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1 Introduction

In [21], the second and third author of this paper obtained a classification of
the split varieties corresponding to the second row of the Freudenthal-Tits magic
square over arbitrary fields. The method used starts from an axiomatic geomet-
ric approach directly inspired by common basic properties of these varieties: the
existence of an abundance of split quadrics, the smoothness of the varieties and
the boundedness of the dimension (via the tangent space at each point) in terms
of the dimension of the aforementioned quadrics (see below for the precise ax-
ioms). The lack of any assumption on the dimension of the whole space implied a
slightly longer list in the conclusion; basically also some specific subvarieties of
these split varieties satisfy the axioms. Over algebraically closed fields of charac-
teristic 0 these split varieties are known as Severi varieties, and this classification
recovers Zak’s classification [28] of Severi varieties which was proved using dif-
ferent methods (algebraic geometry). Zak’s result has its origins in Severi’s 1901
characterization of the complex quadric surface [22].

On the other side of the spectrum, namely when the Witt index is minimal, in [16]
the same axiomatic setup for quadrics without lines was used to characterize the
Veronese representations of projective planes over quadratic alternative division
algebras. Now, these Veronese representations and the analogues of the Severi
varieties over arbitrary fields are closely related: generically they correspond to
non-split and split, respectively, forms of the same algebraic groups, namely those
of types A2 (only the split form), A2×A2, A5 and E6. Whence the need to check
whether or not other forms of those groups give rise to varieties with similar be-
haviour. “Similar” means in a global setting encompassing the two separate ones.

An obvious way to achieve this global setting is to omit the assumption that the
quadrics are split, or non-ruled, respectively. Intuitively, possible additional exam-
ples are expected to satisfy the property that all quadrics are isomorphic. However,
we here consider the most general situation in which the quadrics not only can be
non-isomorphic, they also need not have the same Witt index (but inherent to the
axioms is the property that all quadrics span a subspace of equal dimension). In
this most general setup, we show that only the aforementioned varieties occur.
This yields a very neat and complete geometric characterization of the varieties of
the second row of the Freudenthal-Tits Magic Square. It is also an example of how
simple geometric axioms give rise to a class of more advanced algebraic objects
with a large symmetry group, notably containing (isotropic forms of) algebraic
groups of exceptional type.

There are two reasons why we are now able to prove the current Main Theorem
although it was already stated as a conjecture in [21]. The first one is that an
approach to include degenerate quadrics in the picture in [10] generated a new
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technique, which seems to work particularly well in our setting. Roughly, it is
demonstrated in Lemmas 5.1 and 5.2. The second reason is that we now have at
our disposal a classification of parapolar spaces which are so-called 0-lacunary
[8, 9], see Definition 4.6. We use that result in a crucial way.

In Section 3 we illustrate the power of combinatorial methods in algebra by pro-
viding a geometric explanation for the well-known fact that the stabilizer of D5,5(K)
or E6,1(K) in P15(K) or P26(K), respectively, acts with two or three orbits, respec-
tively, on the points (and likewise the hyperplanes) of the projective space. This
extends work of Cooperstein and Shult [5]. Although not logically needed for the
rest of our paper these results are highly related and interesting in their own right.

Below we outline the axiomatic setup and we discuss the Main Theorem in some
greater detail.

1.1 Axiomatic setup

Projective quadrics and ovoids. For a (commutative) field K and a non-zero
cardinal number n, we denote by Pn(K) the n-dimensional projective space over
K. The subspace generated by a family F of subsets of points is denoted by
〈S | S ∈F 〉. A non-degenerate quadric Q in Pn(K), n finite, is the null set of an
irreducible quadratic homogeneous polynomial in the (homogeneous) coordinates
of points of Pn(K). The projective index of Q is the (common) dimension of the
maximal subspaces of Pn(K) entirely contained in Q (in the literature, one finds
more commonly the Witt index, which is the projective index plus one; we prefer to
work in a projective setting and hence express all dimensions projectively instead
of in the underlying vector space). A tangent line to Q (at a point x ∈ Q) is a line
which has either only x or all its points in Q. The union of the set of tangent lines
to Q at one of its points x is a hyperplane of Pn(K), denoted by Tx(Q). An ovoid
O of Pn(K) is a set of points which behaves like a quadric of projective index 0:
each line of Pn(K) intersects O in at most two points, and the union of the set of
tangent lines (defined as above) at each point is a hyperplane of Pn(K).

Axiomatic Veronese varieties. Let (X ,Ξ) be a pair, where X is a spanning point
set of a projective space PN(K) over some field K and with N ∈ N∪{∞}, and
where Ξ is a collection of at least two different (d +1)-dimensional subspaces of
PN(K), where 1≤ d < ∞, such that for each ξ ∈Ξ, the set X(ξ ) := X ∩ξ is a non-
degenerate quadric or ovoid generating ξ . We denote Tx(X(ξ )) also by Tx(ξ ). A
subspace of PN(K) is called singular if it has all its points in X ; the set of singular
lines is denoted by L .

The tangent space at x ∈ X to X is the subspace Tx generated by the sets {Tx(ξ ) |
x ∈ ξ ∈ Ξ} and {L | x ∈ L ∈L }. Usually only the former set is used to define
Tx, as in view of (MM1) below, the latter set is automatically contained in what
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is generated by the former set. The reason that we use both sets is that our in-
ductive approach leads to structures in which (MM1) holds in a weaker form (see
Section 4).

Definition 1.1. We say that the pair (X ,Ξ) is an axiomatic Veronese variety of
type d (or, briefly, an AVV of type d) if it satisfies the following axioms:

(MM1) Any pair of points x1,x2 ∈ X lies in at least one element of Ξ;
(MM2) if ξ1,ξ2 ∈ Ξ are distinct, then ξ1∩ξ2 ⊆ X ;
(MM3) for each x ∈ X , dimTx ≤ 2d.

The letters MM refer to Mazzocca and Melone, as they introduced these axioms in
1984 ([14]) in their most simplified form, i.e., for quadrics which are finite conics,
to characterise the quadric Veronese variety in P5(K) for finite fields K. We refer
to Section 2 for an overview of the evolution of a problem in finite geometry to
the ultimate general setting introduced in the current paper. In that section we also
provide explicit descriptions of some of the examples, and explain the context of
the Freudenthal-Tits magic square.

1.2 Main Result

In [16] it has been shown that AVVs of type d such that all members of Ξ are
ovoids, exist precisely if d is a power of 2; if char(K) 6= 2, then d ≤ 8. In these
cases we call the AVV a Veronese cap, since the examples arise as the image of
a projective plane over a quadratic alternative division algebra under the standard
Veronese map. Moreover, it is shown in [21] that AVVs of type d such that all
members of Ξ are split quadrics, that is, quadrics with projective index bd

2c, exist
precisely for d = 1,2,4,6,8, and a complete classification is obtained. These
AVVs are called split.

In the present paper, we show that there are no AVVs of type d other than these:

Main Theorem. An axiomatic Veronese variety (AVV) of type d is either split or
a Veronese cap, i.e., either the quadrics are split (of projective index bd

2c) or the
quadrics are ovoids.

Using the main results of [16] and [21], we can formulate the Main Theorem
more explicitly. For the definitions and descriptions of the varieties we refer to
Section 2.

Theorem 1.2. An axiomatic Veronese variety (AVV) of type d in PN(K) is projec-
tively equivalent to one of the following:

d = 1. The quadric Veronese variety V2(K), and then N = 5;
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d = 2. the Segre variety S1,2(K) (N = 5), S1,3(K) (N = 7) or S2,2(K) (N = 8);
d = 4. the line Grassmannian variety G4,1(K) (N = 9) or G5,1(K) (N = 14);
d = 6. the half-spin variety D5,5(K), and then N = 15;
d = 8. the Cartan variety E6,1(K), and then N = 26;
d = 2` the Veronese variety V2(K,A), for some d-dimensional quadratic alter-

native division algebra A over K. Moreover, if the characteristic of the
underlying field is not 2, then d ∈ {1,2,4,8}. Here, N = 3d +2.

Note that the case d = 1 is also included in the last case, d = 2`. We repeat it
though, as the quadric Veronese variety is both split and a Veronese cap.

1.3 Structure of the proof

Let (X ,Ξ) be an AVV of type d. For each ξ ∈ Ξ, its index wξ is the projective
index of X(ξ ), if X(ξ ) is a quadric, and 0 if X(ξ ) is an ovoid. For each point x∈X ,
the set Wx := {wξ | x∈ ξ ∈Ξ} is called a local index set of (X ,Ξ); the global index
set W is the union of all these Wx. We will distinguish cases depending on these
index sets.

Our main technique uses an inductive argument to reduce both d and the index
set, based on the local structure of the AVVs. Indeed, we derive conditions under
which the point-residue of (X ,Ξ) at a point x ∈ X is an AVV (the main problem
being Axiom (MM3)), which then necessarily is of type d− 2 and has index set
{w− 1 | w ∈Wx,w ≥ 1}. In the cases where this technique fails, we require a
totally different and more inventive approach. More precisely, we proceed as
follows.

If W = {0}, then (X ,Ξ) is a Veronese cap (as was proved in [16]), so we will
assume that there is a point x ∈ X contained in at least one member of Ξ of index
at least 1. Our first aim is to show that there are no points x ∈ X contained in
exactly one member of Ξ of index at least 1 (cf. Section 6), which guarantees that
all point-residues are sufficiently rich in order to deduce properties. Knowing this,
we continue systematically:

• Case 1: Suppose first that there is a point x ∈ X with max(Wx) = 1, and so
d≥ 2. In this case, a rather general argument using normal rational cubic scrolls
excludes values of d exceeding 3. The case d = 3 can be ruled out by relying
on a result of the second and third author ([20]). The case where d = 2 leads to
the existing cases where all quadrics have index 1 are split, and then the main
result of [21] says that (X ,Ξ) is one of the Segre varieties S1,2(K), S2,2,(K)
and S1,3(K) (cf. Section 2).
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• Case 2: Secondly, suppose that there is a point x ∈ X with max(Wx) = 2, and
so d ≥ 4. As in the previous case, a rather general argument rules out the cases
d ≥ 6. The case where d = 5 does not require much additional effort. The
case where d = 4 leads to existing cases, this time its quadrics are all split and
of projective index 2. Again, the main result of [21] says that (X ,Ξ) is a line
Grassmannian Gn,1(K) for n ∈ {4,5} (cf. Section 2).

• Case 3: Finally, we may assume that for each point x ∈ X holds that either
Wx = {0} or max(Wx) ≥ 3 and the latter option occurs at least once, so d ≥ 6.
We consider a point x ∈ X such that w∗ := max(W ) ∈Wx (note that w∗ ≥ 3).
The corresponding point-residue is a (possibly weak) AVV, and the induction
hypothesis then reveals that all members of Ξ through x are split and of the
same index w∗. From this, we will deduce that each member of Ξ is either
of index w∗ and split, or has index 0. Our final task is to get rid of the index
0 members. When this is accomplished, once again the main result of [21]
implies that (X ,Ξ) is either the half spin variety D5,5(K) (in which case d = 6
and the quadrics have index 3) or the Cartan variety E6,1(K) (in which case
d = 8 and the quadrics have index 4) (cf. Section 2).

Before embarking on the proof, we give an overview of the involved varieties
and provide more motivation and background of the problem in Section 2. After-
wards, in Section 4, we fix notation and show some general properties of AVVs.
In Section 5 we gather technical properties of some specific varieties that we will
encounter later on.

2 History, motivation and examples

In 1984, Mazzocca & Melone [14] introduced the axioms (MM1), (MM2) and
(MM3) for d = 1, N = 5 and merely in the finite case, that is, for sets of points
in a finite projective space of dimension 5. Using our present terminology, they
show in [14] that finite AVVs of type 1 in Galois spaces of dimension 5 are quadric
Veronese varieties. As noted by Hirschfeld & Thas [11], their proof for the case
of even characteristic contains a flaw and this was corrected in [11]. Cooper-
stein, Thas & Van Maldeghem [6] introduced Hermitian Veronese caps over finite
fields and, with the current terminology, classified finite AVVs of type 2 which
are Veronese caps. Then the second and third author classified in [17] all AVVs of
type 1, for the first time including in general the infinite case. The same authors
also classified in [18] all Veronese caps of type 2. Thus far only Veronese caps
had been classified. The first paper dealing with ruled quadrics is [19], where the
authors classified all AVVs of type 2, even including a generalization using de-
generate quadrics. Meanwhile Krauss [15] classified Veronese caps of type 4 over
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fields admitting exactly two quadratic residue classes, showcasing the hardness of
the problem in general. Using some ideas of Krauss’ thesis, and some additional
ones, Krauss, Schillewaert & Van Maldeghem managed to classify all Veronese
caps of arbitrary type (including the infinite-dimensional case rewording (MM3)
slightly). Around the same time, the second and third author [21] classified all
split AVVs, explicitly conjecturing the Main Result of the present paper.

One of the main reasons why the split AVVs were considered in the first place was
because it became clear in [19] that this case has a link with the Freudenthal-Tits
Magic Square (FTMS). The split AVVs of type 1 and 2 are exactly the varieties
appearing in the first two cells of the second row of Tits’ geometric version of
the FTMS, see page 142 in [25], hinting at the fact that the other varieties of the
second row also qualify as split AVVs. The eventual classification [21] revealed
that certain subvarieties of those are also split AVVs. On top of that, the so-
called non-split geometric version of the FTMS contains, in the second row, the
Veronese representations of the projective planes over quadratic alternative divi-
sion algebras. Since both the split AVVs and Veronese caps are strongly linked to
the second row of the FTMS, it is highly desirable to find a unified form of the
axiom systems. This is done in the present paper.

Now we introduce the varieties mentioned in Theorem 1.2. Let K be an arbitrary
field.

Quadric Veronese varieties — The quadric Veronese variety Vn(K), n≥ 1, is the
set of points in P(

n+2
2 )−1(K) obtained by taking the images of all points of Pn(K)

under the Veronese mapping, which maps the point (x0, . . . ,xn) of Pn(K) to the
point (xix j)0≤i≤ j≤n of P(

n+2
2 )−1(K). If n = 2, then it is an AVV of type 1, and all

AVVs of type 1 arise this way.

Segre varieties — The Segre variety Sk,`(K) of Pk(K) and P`(K) is the set of
points of Pk`+k+`(K) obtained by taking the images of all pairs of points, one in
Pk(K) and one in P`(K), under the Segre map

σ(〈(x0,x1, . . . ,xk),(y0,y1, . . . ,y`)〉) = (xiy j)0≤i≤k;0≤ j≤`.

If (k, `)∈ {(1,2),(1,3),(2,2)}, then Sk,`(K) is a split AVV of type 2, and all split
AVVs of type 2 arise this way.

Line Grassmannian varieties — The line Grassmannian variety Gm,1(K), m≥ 2,

of Pm(K) is the set of points of Pm2+m−2
2 (K) obtained by taking the images of all

lines of Pm(K) under the Plücker map

ρ(〈(x0,x1, . . . ,xm),(y0,y1, . . . ,ym)〉) =


∣∣∣∣∣∣∣
xi x j

yi y j

∣∣∣∣∣∣∣


0≤i< j≤m

.
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If m ∈ {4,5}, then Gm,1(K) is a split AVV of type 4, and every split AVV of type
4 arises this way.

Half-spin varieties — An algebraic description of half-spin varieties in full gen-
erality is due to Chevalley [3], see also the recent reference [13]. A geometric
approach was taken in [27]. Since we only need the case of type D5 it is more
convenient to follow the latter approach.

Let U1 and U2 be two disjoint 7-dimensional subspaces in P15(K), respectively
containing hyperbolic (projective index 3) quadrics Q1 and Q2. Let τ be a triality
of type Iid (with the terminology of [24]) of Q1 and let ι be a linear isomorphism
from Q1 to Q2, and set ϕ = τι . Note that, for each point p ∈ Q1, the image pϕ is
a 3-space belonging to one natural system of generators of Q2.

The half-spin variety D5,5(K) consists of all points of P15(K) that contained in a
line which intersects U1 in a point p∈Q1 and U2 in a point q∈ pϕ . These varieties
are the only split AVVs of type 6.

The Cartan variety — Since we will not need the precise definition of the variety
E6,1(K), which is the projective version of the well known 27-dimensional module
of the (split) exceptional group of Lie type E6, we simply refer to the literature
here. Aschbacher [1] provides an algebraic description, Cohen [4] provides a
construction using intersections of quadrics (with explicit equations).

The varieties

V2(K) S2,2(K) G5,1(K) E6,1(K)

form the second row of the FTMS, split version.

The Veronese varieties — These varieties will be of little importance in the rest
of the paper. Let us limit ourselves by mentioning that each finite-dimensional
quadratic alternative division algebra A over K, say dimKA= j, defines a unique
Veronese variety V2(K,A) in P3 j+2(K) using the standard Veronese map. Also,
V2(K,K) = V2(K), and if L is a quadratic Galois extension of K, H a quater-
nion division ring with center K containing L, and O a Cayley algebra over K
containing H, then the Veronese varieties

V2(K,K) V2(K,L) V2(K,H) V2(K,O)

form the second row of the FTMS, non-split version.

As can easily been observed, all examples of AVVs of type d in PN(K) satisfy
N ≤ 3d + 2. In fact the parameters of all Veronese caps satisfy the equality
N = 3d + 2, as do most examples in the split case, except for the Segre varieties
S1,2(K) and S1,3(K), the line Grassmannian G4,1(K), and the half-spin variety
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D5,5(K). This is related to the theory of Severi varieties, from which we derive
that, if K is algebraically closed, then the inequality N < 3d + 2 readily implies
that every point of Pn(K) is contained in a secant line of the variety (a secant
line, in our case, is a line of PN(K) intersecting the variety in exactly two points).
However, we will need this property for arbitrary fields. For the most involved
variety, namely D5,5(K), it follows from the fact that the automorphism group has
only two orbits on the projective points, as is shown in [12]. However, we present
a more or less unified and purely geometric proof allowing for an interesting di-
gression afterwards.

Proposition 2.1. Let (X ,Ξ) be one of the following AVVs: S1,2(K), S1,3(K),
G4,1(K), D5,5(K). Then every point of the ambient projective space P is contained
in a secant, that is, a line of P intersecting X in exactly two points.

Proof. (i) If (X ,Ξ)∼= S1,n(K), then X contains two disjoint singular n-spaces. It
follows immediately that each point of P2n+1(K) not in X is contained in a unique
line meeting both planes in a point. This holds for all n≥ 1.

(ii) If (X ,Ξ)∼= G4,1(K), then we can select a member ξ ∈Ξ and a disjoint singular
3-space Σ. If we identify G4,1(K) with the line Grassmannian of the projective
space P4(K), then Q := X(ξ ) corresponds to all lines in a 3-space U of P4(K),
whereas Σ corresponds to the set of lines through a point p of P4(K) not in U .
Each line L of P4(K) not in U and not through p is contained in a unique planar
line pencil with vertex x := L∩U and containing the lines 〈x, p〉 and 〈p,L〉∩U . It
follows that, if q ∈ Q corresponds to the line Lq in U , and if M is the singular line
in Σ corresponding to the planar line pencil in P4(K) with vertex p in the plane
〈p,Lq〉, then the plane 〈q,M〉 is entirely contained in X .

Now let z be any point of P (and we may assume z /∈ X). If z ∈ 〈Q〉, then clearly z
is on a secant of Q. If z /∈ 〈Q〉, then it is contained in a unique line K intersecting
〈Q〉 in a point zQ and Σ in a point zΣ. If zQ ∈ Q, then we are done. If not, then zQ

is on some secant S of Q; let u,v ∈ S∩Q, u 6= v. By the previous paragraph, there
are planes πu and πv containing u,v, respectively, intersecting Σ in lines Lu,Lv,
respectively. Note that Lu and Lv do not intersect as u and v are not collinear
on Q. It follows that there exists a line K containing zΣ and intersecting both Lu

and Lv non-trivially, say in the points pu and pv, respectively. Hence there is a
line through z intersecting the lines 〈u, pu〉 and 〈v, pv〉 non-trivially (as z and these
lines are contained in the 3-space spanned by S and K).

(iii) Let (X ,Ξ) ∼= D5,5(K). This case is treated similarly as the previous one,
now using the construction above with the quadrics Q1,Q2. Each point x of Q1
defines a unique 4-space Ux = 〈x,xϕ〉 intersecting Q2 in the singular 3-space 〈xϕ〉.
A point z /∈ (U1 ∪U2) is contained in a line 〈z1,z2〉, with zi ∈ 〈Qi〉, i = 1,2. The
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point z1 is on a secant 〈u,v〉, with u,v ∈ Q1 (possibly z ∈ {u,v}), and z2 is on a
secant 〈pu, pv〉, with pu ∈Uu and pv ∈Uv. The point z is contained in a secant
intersecting 〈u, pu〉 and 〈v, pv〉 non-trivially.

3 Digression: Geometric hyperplanes of D5,5(K) and E6,1(K)

In general, a (proper) geometric hyperplane of a geometry with non-empty point
and line set is a (proper) subset of the point set such that every line intersects
the point set either in a unique point or is fully contained in it. The main result
of [5] states that every proper geometric hyperplane of the varieties D5,5(K) and
E6,1(K) in P15(K) or P26(K), respectively, arises as the intersection of the variety
with a hyperplane of the projective space. In this section we complement the
geometric approach initiated by Cooperstein and Shult in [5] by giving an intrinsic
description of these geometric hyperplanes, i.e., within the geometry itself and
not needing the ambient projective space. Therefore we will mostly work with
abstract geometries of type D5,5(K) or of type E6,1(K) instead of the varieties
D5,5(K) and E6,1(K) which are embedded in projective space.

Since we do not need this part in the sequel, we will be brief and skip uninteresting
details, only focusing on the beautiful arguments which provide deeper geomet-
ric insight. We assume the reader is familiar with the basic notions of point-line
geometries (collinearity, singular subspaces, distance) and refer to [4] for the def-
initions.

3.1 The geometric hyperplanes of D5,5(K)

Let Γ = (X ,L ) be a geometry of type D5,5(K), where X denotes its point set and
L its line set (where each line is viewed as the set of points incident with it).
Let Γ∗ denote the associated hyperbolic polar space of rank 5, i.e., Γ∗ is of type
D5,1(K). Denote the two natural families of maximal singular subspaces of Γ∗ by
Ψ1 and Ψ2. Without loss of generality, X corresponds to Ψ1, and then the set of
maximal singular subspaces of Γ corresponds to Ψ2, and the point set of a line
L ∈L corresponds to the subset of 4-spaces of Ψ1 containing a singular plane of
Γ∗.

A first type of geometric hyperplane of Γ—Let U be a maximal singular sub-
space of Γ of dimension 4. Define HU as the set of points which are collinear to
at least one point of U (alternatively, one could picture HU as the union of lines
sharing at least one point with U). The set HU is a proper geometric hyperplane
of Γ. This can be proved in an elementary way, for instance by using the corre-
spondence with Γ∗. We omit the proof but describe the correspondence anyway,
for future use: Translated to Γ∗, where U corresponds to a subspace U ∈Ψ2, the
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set HU is the set of 4-spaces of Ψ1 having a non-empty intersection with U (that
is, intersecting it in either a line or a singular 3-space). It is easily verified that, if
U,U ′ are 4-spaces of Γ, then HU ⊆ HU ′ implies U =U ′.

We now prepare for the description of the second type of geometric hyperplane.
To that end, we note that the set of 4-spaces of Ψ1 containing a given point of Γ∗

corresponds to a subgeometry of Γ isomorphic to a polar space of type D4,1(K),
as can be seen on the diagram. In the language of parapolar spaces, this subge-
ometry is called a symp and each symp of Γ arises in this way (see Definition 4.4
for a general definition of symp). Let Q1 and Q2 be disjoint symps of Γ (these
correspond to non-collinear points of Γ∗). Then collinearity induces a map ρ

between the points of Q2 and the 3-spaces of Q1 of one type, preserving inci-
dence (i.e., collinear points go to 3-spaces sharing a line), and the union of all
4-spaces 〈q2,ρ(q2)〉 with q2 ∈Q2 is precisely X (this is the abstract version—and
explanation—of the construction of D5,5(K) encountered above in Section 2).

A second type of geometric hyperplane of Γ—Let K2 be a non-degenerate sub-
quadric of Q2 of type B3,1(K), i.e., a parabolic quadric of rank 3. Then K2 is a
geometric hyperplane of Q2 and K∗1 = ρ(q2 | q2 ∈ K2} also has the structure of
a quadric of type B3,1(K) by triality. Moreover, each point of Q1 is contained
in a member of K∗1 since it is collinear to a 3-space of Q2 which shares at least
a plane with K2. We define HK∗1 ⊆ X as the union of all 4-spaces 〈q2,ρ(q2)〉
with q2 ∈ K2, or equivalently the union of all 4-spaces meeting Q1 in a member
of K1 (each 3-space of Γ being contained in a unique 4-space). One can verify
that HK∗1 is a proper geometric hyperplane of Γ by relying on the correspondence
with Γ∗, but to make this conceivable, we note that in D5,5(K), it follows that
〈HK∗1 〉= 〈Q1,K2〉 and the latter is a hyperplane of PG(15,K). Finally we mention
that Q1 is the unique symp of Γ fully contained in HK∗1 (if Q′1 6= Q1 would also
meet each 4-space 〈q2,ρ(q2)〉 with q2 ∈K2 in a 3-space, then Q1∩Q′1 is a 3-space
incident with each 3-space of K∗1 , a contradiction). Therefore the second type of
geometric hyperplanes is in one-to-one correspondence with the subquadrics of
type B3,1(K) on symps of Γ.

Different behavior of the hyperplanes with respect to symps—The difference
between these two types of geometric hyperplanes can be seen from the inter-
section with symps of Γ: a hyperplane HU of type 1 contains all symps Q with
U ⊆Q and shares a degenerate quadric with a symp Q if U ∩Q is a unique point p
(and then HU ∩Q = p⊥∩Q); a hyperplane HK∗1 of type 2 contains a unique symp
Q1 (namely the unique symp containing K∗1 ), meets the symps sharing a 3-space
with Q1 in a degenerate quadric and the symps disjoint from Q1 in a quadric of
type B3,1(K). Note that none of these geometric hyperplanes contains two dis-
joint symps (in accordance with the given construction where two disjoint symps
determine Γ).
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Conclusion for the variety D5,5(K)—By the above, the hyperplanes of type 1 of
Γ are in one-to-one correspondence with the 4-spaces U of Γ, or equivalently, the
members of Ψ2 of Γ∗. So, considering D5,5(K), we see that the set of hyperplanes
〈HU〉 of P15(K) with U a 4-space of Γ form, in the dual of P15(K), a point set
isomorphic to that of D5,5(K). Hence, since the stabilizer of D5,5(K) has two
orbits on the points of P15(K) (the points on and off the variety), the same holds
for the (geometric) hyperplanes. This geometrically shows that the stabilizer of
D5,5(K) in P15(K) acts with two orbits on the hyperplanes of P15(K), and the two
types of (geometric) hyperplanes are as described above.

3.2 The geometric hyperplanes of E6,1(K)

Now consider the variety E6,1(K) in P26(K). We denote its point set by X and
its set of elements of type 6 (each of which is isomorphic to a quadric of type
D5,1(K)) by Ξ, and we refer to the members of Ξ as symps (cf. Definition 4.4).
For each point p ∈ X , we denote the point-residue at p by p⊥ as it is induced by
the singular lines of E6,1(K) containing p, and we note that p⊥ is isomorphic to
D5,5(K).

Let H be a geometric hyperplane of E6,1(K) and let Ω be the corresponding hy-
perplane of P26(K). Using the colorful terminology for geometric hyperplanes
given in [5], below we will arrive at the following intrinsic descriptions for the
three different kinds of hyperplanes.

- H is the set of points collinear to at least one point of a given symp ξ ∈ Ξ

(H is called a white hyperplane);
- H is the union of a set of symps Σ through a point p ∈ X such that, in p⊥

the symps corresponding to the members of Σ is the point set of a quadric
of type B4,1(K) (recall that a symp in D5,5(K) corresponds to a point of a
quadric of type D5,1(K)) (H is called a grey hyperplane);

- H arises as the fixed point structure of a symplectic polarity of E6,1(K)
and has the structure of a geometry of type F4,4(K) (H is called a black
hyperplane).

We study the possibilities for H through its intersections with the symps and point-
residues of E6,1(K). So let ξ ∈ Ξ be any symp. Since ξ only has two types of
proper geometric hyperplanes, the following three situations could occur:

(C) The symp ξ is contained in H (ξ has H-type C);
(N) ξ ∩H is a non-degenerate quadric of type B4,1(K) (ξ has H-type N);
(D) ξ ∩H is a degenerate quadric, i.e., Tp(ξ ) for some point x ∈ ξ ∩H (ξ has

H-type D).

For an arbitrary point p ∈H, the two types of geometric hyperplanes of the point-
residue p⊥ (see previous subsection) lead to the following possible intersections.
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(0) The point residue p⊥ is entirely contained in H (p has H-type 0);
(1) The lines through p in H define a geometric hyperplane of p⊥ of type 1 (p

has H-type 1).
(2) The lines through p in H define a geometric hyperplane of p⊥ of type 2 (p

has H-type 2).

We aim at showing (without going into the details) that only the following pos-
sibilities occur, and each form a single orbit under the automorphism group of
(X ,Ξ):

Type of H H-types of symps H-types of points

White C,D 0, 1

Grey C, D, N 0, 1, 2

Black D, N 2

We distinguish two cases, the first of which leading to white and grey hyperplanes,
the second leading to black hyperplanes.

Case 1: Suppose first that H contains a point p of H-type 0.
Let ξ ∈ Ξ be a symp opposite p (which means that p is not collinear to any point
of ξ ). Then X is the union of all symps ξ (p,x) containing p, with x ranging over
the points of ξ , and hence H is the union of the symps ξ (p,x) where x ranges over
H ∩ξ . So ξ is of H-type D or N (and any other symp ξ ′ opposite p has the same
H-type as ξ ).

• Case 1(a): Suppose ξ has H-type D. Let q ∈ ξ be such that q⊥ ∩ ξ ⊆ H.
Then q also has H-type 0 (since q⊥ contains the disjoint symps correspond-
ing to ξ and ξ (p,q)). One verifies that all points of ξ (p,q) have H-type 0
and that H is a white geometric hyperplane.

The white geometric hyperplanes are in one-to-one correspondence with the symps,
and the corresponding hyperplanes of P26(K) define a variety isomorphic to E6,1(K).
Like in the previous section, this gives a geometric proof that the number of point
orbits equals the number of hyperplane orbits under the automorphism group G
of E6,1(K). Also, since G acts transitively on Ξ, the white geometric hyperplanes
form a single orbit under G. It is easy to see that every symp intersecting ξ (p,q) in
a maximal singular subspace has H-type C, while every other symp, intersecting
ξ (p,q) in a unique point, has H-type D. One can verify that every other point of
H not in ξ (p,q) has H-type 1 (use the fact that the geometric hyperplane induced
in the residue contains at least two symps).
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• Case 1(b): Suppose ξ has H-type N. Noting that the map taking a symp
through p to the unique intersection point with ξ is an isomorphism of p⊥

to ξ , and recalling that ξ ∩H has the structure of a quadric of type B4,1(K),
it follows that H is a grey geometric hyperplane (and the set Σ is the set of
symps ξ (p,x) with x ∈ ξ ∩H).

Since G acts transitively on the points, and the stabilizer in G of a point acts tran-
sitively on the above mentioned B4, subquadrics, we see that the grey geometric
hyperplanes form a single orbit. Naturally, every member of Σ has H-type C, ev-
ery symp through p not belonging to Σ has H-type D, every symp not through
p but not disjoint from p⊥ has H-type D, and every symp disjoint from p⊥ has
H-type N. Moreover, p is the only point that has H-type 0; every point of p⊥ \{p}
has H-type 1 (because the geometric hyperplane induced in the residue contains
at least two symps) and every point of H \ p⊥ has H-type 2.

Case 2: Suppose that H contains no points of H-type 0.
Let ξ be any symp. We first claim that ξ is of H-type D or N. Suppose for a
contradiction that ξ has H-type C. Since H is not a white hyperplane, H contains
a point p opposite ξ (i.e., with p⊥ ∩ ξ = /0). By assumption, p has H-type 1
or 2. The geometric hyperplane induced in p⊥ contains at least one symp, which
extends to a symp ζ ∈Ξ. Since ζ ∩ξ is a point q, and since p⊥∩ζ ⊆H, we deduce
ζ ⊆ H. However, this implies that q has H-type 0 (the geometric hyperplane
induced in the residue at q contains two disjoint symps), a contradiction. The
claim follows.

Next, we claim that all points are of H-type 2. Indeed, suppose for a contradiction
that p ∈ H has H-type 1. Let ξ be a symp of Ξ disjoint from p⊥. From the def-
inition of type 1 geometric hyperplane of D5,5(K) and the fact that the mapping
defined by intersecting a given member of Ξ through p with ξ induces an isomor-
phism of buildings, we deduce that there is a unique maximal singular subspace
U ⊆ ξ such that ξ (p,u)∩ p⊥ ⊆ H for all points u ∈U . As in the previous para-
graph, a point in U ∩H (which is non-empty) is of H-type 0, a contradiction. The
claim is proved.

So, to every point p ∈H we can associate a unique symp ξp 3 p with the property
that p⊥∩ξp⊆H. Now let q∈X \H. Then q⊥∩H with induced lines is a geometry
isomorphic to D5,5(K). Consider the set of points x ∈ X such that x⊥ ∩ q⊥ ⊆ H
(so x /∈ q⊥ since q /∈ H). One shows (in general, that is, for every subgeometry of
q⊥ isomorphic to D5,5(K) having exactly one point on each line through q) that
this set of points forms a symp ξq (which is opposite q). If ξq had H-type D, then
ξq would contain a point r contained in at least two symps (ξq and ξ (q,r)) with
the property that their residue at r belongs to the geometric hyperplane induced in
the residue of r, so r would have H-type 0, a contradiction. By the first claim, ξq
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had H-type N.

Now it takes some (long but elementary) work to show that the mapping x→
ξx, x ∈ X , defines an isomorphism of E6,1(K) to its dual, and that it induces a
duality. Since either x ∈ ξx or x⊥ ∩ ξx = /0 (that is, x and ξx are opposite), Main
Result 2.1 of [26] implies that the duality is a symplectic polarity. Particularly nice
is now that [7] shows in a geometric way that all such polarities are conjugate
and hence we deduce that H, which is called a black geometric hyperplane in
[5], defines a subvariety of type F4 and all black geometric hyperplanes form a
single orbit under the action of G. They are in one-to-one correspondence with the
symplectic polarities or, equivalently, with the subvarieties of type F4 on (X ,Ξ).
The geometric homogeneity in the points of H (all have H-type 2) translates into
the algebraic property of the stabilizer GH acting transitively on H.

This concludes our geometric approach, proving that only white, grey and black
geometric hyperplanes exist, each of them forming a single orbit under G. A
similar, though simpler, analysis holds for the geometric hyperplanes of the line
Grassmannian G5,1(K).

4 Preliminaries

Let (X ,Ξ) and d be as in the introduction. We start by introducing a more general
version of AVVs by omitting axiom (MM3) and/or considering the following,
weaker version of (MM1):

(MM1′) Any pair of non-collinear points x1,x2 ∈ X lies in at least one element
of Ξ.

Definition 4.1. We say that a pair (X ,Ξ) is a pre-AVV of type d if it satisfies
Axioms (MM1) and (MM2); we call it a weak AVV of type d if it satisfies Axioms
(MM1′), (MM2) and (MM3). A weak pre-AVV of type d is then a pair (X ,Ξ)
which satisfies Axioms (MM1′) and (MM2).

Henceforth, let (X ,Ξ) be a weak pre-AVV of type d in PN(K).

4.1 Collinearity relations

Recall that a subspace of PN(K) is called singular if it has all its points in X .
Two points x,y of X are called collinear if they are on a common singular line L,
in which case we write x ⊥ y and, if x 6= y, we also write L = xy; moreover, x⊥

denotes the set of points collinear to x.
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Lemma 4.2. Let (X ,Ξ) be a weak pre-AVV of type d. Then each line of PN(K)
containing at least three points of X is singular. Secondly, if x,y ∈ X are non-
collinear points then there is a unique member of Ξ through them, denoted by
[x,y].

Proof. Let L be a line of P with |L∩X | ≥ 3. Let x1,x2 be two points in L∩X . If L
is not singular, (MM1′) yields a ξ ∈ Ξ containing x1,x2. Since X(ξ ) is a quadric,
L has to be singular after all. As for the second statement, (MM1′) implies that
there is at least one member of Ξ containing x and y; uniqueness follows from
(MM2).

The next lemma should be compared to Lemmas 4.1 and 4.2 in [21].

Lemma 4.3. Let (X ,Ξ) be a weak pre-AVV of type d. Let L1 and L2 be singular
lines, meeting each other in a point x. Then either L1 and L2 are contained in a
singular plane, or there is a unique ξ ∈Ξ (which we denote by [L1,L2]) containing
L1∪L2. Consequently, if x∈ X and ξ ∈ Ξ with x /∈ Ξ, then x⊥∩X(ξ ) is a singular
subspace (possibly empty).

Proof. Let x1,x2 be points on L1 \{x} and L2 \{x}, respectively, and suppose that
they are not collinear. Let x′1,x

′
2 be points on L1 \{x,x1} and L2 \{x,x2}. Then the

line 〈x′1,x′2〉 meets the line 〈x1,x2〉 in a point z not on L1∪L2. By Lemma 4.2, z /∈
X , and by the same lemma x′1 and x′2 are not collinear. By (MM1′) [x1,x2], [x′1,x

′
2]∈

Ξ and since they both contain z, (MM2) implies that they are equal. So if L1∪L2
contains a pair (x1,x2) of non-collinear points, then L1∪L2 ⊆ [x1,x2]. If not, then
clearly, the plane 〈L1,L2〉 is singular.

Now consider x ∈ X and ξ ∈ Ξ with x /∈ ξ . Suppose for a contradiction that x
is collinear to two non-collinear points x1,x2 in ξ . Set Li = 〈x,xi〉, i = 1,2. The
previous paragraph implies that [x1,x2] contains L1∪L2, in particular x∈ [x1,x2] =
ξ , a contradiction.

4.2 The point-line geometry associated to (X ,Ξ)

The set of singular lines of X is denoted by L . In case L is non-empty (which
is not necessarily the case, for instance if Ξ has only quadrics of index 0), then
the pair (X ,L ), equipped with containment as incidence, is the natural point-line
geometry associated to (X ,Ξ). Considering this point-line geometry carries a lot
of information on (X ,Ξ), especially when we can invoke the theory of parapolar
spaces.

In general a point-line geometry Γ is a pair Γ = (Y,M ) where Y is a set of points
and M a non-empty set of lines, each of which is a subset of X . A subspace S is
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a subset with the property that each line not contained in S intersects S in at most
one point. Collinearity between points again corresponds to being contained in
a common line (not necessarily unique), and we also denote this by the symbol
⊥. The collinearity graph of Γ is the graph on Y with collinearity as adjacency
relation. The distance δ (x,y) between two points x,y ∈ Y is the distance between
x and y in the collinearity graph (possibly δ (x,y) = ∞ if there is no path between
them). A path between x and y of length δ (x,y) is called a shortest path. The
diameter of Γ is the diameter of its collinearity graph. We say that Γ is connected
if for every two points x,y of Y , δ (x,y)< ∞. A subspace S⊆Y is called convex if
all shortest paths between points x,y ∈ S are contained in S. The convex subspace
closure of a set S⊆Y is the intersection of all convex subspaces containing S (this
is well defined since Y is a convex subspace itself).

Before moving on to the viewpoint of parapolar spaces, we need to consider each
member of Ξ of index at least 1 as a convex subspace of (X ,L ) isomorphic to
a so-called polar space (for a precise definition and background see Section 7.4
of [2]). Indeed, for each ξ ∈ Ξ with wξ ≥ 1, X(ξ ) is an instance of a polar
space, that is, a point-line geometry (X ′,L ′) in which, apart from three non-
degeneracy axioms, the one-or-all axiom holds: Each point x ∈ X ′ is collinear to
either exactly one or all points of any given line. Still assuming wξ ≥ 1, we also
have that X(ξ ) is a convex subspace: Obviously, for any pair of distinct collinear
points x,x′ ∈ X(ξ ), the line xx′ belongs to X(ξ ), and for any pair of non-collinear
points x,x′ ∈ X(ξ ), Lemma 4.3 implies that x⊥∩ x′⊥ belongs to X(ξ ) and hence
so do the shortest paths between x and x′ in the collinearity graph of (X ,L ).
Observe that X(ξ ) is the convex subspace closure of any pair of non-collinear
points x,x′ ∈ X(ξ ), since X(ξ ) contains no convex subspaces other than singular
subspaces and itself.

Definition 4.4. A connected point-line geometry Γ= (X ,L ) is a parapolar space
if for every pair of non-collinear points p and q in P , with |p⊥ ∩ q⊥| > 1, the
convex subspace closure of {p,q} is a polar space, called a symplecton (a symp
for short); moreover, each line of L has to be contained in a symplecton and no
symplecton contains all points of X .

The parapolar space is called strong if there are no pairs of points p,q with |p⊥∩
q⊥|= 1.

Lemma 4.5. Suppose (X ,Ξ) is a weak pre-AVV of type d. Then each connected
component of the point-line geometry (X ,L ) associated to (X ,Ξ) is one of the
following:

(i) A singular subspace of dimension at least 0 (no point of which is contained
in member of Ξ of index ≥ 1);
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(ii) A quadric ξ ∈ Ξ of index at least 1 (and all members of Ξ meeting ξ non-
trivially have index 0);

(iii) A strong parapolar space (which moreover has diameter 2 if min(W )≥ 1).

Proof. Suppose x belongs to the connected component C. If all points of C
are collinear with x, then all points of C are mutually collinear since otherwise
Lemma 4.3(1) yields a member of Ξ through x of projective index ≥ 1, which
contains points (automatically in C) not collinear to x. Hence we are in Case (i).
If there is a point y in C not collinear with x, then by Lemma 4.3 there is a member
ξ ∈ Ξ of index at least 1 containing x. If C = ξ then we are in Case (ii).

If C strictly contains ξ , then we wish to show that C is a strong parapolar space.
Let p,q be points of C at distance 2, i.e., there are lines Lp and Lq through p,q,
respectively, meeting each other in a point. From Lemma 4.3, it follows that Lp∪
Lq is contained in a unique member of Ξ, which, as noted before Definition 4.4, is
the convex closure of p and q. In particular, |p⊥∩ q⊥| 6= 1, showing strongness.
Finally, suppose L is a line in C. If L belongs to ξ there is nothing to prove;
if L intersects ξ in a point, then by Lemma 4.3, L is contained in a member of Ξ

together with a line of ξ . By connectivity we can repeat this argument to conclude
that each line is contained in a member of Ξ. By assumption, C does not coincide
with a member of Ξ. We conclude that C is a strong parapolar space indeed. The
claim about the diameter is obvious.

Definition 4.6. Let k ∈ Z≥−1. A parapolar space is called k-lacunary if k-dimen-
sional singular subspaces never occur as the intersection of two symplecta, and all
symplecta do possess k-dimensional singular subspaces.

In [8] and [9], k-lacunary parapolar spaces have been classified for k = −1 and
k ≥ 0, respectively. At several points in the proof we will use the classification
of 0-lacunary parapolar spaces, and also once that of (−1)-lacunary parapolar
spaces. We extract from the Main Result of [9] the results that we will need,
restricting our attention to strong parapolar spaces embedded in a projective space
over a field K.

Fact 4.7. Let Γ = (X ,L ) be a strong (−1)-lacunary parapolar space whose
points are points of a projective space P over a field K, whose lines are lines
of P and whose symplecta are all isomorphic to each other. Then Γ = (X ,L )
is, as a point-line geometry, isomorphic to either a Segre variety Sn,2(K) with
n ∈ {1,2}, a line Grassmannian variety Gn,1(K) with n ∈ {4,5}, or to the Cartan
variety E6,1(K). In particular, the symps of Γ are all hyperbolic quadrics.

Fact 4.8. Let Γ = (X ,L ) be a strong 0-lacunary parapolar space whose points
are points of a projective space P over a field K, whose lines are lines of P and
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whose symplecta are all isomorphic to each other. Then the symps of Γ are all
hyperbolic quadrics. Moreover, if these quadrics all have projective index 1, then
Γ = (X ,L ) is, as a point-line geometry, isomorphic to a Segre variety S1,n(K),
for some n∈N with n≥ 2, or the direct product of a line and a hyperbolic quadric
of projective index n, for some n ∈ N with n≥ 2.

4.3 Point-residues of (X ,Ξ)

Our main technique involves the use of local information coming from the point-
residues, which are defined as follows.

Definition 4.9. Suppose (X ,Ξ) is an AVV. Let x ∈ X be arbitrary and consider a
subspace Cx of Tx of dimension dimTx− 1 not containing x. Consider the set Xx

of points of Cx which are contained in a singular line of X with x. Let Ξx be the
collection of subspaces of Cx obtained by intersecting Cx with all Tx(ξ ), with ξ

running through all members ξ of Ξ containing x together with at least two points
of Xx. Note that the members of Ξx correspond precisely to the members of Ξ

through x of index at least 1.

The next lemma is the counterpart of Lemma 4.6 in [21].

Lemma 4.10. Suppose (X ,Ξ) is an AVV of type d, d > 2, and with global index
set W. Then for each x ∈ X, the pair (Xx,Ξx), with Xx ⊆Cx as above, is a weak
pre-AVV of type d− 2 and with global index set {w− 1 | w ∈Wx,w ≥ 1}, in the
subspace Cx of dimension Nx ≤ 2d−1 whose isomorphism type is independent of
Cx.

Proof. By construction, a member ξ of Ξx has dimension d− 1 and the quadric
X(ξ ) has index wξ −1.

Let p1 and p2 be two non-collinear points of Xx. In X , they correspond to two
non-collinear lines L1 and L2 through x, which are contained in a member of Ξ

through x by Lemma 4.3, hence (MM1′) holds.

For (MM2), let ξ and ξ ′ in Ξx and suppose that y ∈ ξ ∩ ξ ′. Then y is contained
in Tx(σ)∩Tx(σ

′), where σ and σ ′ are two members of Ξ containing x together
with at least two points of Xx. Hence in particular y ∈ σ ∩σ ′ and so by (MM2)
for (X ,Ξ) we obtain y ∈ Xx. Hence (MM2) holds in (Xx,Ξx).

If C′x is another hyperplane of Tx, and if we denote by X ′x the set of points of
C′x on a singular line with x, then the projection from x of Cx onto C′x yields an
isomorphism from (Xx,Ξx) to (X ′x,Ξ

′
x), where Ξ′x is the collection of subspaces of

C′x obtained by intersecting C′x with all Tx(ξ ), with ξ running through all quads ξ

of Ξ containing x together with at least two points of Xx.
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Henceforth we denote by W ′x the index set {w− 1 | w ∈Wx,w ≥ 1}. In case x
satisfies min(Wx \ {0}) ≥ 2, we can prove that (MM1) holds. This relies on the
following lemma.

Lemma 4.11. Let (X ,Ξ) be a weak pre-AVV of type d and let y ∈ X be arbitrary.
Then the local index set Wy is non-empty (and hence max(Wy) is well-defined).
Moreover, if 1 /∈Wy and max(Wy)≥ 2, then each singular plane that contains y is
contained in a member of Ξ.

Proof. We have to show that there is at least one member of Ξ containing y. Sup-
pose the contrary. By assumption, we can pick ξ ∈ Ξ. Lemma 4.3 yields a point
y′ ∈ ξ not collinear to y, and then (MM1′) yields ξ ′ ∈ Ξ containing y and y′.

Next, suppose 1 /∈Wy and max(Wy) ≥ 2 and let π be a singular plane through y.
Let ξ be any member of Ξ through y, with wξ ≥ 2. If π ⊆ X(ξ ) we are done, so
suppose there is a point z ∈ π \ξ . We applying Lemma 4.3 several times. Firstly,
it implies that there is a point z′ ∈ X(ξ ) not collinear to z, but collinear to y. Then
(MM1′) yields [z,z′], which contains the line L = 〈y,z〉. Note that our assumptions
imply that w[z,z′] ≥ 2. Let u be a point in π \L. Then u is collinear to a singular
subspace of [z,z′], so there is a plane π ′ in X([z,z′]) through L not all points of
which are collinear to u. For a point u′ ∈ π ′ \L, we then have π ∪π ′ ⊆ [u,u′].

Corollary 4.12. Suppose (X ,Ξ) is an AVV of type d. Then for each x ∈ X with
min(Wx \{0})≥ 2, the pair (Xx,Ξx) is a pre-AVV of type d−2 with global index
set W ′x in the projective space Cx of dimension Nx ≤ 2d−1.

Proof. Suppose x is a point with dimWx ≥ 2. Note that this implies that d ≥ 5. By
Lemma 4.10, we only still need that each pair of collinear points of Xx is contained
in a member of Ξx. By Lemma 4.11 and min(Wx)≥ 2, this is the case.

4.4 Basic general properties of weak pre-AVVs

Many of the following properties are similar to the split case in [21]. However,
since we want to include weak pre-AVVs (which were not defined in [21]), some
proofs must be modified. Hence we provide detailed proofs of all statements for
completeness.

The next lemma generalizes Lemmas 4.9 and 4.10 of [21] from split quadrics to
arbitrary ones.

Lemma 4.13. Let Q be a non-degenerate quadric in Pd+1(K) of projective index
w. Consider a subspace D of Pd+1(K), with dimD= d+1−w. Then the following
hold.
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(i) The subspace D contains at least two non-collinear points of Q.
(ii) The intersection D∩Q spans D. Equivalently, for each hyperplane H of D,

the complement D\H contains a point of Q.

Proof. (i) We prove this by induction on w, the result for w = 0 being trivial,
since D coincides with Pd+1(K) in this case. Suppose now that w > 0. Notice that
Q∩D 6= /0 since a dimension argument implies that D intersects every singular
w-space of Q non-trivially. Select x ∈ D∩Q. If some line in D through x has
exactly two points in common with Q, then we find a pair of non-collinear points
of Q in D. So assume that any line in D through x either intersects Q in a unique
point or is entirely contained in Q. Then D belongs to the tangent space Tx(Q) at
x to Q. In the residue at x we obtain a quadric Q′ in Pd−1(K) of projective index
w−1 and a subspace D′ of D with dimD′ = d−w = (d−1)− (w−1) which, by
induction, contains two non-collinear points y′,z′ of Q′. These points correspond
to two singular lines of Q through x and in D, not contained in a singular plane of
Q. This shows the assertion.

(ii) This follows from the fact that quadrics containing two non-collinear points
span the ambient projective space of their corresponding quadratic form. An ex-
plicit geometric proof goes as follows. Let H be a hyperplane of D and suppose
that D∩Q⊆H. By (i), H contains two non-collinear points y and z of Q. Let α be
a plane in D through y and z with α * H. Then Tz(Q)∩α is precisely one line L,
as y is not collinear to z. Then each line L′ in α through z distinct from L contains
a second point of Q. Taking L′ 6= 〈y,z〉, this yields a point in (D∩Q)\H.

The following lemma generalizes Lemma 4.12 of [21].

Lemma 4.14. Suppose (X ,Ξ) is an AVV of type d. If (distinct) ξ1,ξ2 ∈ Ξ share a
point x ∈ X, then 〈Tx(ξ1),Tx(ξ2)〉∩X ⊆ x⊥.

Proof. Suppose for a contradiction that there are (distinct) ξ1,ξ2 through x such
that 〈Tx(ξ1),Tx(ξ2)〉 contains a point y ∈ X \ x⊥. A dimension argument yields
points ai ∈ Tx(ξi), i ∈ {1,2}, such that y ∈ 〈a1,a2〉. If a1 ∈ X , then there exists
a member of Ξ through y and a1, hence by (MM2) a2 ∈ X too, and so the plane
〈x,a1,a2〉—containing two singular lines and an extra point y ∈ X—must be sin-
gular, contradicting the fact that y is not collinear to x. Hence we may assume
a1,a2 /∈ X . We claim that we can (re)choose the points y and a1 in such a way that
a1 ∈ X .

Put wi := wξi for i = 1,2. Without loss of generality, w1 ≥ w2. If w2 = 0, a
dimension argument implies that ξ2 ∩ [x,y] contains a line through x, which has
to be singular by (MM2), a contradiction. So we may assume w2 ≥ 1. Put U :=
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ξ1∩ξ2 and ` := dimU . Then 0≤ `≤ w2. Since 〈Tx(ξ1),Tx(ξ2)〉 and Tx([x,y]) are
subspaces of respective dimensions 2d− ` and d in the 2d-space Tx, we get that
dim(Tx([x,y])∩〈Tx(ξ1),Tx(ξ2)〉)≥ d− `. Note that, for i = 1,2, Tx([x,y])∩Tx(ξi)
has dimension at most w1 (recall w1 ≥ w2), so there is a (not necessarily singular)
subspace Z in 〈Tx(ξ1),Tx(ξ2)〉 of dimension d− `−w1 through x in Tx([x,y]) that
intersects Tx(ξ1)∪Tx(ξ2) exactly in {x}. We consider the subspace Z∗ = 〈Z,y〉,
and since y /∈ Z we have dimZ∗ = d−`−w1+1. Every line in Z∗ ⊆ [x,y] through
x outside Z contains a unique point of (Tx∩X)\ x⊥. Together with Z∩ ξi = {x},
it then follows by (MM2) that Z∗ ∩ ξi = {x}, i ∈ {1,2}. A dimension argument
yields unique (d −w1 + 1)-spaces Ui ⊆ Tx(ξi) containing U , i = 1,2 such that
Z∗ ⊆ 〈U1,U2〉. Let U ′1 be the (d−w1)-space obtained by intersecting 〈U2,Z〉 with
U1. By Lemma 4.13(2), there exists a point a1 ∈ (X(ξ1)∩U1)\U ′1⊆ (X∩U1)\U ′1.
Since U2 and Z∗ meet in only x, and a1 ∈ 〈U2,Z∗〉, there is a unique plane π

containing x,a1 and intersecting both Z∗ and U2 in (distinct) lines. By our choice
of a1 outside U ′1, the line π∩Z∗ is not contained in Z and intersects [x,y] in a point
y′ not collinear to x. Hence y′ ∈ 〈Tx(ξ1),Tx(ξ2)〉∩ (X \ x⊥) and the claim follows.
The lemma is proved.

The following lemma should be compared with Lemma 4.13 of [21].

Lemma 4.15. Suppose (X ,Ξ) is an AVV of type d and with global index set W.
Suppose x ∈ X is such that min(Wx)≤ 1. Then Tx∩X ⊂ x⊥.

Proof. Suppose for a contradiction that there exists z ∈ (Tx ∩X) \ x⊥. We claim
that we can find ξ1,ξ2 in Ξ through x such that 〈Tx(ξ1),Tx(ξ2)〉 ∩X contains a
point non-collinear to X , which contradicts Lemma 4.14 and proves the assertion.

Suppose first that min(Wx) = 0. Consider an element ξ1 ∈ Ξ through x of index 0,
and an element ξ2 ∈ Ξ containing x. Then by (MM2) and (MM3) we obtain z ∈
Tx = 〈Tx(ξ1),Tx(ξ2)〉, showing the claim in this case. So suppose that min(Wx) =
1. Note that in this case Tx is generated by all singular lines through x.

Let x ∈ ξ1 ∈ Ξ with wξ1 = 1. Put ξ ∗ := [x,z] and note that ξ ∗ = 〈Tx(ξ
∗),z〉 ⊆ Tx.

Since dimTx ≤ 2d, the intersection Tx(ξ1)∩ ξ ∗ is at least a line. By (MM2),
Tx(ξ1)∩ξ ∗ is singular and as ξ1 has index 1, it is a line L (through x). In particular,
dimTx = 2d and 〈Tx(ξ1),Tx(ξ

∗)〉 = 2d− 1. This means that there is a point u ∈
(Tx∩X)\ 〈Tx(ξ1),Tx(ξ

∗)〉 with 〈x,u〉 singular. As dim〈ξ ∗,u〉 = d +2, we obtain
that 〈ξ ∗,u〉∩Tx(ξ1) is a plane π through L. Let v∈ π \L be a point. Inside the (d+
2)-space 〈ξ ∗,u〉, the line 〈u,v〉 meets ξ ∗ in a point y′. Since u /∈ 〈Tx(ξ1),Tx(ξ

∗)〉
we have y′ ∈ ξ ∗ \ Tx(ξ

∗) and hence the line 〈x,y′〉 contains a unique point y on
X(ξ ∗)\{x}. Clearly, y ∈ X ∩〈Tx(ξ1),〈x,u〉〉. Hence, for an arbitrary member ξ2
through 〈x,u〉 holds y ∈ 〈Tx(ξ1),Tx(ξ2)〉 and y /∈ x⊥. The lemma is proved.
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4.5 Projections of (X ,Ξ) from a member ξ ∈ Ξ

Projection from a member of Ξ is a successful tool in the proof of the classification
of the case W = {0}, see [16]. Here, we extend its use to members with index≥ 1.

Definition 4.16. If (X ,Ξ) is a (possibly weak) pre-AVV, we can consider the
projection ρξ from some ξ ∈ Ξ onto a subspace Π of PN(K) complementary to ξ ,
i.e.,

ρξ : PN(K)\ξ →Π : z 7→ 〈ξ ,z〉∩Π.

For any set Z ⊆ PN(K), we write Zρξ instead of (Z \ξ )ρξ for ease of notation.

Lemma 4.17. Suppose (X ,Ξ) is a (possibly weak) pre-AVV and ξ ∈ Ξ arbitrary.
If p,q∈ X \ξ have the same image under ρξ , then 〈p,q〉 is a singular line meeting
X(ξ ) in a point.

Proof. Put ρ = ρξ . Then pρ = qρ implies that ξ is a hyperplane of the subspace
〈ξ , p,q〉. If 〈p,q〉 is singular, then clearly it intersects ξ in a point of X . Suppose
p and q are not collinear. Then, by (MM1′) and (MM2), 〈p,q〉∩ξ is a point of X ,
which by Lemma 4.2 implies that 〈p,q〉 is singular after all.

The following properties of ρξ will be used several times, mainly for s ∈ {0,1}.

Lemma 4.18. Suppose (X ,Ξ) is a (possibly weak) pre-AVV and ξ ∈ Ξ arbitrary.
Suppose ξ ′ ∈ Ξ meets ξ in a singular subspace S of dimension s≥ 0. Then:

(i) The image of ξ ′ under ρξ is a (d − s)-space Πξ ′ , in which TS(ξ
′)ρξ is a

subspace Hξ ′ of dimension d−2s−1;
(ii) For any point q in X(ξ ′)ρξ , there is a point p on X(ξ ′)\S such that ρ

−1
ξ

(q)∩
X(ξ ′) = 〈p, p⊥∩S〉 \S, and p ∈ S⊥ if and only if q ∈ Hξ ′;

(iii) For any point q ∈ Πξ ′ \ X(ξ ′)ρξ , the set ρ
−1
ξ

(q)∩ ξ ′ is an (s + 1)-space
through S inside TS(ξ

′) which only has S in X (in particular, Πξ ′ \Hξ ′ ⊆
X(ξ ′)ρξ );

(iv) If s = 0 and L is any line in Πξ ′ containing a unique point z in Hξ ′ , then the
union of ρ

−1
ξ

(L)∩X(ξ ′) with S is one of the following:
(a) A conic C through S if z /∈ X(ξ ′)ρξ . The image under ρξ of the tangent

line TS(C) is z;
(b) The union of two intersecting non-collinear singular lines if z∈X(ξ ′)ρξ .

Exactly one of these lines contains S and is projected by ρξ onto z.

Proof. (i) Since dim(ξ ′) = d+1 and dim(ξ ∩ξ ′) = s, we get that Πξ ′ has dimen-
sion (d + 1)− s− 1 = d− s indeed. The dimension of the tangent space TS(ξ

′)
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is d − s, and TS(ξ
′)∩ ξ = S, so likewise Hξ ′ has dimension (d − s)− s− 1 =

d−2s−1.

(ii) Let q ∈ X(ξ ′)ρξ and let p be a point in X(ξ ′) with ρξ (p) = q. By definition of
ρξ and the choice of p, we have ρ

−1
ξ

(q)∩X(ξ ′) = 〈p,ξ 〉∩X(ξ ′). Looking inside
X(ξ ′), it follows that the latter set coincides with 〈p, p⊥∩ S〉. Moreover, p ∈ S⊥

if and only if p ∈ TS(ξ
′) if and only if q ∈ Hξ ′ .

(iii) This follows from the fact that an (s+ 1)-space of ξ ′ through S contains a
point of X(ξ ′) \ S if and only if it does not belong to TS(ξ

′). In particular we
obtain that each point of Πξ ′ \Hξ ′ is the image of some point of X(ξ ′)\S⊥.

(iv) Now let s = 0 and take a line L in Πξ ′ containing a unique point z in Hξ ′ .
Then ρ

−1
ξ

(L)∩ξ ′ is a plane π through S, and by the above, each point q ∈ L\{z}
corresponds to a point p in (π ∩X) \ S not collinear to the point S. Hence the
intersection of π with the quadric X(ξ ′) contains at least three points not on a
line, and therefore it is either a conic or the union of two intersecting singular
lines. Note that in the latter case, each point of L belongs to X(ξ ′)ρξ , i.e. z∈X(ξ ′)
too. Conversely, z ∈ X(ξ ′) implies by (ii) that ρ

−1
ξ

(z)∩X(ξ ′) is a singular line
through S. So z ∈ X(ξ ′) corresponds to case (b) indeed. Now, if z /∈ X(ξ ′), then
(ρ−1

ξ
(L)∩X(ξ ′))∪S is a conic C through S, and the tangent line TS(C) is mapped

onto z by ρξ (cf. assertion (iii)).

5 Technical lemmas concerning specific situations

Some rather technical work needed for the later sections is done here. The main
common goal is often to construct additional singular lines joining members of
Ξ (Lemmas 5.1, 5.2 and 5.4) or, in one case, even prove that there are members
with large enough index (Lemma 5.5). We put this in a separate section since
all of these results will be used in quite different situations. However, the reader
may wish to skip this section during a first reading as it is very technical and will
seemingly be out of context. It is probably easier to refer back to the results here
when they are used in subsequent sections.

In order to state the first lemma, we need the following concept. In P4(K), con-
sider a line L and a conic C in a plane complementary to L, and suppose ϕ : L→C
is a bijection preserving the cross-ratio. Then the union of the transversal lines
〈x,ϕ(x)〉, with x ∈ L is called a normal rational cubic scroll , denoted N1,2(K),
and L is called the axis. Then for each two points not on L which are on distinct
transversal lines of N1,2(K), there is a unique conic through them intersecting
all transversal lines (also in points not on L). Every pair C1,C2 of such con-
ics intersect in precisely one point p and 〈C1〉 ∩ 〈C2〉 = {p}. Conversely, given

24



two arbitrary conics C1 and C2 in P4(K) intersecting in a unique point p, with
〈C1〉 ∩ 〈C2〉 = {p}, and given a bijection ψ : C1 → C2 fixing p and preserving
the cross-ratio, there is a unique normal rational cubic scroll N containing all
transversal lines 〈x,ψ(x)〉, with x ∈C1 \ {p}. In particular, there exists a unique
line L intersecting all said transversal lines. Naturally, the line L and the conic
C1 determine N , and the latter is defined by the map ϕ : C1→ L taking a point
x ∈C1 \{p} to 〈x,ψ(x)〉∩L, and taking p to the unique ‘remaining’ point of L.

Lemma 5.1. Let (X ,Ξ) be a weak pre-AVV of type d. Suppose ξ1 and ξ2 are two
members of Ξ of index 0, meeting each other in a point p and meeting some ξ ∈ Ξ

not through p in distinct points p1 and p2. If there is a singular line K meeting ξ1,
ξ2 and ξ in three distinct points, then for i ∈ {1,2}, there is a conic Ci on X(ξi)
through p and pi such that C1 and C2 are on a normal rational cubic scroll, and
if |K|> 4, all transversal lines except possibly the one through p are singular, as
is the axis of the scroll.

Proof. We consider the projection ρ = ρξ of (X ,Ξ) from ξ onto a complementary
subspace Π. By assumption, the respective images of ξ1 and ξ2 under ρ share
at least two points: pρ and Kρ (which are distinct by Lemma 4.17). Let L be
the projective line 〈pρ ,Kρ〉. Then L contains exactly one point ti contained in
Tpi(ξi)

ρ , i = 1,2, which does not belong to X(ξi)
ρ since ξi has index 0. According

to Lemma 4.18(iv), L corresponds to a conic Ci on X(ξi) through the points pi and
p, for i = 1,2.

For i = 1,2, let S (pi) denote the planar line pencil through pi in 〈Ci〉 and let
σi be the projectivity taking a line M ∈ S (pi) to pi if M is tangent to Ci, and
to the unique point of M on Ci \ {p} if M is a secant of Ci. Each line of S (pi)
corresponds to a unique point of L via ρ and hence we can consider the bijection τ

taking a line of S (p1) to the unique line of S (p2) with the same image under ρ .
Since 〈S (pi)〉∩ξ = {pi}, τ is a projectivity. As such, σ2◦τ ◦σ

−1
1 is a projectivity

too, i.e., it preserves the cross-ratio.

We conclude that C1 and C2 are on a normal rational cubic scroll indeed. Let R de-
note the unique line intersecting all its transversal lines. Since the transversal lines
z1z2, with zi ∈Ci\{pi, p} for i= 1,2, are such that ρ(z1)= ρ(z2), Lemma 4.17 im-
plies that 〈z1,z2〉 is singular. Note that this excludes at most three of the transversal
lines, namely the ones through p, p1, p2, say T,T1,T2 (possibly T1 = T2). Hence, if
|K|> 4, we obtain at least three singular transversals that meet R in three distinct
points. Consequently R is singular. But then both T1 and T2 contain at least three
points of X and are also singular.

The previous lemma assumes the existence of a singular line meeting three mem-
bers of Ξ. The next lemma creates a possibility of finding such a line.
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Lemma 5.2. Let (X ,Ξ) be a weak pre-AVV of type d with d ≥ 2 and, if d =
2, we also require |K| > 2. Let ξ ,ξ1,ξ2 be three distinct members of Ξ with
dim〈ξ ,ξ1,ξ2〉 ≤ 2d+3, ξ1∩ξ2 = {p} and ξ ∩ξi = {pi}, i = 1,2, where p1, p2, p
are three distinct points of X with p /∈ p⊥1 ∪ p⊥2 . Then there exists a singular line
meeting ξ ,ξ1,ξ2 in three distinct points z,z1,z2, respectively, with zi and pi non-
collinear, for i = 1,2.

Proof. We again consider the projection ρ = ρξ of (X ,Ξ) from ξ onto a subspace
Π in 〈ξ ,ξ1,ξ2〉 complementary to ξ . By Lemma 4.18, the respective images
Πξ1 and Πξ2 of ξ1 and ξ2 under ρ are d-spaces of Π, which share the point pρ .
Since dim〈ξ ,ξ1,ξ2〉 ≤ 2d + 3, we have dimΠ ≤ d + 1, and hence Πξ1 ∩Πξ2 has
dimension at least d−1 ≥ 1. Recall that Tpi(ξi)

ρ is a hyperplane of Πξi and that
pρ is not contained in it since p /∈ p⊥i , i = 1,2. This means that any line L in
Πξ1 ∩Πξ2 through pρ contains at most one point ti of Tpi(ξi)

ρ for i = 1,2. Since
Tp1(ξ1)

ρ ∩Tp2(ξ2)
ρ has dimension at least d−3, we can choose L in such a way

that t1 = t2 if d ≥ 3. Note that, if d = 2 and |K|= 2, it might be that t1, t2, pρ are
the only points of L.

Let q be a point in L\{pρ , t1, t2} (which is non-empty by our assumptions on d and
|K|). Lemma 4.18(ii) yields points z1,z2 on X(ξ1),X(ξ2), respectively, which are
not collinear to p1 and p2, respectively (recall q /∈ {t1, t2}) and with zρ

1 = zρ

2 = q.
By Lemma 4.17, the latter implies that 〈z1,z2〉 is a singular line meeting X(ξ ) in
a point z.

Here is an example of how Lemma 5.2 can be used to make an application of
Lemma 5.1 possible.

Lemma 5.3. Let (X ,Ξ) be an AVV of type 2 containing a connected component
C of (X ,L ) isomorphic as a point-line geometry to S1,1,1(K). Then, for any two
points x,y ∈ C at distance 3 in (X ,L ), the member [x,y] ∈ Ξ is not contained in
the subspace 〈C 〉.

Proof. First note that, if a,b ∈ C are at distance 2 in C, then [a,b] ∈ Ξ has index
1 and X([a,b]) ⊆ C is a hyperbolic quadric of rank 2 which we will refer to as a
grid. Also, C , being isomorphic to S1,1,1(K), contains disjoint grids, and so, by
(MM2), dim〈C 〉= 7.

Now let x,y∈C be points at distance 3. Then ξ := [x,y]∈Ξ has index 0. Suppose
for a contradiction that [x,y] belongs to 〈C 〉. Consider any grid G of C through
x. Then by (MM3), Tx = 〈Tx(ξ ),Tx(G)〉 ⊆ 〈C 〉. Suppose first that |K| = q < ∞.
Let G′ ⊆ C be a grid not through x. Then G′ contains q2 points at distance 3
from x, and for each such point z, we have that [x,z] ∈ Ξ has index 0. Noting that
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[x,z]∩G′ = {z} by (MM2), each point of G′ at distance 3 from x determines a
different member of Ξ, which results in q2 tangent planes that pairwise intersect
each other in x. In addition, there are the three tangent planes of the grids of
C through x (which intersect each other pairwise in a line and the other tangent
planes in only x). This yields q3 +q2 +3q > q3 +q2 +q+1 distinct lines through
x in the 4-space Tx, a contradiction.

So suppose that |K|= ∞. Let z be a point of C \ξ at distance 3 from both x and y.
Then ξ1 := [x,z] and ξ2 := [y,z] are members of Ξ of index 0. Recalling that Tx ⊆
〈C 〉, we get ξ1 = 〈Tx(ξ1),z〉 ⊆ 〈C 〉; likewise for ξ2, from which it follows that
dim〈ξ ,ξ1,ξ2〉 ≤ 7. Therefore (X ,Ξ) and the triple ξ ,ξ1,ξ2 meet the conditions of
Lemma 5.2, and hence also those of Lemma 5.1. The latter lemma implies that
there are conics C1 and C2 on ξ1 through x,z and on ξ2 through y,z, respectively,
such that C1 and C2 are on a normal rational cubic scroll, and each transversal line
joining a point C1 \ {z} with its image on C2 is singular. The line R meeting all
these transversal lines, containing at least three points in X , is also singular (cf.
Lemma 4.2). As a consequence all points of C1 belong to the same connected
component as x, hence to C . We now show that this is not possible.

Let p1, p2, p3, p4 be four distinct points of C1, which are pairwise at distance 3.
Take grids Gi through pi, i= 1,2,3, with G1,G2,G3 pairwise intersecting in a line.
Then G1 ∩G2 ∩G3 is a unique point p. We claim that 〈G1,G2,G3, p4〉 = 〈C 〉.
Indeed, clearly any line of C through p4 intersects one of G1,G2,G3 and so is
contained in 〈G1,G2,G3, p4〉. By connectivity of C \ (G1 ∪G2 ∪G3), the claim
follows. However, dim〈G1,G2,G3, p4〉 = 6 as p4 ∈ 〈p1, p2, p3〉, contradicting
dim〈C 〉= 7.

We collect a further application of Lemma 5.2.

Lemma 5.4. Let (X ,Ξ) be a pre-AVV of type d with d ≥ 2. If d = 2, we also
require |K| > 2. Suppose 〈X〉 ⊆ P2d+3(K). If ξ ,ξ1 are two members of Ξ inter-
secting each other in precisely a point p1, then there is a point z1 in X(ξ1) \ p⊥1
collinear to a point z of X(ξ )\ p⊥1 .

Proof. Suppose that there are no such points z,z1. Let p be any point in X(ξ1) \
p⊥1 , and p2 any point in X(ξ )\ p⊥1 . By our assumption, p and p2 are non-collinear
points. Moreover, ξ2 := [p, p2] meets X(ξ ) in p2 only: if ξ2∩ξ is at least a line,
then p is collinear with at least a point p′ of it, and p′ ∈ p⊥1 by our assumption,
but then p′ ∈ ξ1, a contradiction. Likewise, ξ2 meets X(ξ1) in p only. Lemma 5.2
yields a singular line meeting ξ ,ξ1,ξ2 in three distinct points z,z1,z2, respectively,
with zi and pi non-collinear for i = 1,2. If z would be collinear to p1, then z ∈ ξ1,
which is not the case as ξ ∩ξ1 = {p1} 6= {z}. Hence we found a pair of points as
described in the statement of the lemma after all, a contradiction.
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Lemma 5.5. Let (X ,Ξ) be a pre-AVV with d ≥ 3 and 〈X〉 ⊆ P2d+3(K). Suppose
that ξ ,ξ1,ξ2 ∈ Ξ are such that wξ = 1, wξ1 ≤ 1; ξ ∩ ξ1 is a point p1, ξ ∩ ξ2 is a
line L2 and ξ1∩ξ2 contains a point p with p /∈ p⊥1 ∩L⊥2 . If either d ≥ 4, or d = 3,
|K|> 2 and ξ1∩ξ2 = {p}, then wξ2 ≥ 2 and not all members of Ξ of index at least
2 contain a common point.

Proof. Again let ρ := ρξ be the projection operator from ξ onto a complementary
(d + 1)-space Π. We claim that there exists a point q in U := ξ

ρ

1 ∩ ξ
ρ

2 neither
contained in (ξ1∩ξ2)

ρ nor in Tp1(ξ1)
ρ ∪TL2(ξ2)

ρ .

Indeed, by Lemma 4.18(i), ξ
ρ

1 is a d-space and ξ
ρ

2 is a (d− 1)-space. Hence
dimU ≥ d − 2 ≥ 1. Obviously U contains (ξ1 ∩ ξ2)

ρ and 0 ≤ dim(ξ1 ∩ ξ2) ≤
wξ1 ≤ 1. Since p /∈ p⊥1 ∪L⊥2 , we have pρ /∈ Tp1(ξ1)

ρ ∪TL2(ξ2)
ρ and hence H :=

U∩(Tp1(ξ1)
ρ ∪TL2(ξ2)

ρ) is contained in the union of two hyperplanes of U . Now,
we can find a point q in the complement of H ′ := H ∪ (ξ1∩ξ2)

ρ , since if |K|> 2,
the set H ′ is contained in the union of three hyperplanes of ξ

ρ

1 ∩ ξ
ρ

2 , and oth-
erwise our conditions imply either that H ′ is the union of H and a subspace of
codimension at least 2—and the claim follows—or d = 4. In the latter case the
only situation in which no such point q can be found is when U is a plane and
(ξ1 ∩ ξ2)

ρ , U ∩ Tp1(ξ1)
ρ and U ∩ TL2(ξ2)

ρ are three distinct lines in U through
a common point u. But then, if u′ ∈ X(ξ1)∩X(ξ2) is such that u′ρ = u, then
u′ ∈ p⊥1 ∩L⊥2 , contradicting u′ /∈ ξ . The claim is proved.

Now, Lemma 4.18(ii) yields a point q1 ∈ X(ξ1) \ (ξ1∩ξ2) with qρ

1 = q and q1
not collinear to q, and a line L in X(ξ2) intersecting L2 in a unique point p2, not
collinear to L2 and disjoint from ξ1∩ξ2, with Lρ = q. By Lemma 4.17, 〈q1,L〉 is
a singular plane. Let q2 be a point on L∩ p⊥. Then q2 ∈ q⊥1 ∩ p⊥, from which we
deduce that q1⊥ p (otherwise q2 ∈ ξ1, a contradiction). Now let q′2 be any point of
L\{q2}. Then, likewise, p ⊥ q′2, for otherwise q1 ∈ p⊥∩q′⊥2 ∈ ξ2, contradicting
our choice of q. We conclude that 〈p,L〉 is a singular plane π in ξ2, collinear to
q1. This already implies that ξ2 has index at least 2.

Finally, suppose for a contradiction that all members of Ξ of index ≥ 2 contain a
certain point x (which hence belongs to ξ2). Let q′1 be a point in X(ξ2) which is
not contained in the singular subspace q′⊥1 ∩X(ξ2) and not collinear to x. Then
[q1,q′1] does not contain x and has index at least 2 since q′⊥1 ∩X(ξ2) contains π ,
the sought contradiction.

The previous lemmas assume the existence of certain members of Ξ intersecting
precisely in one point. In order to meet this condition, the next lemma, applied in
a residue, will be helpful. It will also be crucial in proving Proposition 6.2 below.
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Lemma 5.6. Let (X ,Ξ) be a weak pre-AVV of type d and suppose Ξ contains a
unique member ξ ∗ of index at least 1. Then there exist two disjoint members of Ξ

intersecting ξ ∗ non-trivially.

Proof. Suppose for a contradiction that every pair of members of Ξ intersecting
ξ ∗ non-trivially mutually intersect non-trivially. We will use the observation that
no singular line in X intersects ξ ∗ in a point, for this would yield a second member
of Ξ with index > 0.

If K = Fq is finite, then d = 2 since quadrics of projective index 0 only exist in
dimensions d + 1 = 2 and d + 1 = 3, and quadrics of projective index at least 1
require d ≥ 2. Hence ξ ∗ has exactly (q+ 1)2 points, and every other member
of Ξ has exactly q2 + 1 points. Now pick ξ ∈ Ξ intersecting ξ ∗ in a point x and
let p ∈ X \ (ξ ∪ ξ ∗). Note that p⊥∩ ξ ∗ = /0 by the above observation. Hence the
mapping X(ξ ∗)\{x}→ X(ξ )\{x} taking z to [p,z]∩ξ is well defined and clearly
injective. But |X(ξ ∗)\{x}|= q2 +2q > q2 = |X(ξ )\{x}|, a contradiction.

So suppose K is infinite. Let L be a singular line of ξ ∗. Using the above observa-
tion and our assumption, it is easy to see that there are three members ξ ,ξ1,ξ2 of
Ξ\{ξ ∗} intersecting L in three distinct points and pairwise intersecting in distinct
points. Then Lemma 5.1 and K being infinite yield the existence of a singular line
intersecting ξ ∗ in a point—either the axis of the normal rational cubic scroll guar-
anteed by Lemma 5.1, or if the axis were contained in ξ ∗, any singular transversal
of the scroll distinct from L—contradicting our observation above.

6 Connectivity

In this section we generate some arguments that will be crucial to show that cer-
tain geometries are connected, or certain connected components are large enough.
In particular, they will enable us to conclude that appropriate point-residues are
connected when a member of index at least 2 exists in Ξ. When the maximal in-
dex is 1, they will imply that there are connected components of (X ,L ) that are
induced by at least two members of index 1 of Ξ. Recall that we assume that the
global index set W of (X ,Ξ) is not {0}.

The first result will be used in point-residues and creates members of index at least
1 therein.

Lemma 6.1. Let (X ,Ξ) be a weak pre-AVV of type d, with d ≥ 2. Suppose 〈X〉 ⊆
P2d+3(K). Let ξ be a member of Ξ of index at least 1 and suppose that z ∈ X \ξ

is such that Tz∩X(ξ ) = /0 and dim(Tz)≤ 2d +1. Then there is a member of Ξ of
index at least 1 containing z and intersecting ξ non-trivially.
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Proof. Suppose for a contradiction that ξp := [z, p] ∈ Ξ has index 0 for each p ∈
X(ξ ) (note that p /∈ z⊥ indeed since Tz∩X(ξ ) = /0). Let p∈X(ξ ), and let ρ := ρξp

be the projection from ξp onto a subspace Π complementary to ξp in P2d+3(K); so
dimΠ = d +1. Moreover, dimT ρ

z ∈ {d−1,d} (because 0 ∈Wz implies dimTz ≥
2d) and dimξ ρ = dimξ

ρ
u = d for all u ∈ X(ξ )\{p} (cf. Lemma 4.18). For each

u ∈ X(ξ )\{p}, we have that ξ
ρ
u is determined by the (d−1)-space Tz(ξu)

ρ ⊆ T ρ
z

and the point uρ ∈ X(ξ )ρ .

Claim 1: T ρ
z is disjoint from (p⊥∩ξ )ρ .

By way of contradiction, let r be a point in (p⊥∩ξ )ρ ∩T ρ
z . Then r corresponds to

a singular line L of ξ through p (cf. Lemma 4.18(ii)) and L ⊆ 〈Tz,ξ 〉. However,
Tz is at least a hyperplane of 〈Tz,ξ 〉 and hence contains at least a point of L ⊆ X ,
contradicting Tz∩X(ξ ) = /0. This shows the claim.

Claim 2: For each point u ∈ X(ξ ) \ {p}, the subspace ξ
ρ
u contains no points of

(p⊥∩ξ )ρ \{uρ}.
Let u∈ X(ξ )\{p} be arbitrary and suppose that ξ

ρ
u contains a point r ∈ (p⊥∩ξ )ρ

with r 6= uρ . By Claim 1, r /∈ T ρ
z , so Lemma 4.18(ii) implies that there is a

point ru on X(ξu) \ {z,u} with rρ
u = r. By the same token, there is a point r′ on

X(ξ ) collinear to p with r′ρ = r. By Lemma 4.16, the line 〈ru,r′〉 is singular and
meets X(ξp) in a point, say p′. Observe that ru 6= u because r 6= uρ ; in particular,
ru /∈ ξ and hence p 6= p′. This however means that r′ is collinear to both p and p′,
contradicting wξp = 0. The claim follows.

Claim 3: For each point u ∈ X(ξ ) \ {p}, the subspace Tz(ξu)
ρ is disjoint from

X(ξ )ρ \{uρ}.
Let u ∈ X(ξ ) \ {p} be arbitrary and suppose that Tz(ξu)

ρ contains a point r ∈
X(ξ )ρ with r 6= uρ . Then, on the one hand, r corresponds to a line L through
z in Tz(ξu) (cf. Lemma 4.18(iii); note L∩X = {z} since wξu = 0), and on the
other hand, r corresponds to a point r′ on X(ξ )\{p} (cf. Lemma 4.18(ii)). Since
Lρ = r′ρ = r, the plane 〈L,r′〉 meets ξp in a line M through z. If M ⊆ Tz(ξp),
then we obtain r′ ∈ 〈M,L〉 ⊆ Tz, contradicting the assumption Tz ∩X(ξ ) = /0; if
M * Tz(ξp), then M contains a point z′ in X other than z, and using (MM2) we
deduce that the point 〈z′,r′〉 ∩ L belongs to X , contradicting L ⊆ Tz(ξr′). This
shows the claim.

Now let u be a point of X(ξ ) collinear to p. Then, since dimΠ= d+1, the (d−1)-
space Tz(ξu)

ρ has a subspace T of dimension at least d− 2 in common with ξ ρ .
By Claim 3, T contains no points of X(ξ )ρ , which by Lemma 4.18(iii) means
that T ⊆ Tp(ξ )

ρ . Moreover, since u ⊥ p, we have uρ ∈ Tp(ξ )
ρ as well, so U :=

〈T,uρ〉 = Tp(ξ )
ρ , where the equality follows from dimU = dimTp(ξ )

ρ = d− 1
(cf. Lemma 4.18(i)). Consequently, U ⊆ ξ

ρ
u contains points of (p⊥∩ξ )ρ \{uρ},

violating Claim 2. This contradiction shows the lemma.
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The next proposition will be used globally, but also locally, in residues. It shows
that we may often assume that there are at least two members of index at least 1,
be it in (X ,Ξ) or in a residue.

Proposition 6.2. Let (X ,Ξ) be a weak AVV of type d. Then each point of X is
contained in either zero or at least two members of Ξ having index greater than 0.

We will show this proposition in a series of lemmas. Suppose for a contradiction
that (X ,Ξ) is a weak AVV of type d such that there exists a point x ∈ X contained
in a unique member ξ ∗ ∈ Ξ of index w > 0.

Lemma 6.3. No singular line meets ξ ∗ in a unique point, and consequently for
any point p in X(ξ ∗), ξ ∗ is the unique member of Ξ of index w > 0 containing p.

Proof. If there were a singular line Lx through x not in ξ ∗, then by Lemma 4.3,
there exists a singular line L′x of ξ ∗ through x such that the plane spanned by Lx and
L′x is not singular. The same lemma then implies that Lx and L′x are contained in a
unique member of Ξ\{ξ ∗} through x, which is of index at least 1, contradicting
our assumption on x. Now let z be a point in X(ξ ∗) collinear to x and suppose
that Lz is a singular line meeting ξ ∗ in precisely z. Again by Lemma 4.3, we
either have that the lines Lz and 〈x,z〉 determine a member of Ξ (which is of index
at least 1) or a singular plane. Both options yield a singular line through x not
in ξ ∗, a possibility we already ruled out. Hence no lines through z outside ξ ∗

exists; consequently ξ ∗ is the unique member of Ξ through z. Now a connectivity
argument completes the proof of the lemma.

We first get rid of the finite case.

Lemma 6.4. The field K is infinite.

Proof. Suppose for a contradiction that K is finite and has order q. As in the
proof of Lemma 5.6, this implies d = 2 and |X(ξ ∗)|= (q+1)2. Let p be a point
of X \ξ ∗. By Lemma 6.3, for each point z of X(ξ ∗), the points p and z determine
a unique member of Ξ, which has index 0. This yields (q+1)2 tangent planes at
p which intersect each other pairwise in p (by (MM2)). Hence they account for
(q+1)2(q2 +q)+1 > q4 +q3 +q2 +q+1 points of the 4-dimensional subspace
Tp, a contradiction.

The next three lemmas and corollary are generalisations of three lemmas and a
proposition in [16] (there, all members of Ξ had index 0).

Lemma 6.5. For each point p ∈ X with p /∈ ξ ∗, the subspaces Tp and ξ ∗ are
disjoint.
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Proof. Suppose for a contradiction that some point z belongs to both Tp and ξ ∗.
Pick two distinct points r,q ∈ X(ξ ∗) (and we can assume that dim〈r,q,z〉 = 2).
Then [r, p] and [q, p] have index 0 by Lemma 6.3 and so they intersect only in
p, implying by (MM3) that Tp = 〈Tp([r, p]),Tp([q, p])〉. Hence there is a line L
through z intersecting Tp([r, p]) in a point u and intersecting Tp([q, p]) in a point
v. The line 〈u, p〉 intersects Tr([r, p]) in a point a and the line 〈v, p〉 intersects
Tq([q, p]) in a point b. By Lemma 6.4, |K| > 2, so we find two points a′ ∈ 〈u, p〉
and b′ ∈ 〈v, p〉 such that z ∈ 〈a′,b′〉 and a′ 6= a, b′ 6= b. Since a′ /∈ Tr([r, p]), there
is a point a′′ ∈ X \ {r} on 〈r,a′〉 and a point b′′ ∈ X \ {q} on 〈q,b′〉. The line
〈a′′,b′′〉 belongs to the 3-space 〈r,q,z,a′〉, hence it intersects the plane 〈r,q,z〉 in
some point z′, which consequently belongs to ξ ∗. The line 〈a′′,b′′〉 is not singular
by Lemma 6.3. Then (MM1′) and (MM2) yield z′ ∈ ξ ∗ ∩ [a′′,b′′] ⊆ X , implying
that 〈a′′,b′′〉 is singular after all, a contradiction.

For the rest of this section, set ρ := ρξ ∗ (see Definition 4.16).

Corollary 6.6. The projection ρ is injective on X \ξ ∗.

Proof. Suppose for a contradiction that x,y∈X \ξ ∗ have the same image under ρ .
Then, by Lemma 4.17, the line 〈x,y〉 is singular and intersects X(ξ ∗) non-trivially,
contradicting Lemma 6.3.

Lemma 6.7. Let z ∈ X(ξ ∗) be arbitrary. Then the subspace 〈ξ ∗,Tz〉 does not
contain any point of X \ξ ∗.

Proof. Put S = 〈ξ ∗,Tz〉. Suppose for a contradiction that there is a point u ∈
(S∩X) \ ξ ∗. Since u is not collinear with z by Lemma 6.3, we see that [z,u] =
〈Tz[z,u],u〉 ⊆ S. By (MM3), dimS ≤ 2d + 1, so [z,u]∩ ξ ∗ contains a line. This
contradicts Lemma 6.3.

Lemma 6.8. The geometry (X ,Ξ) is a projective plane and all members of Ξ \
{ξ ∗} have index 0.

Proof. Take any ξ ∈ Ξ \ {ξ ∗} meeting ξ ∗ non-trivially. By Lemma 6.3, ξ has
index 0 and intersects ξ ∗ in a unique point z ∈ X . We will use the following
notation. By Lemma 4.18, X(ξ )ρ is an affine d-space αξ . By (MM3), its (d−1)-
space at infinity only depends on z, and we denote it by Πz. Finally, we set Πξ :=
αξ ∪Πz.

Now let z1 and z2 be two non-collinear points of X(ξ ∗) and fix an arbitrary point
p ∈ X \ ξ ∗. For i = 1,2, set ξi := [p,zi]. By Lemma 6.5, we may assume that
Tp ⊆ Π, the target space of ρ . Then the subspace Πξi coincides with Tp(ξi).
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By Corollary 6.6, αξ1 ∩αξ2 = {p}, in particular Πz1 ∩Πz2 = /0. We denote Σ =
〈Πz1 ,Πz2〉 and note that this is a hyperplane in the subspace Tp. Also, Πz1 and Πξ2

are complementary subspaces in Tp.

Let q be an arbitrary point of Tp \ (Πξ1 ∪Πξ2 ∪Σ), which is indeed always non-
empty. Then the subspace 〈q,Πz1〉 intersects Πξ2 in a point q2 ∈ αξ2 \ {p}. Let
u2 ∈ X be the inverse image under ρ of q2 (cf. Lemma 6.6). Then the projec-
tion of [z1,u2] clearly coincides with 〈Πz1 ,q2〉, and so q can be written as uρ

with u ∈ X([z1,u2]). We claim that [p,u] intersects ξ ∗ non-trivially. Indeed, sup-
pose for a contradiction that [p,u]∩ξ ∗ = /0. Then ρ induces an isomorphism be-
tween [p,u] and [p,u]ρ , and hence [p,u]ρ = 〈Tp([p,u]),u〉ρ = 〈Tp([p,u])ρ ,uρ〉 =
〈Tp([p,u]),q〉 ⊆ Tp. This implies that [p,u]ρ and Πξ1 intersect in a line L contain-
ing p. This line is not contained in Tp([p,u]), as Tp([p,u]) and Πξ1 = Tp(ξ1) in-
tersect precisely in p by (MM2). Hence L contains a second point y of X([p,u])ρ ,
y 6= p. By Corollary 6.6, {y} = L∩Πz1 . This, however, contradicts Lemma 6.7.
The claim is proved.

It follows that q is contained in Tp([p,u]) = [p,u]ρ , and so every point of Tp \
(Πξ1∪Πξ2∪Σ), and hence every point of Tp\Σ, is contained in a tangent subspace
at p to some member of Ξ containing p and intersecting ξ ∗ in a point. Axioms
(MM2) and (MM3) imply that there is no room for additional tangent spaces.
We conclude that every member of Ξ through p meets ξ ∗ non-trivially. Since
p ∈ X \ ξ ∗ was arbitrary, this shows that every member of Ξ\{ξ ∗} intersects ξ ∗

in a point. This also implies that every point of X \ ξ ∗ is projected into Tp and
so Tp coincides with Π. From that we then deduce, by a dimension argument,
that also each pair of members of Ξ \ {ξ ∗} has a non-trivial intersection. The
proposition follows.

Proof of Proposition 6.2. By Lemma 6.8, (X ,Ξ) is a projective plane in which
ξ ∗ is the unique member of Ξ having index greater than 0. This contradicts
Lemma 5.6.

7 Case 1: there is an x ∈ X with max(Wx) = 1

Suppose (X ,Ξ) is an AVV of type d and with global index set W in PN(K), with
max(Wx) = 1 for some x ∈ X . Our aim is to show the following proposition.

Proposition 7.1. Let (X ,Ξ) be an AVV of type d with global index set W in PN(K),
containing a point x ∈ X with max(Wx) = 1. Then d = 2 and W = {1}, and hence
(X ,Ξ) is isomorphic to S1,2(K), S2,2(K) or S1,3(K).

Note that the existence of ξ ∈Ξ through x with wξ = 1 implies d ≥ 2. If d > 2, we
can consider the residue (Xx,Ξx) (cf. Lemma 4.10); if d = 2, this makes no sense
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(a member ξ ∈ Ξ with wξ = 1 would correspond to two points in the residue).
Our technique for general d will work for d ≥ 4, so we treat the cases d = 2 and
d = 3 separately. The case d = 2 takes quite some effort, compared to the other
cases; however, it is precisely this case that leads to the actual examples, so we
begin with it.

7.1 The case d = 2

Note that d = 2 implies that W ⊆ {0,1}. If W = {1} we are in the split case
and we reach our desired conclusion, so assume that W = {0,1}. Hence we may
assume that Wx = {0,1}. By Proposition 6.2, there are at least two members of
Ξ through x of index 1. Henceforth, Cx is the connected component in (X ,L )
containing x.

The approach we take is inspired by [21], where the case in which all members of
Ξ are split quadrics was treated.

Our first goal is to show that there are no singular planes in Cx.

Lemma 7.2. Suppose π is a singular plane in Cx and let z ∈ π . If there are three
singular lines L1,L2,L3 through z not in π , then a pair of them is contained in
a singular plane π ′. Moreover, either L1 ∪L2 ∪L3 ⊆ π ′, or 〈π,π ′〉 is a singular
3-space.

Proof. Set Σ := 〈L1,L2,L3〉. If Σ is a plane, then, by Lemma 4.2, it is a singular
plane and the assertion is proved. So we assume henceforth that dimΣ = 3. By
(MM3), dimTz ≤ 4 and hence the 3-space Σ has a line L4 in common with π .
The planes 〈L1,L2〉 and 〈L3,L4〉 are distinct and hence meet in a line L5. Using
Lemma 4.3 and (MM2), we deduce that L5 is singular. If L5 /∈ {L1,L2}, then
the plane 〈L1,L2〉 is singular. Else, 〈L3,L5〉 is singular and we may renumber
subscripts so that 〈L1,L2〉 is singular again. Set π ′ := 〈L1,L2〉.

Now suppose that π ∩π ′ = {z}. We claim that L3 ⊆ π ′. Indeed, if not, then L3
is contained in a unique plane π3 intersecting π and π ′ in respective lines L and
L′ through z. The plane π3, containing three singular lines, is singular too. But
then 〈π,π3〉 is a singular 3-space Π: If not, then (MM1) and Lemma 4.3 imply that
π∪π3 is contained in a member of Ξ, which violates the assumption max(W )≤ 1.
Likewise, 〈π ′,π3〉 is a singular 3-space Π′ and, again likewise, 〈Π,Π′〉 is a singular
4-space. Since 〈Π,Π′〉= Tz, this is not possible (no tangent plane to a member of
Ξ is singular). We conclude that π ∩π ′ is a line, and as before, this means that
〈π,π ′〉 is a singular 3-space.

Lemma 7.3. The connected component Cx contains no singular planes.
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Proof. Suppose first for a contradiction that π is a singular plane through x. For
any line L of π through x, let ξ ′ be a member of Ξ through it (which exists by
(MM1)). Denote by M the unique singular line of ξ ′ through x distinct from
L. Inside Tx (which has dimension 4 by (MM3) and since 0 ∈Wx), a dimension
argument implies that there is a plane π ′ through M meeting both planes π and
Tx(ξ ) in respective lines. Lemma 4.3(1) implies that π ′∩Tx(ξ ) is a singular line,
contradicting wξ = 0. We conclude that x is not contained in a singular plane.

Now let y be an arbitrary point collinear to x and suppose for a contradiction that
there is a singular plane π through y. Denote by L the line 〈x,y〉. We establish
three singular lines through y not in π . To that end, take three points y1,y2,y3
on a line M in π with y /∈M. By the above, there are no singular planes through
x, so we can consider ξi := [x,yi] ∈ Ξ, i = 1,2,3. Note that ξi contains the lines
L and 〈y,yi〉. Let Li be the unique singular line of ξi through yi distinct from
〈y,yi〉; let L′i be the unique singular line of ξi through x distinct from L, i = 1,2,3.
For each i ∈ {1,2,3}, Lemma 4.3(2) implies that 〈M,Li〉 is not singular. So we
can put ξ ′i := [Li,M]. Since there are no singular planes through x, no pair of
lines in {L′1,L′2,L′3} spans a singular plane. In particular, the points p1 := L1∩L′1
and p2 := L2 ∩L′2 are not collinear. So, if ξ ′1 coincided with ξ ′2, then M ⊆ ξ ′1 =
[p1, p2] 3 x, a contradiction, since x is then collinear to some point of M, yielding
a singular plane through x. Similarly, ξ ′2 6= ξ ′3 6= ξ ′1. Let M′i be the unique singular
line in ξ ′i through y1 distinct from M, i = 1,2,3. Then M′1 = L1,M′2,M

′
3 are three

distinct singular lines through y1, not any belonging to π . If y were collinear to M′i ,
then y ∈ ξ ′i and hence ξ ′i contains the singular plane π , a contradiction to wξ ′i

= 1.
So we can consider ξ ′′i := [yy1,M′i ], which yields three distinct members of Ξ. For
each i ∈ {1,2,3}, we now take the unique singular line Mi in ξ ′′i through y distinct
from 〈y,y2〉. We obtain three distinct singular lines M1,M2,M3 through y not in π .

Renumbering if necessary, we may assume that L /∈{M1,M2}. Applying Lemma 7.2
to the triple {L,M1,M2} and using that L is not contained in a singular plane, we
obtain that 〈M1,M2,π〉 is a singular 3-space. This however contradicts the fact
that M1 and M2 are not collinear with y1. We conclude that there is no singular
plane through y.

Now by connectivity, the lemma follows.

The following proposition, which we will prove in a series of lemmas, is slightly
more general, for it allows Wx = {1} (this will be useful in the next section). It
assumes that there are no singular planes, which is something we have already
proved in case Wx = {0,1}.

Proposition 7.4. Let (X ,Ξ) be an AVV of type 2 with global index set W and such
that max(W ) = 1. Then each connected component of (X ,L ) not containing
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singular planes, is either a point (if there are only members of index 0 through it)
or isomorphic to S1,1,1(K).

We will prove this proposition in a series of lemmas. From now on, we let (X ,Ξ)
be an AVV of type 2 with max(W ) = 1. We select an arbitrary point x ∈ X , con-
sider its connected component Cx, and assume that it does not contain singular
planes. If all members of Ξ through x have index 0, then Cx = {x}. By Propo-
sition 6.2, we may henceforth assume that there are at least two members of Ξ

through x of index 1 (and every such member intersects X in a non-thick quadran-
gle).

Lemma 7.5. If every pair of members of Ξ of index 1, inside Cx, which share a
point, have a line in common, then Cx ∼= S1,1,1(K).

Proof. Our assumption implies that Cx is a 0-lacunary parapolar space whose
symps are quadrics of projective index 1 (see Definition 4.6). Since the symps
of Cx are all hyperbolic quadrics in dimension 3, Fact 4.8 implies that Cx ∼=
S1,1,1(K).

Henceforth we may assume that Cx contains a pair of members of Ξ of index 1
sharing exactly a point.

Lemma 7.6. Let y be a point of Cx. Then there are four singular lines through y.
Moreover, any four singular lines through y span a 4-space, which coincides with
Ty.

Proof. Let z ∈ Cx be a point contained in two members ξ1,ξ2 of Ξ intersecting in
precisely {z}. This yields four singular lines L1,L2,L3,L4 through z. If y = z, the
first assertion is proved. Now suppose that y is collinear to z, and put L = 〈y,z〉.
Renumbering if necessary, we may assume that L /∈ {L1,L2,L3}. As there are no
singular planes, [L,Li] ∈ Ξ for i ∈ {1,2,3}. Considering the singular lines Mi in
[L,Li] through y distinct from L, i = 1,2,3, we obtain four singular lines through
y, too. By connectivity, the first assertion follows.

Next let K1,K2,K3,K4 be four singular lines through y. The absence of singular
planes implies that [K1,K2] and [K3,K4] belong to Ξ, and hence (MM2) implies
that 〈K1,K2〉 ∩ 〈K3,K4〉 ⊆ [K1,K2]∩ [K3,K4] = {y}. So dim〈K1,K2,K3,K4〉 = 4.
According to (MM3), Ty = 〈K1,K2,K3,K4〉.

Henceforth we fix an index 1 member ξ of Ξ contained in Cx.

The following lemmas will be helpful to study the projection ρξ of X \ξ from ξ

onto a complementary subspace.
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Lemma 7.7. Let L1 and L2 be two distinct singular lines of X meeting ξ exactly
in (not necessarily distinct) points x1,x2, respectively. Then dim〈ξ ,L1,L2〉= 5.

Proof. If x1 = x2, then this follows from Lemma 7.6. So assume x1 6= x2. Suppose
for a contradiction that dim〈ξ ,L1,L2〉 = 4. Then we claim that L1 and L2 do not
intersect. Indeed, if they do, say in a point p, then, if x1 and x2 are collinear
then we get a singular plane 〈p,x1,x2〉, contradicting our assumption; if not, then
ξ = [x1,x2] contains L1 and L2 by Lemma 4.3, a contradiction. This shows the
claim. Hence 〈L1,L2〉 is a 3-space, which hence intersects ξ in a plane π . Let y
be a point on π \ 〈x1,x2〉 not in X . Then y lies on a line M meeting both L1 and
L2 in points, say z1,z2, respectively. Since y /∈ 〈x1,x2〉, we have 〈z1,z2〉* ξ . This
means that y ∈ [z1,z2]∩ξ , with [z1,z2] 6= ξ , contradicting (MM2).

Lemma 7.8. Suppose ξ1,ξ2 are distinct members of Ξ \ {ξ} with ξ1 ∩ ξ2 ∩ ξ a
singular line L. Then W := 〈ξ ,ξ1,ξ2〉 has dimension 7.

Proof. Since ξ ,ξ1,ξ2 share L, we already have dimW ≤ 7. Suppose for a contra-
diction that dimW ≤ 6. For i = 1,2, put Wi := 〈ξ ,ξi〉 and note that dimWi = 5.
So either W =W1 =W2 or W1∩W2 has dimension 4. In the first case, we take any
4-space U in W through ξ ; in the second case we put U =W1∩W2. In both cases,
U is a hyperplane in Wi. We now take any singular line Mi on ξi disjoint from
L. By choice of U , the line Mi has exactly one point mi in common with U . For
i ∈ {1,2}, we denote by Ri the unique singular line of ξi through mi distinct from
Mi, and note that Ri intersects L, and hence ξ , in a point. Lemma 7.7 implies that
R1 = R2. However, then ξ1 = [L,R1] = [L,R2] = ξ2, a contradiction.

Lemma 7.9. Let x1 and x2 be two distinct collinear points on X(ξ ). Then the 5-
spaces U1 = 〈ξ ,Tx1〉 and U2 = 〈ξ ,Tx2〉meet exactly in ξ and hence dim〈ξ ,Tx1 ,Tx2〉=
7.

Proof. Let L1 and L′1 be two singular lines through x1 not in ξ . By Lemma 7.6,
Tx1 is generated by L1,L′1 and the two singular lines of ξ passing through x1. Set
L := 〈x1,x2〉. As there are no singular planes, ξ1 := [L,L1] and ξ ′1 := [L,L′1] belong
to Ξ. Let L2 and L′2 be the respective singular lines of ξ1 and ξ ′1 through x2 distinct
from L. Then Tx2 is generated by L2,L′2 and the two singular lines of ξ through x2.
As such, 〈ξ ,ξ1,ξ

′
1〉 = 〈U1,U2〉. By Lemma 7.8, the latter is 7-dimensional, from

which it follows that U1∩U2 is 3-dimensional, and hence coincides with ξ .

Lemma 7.10. Let p ∈ X(ξ ) be arbitrary. Then each point of 〈ξ ,Tp〉 ∩X either
belongs to ξ , or is on a singular line together with p.
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Proof. Suppose by way of contradiction that some point y not collinear to p is
contained in 〈ξ ,Tp〉 \ ξ . Put ξ ′ := [p,y]. Then ξ ′ = 〈Tp(ξ

′),y〉 ⊆ 〈ξ ,Tp〉. Since
the latter has dimension 5, (MM2) implies that ξ ∩ξ ′ is a singular line L through
p. Let M be the singular line of ξ ′ through y meeting L in a point, say z. By
assumption, z 6= p. So, recalling y ∈ 〈ξ ,Tp〉 we get M ⊆ 〈ξ ,Tx〉∩Tz ⊆ 〈ξ ,Tx〉∩
〈ξ ,Tz〉, and as M * ξ , this contradicts Lemma 7.9.

We are now ready to use to projection ρξ from ξ onto some subspace Π comple-
mentary to ξ in the subspace S generated by the points of Cx.

Lemma 7.11. The subspace S generated by the points of Cx is 8-dimensional.

Proof. Let x1,x2 be distinct points on a singular line L of ξ . Let i = 1,2. By
Lemma 7.6, there are two singular lines Li,L′i through xi outside ξ . Recalling
that there are no singular planes, ξi := [Li,L′i] is well defined. By Lemma 4.18,
the image of X(ξi)\ (Li∪L′i) under ρξ is an affine plane π∗i in Π with projective
extension πi. By the same lemma, Ti := πi \π∗i is the image of Txi(ξi), which
coincides with T

ρξ

xi by (MM3). According to Lemma 7.9, W := 〈ξ ,Tx1 ,Tx2〉 is
7-dimensional, so T1 and T2 are skew lines and dimΠ≥ 3.

First suppose for a contradiction that dimΠ = 3. In this case, the plane π1 has a
point z in common with the line T2, and z /∈ T1 by the above (so z ∈ π∗1 ). Let y
be the unique inverse image in ξ1 of z in X ; then y ∈ X(ξ1)\ x⊥1 and y ∈ 〈ξ ,Tx2〉.
By Lemma 7.10, y ⊥ x2, implying that x2 ∈ [x1,y] = ξ1, a contradiction. Hence
dimΠ ≥ 4. We need to show that dimΠ = 4, so suppose now for a contradiction
that dimΠ > 4 (this means that there are projective lines in 〈Cx〉 skew to W ).

We distinguish two cases. First we assume that there is some singular line R
disjoint from W . In particular, R is disjoint from Txi , and so no point of R is
collinear to xi, i = 1,2. We claim that R contains a point v with v⊥ ∩ L = /0.
Indeed, if not then let y1,y2 be two distinct points of R and let zi ⊥ yi, with zi ∈ L,
i= 1,2. Since there are no singular planes zi is unique, i= 1,2, and z1 6= z2. Hence
[y1,z2] contains L and R and so x1 is collinear to some point of R after all. This
shows the claim.

So let v ∈ R be such that v⊥ ∩L = /0. The members [v,x1] and [v,x2] of Ξ do not
contain L. Let Mi denote the line Tv([v,xi])∩Txi([v,xi]), i = 1,2. Then M1∩M2 ⊆
Tx1 ∩ Tx2 and Lemma 7.9 implies M1 ∩M2 ⊆ L. Since v is not collinear to any
point of L, we deduce that M1 and M2 are disjoint. This implies that Tv contains
a 3-dimensional subspace of W , namely 〈M1,M2〉. Since, by (MM3), dimTv ≤ 4,
R⊆ Tv intersects W non-trivially, a contradiction.

Secondly, assume that no singular line is disjoint from W . Let x∗1,x
∗
2 ∈ X be such

that 〈x∗1,x∗2〉 is disjoint from W . Put ξ ∗ := [x∗1,x
∗
2]. If ξ ∗ has index 1, then, as
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R is skew to W we see that ξ ∗ meets W in at most a line, and hence we find a
singular line R∗ on ξ ∗ skew to W , a contradiction. So ξ ∗ has index 0. Since
x∗i /∈W , in particular x∗i is not collinear to xi, we can consider ξ ′i := [xi,x∗i ] ∈ Ξ.
Then Tx∗1(ξ

′
1)∩ Tx∗2(ξ

′
2) is empty, for if it contained a point z, then by (MM2),

z ∈ X and hence 〈x∗1,z〉∪ 〈x∗2,z〉 would be two singular lines in ξ ∗ by Lemma 4.3,
a contradiction to wξ ∗ = 0. By Lemma 7.6, there are four singular lines through
x∗i spanning Tx∗i , and by assumption, each of these lines has a point in common
with W . This implies that Tx∗i is a singular 4-space sharing a 3-space Wx∗i with W ,
i = 1,2. Clearly, Wx∗1 and Wx∗2 share the line Tx∗1(ξ

∗)∩Tx∗2(ξ
∗), so using Tx∗1(ξ

′
1)∩

Tx∗2(ξ
′
2) = /0, we obtain dim〈Wx∗1 ,Wx∗2〉= 5. This means that W ∗ := 〈Tx∗1 ,Tx∗2 ,ξ

∗〉=
〈Wx∗1 ,Wx∗2 ,x

∗
1,x
∗
2〉 has dimension 7; and hence 〈Tx∗1 ,ξ

∗〉∩ 〈Tx∗2 ,ξ
∗〉= ξ ∗.

In what follows we interchange the roles of ξ ,xi, W and ξ ∗,x∗i , W ∗, respectively.
Since ξ and ξ ∗ have different index, the arguments are not entirely identical,
hence we present them in detail.

Let R∗ be a singular line of ξ disjoint from L. Let v∗ be an arbitrary point on R∗

and note that v∗ /∈ y⊥i since v∗ /∈ Tyi , i = 1,2. Let M∗i denote the line Tv∗([v∗,x∗i ])∩
Tx∗i ([v

∗,x∗i ]), i = 1,2. There are two cases: Suppose first that M∗1 ∩M∗2 6= /0. Then
M∗1 ∩M∗2 ⊆ Tx∗1∩Tx∗2 and since by the previous paragraph 〈Tx∗1 ,ξ

∗〉∩〈Tx∗2 ,ξ
∗〉= ξ ∗,

we obtain M∗1 ∩M∗2 ⊆ ξ ∗. By (MM2), the intersection M∗1 ∩M∗2 belongs to X
and hence to x∗1

⊥ ∩ x∗2
⊥, contradicting wξ ∗ = 0. Suppose now that M∗1 ∩M∗2 = /0.

This implies that Tv∗ contains a 3-dimensional subspace of W ∗, namely 〈M∗1 ,M∗2〉.
Since, by (MM3), dimTv∗ ≤ 4, R∗ ⊆ Tv∗ intersects W ∗ non-trivially, a contradic-
tion.

We are now ready to prove Proposition 7.4.

Proof of Proposition 7.4. Again, let x1,x2 be two points on ξ on a common sin-
gular line L. Let L1,L′1 be two distinct singular lines through x1, not inside ξ .
Put ξ := [L,L1] (recall that there are no singular planes) and let L2 be the singular
line of ξ through x2 distinct from L. Finally, let L′2 be an arbitrary singular line
through x2, distinct from L2 and not in ξ . Put ξ ′i := [Li,L′i] for i = 1,2.

By Lemma 7.11, there is a 4-dimensional subspace Π in 〈Cx〉 complementary to
ξ . Then the image of X(ξ ′i ) \ (Li ∪L′i) under ρξ is the set of points of an affine
plane π∗i in Π, with projective completion πi, and the line Ti := πi \ π∗i is the
projection of Txi , i = 1,2. The projective planes π1 and π2 meet non-trivially by
a dimension argument. According to Lemma 7.9, the lines T1 and T2 are skew;
also, the arguments of the second paragraph of the proof of Lemma 7.11 imply
that T1 does not meet π2, and T2 does not meet π1. Hence the affine planes π∗1 and
π∗2 meet in a unique point z and so we have points z1 in X(ξ ′1) \ (L1∪L′1) and z2
in X(ξ ′2)\ (L2∪L′2) lying in a common 4-space U with ξ . We claim that z1 = z2,
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so suppose for a contradiction that z1 6= z2. Let ξ ∗ be a member of Ξ containing
z1,z2.

Considering ξ ∗ ∩ ξ and (MM2), we see that 〈z1,z2〉 is a singular line meeting ξ

in some point u ∈ X . Note that u /∈ L because otherwise L ⊆ ξ ′1 by Lemma 4.3, a
contradiction. So, possibly interchanging the roles of x1 and x2, we may assume
that 〈u,x2〉 is not a singular line; let {v} = u⊥∩M2, with M2 the singular line of
ξ through x2 distinct from L. Recall that z1 /∈ Tx2 , as z /∈ T2, so we can consider
ξ12 := [z1,x2]. Then we show ξ12 ∩ ξ = {x2}. Indeed, if L ⊆ ξ12, then x1 ∈ ξ12
and hence ξ12 = ξ ′1, a contradiction; if M2 belongs to ξ12, then u ∈ v⊥∩ z⊥1 (note
v /∈ z⊥1 by absence of singular planes), and then ξ12 = ξ , a contradiction. Thus
we obtain that the image under ρξ of X(ξ12)\ x⊥2 coincides with the plane π∗2 (for
the projection is determined by z

ρξ

1 = z and Tx2(ξ12)
ρξ = T

ρξ

x2 = T2). Noting that
Tz1(ξ

′
1)

ρξ = π1 and Tz1(ξ12)
ρξ = π2, and recalling that 〈π1,π2〉= Π, we obtain that

Tz1 is a 4-space disjoint from ξ . However, u ∈ Tz1 ∩ξ , a contradiction. The claim
follows.

Now let Mi be the singular line in ξ ′i through zi meeting Li, i = 1,2. Let mi denote
the point Mi∩Li. Remember that L1,L,L2 are contained in ξ ; let L′ be the singular
line of ξ through m1. Note that M1 6= M2, for otherwise M1 = L′ = M2 and hence
ξ ′1 = ξ = ξ ′2, a contradiction. Moreover, m1 and m2 are not collinear, for otherwise
〈z1,m1,m2〉 would be a singular plane, a possibility we excluded by assumption.
However, this means that z1 ∈m⊥1 ∩m⊥2 ⊆ ξ , a contradiction, recalling ξ ′1∩ξ = L1
and z1 /∈ L1.

We conclude that our initial assumption that Cx contains a pair of members of Ξ of
index 1 sharing exactly one point is false. Hence by Lemma 7.5, Cx is isomorphic
to S1,1,1(K).

Finally, we rule out the existence of connected components isomorphic to S1,1,1(K).

Proof of Proposition 7.1 in case d = 2. Suppose for a contradiction that W =
{0,1}. By assumption, there is a ξ ∈ Ξ through x of index 1, so the connected
component Cx of x in (X ,L ) is more than a point. By Lemma 7.3, Cx does not
contain singular planes and hence Proposition 7.4 then implies that Cx is isomor-
phic to S1,1,1(K). Pick two points x and y at distance 3 in Cx and let Σ = 〈Cx〉.
Then [x,y] is a member of Ξ of index 0. Note that the presence of [x,y] implies
(by (MM3)) that dimTx = dimTy = 4. Inside [x,y], we see that the tangent planes
Tx([x,y]) and Ty([x,y]) intersect each other in a line L. On the other hand, inside
Cx ∼= S1,1,1(K), the tangent spaces of x and y are disjoint 3-spaces (as indeed
they span the 7-space, which follows from (P1) in Section 17.2 in [23]), which
consequently both contain a unique point of L. Thus L belongs to Σ, and hence
so does [x,y] = 〈x,y,L〉. However, this contradicts Lemma 5.3. We conclude that
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W = {1}. The main results from [21] then reveal that (X ,L ) is isomorphic to one
of S1,2(K), S2,2(K), S1,3(K) indeed.

7.2 The case d = 3

Proof of Proposition 7.1 in case d = 3. Let x be a point with max(Wx) = 1.
Then let Ξ(Cx) be the set of members ξ ∈ Ξ of index 1 contained in Cx, and let
L (Cx) be the set of singular lines of Cx. Due to Proposition 6.2, |Ξ(Cx)| ≥ 2.
Now we observe that (Cx,Ξ(Cx)) is a so-called Lagrangian Grassmannian set, as
introduced in [20]. Indeed, the members of Ξ(Cx) are projective 4-spaces inter-
secting Cx in a non-singular parabolic quadric (and all such quadrics are isomor-
phic). Moreover, two points x,y at distance at most 2 in the point-line geometry
(Cx,L (Cx)) are contained in at least one member of Ξ(Cx); indeed, by (MM1)
there is a member ξ of Ξ containing x and y, which obviously belongs to Ξ(Cx) if
x⊥ y. If x is at distance 2 from y, then /0 6= x⊥∩y⊥ ⊆ X(ξ ), so ξ has index 1. Fur-
thermore, Axioms (MM2) and (MM3) hold in (Cx,Ξ(Cx)). This now implies by
Main Result 2 of [20] that (Cx,Ξ(Cx)) is isomorphic to the Lagrangian Grassman-
nian LG(3,6)(K), which, as a point-line geometry, is isomorphic to the dual polar
space C3,3(K), and which lives in projective 13-space (hence dim〈Cx〉= 13).

This also implies that (Cx,L (Cx)) has diameter 3. Hence there exist two points
y,z ∈ Cx at distance 3. Then [y,z] is a member of Ξ of index 0. Clearly, Ty([y,z])∩
Tz([y,z]) is a plane. However, in LG(3,6)(K), the (6-dimensional) tangent spaces
of points at distance 3 are disjoint (due to the fact that they span the 13-space 〈Cx〉,
which follows from (P1) in Section 17.2 of [23]), so Ty∩Tz = /0, a contradiction.

7.3 The case d ≥ 4

We now aim to show Proposition 7.1 for d ≥ 4. Let x ∈ X be a point with
max(Wx) = 1. By Corollary 4.10, (Xx,Ξx) is a weak pre-AVV (use also Propo-
sition 6.2 to see that |Ξx| ≥ 2).

Lemma 7.12. The maximal singular subspaces of (Xx,Ξx) are pairwise disjoint.

Proof. Suppose for a contradiction that two distinct maximal singular subspaces
M1 and M2 of (Xx,Ξx) have a point p in common. Note that this implies dimMi≥
1, i = 1,2. Let L1 and L2 be lines in M1 and M2, respectively, through p. In
(X ,Ξ), this corresponds to planes π1 and π2 intersecting each other in a line M
through x. Let pi be a point of πi \M, for i = 1,2. If p1 were not collinear with p2,
then Axiom (MM1’) together with Lemma 4.3 would imply that there is a mem-
ber of Ξ containing π1 ∪π2, contradicting max(Wx) = 1. Hence p1 ⊥ p2, which
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means that L1 and L2 span a singular plane. Varying L1 and L2 yields the singular
subspace 〈M1,M2〉, contradicting the maximality of Mi, i = 1,2.

It is now convenient to distinguish between the finite and infinite case, noting that
in the infinite case, we really only need the field K to have at least 5 elements, but
the counting arguments for |K| ≤ 4 are uniform and hold for all finite fields.

7.3.1 The infinite case

Proof of Proposition 7.1 for d ≥ 4 and K infinite. Take ξ ∈ Ξx arbitrary. Since
|Ξx| ≥ 2, there exists p∈ Xx \ξ . By Lemma 4.3, p⊥∩ξ is a singular subspace and
hence there are distinct points p1, p2 ∈ X(ξ ) not collinear to p. Set ξi := [p, pi],
i = 1,2. By Lemma 5.2 (applied to (Xx,Ξx), recalling dimTx ≤ 2d and |K| > 2)
there is a singular line meeting ξ1,ξ2 and ξ in three distinct points. Lemma 5.1
then yields conics C1 ⊆ X(ξ1) and C2 ⊆ X(ξ2) through p on a common normal
rational cubic scroll. Moreover, since |K| > 4, all its transversal lines, except
possibly the one through p, are singular; and so is the unique line M meeting all
these transversal lines. Let L1 and L2 be two such singular transversal lines. Since
both of them intersect M in a point, Lemma 7.12 implies that they are collinear
with M and, repeating this argument, 〈L1,L2〉 is a singular 3-space. This however
contradicts the fact that the points L1∩C1 and L2∩C1 are not collinear.

7.3.2 Finite case

In this subsection, we assume that K is the finite field Fq. Since over a finite field
quadrics of index 0 only exist in dimensions 2 and 3, we deduce d = 4. Hence, by
(MM3), Nx := dim〈Xx〉 ≤ 7.

Lemma 7.13. The maximal singular subspaces of (Xx,Ξx) have dimension at most
1, and at least one singular line in Xx exists.

Proof. Let M be a maximal singular subspace of (Xx,Ξx). Let p ∈ Xx be a point
outside M (which exists, as there are non-collinear points in (Xx,Lx)). For each
point z of M, it follows from Lemma 7.12 that the points p and z are non-collinear,
and hence they define a unique member ξz of Ξx. Let ρ be the projection of
Xx from M onto a complementary subspace Π in 〈Xx〉. This projection is injec-
tive, since points with the same image are necessarily collinear to a point of M,
contradicting Lemma 7.12. For each member ξz of Ξx, z ∈ M, the projection of
X(ξz)\{z} is an affine plane π∗z 3 pρ with projective completion πz and we have
Lz := πz \π∗z = Tz(ξz)

ρ . We claim that, for z1,z2 ∈M, z1 6= z2, πz1 ∩πz2 = {pρ}.
Indeed, suppose for a contradiction that pρ 6= u ∈ πz1 ∩πz2 . By possibly consid-
ering 〈pρ ,u〉 ∩Lz1 , we may assume u ∈ Lz1 . If u ∈ Lz2 , then there exists a point
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v ∈ 〈pρ ,u〉, with pρ 6= v ∈ π∗z1
∩π∗z2

, contradicting injectivity of ρ . So u /∈ Lz2 and
hence there exists u2 ∈ X(ξz2) with uρ

2 = u. Since u ∈ Lz1 , there exists a line U1
in Tz1(ξz1) through z1 with Uρ

1 = u. This implies that the plane 〈U1,u2〉 contains
a point u′ ∈M \{z1}. Then [u′,u2] exists and intersects ξz1 in a point of U1 \{z1}
not belonging to Xx, contradicting (MM2). The claim is proved.

Suppose for a contradiction that dim(M) ≥ 2. Then dim(Π) ≤ 4 (recall Nx ≤ 7).
Then the number of points in the union of the n := |M| planes πz, z ∈M, is at least
n(q2 + q)+ 1. Since n ≥ q2 + q+ 1 by assumption, this exceeds the number of
points of Π. Hence dim(M)≤ 1.

The first assertion follows.

For the second assertion, suppose for a contradiction that there are no singular
lines in Xx. Let ξ ∈ Ξx and let ρ := ρξ be the projection onto Π (recall that Nx ≤ 7
so dim(Π) ≤ 3). For any ξ ′ ∈ Ξx meeting ξ in a point p ∈ Xx, the q2 points of
Xx(ξ

′) \ {p} determine distinct members of Ξx with any point p′ ∈ Xx(ξ ) \ {p}.
The number of points of Xx on these q2 members of Ξx distinct from p′ is q4,
whereas Π contains at most q3+q2+q+1 points. By Lemma 4.17, this gives rise
to a singular line in (Xx,Ξx) after all, a contradiction.

Lemma 7.14. Each point of Xx is contained in precisely one singular line and in
at least q2 +q members of Ξx. Also, |Xx| ≥ q4 +q3 +q+1.

Proof. Suppose for a contradiction that there is a point p of Xx through which
there are no singular lines. By Lemmas 7.12 and 7.13, there is a point r ∈ Xx

contained in a unique singular line. Let αp and αr be the respective numbers of
members of Ξx through p and r. Note that members of Ξx have q2+1 points. Then
|Xx|= αpq2 +1 = αrq2 +(q+1). It follows that (αp−αr)q = 1, a contradiction.

Hence each point p ∈ Xx is contained in a unique singular line. This means that
|Xx|= |Lx| · (q+1). Since |Xx|= αpq2 +q+1, it then follows that q+1 divides
αp. Taking a member of Ξx not through p, we also see that αp ≥ q2. Combined,
this implies αp ≥ q2 +q. It now also follows that |Xx|= αpq2 +q+1≥ q4 +q3 +
q+1.

Proof of Proposition 7.1 for d≥ 4 and K finite. We consider the projection ρ := ρξ

from any ξ ∈ Ξx onto a complementary subspace Π (which has dimension at most
3). By Lemma 4.17, two points of Xx \ξ have the same image under ρ precisely
if they are on a singular line meeting X(ξ ). Hence the number of points in ρ(Xx)
is, by Lemma 7.14, at least (q4 +q3 +q+1)− (q2 +1)q = q4 +1. This is strictly
more than the number of points in Π however, a contradiction.
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8 Case 2: there is a point x ∈ X with max(Wx) = 2

Suppose (X ,Ξ) is an AVV of type d with global index set W in PN(K) and with
max(Wx) = 2 for some x ∈ X . The existence of ξ ∈ Ξ through x with wξ = 2
implies d ≥ 4. We show the following proposition.

Proposition 8.1. Let (X ,Ξ) be an AVV of type d with global index set W in PN(K)
containing a point x ∈ X with max(Wx) = 2. Then W = {2}, d = 4 and hence
(X ,Ξ) is isomorphic to Gn,1(K) for n ∈ {4,5}.

As in the previous case, we need a different approach for the case d = 4. We start
with the generic case d ≥ 5. Henceforth let x ∈ X be such that max(Wx) = 2.

8.1 The case d ≥ 5

Lemma 8.2. Suppose ξ and ξ1 are members of Ξ of index 2 and index at most 2,
respectively, intersecting each other in precisely a line L 3 x. Then d = 5 and ξ1
has index 2.

Proof. In the residue (Xx,Ξx), the members ξ ,ξ1 ∈ Ξ correspond to members
ξ ′,ξ ′1 ∈ Ξx of index 1 and index at most 1, respectively, intersecting each other in
precisely a point p1. By Lemma 5.4 (note that d− 2 ≥ 3), we may assume that
there is a singular line 〈z1,z〉 with z1 ∈ X(ξ ′1)\ p⊥1 and z ∈ X(ξ ′)\ p⊥1 . As ξ ′ has
index 1, we can take a singular line M through z in ξ ′ that is not collinear to z1.
Then M and z1 determine a unique member ξ ′2 of Ξx.

Suppose first d ≥ 6. Then Lemma 5.5 implies that ξ ′2 has index at least 2, and
hence the corresponding member ξ2 of Ξ has index at least 3, which contradicts
max(Wx)≤ 2. Next suppose d = 5, |K|> 2 and the index of ξ ′1 is equal to 0 (the
latter implies ξ ′1∩ξ ′2 is exactly z1). Then Lemma 5.5 yields the same contradiction
as just above.

Finally, suppose d = 5 and |K| = 2. Then W = {2}, as the only non-degenerate
quadrics in finite 6-dimensional projective space are split. This possibility is ex-
cluded by the Main Result of [21].

This has the following corollary.

Corollary 8.3. We have 2 ∈Wx ⊆ {0,2}.

Proof. Suppose for a contradiction that Ξx has a member ξ 0 of index 0. Recall that
by assumption max(Wx) = 2, and hence Ξx has at least one member ξ 1 of index
1 too. By Lemma 8.2, ξ 0 ∩ ξ 1 is empty. We take a pair of non-collinear points

44



p0 ∈ X(ξ 0) and p1 ∈ X(ξ 1) and obtain [p0, p1]∈Ξx with ξ 0∩ [p0, p1] = {p0}. By
Lemma 8.2, the index of [p0, p1] is 0. But then ξ 1∩ [p0, p1] = {p1}, contradicting
Lemma 8.2.

Proof of Proposition 8.1 in the case d = 5. We proceed by showing some claims.

Claim 1. The residue (Xx,Ξx) is a pre-AVV of type 3 and global index set {1}.
Indeed, by Corollary 8.3, Ξx only contains members of index 1. By Proposi-
tion 6.2, |Ξx| ≥ 2. The claim now follows from Corollary 4.12.

Claim 2. For each point p⊥ x, we have Tp∩X ⊆ p⊥.
Indeed, this follows immediately from Lemma 4.14 if there exist two members
of Ξ which intersect each other precisely in p, in particular if 0 ∈Wp. So we
may assume that (Xp,Lp) is a (−1)-lacunary parapolar space. By Fact 4.7, all
members of Ξp are split, a contradiction. This shows the claim.

Claim 3. For each point p⊥ x, there exists ξ ∈ Ξ with x ∈ ξ , p /∈ ξ and wξ = 2.
Indeed, by Claim 1, there exist two members ξ1,ξ2 ∈ X of index 2 containing
x. Suppose they both contain p. In ξ1 we select a singular line L1 through x not
collinear to p. In ξ2 \ξ1, we select a singular line L2 through x not in a plane with
L1. Then the unique member of Ξ determined by L1 and L2 has index 2 (by Claim
1) and does not contain p, showing the claim.

Claim 4. For each point p⊥ x, we have dim(Tx∩Tp)≤ 8.
The following argument is inspired by the proof of Corollary 4.15 of [21]. By
Claim 3, there exists ξ ∈ Ξ of index 2 with p /∈ Ξ3 x. Set Wp := Tp∩ξ . By Claim
2, Wp∩X(ξ ) = p⊥∩ξ , so Wp ⊆ Tx(ξ ) and also dimWp ≥ 3. As such there exists a
line L in Tx(ξ ) disjoint from Wp. Noting that Tp and Tx are at most 10-dimensional,
and that L⊆ Tx \Tp, the claim follows.

Now, the content of Section 6.1 of [21] is to prove non-existence of pre-AVVs of
type 3 with global index set {1} for which each tangent space has dimension at
most 7. By Claims 1 and 4, this completes the proof of Proposition 8.1 in the case
d = 5.

Proof of Proposition 8.1 in the case d ≥ 6. By Corollary 8.3, all members of Ξx

have index 1 and, by Lemma 8.2 and d≥ 6, no two of them share precisely a point.
Note that |Ξx| ≥ 2, according to Proposition 6.2, and the absence of members of
index 0 in Ξx implies that (Xx,Ξx) is connected. We conclude that (Xx,Lx) is
a strong 0-lacunary parapolar space of diameter 2 whose symps are quadrics of
projective index 1. By Fact 4.8, (Xx,Lx) is the direct product of a line and a
projective n-space. This however implies that the members of Ξx are hyperbolic
quadrics in 3 dimensions, i.e. that d−1 = 3, a contradiction.
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8.2 The case d = 4

Recall that d = 4 implies that max(W ) ≤ 2. If W = {2} then the Main Result of
[21] proves Proposition 8.1, hence we assume for a contradiction that W 6= {2}.
Let z∈X be a point with max(Wz) = 2. If Wz = {2}, then our assumption W 6= {2}
implies that there exists y ∈ X \ {z} with minWy < 2. Using (MM1) on the pair
y,z, we have 2 ∈Wy, and so by d = 4 we obtain max(Wy) = 2. We may hence
assume that there are points x ∈ X with mx := min(Wx)< max(Wx) = 2.

Lemma 8.4. For each x∈X with mx <max(Wx)= 2, the residue (Xx,Ξx) contains
no singular subspaces of dimension 2+mx.

Proof. Let ξ1 and ξ2 be two members of Ξ through x of index mx and 2, respec-
tively. Suppose for a contradiction that there is a singular subspace S of dimension
3+mx through x. Since S∩ξ2 is contained in a plane of ξ2 and ξ1∩ξ2 is contained
in a line of ξ2, we can select a singular plane π ⊆ ξ2 through x which intersects
S and ξ1 in precisely x. Inside Tx (which has dimension at most 8 by (MM3)),
the subspace 〈π,S〉 has dimension 5+mx and therefore it intersects the 4-space
Tx(ξ1) in a subspace S′ of dimension at least 1+mx. Since each point of S′ \{x}
is on a line meeting both S and π , (MM2) implies that S′ is singular. However,
dimS′ = 1+mx > wξ1 , a contradiction.

Lemma 8.5. Let x ∈ X be a point with mx < max(Wx) = 2. Then the point-line
geometry (Xx,Lx) is a strong parapolar space whose symps are quadrics of pro-
jective index 1.

Proof. By assumption on x, there is at least one member ξ ∗ ∈Ξ of index 2 through
x. In (Xx,Lx), ξ ∗ corresponds to a member ξ of Ξx of index 1. Observe that Xx

contains a point z /∈ Xx(ξ ), because either there is a second member of index 2
containing x, or, if not, then Proposition 6.2 yields at least one member of Ξ of
index 1 containing x.

We show that z belongs to the connected component Cξ of ξ in (Xx,Lx). Suppose
not. Then z⊥∩ξ = /0 and [z, p]∈Ξx has index 0 for each p∈ Xx(ξ ). Moreover, we
claim that z satisfies the following two conditions: Tz∩Xx(ξ ) = /0 and dimTz ≤ 5.
To that end, we consider the situation in (X ,Ξ), where ξ corresponds to ξ ∗ and z
to a singular line L containing x, on which we select a point z′ 6= x. Then, since
1 ∈ Wz′ by the above, Lemma 4.15 implies that Tz′ ∩ X ⊆ z′⊥ and hence Tz′ ∩
X(ξ ∗)⊆ z′⊥∩X(ξ ∗) = {x}. This shows the first part of the claim. It also implies
that Tz′ ∩ ξ is contained in Tx(ξ ) and is at most 2-dimensional for it contains no
points of X other than x. Hence there is a singular line in Tx(ξ ) disjoint from Tz′ ,
which means that dim(Tz′ ∩Tx)≤ 2d−2 = 6. The claim follows.
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Lemma 6.1 now implies that there is a member of Ξx of index at least 1 through
z meeting ξ non-trivially, and hence z ∈ Cξ after all, a contradiction. We con-
clude that (Xx,Lx) is connected and non-trivial (i.e., not a single point or a single
member of Ξx). The lemma now follows from Lemma 4.5.

Lemma 8.6. Let x ∈ X be a point with mx < max(Wx) = 2 . Then either (Xx,Lx)
is isomorphic to S1,1,1(K) or each point p∈ Xx is contained in four singular lines
L1,L2,L3,L4 of Lx not in a common singular plane. In the latter case,

(i) either dim〈L1,L2,L3,L4〉= 4 and {L1,L2,L3,L4} contains at most two (nec-
essarily disjoint) pairs of collinear lines;

(ii) or dim〈L1,L2,L3,L4〉= 3 and three lines of {L1,L2,L3,L4} lie in a common
singular plane.

Proof. By Lemma 8.5, (Xx,Lx) is a strong parapolar space whose symps are
quadrics of projective index 1. Suppose first that (Xx,Lx) is 0-lacunary. By
Fact 4.8, and the fact that Xx does not contain singular 3-spaces by Lemma 8.4,
(Xx,Lx) is then isomorphic to either the direct product S1,1,1(K), or to S1,2(K).
In the latter case, each point p∈ Xx is contained in four singular lines L1,L2,L3,L4
satisfying (ii).

So next, we suppose that there is a point p ∈ Xx contained in two index 1 mem-
bers of Ξx that intersect each other in p only. Hence there are four singular lines
through p not all in one singular plane. Let q be a point of Xx collinear to p. Let
L1,L2,L3 be three singular lines through p distinct from pq. For each i∈ {1,2,3},
the lines pq and Li determine either a member of Ξx in Xx or a singular plane.
Hence it is clear that there are at least four singular lines, not in a common plane,
through q as well. By connectivity, there are four singular lines not in a common
plane through each point of Xx.

Now assume that p ∈ Xx is contained in four singular lines L1,L2,L3,L4, not in
one singular plane. First suppose that dim〈L1,L2,L3,L4〉 = 3. Then the planes
〈L1,L2〉 and 〈L3,L4〉 have a line in common. By (MM2), at least one of these
planes, say 〈L1,L2〉 is singular, and one of L3,L4 is contained in 〈L1,L2〉. Hence
(ii) holds. Next, suppose dim〈L1,L2,L3,L4〉= 4. Then L1 is collinear with at most
one member of {L2,L3,L4}, as otherwise we obtain two singular planes sharing
a line, and by absence of quadrics of index higher than 1, this yields a singular
3-space, violating Lemma 8.4. Hence (i) holds.

Lemma 8.7. Let x ∈ X be a point with mx < max(Wx) = 2. Then (Xx,Lx) is
isomorphic to S1,1,1(K).

Proof. Recall that, by Lemma 4.10, (Xx,Ξx) is a weak pre-AVV of type 2 with
global index set W ′x in PN(K) with N ≤ 7. We claim that Axioms (MM1) and
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(MM3) hold in (Xx,Ξx). Indeed, (MM1′) holds, and the same argument that we
used to show Axiom (PPS3) in the proof of Lemma 4.5(iii), completes the proof
of (MM1). Suppose now for a contradiction that there is a point p ∈ Xx with
dim〈Tp(ξ ) | p ∈ ξ ∈ Ξx〉 ≥ 5.

Claim: there exist ξ ∈ Ξx containing p, and three singular lines of Lx, also con-
taining p and generating a 3-space S, such that S∩ξ = {p}.
We may assume that (Xx,Lx) is not isomorphic to S1,1,1(K), and hence Lemma 8.6
implies there are four singular lines L1,L2,L3,L4 ∈ Lx through p. Set Π :=
〈L1,L2,L3,L4〉. Also by Lemma 8.6 either dim(Π) = 4 and, up to renumbering,
[L1,L2], [L3,L4] ∈ Ξx (case (i)); or dim(Π) = 3 and, up to renumbering, L2,L3,L4
are in a singular plane π (case (ii)). By assumption on p, there exists ξ ∗ ∈ Ξx

through p such that Tp(ξ
∗) has at most a line in common with Π. We distinguish

two cases.

Case 1: Suppose that ξ ∗ has index 1. Then we obtain that Tp(ξ
∗) contains a

singular line L5 with L5 * Π. In case (ii), the lines L1,L2,L3,L5 span a 4-space
and as max(Wx)≤ 2 and there are no singular 3-spaces by Lemma 8.4, we deduce
that [L1,L2], [L3,L5] ∈ Ξx, which brings us to case (i). So let us consider case
(i) now, where we assume that [L1,L2], [L3,L4] ∈ Ξx. Since L5 * Π, the lines
L1,L2,L3,L4,L5 generate a 5-space. We consider the 3-space S := 〈L3,L4,L5〉 and
ξ := [L1,L2] ∈ Ξx. Clearly, dim〈ξ ,S〉 ≥ dim〈L1, . . . ,L5〉 = 5. If dim〈ξ ,S〉 = 6,
then (L3,L4,L5) and ξ are as required by the claim. If dim〈ξ ,S〉 = 5, then ξ ∩ S
is a line L. Since L does not belong to 〈L1,L2〉= Tp(ξ ), it contains a unique point
p′ ∈ Xx(ξ )\{p} (note that in particular, L /∈ {L3,L4,L5}). Since p /∈ p′⊥, there is
a point p5 ∈ L5 \ {p} with p5 /∈ p′⊥. Using (MM1) and (MM2), we deduce that
〈p′, p5〉 meets 〈L3,L4〉 in a point of Xx. This however implies that the line 〈p′, p5〉
is singular, contradicting our choice of p5 /∈ p′⊥. This concludes Case 1.

Case 2: Suppose now that ξ ∗ has index 0. In Case (ii), we immediately obtain that
ξ ∗ cannot share a (necessarily non-singular) line L with Π, for 〈L1,L〉∩π would
be a singular line L′ through p and hence L ⊆ ξ ∩ [L1,L′], contradicting (MM2).
As such, L1,L2,L3 and ξ ∗ are as required by the claim. So we may assume Case
(i). If ξ ∗∩Π= {p}, we are done, so suppose dim(ξ ∗∩Π)≥ 1. If ξ ∗∩Π is exactly
a line L, then renumbering if necessary, we have L * 〈L1,L2,L3〉 and then the pair
(L1,L2,L3), ξ ∗ does the trick. So finally, suppose ξ ∗∩Π is a plane α . Note that,
by assumption on ξ ∗, α contains precisely one line T of Tp(ξ

∗). By (MM2) and
wξ ∗ = 0, α meets 〈L1,L2〉 and 〈L3,L4〉 in p only. A dimension argument then
implies that there is a unique plane αi through Li that meets both 〈L3,L4〉 and α

in respective lines Mi and M′i , for i = 1,2. Clearly, M′1 6= M′2, so we may assume
that M′1 6= T . Since M′1 * Tp(ξ

∗), it contains a unique point p′ ∈ Xx \{p}. Let p1
be a point on L1 \ {p} and considering the line 〈p′, p1〉 and its intersection with
M1, we deduce as in the previous paragraph, that the plane 〈L1,M1〉 is singular,
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contradicting the fact that M′1 is not. This concludes Case 2 and the claim follows.

Henceforth, let L1,L2,L3 ∈Lx be three lines containing p such that S := 〈L1,L2,L3〉
has dimension 3 and such that there exists ξ ∈ Ξx with S ∩ ξ = {p}. Since
max(Wx) ≤ 2 and by absence of singular 3-spaces, we obtain that, up to renum-
bering, ξ1 := [L1,L2] and ξ3 := [L2,L3] are members of Ξx. Since S∩ ξ = {p},
also ξ ∩ξi = {p} for i = 1,3. Consequently the subspaces 〈ξ ,ξ1〉 and 〈ξ ,ξ3〉 are
6-dimensional, and recalling that dim〈Xx〉 ≤ 7, they share a 5-space Σ containing
〈ξ ,L2〉. It follows that Σ meets ξi in a plane πi containing L2 and hence at least
one other singular line Ri of ξi, for i = 1,3.

Suppose first that 〈R1,R3〉 is a 3-space (equivalently, R1 ∩ L2 6= R3 ∩ L2). Then
〈R1,R3〉 meets ξ in a line R containing p. Let r be any point of R \ {p} and
consider the unique line R′ through r meeting R1 and R3 non-trivially, say in points
r1 and r3, respectively. By (MM2), R′ is singular. Note that r 6= p implies that
r1,r3 /∈ L2. However, r3 is now collinear to the non-collinear points L2 ∩R3 and
r1 of X(ξ1), so r3 ∈ ξ1∩ξ3 = L2, a contradiction.

Therefore R1∩L2 = R3∩L2 =: y. Note that y 6= p, for otherwise R1 = L1 and R3 =
L3, violating the fact that 〈R1,L2,R3,ξ 〉= 5. Then the plane 〈R1,R3〉 meets ξ in a
point z. Clearly z 6= p (otherwise R3 ∈ 〈R1, p〉 ⊆ ξ1) and z /∈R1∪R3 (since ξ ∩ξi =
{p} and p /∈ Ri for i = 1,3). Using (MM2) if 〈R1,R3〉 is non-singular, we obtain
that z ∈ X(ξ ) and hence 〈R1,R3〉 is singular anyway. If p and z are not collinear,
then y, being collinear to both p and z, belongs to ξ , a contradiction. Hence
〈p,z〉 is singular and as a consequence, 〈L2,z〉 is a singular plane intersecting the
singular plane 〈R1,R3〉 in line. Since max(Wx) ≤ 2 this yields a singular 3-space
〈R1,L2,R3〉, contradicting Lemma 8.4.

We conclude (Xx,Ξx) is an AVV of type 2 whose global index set W ′ has max(W ′)=
1. Proposition 7.1 yields W ′ = {1} and hence Wx = {0,2}. By Lemma 8.4, there
are no singular planes in Xx. Recalling that (Xx,Lx) is connected by Lemma 8.5,
it now follows from Proposition 7.4 that (Xx,Lx) is isomorphic to S1,1,1(K) after
all.

Proof of Proposition 8.1 in the case d = 4. We already noted that, if W = {2},
the proposition follows from the Main Result of [21], and that we therefore may
assume that there is a point x ∈ X with min{Wx}< max{Wx}= 2. By Lemma 8.7,
(Xx,Lx) is isomorphic to S1,1,1(K). Noting that, for any y,z ∈ Xx at distance 3
from each other measured in (Xx,Lx), we have [y,z]∈Ξx is contained in 〈Xx〉, this
contradicts Lemma 5.3.
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9 Case 3: For each x ∈ X , either Wx = {0} or max(Wx)≥ 3

Proposition 9.1. Let (X ,Ξ) be an AVV of type d with global index set W such that,
for each x ∈ X, either Wx = {0} or max(Wx)≥ 3. Then W is a singleton {w∗} and
one of the following occurs.

(i) w∗ = 0, d ∈ {2a | a ∈ N}∪{∞} and (X ,Ξ) is the standard Veronese repre-
sentation of a projective plane over a quadratic alternative division ring;

(ii) w∗ = 3, d = 6 and (X ,Ξ) is the half spin variety D5,5(K);
(iii) w∗ = 4, d = 8 and (X ,Ξ) is the Cartan variety E6,1(K).

Again, we show this in a series of lemmas. Throughout, let w∗ be the maximum
of W , which is well defined as |W | is bounded above by dd+1

2 e. If w∗ = 0, then by
the Main Result of [16], (i) of Proposition 9.1 holds. So we assume from now on
that w∗ ≥ 3 (and hence d ≥ 6).

Lemma 9.2. Let x ∈ X be a point with max(Wx) ≥ 3 and let p ∈ X be a point
collinear to x. Then there exists ξ ∈ Ξ of index at least 3 going through p and not
through x.

Proof. Suppose for a contradiction that all members of Ξ through p of index at
least 3 also contain x. First note that (MM1) assures that there is at least one
member of Ξ, necessarily of index at least 1, through the singular line 〈p,x〉;
hence our assumptions imply max(Wp)≥ 3 and so there is at least one member of
Ξ of index at least 3 through p.

By Corollary 4.12 and Lemma 6.2, (Xp,Ξp) is a pre-AVV. The line 〈p,x〉 corre-
sponds to a point q ∈ Xp which, by the previous paragraph, has the property that
it is contained in all members of Ξp of index at least 2.

We claim that there is a pair ξ1 and ξ2 in Ξp of index at most 1 and index 1,
respectively, intersecting each other in exactly one point. Let ξ ∗ be a member
of Ξp of index at least 2 containing q (which exists by the above). Let p1 be a
point in X(ξ ∗) not collinear to q. Then all members of Ξp through p1, except for
ξ ∗ = [p1,q], have index at most 1. There are three cases:

1. There are ξ1,ξ2 in Ξp \ {ξ ∗} through p1 of index 0 and 1, respectively. In
this case, it is clear that ξ1∩ξ2 = {p1}.

2. All members of Ξp \{ξ ∗} through p1 have index 1. By Lemma 5.6 applied
in (Xpp1 ,Ξpp1), we find a pair of members of Ξp with index 1 intersecting
in precisely p1.

3. All members of Ξp \ {ξ ∗} through p1 have index 0. Let ξ1 be any such
quadric, and let r ∈ X(ξ1) \ {p1} be a point not collinear to q. Let p2 be a
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point in X(ξ ∗) collinear to q but not contained in [r,q] (in particular, r and
p2 are not collinear). By (MM1), there is a ξ2 ∈ Ξp through r and p2, which
does not contain q by the choice of p2, and hence has index at most 1. If
ξ2 has index 1, then ξ1 and ξ2 satisfy our requirements, so suppose ξ2 has
index 0. Applying Lemma 5.2 (note that d−2 ≥ 4) on the triple ξ ∗,ξ1,ξ2
yields a singular line L meeting these three quadrics in three distinct points
z,z1 and z2, respectively, with z2 and p2 non-collinear. This implies that
z 6= q: otherwise, p2 ⊥ q = z⊥ z2, and hence q ∈ ξ2, a contradiction. Hence
we can take a line L′ through z in X(ξ ∗) collinear to neither q, nor z1. The
unique member ξ ′2 of Ξp through L and L′ then does not contain q; hence
it has index at most 1. As it contains the singular line L, it has precisely
index 1. The pair ξ1,ξ

′
2 qualifies.

This shows the claim. Let ξ1,ξ2 be such members of Ξp, intersecting in a unique
point p′. By Lemma 5.4, we may assume that there is a singular line 〈z1,z2〉 with
z1 ∈ X(ξ1)\ p′⊥ and z2 ∈ X(ξ2)\ p′⊥.

As ξ2 has index 1, there exists a line L through z2 in ξ2 that is not collinear to z1.
Then L and z1 determine a unique member ξ of Ξp. According to Lemma 5.5,
there would be members of Ξp of index at least 2 not going through q, a contra-
diction. The lemma follows.

Lemma 9.3. Suppose x∈X has max(Wx)≥ 3. Then either Tx∩X ⊆ x⊥ or (Xx,Lx)
is isomorphic to one of the following: Gn,1(K) for n ∈ {4,5} or E6,1(K).

Proof. Suppose that Tx ∩ X contains a point y not contained in x⊥. Then, by
Lemma 4.15, min(Wx)≥ 2, in which case (Xx,Lx) is a strong parapolar space of
diameter 2 (cf. Corollary 4.12 and Lemma 4.5). If there are two members ξ1,ξ2 ∈
Ξ intersecting in x only, then Tx = 〈Tx(ξ1),Tx(ξ2)〉 by (MM3) and Lemma 4.14
leads to a contradiction. So (Xx,Lx) is (−1)-lacunary. Since max(Wx) ≥ 3, the
only possibilities are, according to Fact 4.7, Gn,1(K) for n∈ {4,5} or E6,1(K).

Lemma 9.4. Let x be a point of X with max(Wx)≥ 3. Then (Xx,Ξx) is an AVV of
type d−2 with global index set W ′x and dim〈Xx〉 ≤ 2d−1.

Proof. By Lemma 9.3, we may assume that Tx∩X ⊆ x⊥, as otherwise (Xx,Lx) is
isomorphic to Gn,1(K) for n ∈ {4,5} or to E6,1(K), which are AVVs indeed.

Claim 1: for each z ∈ Xx, dimTz ≤ 2d−4.
We consider the situation in (X ,Ξ), in which z corresponds to a singular line L
containing x. Let p be a point of L \{x}. Since max(Wx) ≥ 3, Lemma 9.2 yields
a member ξ ∈ Ξ of index at least 3 containing p and not containing x. The fact
that Tx ∩X ⊆ x⊥ implies that Tx ∩X(ξ ) is a singular subspace S of X(ξ ). Then
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S⊆ Tx∩ξ ⊆ Tp(ξ ) and dim(Tx∩ξ )≤ d−wξ by Lemma 4.13. Consequently there
is a subspace S′ in Tp(ξ )\Tx of dimension wξ −1 ≥ 2. Since S′ is not contained
in Tx, we obtain that dim(Tp∩Tx)≤ 2d−3. The claim follows.

Claim 2: (Xx,Lx) is connected. Let ξ be a member of Ξ through x with wξ ≥ 3.
Suppose for a contradiction that there is a point z ∈ Xx not contained in the con-
nected component Cξ of ξ in (Xx,Lx). Then z⊥∩ξ = /0 and [z, p] ∈ Ξx has index
0 for each p ∈ Xx(ξ ). In exactly the same manner as in the proof of Lemma 8.5,
we obtain Tz ∩Xx(ξ ) = /0 and, by Lemma 6.1, this implies that z ∈ Cξ after all.
This contradiction shows the claim.

By Lemma 4.10 and Claim 1, (Xx,Ξx) is a weak AVV of type d− 2 with global
index set W ′x and dim〈Xx〉 ≤ 2d−1. We show that (Xx,Ξx) satisfies (MM1). Let
ξ ∈ Ξx be of index at least 2. Let L be a line of Lx intersecting ξ in a unique point
p. Let M be a singular line in ξ \L⊥, then we obtain that [L,M] is a member of Ξx

containing L. Claim 2 now implies that (MM1) holds in (Xx,Ξx). Proposition 6.2
implies that |Ξx| ≥ 2. The lemma follows.

We are ready to show that W has to be a singleton.

Proof of Proposition 9.1. We show this by induction on w∗. If w∗= 0, then clearly,
W = {0} and the main result of [16] leads us to possibility (i) of Proposition 9.1.
So assume w∗ ≥ 0 and take an arbitrary x ∈ X with w∗ = maxWx. By Lemma 9.4,
the residue (Xx,Ξx) is an AVV of type d− 2 with global index set W ′x and with
dim〈Xx〉 ≤ 2d−1.

First, suppose that w∗ = 3. Then (Xx,Ξx) contains a point z with max(W ′z ) = 2
and hence, by Proposition 8.1, (Xx,Ξx) is isomorphic to Gn,1(K) for n ∈ {4,5};
in particular, d = 6. Since dim〈Xx〉 ≤ 2d− 1 = 11 and dim〈G5,1(K)〉 = 14, we
deduce that (Xx,Ξx) is isomorphic to G4,1(K) (which lives in dimension 9). Since
the latter’s diameter is 2, all members of Ξx have index 2 and consequently,
Wx ⊆ {0,3}. Suppose for a contradiction that there exists ξ ∈ Ξ with x ∈ ξ and
wξ = 0. Then Tx(ξ ) is a 6-space in Tx which has at least a 3-space Π in common
with 〈Xx〉 ⊆ Tx \ {x}. Proposition 2.1(ii) implies that there are points x1,x2 ∈ Xx

such that 〈x1,x2〉 intersects Π non-trivially, and hence [x1,x2] ∩ Tx(ξ ) is non-
empty, contradicting (MM2). We conclude that Wx = {3}. Now let y ∈ X \{x} be
arbitrary. By (MM1), there is a member of Ξ containing x and y, which necessar-
ily has index 3 as Wx = {3}. Therefore, max(Wy) = 3 and we may apply the above
arguments to y as well to obtain Wy = {3}. We conclude that W = {w∗}= {3} in-
deed. It follows from the main result of [21] that (X ,Ξ) is isomorphic to D5,5(K).

Next, suppose that w∗≥ 4. By induction, all members of Ξx have index w∗−1≥ 3,
i.e., Wx ⊆ {0,w∗}. In particular, the main result of [21] implies that (Xx,Ξx) is iso-
morphic to either D5,5(K) or E6,1(K); in particular d = 8 and w∗ = 4. Since
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dim〈Xx〉 ≤ 2d− 1 = 1 and dim〈E6,1(K)〉 = 26, we conclude that (Xx,Ξx) is iso-
morphic to D5,5(K) (and dim(D5,5(K)) = 15).

We show that 0 /∈Wx. Indeed, suppose that there is a member ξ ∈ Ξ with x ∈ ξ

and wξ = 0. Then Tx(ξ ) is an 8-space in Tx sharing a 7-space Π with the 15-space
〈Xx〉 ⊆ Tx. As above, Proposition 2.1(iii) leads to a contradiction. We conclude
that Wx = {w∗}. Just like in the previous case, we deduce that Wy = {w∗} for any
y ∈ X \ {x} as well, and hence W = {w∗} = {4}. The main result of [21] now
yields that (X ,Ξ) is isomorphic to E6,1(K).

10 Conclusion

Proof of the Main Theorem. Let (X ,Ξ) be an AVV of type d with index set W .

(1) If for some x ∈ X , max(Wx) = 1, then Proposition 7.1 implies that (X ,Ξ) is
split, and we have Case d = 2 of Theorem 1.2.

(2) If for some X ∈ X , max(Wx) = 2, then Proposition 8.1 implies that (X ,Ξ) is
split, and we have Case d = 4 of Theorem 1.2.

(0,≥ 3) If for all x ∈ X , max(Wx)≥ 3 or Wx = {0}, then by Proposition 9.1

(0) either W = {0} (and we have a Veronese cap), and we have the case
d = 2` (including `= 0 giving rise to the case d = 1) of Theorem 1.2,

(3) or W = {3}, (X ,Ξ) is split and we have the case d = 6 of Theorem 1.2,

(4) or W = {4}, (X ,Ξ) is split and we have the case d = 8 of Theorem 1.2.

This covers all cases and proves Theorem 1.2, in particular the Main Theorem.
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