) = M∗λ · (0, 0,−``′,−`′,−`, 1, 0, 0)′ =

(
d+ `λ

1− `+ λ
, 0,

(λ`′ − ad)a

a+ `′ + aλ

)
=

(
0, 0,− d+ `λ

1− `+ λ
· (λ`′ − ad)a

a+ `′ + aλ
,− (λ`′ − ad)a

a+ `′ + aλ
,− d+ `λ

1− `+ λ
, 1, 0, 0

)′
.
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Now one sees that the (4 × 4)-submatrix of M∗λ determined by the coordinates x±2, x±3 is of the2824

form2825 
aλ2 adλ −a2dλ a2d2

−aλ aλ(1 + λ) a2d a2d(1 + λ)
λ d aλ(1 + λ) −ad(1 + λ)
1 −(1 + λ) a(1 + λ) a(1 + λ)2

 . (24)

Now we look at the action of θλ on the line [u, 0]. This line is spanned by the points (u) and (u, 0, 0)
in Qp. Remark that the equalities between vectors are equalities in homogeneous coordinates, so
must be interpreted afterwards as up to a scalar.

θλ((u)) = Mλ · (bu, γu, b, γ)′

= (b(i+ λ)u, γ(ı+ λ)u, b(i+ λ), γ(ı+ λ))′

=
(
abi+ aλ(1− au−1u−1)b− b(au−1)(−aλu−1),

aγı+ aλ(1− au−1u−1)γ − γ(au−1)(−aλu−1),

bi(au−1)− b(−aλu−1), γı(au−1)− γ(−aλu−1)
)′

=
(
au−1, aλ(1− au−1u−1),−aλu−1

)
;

θλ((u, 0, 0)) = Mλ · (abi, aγı, biu, γı u)′

= (ab(i+ λ)i, aγ(ı+ λ)ı, b(i+ λ)iu, γı(ı+ λ)u)′

=

(
abi+

d(uu− a)

1 + λ
b− bu du

1 + λ
, aγı+

d(uu− a)

1 + λ
γ − γu du

1 + λ

biu− b du

1 + λ
, γı u− γ du

1 + λ

)′
=

(
u,
d(uu− a)

1 + λ
,
du

1 + λ

)
.

We now determine on which line [k, v, k′] these two images lie. Using Eq. (23), one obtains

k =
(λ2 + λ+ d)uu

(1 + λ)(uu− a)
− λ,

v =
−a(λ2 + λ+ d)u

(1 + λ)(uu− a)
,

k′ =
a(ad+ λ(1 + λ)uu)

(1 + λ)(uu− a)
.

So we can look at the dual action of θ∗λ in Qξ on the point (u, 0)

θ∗λ((u, 0)) = M∗λ · (x4, x6, 0,N(u), 1, 0, x7, x5)′

=

(
(λ2 + λ+ d)uu

(1 + λ)(uu− a)
− λ, −a(λ2 + λ+ d)u

(1 + λ)(uu− a)
,
a(ad+ λ(1 + λ)uu)

(1 + λ)(uu− a)

)
=

(
x4, x6,

adλuu− a2dλ

a(λ2 + λ+ d)
,
aλ(1 + λ)uu+ ad

a(λ2 + λ+ d)
,

duu+ aλ(1 + λ)

a(λ2 + λ+ d)
,
−(1 + λ)uu+ a(1 + λ)

a(λ2 + λ+ d)
, x7, x5

)
.
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This shows that we can extend the submatrix from (24) to the matrix M∗λ by setting the other2826

diagonal elements equal to a(λ2 + λ + d) and filling the empty places then with zeros. We now2827

show that this is indeed a matrix as at the end of the first subsection, i.e. as in Eq. (16). This is2828

done by first applying an isomorphism to ξ, corresponding to cyclically permuting the coordinates2829

(x2, x−3, x3). Then one sees that Eq. (24) divided by a(λ2 + λ + d) corresponds to Eq. (16) by2830

setting2831 
A = d

a(λ2+λ+d) ,

C = −(1+λ)
a(λ2+λ+d) ,

E = λ
a(λ2+λ+d) ,

G = 1
a(λ2+λ+d) .

Also the extra conditions in Eq. (15) are satisfied by these choices.2832

Remark 6.2.2. Completely similar to Remark 6.2.1, one verifies that also these collineations are2833

anisotropic, that is, they do not map any point of Qξ to a collinear one (nor itself).2834

6.3. Extension to domestic collineations. Now we prove that the collineations and duality2835

defined in the previous section, give indeed rise to a domestic collineation of type (ii) in Theo-2836

rem 5.4.3. We will use Tits’ extension theorem in the first paragraph to extend the collineations2837

in that way. In the second paragraph we will then prove that the obtained collineation is indeed a2838

domestic collineation fixing a quadrangle. In the next subsection we will then finally identify these2839

quadrangles.2840

6.3.1. Tits’ extension theorem. First we translate Theorem 4.16 of [31] to our situation. Therefor,2841

let C = {p, L, π, ξ} be a chamber of F4,1(K,A) (the chamber chosen at the beginning of this chapter)2842

and let Λ be an apartment containing C. Let ξp be the symplecton of F4,4(K,A) corresponding2843

to p, let pξ be the point of F4,4(K,A) corresponding to ξ and let αL be the plane of F4,4(K,A)2844

corresponding to L. Let Q be the generalised quadrangle with point set the lines in ξ through p2845

and line set the planes in ξ through p and let Q̃ be its dual. Let C ′ be a second chamber, contained2846

in a second apartment Λ′ and denote everything for C ′ the same as for C, but furnished with a2847

prime.2848

(i) Denote by E1(C) the union of the set of all points of L, the set of all lines of π through p,2849

the set of all planes through L in ξ and the set of all symplecta containing π.2850

(ii) Denote by E2(C) the union of the set of points of π, the set of lines of π, the set of points2851

of Q, the set of lines of Q, the set of points of αL and the set of lines of αL (all viewed as2852

elements of F4,1(K,A)).2853

(iii) Denote by E3(C) the union of the set of points, lines and planes of ξ and the set of points,2854

lines and planes of ξp (all viewed as elements of F4,1(K,A)).2855

Notice that, with the above conventions, we have E1(C) ⊆ E2(C) ⊆ E3(C).2856

Theorem 6.3.1 (Tits [31, 4.16] applied to F4). Let θ be a type-preserving and incidence-preserving2857

bijection from E2(C) and the set of points, lines, planes and symplecta of Λ onto the union of2858

E2(C ′) and the set of points, lines, planes and symplecta of Λ′. Then θ uniquely extends to a2859

collineation of F4,1(K,A).2860

The uniqueness part of the previous theorem follows from Theorem 4.1.1 of [31]. We also need the2861

specification of that theorem to polar spaces of rank 3.2862



80 LINDE LAMBRECHT AND HENDRIK VAN MALDEGHEM

Theorem 6.3.2 (Tits [31, 4.1.1] applied to B3 or C3). Let ∆ be a polar space of rank 3 and let2863

A = {p1, p2, p3, p−1, p−2, p−3} be a skeleton of ∆, with pi not collinear to pj if, and only if, i = −j.2864

Let θ1 and θ2 be collineations of ∆ which agree on A, on the set of points of the line p1p2, on the2865

set of lines of the plane p1p2p3 through the point p1 and on the set of planes through the line p1p2.2866

Then θ1 = θ2.2867

Now we will use these theorems to extend our collineations from the previous section. The idea2868

is that we have, by the previous section, specific collineations acting on the residues of p and of2869

ξ. By the identifications in the previous section and Theorem 6.3.1, it suffices now to find some2870

type-preserving and incidence-preserving bijection from the apartment Λ to another apartment2871

compatible with the two collineations from the residues of p and ξ, respectively, which coincide2872

under the identification, to extend these collineations to a collineation of the metasymplectic space.2873

In the rest of this subsection, we construct such a bijection.2874

Let G be the group of collineations g of ξp ∼= C3,1(A,K) pointwise fixing the ovoid Op 3 pξ and2875

such that there is a collineation h of ξ ∼= B3,1(K,A) pointwise fixing the ovoid Oξ 3 p and an2876

identification of Resξ(p) and the dual of Resξp(pξ) on which h and g coincide. For each such g ∈ G,2877

we may extend the domain of definition of g with that of the corresponding h and denote by g the2878

common extension. Then G is a group of type preserving and incidence-preserving permutations2879

of E3(C).2880

Now let qξ ∈ Oξ \ {p} and qp ∈ Op \ {pξ} be arbitrary. We restrict each element g of G to2881

E2(C) and denote this restricted bijection by g∗. Since E1(C) ⊆ E2(C) ⊆ E3(C), it follows from2882

Theorem 6.3.2 that g is determined by g∗ and the assumptions g(qξ) = qξ and g(qp) = qp. This is2883

because we can choose the skeleton A of Theorem 6.3.2, say with respect to ξ, containing p and qξ2884

and the point p1 of that skeleton equal to p.2885

We select a skeleton S = {p, qξ, r1, r2, r−1, r−2} in ξ such that r1 ∈ L and r2 ∈ π (and we use the2886

convention that r1 is not collinear to r−1 and r2 not collinear to r−2). Then {qξ, qξr−1, qξr−1r−2}2887

is a chamber of ξ opposite {p, L, π} in ξ.2888

Since qp ∈ Op and Op is a set of points of ξp, which is isomorphic to the residue at p, we can2889

associate qξ to a symplecton ζ of F4,1(K,A). Denote by M the line of ζ all points of which are2890

collinear to r1, and by α the plane of ζ spanned by M and the points of ζ collinear to r2. Then2891

{qξ, qξr−1, qξr−1r−2, ξ} and {p,M,α, ζ} are two chambers of F4,1(K,A), and so we can consider2892

an apartment Λ (without confusion with the previously used Λ) containing both chambers, since2893

there exists always an apartment through two chambers (by the very definition of a building in2894

[31]). Since Λ contains ξ and M,α, it also contains L and π as the “projections” of M and α on ξ.2895

Hence it contains S, after some more projections. Let ξ′ be the unique symplecton of Λ opposite2896

ξ and let D = {p′, L′, π′, ξ′} and D∗ = {p′, L∗, π∗, ξ′} be the projection of {qξ, qξr−1, qξr−1r−2, ξ}2897

and {qξ, qξrg−1, qξr
g
−1r

g
−2, ξ}, respectively, onto ξ′. By the dual of Lemma 2.8.7, the chambers C2898

and D are opposite in F4,1(K,A), and so are the chambers Cg and D∗, as g induces a collineation2899

of ξ. Hence Cg and D∗ define a unique apartment Λ′ of F4,1(K,A). There is a unique isomorphism2900

g′ : Λ→ Λ′ mapping C to Cg and hence D to D∗, as this morphism is completely determined by2901

the image of these two opposite chambers.2902

We now claim that g and g′ agree on the intersection of their domains. Note that the intersection2903

ξ∩Λ is the apartment in ξ spanned by the opposite chambers C and {qξ, qξr−1, qξr−1r−2, ξ}, since2904

an apartment can never intersect a residue in more than an apartment of the residue itself. Then2905

it is clear that g and g′ agree on the intersection of their domains in ξ, as the projection of D∗2906

onto ξ is {qξ, qξrg−1, qξr
g
−1r

g
−2, ξ}, which equals {qξ, qξr−1, qξr−1r−2, ξ}g and Cg = Cg

′
. Now we2907

consider ResΓ1
(p). First we note that ζ belongs to Λ′ as it is the projection of ξ′ onto p, since2908
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it is the only symplecton through p of Λ locally opposite ξ. Since D is mapped to D∗ under g′2909

and also p is fixed by g′, we now see that also ξ′ and consequently ζ are fixed under g′. Since the2910

intersection ResΓ1(p) ∩ Λ is a “dual” apartment determined by ζ and pri, i = −2,−1, 1, 2, and g2911

coincides with g′ on these elements, we find that g and g′ coincide on ResΓ1
(p) ∩ Λ.2912

Hence we can extend g∗ to Λ using g′. Now we claim that this extension preserves incidence. Let2913

A ⊆ B be two incident elements of Λ ∪ ξ ∪ ResΓ1(p). If both elements are contained in Λ or in2914

ξ ∪ ResΓ1(p), then the claim is true, as g and g′ preserve incidence. So we may suppose without2915

loss of generality that A ∈ (ξ ∪ ResΓ1
(p)) \ Λ and B ∈ Λ \ (ξ ∪ ResΓ1

(p)). This means (again2916

without loss of generality) that A ⊆ ξ and B * ξ. Denote now C := B ∩ ξ, then C is contained2917

in (ξ ∪ ResΓ1
(p)) ∩ Λ and as now the incidence between A and C is preserved under g and the2918

incidence of C and B is preserved under g′, the incidence of A and B is preserved under g∗.2919

Now g∗ satisfies the conditions of Theorem 6.3.2 and extends consequently to a unique collineation2920

θ of F4,1(K,A). So we only have to check that θ equals g on E3(C). This follows by the second2921

paragraph of this reasoning and the fact that g∗(qξ) = qξ and g∗(qp) = qp.2922

6.3.2. Domestic collineation fixing a quadrangle. Now we will verify that the obtained collineation2923

θ is indeed a domestic collineation with opposition diagram F4;2 with fix structure points and2924

symplecta forming a generalised quadrangle.2925

Proposition 6.3.3. The collineation θ does not fix any line of F4,1(K,A). Dually, it does not fix2926

any plane either.2927

Proof. We first prove that g does not fix any line of ξ. Suppose for a contradiction that L ∈ ξ is2928

stabilised. If L is not coplanar with p, then the unique line through p intersecting L gives rise to a2929

fixed point in Qξ, contradicting Remarks 6.2.1 and 6.2.2. So L must be collinear to p, but then the2930

plane spanned by L and p gives rise to a stabilised line in Qξ again contradicting Remarks 6.2.12931

and 6.2.2.2932

Furthermore we claim that all the lines through p in ζ are mapped to noncoplanar lines by g.2933

Suppose again for a contradiction that some line is not mapped to a coplanar one. By projecting2934

onto ξ we may suppose that the line is contained in ξ, but then it gives again rise to a point of Qξ2935

mapped to a collinear one, contradicting Remarks 6.2.1 and 6.2.2.2936

As we have a self-dual setting, it suffices to show that no line is fixed. Let, for a contradiction, K2937

be a fixed line. Then K is not contained in ξ (since g does not fix any line in ξ). Also, K does2938

not have a unique point in common with ξ as otherwise the line K ′ of ξ all points of which are2939

collinear to K is also fixed by g, again a contradiction. If every point of K is far from ξ, then2940

the set of points of ξ symplectic to a point of K is a line K ′ of ξ fixed by θ and hence by g, a2941

contradiction. If a unique point u of K is close to ξ, then u is fixed and so is the line u⊥ ∩ ξ, again2942

a contradiction.2943

Hence the only remaining possibility is that each point of K is close to ξ. Let u1, u2 ∈ K be distinct.2944

Then at least one point v1 ∈ u⊥1 ∩ ξ is collinear to and distinct from some point v2 ∈ u⊥2 ∩ ξ. Then2945

there is a symplecton ξ12 containing u1 ⊥ v1 ⊥ v2 ⊥ u2 ⊥ u1, and ξ12 is clearly adjacent to ξ, hence2946

shares a plane β with it. It follows that there is a unique point v of ξ (in β) collinear to all points2947

of K. Naturally, v is fixed and hence belongs to Oξ. However, v 6= p as this would contradict the2948

action of g on ResΓ1
(p) and clearly v is not collinear to p, as this would give rise to a fixed line in2949

ξ.2950

Recall now the above defined symplecton ζ. This is a fixed symplecton through p locally opposite2951

ξ. Since all the lines through p in ζ are mapped to locally opposite lines by g, no line of ζ is fixed2952
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by θ. Consequently we can repeat the arguments of the previous paragraph with ζ in place of ξ2953

and find that K is collinear to a unique point w ∈ ζ, with w 6= p necessarily symplectic to p. It2954

follows that v is symplectic to w and so, by the point-symp relations (Axiom 2.4.5), v is close to2955

ζ, again leading to a fixed line v⊥ ∩ ζ in ζ, a contradiction. This proves the proposition. �2956

Now let P be the set of fixed points of θ and let L be the set of fixed symplecta of θ.2957

Theorem 6.3.4. The point-line geometry Γ = (P,L ) is a Moufang generalised quadrangle.2958

Proof. We start by showing that distinct fixed points are either symplectic or opposite. Indeed, if2959

two fixed points were collinear, then the corresponding line would be fixed, contradicting Proposi-2960

tion 6.3.3. If they were special, then their centre would be fixed and we obtain two fixed lines, again2961

the same contradiction. Hence distinct fixed points can only be symplectic or opposite. Dually,2962

two distinct fixed symplecta either intersect in a unique (fixed) point, or are opposite.2963

Furthermore, we claim that for each fixed point x there exists an opposite fixed point y. This is2964

trivial for x = p as we can take y = p′, and for any fixed point x opposite p (as then we can take2965

y = p). So we may assume x ⊥⊥ p. If x ∈ ξ, then we can take y = ζ ∩ ξ′ (these symplecta indeed2966

intersect in a unique point inside the apartment Λ). If x /∈ ξ, then the symplecton ξ(p, x) intersects2967

ξ exactly in p and so x is opposite qξ ∈ Oξ.2968

We now prove the main axiom for generalised quadrangles. Let x be a fixed point and ν a fixed2969

symplecton not containing x. If x were close to ν, then x⊥ ∩ ν would be a fixed line, contradicting2970

Proposition 6.3.3. Hence x is far from ν and the unique point of x⊥⊥ ∩ ν is fixed, as is the2971

corresponding symplecton through it and x.2972

We conclude that (P,L ) is a generalised quadrangle (a polar space of rank 2). Since ξ contains at2973

least three fixed points (the points of Oξ), and through p there exist at least three fixed symplecta2974

(the members of Op), we obtain a thick generalised quadrangle. Since no pair of distinct fixed2975

points is collinear, Main Result 1 of [26] asserts that (P,L ) is a Moufang quadrangle. �2976

6.4. Identification of the fixed quadrangles. In this subsection we finally identify the quad-2977

rangles Q fixed by the collineations constructed in the previous two. In the following theorem, we2978

will determine their so-called Tits index, see [30].2979

Theorem 6.4.1. The fix structure of θ in F4,1(K,A), with A either a separable quadratic extension2980

L of K or a quaternion division algebra H over K, is a Moufang quadrangle of type D5 or E6,2981

respectively. More exactly, it are Moufang quadrangles with Tits indices 2D
(2)
5,2 and 2E16′

6,2, respectively2982

in F4(K,L) and F4(K,H), respectively.2983

Proof. First of all, if we restrict in the above construction F4,1(K,A) to B4,2(K,A) (by taking the2984

intersection with a suitable extended equator geometry in the corresponding dual metasymplectic2985

space), and consequently also Op to the hyperbolic line of ξp through pξ and qξ, then we obtain a2986

(Moufang) subquadrangle Q′ fully embedded in B4,1(K,A).2987

An equation of B4,1(K,A) is given by2988

x−4x4 + x−3x3 + x−2x2 + x−1x1 = z0z0 − bz′0z′0,

where we view the underlying vector space as isomorphic to K4⊕L e
2 ⊕K4 and b = 0 if e = 2. Also,2989

recall that z 7→ z is the Galois involution of the separable quadratic extension L/K and recall also2990

that this extension is given by the irreducible quadratic polynomial x2 − x+ d.2991
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Given the fact that Oξ is a point residual in this quadrangle Q′, we see that the quadrangle Q′ is2992

obtained from B4,1(K,A) by intersecting with the subspace of codimension 2 of PG(7 + e,K) with2993

equations2994 {
x−3 = a(x3 + x2),
x−2 = adx2,

where a and b are as before, that is, N(z1)− aN(z2)− bN(z3) = 0 if, and only if, z1 = z2 = z3 = 0,2995

for all z1, z2, z3 ∈ L. This intersection has equations2996  x−1x1 = z0z0 − bz′oz′0 − a(x2
3 + x3x2 + dx2

2),
x−3 = a(x3 + x2),
x−2 = adx2.

Splitting these equations, that are defined over K, over L, we see that Q′ is obtained by Galois2997

descent (more exactly, a Galois involution) from a hyperbolic quadric in PG(5 + e,L), that is, a2998

building of type D3+e/2. The Tits index of Q′ as a Moufang quadrangle is hence2999 
1D

(1)
4,2 if e = 2,

2D
(1)
5,2 if e = 4.

Pictorially, these are3000

and3001

respectively.3002

Now Q is an extension of Q′ and as such a wide Moufang quadrangle. Given the rules explained3003

in Appendix C of [34], the Moufang quadrangle Q must be of type 1Dn or 2Dn, for certain n ≥ 53004

if e = 2, and in case e = 4, there is no other possibility than type 2E6. Given the fact that Oξ is a3005

Hermitian variety in a projective space of dimension 1 + e and hence has Tits index3006

2A
(1)
3,1

×

(e = 2) and 2A
(1)
5,1

×

(e = 4),3007

respectively, we can compare and glue the “anisotropic kernels” of the previous diagrams (that is,3008

the uncircled nodes). It follows that the only possibilities for Q are the Tits indices3009

2D
(2)
5,2

×

(e = 2) and 2E16′

6,2

×

(e = 4).3010

This concludes the proof of this theorem. �3011
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Remark 6.4.2. In the previous section, we made certain choices that may have seem to be3012

artificial, or at least, predestinated. For instance the use of twice the parameter a might seem3013

to generate only a special case. However, the subquadrangle Q′ is completely generic. Then,3014

the arguments leading to the Tits indices only depend on Q′ and the isomorphism class of the3015

symplecta of Γ4. Hence we know that at the end we must obtain the Moufang quadrangles of3016

given type. Our choices now show that this is possible, and that we can obtain all of them this3017

way. What is not proved by our method is that isomorphic fixed quadrangles are also isomorphic3018

via an isomorphism of the metasymplectic space.3019

6.5. Other domestic collineations.3020

6.5.1. Central elations.3021

Lemma 6.5.1. Let Uc be the root group with centre c of a metasymplectic space Γ1. Let K be3022

a line with exactly one point z collinear to c and all the other points special to c. Then Uc acts3023

sharply transitively on K \ {z}. Consequently, Uc acts sharply transitively on I (c, x) \ {c}, for3024

each point x opposite c.3025

Proof. Let k, k′ be two points of K \ {z}. We apply the method outlined in Section 6.1 to prove3026

that there exists a unique central collineation with centre c that maps k to k′. In particular, we3027

need a chamber {p, L, π, ξ} and two apartments Λ and Λ′. Let Λ be an apartment containing c, k3028

and K. Such an apartment exists as we can extend the flags {c} and {k,K} to two chambers. Take3029

now p = c and let g be the identity on the residue of this point. Let L be the unique line through3030

c intersecting K and note that L belongs to Λ. Let ξ be an arbitrary symplecton of Λ through3031

L and let g′ also be the identity on ξ. Denote by C a chamber of Λ extending the flag {c, L, ξ}3032

and let C∗ be the locally opposite chamber through c in Λ. Denote by K∗ the line opposite K in3033

Λ (note that this line intersects the line of C∗) and denote by k∗, k′′ the unique point collinear3034

to k, k′, respectively, and to a point of K∗ (then k∗ and k′′ are opposite c). Now let C ′ be the3035

projection of C∗ on k′′. Then C ′ is opposite C by Lemma 2.8.7 and we define Λ′ to be the unique3036

apartment through the chambers C and C ′.3037

Now by Theorem 6.3.1, we get a unique collineation θ extending g and g′ and mapping Λ to Λ′.3038

As L is fixed under this collineation, and K is contained in Λ′ as the unique line intersecting L3039

and having a point collinear to k′′, also K must be fixed under this collineation as the unique line3040

locally opposite L through L∩K. Hence k is mapped to k′ and similarly also k∗ is mapped to k′′.3041

So there is only left to verify that θ is a central collineation with centre c. By Lemma 2.10.4 and3042

the fact that k∗ is mapped to k′′, we see that E(c, k∗) is stabilised under θ. As θ extends g, we3043

see that it is in fact pointwise fixed. As θ also extends g′, we see that it pointwise fixes ξ. Then3044

Lemma 5.1.4(ii) ensures that θ is a central elation with centre c. �3045

This theorem takes care of the Cases (Dom1), (Dom4)(M), (Dom14)(i) and (Dom14)(i′) of the3046

Main Result.3047

6.5.2. (Weak) subbuildings. Finally we prove existence for the Cases (Dom4)(K), (Dom4)(L) and3048

(Dom14)(ii). All the corresponding collineations pointwise fix an apartment, which implies that3049

we can always take Λ = Λ′, which simplifies the verification that the various local collineations3050

have compatible actions.3051

Proposition 6.5.2. Suppose we are in the separable case and dimK A ≤ 2. Then there exists3052

a collineation of F4,4(K,A) with as set of fixed points exactly the union of an extended equator3053

geometry and its tropics geometry.3054
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Proof. Let Λ = Λ′ be an apartment of Γ4, let p and q be two opposite points of Λ and let ξ be
a symplecton of Λ through p. Let g be the identity on the residue of p. Let p′ be the point of
ξ ∩ Λ opposite p. Then we can choose a basis for ξ such that ξ is the symplectic polar space
corresponding to the alternating form

x−3y3 + x3y−3 + x−2y2 + x2y−2 + x−1y1 + x1y−1

if A = K, and the polar space given by

x−3x3 + x−2x2 + x−1x1 ∈ K

if A 6= K, but in both cases p = 〈e−1〉 and p′ = 〈e1〉. Let then g′ be a collineation acting on this
polar space, with respect to the ordering x−1, x1, x−2, x2, x−3, x3 of the coordinates, by the matrix(

aI2 0
0 I4

)
,

with a = −1 if K = A and a ∈ A \ {1} with aa = 1 otherwise. These collineations are clearly3055

compatible, as they act both trivial on their common domain. It is also clear that their union is3056

compatible with the identity in Λ. Hence there exists a unique collineation θ extending g and g′3057

and fixing Λ.3058

We only have to check that θ pointwise fixes an extended equator geometry. Indeed {p, q}∪E(p, q)3059

is pointwise fixed as θ extends g and Λ = Λ′. Also, as θ extends g′, the hyperbolic line h(p, p′)3060

is pointwise fixed. Now Corollary 3.2.3 implies that Ê(p, q) is pointwise fixed. Consequently also3061

its tropics geometry is fixed. Since g′ is nontrivial, and Ê(p, q) ∪ T̂ (p, q) is a hyperplane, the3062

proposition follows (see also the last paragraph in Case (c) of the proof of Theorem 5.4.3). �3063

The next proposition also uses the identification between quadrangles from Subsection 6.2.5. Note3064

that not all the details are worked out here, as these are similar and even easier than the ones in3065

the previous subsections.3066

Proposition 6.5.3. Suppose that A is a separable quadratic extension of K or a quaternion3067

division algebra over K. Then there exists a collineation of F4,1(K,A) with as fix structure a3068

metasymplectic space canonically isomorphic to F4,1(K,K) or F4,1(K,L) (where L is a subalgebra3069

of A of dimension 2 over K fixed under some automorphism of A), respectively.3070

Proof. Let Λ = Λ′ be an apartment of Γ1, let p a point of Λ and let ξ be a symplecton of Λ through3071

p.3072

We first assume that A is a separable quadratic extension of K. Then let g be the collineation3073

acting on the residue of p (∼= C3,1(A,K)) by the identity matrix and the standard involution as3074

field automorphism. Let now g′ be the collineation given by the trivial field automorphism and3075

the matrix (with respect to the ordering of the coordinates x−1, x1, x−2, x2, x−3, x3, x0, x
′
0 of the3076

defining equation x−1x1 + x−2x2 + x−3x3 = x2
0 + x0x

′
0 + dx′0

2
)3077 I6 0 0

0 1 1
0 0 −1

 ,

where I6 denotes the 6 × 6 identity matrix. By identifying p with p−1 in this last polar space,3078

one verifies easily that the restriction of g′ to the residue Qp of p (in ξ) is the only nontrivial3079

collineation of the quadrangle Qp fixing the subquadrangle Q′p over K. As also g′ acts nontrivial3080

on the dual of this quadrangle and fixes this subquadrangle, they must have the same action on3081

this Qp.3082
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Assume now that A = H is a quaternion division algebra over K. Denote by Qξ a copy of a point3083

residue in a symplecton in F4,1(K,H) and by Q′ξ a copy of a point residue in a symplecton in3084

F4,1(K,L), with L in H canonically as usual. Similarly for Qp and Q′p in F4,4(K,H) and F4,4(K,L),3085

respectively.3086

We use the notation of Subsection 6.2.5. In the ambient projective space of Qξ we consider the3087

collineation induced by u 7→ uσ, with σ : (z0, z
′
0) 7→ (z0, cz

′
0), with 1 6= c ∈ L and cc = 1. It is clear3088

that this defines a linear collineation (with 4×4 identity matrix in the middle) and that it preserves3089

Qξ (as N(u) = N(uσ)); (x4, x5, x6, x7) transforms to (x4, x5, c1x6−dc2x7, c2x6 +(c1 + c2)x7), with3090

c = c1 + ic2. Hence, more precisely, it maps the point (`, u, `′) to the point (`, uσ, `′), and hence3091

the line [u, `, u′] to the line [uσ, `, u′σ]. The fix structure in Qξ is hence precisely the quadrangle3092

Q′ξ.3093

It suffices now to exhibit a collineation in Qp that maps the point (u, `, u′) to (uσ, `, u′σ). This is3094

obtained by the following collineation of PG(3,H):3095 
z−2

z2

z−3

z3

 7→


1 0 0 0
0 γγ−σ 0 0
0 0 1 0
0 0 0 γγ−σ

 ·

z−2

z2

z−3

z3


σ

,

which can easily be shown to stabilise Qp and act as desired.3096

Extending these collineations to the whole residue of p and ξ, we get also some g and g′, respectively,3097

in this case.3098

In both cases the union of g and g′ is clearly compatible with the identity on Λ. So we obtain3099

a collineation extending g and g′ and fixing Λ. This must be a nontrivial collineation of the3100

desired form, by similar arguments as in the second last paragraph of Case (b) in the proof of3101

Theorem 5.4.2. �3102
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