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Abstract

We characterise the varieties appearing in the third row of the Freudenthal-
Tits magic square over an arbitrary field, in both the split and non-split version,
as originally presented by Jacques Tits in his Habilitation thesis. In particular,
we characterise the variety related to the 56-dimensional module of a Chevalley
group of exceptional type E7 over an arbitrary field. We use an elementary axiom
system which is the natural continuation of the one characterising the varieties of
the second row of the magic square. We provide an explicit common construction
of all characterised varieties as the quadratic Zariski closure of the image of a newly
defined affine dual polar Veronese map. We also provide a construction of each of
these varieties as the common null set of quadratic forms.
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1 Introduction

The main achievement of this paper is a uniform description (both an axiomatic charac-
terisation and an explicit common construction) of certain Grassmannian varieties, half
spin varieties, dual polar Veronese varieties and the exceptional variety in 55-dimensional
projective space related to the 56-dimensional module of the exceptional Chevalley group
of type E7 over an arbitrary field. These varieties are exactly the varieties of the split
third row of the Freudenthal-Tits Magic Square (FTMS). Our proof uses a new powerful
local-to-global result of Lie incidence geometries, which may be of independent interest,
and can be viewed as a second main result of this paper.

Below we give a brief introduction of the FTMS and the history of characterising its
varieties, the choice of the axioms, the nature of the constructions and the techniques
used in this paper.

1.1 The Freudenthal-Tits magic square

In 1954 Jacques Tits published the first version of what later would be called the Freudenthal-
Tits Magic Square (FTMS). This somewhat lesser known version emphasises mainly the
geometries in their natural occurrence in projective space; in an algebraic-differential geo-
metric setting one could rightfully call them varieties. Every cell contains two geometries:
a “basic” one, and its “complexification”. This way one obtains two 4× 4 tables of rep-
resentations of geometries, which are referred to today as the non-split version and the
split version, respectively.

The first cell of the second row consists of the Veronese embedding of a Pappian projective
plane—the image of the plane under the standard Veronese map. Mazzocca and Melone
[23] proposed in 1984 a simple axiom system to characterise the finite such varieties. These
axioms were based on the properties of the varieties as algebraic-differential varieties, in
particular with regard to the images under the Veronese map of the lines of the projective
plane, which yields a system of conics covering the variety. Interestingly, when we replace
the “conics” with “(non-degenerate) quadrics of maximal Witt index” in these axioms, the
axioms coincide with the basic geometric properties of Severi varieties over an algebraically
closed field as deduced by Zak when he proved the Hartshorne conjecture [35]. Even more
interestingly, it follows from the main result of [27] that, after this deduction, one can
carry out the most substantial and major part of the classification of the Severi varieties in
an elementary way, without any reference to differential or algebraic geometry. This also
yielded a characterisation of the analogues of the Severi varieties over an arbitrary field,
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and these are precisely the varieties of the second row of the split version of the FTMS,
thus giving rise to a far-reaching generalisation of the first 1984 results of Mazzocca and
Melone. It is remarkable that, although allowing quadrics of any maximal Witt index,
only those of Witt index ≤ 5 lead to the examples. This is the geometric counterpart
of the fact that split composition algebras, which index the columns of the FTMS, have
dimension ≤ 8 over their center. Since the resulting axiom system for the Severi varieties
over an arbitrary field does not make any reference to algebraic-geometric notions, we will
use the name “abstract variety” for such point sets in a projective space over an arbitrary
field.

A highly similiar situation occurs for the non-split version of the second row of the FTMS.
Indeed, these varieties were characterised in [22] by replacing “quadrics of maximal Witt
index” with “quadrics of Witt index 1” (i.e., minimal Witt index, this time reflecting the
dichotomy of the composition algebras either being division or split). In fact, recently, the
first three authors showed in [18] that, using non-degenerate quadrics of arbitrary (even
non-uniform) Witt index in the axioms, no more examples arise. This yields a unified
axiom system for all (abstract) varieties of both the split and non-split version of the
second row of the FTMS.

1.2 The characterisation of the third row: axioms and tools

The present paper presents a similar approach to the third row of the FTMS: We char-
acterise the (abstract) varieties in the split and non-split version of the third row of the
FTMS over an arbitrary field (see Theorem 3.1). The axioms have the same spirit as those
for the second row: They emphasise the differential-geometric properties of the varieties
and the occurrence of an abundance of quadrics in subspaces. For the exact axioms and
their motivation, see Section 2.3.

Since the point-residuals of the varieties of the third row of the FTMS, that is, the
incidence geometric analogue of the geometry induced in the tangent space at a point
(see also Definition 2.1), are those of the second row of the FTMS, it will come as no
surprise that the characterisation of the second row of the FTMS plays a crucial role in
the proof. However, things are not that simple. One only obtains very partial information
about the point-residuals, and certainly not enough to immediately be able to apply the
known characterisations. We summarise the crucial tools we used.

− Firstly, we take advantage of the fact that the characterisation of the varieties in the
second row, as performed in [27] and [18], was itself carried out in a rough inductive
scheme, where information got lost when the parameters went down. Hence there was
already a need to prove things in various more general settings.

− Secondly, in the last few years, we developed some theory of so-called lacunary para-
polar spaces, which aimed at characterising essentially the abstract geometries of the
FTMS, mainly in its split version and which turns out to be a very powerful tool.

− The third source of arguments and proof techniques is a particular nice new technique
that we introduce, namely the characterisation of all abstract geometries related to
the varieties of the 3 × 3 South-East corner of the split FTMS as parapolar spaces
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with hyperbolic symplecta and satisfying a simple condition on only one of its singular
subspaces. We regard it as our second main result (see Theorem 3.2).

1.3 Constructions of the varieties of the third row

We present a new and unified construction of the varieties of the third row of the FTMS
as the projective closure of the image under a kind of “affine dual polar Veronese map”
(see Definition 10.1) using a quadratic alternative algebra. This construction is intimately
related to a description of these varieties as the common null set of a number of explicitly
defined quadratic forms, as was done for the E7 case by Vavilov & Luzgarev [33]. However,
we make these quadratic forms very explicit by using the combinatorics of the Schläfli

graph and the Gosset graph, which are the 1-skeleta of the 221 polytope and the

321 polytope , respectively. Doing that we slightly improve one of the results
in [33] by reducing the number of quadratic forms needed to describe the E7 variety. The
eventual verification of the axioms is done using the description of the varieties as the
common null set of a number of quadratic forms, cf. Theorem 10.37.

In Section 10.6 we mention some consequences of our constructions for the varieties of
the second row; most notably we provide an elegant construction for the Cartan variety
E6(K).

1.4 Outline of the paper

We head off in Section 2 by introducing the class of abstract (Lagrangian) varieties we will
classify, and by providing the necessary background, in particular, on parapolar spaces
and Lie incidence geometries. These form an abstract class of point-line geometries un-
derpinning the varieties of the FTMS. We conclude Section 2 with a brief introduction to
the geometries which appear in this paper.

In Section 3 we state our main results. The first one, Theorem 3.1, characterizes the
varieties in the third row of the FTMS as the abstract Lagrangian varieties introduced in
Section 2.

Our approach to the proof of that characterization is local-to-global, recognising geome-
tries from their local structure. Our second main result, Theorem 3.2, also stated in
Section 3, is a new powerful local characterisation of a wide class of Lie incidence geome-
tries. The proof of Theorem 3.2 is the content of Section 4.

After recalling some relevant earlier work on the second row of the FTMS in Section 5 we
embark on our proof with the following general observations. In Section 6.1 we explain
how the abstract varieties can be viewed as parapolar spaces. In order to recognise the
varieties, we show in Section 6.2 that, except in two small cases, the varieties in the
third row of the FTMS are the universal embeddings of the corresponding Lie incidence
geometries, meaning that all other embeddings of a given variety are a quotient of it (cf.
Proposition 6.7). We conclude Section 6 with a result on point-residuals, which allows us
to invoke the results of Section 5.
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The actual characterisation is preluded by Section 6.4, where we formulate a standing
hypotheses for the rest of the paper. We split the characterisation proof in three parts.

(1) The case where the involved quadrics have Witt index 2 (later on we refer to this
case as the ovoidal case, see Definition 2.2) is dealt with in Section 7 and concerns
dual polar spaces (cf. Proposition 7.12). The proof hinges on the fact that the point-
residuals are Veronese representation of a projective plane over a quadratic alternative
division algebra, see Lemma 7.10, and in Theorem 7.1 we prove a new characterisation
of these Veronese varieties by substantially relaxing one of the axioms.

(2) In Section 8 a generalisation of arguments on characterisation results for S1,2(K) or
S1,3(K) from [26] is carried out. Combined with the local recognition results from
Section 4 this leads to characterisations of the varieties in the conclusion of Theo-
rem 3.1: the Grassmannian embedding of A5,3(K) in P19(K) in Proposition 8.10, the
spinor embedding HS 6(K) of D6,6(K) in Proposition 8.11 and finally the exceptional
variety E7(K) related to E7,7(K) in Proposition 8.15.

(3) We conclude the characterisation result by eliminating the remaining parameter sets
in Section 9.

In our final Section 10 we construct the abstract varieties of the conclusion of Theorem 3.1,
as explained above in Subsection 1.3.

2 Definitions and notation

Of central importance in this paper are a class of point sets in a projective space, equipped
with a family of quadrics, which we now introduce. To that end, we first settle the notation
regarding projective spaces and quadrics.

2.1 Notation

Henceforth, K is a (commutative) field. We denote by Pn(K) the n-dimensional projective
space over K, for a non-zero cardinal number n. The subspace generated by a family F
of subsets of points is denoted by 〈S | S ∈ F 〉.

A non-degenerate quadric Q in Pn(K), n ∈ N, is the null set of an irreducible quadratic
homogeneous polynomial in the (homogeneous) coordinates of points of Pn(K). The
projective index of Q is the (common) projective dimension of the maximal subspaces of
Pn(K) entirely contained in Q; the Witt index is the projective index plus one. A tangent
line to Q (at a point x ∈ Q) is a line in Pn(K) which has either only x or all its points
in Q. The union of the set of tangent lines to Q at one of its points x is a hyperplane of
Pn(K), denoted by Tx(Q).

An ovoid O of Pn(K) is a spanning point set of Pn(K) which behaves like (and generalises
the notion of) a quadric of projective index 0: each line of Pn(K) intersects O in at most
two points, and the union of the set of tangent lines (defined as above) at each point is a
hyperplane of Pn(K). If n = 2, an ovoid is more specifically called an oval .
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2.2 Abstract varieties with parameters D, I

The varieties that we will encounter have in common that they admit a representation
in projective space as a set of points, equipped with a set of subspaces, each of which
intersecting the point set in a quadric of a certain Witt index (see above). Depending
on the variety, some additional properties will be satisfied in terms of the points and
quadrics. We encounter two such sets of additional properties, making it economical and
worthwhile to introduce these point-quadric geometries in a general perspective.

Suppose N ∈ N ∪ {∞} and let D, I be integers with 0 ≤ I ≤ bD
2
c, D ≥ 1. Let W be a

spanning point set of PN(K) and let Ω be a collection of (D + 1)-spaces of PN(K) with
|Ω| ≥ 2 and such that, for any ω ∈ Ω, the intersection ω ∩W =: W (ω) is either, if I > 0,
a non-degenerate quadric of projective index I (i.e., Witt index I + 1) generating ω, or,
if I = 0, an ovoid generating ω. Moreover, we require W ⊆

⋃
ω∈Ω ω. The pair (W,Ω) is

called an abstract variety (with parameters D, I). Of course, this gets more interesting
when we add certain properties that have to be satisfied. Regardless of these, we will use
the following terminology.

− A quadricW (ω), with ω ∈ Ω, is called a symp in case I > 0 (inspired by the terminology
of parapolar spaces, see Section 2.4) and an ovoid in case I = 0. Each member of Ω
will be called a host space (because it “hosts” a symp or an ovoid).

− A subspace S of PN(K) is called singular if S ⊆ W ; the set of singular lines is denoted
by L . Two points of W are called collinear if they are on a common singular line.

− For any ω ∈ Ω and any point p ∈ W (ω), the tangent space Tp(W (ω)) at p to W (ω) is
denoted by Tp(ω). For each point p ∈ W we denote by Tp(W ) (or simply Tp if W is
clear from the context) the subspace 〈{Tp(ω) | p ∈ ω ∈ Ω} ∪ {L | p ∈ L ∈ L }〉. This
is the tangent space of W at p, a notion which, in our case, coincides with the classical
notion of tangent space as a, for instance real or complex, variety. Note that, in case
each singular line through p is contained in a member of Ω, then Tp(W ) = 〈Tp(ω) | p ∈
ω ∈ Ω〉 = 〈L | p ∈ L ∈ L 〉.

− Two abstract varieties (W,Ω) and (W ′,Ω′) spanning PN(K) and PN ′(K′), respectively
(where K′ is a field) are isomorphic if there is a (bijective) collineation σ : PN(K) →
PN ′(K′) mapping W to W ′ and Ω to Ω′. Note that the latter implies that, for each
host space ω ∈ Ω, σ restricted to W (ω) gives an isomorphism of quadrics, and hence
the parameters of (W,Ω) and (W ′,Ω), if isomorphic, are necessarily the same. Also,
in this case N = N ′ and K ∼= K′.

− The abstract variety (W,Ω) is called irreducible if Ω is not the union of two of its
subsets Ω1,Ω2 such that

⋃
w∈Ω1

ω and
⋃
w∈Ω2

ω are disjoint subsets of PN(K).

Given a point p ∈ W , it will be highly useful to look at the induced geometry of (W,Ω)
consisting of lines and quadrics through p, which has a natural representation in the
tangent space Tp(W ). We speak of the point-residual of (W,Ω) at p. It only makes sense
to consider this provided that I > 0 and D > 2 (if I = 0 of D = 2, a quadrics W (ω)
with ω ∈ Ω has either no or exactly 2 singular lines through p,respectively). We have the
following definition.

Definition 2.1 The residue ResW (p) of (W,Ω) at p is the pair (Wp,Ωp), where Wp and Ωp

are defined as follows. Take any hyperplane Hp of Tp(W ) not containing p. Let Wp denote
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the set of points of Hp∩W collinear with p, and let Ωp be the collection of (D−1)-spaces
{Tp(ω) ∩Hp | p ∈ ω ∈ Ω}.

Then (Wp,Ωp) is an abstract variety of type D − 2 and index I − 1 in PN ′(K), where
N ′ = dimHp. Indeed, each host space ω of Ω containing p shares Tp(ω) with Tp(W ) and
hence intersects Hp in a subspace of dimension D − 1 and Wp in a quadric of projective
index I − 1. Clearly, the isomorphism type of (Wp,Ωp) does not depend on the choice
of Hp.

2.3 The axioms and their motivation

We are ready to define some special types of abstract varieties, namely the abstract La-
grangian varieties, the abstract Veronese varieties and variations thereof. It is precisely
the former that we will classify, and the latter are their residues, and will play a crucial
role in the proof.

Let (Y,Υ) be an irreducible abstract variety with parameters D and I in PN(K), where
N ∈ N ∪ {∞}. We set d := D − 2 and w := I − 1. Recall from the previous subsection
that the tangent space Ty(Y ) at a point y ∈ Y is given by 〈{Tp(ω) | p ∈ ω ∈ Ω} ∪ {L |
p ∈ L ∈ L }〉.

Definition 2.2 We call (Y,Υ) an abstract Lagrangian variety (ALV) (of type d and index
w) if the following hold:

(ALV1) For any pair of points p and q of Y either {p, q} lies in at least one element of
Υ, denoted by [p, q] if unique, or Tp(Y )∩ Tq(Y ) = ∅, and the latter situation occurs
for at least one pair of points of Y .

(ALV2) If υ1, υ2 ∈ Υ, with υ1 6= υ2, then υ1 ∩ υ2 ⊂ Y .

(ALV3) If y ∈ Y , then dimTy(Y ) ≤ 3d+ 3.

Comments. Recall that the characterisation of the second row of the FTMS (see Axioms
(AVV1), (AVV2) and (AVV3) below) is based on the properties of Severi varieties of
dimension 2d in a projective space of dimension 3d+ 2. More exactly, the fact that every
pair of points is contained in a d-dimensional quadric (this is (AVV1)), the fact that the
variety is smooth ((AVV2) is a consequence of this), and the fact that the variety has
dimension 2d ((AVV3) actually expresses that the dimension is at most 2d). In the same
vain, the axioms of abstract Lagrangian varieties are based on similar properties of the
real and complex varieties in the third row of the FTMS. More exactly the abundance
of (d+ 1)-dimensional quadrics (first part of (ALV1)), the (3d+ 2)-dimensionality of the
variety ((ALV3) is a weakening of this), and the fact that the variety is smooth (again,
this is (ALV2), but also the second part of (ALV1)). Note that (ALV1) also takes into
account that there exist points at distance 3 from each other.

Some terminology. If w = 0 and d > 0, then we say that the ALV is of ovoidal type;
if w = d

2
then we say that the ALV is of hyperbolic type. This terminology stems from
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the fact that in the ovoidal case, each point residue of an ALV yields a variety consisting
of a system of quadrics of Witt index 1, and the latter are instances of ovoids. In the
hyperbolic case, the symps are hyperbolic quadrics.

Using the same values for d, w as above, consider an abstract variety (X,Ξ) with param-
eters (d, w) in PM(K), M ∈ N ∪ {∞}. Consider the following axioms and their variants,
which will enable us to describe the properties of the point-residuals of the ALVs. These
properties are deduced in Section 6.3.

(AVV1) Any pair of points p and q of X lies in at least one element of Ξ, denoted by
[p, q] if unique.

(AVV1′) Any pair of points p and q of X with 〈p, q〉 * X lies in at least one element of
Ξ, denoted by [p, q] if unique.

(AVV2) For all ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, we have ξ1 ∩ ξ2 ⊂ X.
(AVV3) For all x ∈ X, we have dimTx ≤ 2d.
(AVV3′) There is a subset ∂Ξ of Ξ of cardinality at least |ξ|, with ξ ∈ Ξ arbitrary, such

that for each x ∈ ∂X :=
⋃
ξ∈∂Ξ X(ξ), we have dimTx ≤ 2d. Moreover, the set of

host spaces in ∂Ξ containing x also has cardinality at least |ξ|. The members of ∂X
are called differential points, and those of ∂Ξ differential host spaces of Ξ.

Definition 2.3 An abstract variety (X,Ξ) with parameters (d, w) is called an (a, b)-
abstract Veronese variety ((a, b)-AVV) of type d and index w if axioms (AVVa), (AVV2)
and (AVVb) hold, with a ∈ {1, 1′} and b ∈ {3, 3′}; it is called an (a)-abstract Veronese
variety of type d and index w if axioms (AVVa) and (AVV2) hold, with a ∈ {1, 1′}.
Note that in the latter case we merely express that axioms (AVV3) or (AVV3’) do not
necessarily hold true, rather than requiring they do not hold. Finally, we abbreviate
(1, 3)-AVV to AVV.

2.4 Point-line geometries and parapolar spaces

Again, suppose I > 0, and recall that L denotes the set of singular lines of W . Then the
pair (W,L ) is a point-line geometry which, at least in the cases that we will encounter,
will be a parapolar space (cf. Corollary 6.5). Hence we introduce that concept formally.

A point-line geometry ∆ is a pair ∆ = (P,M ) where P is a set of points and M a
non-empty set of subsets of P, which are called lines. A subspace S of ∆ is a subset
of P with the property that each line not contained in S intersects S in at most one
point. Collinearity between points corresponds to being contained in a common line (not
necessarily unique), and we denote this by the symbol ⊥. The set of points equal or
collinear to a point p ∈ P is denoted by p⊥. The collinearity graph of ∆ is the graph
on P with collinearity as adjacency relation. The distance δ(p, q) between two points
p, q ∈P is the distance between p and q in the collinearity graph (possibly δ(x, y) =∞
if there is no path between them). A path between p and q of length δ(p, q) is called a
shortest path. The diameter of ∆ is the diameter of its collinearity graph. We say that
∆ is connected if for every two points p, q of P, δ(p, q) < ∞. A subspace S ⊆ P is
called convex if all shortest paths between points p, q ∈ S are contained in S. The convex

9



subspace closure of a set S ⊆ P is the intersection of all convex subspaces containing S
(this is well defined since P is a convex subspace itself).

Before moving on to the viewpoint of parapolar spaces, we need to consider each host
space as a convex subspace of (W,L ) isomorphic to a so-called polar space (for a precise
definition and background see Section 7.4 of [3]). Indeed, for each ω ∈ Ω (recall that
we suppose I > 0), W (ω) is an instance of a polar space, that is, a point-line geometry
(P ′,L ′) in which, apart from three non-degeneracy axioms, the one-or-all axiom holds:
Each point p ∈P ′ is collinear to either exactly one or all points of any given line L ∈ L ′.
We will later on (cf. Lemma 6.2) show that, in our setting, for each host space ω, the
quadric W (ω) is the convex subspace closure of any pair of its non-collinear points.

Definition 2.4 A connected point-line geometry ∆ = (P,M ) is a parapolar space if for
every pair of non-collinear points p and q in P, with |p⊥ ∩ q⊥| > 1, the convex subspace
closure of {p, q} is a polar space, called a symplecton (a symp for short); moreover, each
line of L has to be contained in a symplecton and no symplecton contains all points of X.

Let ∆ = (P,M ) be a parapolar space. Then ∆ is called strong if there are no pairs of
points p, q ∈P with |p⊥ ∩ q⊥| = 1. We say that ∆ has (constant) symplectic rank r if all
its symps have rank r, meaning that the maximal singular subspaces on the symps have
projective dimension r−1 (in case a symp is a quadric, then r is the Witt index). We will
not need parapolar spaces with non-constant symplectic rank. In general, the singular
subspaces of a parapolar space are not necessarily projective if there are symps of rank
2, however, we will in this paper only encounter parapolar spaces which are embedded in
a projective space and hence their singular subspaces are projective anyhow. Hence we
may use the simplest version of the definition of a point-residual:

Definition 2.5 Let ∆ = (P,M ) be a parapolar space whose singular subspaces are
projective. Then for a point p ∈P, the point-residual Res∆(p) = (Pp,Mp) of ∆ at p is
defined as follows. The set Pp consists of all lines belonging to M containing p, and the
set Mp consists of all singular (projective) planes of P containing p.

Let ∆ be a parapolar space whose singular subspaces are projective. We call ∆ locally
connected if for each point p ∈P, the residue Res∆(p) is connected. Note that a strong
parapolar space of symplectic rank r with r ≥ 3 is automatically locally connected. If ∆ is
locally connected and has constant symplectic rank r ≥ 3, then each of its point-residuals
Res∆(p) with p ∈P is a strong parapolar space of constant symplectic rank r − 1.

2.5 Description of the geometries

The main result of the paper is Theorem 3.1. The conclusion contains certain representa-
tions of certain parapolar spaces. The second main result is Theorem 3.2; its conclusion
contains certain parapolar spaces. In this section we give a brief overview of these point-
line geometries, which are certain Lie incidence geometries, i.e., parapolar spaces related
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to spherical buildings. We explain in detail the representations (as Veronese varieties) in
Section 10. The latter contains a new construction of these varieties.

We assume the reader is familiar with the notion of a spherical building, see [30]. Let
∆ be a spherical building, not necessarily irreducible, of rank n and type set S, and let
J ⊆ S. Then we define a point-line geometry Γ = (P,M ) as follows. The point set
P is just the set of flags of ∆ of type J ; the set M of lines corresponds to the set of
flags of type S \ {s}, with s ∈ J : With each flag F ′ of type S \ {s}, with s ∈ J , we
associate the set of flags F of type J such that F ∪ F ′ is a chamber. The geometry Γ
is called a Lie incidence geometry. For instance, if ∆ has type An, and J = {1} (using
Bourbaki labelling), then Γ is the point-line geometry of a projective space. If Xn is the
Coxeter type of ∆ and Γ is defined using J ⊆ S as above, then we say that Γ has type Xn,J
and we write Xn,j if J = {j}. If there is a unique underlying algebraic structure A that
determines ∆ as Lie incidence geometry of type Xn,J , then we write ∆ as Xn,J(A); if not
then we write Xn,J(∗); for instance, a Pappian projective plane is referred to as A2,1(K),
where K is a field, whereas an arbitrary projective plane is denoted by A2,1(∗).

Most Lie incidence geometries are parapolar spaces (see Chapter 10 in [2]), in particular,
if, |J | = 1 and the corresponding spherical building is irreducible, then we either have a
projective space, a polar space, or a parapolar space. We review some examples relevant
for this paper. Let L denote a skew field and K a field. A (full) embedding of a point-line
geometry (P,M ) into some projective space P(V ) (with V some vector space over L) is
an identification of P with a spanning subset of points of P(V ) such that the members
of M get identified with (full) lines of P(V ).

− The k-Grassmannian of n-dimensional projective space An,k(L) (also known as the
Grassmannian of all k-spaces of an (n + 1)-dimensional vector space over L). The
k-Grassmann coordinates define a full embedding denoted by Gn+1,k(L).

− The half spin geometry Dn,n(K) of rank n. A full embedding of this geometry is given
by the spinor embedding, see [5].

− The exceptional geometries Ei,i(K) with i ∈ {6, 7}. These have a unique full embedding
in P26(K) and P55(K), for i = 6, 7, respectively, see [24]. We call these embeddings the
exceptional varieties Ei(K), i = 6, 7.

− Direct products of projective spaces, for instance A2,1(∗)×A2,1(∗). In case the involved
projective spaces are defined over the same fields, they have a standard embedding in
a projective space, known as Segre variety. We denote the Segre variety related to the
direct product space Ai1,1(K)× Ai2,1(K)× · · · × Aik,1(K) by Si1,i2,...,ik(K).

− Dual polar spaces Bn,n(∗) and Cn,n(∗). As simplicial complexes, buildings of type Bn
and Cn are the same. The distinction in notation, however, is useful when algebraic
considerations come into play (root groups and related root systems, split and non-
split semisimple algebraic groups). We will follow this logic with our notation of certain
(dual) polar spaces.
Let A be an alternative division algebra over the field K. Then there is a unique build-
ing of type B3 (or C3) with the property that the residues corresponding to projective
planes are defined over A, and the residues corresponding to generalized quadrangles
(which are polar spaces of rank 2) are determined by the anisotropic quadratic form
given by the norm of A over K, see [30]. We denote the corresponding dual polar space
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by C3,3(K,A). Note that, if A is non-associative, then C3,1(K,A) is a non-embeddable
polar space in the sense of [30]. Setting d = dimK A, it follows from Theorem 5.8 of [16]
that C3,3(K,A) has a unique full embedding in P6d+7(K), which we call the Veronese
representation and denote it by V (K,A). Note that, in principle, d could be infinite.
However, our hypothesis will imply that we are only concerned with finite d (and then
d is a power of 2).

We will provide a new explicit construction of the representations of the geometries ap-
pearing in the conclusion of our first main result in Section 10. For this reason, we have
not given a precise description of these embeddings in the previous paragraphs.

3 Main Results

Again, let K be an arbitrary (commutative) field. Consider integers d, w with 0 ≤ w ≤
bd

2
c.

Theorem 3.1 An abstract Lagrangian variety (Y,Υ) of type d and index w in PN(K) is
either of ovoidal type or of hyperbolic type; also d ∈ {0, 1, 2, 4, 8} unless charK = 2 in the
ovoidal case. In every case N = 6d+ 7. More precisely:

(i) If d = 0, Y is isomorphic to the Segre variety S1,1,1(K) in P7(K);
(ii) If (Y,Υ) is ovoidal and d > 0, Y is the Veronese representation V(K,A) in P6d+7(K)

of a dual polar space C3,3(K,A) over a quadratic alternative division algebra A over
K with dimK A = d; in particular, d is a power of 2, and d ≤ 8 if charK 6= 2;

(iii) If (Y,Υ) is not ovoidal and d > 0, then it is hyperbolic and Y is isomorphic to
either the plane Grassmannian variety G6,3(K) in P19(K) related to the Lie incidence
geometry A5,3(K) (d = w = 2), the spinor embedding HS 6(K) in P31(K) of the half
spin geometry D6,6(K) (d = 4, w = 2), or the exceptional variety E7(K) in P55(K)
related to the Lie incidence geometry E7,7(K) (d = 8, w = 4).

In all cases, the host spaces are the subspaces generated by the symps of the corresponding
parapolar space.

Conversely, each variety mentioned in (i), (ii) and (iii) above is an abstract Lagrangian
variety, if furnished with the subspaces generated by the symps as host spaces.

Proof In Section 9, more precisely Propositions 9.1, 9.3, 9.7, 9.11 and 9.12, we restrict
the parameters of an abstract Lagrangian variety to those that really occur. Those are
w = 0, d > 0 (cf. Theorem 7.1), w = d = 0 (cf. Proposition 8.1), w = 1, d = 2 (cf.
Proposition 8.10), w = 2, d = 4 (cf, Proposition 8.11) and, finally, w = 4, d = 8 (cf.
Proposition 8.15). In Theorems 10.37 and 10.39 we verify that the varieties in (i), (ii)
and (iii) satisfy the axioms of an abstract Lagrangian variety. �

Our approach will exploit the structure of the residue (Yy,Υy) of points y ∈ Y with the
property that not all points in Y are in a common host space with y. Ideally, we wish to
show that this is an AVV of type d and index w (cf. Definition 2.3), as these have been
classified in [18], see Theorem 5.1.
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Knowing the structure of the residue in such points y ∈ Y is a key element to determine
the global structure of (Y,Υ). The crux of the proof however lies in extracting even more
from local information. Indeed, if w > 0 and d > 0, we will show that (Y,Υ) is a strong
(and hence locally connected if the symplectic rank r is at least 3) parapolar space, with
hyperbolic symps. For such parapolar spaces, we were able to determine powerful local
recognition results (see Section 4) that can be used in more general settings than these,
but already here they prove their value. As a corollary of these results, we have the
following theorem, which we will strictly speaking not fully need but it showcases the
beauty and the strength of the results of Section 4.

Theorem 3.2 Let ∆ be a parapolar space of constant symplectic rank r ≥ 2 all symps
of which are hyperbolic and all singular subspaces of which are projective. Assume ∆
is locally connected if r ≥ 3 and strong if r = 2. If there exists a singular subspace of
dimension r− 2 contained in exactly two (maximal) singular subspaces such that the sum
of their dimensions is at most 2r, then ∆ is one of A1,1(∗) × A2,1(∗), A1,1(∗) × A3,1(L),
A2,1(∗) × A2,1(∗), A4,2(L), A5,2(L), A5,3(L), D5,5(K), D6,6(K), E6,1(K), E7,7(K), E6,2(K),
E7,1(K), E8,8(K), for some skew field L and some field K.

In the next section, we start with proving these local recognition results for parapolar
spaces, in particular, we show Theorem 3.2.

4 Local recognition results

In this section we prove some useful local recognition results in the following style:

Suppose all symps of a parapolar space ∆ of constant symplectic rank r are hyperbolic,
and all singular subspaces are projective. If some singular subspace U of dimension r− 2
is contained in exactly two maximal singular subspaces, say of dimension d1 and d2, and
d1 + d2 ≤ 2r, then ∆ is known.

See Corollary 4.4, and Theorem 3.2 for the exact conclusions. In order to tackle this
problem in a systematic way, we introduce the haircut condition (H) on a singular subspace
S of a parapolar space ∆ with set of symps Ξ below. This peculiar terminology goes back
to Shult [29] who used it as a generalisation of a property discovered by Cohen and
Cooperstein in the 1980s [6, 12, 8].

(H) Whenever some ξ ∈ Ξ with 2 + dimS = rk ξ contains S, and x /∈ ξ is a point such
that S ⊆ x⊥, then S ( x⊥ ∩ ξ.

If each singular subspace of ∆ satisfies (H), then we say that ∆ satisfies (H). Our above
recognition result will now follow from the following local-to-global result:

Suppose all symps of a locally connected parapolar space ∆ with set of symps Ξ of constant
symplectic rank r are hyperbolic. If some singular subspace of dimension r − 2 satisfies
(H), then ∆ satisfies (H).

First an observation:

13



Lemma 4.1 Let ∆ be a parapolar space of constant symplectic rank r ≥ 2. Then two
distinct maximal singular subspaces M1 and M2 intersect in a subspace of dimension at
most r − 2.

Proof Suppose for a contradiction that S := M1∩M2 is a subspace with dimS ≥ r−1.
Let x1, x2 be arbitrary points of M1 \ S and M2 \ S. Suppose x1, x2 are not collinear.
Then since S ⊆ x⊥1 ∩x⊥2 and S contains a line, there is a unique symp ξ(x1, x2) containing
〈x1, S〉 and 〈x2, S〉. As the latter have dimension at least r, this contradicts the fact that
the symps of ∆ have rank r. So x1 and x2 are collinear and hence 〈M1,M2〉 is a singular
subspace of ∆, contradicting the maximality of M1 and M2. �

We start with the case r = 2, which carries the crux of the argument.

Proposition 4.2 Let ∆ be a strong parapolar space of constant symplectic rank 2 all
symps of which are hyperbolic and all singular subspaces of which are projective. Then
the following are equivalent.

(i) ∆ satisfies (H).
(ii) ∆ is isomorphic to the Cartesian product Π× Π′ of two projective spaces.

(iii) Some point satisfies (H).
(iv) There exists a point contained in exactly two maximal singular subspaces Π and Π′.

Proof Lemma 4.2 of [10] shows (i)⇒ (ii)⇒ (iii). The next claim in particular implies
(iii)⇒ (iv).

Claim 1. A point x satisfies (H) if and only if it is contained in exactly two maximal
singular subspaces (and this property we will denote by (H’)).
Suppose first that x satisfies (H). Clearly x is contained in at least two maximal singular
subspaces, so suppose for a contradiction that x is contained in three maximal singular
subspaces Πi, i = 1, 2, 3, which intersect each other pairwise in the point x by Lemma 4.1
and r = 2. Then, picking arbitrary xi ∈ Πi \ {x}, the point x1 would be collinear to
only the point x of the hyperbolic symp ξ(x2, x3) since x1 is collinear to neither x2 nor
x3 by maximality of Π1 and Lemma 4.1. This contradicts the fact that x satisfies (H).
Conversely, if x is contained in exactly two maximal singular subspaces Π and Π′ then,
since every point collinear with x belongs to either Π or Π′ and every symp through x
contains a line of Π and one of Π′, it is clear that x satisfies (H).

We now show (iv) ⇒ (i). So, let x ∈ X be contained in exactly two maximal singular
subspaces Π and Π′. As above, Π∩Π′ = {x}. Also, if both Π and Π′ were lines, then each
symp through x would coincide with the symp ξ containing Π ∪ Π′. Connectivity and
strongness now readily imply that ξ is the unique symp of ∆, contradicting the definition
of parapolar spaces.

Claim 2. Each point y of Π satisfies (H′).
Suppose first that Π′ is a line. Then each symp through xy contains Π′ and hence is
unique, so by strongness it follows that there is only one line through y not contained in
Π.
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Next, suppose that Π′ is at least a plane, so we can choose points z, z′ ∈ Π′ \ {x} with
z′ /∈ xz. The symps ξ(y, z) and ξ(y, z′) contain unique lines L and L′, respectively, with
z ∈ L, z′ ∈ L′ and x /∈ L ∪ L′. There is also a symp ζ containing L and zz′, and let M ′

be the line in ζ containing z′ and distinct from zz′.

We show that L′ = M ′. Indeed, suppose not. The symp η containing M ′ and x has a
line M in common with Π. But M 6= xy, since, if M = xy, then [y, z′] = η and z′ would
be contained in three lines of η (namely M ′, L′ and xz′), a contradiction. Now, there is
a unique point u on L collinear to y; there is a unique point v′ on M ′ collinear to u, and
there is a unique point v ∈M collinear to v′.

Select any y∗ on xy \ {x, y}. Set u∗ = L ∩ y⊥∗ , v′∗ = M ′ ∩ u⊥∗ , and v∗ = M ∩ v′⊥∗ . Since Π
is a projective space, yv ∩ y∗v∗ is a unique point s. Noting that v and u are not collinear
as otherwise 〈M,xy〉 ⊆ [y, z], they determine a unique symp containing y and v′, and
so s is collinear to a unique point t of uv′. Likewise, s is collinear to a unique point t∗
of u∗v

′
∗. Since s is not contained in the symp ζ (otherwise, 〈x, z, z′〉 ⊆ ζ), and since the

points t and t∗ are distinct, they are collinear and s is collinear to all points of tt∗. But
tt∗ intersects zz′ in some point w, which is then collinear to the line xs, implying that Π
is not a maximal singular subspace, a contradiction. We conclude that L′ = M ′.

Since now y is collinear to the points u ∈ L and v′ ∈ M ′ = L′, then since u, v′ ∈ ζ we
deduce that u ⊥ v′ and so u, v′, y are contained in a unique plane π′y containing y, with
π′y ∩ Π = {y}. Collinearity defines a bijection from the line zz′ to the line uv′; hence
“being contained in the same symp with xy” defines a bijection from the set of lines of
π′x = 〈x, z, z′〉 through x to the set of lines of π′y through y. Varying π′x in Π′, we obtain
that “being contained in the same symp with xy” is a bijective collineation between the
residue ResΠ′(x) and the set of lines of ∆ through y, but not in Π. This implies that
all such lines are contained in a singular subspace Π′y (with dim Π′y = dim Π′), and so y
satisfies (H′).

Claim 3. Every point of ∆ satisfies (H′).
Indeed, by Claim 2, and interchanging the roles of Π and Π′ if needed, every point collinear
to x satisfies (H′). By connectivity, all points do.

The proposition now follows using Claim 1. �

The next result is our most general local recognition result for parapolar spaces of constant
symplectic rank r ≥ 3.

Theorem 4.3 Let ∆ be a locally connected parapolar space of constant symplectic rank
r ≥ 3 all symps of which are hyperbolic. Then the following are equivalent.

(i) ∆ satisfies (H).
(ii) Some singular subspace of dimension r − 2 satisfies (H).

(iii) There exists a singular subspace of dimension r − 2 which is contained in exactly
two maximal singular subspaces.

Proof The implication (i) ⇒ (ii) is trivial. Suppose some singular subspace U of
dimension r − 2 satisfies (H). Suppose also, for a contradiction, that U is contained
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in (at least) three maximal singular subspaces Πi, i = 1, 2, 3. Then there exist points
xi ∈ Πi \ (Πj ∪ Πk), {i, j, k} = {1, 2, 3}. It follows that the point x1 is collinear to all
points of U and does not belong to the symp ξ(x2, x3) (since the latter is hyperbolic
and U is contained in the generators 〈U, x2〉 and 〈U, x3〉). Since U satisfies (H), we may
assume without loss of generality that x1 is collinear to all points of 〈U, x2〉, and hence
to x2, a contradiction. Hence we have shown the implication (ii) ⇒ (iii). We now show
(iii)⇒ (i), and proceed by strong induction on r (the base case r = 3 is included in the
induction argument).

So let U be a subspace of dimension r − 2, contained in two maximal singular subspaces
(of ∆). Pick a point x ∈ U . Then, in ∆x := Res∆(x), the subspace Ux is also contained
in two maximal singular subspaces (of ∆x). Since ∆ is locally connected, Res∆(x) is a
parapolar space. Also, Res∆(x) is strong and all of its singular subspaces are projective.
Hence we can either apply induction (if r > 3) or Proposition 4.2 (if r = 3) and conclude
that ∆x satisfies (H).

Now let y ⊥ x. We can select a symp containing xy and a singular subspace U ′ of
dimension r − 2 in that symp, containing xy.

Claim (∗): The subspace U ′ satisfies (H).
Indeed, let u be a point collinear to all points of U ′, and let ξ be a symp containing U ′

but not u. In ∆x, the point ux corresponding to xu is collinear to all points of some
generator of the symp ξx corresponding to ξ, because ∆x satisfies (H). This implies that
u is collinear to all points of some generator of ξ, and so the claim follows.

Now we can interchange the roles of U and U ′ and of x and y, and as before, this implies
by induction or Proposition 4.2 that ∆y satisfies (H). A connectivity argument implies
that for all points z, the point-residual ∆z satisfies (H). Then Claim (∗) applied to any
singular subspace of dimension r − 2 of ∆, and every point contained in it, implies that
∆ satisfies (H). �

Some consequences of the previous theorem.

Corollary 4.4 Let ∆ be a strong parapolar space of constant symplectic rank r ≥ 2, all
symps of which are hyperbolic and all singular subspaces of which are projective. If there
exists a singular subspace of dimension r− 2 contained in exactly two (maximal) singular
subspaces S1 and S2, say of dimensions d1 and d2, with d1 + d2 ≤ 2r, then the following
hold where L is some skew field and K is some field.

(1) If d1 = d2 = r, then either ∆ ∼= A2,1(∗)× A2,1(∗), or ∆ ∼= A5,3(L).
(2) If d1 = r − 1 and d2 = r + 1, then either ∆ ∼= A1,1(∗) × A3,1(L), or ∆ ∼= A5,2(L), or

∆ ∼= D6,6(K).
(3) If d1 = r − 1 and d2 = r, then either ∆ ∼= A1,1(∗) × A2,1(∗), or ∆ ∼= A4,2(L), or

∆ ∼= D5,5(K), or ∆ ∼= E6,1(K), or ∆ ∼= E7,7(K).

Proof If r = 2, then it follows from Proposition 4.2 that ∆ is the Cartesian product
S1 × S2 of two projective spaces S1, S2 of respective dimensions, say d1, d2 ≥ 1. Since
d1+d2 ≤ 4, there are exactly three possibilities, all of which are listed above. If r ≥ 3, then
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recalling that in this case strongness implies locally connected, it follows from Theorem 4.3
that ∆ satisfies (H). Note that the singular subspaces of ∆ are finite-dimensional, which
follows from an easy inductive argument and the fact that (H) is a residual property, and
in case of constant symplectic rank 2, (H) is equivalent to being a direct product space
(cf. Proposition 4.2). The result then follows from Theorem 15.4.5 in [28]. Alternatively,
it also follows from the classification of parapolar spaces satisfying the Haircut Axiom (H)
in [10]. �

Proof of Theorem 3.2 Either one can argue as in the proof of Corollary 4.4 using the
alternative argument which relies on the revised Haircut Theorem in [10], or one argues
as follows. If the parapolar space is strong, then the assertion follows from Corollary 4.4.
If not then we consider its point-residues, which are automatically strong and also satisfy
the hypotheses. Therefore, each one is isomorphic to a parapolar space in one of the three
cases of Corollary 4.4. A standard inductive argument (on the distance between points)
using connectivity shows that all point-residues are isomorphic. Since we assume ∆ not to
be strong, the diameter of such residue is at least 3. This leaves us with the possibilities
A5,3(L), D6,6(K) and E7,7(K). Theorem 2.1 in [9] leads to the assertion ∆ ∼= E6,2(K),
E7,1(K), or E8,8(K), respectively. �

5 Some known classification results

5.1 Abstract Veronese varieties and relatives

For ease of reference, we collect some useful classification results of earlier papers. We
phrase them in the current terminology.

Theorem 5.1 (Theorem 1.2 of [18]) An AVV of type d in PN(K) is projectively equiv-
alent to one of the following:

(d = 1) The quadric Veronese variety V2(K), and then N = 5;
(d = 2) the Segre variety S1,2(K) (N = 5), S1,3(K) (N = 7) or S2,2(K) (N = 8);
(d = 4) the line Grassmannian variety G5,2(K) (N = 9) or G6,2(K) (N = 14);
(d = 6) the half-spin variety HS 5(K), and then N = 15;
(d = 8) the (Cartan) variety E6(K), and then N = 26;
(d = 2`) the Veronese variety V2(K,A), for some d-dimensional quadratic alternative di-

vision algebra A over K. Moreover, if the characteristic of the underlying field K is
not 2, then d ∈ {1, 2, 4, 8}. Here, N = 3d+ 2.

Note that the case d = 1 is also included in the last case, d = 2`. We repeat it though, as
it fits in the two series, the first one with quadrics of maximal projective index (the first
five items), the second one with quadrics of projective index 1 (the sixth item).

Lemma 5.2 (Lemma 5.1 and Proposition 5.2 of [27]) Let (X,Ξ) be a (1)-AVV of
type 2 and index 1 in P7(K).Then (X,Ξ) is isomorphic to a Segre variety S1,i(K), i ∈
{2, 3}.
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Proposition 5.3 (Proposition 4.5 of [25]) If K 6∼= F2, then every (1′)-AVV of type 1
and index 0 contained in P5(K) is isomorphic to V2(K). If K ∼= F2, then every (1′)-AVV
of type 1 and index 0 contained in P5(K) has at most nine conics.

5.2 Lacunary parapolar spaces

Definition 5.4 Let k ∈ Z≥−1. A parapolar space is called k-lacunary if k-dimensional
singular subspaces never occur as the intersection of two symplecta, and all symplecta
contain k-dimensional singular subspaces.

In [20] and [19], k-lacunary parapolar spaces have been classified for k = −1 and k ≥ 0,
respectively. At several points in the proof we will use the classification of (−1)- or 0-
lacunary parapolar spaces. We extract from the Main Result of [19] the results that we
will need, restricting our attention to strong parapolar spaces embedded in a projective
space over a field K.

Lemma 5.5 Let Γ = (X,L ) be a strong (−1)-lacunary parapolar space whose points
are points of a projective space P over a field K, whose lines are lines of P and whose
symplecta are all isomorphic to each other. Then Γ = (X,L ) is, as a point-line geometry,
isomorphic to either a Segre variety Sn,2(K) with n ∈ {1, 2}, a line Grassmannian variety
Gn,1(K) with n ∈ {4, 5}, or to the Cartan variety E6,1(K). In particular, the symps of Γ
are all hyperbolic quadrics.

Lemma 5.6 Let Γ = (X,L ) be a strong 0-lacunary parapolar space whose points are
points of a projective space P over a field K, whose lines are lines of P and whose sym-
plecta are all isomorphic to each other. Then the symps of Γ are all hyperbolic quadrics.
Moreover, if these quadrics all have projective index 1, then Γ = (X,L ) is, as a point-
line geometry, isomorphic to a Segre variety S1,n(K), for some n ∈ N with n ≥ 2, or the
direct product of a line and a hyperbolic quadric of projective index n, for some n ∈ N
with n ≥ 2.

6 General observations for the proof of the main the-

orem

6.1 Properties of ALV and AVV as parapolar spaces

Suppose that (W,Ω) is either a (1′)-AVV of type d and index w or an ALV of type d− 2
and index w − 1 in PN(K); so each host space intersects W in a non-degenerate quadric
spanning Pd+1(K) and has w-dimensional subspaces as maximal isotropic subspaces. We
record general properties holding for both types of abstract varieties.
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Lemma 6.1 Let L1 and L2 be two singular lines of (W,Ω) sharing a point y. Then either
there is a unique host space containing L1 ∪ L2, or, L1 and L2 generate a singular plane
π. In the latter case, if w ≥ 2, then there is a host space containing π.

Proof For (1′)-AVVs, the first statement is proved in Lemma 3.3 of [18] and the second
statement in Lemma 3.11 of [18]. The same proof holds for ALVs since, when looking in
y⊥, axiom (ALV1) implies axiom (AVV1′), and (ALV2) and (AVV2) coincide anyhow. �

If two singular lines L1 and L2, which share a point, are contained in a unique host space,
then we denote the latter by [L1, L2].

As a consequence, we have:

Lemma 6.2 For y ∈ W and ω ∈ Ω with y /∈ ω, the set y⊥ ∩ ω is a singular subspace.

Proof Suppose y1, y2 are points in ω collinear to y (so y1, y2 ∈ W ). By Lemma 6.1,
the singular lines yy1 and yy2 are either contained in a unique host space ω′, or y1y2 is
singular. In the first case, ω ∩ ω′ ⊆ W by the second axiom, and hence also in this case,
y1y2 is singular. �

Lemma 6.2 allows for a higher-dimensional version of Lemma 6.1.

Lemma 6.3 Let Π1 and Π2 be two singular k-spaces of (W,Ω) sharing a (k − 1)-space,
k ≥ 1. Then either there is a unique host space containing Π1∪Π2, or, Π1 and Π2 generate
a singular (k + 1)-space Π. If w < k then the first option is not possible; moreover, if
w ≥ k + 1 then each singular (k + 1)-space is contained in a host space.

Proof In case (W,Ω) is a hyperbolic AVV, this is proved in Lemmas 4.4 and 4.5 of [27].
Exactly the same proofs hold in the current context. �

Lemma 6.4 For any x, y ∈ W , there is a finite number n and a sequence (ω1, ..., ωn) in
Ω such that x ∈ ω1, y ∈ ωn and ωi ∩ ωi+1 6= ∅ for all i ∈ {1, . . . , n− 1}.

Proof If (W,Ω) is an (1)-AVV, this follows immediately from (AVV1). So suppose
(W,Ω) is an ALV. Define Ω1 as the set of all host spaces containing x and Ω2 as the set
of all ω ∈ Ω such that there is a finite m and host spaces ω1, ..., ωm with ω = ω1, y ∈ ωm
and ωi ∩ ωi+1 non-empty for all i ∈ {1, . . . ,m− 1}. Since (W,Ω) is irreducible, there is a
ω ∈ Ω1 ∩ Ω2, showing the result. �

Corollary 6.5 If (W,Ω) is either a (1)-AVV of type d and index w or an ALV of type
d − 2 and index w − 1 in PN(K) and w > 0, then (W,L ) is a strong parapolar space of
constant symplectic rank w.
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Proof We verify the axioms (see Definition 2.4). The fact that (W,L ) is connected
follows from Lemma 6.4, w > 0 and (AVV2) or (ALV2). Moreover, if p, q ∈ W are non-
collinear points with |p⊥ ∩ q⊥| > 1, then it again follows from (AVV1) or (ALV1) that
there is a host space ω containing p and q. Moreover, Lemma 6.2 implies that the symp
W (ω) is the convex closure subspace of any pair of its non-collinear points (noting that
the only proper convex closure subspaces of W (ω) are its singular subspaces). Thirdly, it
is again (AVV1) and (ALV1) that make sure that each line of L is contained in a symp.
Finally, the fact that d+ 1 < N and that W is a spanning point set of PN(K) imply that
there is no symp containing all points of W . �

Lemma 6.6 For each x ∈ W we can find ω ∈ Ω not containing x.

Proof Suppose for a contradiction that all host spaces contain x. Let ω1, ω2 be two
distinct host spaces (recall that |Ω| ≥ 2). Let y1 be a point in W (ω1) not collinear
to x. By Lemma 6.2, there is a point y2 ∈ W (ω2) which is collinear to neither x nor
y1 (noting that W (ω2) \ x⊥ contains a pair of non-collinear points). By assumption,
[y1, y2] contains x, but then the second axiom (i.e., (AVV2) or (ALV2)) implies that
ω1 = [y1, x] = [y1, y2] = [x, y2] = ω2, a contradiction. �

6.2 Embeddings

One important step in our proof is to show that, once we pinned down the isomorphism
type of the abstract geometry (Y,L ), where L is the set of singular lines and Y a spanning
point set of PN(K), there is a projectively unique representation (or full embedding) of
(Y,L ) which satisfies the axioms (ALV1), (ALV2) and (ALV3). This will be achieved in
three steps. First we refer to Theorems 10.37 and 10.39. These theorems establish a full
embedding of (Y,L ), say in PM(K), that satisfies the said axioms. Secondly, except if,
only in the ovoidal case, the ground field K has exactly two elements, then that embedding
is projectively unique in Pj(K), for j ≥ M , and it is universal. Thirdly, we show that
N ≥ M . For |K| = 2 in the ovoidal case, we show (later) that the embedding occurring
in Theorem 10.37 is the projectively unique one in the given dimension that satisfies the
axioms (ALV1), (ALV2) and (ALV3). We here show the second step.

Proposition 6.7
(S) The unique (full) embedding of A1(K)×A1(K)×A1(K) in P7(K) is the Segre variety

S1,1,1(K);
(O) The unique (full) embedding of the dual polar space C3,3(K,A) in P6d+7(K), where
|K| > 2 and A is a d-dimensional quadratic alternative division algebra over K, is
the Veronese representation V (K,A).

(H) The unique (full) embedding of the Lie incidence geometries A5,3(K), D6,6(K) and
E7,7(K) in P19(K), P31(K) and P55(K), respectively, are the plane Grassmannian
variety G6,3(K), the spinor embedding HS 6(K) and the exceptional variety E7(K).
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Proof For A1(K)× A1(K)× A1(K), this is obvious, noting that P7(K) is generated by
two hyperbolic quadrics in disjoint 3-spaces. For Case (O), |K| 6= 2, this is Theorem 5.8
in [16]. Case (H) follows from the main results in [34] (for A5,3(K) and D6,6(K)), and [24]
(for E7(K)). �

6.3 The residue of a point a ∈ Y having a point e ∈ Y at distance
3

Let (Y,Υ) be an ALV of type d and index w. Let a ∈ Y be a point such that there is a
point e ∈ Y at distance 3 from a; the existence of such a pair of points is guaranteed by
Axiom (ALV1) and Lemma 6.4. We show that the residue (Ya,Υa) (cf. Definition 2.1) is
a (1′, 3′)-AVV of type d and index w.

Consider a path a ⊥ b ⊥ c ⊥ e of length 3 between a and e. Set Wa,c := a⊥ ∩ c⊥ and
likewise Wb,e := b⊥∩ e⊥, and note that these sets are contained in the subspaces [a, c] and
[b, e], respectively. Recall the definition of Tp(Ya) as given in Subsection 2.2.

Lemma 6.8 The point p ∈ Ya corresponding to the line ab satisfies dimTp(Ya) ≤ 2d.

Proof It suffices to show α := dim(Ta(Y ) ∩ Tb(Y )) ≤ 2d + 1. By (ALV1), Ta(Y ) ∩
Te(Y ) = ∅; and by (ALV3), dimTa(Y ) ≤ 3d + 3. Since dim(Tb(Y ) ∩ Te(Y )) ≥ d + 1, we
obtain 3d+ 3 ≥ dimTb(Y ) ≥ d+ 1 + α + 1 and therefore α ≤ 2d+ 1. �

Lemma 6.9 Let c′ ∈ Wb,e be arbitrary and consider υ := [a, c′]. Then υ ∩Wb,e = {c′}.
Moreover, for each point p ∈ Ya corresponding to a singular line ab′ in υ, we have
dimTp(Ya) ≤ 2d.

Proof If υ∩Wb,e contained a line L through c′, then L would contain a point of Ta(υ),
whereas L ⊆ Te(Y ) and Ta(Y ) ∩ Te(Y ) is empty by (ALV3). So υ ∩Wb,e = {c′} indeed.

Now let b′ be a point of a⊥ ∩ c′⊥. Then a ⊥ b′ ⊥ c′ ⊥ e is a path of length 3 between a
and e and hence we can apply Lemma 6.8 with the line ab′ in the role of ab, from which
the second assertion follows. �

Lemma 6.10 The residue ResY (a) = (Ya,Υa) is a (1′, 3′)-AVV of type d and index w;
moreover, if w > 0 then it is actually a (1, 3′)-AVV.

Proof By Lemma 6.9 we have |Υa| ≥ 2. The fact that (AVV1′) and (AVV2) are
satisfied follows immediately from (ALV1) and (ALV2); and if w > 0 then also (AVV1)
holds by Lemma 6.3. Defining ∂Υa as the set of members of Υa corresponding to the host
spaces υ ∈ Υ with the properties that a ∈ υ and there exists e∗ ∈ Y with e⊥∗ ∩ υ 6= ∅ and
Te∗ ∩ Ta = ∅, (AVV3′) holds by Lemma 6.9. �

In the sequel we will hence study such AVVs, and for ease of notation we put X := Ya
and Ξ := Υa. We note the following corollary.
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Corollary 6.11 Let (Y,Υ) be an ALV of type d and index w ≥ 1. Let a ∈ Y and suppose
there exists e ∈ Y with Ta(Y ) ∩ Te(Y ) = ∅. If each line L 3 a contains a point b with
Tb(Y ) ∩ Te(Y ) 6= ∅, then the point-residual (Ya,Υa) is an abstract Veronese variety.

Proof This follows from Lemmas 6.8 and 6.10. �

The previous results are crucial for the start of the proof of our Main Result; the next
proposition provides a standard way to finish the hyperbolic cases.

Proposition 6.12 Let ∆ be one of the parapolar spaces A5,3(K), D6,6(K) or E7,7(K).
Suppose the point-line geometry (Y,L ) related to an ALV (Y,Υ) of type d and index
w is isomorphic to ∆. Then Y is projectively unique and isomorphic to the universal
embedding of ∆.

Proof It is obvious that (d, w) is either (2, 1), (4, 2), or (8, 4), depending on ∆ ∼=
A5,3(K), D6,6(K) or E7,7(K), respectively. Consider any point a ∈ Y . Since in ∆, no point
is at distance at most 2 of all others, Corollary 6.11 implies that (Ya,Υa) is an AVV
of type d and index w, and its related point-line geometry is isomorphic to A2,1(K) ×
A2,1(K), A5,2(K), or E6,1(K), respectively. It follows from the Main Result of [27] that Ya
is isomorphic to S2,2(K), G6,2(K), or E6(K), respectively, living in a projective space of
dimension 3d+2. It follows that dimTa(Y ) = 3d+3. Consideration of a point e ∈ Y with
Ta(Y )∩Te(Y ) = ∅ yields dimY ≥ 6d+7. Now the assertion follows from Proposition 6.7.

�

6.4 Standing Hypotheses

We now start the proof of Theorem 3.1. We let (Y,Υ) be an abstract Lagrangian variety of
type d and index w. We consider the point-residual (Ya,Υa) = (X,Ξ) of (Y,Υ) at a point
a ∈ Y for which there exist points b, c, e ∈ Y with a ⊥ b ⊥ c ⊥ e and Ta(Y ) ∩ Te(Y ) = ∅.
It is a (1, 3′)-AVV of type d and index w, if w > 0, by Lemma 6.10, and otherwise it is
a (1′, 3′)-AVV of type d and index 0. We keep denoting the set of singular lines of Y by
L . We will adopt these hypotheses and this notation in Sections 7, 8 and 9, except for
Subsections 7.1 and 8.4.

7 Ovoidal case—dual polar spaces (w = 0, d > 0)

Let (Y,Υ) be an ALV of type d ≥ 1 and index 0. The Standing Hypotheses 6.4 yield
a (1′, 3′)-AVV (Ya,Υa) = (X,Ξ), which is of type d ≥ 1 and index 0 (recall that the
intersections of host spaces with X are called ovoids, regardless of d, although if d = 1 we
will more accurately call them ovals). However, we will prove a slightly stronger result
by introducing a considerable weakening of Axiom (AVV3′). Namely, we only require the
dimension of the tangent space to be bounded by 2d for the points on one ovoid. Since
this might be of independent interest, we state and prove it independently in the next
subsection.
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7.1 A characterisation of Veronese varieties

As explained in the previous paragraph, we temporarily abandon the Standing Hypothe-
ses 6.4 in this subsection. We show the following characterisation of the Veronese varieties
V2(K,A), where A is a quadratic alternative division algebra over the field K.

Theorem 7.1 Let (X,Ξ) be a (1′)-abstract Veronese variety of type d ≥ 1 and index 0
in (possibly a subspace of) P3d+2(K), such that dimTx ≤ 2d for all points x of a certain
ovoid O. Then (X,Ξ) is isomorphic to a Veronese variety V2(K,A), for some quadratic
alternative division algebra A over K with dimKA = d.

We prove Theorem 7.1 in a sequence of lemmas, first getting rid of the finite case. Strictly
speaking we only need to treat the cases where |K| < 5 separately (this manifests itself
in the proof of Lemma 7.4), but our approach works for all finite fields. Note that each
point x is contained in at least two ovoids, which implies dimTx(X) = 2d as soon as
dimTx(X) ≤ 2d.

Throughout Subsection 7.1 we adopt the notation of Theorem 7.1. In particular, O is a
fixed ovoid of a (1)-AVV (X,Ξ) of type d ≥ 1 and index 0 in (possibly a subspace of)
P3d+2(K) and for each point x of O holds dimTx ≤ 2d.

7.1.1 The finite case

Suppose K = Fq, the finite field with q elements. This implies that d ∈ {1, 2} [17, p.48].

Lemma 7.2 There are no singular lines in X and each pair of ovoids has a non-trivial
intersection, giving (X,Ξ) (viewed as an abstract geometry) the structure of a projective
plane.

Proof We aim to show that there are no singular subspaces of dimension at least 1.
Note that Lemma 6.1 implies that distinct maximal singular subspaces are disjoint, so in
particular, if singular lines share a point, they are contained in a singular plane, etc.

Claim 1. There is no singular subspace of dimension at least 2.
Indeed, assume for a contradiction that S is a singular plane. Select a point z not
contained in the maximal singular subspace containing S. Then counting the number of
points on ovoids containing z and a point of S (note that no point of S is collinear to z) we
obtain |X| ≥ 1+qd(q2 +q+1), so |X| ≥ q2d+qd+1 +qd+1 as d ≤ 2. Now select x ∈ O and
let O′ ∈ Ξ be an ovoid not containing x (which exists by Lemma 6.6). If x is not contained
in any singular line, then the tangent spaces at x of the ovoids X([x, y]), with y ∈ O′ fill
the whole space Tx(X) (indeed the number of points contained in these tangent spaces is

(qd + 1)( q
d+1−1
q−1

− 1) + 1), and so (AVV2) implies that |X| = q2d + qd + 1, a contradiction.
Next, suppose x is contained in a maximal singular subspace Sx of dimension at least 1.
As in the previous case, we consider ovoids determined by x and points of O′.
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Let t denote the number of tangent spaces in Tx(X) different from Sx. With a similar

reasoning as above we obtain t( q
d+1−1
q−1

− 1) + q + 1 ≤ q2d+1−1
q−1

hence t ≤ qd. Recalling that

maximal singular subspaces do not intersect non-trivially, we hence obtain |X| ≤ q2d+|Sx|.
This implies that |Sx| ≥ q1+d + qd + 1, so dimSx > d, but then Sx does not fit in Tx(X)
without violating (AVV2), a contradiction. Claim 1 is proved.

Claim 2. If d = 2, then there are no nontrivial singular subspaces.
Indeed, assume there is a nontrivial maximal singular subspace L. By Claim 1 we may
assume that L is a line. The number of points on ovoids containing a fixed point z ∈ X \L
and a variable point y ∈ L is (q+ 1)q2 + 1. Comparing this with the number of points on
ovoids containing z and a variable point (not collinear to z) on a fixed ovoid not containing
z computed above, we conclude that there exists an ovoid on z disjoint from L. Now there
are two possibilities.

Some point x of O is contained in a singular line L′. Then by the above we may select
an ovoid O′ disjoint from L′. Then no point of O′ is collinear to x for this would yield a
singular plane. But then the tangent planes to the ovoids containing x and a point of O′

already fill Tx(X), leaving no room for L′, a contradiction.

No point of O is contained in a singular line. Then considering x ∈ O and an ovoid O′

not containing x, we count, as before, |X| = q4 + q2 +1. Pick y ∈ L. Let α be the number
of ovoids containing y. Then |X| = αq2 + q + 1, a contradiction.

Claim 2 is proved.

Claim 3. If d = 1, then there are no nontrivial singular subspaces.
Indeed, consider a point x ∈ O and an oval O′ 63 x. If some singular line L joins x with
a point y of O′, then L together with the tangent lines at x of the ovals joining x with
the points of O′ \ {y}, fill Tx and so |X| = q2 + q + 1. If there is no singular line on x,
then the same conclusion holds. Since every pair of points is either on an oval, or on a
singular line, and both have size q + 1, we see that X, viewed as a point-line geometry
where the line set L consists of the ovals and the singular lines, is a projective plane of
order q. Indeed, if two elements of L were disjoint we would obtain |X| > q2 + q + 1, a
contradiction.

Now assume for a contradiction that there is some singular line L (and note that there can
only be one since by the above paragraph they pairwise intersect and such an intersection
would lead to a singular plane, a contradiction). Consider a point x in O not on L. Clearly,
〈X〉 = 〈Tx, L〉 and hence dim〈X〉 = 4. Projecting X \O from 〈O〉 onto a complementary
subspace in 〈X〉, we see that the points of two ovals intersecting O in the same point
project onto the same set of q points, yielding q singular lines, a contradiction. Claim 3
is proved.

Hence we have shown that there are no singular subspaces of dimension at least 1. More-
over, a similar counting argument as before then shows |X| = q2d + qd + 1, implying that
(X,Ξ) is indeed a projective plane. �

Lemma 7.3 If |K| < ∞, then (X,Ξ) is isomorphic to a Veronese variety V2(K,A), for
either A = K or A a quadratic extension of K.
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Proof By Lemma 7.2, (X,Ξ) is a (1)-AVV which moreover has the structure of a
projective plane, i.e., each two ovoids have a non-trivial intersection. Such varieties have
been studied in [21], Main Result 4.3 of which asserts that (X,Ξ) is indeed isomorphic to
V2(Fq,Fqd) if q > 2, and, if q = 2, it is either isomorphic to V2(Fq,Fqd) or to a member of
a restricted list of additional possibilities, each of which we will now rule out. Taking into
account that by assumption dim〈X〉 ≤ 3d+ 2, only one additional possibility remains for
each value of d:

(d = 1) Six points of X form a frame of a 4-space S and the seventh point of X lies
outside S and forms a basis with any five points of S ∩X.
Let x be a point of O contained in S and let z be the unique point of X not contained
in S. Let O′ be the oval determined by x and z and denote by y the unique point on
O′ distinct from x and z. Since the two ovals containing x distinct from O′ belong
to S, also Tx(X) belongs to S. But then 〈O′〉 = 〈Tx(O), y〉 ⊆ S, a contradiction. So
this additional possibility is ruled out.

There are a few things to be said before discussing the second alternative, which occurs
for d = 2. Firstly, an ovoid of P3(F2) coincides with a frame of P3(F2), i.e., a set of 5
points no 4 of which are contained in a plane. Moreover, four points p1, p2, p3, p4 of such
a frame determine the frame uniquely, as its fifth point is given by p1 + p2 + p3 + p4.
A pseudo-embedding of the projective plane P2(F4) is given by identifying its points to
points of a certain projective space Pn(F2), with n ≥ 4, such that its lines get identified
with frames in 3-spaces. Such embeddings were introduced and studied by De Bruyn
[14, 15]. He obtained that the universal pseudo-embedding M of P2(F4) lives in P10(F2)
[15, Proposition 4.1] and an explicit (coordinate) construction [14, Theorem 1.1]. A
geometric construction, using a basis of P10(F2), was given in [21, Section 7.3.2], where
it arose as the universal embedding of an AVV-like set (X ′,Ξ′), which satisfies (using
our notation) (AVV1), (AVV2) and the additional property that each two members of Ξ′

share a point of X ′; whence the connection with the current situation.

(d = 2) X arises as the (injective) projection of the universal pseudo-embedding M =
(X ′,Ξ′) of P2(F4) (where the members of Ξ′ are the 3-spaces corresponding to lines
of P2(F4).)
To obtain our variety (X,Ξ), we consider the projection ρ from (X ′,Ξ′) from an
“admissible” line M ′, meaning that the projection of (X ′,Ξ′) from M ′ is not only
required to be injective but also to preserve property (AVV2). In M, it is known
that all points x′ ∈ X ′ are such that dimTx′(X

′) = 6. Now, if x, y, z are the three
points of O, then the only way to obtain dimTx(X) = dimTy(X) = dimTz(X) = 4
is to choose M ′ in Tρ−1(x)(X

′) ∩ Tρ−1(y)(X
′) ∩ Tρ−1(z)(X

′). However, by Lemma 7.9
of [21], there is only one line M contained in this intersection, and the projection
of (X ′,Ξ′) from M yields V2(Fq,Fq2). This also excludes the existence of other
possibilities than V2(Fq,Fq2), at least in our current setting.

We conclude that (X,Ξ) is indeed isomorphic to V2(Fq,Fqd). �
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7.1.2 The infinite case

Suppose |K| =∞. We will consider the projection ρ ofX\O fromO onto a complementary
subspace Π (which has dimension at most 2d since, by assumption, dim〈X〉 ≤ 3d+2). We
introduce some notation. If Oi, with i in some index set, is an ovoid meeting O in a point
pi, then we denote by Pi the projective d-space ρ(〈Oi〉). Then the projection ρ(Tpi(Oi)) is
a hyperplane of Pi which we denote by Ti. Since dim(Tpi(X)) = 2d, Ti also coincides with
ρ(Tpi(X)). The affine d-space Pi \ Ti is denoted by Ai and coincides with ρ(Oi \ {pi}).

Lemma 7.4 Consider distinct ovoids O1 and O2 and pairwise distinct points p1, p2, p
such that {pi} = O ∩Oi, i = 1, 2, and {p} = O1 ∩O2. Then dim(P1 ∩ P2) = 0.

Proof Note that ρ(p) ∈ A1∩A2. Suppose for a contradiction that dim(P1∩P2) ≥ 1 and
let L be a line in P1∩P2 containing ρ(p). Then Π′ := 〈O, ρ−1(L)〉 has dimension d+3 and
since dim〈Oi, O〉 = 2d+ 2 and dim〈Oi〉 = d+ 1, we obtain that πi := Π′ ∩ 〈Oi〉 is a plane
intersecting Oi in an oval oi containing pi and p. Let qi ∈ oi be arbitrary and let Li be the
line 〈pi, qi〉 if qi 6= pi, and otherwise Li is the tangent to oi at pi. Let Mi be a line in πi
not containing pi. Consider the projectivity σi : oi → L defined by the composition of the
perspectivities qi 7→ Li 7→ ri = Li ∩Mi 7→ ρ(ri) = ρ(Li). Thus σ := σ−1

2 ◦ σ1 : o1 → o2 is
a projectivity fixing p. Note that, if q1 ∈ o1 \ {p, p1}, then the line 〈q1, σ(q1)〉 is contained
in the subspace 〈O, ρ(〈p1, q1〉)〉 and hence intersects 〈O〉 in a unique point. Consequently,
if σ(q1) 6= p2, then the line 〈q1, σ(q1)〉 is singular. Since |K| > 4, there are at least three
such singular lines which, by Lemma A.3 of [21], are transversals of the rational normal
cubic scroll S determined by o1 and o2 (see also Appendix A of [21]). Clearly, also the
unique line meeting all transversals of S (the axis of S ), is a singular line. Recalling
that maximal singular subspaces are disjoint, it follows that 〈S 〉 = 〈o1, o2〉 is singular, a
contradiction. �

Lemma 7.5 There is no singular line intersecting O. Consequently, ρ is injective on
X \O.

Proof Assume L is a singular line intersecting O in a point p. Consider points q ∈
L \ {p} and p′ ∈ O \ {p}. Then the line 〈p′, q〉 is not singular by Lemma 6.2. Let
O1 = X([q, p′]) and consider a point r ∈ O1 \{q, p′}. Likewise, p and r determine an ovoid
O2. Then we obtain that ρ(q) ∈ T2 (recall that T2 = Tp2(X)) and ρ(r) ∈ A2. But ρ(q)
and ρ(r) also belong to A1, contradicting Lemma 7.4.

Now suppose that x1, x2 are two points of X \O with ρ(x1) = ρ(x2). Then (AVV2) implies
that the line 〈x1, x2〉 is singular and meets O, contradicting the above. �

Lemma 7.6 Two ovoids Oi, i = 1, 2, which intersect O in distinct points p1, p2, respec-
tively, intersect each other. Also, T1 ∩ P2 = ∅ = P1 ∩ T2.
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Proof Suppose O1 and O2 intersect O in points p1 and p2, respectively. Recalling that
dim Π ≤ 2d, P1 and P2 share a point x. Suppose first that x ∈ A1 ∩ A2. By Lemma 7.5,
ρ is injective on X \ O and hence O1 ∩ O2 coincides with ρ−1(x). So we may assume,
without loss of generality, that x ∈ T1 ∩P2. Consider an ovoid O′1 through p1 and a point
r in O2 \ {p2} such that ρ(r) 6= x. Conform our notation, we then have x ∈ T1 = T ′1, and
therefore 〈x, ρ(r)〉 ⊆ P ′1 ∩ P2, a contradiction to Lemma 7.4. �

Lemma 7.7 If O1 and O2 intersect O in distinct points p1 and p2, respectively, then
T1 ∩ T2 = ∅ and 〈T1, T2〉 ∩ ρ(X \O) = ∅. Consequently, there are no singular lines.

Proof The first statement follows immediately from Lemma 7.6. Suppose there is a
point p ∈ 〈T1, T2〉∩ρ(X \O). Consider the ovoid O′2 containing p2 and p′ = ρ−1(p) (recall
that ρ is injective on X \ O). Then A′2 belongs to 〈T1, T2〉 and hence, by a dimension
argument, meets T1 in a point t1, which then belongs to T1∩P ′2, contradicting the second
assertion of Lemma 7.6.

Now suppose L is a singular line. Then by the above, dim〈T1, T2〉 = 2d−1 and dim Π = 2d,
so ρ(L) ∩ 〈T1, T2〉 6= ∅, contradicting the above. �

Lemma 7.8 Each pair of ovoids intersect in a point.

Proof By Lemma 7.6, it suffices to show that each ovoid intersects O in a point. Let
O′ be an ovoid different from O. Take distinct points p, p′ ∈ O and a point q ∈ O′. By
Lemma 7.7, we may put O1 := X([p, q]) and O2 := X([p′, q]). By Lemmas 7.6 and 7.7,
the map ψ : O2 \ {q} → Ξp \ {O1} : r 7→ [p, r], where Ξp denotes the subset of Υ whose
members contain p, is a bijection.

Consider the projection ρ1 of X \ O1 from O1 onto a complementary subspace Π1 of
O1. Let T = ρ1(Tp(O)), A = ρ1(O \ {p}), T2 = ρ1(Tq(O2)) and A2 = ρ1(O2 \ {q}). If
t ∈ T ∩ T2, then 〈ρ1(p′), t〉 \ {t} ⊆ A ∩ A2, leading to singular lines (cf. last paragraph
of the proof of 7.5), contradicting Lemma 7.7. So T ∩ T2 = ∅ and hence, by a dimension
argument, 〈T, T2〉 is a hyperplane of Π1. The bijectivity of ψ, together with the fact that
T = ρ1(Tp) since dimTp = 2d, implies ρ1(X \O1) = Π1 \ 〈T, T2〉. Let T ′ = ρ1(Tq(O

′)) and
A′ = ρ1(O′ \ {q}). Then A′ ⊆ ρ1(X \ O1), hence T ′ ⊆ 〈T, T2〉. Similarly as earlier in this
paragraph, we deduce that T ∩ T ′ = ∅ (now using an ovoid O′2 containing p and some
point q′ ∈ O′ \ {q}). Then, as A and A′ are both contained in ρ1(X \O1) = Π1 \ 〈T, T ′〉,
we have A ∩ A′ 6= ∅. As before, the absence of singular lines implies that O ∩O′ 6= ∅. �

7.1.3 Conclusion

Proof of Theorem 7.1 If |K| <∞ this was proved in Lemma 7.3, so suppose |K| =∞.
By Lemmas 7.7 and 7.8, (X,Ξ) is a projective plane satisfying (AVV1) and (AVV2), so we
can again apply the Main Result 4.3 of [21], which asserts that (X,Ξ) is indeed isomorphic
to V2(K,A) where A is a quadratic alternative algebra over K with dimKA = d. �
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7.2 Proof of ovoidal case

We again assume the Standing Hypotheses 6.4. Recall that we assume that (Y,Υ) is an
ALV of type d ≥ 1 and index 0. The previous section has the following consequence.

Corollary 7.9 The residue of (Y,Υ) at every point a′ admitting a point at distance 3
from a′ in the collinearity graph of (Y,Υ) is a Veronese representation of a projective
plane over a quadratic alternative division algebra.

Proof The said residue is a (1′, 3′)-AVV by our Standing Hypotheses 6.4. The conclusion
now follows from Theorem 7.1. �

Lemma 7.10 The residue at every point is a Veronese representation of a projective plane
over a quadratic alternative division algebra A. In particular, dimTy = 3 + 3 dimKA for
each y ∈ Y .

Proof By Lemma 6.4 and Corollary 7.9 it suffices to prove that an arbitrary point v
collinear with a admits a point at distance 3 from v in the collinearity graph of (Y,Υ).
Suppose for a contradiction that v does not admit a point at distance 3. Then δ(v, e) = 2
and by potentially rechoosing c in [b, e] we may assume that δ(v, c) = 2. Consider the
tangent spaces Tv and Tc. Since dim〈Tv ∩ Ta〉 = 2d + 1 (by Corollary 7.9), dim〈Tv ∩
Te〉 ≥ d + 1, and Ta ∩ Te = ∅, we have 3d + 3 ≥ dimTv ≥ dim〈Tv ∩ Ta, Tv ∩ Te〉 =
dim〈Tv ∩ Ta〉+ dim〈Tv ∩ Te〉+ 1 ≥ 3d+ 3. This yields Tv = 〈Tv ∩ Ta, Tv ∩ Te〉. Similarly,
Tc = 〈Tc ∩ Ta, Tc ∩ Te〉. Hence by Corollary 7.9, we have (Tv ∩ Ta) ∩ (Tc ∩ Ta) = ∅ and
(Tc ∩ Te) ∩ (Tv ∩ Te) = ∅. Since δ(v, c) = 2 there exists q ∈ Tv ∩ Tc and by the above
q /∈ Ta ∪ Te.
Hence, q is the intersection of two uniquely determined lines 〈ce, ca〉 and 〈ve, va〉, with
ce ∈ Tc ∩ Te, ca ∈ Tc ∩ Ta, va ∈ Tv ∩ Ta and ve ∈ Tv ∩ Te. However, then the lines 〈va, ca〉
and 〈ve, ce〉 intersect in a point p belonging to Ta ∩ Te, a contradiction. �

Lemma 7.11 The point-line geometry (Y,L ) associated to (Y,Υ) is a 0-lacunary para-
polar space of uniform symplectic rank 2.

Proof Suppose υ1, υ2 ∈ Υ share a point y ∈ Y . Then ResY (y) is a projective plane by
Lemma 7.10 and hence υ1 and υ2 share at least a line. �

Proposition 7.12 Let (Y,Υ) be an abstract Lagrangian variety of type d ≥ 1 and index 0.
Then Y is isomorphic to the Veronese representation V(K,A) in P6d+7(K) of a dual polar
space C3,3(K,A) over a quadratic alternative division algebra A over K with dimKA = d.

Proof Using Lemma 7.11 and the classification of 0-lacunary parapolar spaces in [19],
combined with Lemma 7.10, we obtain that (Y,L ) is a dual polar space of rank 3 isomor-
phic to C3,3(K,A) (in view of each point-residual being isomorphic to a projective plane
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over a quadratic alternative division algebra A and each symp being isomorphic to an
orthogonal quadrangle over K). By Lemma 7.10 and Axiom (ALV1), N ≥ 7 + 6 dimK A.
The assertion for |K| 6= 2 now follows from Proposition 6.7.

Now let K = F2. By Theorem 10.37, it suffices to show that (Y,Υ) is projectively unique.
The point-line geometry (Y,L ) is either the dual polar space C3,3(F2,F2) or C3,3(F2,F4),
and it is embedded in (and spans) PN(K), N ≥ 6d + 7, with d = 1, 2, respectively. Note
that (Y,L ) has diameter 3. Let Y ⊆ Pm(F2) be an arbitrary embedding of (Y,L ) into
the projective space Pm(F2), with m ∈ N. We pick points x and y at distance 3 from one
another. Let Tx(Y ) and Ty(Y ) be the subspaces generated by all lines on x and all lines
on y, respectively. Lemma 5.7(1) of [16] yields Pm(F2) = 〈Tx(Y ), Ty(Y )〉. Applied to the
embedding corresponding to (Y,Υ), we conclude that N = 6d+ 7.

Since (Y,L ) is a geometry with three points per line, and it admits at least one embed-
ding in a projective space over F2 (namely, V (F2,Fm), m = 2, 4), it admits a universal
embedding Em/2, and Y is a projection, or quotient, of Em/2, see for instance [13]. It also
follows from loc. cit. that the dimension of the ambient projective space of Ed is equal to
7d+ 7, d ∈ {1, 2}.

First let d = 1. Consider the universal embedding E1 in P14(F2). With similar notation as
above, the subspaces Tx(E1) and Ty(E1) generate P14(F2). Note that Tx(E1) is generated by
seven lines, so dimTx(E1) = dimTy(E1) ≤ 7. It follows that dimTx(E1) = dimTy(E1) = 7
and Tx(E1)∩Ty(E1) is a point c. Since dimTz(Y ) = 6 for each point z ∈ Y by Lemma 7.10,
it follows that (Y,Υ) is obtained from E1 by projecting from c (and c is contained in Tz(E1),
for every point z ∈ E1). Hence (Y,Υ) is projectively unique.

Now let d = 2. Consider the universal embedding E2 in P21(F2). With the same notation
as before, we claim that dimTx(E2) = 11, for each point x ∈ E2. Indeed, by our claim
above, we have 〈Tx(E2), Ty(E2)〉 = P21(F2). Since the universal embedding admits the
full (point-transitive) automorphism group of the geometry, this implies dimTx(E2) =
dimTy(E2) ≥ 10. By Paragraph 7.3 of [21], the residue at x admits an embedding in a
projective space of dimension at most 10, so it follows that dimTx(E2) ∈ {10, 11}. Since
the stabilizer of a point in the full automorphism group of the abstract geometry (Y,L )
is the full automorphism group of the corresponding point-residual, we have dimTx(E2) =
dimTy(E2) = 11 (indeed, if dimTx(E2) were equal to 10, then the residue at x would be
embedded in P9(F2), and hence arises from its universal embedding in P10 by projecting
from a point; the results of Paragraph 7.3.2 of [21] show that no such embedding admits
the full automorphism group). So Tx(E2) ∩ Ty(E2) is a line L. Similarly as for the case
d = 1, since dimTz(Y ) = 9 for all z ∈ Y by Lemma 7.10, we now conclude that L is
the intersection of all tangent spaces, (Y,Υ) is the projection of E2 from L and (Y,Υ) is
projectively unique. �

8 Hyperbolic case (w = d
2)

If w ≥ 1, then by the Standing Hypotheses 6.4 and Lemma 6.10, the point-residual
(Ya,Υa) = (X,Ξ) is a (1, 3′)-AVV of type d and index w in PM(K) for M ≤ 3d + 2
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(and recall the notation ∂Ξ, the set of differential host spaces of Ξ, and ∂X, the set of
differential points of X, from Axiom (AVV3′)). Our aim is to use Proposition 6.12. Since
we have hyperbolic symps, we can use Corollary 4.4. Hence it suffices to show that there
exists some singular subspace of dimension w contained in exactly two maximal singular
subspaces of prescribed well-defined dimensions. We split up our analysis according to
the value of w.

We first treat the case w = 0 (and hence also d = 0), which is an extreme ovoidal case.

8.1 Segre product of 3 lines (w = d = 0)

Proposition 8.1 If w = d = 0, then (Y,Υ) is isomorphic to S1,1,1(K).

Proof Consider two distinct host spaces υ1, υ2 ∈ Υ sharing a point y ∈ Y . Since
dimTy(Y ) ≤ 3, we obtain that υ1 and υ2 share a line. Then the point-line geometry
(Y,L ) associated to (Y,Υ) is a 0-lacunary parapolar space with hyperbolic symps of
rank 2 of diameter at least 3. Lemma 5.6 implies that (Y,L ) is isomorphic to A1(K) ×
A1(K) × A1(K). Since there exist disjoint host spaces, we have N ≥ 7. Hence the result
follows from Proposition 6.7(S). �

8.2 The plane Grassmannian (w = 1, d = 2)

Here, by Corollary 4.4 and Proposition 6.12, it suffices to show that there is a point x ∈ X
contained in exactly two maximal singular subspaces, which are planes. Equivalently,
Tx(X) is the union of two singular planes. We accomplish this in a series of lemmas, our
first major aim being to exhibit two host spaces intersecting in a point x only.

Lemma 8.2 For each differential point x ∈ ∂X, there exist ξi ∈ ∂Ξ, i = 1, 2 with
ξ1 ∩ ξ2 = {x}. In particular, there are at least four singular lines through x.

Proof As x ∈ ∂X, there is a host space ξ ∈ ∂Ξ with x ∈ X(ξ). We first show that
not all members of ∂Ξ containing x contain the same line L of X(ξ). Suppose for a
contradiction that they do. We may assume that ξ corresponds to υ := [a, c] ∈ Υ and the
point x to the line ab of Y . Also, L corresponds to some plane π containing ab. Consider
the grid G := b⊥∩e⊥. Let c′ be any point of G collinear to c. Then [a, c′] ∈ Υ corresponds
to a host space ξ∗ containing x. By Lemma 6.9, ξ∗ ∈ ∂Ξ. Our assumption implies that
ξ∗ also contains L, i.e., [a, c′] contains π. Hence c′⊥ ∩ π is a line K ′. Set c⊥ ∩ π = K. We
claim that K = K ′. Indeed, suppose not, then there exists a point f ∈ K ′ \K collinear
to c′, and not to c. By (ALV1) and Lemma 6.2, the host space [c, f ] ∈ Υ contains K and
hence a, and thus coincides with [a, c]. As such, c′ ∈ f⊥ ∩ c⊥ ⊆ [f, c] = [a, c], implying
that a⊥ contains a point of cc′ ⊆ e⊥, contradicting Ta(Y )∩Te(Y ) = ∅. The claim follows.
Interchanging the roles of c and c′, there is also a point c′′ ∈ G\c⊥ collinear to K, implying
that K ⊆ [c, c′′] = [e, b], again contradicting Ta(Y ) ∩ Te(Y ) = ∅.

30



Let L1 and L2 be the two lines of X(ξ) containing x. By the previous paragraph there
exist ξi ∈ ∂Ξ, i = 1, 2, not containing L3−i. If ξi ∩ ξ is {x}, for some i ∈ {1, 2}, we are
done, so assume Li ⊆ ξi, i = 1, 2. Let Mi be the unique line of ξi distinct from Li and
containing x. Again, if M1 6= M2, we are done, so suppose M1 = M2. By (AVV3′), there
are at least |ξ| members of ∂Ξ containing x, so there exists ξ′1 ∈ ∂Ξ containing x with
ξ′1 /∈ {ξ, ξ1, ξ2}. Then ξ′1 contains at most one line from {L1, L2,M1}. Hence the other
two lines define ξ′2 ∈ {ξ, ξ1, ξ2} ⊆ ∂Ξ, which then intersects ξ′1 in exactly {x}. �

As a second major step, we show the existence of a singular plane containing a differential
point. This can be achieved by slightly generalising a series of proofs used in [26]. As
the statements of almost all lemmas need to be adapted and every proof requires minor
tweaks we include them here, as we feel just stating that one can adapt them is prone to
errors and puts a burden on the reader.

Standing hypothesis until Lemma 8.7: In the sequel, we suppose for a contradiction
that no singular plane contains a differential point. We fix a point x ∈ ∂X and host
spaces ξ, ξ′ ∈ ∂Ξ with ξ ∩ ξ′ = {x} (which exist by Lemma 8.2).

We want to study the projection of X \ ξ from ξ onto some (N − 4)-dimensional subspace
F . In order to do so, we first prove some additional lemmas.

Lemma 8.3 For any x′ ∈ ∂X and any four (distinct) singular lines L1, L2, L3, L4 con-
taining x′, we have dim〈L1, L2, L3, L4〉 = 4 and [L1, L2], [L3, L4] are host spaces meeting
each other in x′ only.

Proof By Lemma 6.1 and since there are no singular planes containing x′, there are
unique host spaces containing L1, L2, and L3, L4, respectively. By (AVV2), [L1, L2] ∩
[L3, L4] = {x′}. �

Lemma 8.4 Let L1 and L2 be two distinct singular lines of X meeting ξ in respective
points x1, x2. Then dim〈ξ, L1, L2〉 = 5.

Proof If x1 = x2, this follows from Lemma 8.3, so suppose x1 6= x2. Assume for a
contradiction that dim〈ξ, L1, L2〉 = 4. If L1 and L2 have a point x12 in common, then
by Lemma 6.2 and x12 /∈ ξ, we obtain that x1 ⊥ x2. Therefore 〈L1, L2〉 is a singular
plane containing the points x1, x2 ∈ ∂X, contradicting our hypothesis. Thus 〈L1, L2〉 is
a 3-space, intersecting ξ in a (non-singular) plane π. Take a point y ∈ π \ (X ∪ 〈x1, x2〉).
Since y ∈ 〈L1, L2〉, it lies on a line M meeting both L1 and L2 in respective points z1 and
z2, with zi 6= xi, i = 1, 2. So, by (AVV1) and (AVV2), {y} = M ∩ ξ ⊆ [z1, z2] ∩ ξ ⊆ X, a
contradiction. �

Lemma 8.5 Suppose ξ1, ξ2 are distinct members of Ξ \ {ξ} meeting ξ in a singular line
L. Then dim〈ξ, ξ1, ξ2〉 = 7.
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Proof Set i = 1, 2 and put Wi := 〈ξ, ξi〉, and note that dimWi = 5 since ξ ∩ ξi = L
by (AVV2). Suppose for a contradiction that dim(W1 ∩W2) ≥ 4. Select a 4-dimensional
subspace U contained in W1 ∩ W2 and containing ξ (possibly, U = W1 ∩ W2). Let
Mi ⊆ X(ξi) be a singular line disjoint from ξ. Then Mi meets U in a unique point
mi. Denote the unique line of X(ξi) containing mi and distinct from Mi by Li. As Li
meets L in a unique point xi, Lemma 8.4 implies that 〈L1, L2, ξ〉 ⊆ U has dimension 5, a
contradiction. �

We can now prove the following two important lemmas.

Lemma 8.6 Let L = x1x2 be a line of X(ξ). Then dim〈ξ, Tx1(X), Tx2(X)〉 = 7.

Proof By Lemma 8.2, there are two singular lines L1 and L′1 containing x1 not in
X(ξ). By Lemma 8.3 and x1 ∈ ∂X, we have Tx1(X) = 〈Tx1(ξ), L1, L

′
1〉. By Lemma 6.1

and our assumption that no singular plane meets L, ξ1 := [L,L1] and ξ′1 := [L,L′1] belong
to Ξ. Let L2 and L′2 be the respective singular lines of ξ1, ξ

′
1 containing x2 distinct from L.

Since 〈L1, L2〉 = ξ1 and 〈L′1, L′2〉 = ξ′1, we obtain 〈ξ, Tx1(X), Tx2(X)〉 = 〈ξ, ξ1, ξ
′
1〉, which

by Lemma 8.5 has dimension 7. �

Lemma 8.7 Let x′ ∈ X(ξ), then 〈ξ, Tx′(X)〉 ∩X belongs to X(ξ) ∪ x′⊥.

Proof Let y be a point of 〈ξ, Tx′(X)〉∩X. Suppose for a of contradiction that y /∈ X(ξ)
and that x′ is not collinear to y. Set ξy := [x′, y]. Then ξy ⊆ 〈ξ, Tx′(X)〉, and hence ξ and
ξy share a singular line L containing x′. Let M be the unique line of X(ξy) containing y
and meeting L in a point, say z (note that z 6= x′). Then M ⊆ 〈ξ, Tx′(X)〉, which implies
dim〈ξ, Tx′(X), Tz(X)〉 ≤ 6, contradicting Lemma 8.6. �

Finally, we are ready to show that there are singular planes containing differential points.

Proposition 8.8 There is a singular plane containing a point of ∂X.

Proof Suppose the contrary. Recall that ξ′ ∈ ∂Ξ meets ξ in precisely the point x.
It is convenient to rename ξ1 := ξ′ and x1 := x. Let x2 be a point on X(ξ) collinear
to x1 and put L = x1x2. Let L1, L

′
1 be the unique singular lines of X(ξ1) through x1.

Let L2 be the singular line of [L,L1] not in ξ and containing x2, and let L′2 be any
singular line through x2, distinct from L2 and not in ξ (which exists by Lemma 8.2 and
x2 ∈ ∂X). Set ξ2 := [L2, L

′
2]. Let F be a subspace of 〈X〉 complementary to ξ and note

that dimF = dim〈X〉 − dim ξ − 1 ≤ (3d + 2) − (d + 1) − 1 = 2d = 4. We project X \ ξ
from ξ onto F . For i = 1, 2, the projection of X(ξi) \ x⊥i is an affine plane π∗i in F , with
projective completion πi, where the line Ti := πi \ π∗i is the projection of Txi(X). By
Lemma 8.6, dim〈T1, T2〉 = 3 and hence T1 ∩ T2 is empty. We claim that also π1 ∩ T2 = ∅
(likewise, π2 ∩ T1 = ∅). Indeed, if not, then there is a point z ∈ X(ξ1) \ x⊥1 which is
contained in 〈ξ, Tx2(X)〉. By Lemma 8.7 and z /∈ ξ, we have z ∈ x⊥2 , but then x2 ∈ X(ξ1)
by Lemma 6.2, a contradiction. This shows the claim. Consequently, since dimF ≤ 4,
the affine planes π∗1 and π∗2 share a unique point z (and note that dimF = 4).
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The pre-image of z yields points z1 ∈ X(ξ1) \ x⊥1 and z2 ∈ X(ξ2) \ x⊥2 lying in a common
4-space with ξ. We now prove that z1 = z2. To that end, suppose z1 6= z2. Let ξ∗ be a host
space containing z1, z2. Considering ξ∗ ∩ ξ, (AVV2) implies that 〈z1, z2〉 is a singular line
meeting X(ξ) in some point u. First note that u /∈ L because otherwise L ⊆ ξ1 = [x1, z1]
by Lemma 6.2. Likewise, neither does u belong to the other singular line of ξ through
x2, because then u ∈ ξ2 = [z2, x2]. So u is not collinear to x2. Since z /∈ T2, there is a
unique host space ξ′2 containing x2 and z1. We claim that ξ′2 ∩ ξ = {x2}. Suppose that
ξ′2 contains a singular line K of ξ. Then z1 and u are collinear with respective points
v1 and v2 on K. If v1 = v2, we obtain a singular plane 〈z1, u, v1〉 containing a point of
∂X, so v1 6= v2. In particular, v1 and u are non-collinear points of ξ collinear to z1. By
Lemma 6.2, z1 ∈ X(ξ), a contradiction. The claim follows. Consequently, the projection
of ξ′2 \ {x2} coincides with π2. Since 〈π1, π2〉 = F , the singular lines in ξ1 and ξ′2 through
z1 span a 4-dimensional space, which coincides with Tz1(X) since dimTz1(X) ≤ 4 as
z1 ∈ ξ1 ∈ ∂Ξ, and which is projected onto F . Consequently, Tz1(X) is disjoint from ξ,
contradicting u ∈ Tz1(X) ∩ ξ.
Hence we have shown that z1 = z2. Now let Mi be the singular line in ξi containing z1 and
meeting Li, say in a point mi, i = 1, 2. Noting that π∗1 ∩π∗2 = {z}, we have ξ1∩ ξ2 = {z1},
so M1 6= M2. Let `1 be the unique point of L1 collinear to m2 (recall L2 ⊆ [L,L1]). If
m1 = `1, then 〈z1,m1,m2〉 is a singular plane containing z1 ∈ ∂X (recall that ξ1 ∈ ∂Ξ).
So m1 6= `1, and hence ξ1 = [z1, `1]. By Lemma 6.2, the latter contains M2, contradicting
ξ1 ∩ ξ2 = {z1}. This final contradiction implies that there is a singular plane containing
a point of ∂X. �

Lemma 8.9 There is a point x ∈ X such that Tx(X) = π ∪ π′, where π, π′ are singular
planes meeting each other in the point x.

Proof By Lemma 8.8, there is a singular plane π containing a point x ∈ ∂X. Lemma 8.2
yields two host spaces ξ, ξ′ ∈ ∂Ξ with ξ ∩ ξ′ = {x}. The symps X(ξ) and X(ξ′) have
respective lines Lx and L′x sharing only x with π.

Suppose first that there is a third singular line L′′x meeting π in x only.
If Lx, L

′
x and L′′x are contained in a plane, then this plane is singular by Lemma 6.1. If

they are not contained in a plane, then the 3-space they generate contains a line L of
π as dimTx ≤ 4. If no pair of {Lx, L′x, L′′x} is contained in a singular plane, then the
planes 〈Lx, L′x〉 and 〈L′′x, L〉 are distinct and hence, by (AVV2), the line L′ they share is
singular and hence belongs to {Lx, L′x}, and therefore 〈L′′x, L′〉 is singular after all. So we
have a second singular plane π′ containing x. If π ∩ π′ is not just x, then they determine
a singular 3-space Π by Lemma 6.3. Without loss of generality, the lines Lx and L′x
do not belong to Π (since X(ξ) and X(ξ′) cannot have two singular lines in Π). Again
using dimTx(X) ≤ 4, the plane 〈Lx, L′x〉 meets Π in a singular line. Repeated use of
Lemma 6.3 implies that Tx(X) is a singular 4-space, a contradiction since X(ξ) contains
a pair of non-collinear lines through x. So π ∩ π′ = {x} and a similar argument shows
that Tx(X) = π ∪ π′.
Next, suppose that there are no other singular lines meeting π in x than Lx and L′x.
In this case, the symp X(ξ) has a line L in common with π. Consider a point y ∈ L
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and note that y ∈ ∂X as ξ ∈ ∂Ξ. The previous paragraph implies that we may assume
that there are also exactly two singular lines Ly and L′y meeting π exactly in y. Consider
ξ∗ := [Lx, L

′
x] and let z be an arbitrary point in X(ξ∗) \ x⊥. Note that z⊥ ∩ π = ∅ for

no line of X(ξ∗) lies in π. Hence [z, y] ∈ Ξ and moreover, the symp X([z, y]) does not
contain a line of π, so it contains Ly and L′y. Hence z ∈ [Ly, L

′
y]. As z was arbitrary we

obtain [Ly, L
′
y] = ξ∗, a contradiction. �

Proposition 8.10 If (d, w) = (2, 1), then (Y,Υ) is isomorphic to the Grassmannian
embedding of A5,3(K) in P19(K).

Proof Combining Lemma 8.9 and (1) of Corollary 4.4, it follows that (Y,Υ) is (as an
abstract variety) isomorphic to A5,3(K). Proposition 6.12 concludes the proof. �

8.3 The spinor embedding of D6,6(K) (w = 2, d = 4)

Proposition 8.11 If (d, w) = (4, 2), then (Y,Υ) is projectively equivalent to the spinor
embedding HS 6(K) of D6,6(K).

Proof Referring to the Standing Hypotheses 6.4, (Ya,Υa) = (X,Ξ) is a (1, 3′)-AVV
in (possibly a subspace of) P14(K). For every differential point x ∈ ∂X, dimTx(X) ≤ 7.
Hence, for such x, the point-residual (Xx,Ξx) of (X,Ξ) at x is a (1)-AVV of type 2 and
index 1 in (a subspace of) P7(K). It follows from Lemma 5.2 that (Xx,Ξx) is either
S1,2(K) or S1,3(K).

Suppose first that (Xx,Ξx) is isomorphic to S1,2(K). Then we find a singular plane in
Y through a contained in exactly two maximal singular subspaces of Y , and they have
dimensions 3 and 4. Now Corollary 4.4(3) implies that, as an abstract parapolar space,
(Y,Υ) is isomorphic to D5,5(K). However, the latter has diameter 2, and is strong, hence
u⊥ ∩ v⊥ 6= ∅ for all u 6= v ∈ Y , contradictory to Axiom (ALV1).

Consequently, (Xx,Ξx) is isomorphic to S1,3(K). Then, similarly as in the previous
paragraph, but now using Corollary 4.4(2), we conclude that, as an abstract parapolar
space, (Y,Υ) is isomorphic to D6,6(K). Proposition 6.12 concludes the proof. �

8.4 A reduction lemma

In this paragraph, we prove a general reduction lemma that we will use often in the sequel.
Its purpose is to find a point in the residue of a (1)-AVV with a tangent space of small
dimension.

We temporarily abandon the Standing Hypotheses 6.4. However, in this general setting,
we still use the terminology of differential points of a (1)-AVV of type d, meaning points
x for which the dimension of the tangent space at x is at most 2d.

We begin by quoting a lemma that provides conditions guaranteeing the existence of a
pair of non-collinear points in the intersection of subspaces with a quadric.
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Lemma 8.12 (Lemma 3.13 of [18]) Let Q be a non-degenerate quadric in Pd+1(K) of
projective index w. Consider a subspace D of Pd+1(K), with dimD = d + 1 − w. Then
the following hold.

(i) The subspace D contains at least two non-collinear points of Q.
(ii) The intersection D ∩ Q spans D. Equivalently, for each hyperplane H of D, the

complement D \H contains a point of Q.

The next lemma excludes the possibility of having points not collinear with a given point
inside its tangent space. The original version, Lemma 3.14 of [18] is in the context of
(1, 3)-AVVs of type d ≥ 1; however, its proof only uses that dimTx(X) ≤ 2d, i.e., when
rephrased as is done below, exactly the same proof holds.

Lemma 8.13 (Lemma 3.14 of [18]) Suppose (X,Ξ) is a (1)-AVV of type d ≥ 1. If
(distinct) ξ1, ξ2 ∈ Ξ share a point x ∈ X, and dimTx(X) ≤ 2d, then 〈Tx(ξ1), Tx(ξ2)〉∩X ⊆
x⊥.

Lemma 8.14 Let (X,Ξ) be a (1)-abstract Veronese variety of type d ≥ 3 and index w ≥ 1
in PN(K), and let x, y ∈ X be two collinear differential points. Suppose that there exist
two symps intersecting in just {x} and there exists a symp containing y but not x. Let y∗
be the point of (Xx,Ξx) corresponding to the line xy. Then dimTy∗(Xx) ≤ 2d− 1− w.

Proof The assumption that there exist two host spaces ξ1, ξ2 intersecting in just {x}
implies, since x is differential, that Tx(X) = 〈Tx(ξ1), Tx(ξ2)〉. Now, by Lemma 8.13, all
points of X contained in 〈Tx(ξ1), Tx(ξ2)〉 are necessarily collinear to x, which here means
that every point of Tx(X) ∩ X is collinear to x. Hence Tx(X) ∩ X(ζ) coincides with
x⊥ ∩ ζ and so by Lemma 6.2, it is a singular subspace of ζ. We hence deduce that
Tx(X) ∩ ζ contains no pair of non-collinear points of X(ζ); note that this implies that
it is contained in Ty(ζ). Moreover, dim(Tx(X) ∩ ζ) ≤ d − w since Lemma 8.12 asserts
that any subspace of dimension at least d − w + 1 of ζ contains a pair of non-collinear
points. So we can choose a subspace S of dimension w−1 in Ty(ζ) ⊆ Ty(X) disjoint from
Tx(X). Using that dimTy(X) ≤ 2d, this implies that dim(Ty(X) ∩ Tx(X)) ≤ 2d − w.
Hence Ty∗(Xx) ≤ 2d− 1− w. �

8.5 The exceptional variety E7 (w = 4, d = 8)

We are now ready to characterise the exceptional variety E7(K) as the only abstract
Lagrangian variety of index w ≥ 4, excluding all other possible abstract Lagrangian
varieties with w ≥ 4.

Proposition 8.15 If w ≥ 4, then w = 4 and (Y,Υ) is isomorphic to the exceptional
variety E7(K).
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Proof By the Standing Hypotheses 6.4, the point-residual (X,Ξ) of (Y,Υ) at the point
a ∈ Y is a (1, 3′)-AVV of type d and index w. Let x, y ∈ ∂X be collinear and distinct. If
every pair of symps containing x intersect in at least a line, then the point-line geometry
associated to (Xx,Ξx) is a (−1)-lacunary parapolar space with symps of projective index
w − 1 ≥ 3. By Lemma 5.5 (Xx,Ξx) is isomorphic to E6,1(K) (in which case w = 5).
It follows that the point-line geometry related to (Y,Υ) is a strong parapolar space of
symplectic rank 7, satisfying the hypothesis of Corollary 4.4(3); however, there are no
parapolar spaces in the list of conclusions with symplectic rank 7, a contradiction.

We conclude that there exist two host spaces ξ1, ξ2 ∈ Ξ with ξ1 ∩ ξ2 = {x}. Also,
by Lemma 6.6 applied to (Xy,Ξy), we find a host space ζ ∈ Ξ containing y but not
containing x. We have now everything in place to apply Lemma 8.14 and we obtain a
point y∗ ∈ Xx with dimTy∗(Xx) ≤ 2d− 1− w ≤ 2d− 5.

A dimension argument now yields that every pair of members of Ξx containing y∗ intersects
in at least a line, implying that the corresponding point-residual ((Xx)y∗ , (Ξx)y∗) is a (−1)-
lacunary parapolar space with symps of projective index w − 2 ≥ 2. Lemma 5.5 implies
that the corresponding point-line geometry is either A4,2(K), A5,2(K) (and in both these
cases w = 4), or E6,1(K) (in which case w = 6). Also as above, these parapolar spaces
satisfy the hypotheses of Corollary 4.4 and hence so does the parapolar space related to
(Y,Υ). The former leads with Corollary 4.4(3) to (Y,L ) ∼= E7,7(K), and hence to E7(K) by
Proposition 6.12; the latter two lead to contradictions, using (2) and (3) of Corollary 4.4,
respectively. �

9 Remaining parameter values that do not lead to

examples

Section 7 and Subsection 8.1 cover the case w = 0, so Proposition 8.15 implies we only
have to complete the cases w ∈ {1, 2, 3}.

9.1 The case w = 1, d > 2

We start by excluding d = 3. The proof of the following proposition is inspired by the
approach taken in [25] to deal with so-called “Lagrangian Veronesean sets”, more precisely
those of diameter 2 (which do not exist either).

Proposition 9.1 There is no ALV (Y,Υ) of type 3 and index 1.

Proof As d = 3, each symp of (X,Ξ) = (Ya,Υa) is isomorphic to the parabolic quadric
Q(4,K) in P4(K); this quadric has lines as its maximal singular subspaces. Our proof
distinguishes between |K| = 2 and |K| > 2. This is already visible in our first claim:

Claim: Let p ∈ ∂X be a differential point of X. If |K| > 2, there are no singular planes
in X containing p, and each pair of host spaces through p shares a line; if |K| = 2, then
there are at most 9 host spaces through p.
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Consider the point-residual (Xp,Ξp). Then (Xp,Ξp) is a (1′)-AVV in P5(K). Proposi-
tion 5.3 implies that, if |K| > 2, then (Xp,Ξp) is isomorphic to V2(K), and hence has no
singular lines. If |K| = 2, then Proposition 5.3 implies that |Ξp| ≤ 9. Both assertions now
follow. We now distinguish between the two cases.

Suppose first that |K| > 2.
Let ξ ∈ ∂Ξ and let p, q be non-collinear points in X(ξ). Let r be a point collinear to
q, not contained in ξ, which exists as there are multiple host spaces through q. Then
r /∈ p⊥, so we can consider [p, r], which intersects ξ in a singular line L by the above
claim. Let r′ be the unique point on L collinear to r. Then q is collinear to r′, for
otherwise r ∈ r′⊥ ∩ q⊥ ⊆ ξ. As such, the plane 〈q, r, r′〉 is singular. However, the point q,
belonging to ξ, is differential and hence there are no singular planes containing q by our
claim above, a contradiction.

Secondly, suppose |K| = 2.
By (AVV3’), the number of members of ∂Ξ containing a differential point p ∈ ∂X is at
least the number of points in a symp, which is 15. This contradicts our claim above. �

In order to rule out ALVs of type d > 3 and index 1, we first restrict the dimension.

Lemma 9.2 Let (X,Ξ) be a (1′)-AVV of type d ≥ 2 and index 0 in PN(K). Then
N ≥ 2d+ 4.

Proof This is the content of Subsection 6.3 in [18]. There, the (1′)-AVV (X,Ξ) arises
as the point-residual of a more generalized object at a point contained in at least two
quadrics of projective index 1. Then the authors showed (though not explicitly stated as
such) that the ambient projective space cannot have dimension 2d+ 3 or smaller. �

Proposition 9.3 There are no abstract Lagrangian varieties of type d > 3 and index 1.

Proof Assume (Y,Υ) is an ALV of type d > 3 and index 1. We use the Standing
Hypotheses 6.4. Let p ∈ ∂X. Then (Xp,Ξp) is a (1′)-AVV of type d− 2, d ≥ 4 and index
0, in (a subspace of) P2d−1(K) which is impossible by Lemma 9.2. �

9.2 The case w = 2, d > 4

Here the case d = 5 needs special attention, so we first treat the case d > 5.

We will use two results from [18]. The first one can be stated in our terminology as
follows.

Lemma 9.4 (Lemma 4.4 of [18]) Let (X,Ξ) be a (1)-AVV of type d with d ≥ 3. Sup-
pose 〈X〉 ⊆ P2d+3(K). If ξ, ξ1 are two host spaces intersecting each other in precisely a
point p1, then there is a point z1 in X(ξ1) \ p⊥1 collinear to a point z of X(ξ) \ p⊥1 .
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The second one is about a slightly more generalized notion compared to (1)-AVV. Basi-
cally, it concerns a structure satisfying all axioms of a (1)-AVV of type d, except that the
quadrics may have different projective index. Then Lemma 4.5 of [18] guarantees, under
certain conditions, the existence of two quadrics with different projective index. In our
setting, these conditions lead to a contradiction. That is how we will state it:

Lemma 9.5 (Lemma 4.5 of [18]) Let (X,Ξ) be a (1)-AVV of type d ≥ 4 and index 1 in
P2d+3(K). Then the following assumptions lead to a contradiction: There exist ξ, ξ1, ξ2 ∈ Ξ
such that ξ∩ξ1 is a point p1, ξ∩ξ2 is a line L2 and ξ1∩ξ2 contains a point p with p /∈ p⊥1 ∩L⊥2 .

We combine the previous two lemmas into the following proposition.

Proposition 9.6 Let (X,Ξ) be a (1)-AVV of type d ≥ 4 and index 1 in P2d+3(K). Then
the associated point-line geometry is 0-lacunary.

Proof Assume for a contradiction that two host spaces ξ, ξ1 intersect in just the point
p1. Then by Lemma 9.4, there is a point z1 ∈ X(ξ1)\p⊥1 collinear to a point z ∈ X(ξ)\p⊥1 .
Since z⊥1 ∩ξ is a singular subspace, we find a line L2 containing z and not contained in z⊥1 .
It follows that there is a unique host space ξ2 containing z1 and L2. Clearly ξ ∩ ξ2 = L2

and z1 ∈ ξ1 ∩ ξ2. Moreover, z1 /∈ p⊥1 ∪L⊥2 . Hence Lemma 9.5 leads to a contradiction and
the proposition is proved. �

Proposition 9.7 There are no abstract Lagrangian varieties of type d > 5 and index 2.

Proof The point-residual (X,Ξ) of (Y,Υ) at the point a ∈ Y (see the Standing Hy-
potheses 6.4) is a (1, 3′)-AVV of type d and index 2 in (a subspace of) P3d+2(K). Select
p ∈ ∂X. Then the point-residual (Xp,Ξp) of (X,Ξ) at p is a (1)-AVV of type d′ := d−2 > 3
and index 1 in (a subspace of) P2d′+3(K). Proposition 9.6 implies that the point-line ge-
ometry related to (Xp,Ξp) is a 0-lacunary parapolar space whose symps have projective
index 1. Lemma 5.6 now yields d′ = 2, hence d = 4, a contradiction. The assertion
follows. �

Before handling the case d = 5, we report on the content of Section 6.1 of [27]. The
main hypothesis of that section is a given AVV of type 5 and index 2. The existence of
such object is ruled out and this is done by considering an arbitrary point-residual, call it
(X,Ξ) here, which is a (1)-AVV of type 3 and index 1 in P9(K). It is also assumed (since
it is proved in an earlier section) that the tangent space at each point of the point-residual
has dimension at most 7, and then it is shown that the dimension of such space is in fact
at most 6. However, the arguments are almost completely local, that is, one argues in a
fixed tangent space of dimension 7, and shows this leads to a contradiction. Moreover,
doing so, the (global) fact that X ⊆ P9(K) is also ignored. Indeed, it can be checked
easily that, in case |K| > 2, Lemmas 6.1 up to 6.7 of [27] prove the following.

Lemma 9.8 Let (X,Ξ) be a (1)-AVV of type 3 and index 1 and suppose |K| > 2. Then
the dimension of the tangent space at an arbitrary point x ∈ X is not equal to 7.
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If |K| = 2, then we note that only the last lemma, namely Lemma 6.7 of [27], uses the
fact that the dimension of the tangent space at each point of (X,Ξ) is at most 7. So
Lemmas 6.3 and 6.6 of [27] remain valid locally. They can be summarised as follows.

Lemma 9.9 (Lemmas 6.3 and 6.6 of [27]) Let (X,Ξ) be a (1)-AVV of type 3 and
index 1 and suppose |K| = 2. Let p ∈ X be arbitrary but such that dimTp(X) ≤ 7.

(i) Let C be a conic of (Xp,Ξp) and let x ∈ Xp \ C. Then there exists at most one
member of Ξp containing x and disjoint from C.

(ii) Xp does not contain singular planes.

We are now going to use these two results in order to prove a lemma that will rule out
ALVs of type 5 and index 2, and later ALVs of type 7 and index 3.

Lemma 9.10 Let (X,Ξ) be a (1)-AVV of type 5 and index 2 in (a subspace of) P17(K).
Then each symp X(ξ), ξ ∈ Ξ, contains a point x ∈ X(ξ) such that dimTx(X) > 10.

Proof Suppose for a contradiction that ξ ∈ Ξ is such that dimTx(X) ≤ 10, for all
x ∈ X(ξ). Let x and y be two collinear points of X(ξ). If all symps on x intersect in at
least a line, then the point-line geometry associated to the residue (Xx,Ξx) is a strong
(−1)-lacunary parapolar space, contradicting Lemma 5.5, since d = 5. Also, Lemma 6.6
yields a symp in (X,Ξ) on y not containing x. So we have everything in place to apply
Lemma 8.14, from which it follows that in (Xx,Ξx), all points y∗ of the symp Xx(ξx)
corresponding to ξ satisfy dimTy∗(Xx) ≤ 2d− w − 1 = 7.

Now suppose first |K| > 2. Then Lemma 9.8 yields dimTy∗(Xx) ≤ 6, for every point
y∗ ∈ ξx. So each point-residual of (Xx,Ξx) at a point of ξx is a (1′) AVV of type 1 and
index 0 in P5(K). Then Lemma 5.3 implies that it is isomorphic to the quadric Veronese
variety V2(K). Now let L1 be an arbitrary singular line of ξx and let Xx(ζ1) be a symp
containing L1, but distinct from ξx. Pick a point z ∈ Xx(ζ1) \L1 and let z1 be the unique
point on L1 collinear to z. Pick a point z2 ∈ Xx(ξx) not collinear to z1 and let Xx(ζ2)
be the symp containing z and z2 (note that z2 is not collinear to z as this would force
z ∈ ξx). Since the point-residual in z2 is isomorphic to V2(K), ζ2 and ξx share a unique
line L2. Then z is collinear to a unique point z′2 6= z1 on L2, and so z, z1, z

′
2 must be

contained in a singular plane, contradicting the fact that there are no singular lines in the
point-residual of (Xx,Ξx) at z2.

Hence we have reduced the situation to the small case |K| = 2. Let y∗ ∈ ξx be arbitrary
and set Ωy∗ = ((Xx)y∗ , (ξx)y∗). Fix a point w in Ωy∗ and a conic C not containing w.
By Lemma 9.9(ii) all singular lines of Ωy∗are pairwise disjoint. Hence we can arrange
it so that, if there is a singular line on w, then it also intersects C. By Lemma 9.9(i),
this implies that all points of Ωy∗ can be found on conics and singular lines containing w
and intersecting C in exactly one point, except possibly for one conic containing w and
disjoint from C. This means that the number of points of Ωy∗ is either 7 or 9.

Varying the point w and the conic C, we obtain that the conics and singular lines render
this point set a projective plane of order 2 or an affine plane of order 3, respectively. So,
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back in (Xx,Ξx), we see that each point of Xx is either collinear to y∗ (and there are
exactly 14 or 18 such points, respectively), or lies on a unique symp with y∗, and there
are as many such symps as there are conics in Ωy∗ . Hence, if there are k points and `
conics in Ωy∗ , then the number of points of Xx is equal to 1 + 2k + 8`. Since k ∈ {7, 9},
we see that both k and ` are independent of y∗ ∈ ξx. Now we bound the number of points
B of Xx \ ξx collinear to at least one point of ξx. Let ε be the number of singular lines
in Ωy∗ (and note that ` + ε = 1

6
k(k − 1) ∈ {7, 12}). Then either 0 or exactly 4ε points

in y⊥∗ \ ξx are collinear to three points of ξ∗, and all other points of y⊥∗ \ ξ∗ are collinear
to only y∗of ξ∗. Hence there at at least b = 15(2k − 6 − 4ε) + 5(4ε) points in B. Now it
is easy to see that there are only five possible values for (k, `, ε), and we tabulate them,
together with the bound b ≤ |B| and |Xx|.

(k, `, ε) |Xx| b b+ 15
(7, 7, 0) 71 90 135
(7, 6, 1) 63 50 95
(9, 12, 0) 115 150 195
(9, 11, 1) 107 110 155
(9, 10, 2) 99 79 115

Since clearly b + 15 ≤ |B| + |ξx| ≤ |Xx|, this table shows a contradiction and concludes
the proof of the proposition. �

Proposition 9.11 There are no abstract Lagrangian varieties of type 5 and index 2.

Proof Again, we consider the point-residual (X,Ξ) of (Y,Υ) at the point a ∈ Y (see
the Standing Hypotheses 6.4), which is a (1, 3′)-AVV of type 5 and index 2 in (a subspace
of) P17(K). The non-existence of such an object is proved in Lemma 9.10. �

9.3 The case w ≥ 3, (w, d) 6= (4, 8)

By Theorem 8.15 we only need to exclude the case w = 3.

Theorem 9.12 An abstract Lagrangian variety of type d and index w = 3 does not exist.

Proof Referring to the Standing Hypotheses 6.4, the point-residual (Ya,Υa) = (X,Ξ)
is a (1, 3′)-AVV of type d ≥ 6 and index 3 in (possibly a subspace of) P3d+2(K). Pick
ξ ∈ ∂Ξ and let x ∈ X(ξ). The point-residual (Xx,Ξx) of (X,Ξ) at x is a (1)-AVV of type
d − 2 and index 2 in (a subspace of) P2d−1(K). Now we claim that the point y∗ ∈ Xx

corresponding to the line xy in X, for any y ∈ x⊥∩ξ \{x}, satisfies dimTy∗(Xx) ≤ 2d−4.

Indeed, first suppose that each pair of members of Ξ containing x intersects in at least
a line. Then the point-line geometry related to Xx is a strong (−1)-lacunary parapolar
space of constant symplectic rank 3. By Lemma 5.5 it is A5,2(K) or A4,2(K). Item (2) of
Corollary 4.4 leads to a contradiction in case it is A5,2(K) (there is no strong parapolar
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space with constant symplectic rank 5 having hyperbolic symps and containing A5,2(K)
as a line-residual (a line-residual being a point-residual of the point-residual) and in case
it is A4,2(K), then item (3) of Corollary 4.4 leads to E6,1(K), which has diameter 2, also a
contradiction. Hence there exist ζ, ζ ′ ∈ Ξ with ζ ∩ ζ ′ = {x}. Also, by Lemma 6.6 applied
in (Xy,Ξy), we find a ζ ′′ ∈ Ξ containing y but not containing x. We now have everything
in place to apply Lemma 8.14 and conclude that dimTy∗(Xx) ≤ 2d− 4.

First suppose that d = 6. Then ((Xx)y∗ , (Ξx)y∗) is a (1)-AVV of type 2 and index 1 in
P7(K). Then Lemma 5.2 implies that ((Xx)y∗ , (Ξx)y∗) is either S1,2(K) or S1,3(K). Items
(3) and (2) of Corollary 4.4 yield (Y,L ) ∼= E6,1(K), contradicting Axiom (ALV1).

Next suppose d ≥ 7. Set d′ = d−4. Then ((Xx)y∗ , (Ξx)y∗) is a (1)-AVV of type d′ ≥ 3 and
index 1 in (a subspace of) P2d′+3(K). If d ≥ 8, we argue as in the first paragraph of the
proof of Proposition 9.7: by Proposition 9.6, ((Xx)y∗ , (Ξx)y∗) is 0-lacunary. By Lemma
5.6, d′ = 2, a contradiction.

We are left with d = 7, hence d′ = 3. Then (Xx,Ξx) is a (1)-AVV of type 5 and index 2
in P13(K), such that the tangent spaces at the points of the symp Xx(ξ∗) corresponding
to ξ have dimension at most 10. Lemma 9.10 yields a contradiction and hence concludes
the proof. �

This concludes the proof of Theorem 3.1.

10 Constructions and verification of the axioms

In this section, we construct the exceptional variety E7(K) as the projective closure of
the image of an affine Veronese map. To prove that this construction works, we have to
show that E7(K) is the intersection of a number of quadrics. This has been proved before,
see [33]. However, we need to be slightly more explicit. In doing so, we note that the
set of 133 quadrics obtained in loc. cit. is not minimal, and we construct a set of 129
quadrics which is minimal. Our corollaries on the exceptional variety E6(K) are also a
slightly more explicit version of the results in [32].

10.1 Construction of E7(K) as a quadratic Zariski closure

Let K be any field and let A be a non-degenerate quadratic alternative algebra over K. This
means that A is a vector space over K with an alternative multiplication law (extending
scalar multiplication), that is, for a, b ∈ A, we have ab ∈ A and ab2 = (ab)b, a2b = a(ab).
Moreover, every element a ∈ A \ K satisfies the (necessarily unique) quadratic equation
x2 − t(a)x+ n(a) = 0, with t(a) ∈ K the trace of a and n(a) ∈ K the norm. The element
a := t(a) − a = n(a)a−1 satisfies the same quadratic equation, and is sometimes called
the conjugate of a. Setting k = k for all k ∈ K, the mapping a 7→ a is an involutive
anti-automorphism of A, called the standard involution. Setting n(k) = k2 for all k ∈ K,
the mapping n : A→ K : a 7→ n(a) is a quadratic form, and n(a, b) := n(a+b)−n(a)−n(b)
denotes its linearisation. The algebra A is non-degenerate if the quadratic form n is non-
degenerate, i.e., for each a ∈ A with n(a) = 0 there is a b ∈ A such that n(a, b) 6= 0.
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In case charK 6= 2, n is non-degenerate precisely if its linearisation is non-degenerate as
a bilinear form, since n(a, a) = 2n(a). It follows from the general theory [1] that n is
either anisotropic (that is, n(a) = 0 if and only if a = 0) or split (that is, its null set is
a hyperbolic quadric); with this definition, the trivial algebra A = K is anisotropic and
not split. We first describe the split quadratic alternative algebras. The split octonions
O′ over K are defined as follows. An element X ∈ O′ and its conjugate X are defined as

X =


x0

x4

x5

x6

x1

x2

x3

 x7

 and X =


x7

−x4

−x5

−x6

−x1

−x2

−x3

 x0

 .

where xi, i = 0, . . . , 7 ∈ K. The xi, i = 0, 1, . . . , 7 are called the components of X,
and the diagonal components of X are x0 and x7. Abbreviating xij` = (xi, xj, x`), for
(i, j, `) ∈ {(1, 2, 3), (4, 5, 6)}, and denoting by v · w and v × w the ordinary inner product
and the usual vector product of vectors v, w ∈ K3, respectively, the multiplication is, with

self-explaining notation, defined by (see [36], where we use

(
α a
−b β

)
instead of

(
α a
b β

)
)

XY =

(
x0 x456

x123 x7

)(
y0 y456

y123 y7

)
=

(
x0y0 + x456 · y123 x0y456 + y7x456 + x123 × y123

y0x123 + x7y123 − x456 × y456 x7y7 + x123 · y456

)
.

If we restrict to x0, x1, x4, x7 (setting x2 = x3 = x5 = x6 = 0), then we obtain the split
quaternions H′ over K. Further restriction to x0, x7 (so x1 = x4 = 0) yields the split
quadratic extension L′ of K (this is the Cartesian product K × K with componentwise
addition and multiplication). These three algebras are the only split non-degenerate
quadratic alternative algebras over K, up to isomorphism (cf. [1]).

Let V be a vector space of dimension 8 + 6 dimK A over K, with either A = {~o} trivial,
or A ∈ {L′,H′,O′}, or A a finite-dimensional quadratic alternative division algebra over
K. Below we conceive xx (where x 7→ x denotes the standard involution) in formulae as
elements of K.

Definition 10.1 The dual polar affine Veronese map is defined as the map
ν : K×K×K× A× A× A→ V : (`1, `2, `3, X1, X2, X3) 7→

(1, `1, `2, `3, X1, X2, X3,

X1X1 − `2`3, X2X2 − `3`1, X3X3 − `1`2,

`1X1 −X2X3, `2X2 −X3X1, `3X3 −X1X2,

`1X1X1 + `2X2X2 + `3X3X3 −X3(X2X1)− (X1X2)X3 − `1`2`3).
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If A is a division ring, it follows from [16] that its image AV (K,A) is contained in and
spans P(V ) ∼= P7+6d(K), with d = dimK A. If A ∈ {{~o},L′,H′,O′}, this is easy to prove:

Lemma 10.2 If A is not a division ring, then the image of ν spans P(V ).

Proof First note that the elements of A with norm 0 or norm 1, respectively, generate
A as a vector space over K. We obtain the first 4 + 3 dimK A basis vectors in the image
of ν by considering the image of (0, 0, 0, 0, 0, 0) and (`1, `2, `3, X1, X2, X3), where we set
every entry zero except `i = 1 (i ∈ {1, 2, 3}) or Xi any element of A \ {0} with norm zero
(i ∈ {1, 2, 3}). Then setting two of the `i’s equal to 1 and all the rest zero gives us the
next three basis vectors (combined with previously found basis vectors). Setting `i = 1
and Xi varying over the norm 1 members of A, i ∈ {1, 2, 3}, produces the next 3 dimK A
basis vectors, and finally the last basis vector is obtained from setting `1 = `2 = `3 = 1
and X1 = X2 = X3 = 0. �

In fact, A V (K,A) is contained in the complement of the hyperplane H0 all points of
which have 0 as their first coordinate.

In order to construct the varieties of the third row of the Freudenthal-Tits Magic Square
we will need to add points to A V (K,A) in the hyperplane H0. This is a kind of Zariski
closure if K is algebraically closed, or at least infinite, and, more generally, a projective
closure if K has at least three elements and the set contains affine lines. For our present
purposes, we describe what could be called a quadratic Zariski closure.

Definition 10.3 Let S be a set of points of PN(K), 2 ≤ N < ∞. Then we say that S
is quadratically Zariski closed if S is the intersection of a finite number of quadrics. The
quadratic Zariski closure of a set T is the intersection of all quadratically Zariski closed
sets that contain T , or, equivalently, the intersection of all quadrics that contain T . This
is well defined since the class of quadrics is a finite dimensional vector space.

One of the aims of this section is to show the following theorem.

Theorem 10.4 Suppose |K| > 2. Then the quadratic Zariski closure PV (K,A) of
A V (K,A) is isomorphic to

1. S1,1,1(K), if A = {~o} is trivial,
2. V (K,A), if A is a division ring,
3. G6,3(K), if A ∼= L′,
4. HS 6(K), if A ∼= H′,
5. E7(K), if A ∼= O′.

Remark 10.5 There are various ways to deal with the remaining case |K| = 2. One
way to incorporate it, is to consider A V (K,A) over a field extension of F2, then take its
quadratic Zariski closure, and restrict the field again. The only care to be taken here is
that, if A is the field of four elements, then the field extension should not contain A as a
subfield.
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In order to prove Theorem 10.4 we distinguish between the ovoidal (A division) and
the hyperbolic cases (the other cases). In the ovoidal case, Theorem 10.4 follows from
Lemma 3.5 of [16]. In the hyperbolic cases, the case A = {~o} is easy. The other cases
will follow from the case A ∼= O′. So we begin with the latter. Therefore, we introduce a
second construction of E7(K), not relying on the quadratic Zariski closure of A V (K,O′).

10.2 A second construction of E7(K)

10.2.1 The Schläfli and the Gosset graph

Below we present combinatorial constructions of the Schläfli graph and Gosset graph, and
also give a construction of the Gosset graph in terms of two copies of the Schläfli graph
and two additional points. We explore some properties and label some of them (G1) up
to (G4) for ease of further reference. We refer the reader to [2] (pages 103, 104) and

mention that these graphs are the 1-skeleta of the 221 polytope and the 321

polytope , respectively. Most properties we mention are direct consequences
of the definition, or are standard properties of distance regular graphs. A good reference
is the book [2].

The Schläfli graph. The first graph is the Schläfli graph Γ1 = (V1, E1), whose vertices
are the points of the unique generalized quadrangle GQ(2, 4) of order (2, 4), adjacent when
the points are not collinear. Another, equivalent but more combinatorial description goes
as follows. The 27 vertices are the pairs from the set {1, 2, 3, 4, 5, 6}, together with the
elements 1′, 2′, . . . , 6′, 1′′, 2′′, ..., 6′′. Pairs are adjacent if they intersect in precisely one
element; a pair {i, j} is adjacent to an element k′ or k′′ if k /∈ {i, j}, two elements i′ and
j′, or i′′ and j′′ are adjacent as soon as i 6= j and finally, i′ is adjacent to j′′ if i = j.

The Gosset graph. The second graph is the Gosset graph Γ2 = (V2, E2). Traditionally,
this graph is constructed as follows. The 56 vertices are the pairs from the respective
8-sets {1, 2, . . . , 8} and {1′, 2′, . . . , 8′}. Two pairs from the same set are adjacent if they
intersect in precisely one element; two pairs {a, b} and {c′, d′} from different sets are
adjacent if {a, b} and {c, d} are disjoint. Consider the vertex w = {7′, 8′}. Identifying
pairs {i′, 7′} where i′ 6= 8′ with i′ and pairs {j′, 8′} where j′ 6= 7′ with j′′, we see that the
local graph Γ2({7′, 8′}) is isomorphic to the Schläfli graph Γ1 (using the same notation
with dashes and double dashes as in the previous paragraph). It is easy to see that Γ2

is distance regular and antipodal (that is, being at maximal distance from each other
is an equivalence relation among the vertices) with antipodal classes (the corresponding
equivalence classes) of size 2, and has diameter 3. The unique vertex of Γ2 at distance 3
from w = {7′, 8′} is w′ = {7, 8}.

The Gosset graph in terms of the Schläfli graph. Let w = {7′, 8′} and w′ = {7, 8},
as above. Let v be any vertex adjacent to w and let u′ be any vertex adjacent to w′. Let
v′ be the antipode of v and u the antipode of u′ (we will usually call antipodes opposite
vertices) and note that u is adjacent to w (and v′ to w′). Then, as Γ2 is distance regular,
has diameter 3 and is antipodal with antipodal classes of size 2, we have that δ(u′, v) = 1
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if and only if δ(u, v) = 2. Hence Γ2(u′) ∩ Γ2(w) is precisely the set of vertices of Γ2(w)
at distance 2 from u. The graph induced on Γ2(u′) ∩ Γ2(w) is a cross-polytope of size 10
(the complement of five disjoint edges), also known as a pentacross or 5-orthoplex, with

corresponding Dynkin diagram .

Identifying Γ2(w) with GQ(2, 4) as above, a pentacross is induced by the set of points
collinear to but different from some other fixed point, so there are 27 such cross-polytopes
in Γ2(w) (one for every vertex).

This implies the following description of Γ2 in terms of Γ1. Let Γ′1 = (V ′1 , E
′
1) and Γ′′1 =

(V ′′1 , E
′′
1 ) be two disjoint copies of Γ1 and consider two symbols ∞′ and ∞′′. Then the

vertices of Γ2 are the vertices of Γ′1 and Γ′′1 together with ∞′ and ∞′′. The vertex ∞′
(resp. ∞′′) is adjacent to all vertices of Γ′1 (resp. Γ′′1). Adjacency inside Γ′1 and Γ′′1 is as in
Γ1, and a vertex of Γ′1 is adjacent to the vertex of Γ′′1 if the corresponding vertices of Γ1

are at distance 2 from one another.

Special substructures. The Gosset graph Γ2 contains 126 cross-polytopes with 12

vertices and corresponding diagram , and no cross-polytope with 14 vertices. In

terms of the first description, 56 of these are determined by an ordered pair (i, j) with
i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8}, i 6= j, and induced on the vertices {i, k} and {j′, k′}, k /∈ {i, j},
whereas the other 70 are determined by a 4-set {i, j, k, `} ⊆ {1, 2, 3, 4, 5, 6, 7, 8} and are
induced on the vertices {s, t} ⊆ {i, j, k, `}, s 6= t, and {s′, t′} ⊆ {1′, 2′, 3′, 4′, 5′, 6′, 7′, 8′} \
{i′, j′, k′, `′}. In terms of the second description, 54 are obtained by taking a pentacross
in either Γ′1 (resp. Γ′′1) and adjoining ∞′ (resp. ∞′′) and the unique vertex of Γ′′1 (resp.
Γ′1) adjacent to each point of P . The other 72 are obtained by considering a maximum
clique C ′ in Γ′1; then there is a unique maximum clique C ′′ of Γ′′1 such that C ′ ∪ C ′′ is a
cross-polytope of size 12 in Γ2. Indeed, in terms of GQ(2, 4), a maximum clique of Γ1 is
induced by the set {p}∪(q⊥\p⊥), for two non-collinear points p, q; so if p and q correspond
to p′, q′ ∈ V ′1 , respectively, and to p′′, q′′ ∈ V ′′1 , respectively, then if C ′ = {p′} ∪ (q′⊥ \ p′⊥),
we have C ′′ = {q′′} ∪ (p′′⊥ \ q′′⊥). A cross-polytope with 12 vertices in Γ2 will be referred
to as a hexacross , which alongside 6-orthoplex is one of its standard names. The following
properties are immediate:

(G1) The set of twelve vertices opposite the vertices of a given hexacross induces a sec-
ond hexacross, called the opposite hexacross. (So there are 63 pairs of opposite
hexacrosses.)

(G2) Every hexacross Q is determined by any two non-adjacent vertices v, w ∈ Q in the
sense that Q = {v, w} ∪ (Γ2(v) ∩ Γ2(w)).

A spread of the Schläfli graph Γ1 is a set of disjoint (maximal) cocliques of size 3 partition-
ing the vertex set. A spread of Γ1 induces a line spread of GQ(2, 4) in the classical sense.
There are two isomorphism classes of such spreads, but for only one of them every member
has the following property when viewed in Γ1: given two arbitrary cocliques C1, C2 of the
spread, the set C3 of vertices not contained in C1 ∪ C2 but contained in some coclique
sharing exactly two vertices with C1 ∪ C2 has size 3 and is a coclique belonging to the
spread. In GQ(2, 4), the cocliques C1, C2, C3 are three disjoint lines of a subquadrangle
of order (2, 1). A spread with the just given property will be called a Hermitian spread.
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A set of three disjoint lines of a subquadrangle of order (2, 1) in GQ(2, 4) will be called a
regulus. Since a pentacross of Γ1 corresponds to the set of points of GQ(2, 4) collinear to
but different from a certain fixed point, we obtain

(G3) each spread of Γ1 has a unique member containing two vertices of any pentacross.

We now fix a Hermitian spread S of Γ1, and denote by S ′ and S ′′ the copies of S in
Γ′1 and Γ′′1, respectively. Using S , we define a set C of 72 cliques of size 3 of Γ1 covering
each edge precisely once as follows. Let {a, b} be an edge of Γ1. There are unique and
distinct cocliques Ca, Cb ∈ S containing a, b, respectively. As S is Hermitian, there is a
unique coclique C ∈ S such that {Ca, Cb, C} is a regulus. In GQ(2, 4), there is a unique
point c on the line C collinear to neither a nor b. The triple {a, b, c} is a clique of Γ1 that
by definition belongs to C . It is easy to see that {a, b, c} is independent of the pair {a, b}
we started with. Also, Proposition 3.3 of [31] implies that

(G4) every 6-clique of Γ1 contains precisely two members of C , which are moreover dis-
joint.

Let C ′ and C ′′ denote copies of C in Γ′1 and Γ′′1, respectively.

10.2.2 Some quadratic forms

Let V be a 56-dimensional vector space over K the basis vectors of which are labeled by
the vertices of the Gosset graph Γ2. We define for each hexacross of Γ2, and for each pair
of opposite hexacrosses, a quadratic form, determined up to a non-zero scalar. Later on,
we will use precisely these quadratic forms to describe E7(K).

We use coordinates relative to the standard basis of V , denoting the variable related to
the basis vector corresponding to the vertex v of Γ2 by Xv. The set of all quadratic forms
will (only) depend on Γ2, the vertex ∞′ of Γ2 and the spread S ′ of V ′1 . We will refer to
the first two classes of quadratic forms below as the short quadratic forms belonging to
(Γ2,∞′,S ′), and to those of the last two classes as the long quadratic forms belonging to
(Γ2,∞′,S ′). Hence there are four classes in total.

• Let Q be a hexacross defined by a vertex v′′ ∈ Γ′′1, that is, Q = (Γ2(v′′)∩V ′1)∪{∞′, v′′}.
By the above Property (G3), there are exactly two vertices i, j of Γ2(v′′) ∩ V ′1 be-
longing to a common member of S ′. Let P be the partition of (Γ2(v′′)∩V ′1) \ {i, j}
in pairs of non-adjacent vertices. We define the quadratic form

βQ : V → K : (Xv)v∈V2 7→ −XiXj +X∞′Xv′′ +
∑
{k,`}∈P

XkX`.

Similarly, one defines 27 quadratic forms using a hexacross defined by a vertex of
Γ′1 and ∞′′.

• Let Q be a hexacross consisting of the union of a 6-clique W ′ of Γ′1 and a 6-clique
W ′′ of Γ′′1.
By Property (G4), there are unique 3-cliques C1, C2 ∈ C with C1 ∪ C2 = W ′. For
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each w′ ∈ W ′, let w′′ ∈ W ′′ denote the unique vertex of W ′′ not adjacent to w′.
Then we define the quadratic form

βQ : V → K : (Xv)v∈V2 7→
∑
w′∈C1

Xw′Xw′′ −
∑
w′∈C2

Xw′Xw′′ .

• Let (Q′, Q′′) be a pair of opposite hexacrosses with ∞′ ∈ Q′ and ∞′′ ∈ Q′′.
Then Q′ and Q′′ have a unique vertex v′ and v′′ in Γ′′1 and Γ′1, respectively. For each
w′ ∈ Q′, let w′′ ∈ Q′′ denote the unique vertex of Γ2 opposite w′. Then we define
the quadratic form

βQ′,Q′′ : V → K : (Xv)v∈V2 7→ −X∞′X∞′′ −Xv′Xv′′ +
∑

w′∈Q′\{∞′,v′}

Xw′Xw′′ .

• Let (Q′, Q′′) be a pair of opposite hexacrosses with ∞′ /∈ Q′ and ∞′′ /∈ Q′′.
Set W ′ = Q′ ∩ V ′1 and W ′′ = Q′′ ∩ V ′1 . For each w ∈ W ′ ∪W ′′, let w∗ be the vertex
of Γ2 opposite w. Then we define the quadratic form

βQ′,Q′′ : V → K : (Xv)v∈V2 7→
∑
w′∈W ′

Xw′Xw′∗ −
∑

w′′∈W ′′
Xw′′Xw′′∗ .

We now have the following theorem, which we prove in the following section.

Theorem 10.6 The variety E7(K) is isomorphic to the intersection of the respective null
sets in P(V ) of the 126 quadratic forms βQ, for Q ranging over the set of hexacrosses
of Γ2, and the 63 quadratic forms βQ′,Q′′, with {Q′, Q′′} ranging over the set of pairs of
opposite hexacrosses of Γ2.

The previous theorem can be improved in that we do not need all 126+63=189 quadratic
forms, but only 126+3=129, see Corollary 10.32.

10.3 Proof that the second construction works

We show Theorem 10.6 in a sequence of lemmas. For the rest of this subsection we denote
by E the intersection of the respective null sets in V or in P(V ) of the 126 quadratic
forms βQ, for Q ranging over the set of hexacrosses of Γ2, and the 63 quadratic forms
βQ′,Q′′ , with {Q′, Q′′} ranging over all pairs of opposite hexacrosses of Γ2. Recall that the
standard basis of V is (ev)v∈V2 .

We say that two points of E are collinear if the line joining them entirely belongs to E.
Recall that E2 is the set of edges of Γ2.

Lemma 10.7 For each v ∈ V2, the point pv := Kev belongs to E. For each pair of vertices
v, w ∈ V2, the line 〈pv, pw〉 entirely belongs to E if and only if {v, w} ∈ E2. Also, if a
point p with coordinates (xv)v∈V2 belongs to E and is collinear to pw, for some w ∈ V2,
then xv = 0 for all v not adjacent to w in Γ2.
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Proof The first assertion follows from the fact that no quadratic form βQ or βQ,Q′
contains the square of a variable. The second assertion follows from the fact that v and
w are non-adjacent vertices of Γ2 if and only if XvXw occurs in at least one of the said
quadratic forms without other occurrences of Xv or Xw in it. The same observation shows
the third assertion. �

Lemma 10.8 For each ϕ ∈ Aut(Γ2) there exist εv ∈ {+1,−1}, v ∈ V2, such that the
linear transformation Φ of V defined by ev 7→ εveϕ(v) preserves E.

Proof First suppose that ϕ fixes ∞′ (and hence also ∞′′). If ϕ stabilizes the spread
S ′, then clearly, there is nothing to prove (choose all εv equal to 1). If ϕ does not
stabilize S ′, then it suffices to consider the case where S ′ϕ has three members in common
with S ′. Indeed, the graph with vertices the Hermitian spreads of GQ(2, 4), adjacent
when intersecting in three lines (so, a regulus), is the collinearity graph of the symplectic
generalized quadrangle of order 3 (this can be deduced from the description of maximal
subgroups of U4(2) ∼= S4(3) on page 26 of the Atlas of Finite Simple Groups [11]), and
is hence connected. Now, possibly by composing with an automorphism of Γ2 preserving
∞′ and preserving the spread S ′, we may assume that ϕ fixes all points of the members
in S ′ ∩S ′ϕ. Now we define εv = −1 if v is adjacent to ∞′ and v belongs to a member
of S ′ ∩S ′ϕ, or if v is adjacent to ∞′′ and v belongs to a member of S ′′ ∩S ′′ϕ. In all
other cases εv = 1. One verifies that the corresponding linear transformation Φ preserves
all quadratic forms βQ and βQ′,Q′′ , up to a constant in {1,−1}.
Now suppose that ϕ does not fix ∞′. By connectivity, we may without loss of generality
assume that w′ := ∞′ϕ ∈ V ′1 . Set w′′ := ∞′′ϕ and note that w′′ is adjacent to ∞′′ and
opposite w′. Composing with an appropriate automorphism of Γ2 fixing ∞′, we may
assume that ϕ interchanges∞′ with w′ and pointwise fixes (Γ2(∞′)∩Γ2(w′))∪ (Γ2(∞′′)∩
Γ2(w′′)). It maps a vertex u in the pentacross Γ2(∞′) \ (Γ2(w′)∪{w′}) to the opposite u∗

of the unique vertex of Γ2(∞′) \ (Γ2(w′) ∪ {w′}) not adjacent to u. The vertex u∗ is also
the unique vertex of the hexacross containing w′ and u not adjacent to ∞′. Also, u∗ is
mapped to u. We define εv = −1 if either v ∈ {w′,∞′′}, or v ∈ Γ2(∞′)\Γ2(w′) and v does
not belong to the same spread element of S ′ that contains w′, or if v ∈ V ′′2 \ {w′′} and
v belongs to the same spread element of S ′′ as w′′. One verifies that the corresponding
Φ preserves all quadratic forms βQ and βQ′,Q′′ up to a constant in {1,−1}. The lemma is
proved. �

Our next aim is to show that each pair of points of E is equivalent to a pair of points from
the standard basis, see Proposition 10.17. Therefore we introduce linear mappings σQ(a)
of V , with a ∈ K, and Q a hexacross of Γ2. In fact, these correspond to certain central
elations, also called central collineations, or long root elations, of the building E7(K), see
[4]. We need the following observation, the verification of which we leave to the reader.

Lemma 10.9 Let Q1 be a hexacross containing 6-cliques of Γ′1 and Γ′′1. Let Q2 be the
opposite hexacross. Then

(i) For each vertex v1 ∈ Q1, the opposite vertex v2 ∈ Q2 is adjacent to a unique vertex
v∗1 ∈ Q1, namely to the unique vertex of Q1 non-adjacent to v1.
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(ii) The mapping v1 7→ v∗1 defined in (i) permutes the four members of C ′ and C ′′

contained in Q1 (cf. Property (G4)).

We are ready to define the central elations. By Lemma 10.8, it suffices to do this for
hexacrosses not containing ∞′ or ∞′′.

Definition 10.10 Let W ′
1 be a 6-clique of Γ′1 which, together with the 6-clique W ′′

1 ⊆ V ′′1 ,
forms a hexacross denoted Q1. Let W ′′

2 ⊆ V ′′1 be the set of vertices of Γ2 opposite the
vertices of W ′

1, and let W ′
2 ⊆ V ′1 be the set of vertices of Γ2 opposite the vertices of W ′′

1 ,
and denote Q2 = W ′

2 ∪W ′′
2 . By Property (G1), Q2 is a hexacross. Let W ′

1 = C ′1 ∪D′1 and
W ′′

1 = C ′′1 ∪ D′′1 , with C ′1, D
′
1 ∈ C ′ and C ′′1 , D

′′
1 ∈ C ′′. According to Lemma 10.9(ii) we

may assume that the vertex opposite an arbitrary vertex of C ′1 is adjacent to a vertex of
C ′′1 .

We define the linear mapping σQ1(a) of V , with a ∈ K arbitrary, by its action on the basis
vectors as follows. For v ∈ Q1, we denote by vo its opposite in Γ2 (which belongs to Q2),
and by v∗ the unique vertex of Q1 adjacent to vo (using (i) of Lemma 10.9).

σQ1(a) : V → V :


evo 7→ evo + aev∗ , for v ∈ C ′1 ∪D′′1
evo 7→ evo − aev∗ , for v ∈ D′1 ∪ C ′′1
ev 7→ ev for all v ∈ V2 \Q2.

In terms of the coordinates, σQ1(a) transforms (Xv)v∈V2 into (X ′v)v∈V2 as follows
X ′v∗ = Xv∗ − aXvo for v ∈ C ′1 ∪D′′1
X ′v∗ = Xv∗ + aXvo for v ∈ D′1 ∪ C ′′1
X ′v = Xv for all v ∈ V2 \Q2.

Now let Q be a hexacross containing ∞′. We fix a hexacross Q1 not containing ∞′ and a
linear map Φ obtained as in Lemma 10.8 from an automorphism of Γ2 mapping Q1 onto
Q (there are two choices, say Φ and Φ′, and their product is minus the identity). Then
we define σQ(a) as the conjugate σQ1(a)Φ. Choosing Φ′ instead of Φ yields σQ1(a)Φ′ =
σQ1(−a)Φ. Conjugation is ΦσQ1(a)Φ−1 or Φ−1σQ1(a)Φ, which will not bother us because
we will only use these maps for transitivity properties (and these are independent of the
choice made). Likewise, a different choice of Q1 produces the same group.

Lemma 10.11 Let Q be a hexacross of Γ2, Q′ its opposite and let w be a vertex of Q.
Then, for all a ∈ K, σQ(a) fixes ±ev for every v ∈ V2 \ Q′, in particular, for each
v ∈ Γ2(w) \ {w∗}, with w∗ the unique vertex in Q′ collinear to w.

Proof This follows immediately from the definition of σQ(a). �

Lemma 10.12 Let Q1 be any hexacross disjoint from {∞′,∞′′}. Then, for each a ∈ K,
the mapping σQ1(a) maps each quadratic form βQ and βQ,Q′, to a linear combination of
such quadratic forms. Also, σQ1(a) maps E bijectively to itself.
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Proof We have to calculate the image of each quadratic form βQ and βQ,Q′ . This is an
elementary exercise, which we shall perform in the most elaborate case (most quadratic
forms remain the same), namely the case Q = Q1. We use the notation of Definition 10.10.
For each vertex v ∈ W ′

1, the vertex vo is opposite v; the latter is adjacent to v∗, which
belongs to C ′′1 . Let v∗ = (v∗)o. A generic term of βQ1 is, up to ±1, given by XvXv∗ . The
latter is transformed by σQ1(a) to

(Xv ± aXv∗)(Xv∗ ∓ aXvo) = XvXv∗ ∓ a(XvXvo −Xv∗Xv∗)−a2Xv∗Xvo .

Now Xv∗Xvo is a generic term of βQ2 , and VvXvo − Xv∗Xv∗ is a generic pair of terms of
βQ1,Q2 . It then follows from Lemma 10.9(ii) (to get the signs in the image of βQ1 right)
that the image of βQ1 under σQ1(a) is equal to βQ1 ± aβQ1,Q2 ± a2βQ2 (where the two sign
symbols are not coupled).

Another quadratic form which is not mapped onto itself is βQ for Q the hexacross de-
termined by ∞′ and, using the notation of Definition 10.10, the vertex v∗ ∈ W ′′

1 , with
v ∈ W ′

1 arbitrary (cf. Property (G2)). One calculates that σQ1(a) maps βQ to βQ ± aβQ′ ,
with Q′ the hexacross determined by ∞′ and vo (and the sign depends on the inclusion
of v in either C ′1 or D′1).

The other cases are left to the reader. Since σQ1(−a) is obviously the inverse of σQ1(a),
both map E bijectively to itself. The second assertion follows and the lemma is proved.

�

We also note the following.

Lemma 10.13 For each hexacross Q and each point p ∈ E, the set {pσQ(a) | a ∈ K} is
an affine line completely contained in E.

Proof This follows from the fact that, in the definition of σQ(a), the parameter a
appears linearly (so that {pσQ(a) | a ∈ K} is an affine line), and from Lemma 10.12 (so
that {pσQ(a) | a ∈ K} ⊆ E). �

Lemma 10.14 A vector p ∈ V with coordinates (xv)v∈V2, where for some w ∈ V2, we
have xw 6= 0 and xu = 0 for all u adjacent to w, belongs to E if and only if p ∈ ewK.

Proof By Lemma 10.8 we may assume w = ∞′. Then it is easy to see that the
coordinates of p belong to the null set of βQ, with ∞′ ∈ Q and v′′ ∈ Q ∩ V ′′1 , if and only
if xv′′ = 0. Now considering the quadratic form βQ,Q′ , with ∞′ ∈ Q and Q′ opposite Q,
we see that x∞′′ = 0. �

Definition 10.15 Define the group G ≤ GL(V ) as the group generated by all σQ(a), Q
a hexacross and a ∈ K, and all Φ obtained from Lemma 10.8. Note that G acts as an
automorphism group on E, by Lemma 10.12.
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Lemma 10.16 Let p ∈ E have coordinates (xv)v∈V2, where for some w ∈ V2, we have
xw 6= 0. Then there exists g ∈ G such that g(p) ∈ ewK and g(ewo) = ewo, with wo ∈ V2

opposite w.

Proof Let v ∈ V2 be any vertex adjacent to w and let wo ∈ V2 be opposite w. Then
wo and v are at distance 2 from one another and hence define a unique hexacross Q.
One of the maps σQ(±xv/xw) maps p to a vector with zero v-coordinate, while all other
u-coordinates, with u ∈ V2 equal or adjacent to w, stay the same by Lemma 10.11. This
map also fixes ewo . Doing this for all vertices v adjacent to w produces an element g ∈ G
and a vector q = g(p) in E with non-zero w-coordinate and all v-coordinates zero, for
v adjacent to w. Moreover g(ewo) = ewo . By Lemma 10.14, q ∈ ewK and the lemma is
proved. �

The following proposition basically says that G acts distance-transitively on E.

Proposition 10.17 For every pair of points p, q ∈ E there exists g ∈ G such that both
g(p) and g(q) are multiples of standard basis vectors.

Proof By Lemma 10.16 we already may assume that p = ewK, for some w ∈ V2. Set
q = (xv)v∈V2 . We consider three cases.

• Assume that xwo 6= 0, where wo is opposite w in Γ2.
This case follows immediately from Lemma 10.16 with the roles of w and wo inter-
changed.

• Assume that xwo = 0, but xv 6= 0 for some vertex v at distance 2 from w.
Let u ∈ Γ2(v) be arbitrary, but distinct from wo. Let vo ∈ V2 be opposite v and
denote by Qv the hexacross determined by u and vo. Then wo /∈ Qv since wo is not
adjacent to vo (as this would imply u = wo, contrary to our assumptions). This
now implies that σQv(±xu/xv) fixes w, and, as before in the proof of Lemma 10.16,
for one choice of the sign, maps q to a point with zero u-coordinate. Varying u, and
using Lemma 10.11, we thus produce a member g ∈ G fixing p and mapping q to
a point with zero u-coordinate, for all u ∈ Γ2(v), but non-zero v-coordinate. Then
g(q) ∈ evK by Lemma 10.14.

• Assume that xv = 0, for all v ∈ V2 not equal or adjacent to w.
In this case, there exists v ∈ V2 adjacent to w for which xv 6= 0 (otherwise p = q and
the assertion is trivial). Let vo and wo be as above and take any u ∈ Γ2(v)∩Γ2(w).
Then, as in the previous case, the unique hexacross determined by u and vo does
not contain wo. The rest of the proof applies verbatim.

The proof of the proposition is complete. �

Corollary 10.18 Let w ∈ V2, denote by w0 its opposite, and suppose q ∈ E has coordi-
nates (xv)v∈V2. Then q is collinear to ewK if and only if xv = 0 for all v ∈ V2\(Γ2(w) ∪ {w});
q is at distance 2 from ewK if and only if xwo = 0 and xv 6= 0 for some v ∈ V2\(Γ2(w) ∪ {w});
and finally q is at distance 3 from ewK if and only if xwo 6= 0.
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Proof We use the case distinction of the proof of Proposition 10.17: In all three cases,
we considered a vertex v ∈ V2 such that xv 6= 0 and obtained an automorphism g ∈ G
such that g(q) ∈ evK, and hence p and q are at the same distance from each other as v
and w, which is distance 3, 2 or 1, respectively. Since this exhausts all cases (but the
trivial one p = q), the lemma follows. �

Now let L be the set of projective lines contained in E (viewed as a set of points of P(V )).

Proposition 10.19 The point-line geometry ∆ = (E,L) is isomorphic to the parapolar
space E7,7(K).

Proof We first show that ∆ is a parapolar space with all symps isomorphic to D6,1(K).

Note that Corollary 10.18 implies that the distance between evK and ewK in ∆ is the
same as the distance between v and w in Γ2.

Proposition 10.17 now ensures that ∆ has diameter 3, hence is connected. Now consider
two points p, q ∈ E at distance 2. By Proposition 10.17, we may assume that p = evK
and q = ewK, for two vertices v, w of Γ2 at distance 2. Let Q be the unique hexacross
determined by v and w. Let U be the subspace of P(V ) generated by all eu, u ∈ Q.
Let Ω be the null set of the quadratic form βQ restricted to U . Then Ω is a hyperbolic
polar space isomorphic to D6,1(K) containing p and q as non-collinear points. Hence Ω is
contained in the convex subspace closure S(p, q) of p and q. Note that Ω ⊆ E since every
point of U is in the null set of every quadratic form βQ∗ , with Q∗ a hexacross distinct from
Q, and every quadratic form βQ∗,Q′∗ , now for every pair of opposite hexacrosses Q∗, Q

′
∗. If

we can show that p⊥ ∩ q⊥ ⊆ Ω, then, since p and q can be seen as arbitrary non-collinear
points of Ω, it follows that Ω = S(p, q). So suppose r ∈ p⊥∩ q⊥. Then by the definition of
a hexacross and Corollary 10.18, we conclude r ∈ U and hence r ∈ Ω. So we have shown
that Ω = S(p, q).

Lemma 10.17 implies that every member of L is contained in the convex subspace closure
of two points at distance 2. Since clearly no such subspace contains all points of E, we
have shown that ∆ is a parapolar space all symps of which are isomorphic to D6,1(K).

Consider a clique C of Γ2 of size 5. By Lemma 10.7, the subspace W = 〈evK | v ∈ C〉 is
a singular subspace of ∆. Notice that C is contained in exactly two maximal cliques of
Γ2, one of size 6 (say, C1), and one of size 7 (say, C2). Let p ∈ E be a point collinear to
all points of W . Then Corollary 10.18 implies that p is contained in one of 〈ev | v ∈ Ci〉,
i = 1, 2. This implies that W is contained in exactly two maximal singular subspaces and
Corollary 4.4(3) concludes the proof of the proposition. �

Proposition 6.7(H) completes, together with Proposition 10.19, the proof of Theorem 10.6.

10.4 Proof that the first construction works: equivalence of the
two constructions

We now prove Theorem 10.4 for the case A = O′. This will be done by establishing the
equivalence with the second construction. More exactly, let E∗ be the quadratic Zariski
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closure of A V (K,O′). Then we show in this subsection that E∗ is projectively equivalent
to E. In order to do so, we need to establish a basis of the target vector space V of the
dual polar affine Veronese map ν defined before, and relate this basis to the Gosset graph,
two opposite vertices in it and a spread in the neighbourhood of these vertices, as above.

Construction 10.20 Let V be as in the definition of the dual polar affine Veronese
map. We view V as a 56-dimensional vector space over K consisting of the direct
sum K4 ⊕ O′3 ⊕ K3 ⊕ O′3 ⊕ K. In the components in K we choose the standard ba-
sis and introduce the following notation. The basis vector related to the i-th coordinates,
i = 1, 2, 3, 4, 29, 30, 31, 56 will be denoted by e∞, e1, e2, e3, f1, f2, f3, f∞, respectively. In
each O′-component, we choose the standard basis of the corresponding split octonions,
numbered 0, 1, . . . , 7 as the subscripts in the definition of X in the beginning of Sec-
tion 10.1. The basis vectors of V related to the i-th coordinates, i = 5, 6, . . . , 12, 13, . . . , 28,
will be denoted by e1,0, e1,1,. . . , e1,7, e2,0, . . . , e3,7, respectively (and we conceive the first
subscript as belonging to Z/3Z, as we also do with the subscripts of e1, e2, . . . , f3). Like-
wise, the basis vectors of V related to the i-th coordinates, i = 32, 33, . . . , 40, 41, . . . , 55,
will be denoted by f1,0, f1,1,. . . , f1,7, f2,0, . . . , f3,7. Let, for i ∈ {0, 1, . . . , 7}, ai ∈ O′ be
the split octonion X = (x0, x1, . . . , x7) with xi = 1 and xj = 0, j ∈ {0, 1, . . . , 7} \ {i}
using the notation of the beginning of Section 10.1.

We define a graph Γ with as set of vertices the (standard) basis vectors of V and with
adjacency, denoted ∼, as follows. Define the involutive permutation ι of {0, 1, . . . , 7} as
(0, 7) ,(1, 4), (2, 5), (3, 6) ∈ ι. Further, for all j, j′, k ∈ Z/3Z and i, i′ ∈ {0, 1, . . . , 7}, define

1. ej ∼ e∞ ∼ ej,i
2. fj ∼ f∞ ∼ fj,i
3. fj ∼ ek ∼ ej,i if k 6= j; ek ∼ fj,i if k = j;
4. ej ∼ fk ∼ fj,i if k 6= j; fk ∼ ej,i if k = j;
5. ej,i ∼ ej+1,i′ , j ∈ Z/3Z, if aiai′ = 0;
6. fj,i ∼ fj−1,i′ , j ∈ Z/3Z, if aiai′ = 0;
7. ej,i ∼ ej,i′ if (i, i′) /∈ ι and i 6= i′;
8. fj,i ∼ fj,i′ if (i, i′) /∈ ι and i 6= i′;
9. ej,i ∼ fj′,i′ if (j, i) 6= (j′, i∗) and ej,i 6∼ ej′,i∗ , with i∗ = i′ if i ∈ {0, 7} and i∗ = ι(i′)

otherwise.

There are no further adjacencies.

Remark 10.21 The mapping ι can also be defined as ι(i) = i∗ if (ai + ai∗)
2 = a0 + a7.

Lemma 10.22 The graph Γ is isomorphic to the Gosset graph.

Proof This is just an explicit check, which can be done by the reader. A useful tool for
the computations involved is the following multiplication table (elements of left column
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times elements of upper row).

· a0 a1 a2 a3 a4 a5 a6 a7

a0 a0 0 0 0 a4 a5 a6 0
a1 a1 0 a6 −a5 a7 0 0 0
a2 a2 −a6 0 a4 0 a7 0 0
a3 a3 a5 −a4 0 0 0 a7 0
a4 0 a0 0 0 0 −a3 a2 a4

a5 0 0 a0 0 a3 0 −a1 a5

a6 0 0 0 a0 −a2 a1 0 a6

a7 0 a1 a2 a3 0 0 0 a7 �

Construction 10.23 Construction 10.20 implies the following construction of GQ(2, 4)
on the 27 points ej and ej,i, j ∈ {1, 2, 3}, i ∈ {0, 1, . . . , 7}. There are three types of lines:

• e1e2e3 is a line;
• ejej,iej,ι(i) is a line for all j ∈ {1, 2, 3} and all i ∈ {0, 1, . . . , 7};
• e1,i1e2,i2e3,i3 is a line if 0 /∈ {ai1ai2 , ai2ai3 , ai3ai1} (in fact, two of these non-zero implies

the third is non-zero).

We now define the following spread S in this GQ(2, 4):

e1e1,0e1,7, e1,1e3,2e2,3, e1,4e2,5e3,6,
e2e2,0e2,7, e2,1e1,2e3,3, e2,4e3,5e1,6,
e3e3,0e3,7, e3,1e2,2e1,3, e3,4e1,5e2,6.

Conceiving the above arrangement of the spread lines as a 3× 3 matrix, the reguli of the
spread correspond to the rows, the columns, and terms which are the product of 3 entries
occurring in the expansion of the determinant, e.g. via Sarrus’ rule.

Definition 10.24 We now define some quadratic forms on V . We use the generic coor-
dinates

(x, `1, `2, `3, X1, X2, X3, k1, k2, k3, Y1, Y2, Y3, y)

of a vector in V , where x, y, `1, `2, `3, k1, k2, k3 ∈ K and X1, X2, X3, Y1, Y2, Y3 ∈ O′. The
twelve quadratic forms in the second and third column below which seemingly have values
in O′ should be read componentwise so that each of them stands for eight forms with values
in K.

Consider the following list (L) of 102 quadratic forms (with abbreviations for further use):

ϕx,1 = xk1 + `2`3 −X1X1 ϕx,23 = xY1 +X2X3 − `1X1 ϕ23 = k2X1 + `3Y1 +X2Y 3

ϕx,2 = xk2 + `3`1 −X2X2 ϕx,31 = xY2 +X3X1 − `2X2 ϕ32 = k3X1 + `2Y1 + Y 2X3

ϕx,3 = xk3 + `1`2 −X3X3 ϕx,12 = xY3 +X1X2 − `3X3 ϕ31 = k3X2 + `1Y2 +X3Y 1

ϕy,1 = y`1 + k2k3 − Y1Y 1 ϕy,32 = yX1 + Y3Y2 − k1Y 1 ϕ13 = k1X2 + `3Y2 + Y 3X1

ϕy,2 = y`2 + k3k1 − Y2Y 2 ϕy,13 = yX2 + Y1Y3 − k2Y 2 ϕ12 = k1X3 + `2Y3 +X1Y 2

ϕy,3 = y`3 + k1k2 − Y3Y 3 ϕy,21 = yX3 + Y2Y1 − k3Y 3 ϕ21 = k2X3 + `1Y3 + Y 1X2
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and the following list (M) of 3 quadratic forms:

ψ1 = xy + `1k1 − `2k2 − `3k3 −X1Y1 − Y 1X1

ψ2 = xy + `2k2 − `3k3 − `1k1 −X2Y2 − Y 2X2

ψ3 = xy + `3k3 − `1k1 − `2k2 −X3Y3 − Y 3X3

Lemma 10.25 The 102 quadratic forms of the list (L) are exactly the short quadratic
forms belonging to (Γ, e∞,S ) with the property that the corresponding hexacross contains
one of e∞, e1, e2, e3, f∞, f1, f2 or f3. The other 24 short quadratic forms belonging
to (Γ, e∞,S ) are the following (using the same subscripts for the coordinate as for the
corresponding basis vector, though omitting the comma):

x10y11 + x11y17 + x36y35 − x21y20 − x27y21 − x35y36

x20y21 + x21y27 + x16y15 − x31y30 − x37y31 − x15y16

x30y31 + x31y37 + x26y25 − x11y10 − x17y11 − x25y26

x14y10 + x17y14 + x32y33 − x20y24 − x24y27 − x33y32

x24y20 + x27y24 + x12y13 − x30y34 − x34y37 − x13y12

x34y30 + x37y34 + x22y23 − x10y14 − x14y17 − x23y22

x10y12 + x12y17 + x34y36 − x22y20 − x27y22 − x36y34

x20y22 + x22y27 + x14y16 − x32y30 − x37y32 − x16y14

x30y32 + x32y37 + x24y26 − x12y10 − x17y12 − x26y24

x15y10 + x17y15 + x33y31 − x20y25 − x25y27 − x31y33

x25y20 + x27y25 + x13y11 − x30y35 − x35y37 − x11y13

x35y30 + x37y35 + x23y21 − x10y15 − x15y17 − x21y23

x10y13 + x13y17 + x35y34 − x23y20 − x27y23 − x34y35

x20y23 + x23y27 + x15y14 − x33y30 − x37y33 − x14y15

x30y33 + x33y37 + x25y24 − x13y10 − x17y13 − x24y25

x16y10 + x17y16 + x31y32 − x20y26 − x26y27 − x32y31

x26y20 + x27y26 + x11y12 − x30y36 − x36y37 − x12y11

x36y30 + x37y36 + x21y22 − x10y16 − x16y17 − x22y21

x11y15 + x21y25 + x31y35 − x15y11 − x25y21 − x35y31

x11y16 + x21y26 + x31y36 − x16y11 − x26y21 − x36y31

x12y14 + x22y24 + x32y34 − x14y12 − x24y22 − x34y32

x12y16 + x22y26 + x32y36 − x16y12 − x26y22 − x36y32

x13y14 + x23y24 + x33y34 − x14y13 − x24y23 − x34y33

x13y15 + x23y25 + x33y35 − x15y13 − x25y23 − x35y33

Proof This is a straightforward verification using Construction 10.20 and the definition
of the spread S above. �

Lemma 10.26 The image A V (K,A) of the dual polar affine Veronese map is contained
in the common null set of the short quadratic forms belonging to (Γ, e∞,S ).
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Proof This is easy for the quadratic forms in the list (L). As an example, take the set
of eight quadratic forms determined by k2X3 + `1Y3 + Y 1X2. Substitute (see the explicit
form of ν) 

k2 = X2X2 − `3`1,
Y 1 = `1X1 −X3X2,
Y3 = `3X3 −X1X2.

Then we obtain k2X3 + `1Y3 + Y 1X2 = (X2X2)X3− (X3X2)X2 = 0, since X2 belongs to
the quaternion subalgebra generated by X2 and X3, and hence associativity holds (also
use that X2X2 = X2X2 belongs to K and hence commutes with everything).

For the other forms given in Lemma 10.25, an explicit calculation with K-coordinates
must be performed. In fact, it suffices to only check two of these calculations because of
the obvious symmetry x1j 7→ x2j 7→ x3j 7→ x1j, and the same for the yij, i ∈ {1, 2, 3},
j ∈ {0, 1, . . . , 7}, and the less obvious symmetry xi0 ↔ xi7, xi1 ↔ −xi4, xi2 ↔ −xi5,
xi3 ↔ −xi6, and the same for the yij, i ∈ {1, 2, 3}, j ∈ {0, 1, . . . , 7}. The latter symmetry
is due to the automorphism of O′ obtained by composing the standard involution with
the ordinary transpose (in the sense of matrices). Under these two symmetries, the first
eighteen forms given in Lemma 10.25 are equivalent (up to sign) and the last six are
equivalent. In order to check the first form we calculate

y11 = x21x30 − x25x36 + x26x35 + x27x31,
y17 = x21x34 + x22x35 + x23x36 + x27x37,
y20 = x30x10 + x34x11 + x35x12 + x36x13,
y21 = x31x10 − x35x16 + x36x15 + x37x11,
y35 = x10x25 − x11x23 + x13x21 + x15x27,
y36 = x10x26 + x11x22 − x12x21 + x16x27.

Substituting these values for yij, for the given i, j, in x10y11 + x11y17 + x36y35 − x21y20 −
x27y21 − x35y36 gives identically zero. Similarly for one of the last six forms given in
Lemma 10.25. �

We now concentrate on the long quadratic forms. Recall the definition of ”diagonal
components” in Section 10.1.

Lemma 10.27 All 3 quadratic forms of the list (M) are long quadratic forms belonging
to (Γ, e∞,S ). Moreover, also the diagonal components of the quadratic forms

ψ11 = xy − `1k1 + Y1X1 − Y 1X1 −X2Y2 − Y3X3,
ψ22 = xy − `2k2 + Y2X2 − Y 2X2 −X3Y3 − Y1X1,
ψ33 = xy − `3k3 + Y3X3 − Y 3X3 −X1Y1 − Y2X2,

are long quadratic forms belonging to (Γ, e∞,S ).

Proof Straightforward from Construction 10.20. �

Lemma 10.28 The image A V (K,A) of the dual polar affine Veronese map is contained
in the common null set of the long quadratic forms belonging to (Γ, e∞,S ) of the list (M).
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Proof Easy verification using the explicit form of ν. �

Lemma 10.29 The following are identities in the above set of quadratic forms:

(1) xψ2 = xψ1 − 2`1ϕx,1 + 2`2ϕx,2 +X1ϕx,23 + ϕx,23X1 −X2ϕx,31 − ϕx,31X2.

(2) ψ1X2 = xϕy,13 + `1ϕ13 + k2ϕx,31 − `3ϕ31 − Y1ϕx,12 −X1ϕ21.

(3) xψ33 = xψ1 − `1ϕx,1 + `2ϕx,2 + ϕx,23X1 + ϕx,12X3 − ϕx,12X3 − ϕx,31X2.

Proof This is a straightforward check, using the following well known properties of the
associator (a b c) = a(bc)− (ab)c and commutator [a, b] = ab− ba. Let σ be an arbitrary
permutation of {1, 2, 3} or of {1, 2}, respectively. Let θi, i = 1, 2, 3, be either the identity
or the standard involution of O′. Let ε be the sign of σ, if θ1θ2θ3 or θ1θ2 is the identity,
and minus that sign otherwise. Then(

xθ1σ(1) x
θ2
σ(2) x

θ3
σ(3)

)
= ε(x1 x2 x3), and

[
xθ1σ(1) x

θ2
σ(2)

]
= ε(x1 x2),

for all x1, x2, x3 ∈ O′. �

Before we go on, we need the following transitivity properties of the Gosset graph Γ2.

Lemma 10.30 Let Γ2 = (V2, E2) be the Gosset graph and let D,E be two hexacrosses.
Let D′ and E ′ be the respective opposite hexacrosses. Then

(i) the stabilizer of D ∪D′ in Aut(Γ2) acts transitively on V2 \ (D ∪D′), and
(ii) the common stabilizer of D ∪D′ and E ∪E ′ in Aut(Γ2) acts transitively on the set

of vertices (D ∪D′) ∩ (E ∪ E ′).

Proof (i) It is easy to check that every vertex of V2 \ (D ∪D′) is adjacent to a unique
maximal clique of D. Also, the stabilizer of D in Aut(Γ2) is transitive on the maximal
cliques of D that are properly contained in a maximal clique of Γ2, since this stabilizer
acts on D as the Weyl group of type D6. Finally, D′ is automatically stabilized if D is
stabilized.

(ii) One verifies that (D ∪ D′) ∩ (E ∪ E ′) is either the disjoint union of four edges, or
the disjoint union of two 6-cliques. In the former case, D ∩ E is an edge e ∈ E. We
can map any edge e′ of (D ∪ D′) ∩ (E ∪ E ′) to e. The stabilizer of e is the Weyl group
of type A1 × D5, which acts transitively on the pairs (v, C), where v ∈ e ⊆ C, with
C a hexacross. Hence we choose the map which maps e′ to e in such a way that it
maps some member of {D,D′, E, E ′} that contains e′ to D. Then, since E is the unique
hexacross of Γ2 intersecting D in e, the map preserves {D ∪ D′, E ∪ E ′}. Suppose now
that (D∪D′)∩ (E ∪E ′) is the union of two 6-cliques. Then arguing in the Weyl group of
type A5×A1 corresponding to the stabilizer of such a 6-clique, the result follows similarly
as before. �

Lemma 10.31 The common null set of the short quadratic forms belonging to (Γ, e∞,S )
and the long quadratic forms in the list (M) is exactly the variety E7(K). In other words,
every point in the common null set of the short quadratic forms belonging to (Γ, e∞,S )
and the long quadratic forms in the list (M), is also in the null set of every other long
quadratic form belonging to (Γ, e∞,S ). In particular, A V (K,A) is a subset of E7(K).
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Proof Let p = (x, `1, `2, . . . , Y3, y) be an arbitrary point of P(V ) in the common null
set of all short quadratic forms belonging to (Γ, e∞,S ). Let {Q,Q′} be an arbitrary pair
of opposite hexacrosses. We claim that, if some non-zero coordinate of p corresponds to a
vertex outside Q∪Q′, then p is in the null set of the long quadratic form βQ,Q′ . Indeed, by
Lemmas 10.8 and 10.30(i), we may assume that βQ,Q′ is ψ1, and X2 6= 0. Then it follows
from Lemma 10.29(2) that ψ1X2 vanishes at p, and hence ψ1 does. The claim is proved.

Now let p = (x, `1, `2, . . . , Y3, y) be an arbitrary point of P(V ) in the common null set of all
short quadratic forms belonging to (Γ, e∞,S ) and the long quadratic forms in the list (M).
Let {Q,Q′} be an arbitrary pair of opposite hexacrosses so that βQ′,Q /∈ {±ψ1,±ψ2,±ψ3}.
We claim that, if some non-zero coordinate of p corresponds to a vertex v of Q∪Q′, then
p is in the null set of the long quadratic form βQ,Q′ . Indeed, in this case, at least one of
ψ1, ψ2, ψ3 contains v, say, without loss of generality, ψ1. By Lemmas 10.8 and 10.30(ii),
there is a linear map θ preserving E7(K), interchanging the coordinates, up to sign, and
thus inducing an automorphism of Γ2 mapping v to ∞, stabilizing ψ1 and mapping βQ,Q′
to ψ2 (if βQ,Q′ and ψ1 share exactly four terms) or to a diagonal component of ψ33 (if
βQ,Q′ and ψ1 share exactly six terms). Now Lemma 10.29(1) and (3) imply that θ(p) is
in the null set of ψ2 or ψ33, respectively, and hence p is in the null set of βQ,Q′ , proving
the claim. Now the lemma follows from Lemmas 10.26 and 10.28. �

This already has the following consequence, which is an improvement of Theorem 10.6.

Corollary 10.32 The variety E7(K) is the intersection of 129 quadrics, namely, those
corresponding to the short quadratic forms belonging to (Γ, e∞,S ), together with the three
long quadratic forms in the list (M). No quadric can be deleted, that is, the intersection
of each proper subset of these 129 quadrics contains points not contained in E7(K).

Proof We only need to show the last assertion. Note first that every product XvXw

of distinct variables, with v and w vertices of Γ2 at distance 2, is contained in exactly
one of the 126 short quadratic forms belonging to (Γ, e∞,S ), and not in any of the long
quadratic forms. Hence the line of P(V ) joining the base points corresponding to v and w
entirely belongs to each of the said 129 quadrics except for exactly one (short). Similarly,
every quadratic form in the list (M) contains a product XvXw, with v and w opposite
vertices of Γ2, which does not appear in any other of the 129 quadratic forms. �

Proposition 10.33 Assuming |K| > 2, we have PV (K,O′) = E7(K).

Proof Since E7(K) is quadratically Zariski closed, Lemma 10.31 implies that PV (K,O′)
is contained in E7(K), where the latter is defined as the common null set of all short and
long quadratic forms belonging to (Γ, e∞,S ).

Now let p = (x, `1, `2, . . . , Y3, y) be an arbitrary point of P(V ) belonging to E7(K). Suppose
first x 6= 0, in which case we may assume x = 1. Then p is in the null sets of ϕx,i, i = 1, 2, 3,
ϕx,ij, ij ∈ {23, 31, 12} and ψ1 determines the coordinates k1, k2, . . . , Y3, y unambiguously,
showing p belongs to AV (K,O′).
Now suppose x = 0 and (`1, `2, `3, X1, X2, X3) 6= (0, 0, 0, 0, 0, 0). Then we select a hex-
across Q containing e∞ and such that the vertex v ∈ V2 corresponding to an arbitrary
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non-zero coordinate in (`1, `2, `3, X1, X2, X3) has no neighbours in Q besides ∞. Then by
Lemma 10.13, the set {pσQ(a) | a ∈ K} is an affine line contained in E7(K), and by the
definition of σQ(a), the first coordinate of pσQ(a) is non-zero if a 6= 0. So p belongs to a
line entirely contained in E7(K) and intersecting AV (K,O′) in an affine line. It follows
that p ∈PV (K,O′).

Now suppose (x, `1, . . . , X3) = (0, . . . , 0) and (k1, k2, k3, Y1, Y2, Y3) 6= (0, 0, 0, 0, 0, 0). Then
we select an arbitrary vertex w adjacent to e∞ and also adjacent to the vertex v cor-
responding to an arbitrary non-zero coordinate in (k1, . . . , Y3). The argument of the
previous paragraph with now w in place of e∞ shows that p is contained in a projective
line contained in E7(K) intersecting PV (K,O′) in at least an affine line. Hence also
p ∈PV (K,O′).

It remains to show that the point p = (0, 0, . . . , 0, 1) belongs to PV (K,O′). This follows
from the fact (0, . . . , 0, 1, a) belongs to E7(K), for all a ∈ K, and hence to PV (K,O′).

The proposition is proved. �

The following corollary concludes the proof of Theorem 10.4.

Corollary 10.34 Assuming |K| > 2, we have PV (K,L′) ∼= G6,3(K) and PV (K,H′) ∼=
HS 6(K).

Proof Set

Q1 = {e1,2, e1,6, e2,2, e2,6, e3,2, e3,6, f1,2, f1,6, f2,2, f2,6, f3,2, f3,6}

and
Q2 = {e1,3, e1,5, e2,3, e2,5, e3,3, e3,5, f1,3, f1,5, f2,3, f2,5, f3,3, f3,5}.

ThenQ1 andQ2 are opposite hexacrosses. They determine unique symps ξ1 and ξ2, respec-
tively. According to Section 4.4 of [31], the set of points of E7(K) collinear to respective
maximal singular subspaces of ξ1 and ξ2 is the point set X of a subgeometry isomorphic
to D6,6(K). Now, each base point corresponding to a vertex of Γ2 not in Q1 ∪Q2 belongs
to X ; these generate a subspace U of dimension 31 of P(V ). By Proposition 6.7(H),
U ∩ E7(K) contains HS 6(K).

We claim that U ∩ E7(K) ≡HS 6(K). Indeed, suppose p ∈ U ∩ E7(K) does not belong to
HS 6(K). Then without loss of generality, we may assume that p is collinear to a unique
point p1 ∈ ξ1. Since the coordinates of p corresponding to the vertices of Q2 are 0, it
follows from Corollary 10.18 that p is at distance 2 from every point ei,jK, with ei,j ∈ Q1.
Hence p1 is collinear to every such point, a contradiction.

Now a point p ∈ V belongs to U if and only if its coordinates corresponding to the
vertices of Q1∪Q2 are 0. These coordinates correspond precisely to the components of O′
corresponding to x2, x3, x5 and x6. Hence if the first coordinate of p is 1, this is precisely if
p belongs to the image of the dual polar affine Veronese map restricted to the quaternion
subalgebra H′ of O′ obtained by putting x2 = x3 = x5 = x6 = 0 in the matrix form of an
arbitrary octonion. Consequently, AV (K,H′), and hence PV (K,H′), is contained in U .
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We now claim that U ∩ E7(K) ≡ PV (K,H′). It suffices to show that U ∩ E7(K) ⊆
PV (K,H′). Now, AV (K,H′) is precisely the set of points of HS 6(K) opposite the point
(0, . . . , 0, 1) (as follows from Corollary 10.18). Since every affine line of AV (K,H′) is
contained in a line of HS 6(K), the quadratic Zariski closure of AV (K,H′) is precisely
HS 6(K).

Hence we have shown that HS 6(K) ≡ U ∩ E7(K) ≡PV (K,H′).

The assertion about G6,3(K) follows similarly, now relying on the fact that G6,3(K) arises
as the set of points of HS 6(K) collinear to respective planes of two respective opposite
singular subspaces of projective dimension 5. The canonical choice for the latter (to make
the identification with L′ as above with H′) are the subspaces generated by the points
corresponding to the vertices e1,1, e2,1, e3,1, f1,1, f2,1, f3,1, and e1,4, e2,4, e3,4, f1,4, f2,4, f3,4, re-
spectively. The details are left to the reader. �

The same technique as in the previous proof can be used to show the following construction
results.

Corollary 10.35 Let V be the 32-dimensional vector space over K consisting of the di-
rect sum K4 ⊕ H′3 ⊕ K3 ⊕ H′3 ⊕ K. We label the standard basis and coordinates as in
Construction 10.20 restricting the standard basis of the split octonions O′ to those with
subscripts 0, 1, 4, 7 so as to obtain the split quaternions H′. Then the intersection of the
null sets in P(V ) of the following sixty-three quadratic forms is the point set of the half
spin variety HS 6(K):

xk1 + `2`3 −X1X1, xY1 +X2X3 − `1X1, k2X1 + `3Y1 +X2Y 3,
xk2 + `3`1 −X2X2, xY2 +X3X1 − `2X2, k3X1 + `2Y1 + Y 2X3,
xk3 + `1`2 −X3X3, xY3 +X1X2 − `3X3, k3X2 + `1Y2 +X3Y 1,
y`1 + k2k3 − Y1Y 1, yX1 + Y3Y2 − k1Y 1, k1X2 + `3Y2 + Y 3X1,
y`2 + k3k1 − Y2Y 2, yX2 + Y1Y3 − k2Y 2, k1X3 + `2Y3 +X1Y 2,
y`3 + k1k2 − Y3Y 3, yX3 + Y2Y1 − k3Y 3, k2X3 + `1Y3 + Y 1X2,

x10y11 + x11y17 − x21y20 − x27y21, x20y21 + x21y27 − x31y30 − x37y31,
x30y31 + x31y37 − x11y10 − x17y11, x14y10 + x17y14 − x20y24 − x24y27,
x24y20 + x27y24 − x30y34 − x34y37, x34y30 + x37y34 − x10y14 − x14y17,

and
xy + `1k1 − `2k2 − `3k3 −X1Y1 − Y 1X1,
xy + `2k2 − `3k3 − `1k1 −X2Y2 − Y 2X2,
xy + `3k3 − `1k1 − `2k2 −X3Y3 − Y 3X3.

Also, no quadratic form can be deleted, that is, the intersection of each proper subset of
the set of null sets of these sixty-three quadratic forms contains points not contained in
HS 6(K).

Corollary 10.36 Let V be the 20-dimensional vector space over K consisting of the di-
rect sum K4 ⊕ L′3 ⊕ K3 ⊕ L′3 ⊕ K. We label the standard basis and coordinates as in
Construction 10.20 restricting the standard basis of the split octonions O′ to those with
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subscripts 0 and 7 so as to obtain the split quadratic extension L′. Then the intersection
of the null sets in P(V ) of the following thirty-three quadratic forms is the point set of the
plane Grassmannian G6,3(K):

xk1 + `2`3 −X1X1, xY1 +X2X3 − `1X1, k2X1 + `3Y1 +X2Y 3,
xk2 + `3`1 −X2X2, xY2 +X3X1 − `2X2, k3X1 + `2Y1 + Y 2X3,
xk3 + `1`2 −X3X3, xY3 +X1X2 − `3X3, k3X2 + `1Y2 +X3Y 1,
y`1 + k2k3 − Y1Y 1, yX1 + Y3Y2 − k1Y 1, k1X2 + `3Y2 + Y 3X1,
y`2 + k3k1 − Y2Y 2, yX2 + Y1Y3 − k2Y 2, k1X3 + `2Y3 +X1Y 2,
y`3 + k1k2 − Y3Y 3, yX3 + Y2Y1 − k3Y 3, k2X3 + `1Y3 + Y 1X2,

and
xy + `1k1 − `2k2 − `3k3 −X1Y1 − Y 1X1,
xy + `2k2 − `3k3 − `1k1 −X2Y2 − Y 2X2,
xy + `3k3 − `1k1 − `2k2 −X3Y3 − Y 3X3.

Also, no quadratic form can be deleted, that is, the intersection of each proper subset of
the set of null sets of these thirty-three quadratic forms contains points not contained in
G6,3(K).

We can now verify the axioms (ALV1), (ALV2) and (ALV3) for the varieties G6,3(K),
HS 6(K) and E7(K). We leave the straightforward case of the Segre variety S1,1,1(K) to
the reader.

Theorem 10.37 Let Y be the point set of G6,3(K), HS 6(K), or E7(K). Let Υ be the set
of all subspaces that are generated by some symp of the respective varieties. Then (Y,Υ)
is an abstract Lagrangian variety of type 2, 4, 8, respectively, and index 1, 2, 4, respectively.

Proof We show the assertion for E7(K). The other cases follow by restriction, as in
Corollaries 10.36 and 10.35.

We begin by noting that the group G introduced in Definition 10.15 is the little projective
group of the corresponding building of type E7. Hence G acts as a group with a natural
BN-pair on E7(K).

We first claim that (Y,Υ) is an abstract variety. Indeed, let S be any symp of E7(K). By
the mentioned transitivity of G we may assume that S contains the points corresponding
to the vertices e∞ and f1. The proof of Proposition 10.19 implies that 〈S〉 is generated
by the points corresponding to the hexacross determined by e∞ and f1, and S is given by
restricting the null set of ϕx,1 to 〈S〉. The latter clearly does not contain any other point
of E7(K). The claim is proved.

Now (ALV1) follows from Lemma 10.7 and Proposition 10.17.

In order to show (ALV2), we note that the transitivity properties of G imply that any
pair of symps can be simultaneously mapped into the standard apartment (given by the
Gosset graph). Since the vertices of the Gosset graph label the standard basic vectors of
V , and the said symps correspond to the hexacrosses, Axiom (ALV2) holds.

Finally, (ALV3) follows directly from Lemma 10.7 and the transitivity of the group G on
the point set of E7(K). �
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10.5 The ovoidal case: intersection of quadrics

Just like Theorem 10.4 also holds for the ovoidal case, Theorem 10.6 also has an analogue
for the ovoidal case. In the ovoidal case, the list (L) and one quadratic form from the list
(M) suffice. Explicitly:

Theorem 10.38 Let A be a finite-dimensional alternative quadratic division algebra over
K and set d = dimKA. Let V be the (6d+ 8)-dimensional vector space over K consisting
of the direct sum K4⊕A3⊕K3⊕A3⊕K. We label the coordinates according to the generic
point (x, `1, `2, `3, X1, X2, X3, k1, k2, k3, Y1, Y2, Y3, y). Then the intersection of the null sets
in P(V ) of the following 12d + 7 quadratic forms, abbreviated as in Definition 10.24, is
the point set of the dual polar Veronese variety V (K,A):

ϕx,1 = xk1 + `2`3 −X1X1, ϕx,23 = xY1 +X2X3 − `1X1, ϕ23 = k2X1 + `3Y1 +X2Y 3,
ϕx,2 = xk2 + `3`1 −X2X2, ϕx,31 = xY2 +X3X1 − `2X2, ϕ32 = k3X1 + `2Y1 + Y 2X3,
ϕx,3 = xk3 + `1`2 −X3X3, ϕx,12 = xY3 +X1X2 − `3X3, ϕ31 = k3X2 + `1Y2 +X3Y 1,
ϕy,1 = y`1 + k2k3 − Y1Y 1, ϕy,32 = yX1 + Y3Y2 − k1Y 1, ϕ13 = k1X2 + `3Y2 + Y 3X1,
ϕy,2 = y`2 + k3k1 − Y2Y 2, ϕy,13 = yX2 + Y1Y3 − k2Y 2, ϕ12 = k1X3 + `2Y3 +X1Y 2,
ϕy,3 = y`3 + k1k2 − Y3Y 3, ϕy,21 = yX3 + Y2Y1 − k3Y 3, ϕ21 = k2X3 + `1Y3 + Y 1X2

and ψ1 = xy + `1k1 − `2k2 − `3k3 −X1Y1 − Y 1X1.
Also, no quadratic form can be deleted, that is, the intersection of each proper subset of the
set of null sets of these 12d+7 quadratic forms contains points not contained in V (K,A).

Proof The quadratic Zariski closure of the image of the affine dual polar Veronese map
has been explicitly calculated in [16]. In our notation and coordinates, the variety V (K,A)
consists of the following points, divided into eight types (and we use the same numbering
as in Section 3 of [16], but the points have undergone a mild coordinate change):

Type VIII: These points are exactly the points in the image of the affine dual polar
Veronese map.

Type VII: For each 5-tuple (Y1, X2, X3, k2, k3) ∈ A3 ×K2, the point

(0, 1, X3X3, X2X2, X3X2, X2, X3, k2X2X2 + k3X3X3 + Y 1(X2X3) + (X3X2)Y1, k2, k3,

Y1,−k3X2 −X3Y 1,−k2X3 − Y 1X2, Y1Y 1 − k2k3).

Type VI: For each 4-tuple (X1, Y2; k1, k3) ∈ A2 ×K2, the point

(0, 0, 1, X1X1, X1, 0, 0, k1, k3X1X1, k3,−k3X1, Y2,−X1Y 2, k1k3 − Y2Y 2).

Type IV: For each triple (Y3; k1, k2) ∈ A×K2, the point

(0, 0, 0, 1, 0, 0, 0, k1, k2, 0, 0, 0, Y3, Y3Y 3 − k1k2).

Type V: For each triple (Y2, Y3; y) ∈ A2 ×K, the point

(0, 0, 0, 0, 0, 0, 0, 1, Y3Y 3, Y2Y 2, Y 2Y 3, Y2, Y3, y).
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Type III: For each pair (Y1; y) ∈ A×K, the point (0, 0, 0, 0, 0, 0, 0, 0, 1, Y1Y 1, Y1, 0, 0, y).

Type II: For each y ∈ K, the point (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, y).

Type I: The point (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

One easily checks that all the points just mentioned are in the null set of all the quadratic
forms mentioned in the statement.

Conversely, let the point p with coordinates (x, `1, `2, `3, X1, X2, X3, k1, k2, k3, Y1, Y2, Y3, y)
be a point in the common null set of all the said quadratic forms.

(VIII) Suppose x 6= 0. Then we set x = 1. The quadratic forms ϕx,i, i = 1, 2, 3, 23, 31, 12,
and ψ1 determine k1, k2, k3, Y1, Y2, Y3 and y uniquely, given `1, `2, `3, X1, X2, X3 and
show that p belongs to the image of the affine dual polar Veronese map. Hence p is
of Type VIII.

(VII) Suppose now x = 0 and `1 6= 0, so we may assume `1 = 1. Then ϕx,2, ϕx,3, ϕy,1,
ϕx,23, ϕ31, ϕ21 and ψ1 uniquely determine `3, `2, y,X1, Y2, Y3 and k1, respectively, in
terms of Y1, X2, X3, k2, k3. Precisely: `3 = X2X2, `2 = X3X3, y = Y1Y 1 − k2k3,
X1 = X3X2, Y2 = −k3X2 −X3Y 1, Y3 = −k2X3 − Y 1X2 and

k1 = `2k2 + `3k3 +X1Y1 + Y 1X1 = k2X3X3 + k3X2X2 + (X3X2)Y1 + Y 1(X2X3),

respectively, which exactly yields a point of Type VII.

(VI) Suppose x = `1 = 0, and assume `2 = 1. Similarly as above, ϕx,1, ϕx,2, ϕx,3, ϕy,2, ϕ32, ϕ12

and ψ1 uniquely yield `3, X2, X3, y, Y1, Y3 and k2, respectively. More precisely,
`3 = X1X1, X2 = 0 = X3, y = Y2Y 2 − k1k3, Y1 = −k3X1, Y3 = −X1Y 2 and

k2 = −`3k3 −X1Y1 − Y 1X1 = −k3X1X1 + k3X1X1 + k3X1X1 = k3X1X1,

respectively, which exactly gives rise to a point of Type VI.

(IV) Suppose x = `1 = `2 = 0, and assume `3 = 1. Then ϕx,i, i = 1, 2, 3, yields
X1 = X2 = X3 = 0, and ψ1, ϕ23 and ϕ13 yield k3 = 0, Y1 = 0 and Y2 = 0,
respectively. Finally, ϕy,3 yields y = Y3Y 3 − k1k2 and p belongs to Type IV.

(V) Suppose x = `1 = `2 = `3 = 0, and assume k1 = 1. Then again ϕx,i, i = 1, 2, 3,
yields X1 = X2 = X3 = 0. Also, ϕy,2, ϕy,3 and ϕy,32 yield k3 = Y2Y 2, k2 = Y3Y 3

and Y1 = Y 2Y 3, respectively. We obtain a point of Type V.

(III) Suppose x = `1 = `2 = `3 = k1 = 0, and assume k2 = 1. As before, we deduce
X1 = X2 = X3 = 0 and φy,i, i = 2, 3, yields Y2 = Y3 = 0. Then ϕy1 yields k3 = Y1Y 1

and we have a point of Type III.

(I-II) Suppose x = `1 = `2 = `3 = k1 = k2 = 0. Then, similarly as above, we deduce
X1 = X2 = X3 = Y1 = Y2 = Y3 = 0 and we clearly have a point of Type II (if
k3 6= 0) or Type I (if k3 = 0).
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In order to show that the list of quadratic forms is minimal, we note that every quadratic
form of the list contains a term whose factors are only together in one term in that unique
quadratic form. For instance, xY3 only appears in ϕx,12 (in other words, a point with
all coordinates 0, except x and Y3, is automatically in the null set of all other quadratic
forms). If we would delete one of the d quadratic forms bundled together in ϕx,12 from the
list, then the point with all coordinates 0 except x = 1 and the corresponding coordinate
of Y3 equal to 1 would belong to the intersection of the remaining null sets, but not to
V (K,A).

This completes the proof of the theorem. �

We now verify the axioms of an abstract Lagrangian variety for the Veronese representa-
tion of a dual polar space of rank 3 related to an alternative quadratic division algebra.

Theorem 10.39 Let Y be the Veronese representation V(K,A) in P6d+7(K) of the dual
polar space C3,3(K,A), where A is a quadratic alternative division algebra over K with
dimK A = d. Let Υ be the set of all subspaces of P6d+7(K) that are generated by the symps
of C3,3(K,A) (as a parapolar space) in this representation. Then (Y,Υ) is an abstract
Lagrangian variety of type d and index 0.

Proof It is noted right after Lemma 6.1 in [16] that V(K,A) admits the full automor-
phism group of the corresponding (dual) polar space. By Lemma 6.2 of [16] collinearity
in V(K,A) coincides with collinearity in C3,3(K,A).

We first claim that (Y,Υ) is an abstract variety, that is, the subspace generated by any
symp S intersects V(K,A) precisely in S. Indeed, by the mentioned transitivity, we may
assume that S contains the points (1, 0, . . . , 0) and (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0). Then
the null set of ϕx,1 restricted to the subspace with equations `1 = k2 = k3 = y = X2 =
X3 = Y1 = Y2 = Y3 = 0 is S, and 〈S〉 clearly does not contain any other point of V(K,A).

By Lemma 5.6 of [16] and the transitivity of AutV(K,A) on pairs of points at mutual
distance 3, we have Tx ∩ Ty = ∅ when δ(x, y) = 3, which implies that (ALV1) holds. This
now immediately implies that dimTx ≤ 3d+ 3, for all x, that is (ALV3) holds.

We finally verify (ALV2). Since AutV(K,A) acts as a permutation group of (permutation)
rank 4 on the set of symps, it suffices to check the axiom for only three specific cases, one
where the two symps intersect in a line and two where the two symps are disjoint. The
former situation is given by the two quadratic forms ϕx,1 and ϕx,2 (and the corresponding
host spaces indeed intersect exactly in a line) and the latter by ϕx,1 and ϕy,1 or ϕy,21 (and
the corresponding host spaces are clearly disjoint).

This completes the proof of the theorem. �

10.6 Application to the varieties of the second row of the FTMS

Denote by W the 27-dimensional subspace of V generated by the ei and the ei,j, i = 1, 2, 3,
j ∈ {0, 1, . . . , 7}. If follows from Corollary 10.18 that W intersects E7(K) in the Cartan
variety E6(K). Then we obtain the following elegant constructions of E6(K). Note that
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it is known that the latter can be described as the intersection of 27 quadrics, which
are even explicitly given in [7]. Here, we provide a combinatorial way to “remember”
the equations, and a compact algebraic way to write them down. Both follow from our
construction of E7(K) above by restricting to P(W ).

Corollary 10.40 Let Γ1 be the Schäfli graph and let S1 be a Hermitian spread of Γ1.
Let a basis of W be indexed by the vertices of Γ1, say (ev)v∈V1. For each set of vertices
{v−5, . . . , v−1, v1, . . . , v5} of a pentacross D, with vi not adjacent to v−i, i ∈ {1, . . . , 5},
and where we have chosen the indices so that {v−1, v1} belongs to a member of S1, we
define the quadratic form ϕD, in coordinates X−1X1−X−2X2−X−3X3−X−4X4−X−5X5,
where Xi is the coordinate corresponding to the basis vector evi, i ∈ {−5, . . . ,−1, 1, . . . , 5}.
Then E6(K) is the common null set of the quadratic forms ϕD, for D ranging over all
pentacrosses of Γ1.

Proof With the notation of Subsection 10.2.2, this follows from restricting the quadratic
forms belonging to (Γ2,∞,S ′) to W . �

The second consequence also holds in the ovoidal case, so we state it as such. We denote
by V2(K,A) the usual Veronese representation of the projective plane P2(A), for A a
quadratic alternative division algebra over K.

Corollary 10.41 Let A be a finite dimensional quadratic alternative algebra over K. Set
d = dimKA. Identify K3d+3 with K × K × K × A × A × A. Then the set of points of
P3d+2(K) with generic coordinates (x1, x2, x3, X1, X2, X3), xi ∈ K, Xi ∈ A, i = 1, 2, 3,
satisfying each of the quadratic equations XiX i = xi+1xi+2 and xiX i = Xi+1Xi+2, for
all i ∈ {1, 2, 3} mod 3, is the point set of the Segre variety S2,2(K) if A ∼= L′, the line
Grassmannian variety G6,2(K) if A ∼= H′, the Cartan variety E6(K) if A ∼= O′ and the
Veronese variety V2(K,A) if A is a division algebra.

Proof The proof for the hyperbolic case is similar to the proof of Corollary 10.40, now
using the explicit forms of the quadratic forms containing the coordinate x in List (L),
possibly restricted to the appropriate subspace as in the proof of Corollary 10.34. The
ovoidal case follows similarly from Theorem 10.38. �

Corollary 10.42 Let |K| > 2. Then the quadratic Zariski closure of the image of the
affine Veronese map µ : A × A → W : (X2, X3) 7→ (1, X2X2, X3X3, X2X3, X3, X2) is
S2,2(K) if A ∼= L′, it is G6,2(K) if A ∼= H′, it is E6(K) if A ∼= O′, and it is V2(K,A) if A
is a division algebra.

Proof Clearly, every point in the image of µ satisfies the quadratic equations given in
Lemma 10.41. A direct computation shows that a point belongs to the quadratic Zariski
closure of the image of µ and not to the image of µ if and only if it can be written as
(0, X2X2, X3X3, X2X3, 0, 0), which also satisfies the said quadratic equations. Also, it is
easy to check that a point (1, y2, y3, Y1, Y2, Y3) satisfies the equations of Lemma 10.41 if
and only if it can be written as (1, X2X2, X3X3, X2X3, X3, X2). Now the corollary follows.

�
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Remark 10.43 It is easy to show that, if A is associative, then the quadratic Zariski
closure of the image of µ coincides with the image of the projective Veronese map µ :
A × A × A → W : (X1, X2, X3) 7→ (X1X1, X2X2, X3X3, X2X3, X3X1, X1X2). We leave
the straightforward proof to the reader.

Remark 10.44 Corollaries 10.41 and 10.42 also hold for infinite dimensional quadratic
alternative division algebras A over K, in which case A is an inseparable field extension
of K where charK = 2.

Acknowledgment. The research leading to the first part of this paper was carried out
in Auckland while the first and third author were trapped in their accommodation by lock
down due to COVID-19, still graciously enjoying the help and hospitality of the second
author, who is funded by New Zealand Marsden Fund grant MFP-UOA-2122.

Our gratitude also goes to the referee for their willingness and courage to read in detail
through this long paper.

References

[1] N. Bourbaki, Algèbre, Chapitre 9 in Éléments de mathématique, Springer, 1959.
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