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Abstract3

We determine the generating and embedding rank of the metasymplectic spaces whose4

symplecta are either symplectic polar spaces in characteristic distinct from 2, or Hermitian5

polar spaces (including the quaternion case), and provide a characterisation of the associ-6

ated projective varieties in the context of the Freudenthal-Tits magic square.7

MSC 2020: 51E24; 51B25; 20E42.8

Keywords: Metasymplectic space, embedding, Freudenthal-Tits magic square.9

1 Introduction10

In a recent manuscript [12] the exact embedding rank and exact generating rank of the Lie11

incidence geometry F4,4(K) related to the split building of type F4 over a field K of charac-12

teristic not 2 was determined by considering as points the vertices of type 4. In this paper we13

primarily extend that result to the nonsplit (separable) case. More exactly, using the notation14

introduced in Section 2.4 below, we prove:15

Theorem A. The generating and embedding ranks of F4,4(K, A) are both equal to16 
26, if A = K and charK 6= 2,
27, if A is a separable quadratic extension of K,
28, if A is a quaternion algebra over K.

The result is quite neat: it turns out that such geometries have embedding and generating17

ranks both equal to either 26, 27 or 28. The same series of numbers appears in Wilson’s paper18

[37], where the author notes that the split complex Lie groups of type F4, E6 and E7 can be con-19

structed with real, complex and quaternion matrices of dimension 26, 27 and 28, respectively.20

In fact, this is not a coincidence: the construction can indeed be linked to the embeddings21

described in the present paper by splitting the division algebras: the Lie incidence geometry22

F4,4(R, C) is so to speak a nonsplit form of the Lie incidence geometry E6,1(C), whereas the23

same is true for F4,4(R, H) and E7,6(L). Here, R, C, H are the real, complex and quaternion24

division rings. However, our results hold for arbitrary fields.25

The embeddings themselves are perhaps not new (although we could not find a mention in26

the literature of the quaternion case); they arise from Galois descent in a rather standard way.27

However, the determination of the embedding and generating ranks was not even known28

when the underlying field is finite! Along the way, we complete the determination of all em-29

bedding and generating ranks of some embeddable dual polar spaces by considering the ones30

of type Bn,n over a field K with corresponding anisotropic form given by a separable quadratic31
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field extension, or the norm of a quaternion division algebra. For the case of a field extension,32

this was already known, see [9]. Our proof is only slightly different. However, it holds across33

all possible types, including the quaternion case.34

In the second part of the manuscript, we characterise these embeddings and their so-called35

admissible quotients by axioms in the spirit of [27], which grew out of a modest axiom system36

for finite Veronese surfaces in odd characteristic in [21], until it was turned into a powerful37

recognition result for embedded Lie incidence geometries. If we call a point set satisfying38

our axioms an abstract metasymplectic variety (we refer to Section 5 for the details), then more39

precisely we will prove the following theorem.40

Theorem B. Every abstract metasymplectic variety is an admissible quotient of the absolute universal41

embedding of F4,4(K, A), with A an associative quadratic division algebra over K.42

For the definition and a discussion about the admissible quotients, see Section 6. This result43

should be viewed in the context of the Freudenthal-Tits magic square. The latter has a number44

of different appearances, see [33]. Here, we are mainly interested in the Complexified Geo-45

metric Magic Square, see Section 6.7 of [33]. With the notation and conventions that we shall46

introduce in Section 2.4, it is the following table of types of Lie incidence geometries:47

A1,1 A2,{1,2} C3,2 F4,4

A2,1 A2,1×A2,1 A5,2 E6,1

C3,3 A5,3 D6,6 E7,7

F4,1 E6,2 E7,1 E8,8

48

or, pictorially,49

50

Each of the geometries appearing in the square has a natural representation (or embedding) in51

some projective space, and so we may conceive the above square as a table of projective vari-52

eties. For instance, the variety of type A1,1 is simply a conic, and that of type A2,1 is a classical53

Veronese variety in projective 5-space. Such a variety is, in the complex case, a Severi variety54

and is even characterised as such (in the given dimension 5). In 1984, Mazzocca & Melone55

[21] characterised the Veronese varieties over finite fields of odd order by some properties that56

are immediate consequences of being a Severi variety, but can be stated in terms independent57

from algebraic geometry. For instance one of the axioms is that every pair of points is con-58

tained in a (unique) plane conic. The same axioms were used in [26, 27], suitably adopted to59
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higher dimensions, to characterise all of the varieties in the second row of the Magic Square60

above, hence including the famous E6,1-variety (also sometimes referred to as the Cartan va-61

riety). For instance the above mentioned axiom extends to “every pair of points is contained62

in a split quadric”. This work was then continued in [15] to characterise the varieties of the63

third row with axioms in the very same spirit, once again showcasing that these varieties form64

a unit. The last row consists of the Weyl embeddings of the long root subgroup geometries of65

exceptional type. One of the difficulties arising here is that the geometries contain so-called66

special pairs, that is, pairs of points at distance 2 not contained in a common quadric. This phe-67

nomenon, however, also occurs in the first row. The varieties most closely resembling those on68

the fourth row are our target geometries appearing in the North-East corner of the square, the69

ones of type F4,4. So it seems like a useful preparatory challenge to characterise those in the70

same sprit as the second and third row. In addition to the fact that special pairs of points are71

turning up, two supplementary difficulties arise. First of all, the geometries are not determined72

by a field only; each geometry is determined by a pair (K, A), where K is a field and A an73

alternative quadratic division algebra over K. The non-associative case does not admit a vari-74

ety, and so we may assume A is associative. Secondly, a pair of points at distance 2 that is not75

special is now contained in a Hermitian or symplectic variety, and not in a quadric. The case of76

symplectic varieties poses some serious problems in the proofs. Indeed, the usual requirement77

expressing the smoothness of the varieties consists in asking that the ambient spaces of the78

quadrics intersect in points of the variety. Now in the case of symplectic varieties, this axiom79

is void. One of the consequences is that these subgeometries need not be convex anymore.80

Despite the fact that it is hard to live in a nonconvex world, we nevertheless work our way81

around this, partly helped by the necessary additional requirement that deals with the special82

pairs. This forms a substantial part of the arguments. Further motivation and discussion of83

the axioms will be done when these are stated.84

We also provide a characterisation of the embedded dual polar spaces that turn up as a residue85

in the metasymplectic spaces we consider. Also here, the same difficulties arise. Hence, if we86

call a point set satisfying our corresponding axioms an abstract dual polar variety (we refer to87

Section 4 for the details), then we will also prove the following theorem.88

Theorem C. Every abstract dual polar variety is projectively equivalent to the absolute universal em-89

bedding of B3,3(K, A).90

Also here, the biggest challenge is the case where two points at distance 2 are contained in a91

symplectic subvariety where we have to show that these subvarieties are convex. However,92

admissible quotients do not turn up here! The fact that we cannot ignore the admissible quo-93

tients in Theorem B will be explained at the end of the paper, in Section 6.94

The paper is organized as follows. In Section 2 we gather all the preliminaries. This mainly95

concerns the definiton and properties of certain Lie incidence geometries, in casu, the meta-96

symplectic spaces we are going to embed and characterize. But we also need properties of97

geometries related to groups of type E7 as these are the absolute type for an important class98

related to quaternion division rings. We also review the definition and properties of some dual99

polar spaces, which turn up as residues of the metasymplectic polar spaces under investigation100

In Section 3 we prove our main result concerning the embedding and generating ranks. Our101

method requires that we first determine those of certain dual polar spaces, and that is what102

we indeed do first. We exhibit embeddings and prove universality. The existence is proved103

via Tits indices and Galois descent. In Section 4 we discuss the axiomatic approach to embed-104

ded dual polar spaces and we prove Theorem C. We conclude in Section 5 with an axiomatic105

characterization of metasymplectic spaces proving Theorem B.106
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2 Preliminaries107

We introduce the geometries central in this paper, and their representations in projective space.108

This has two levels. First of all, the abstract level where the axiomatization of the geometries is109

explained, followed by the definition of certain isomorphism classes of geometries, all of them110

related to spherical buildings. Lastly, properties of these geometries needed in this paper are111

reviewed.112

2.1 Abstract point-line geometries113

We fix notation and introduce all relevant terminology. We assume that the reader is familiar114

with the basic theory of abstract buildings, Coxeter groups and Dynkin diagrams [4] and refer115

to the literature (for instance [1] or [30]) for precise definitions and details. We say that a116

spherical building is split if it arises from a split algebraic group.117

A point-line geometry is a pair Γ = (X, L ) with X the set of points and L the set of lines L118

which is a subset of the power set of X. To exclude trivial cases, we assume |L | ≥ 2. We also119

assume that each line has at least three points.120

Points x, y ∈ X contained in a common line are called collinear, denoted x ⊥ y; the set of all121

points collinear to x is denoted by x⊥. We will always deal with situations where every point122

is contained in at least one line, so x ∈ x⊥. The collinearity graph of Γ is the graph on X with123

collinearity as adjacency relation. The distance δ between two points p, q ∈ X (denoted δΓ(p, q),124

or δ(p, q) if no confusion is possible) is the distance between p and q in the collinearity graph,125

where δ(p, q) = ∞ if there is no such path. If δ := δ(p, q) is finite, then a geodesic path or126

a shortest path between p and q is a path of length δ between them in the collinearity graph.127

The diameter of Γ (denoted diam Γ) is the diameter of the collinearity graph. We say that Γ is128

connected if every pair of vertices is at finite distance from one another. The point-line geometry129

Γ is called a partial linear space if each pair of distinct collinear points x, y is contained in exactly130

one line, denoted xy.131

A subspace of Γ is a subset S of X such that, if x, y ∈ S are collinear and distinct, then all lines132

containing both x and y are contained in S. A subspace S is called convex if, for any pair of133

points {p, q} ⊆ S, every point occurring in a shortest path between p and q in the collinearity134

graph is contained in S; it is singular if δ(p, q) ≤ 1 for all p, q ∈ S. The intersection of all convex135

subspaces of Γ containing a given subset S ⊆ X is called the convex closure of S (this is well136

defined since X is a convex subspace). For S ⊆ X, we denote by 〈S〉 the subspace generated137

by S, it is the intersection of all subspaces containing S (again, this is well defined since X is138

a subspace). If S consists of two distinct collinear points p and q contained in a unique line139

L, then 〈S〉 = L is sometimes briefly denoted by pq. Two singular subspaces S1 and S2 are140

called collinear if S1 ∪ S2 is a set of pairwise collinear points, and if so, we write 〈S1, S2〉 instead141

of 〈S1 ∪ S2〉. In the geometries that we will consider, that is, parapolar spaces, the subspace142

generated by a set of mutually collinear points is always a singular subspace.143

2.2 Polar spaces144

Abstractly, a (nondegenerate, thick) polar space Γ = (X, L ) is a point-line geometry satisfying145

the following four axioms by Buekenhout and Shult, which simplifies Tits’ axiom system [30].146

(PS1) Every line contains at least three points, i.e., every line is thick.147
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(PS2) No point is collinear to every other point.148

(PS3) Every nested sequence of singular subspaces is finite.149

(PS4) The set of points incident with a given arbitrary line L and collinear to a given arbitrary150

point p is either a singleton or coincides with L.151

We will assume that the reader is familiar with the basic theory of polar spaces, see for instance152

[6]. Let us recall that every polar space, as defined above, is a partial linear space and has a153

unique rank, given by the length of the longest nested sequence of singular subspaces (includ-154

ing the empty set); the rank is always assumed to be finite (by (PS3)) and at least 2 since we155

always have a sequence ∅ ⊆ {p} ⊆ L, for a line L ∈ L and a point p ∈ L.156

Now let Γ = (X, L ) be a polar space of rank r ≥ 2. It is well known that the maximal157

singular subspaces are projective spaces of dimension r − 1 (and so two arbitrary points of158

Γ are contained in at most one line). Moreover, there is a (not necessarily finite) constant t159

such that every singular subspace of dimension r − 2 is contained in exactly t + 1 maximal160

singular subspaces. If t = 1, then we say that Γ is of hyperbolic type, or is a hyperbolic polar161

space. A hyperbolic polar space of rank at least 3 is isomorphic to a nondegenerate hyperbolic162

quadric Q in PG(2r − 1, K), K a (commutative) field. The lines are the lines of PG(2r − 1, K)163

entirely contained in Q. Note that a standard equation for Q is given by X−1X1 + X−2X2 +164

· · ·+ X−rXr = 0.165

A maximal singular subspace of a hyperbolic polar space is also called a generator. The fam-166

ily of generators of each hyperbolic polar space of rank r is the disjoint union of two systems167

of generators, called the natural systems, such that two generators intersect in a singular sub-168

space of odd codimension in each of them if, and only if, they belong to different systems (the169

codimension of a subspace U in a projective space W is just dim W − dim U).170

We will use some notions of the theory of buildings in polar spaces. For instance, two sub-171

spaces are called opposite if no point of their union is collinear to every point of this union;172

in particular two points are opposite if, and only if, they are not collinear and two maximal173

singular subspaces are opposite if, and only if, they are disjoint.174

2.3 Parapolar spaces175

Parapolar spaces are point-line geometries that are designed to model the Grassmannians of176

spherical buildings. They were introduced by Cooperstein [8]. A standard reference is [28]. A177

point-line geometry Γ = (X, L ) is a parapolar space if it satisfies the following axioms.178

(PPS1) There is line L and a point p such that no point of L is collinear to p.179

(PPS2) The geometry is connected.180

(PPS3) Let x, y be two points at distance 2. Then either there is a unique point collinear with181

both, or the convex closure of {x, y} is a polar space. Such polar spaces are called182

symplecta, or symps for short.183

(PPS4) Each line is contained in a symplecton.184

A pair {x, y} of points with x⊥ ∩ y⊥ = {z} is called special and we denote z = xony; we also say185

that x is special to y. The set of points special to x is denoted by xon. A pair of points {x, y} at186

distance 2 from one another and contained in a (necessarily unique) symp is called symplectic187

and we write x ⊥⊥ y, we also say that x is symplectic to y. The set of points contained in a symp188

together with x is denoted by x⊥⊥ (note that this hence also includes x⊥ by (PPS4). A parapolar189

space without special pairs of points is called strong. Due to (PPS4) and the fact that symps are190

convex subspaces isomorphic to polar spaces, each parapolar space is automatically a partial191
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linear space and, by (PPS1), it is not a polar space. Note that the symps are not required to all192

have the same rank. A para is a proper convex subspace of Γ, whose points and lines form a193

parapolar space themselves. The set of symps of a para is a subset of the set of symps of Γ.194

We will also make use of residues. If Γ = (X, L ) is a polar space of rank r, or parapolar space195

whose symps have rank at least r, then for a singular subspace U of dimension d ≤ r− 3, we196

define the residue of Γ at U, denoted by ResΓ(U), as the point-line geometry (XU , LU), where197

XU is the set of singular subspaces of dimension d + 1 of Γ containing U, and an element of198

LU is the set of (d + 1)-dimensional subspaces through U contained in a singular subspace of199

dimension d + 2 through U.200

Embeddings of point-line geometries in each other201

Consider two point-line geometries Γ = (X′, L ′) and ∆ = (X, L ). We say that Γ is embedded202

in ∆ if X′ ⊆ X and for each L′ ∈ L ′, there is a line L ∈ L with L′ (viewed as subset of203

X′) contained in L (viewed as a subset of X). The embedding is called full if L ′ ⊆ L , i.e.,204

L′ ⊆ X′ coincides with L ⊆ X in the foregoing. We will mainly apply this in the case where205

∆ is a projective space, and then we call the embedding a projective embedding. We sometimes206

emphasize that an embedding is not (necessarily) full by calling it lax.207

Next, suppose additionally that Γ = (X′, L ′) and ∆ = (X, L ) are parapolar spaces of diameter208

at most 3. Then we call the embedding isometric if it preserves the distance and being special.209

2.4 Lie incidence geometries210

Let ∆ be a (thick) spherical building, not necessarily irreducible. Let n be its rank, let S be its211

type set and let J ⊆ S. Then we define a point-line geometry Γ = (X, L ) as follows. The point212

set X is just the set of flags of ∆ of type J; each member of L is given by the elements F of213

X that complete a given flag F′ of type S \ {s}, with s ∈ J, to a chamber, that is, F ∪ F′ is a214

chamber (note that several distinct flags F′ can give rise to the same line of ∆). The geometry Γ215

is called a Lie incidence geometry. For instance, if ∆ has type An, and J = {1} (remember we use216

Bourbaki labelling), then Γ is the point-line geometry of a projective space. If Xn is the Coxeter217

type of ∆ and Γ is defined using J ⊆ S as above, then we say that Γ has type Xn,J and we write218

Xn,j if J = {j}. Pictorially, we represent such geometry by the diagram Xn where we color the219

nodes of types in J black. For instance a geometry of type F4,4 is drawn as . We use220

black nodes to distinguish these diagrams from the Tits indices introduced earlier.221

Most Lie incidence geometries are parapolar spaces. In particular, with the notation of Sec-222

tion 2.4, if |J| = 1, then we either have a projective space (if X = A and J is either {1} or {n}),223

a polar space (if X ∈ {B,C,D} and J = {1}), or a parapolar space (in all other cases, taking224

into account though that A3,2 = D3,1). The hyperbolic polar spaces correspond precisely to the225

Lie incidence geometries Dn,1. Lie incidence geometries of type Bn,n and Cn,n, n ≥ 3, are called226

dual polar spaces and there is extensive literature about them. For basic properties of parapolar227

spaces such as the facts that the intersections of symps are singular subspaces, and also that the228

set of points collinear to a given point x and belonging to a symp ξ 63 x is a singular subspace,229

we refer to Chapter 13 of [28].230

If the building ∆ is irreducible and its diagram Xn is simply laced, with n ≥ 3, then the classifi-231

cation in [30] implies that ∆ is unambiguously defined by a (skew)field K, which is necessarily232

a field if Xn contains D4 as a subdiagram. We denote ∆ by Xn(K). The Lie incidence geometry233
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Xn,J , J ⊆ S, is denoted by Xn,J(K). We denote the projective space An,1(L), for a skew field L,234

more traditionally by Pn(L) (in the latter notation n is allowed to be infinite).235

If the type of the building ∆ is F4, then by Chapter 10 of [30], ∆ is unambiguously defined236

by a pair (K, A), where K is a (commutative) field and A is a quadratic alternative division237

algebra over K. It is a custom (and explainable via the commutation relations of the root238

subgroups) to label the diagram in such a way that the objects corresponding to labels 1 and 2239

are defined over K, and those corresponding to the labels 3 and 4 defined over A. We denote240

∆ by F4(K, A). The geometries F4,1(K, A) and F4,4(K, A) are the (thick) metasymplectic spaces.241

We are especially interested in those of type F4,4 in this paper. The maximal singular subspaces242

are projective planes over A. A symplecton of F4,4(K, A) is a polar space of type C3 denoted243

by C3,1(A, K); the symps of F4,1(K, A) are denoted by B3,1(K, A). The rank n analogues of244

these polar spaces, n ≥ 2, are denoted by Cn,1(A, K) and Bn,1(K, A), respectively, except that245

n ∈ {2, 3} if A is not associative.246

2.5 Properties of some specific Lie incidence geometries247

Polar and dual polar spaces of rank 3248

Each polar space C3,1(A, K), with A an associative quadratic division algebra over K, admits249

a (projectively) unique full embedding in P5(A). A hyperbolic line of C3,1(A, K) is the set of250

points collinear to two given opposite lines of C3,1(A, K); it coincides with the set h of points of251

C3,1(A, K) lying on some nonsingular projective line L of P5(A) (and each such line containing252

at least two points of C3,1(A, K) is a hyperbolic line). The set h is a standard projective subline253

over K of the projective line L (over A), that is, h arises from L by restricting coordinates down254

from A to K (with respect to an appropriate coordinatization).255

Each polar space Bn,1(K, A) arises from a quadric in Pd(K) of Witt index n, with d = 2n− 1 +256

dimK A. In this case a standard equation, using coordinates in Kn ×A, where A is viewed257

as vector space over K, is given by x−nxn + · · · + x−1x1 = N(x), where N(x) denotes the258

(standard) norm of x ∈ A.259

Let ∆ be a dual (thick) polar space of rank 3 and let ∆∗ be the corresponding (thick) polar260

space of rank 3. The points of ∆ correspond to the maximal singular subspaces of ∆∗ and the261

lines of ∆ correspond to the submaximal singular subspaces of ∆∗. We will view ∆ as a strong262

parapolar space of diameter n. Its symps are generalised quadrangles isomorphic to C2,1(A, K)263

A K
if ∆ is isomorphic to Bn,n(K, A). In particular, C2,1(A, K) is the dual of B2,1(K, A)

K A
.264

The maximal singular subspaces of ∆ are lines.265

Parapolar spaces of type F4266

In the present paper, we will mainly be interested in the metasymplectic spaces F4,4(K, A),267

K K A A
where A is either a quaternion algebra over K, or a separable quadratic field exten-268

sion of K, or A = K and has characteristic different from 2. We refer to the separable case, or269

say that A is separable over K. The basic properties are the following, stated as facts (and we270

refer to [7]).271

Fact 2.1. The lines, planes and symps of F4,4(K, A) through a given point p, endowed with the natural272

incidence relation, form a dual polar space ResΓ(p) of rank 3 isomorphic to B3,3(K, A), where the points273
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of the corresponding polar space are the symps through p, the lines are the planes of Γ through p, and274

the planes are the lines of Γ through p.275

The geometry ResΓ(p) is usually called the point residual at p in Γ.276

Fact 2.2 (Point-point relations). Let x and y be two points of Γ. Then δΓ(x, y) ≤ 3 (and distance 3277

occurs and corresponds to opposite points) and if δΓ(x, y) = 2, then either x and y are contained in a278

unique symp ξ(x, y), or there is a unique point xony collinear to both x and y.279

Fact 2.3 (Symp-symp relations). The intersection of two symps ξ1 and ξ2 is either empty, or a point,280

or a plane. If ξ1 ∩ ξ2 = ∅, then either, for each point x1 ∈ ξ1 there is a unique point x2 ∈ ξ2 symplectic281

to x1 (and the correspondence x1 7→ x2 is an isomorphism of polar spaces), or there exists a unique symp282

ζ intersecting ξ1 and ξ2 in planes which are opposite as planes of the polar space ζ. In the former case,283

ξ1 is opposite ξ2; in the latter case we say that ξ1 and ξ2 are special.284

Fact 2.4 (Point-symp relations). Let p be a point and Σ a symp of Γ with p /∈ Σ. Then one of the285

following occurs:286

(i) p⊥ ∩ Σ is line L. In this case, p and x are symplectic for all x ∈ Σ∩ (L⊥ \ L) (and L ⊆ ξ(p, x)),287

and p and x are special for all x ∈ Σ \ L⊥ (and ponx ∈ L). We say that p and Σ are close;288

(ii) p⊥ ∩Σ is empty, but there is a unique point u of Σ symplectic to p (so Σ∩ ξ(p, u) = {u}). Then289

x and p are special for all x ∈ Σ ∩ (u⊥ \ {u}) (and xon p /∈ Σ), and x and p are opposite if290

x ∈ Σ \ u⊥. We say that p and Σ are far.291

Combining Fact 2.3 and Fact 2.4(i), we obtain292

Fact 2.5. Let ξ and ζ be two symps which intersect in a unique point p. Then each line L of ξ through293

p is coplanar with a unique line M of ζ through p and the mapping L 7→ M is an isomorphism from294

Resξ(p) to Resζ(p).295

Strong parapolar spaces of type E7,7296

We will also need the Lie incidence geometry E7,7(K), , since this parapolar space297

is the natural home of F4,4(K, A), for A a quaternion algebra over K, as we will see below.298

Let ∆ be the parapolar space E7,7(K). Then ∆ is a strong parapolar space of diameter 3; points299

at distance 3 are opposite. A maximal singular subspace has either dimension 5 (in this case300

occurring as an intersection of two symps and corresponding to a type 3 element in the Dynkin301

diagram) or dimension 6 (type 2 in the Dynkin diagram). The 5-dimensional subspaces of a 6-302

space will be called 5′-spaces. They do not correspond to a single node of the Dynkin diagram,303

but rather to an incident pair of nodes of type {1, 2}. Each symp of ∆ is isomorphic to the304

polar space D6,1(K) (the residue of an element of type 1 in the underlying spherical305

building). Furthermore, the lines, planes, 3-dimensional singular subspaces and 4-dimensional306

subspaces correspond to types 6, 5, 4 and {2, 3} in the Dynkin diagram.307

We now review the point-symp and symp-symp relations. They can be deduced by consid-308

ering an appropriate model of an apartment (the “thin version”) of a building of type E7, as309

given in [34].310

Fact 2.6 (Point-symp relations). If p is a point and ξ a symp of ∆ with p /∈ ξ, then precisely one of311

the following occurs.312
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(i) p is collinear to a unique point q ∈ ξ. In this case, p and x are symplectic if x ∈ ξ ∩ (q⊥ \ {q})313

and δ(p, x) = 3 for x ∈ ξ \ q⊥. Here, p is called close to ξ.314

(ii) p is collinear to a 5′-space U of ξ. In this case, x and p are symplectic if x ∈ Σ \U and p is called315

far from ξ316

This fact implies:317

Corollary 2.7. On each line L of ∆, there is at least one point symplectic to a given point p, unique318

when L contains at least one point opposite p.319

Fact 2.8 (Symp-symp relations). If ξ and ξ ′ are two symps of ∆, then precisely one of the following320

occurs.321

(i) ξ = ξ ′;322

(ii) ξ ∩ ξ ′ is a 5-space.323

(iii) ξ ∩ ξ ′ is a line L. Then points x ∈ ξ \ L and x′ ∈ ξ ′ \ L are never collinear and δ(x, x′) = 3 if,324

and only if, x⊥ ∩ L is disjoint from x′⊥ ∩ L.325

(iv) ξ ∩ ξ ′ = ∅ and there is a unique symp ξ ′′ intersecting ξ in a 5-space U and intersecting ξ ′ in a326

5-space U′, with U and U′ opposite in ξ ′′.327

(v) ξ ∩ ξ ′ = ∅ and every point x of ξ is collinear to a unique point x′ of ξ ′. In this situation, ξ and328

ξ ′ are opposite, and the correspondence x 7→ x′ is an isomorphism of polar spaces.329

2.6 Galois descent; Tits indices330

By the classification of spherical buildings of type F4 in Chapter 10 of [30], and the tables in331

[29], each building F4(K, A), with A separable over K, arises from a split building by so-called332

Galois descent, which we can describe here in geometric terms as follows (and our description is333

justified by the fact that each separable associative quadratic division algebra over K distinct334

from K itself splits over a suitable quadratic extension). If K = A then F4(K, K) is itself335

split and so there is nothing to explain. Otherwise, there is a building ∆ of type E6 or E7,336

defined over A (if A is commutative, that is, if A is itself a quadratic extension of K) or over337

a subfield of A of dimension 2 over K (if A is quaternion), and a semi-linear involution θ of ∆338

(more exactly, θ is an involutive automorphism of ∆ such that, whenever we have four collinear339

points p1,2 , p3, p4 in an arbitrary rank 2 residue of type A2, viewed as a projective plane over A,340

then the cross ratio (pθ
1, pθ

2; pθ
3, pθ

4) is equal to (p1, p2; p3, p4)
σ, where σ is the Galois involution of341

the extension A/K), such that F4(K, A) is the fix structure of θ in ∆. The type of ∆ is called the342

absolute type of F4(K, A), and the latter is referred to as the relative building. This construction is343

known as Galois descent and described by a generalisation of Witt index, nowadays called a Tits344

index, since it was introduced by Tits in [29]. Such an index consists of the type of the building345

∆, furnished with some data among which most importantly the rank of the fix building. The346

other data are not important to us (and differ for classical and exceptional cases) and we refer347

to [29] for more details. However, for completeness and clarity, we will often provide this Tits348

index for some buildings we are dealing with (not only for the case of F4 just described, but349

also for its residues), since it will help in understanding the arguments. A Tits index is usually350

also represented by a Tits diagram, which is the diagram of ∆ furnished with some encircled351

nodes which geometrically represent the types of vertices fixed by θ. The number of circles352

is the rank of the relative building. Several nodes can be contained in the same circle when a353

flag is fixed, but not the vertices themselves of the flag. See also Appendix C of [32] for more354

explanation of this geometric interpretation of Galois descent.355
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For now we content ourselves with displaying the two Tits indices described in the previous356

paragraph for F4(K, A):357

2E2
6,4 A quadratic field extension of K

E9
7,4 A quaternion division algebra over K

3 Embedding and generating ranks of F4,4(K, A)358

In this section we prove Theorem A.359

The proof we present makes use of the so-called extended equator geometries and associated trop-360

ics geometries, which we introduce in Section 3.4 below. We first take a look at the generating361

and embedding ranks of some polar and dual polar spaces which will turn out to be isomor-362

phic to these extended equator and tropics geometries.363

3.1 Generation of some polar and dual polar spaces364

Recall that we denote by B4,1(K, A)
K K A A

the (orthogonal) polar space of rank 4 with as-365

sociated anisotropic form given by the norm form of the quadratic division algebra A. The366

following theorem is a consequence of Corollary 8.7 of [30].367

Proposition 3.1. The embedding and generating rank of B4,1(K, A) is equal to 8 + dimK A.368

We now turn to B4,4(K, A)
K K A A

. We begin with a generation result on dual polar spaces.369

Lemma 3.2. Let ∆ = (X, L ) be a dual polar space of rank n ≥ 3 with the property that its quads are370

generated by two opposite lines. Then ∆ is generated by 2n points.371

Proof. Let ∆∗ be the corresponding polar space of rank n. Pick a frame F in ∆∗, that is, a set of372

2n points {p−n, p−(n−1), . . . , p−1, p1, p2, . . . , pn} such that each point pi has exactly one opposite373

p−i in F, i ∈ {−n, . . . ,−1, 1, . . . , n}. Let S be the subspace of ∆ generated by the set G of points374

corresponding to the maximal singular subspaces generated by n mutually collinear points of375

F. Note that |G| = 2n.376

We show by induction on n− k ∈ {1, . . . , n} that for each k ∈ {0, 1, . . . , n− 1}, each maximal377

singular subspace containing at least k collinear points of F belongs to S. If n − k = 1, then378

such maximal singular subspace belongs to a line of ∆ having two points of G, and hence by379

definition of the subspace S, it also belongs to S. Now let k < n− 1. Without loss of generality,380

it suffices to show that all maximal singular subspaces containing U := 〈p1, p2, . . . , pk〉, belong381

to S. By induction, we know that all maximal singular subspaces containing 〈U, pk+i〉 and382

〈U, p−k−i〉, for all i ∈ {1, 2, . . . , n − k}, belong to S. Considering the residue of U, we may383

assume that k = 0 (and n ≥ 2), and we have to show that, if all maximal singular subspaces384

containing some point of F belong to S, then all maximal singular subspaces do. We claim that,385

if each maximal singular subspace through one of two noncollinear points x and y belong to S,386

then so do all singular subspaces containing some point of x⊥ ∩ y⊥. Indeed, select z ∈ x⊥ ∩ y⊥387
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and let M be a maximal singular subspace through z. If x⊥ ∩ M = y⊥ ∩ M, then by the388

definition of subspace, we obtain M ∈ S. So we may assume that W := M ∩ x⊥ ∩ y⊥ has389

codimension 2 in M. The residu of W is a quad in ∆ with the property that all points on the390

lines corresponding to x and y belong to S. By assumption, also the point corresponding to391

M belongs to S and the claim follows. Now every point of ∆∗ is collinear to two noncollinear392

points, say q1 and q−1, of p⊥1 ∩ p⊥−1. Applying the previous claim first with (x, y) = (p1, p−1)393

and then with (x, y) = (q1, q−1) shows the assertion. �394

Noting that, using Propositions 3.4.9, 3.4.11 and 3.4.13 of [32], the quads of Bn,n(K, A) are395

precisely the quadrangles C2,1(A, K) which, by Proposition 5.9.6 of [32], are generated by two396

opposite lines if A is separable over K, we immediately obtain:397

Corollary 3.3. The dual polar spaces Bn,n(K, A), with A an associative separable quadratic division398

algebra over K, have generating rank at most 2n.399

We will see in the next section that the generating rank is precisely 2n by exhibiting a projective400

embedding in projective dimension 2n − 1.401

3.2 Universal embeddings of some dual polar spaces402

It is well known that the universal embedding rank of Bn,n(K, A) is equal to 2n for A commu-403

tative and separable over K, see [36] and [9]. Nothing seems to be known for A quaternion.404

However, Corollary 3.3 implies that the embedding rank of Bn,n(K, A), for A separable over405

K, is at most 2n. Exhibiting a projective embedding in P2n−1(A) would show at once that the406

embedding rank and generating rank of Bn,n(K, A) is 2n. That is exactly what we will do now.407

Proposition 3.4. For A separable over K, the dual polar space Bn,n(K, A) admits a full embedding in408

P2n−1(A).409

Proof. By the above references, we may assume that A is quaternion.410

Following Tits [29], the absolute type of Bn(K, A), A quaternion over K, is Dn+2 with corre-411

sponding Tits index 1D
(1)
n+2,n · · · . Referring to Section 2.6, this means that Bn(K, A)412

is obtained from Dn+2(L), with L a separable quadratic extension of K contained in A as413

a 2-dimensional algebra, by taking the fixed singular subspaces under a semi-linear involu-414

tion θ which acts type-preservingly, fixes at least one singular subspace of any dimension d,415

0 ≤ d ≤ n − 1, but does not fix any singular subspace of dimension n + 1 (and hence none416

of dimension n either). To concretely obtain Bn,n(K, A), one has to consider that involution417

θ in Dn+2,n+2(K), where it acts fixed point freely. The points of Bn,n(K, A) are then the fixed418

lines; the lines of Bn,n(K, A) are the sets of fixed lines of Dn+2,n+2(K) in a solid fixed under the419

action of θ. (This can be read off the Tits index.) Note that the companion field involution of θ420

is the restriction to L of the standard involution of A as quaternion algebra over K.421

Now, according to Section 3 of [36], see also Proposition 5.3 in [34] for a completely geomet-422

ric account which we will use below, the universal embedding of Dn+2,n+2(L) happens in423

P2n+1−1(L). By the universality of the embedding, the involution θ extends to P2n+1−1(L),424

and we denote the extension also by θ. Since θ2 pointwise fixes Dn+2,n+2(L), it is the identity425

everywhere, so θ is an involution of P2n+1−1(L). We claim the following two things:426

Claim 1: The involution θ acts fixed point freely on P2n+1−1(L).427
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Suppose for a contradiction that θ fixes a point x of P2n+1−1(L) and let L be a line of Dn+2,n+2(L)428

fixed by θ. Then the plane π generated by x and L is also fixed. Since θ is semi-linear, it induces429

a so-called Baer involution in it and hence its fixed point structure is a Baer subplane. But such430

a subplane has a point on each line, contradicting the fact that L does not contain fixed points.431

Claim 2: The lines of Dn+2,n+2(L) fixed by θ generate P2n+1−1(L).432

We use the inductive geometric construction of the universal embedding of Dn+2,n+2(L) as433

given in Proposition 5.3 in [34]. That construction implies that P2n+1−1(L) is generated by434

the two half spin subgeometries isomorphic to Dn+1,n+1(L) obtained from the residues of two435

noncollinear points in the corresponding polar space Dn+2,1(L). Taking for those points two436

points fixed by θ, we see that an inductive argument proves the claim if we check the smallest437

case n = 1. In that case, the set of fixed lines corresponds to a spread of P2n+1−1(L) = P3(L)438

and so they generate the whole space trivially (as they even fill or cover the space). Claim 2 is439

proved.440

Claim 1 now implies that θ induces the Tits index 1A
(2)
2n+1−1,2n−1 · · ·441

giving rise to the quaternion projective space P2n−1(A). Claim 2 implies that Bn,n(K, A) is442

fully embedded in and spans P2n−1(A). �443

Remark 3.5. If A is separable over K, but not quaternion, then the proof of Proposition 3.4444

goes through, except that we do not consider a semi-linear involution, but a linear collineation445

if A is quadratic over K (not an involution if charK = 2), and a linear involution in Dn+1(K) if446

K = A. Noting that we only used the Tits indices as fix diagrams, we can use the appropriate447

fix diagrams to prove exactly the same claims and prove the proposition in these simpler cases.448

In fact, this amounts to the constructions given in [9] (for A quadratic over K) and [36] (for449

K = A). Therefore we do not insist on it.450

As noted above, this now implies:451

Corollary 3.6. Both the embedding rank and generating rank of the dual polar spaces Bn,n(K, A), with452

A an associative separable quadratic division algebra over K, are equal to 2n.453

3.3 Some embeddings of F4,4(K, A)454

In the same way as for Bn,n(K, A) above, we will produce an embedding of F4,4(K, A) in455

P27(A), if A is quaternion over K. The other cases for associative separable A over K can be456

done similarly, but are easier and have been considered elsewhere. Indeed, by Theorem 6.1 of457

[12], the embedding rank and generatng rank of F4,4(K) is equal to 25. We will handle the case458

of F4,4(K, A), for A separable quadratic over K, below after the quaternion case. Consider the459

Lie incidence geometry E7,7(K) embedded in P55(K) and let A be quaternion over K. Using460

the Tits index E9
7,4 , we see that F4,4(K, A) arises from the fixed point structure of461

a semi-linear involution θ of E7,7(L), where L is a quadratic extension of K stabilized under462

the standard involution of A, by defining the points to be the fixed lines, and the lines of463

F4,4(K, A) are identified with the fixed solids, in which the fixed lines form a spread.464

As in Claim 1 of the proof of Proposition 3.4, we deduce that θ extends to P55(L) (since the465

embedding of E7,7(L) in P55(L) is universal [24, Theorem 4.1]) and θ does not have any fixed466

points in that projective space. Hence, again just like in the proof of Proposition 3.4, one obtains467
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now an embedding of F4,4(K, A) inside P27(A). We claim that this embedding spans the full468

projective space.469

Indeed, according to the Tits index (or the fix diagram), θ stabilizes two opposite symps, say470

ξ1 and ξ2. Let i ∈ {1, 2}. The fixed point structure of θ in ξi conforms to the Tits index 1D
(2)
6,3471

472

Since every polar space of type D6,1 is embedded only in projective 11-space, this Tits index473

gives rise to an embedding of C3,1(A, K) in a subspace of P5(A); but it has to generate it474

because C3,1(A, K) contains disjoint singular planes.475

Now also the equator E(ξ1, ξ2) (see Section 3.3 of [16]) is stabilized. The previous paragraph476

implies that ξi contains a basis lying on fixed lines, that is, a set of twelve points closed under477

the action of θ and such that each point is noncollinear to exactly one other point of the set. This478

in turn implies that the equator E(ξ1, ξ2) contains a set of 16 fixed lines containing a basis, that479

is, a set of 32 points generating a 31-dimensional subspace of P55(L). The claim now follows.480

The case where A is a separable quadratic extension of K is handled with great similarity, now481

considering the Tits index 2E
2
6,4 as follows. The Lie incidence geometry F4,4(K, A)482

arises from the fixed point structure of a semi-linear polarity ρ of E6,1(A) by taking483

as points the absolute points of E6,1(A) and as lines the absolute lines. The symps of F4,4(K, A)484

are then obtained from the fixed 5-spaces of E6,1(A), in which ρ logically induces a Hermitian485

polarity with absolute geometry a Hermitian polar space C3,1(A, K) (and those are indeed486

isomorphic to the symps of F4,4(K, A)). In particular, we can consider two opposite fixed487

such 5-space W1 and W2. Now just like in the previous paragraphs, now using the equator488

E(W1, W2) as defined in Section 3.2 of [16], we can show that the absolute points in E(W1, W2)489

generate a 14-dimensional subspace, and so F4,4(K, A) generates P26(L).490

In conclusion we have shown:491

Proposition 3.7. There exists a full embedding of F4,4(K, A) in492 
P25(A), if A = K and charK 6= 2,
P26(A), if A is a separable quadratic extension of K,
P27(A), if A is a quaternion algebra over K.

3.4 Generation of F4,4(K, A)493

Theorem A will be proved if we show that F4,4(K, A) is, as a geometry, generated by 26, 27 or494

28 points, for A = K, A quadratic over K, or A quaternion over K, respectively. As already495

mentioned, the case A = K with charK 6= 2, is handled by Theorem 6.1 of [11]. We now496

treat the two other cases. As already alluded to, this makes use of the so-called extended equator497

geometry, and the companion tropics geometry, which we introduce now. See [10], [20] and [23]498

for proofs.499

Henceforth let A have dimension 2 or 4 over K. Select two arbitrary opposite points p, q of500

F4,4(K, A) and let E(p, q) be the set, called equator (with poles p, q), of points symplectic to both501

p and q. Let Ê(p, q), called extended equator, be the union of all sets E(x, y) with x and y opposite502

and contained in E(p, q); it is independent of the choice of p, q ∈ Ê(p, q). Let L (p, q) be the503
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set of intersections of size at least 2 of Ê(p, q) with symps of F4,4(K, A). Each such intersection504

is a hyperbolic line of the polar space C3,1(A, K), hence obtained by the common perp of two505

opposite lines. The point-line geometry ∆(p, q) = (Ê(p, q), L (p, q)) is a polar space B4,1(K, A)506

K K A A
.507

Let T̂(p, q) be the set of points of F4,4(K, A) collinear to at least two points of Ê (each such point508

x is collinear to exactly the points of a maximal singular subspace β(x) of ∆(p, q)). Let M (p, q)509

be the set of lines of F4,4(K, A) entirely contained in T̂(p, q). Then the point-line geometry510

Ω = (T̂(p, q), M (p, q)), called tropics geometry, is a dual polar space B4,4(K, A)
K K A A

. The511

correspondence is quite neat: The mapping β is bijective onto the set of maximal subspaces;512

two points x, y of Ω are collinear if and only if β(x) and β(y) intersect in a plane of ∆, they are513

symplectic if and only if β(x) and β(y) intersect in a line of ∆, they are special if and only if514

β(x) and β(y) intersect in a point (which equals xony) of ∆ and they are opposite if and only if515

β(x) and β(y) are disjoint. Moreover, if x, y ∈ T̂(p, q) are collinear, then β is a bijection from516

the set of points of the line xy to the set of planes of ∆ through the line β(x) ∩ β(y). Also, a517

point of T̂(p, q) and a point of Ê(p, q) are either collinear or special, but never symplectic or518

opposite.519

We fix an extended equator geometry Ê and its companion tropics geometry T̂ for the rest520

of this section (and we forget p and q). We denote by ∆ and Ω the corresponding point-line521

geometries as introduced above. Let Ξ(Ê) be the set of all symps containing some point, and522

hence some line, of ∆, and let Ê⊥⊥ be the union of all those, viewed as sets of points. Likewise,523

let L (T̂) be the set of all lines containing some point of T̂, and let T̂⊥ be the union of all those524

lines, viewed as sets of points. We have the following observation.525

Lemma 3.8. The inclusion Ê⊥⊥ ⊆ T̂⊥ is always valid.526

Proof. Let ξ be a symp containing some point x of Ê. Let y be a point of Ê opposite x. There is a527

symp containing y which intersects ξ nontrivially. Hence ξ contains a line h of ∆. Then h⊥ ⊆ ξ528

contains at least one line (it has the structure of C2,1(A, K)), and so every point of ξ is collinear529

to (lots of) points of h⊥ ⊆ T̂. �530

The converse of Lemma 3.8 is not true, but nevertheless one can show the following:531

Lemma 3.9. The set T̂⊥ is contained in the subspace generated by Ê⊥⊥.532

Proof. Let p be an arbitrary point of T̂. Then β(p) ⊆ Ê is a solid of ∆. Each line h of β(p) defines533

a symp ξ(h) containing p. We claim that the planar line pencils of β(p) correspond to the set534

of symps containing a fixed plane through p. Indeed, let c be a point of β(p) and π a plane of535

∆ in β(p) containing c and let Π(c, π) be the corresponding line pencil. Let L be the line of T̂536

with the property that for each point x ∈ L the solid β(x) contains π. Then each symp defined537

by a member of Π(c, π) contains c and L, and hence contains the plane α generated by c and L.538

Conversely, a symp containing α contains c and hence contains a line h of Ê. Since the points539

of L are in a symplecton with h, they are collinear to h an so h belongs to Π(cπ). The claim540

is proved. Consequently the set Ξ(p) of symps ξ(h), with h running through the set of lines541

of β(p), corresponds to a hyperbolic quadric H of Witt index 3 fully embedded in the polar542

space Π ∼= B3,1(K, A)
K A A

corresponding to Res(p) ∼= B3,3(K, A)
K A A

.543

We claim that every plane α through p contains at least two distinct lines of members of Ξ(p).544

Indeed, α corresponds to a line L of Π, whereas H can be considered a full subquadric of Π.545
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We have to show that L is contained in at least two planes intersecting H nontrivially, and we546

may clearly assume that L is disjoint from H . Now H contains at least two opposite planes,547

and these contain distinct points collinear to L. The claim follows.548

Our claim implies that every plane through p is fully contained in the subspace generated by549

the symps ξ(h), with h as above. Since those are contained in Ê⊥⊥, the assertion follows. �550

Let T be a set of 16 points generating T̂ as a dual polar space isomorphic to B4,4(K, A),551

cf. Corollary 3.3. Let E be a set of 8+ dimK A points generating Ê as a polar space, cf. Proposi-552

tion 3.1. As explained in Section 6 of [12] T ∪ E generates the subspace generated by Ê⊥⊥, and553

hence, by Lemma 3.9, it also generates the subspace generated by T̂⊥.554

The following proposition will imply Theorem A for A not quaternion.555

Proposition 3.10. The set T̂⊥, and hence T ∪ E, generates a subspace Ĥ which is either a geometric556

hyperplane, or coincides with the whole of F4,4(K, A).557

Proof. Let ξ be any symp of F4,4(K, A). We claim that H ∩ ξ contains a geometric hyperplane558

of ξ. If ξ contains some point of Ê, this is trivial. Suppose ξ is close to some point x of Ê. Then559

there exists a symp ζ containing x and intersecting ξ in a plane α. Now, T̂ ∩ ζ is the common560

perp of the points of Ê ∩ ζ. It follows that T̂ ∩ ζ is a subhyperplane of ζ, implying that α561

contains a point z ∈ T̂. So ξ contains all points of ξ collinear to z ∈ ξ, which is a hyperplane of562

ξ.563

Finally suppose that all points of Ê are far from ξ. Select x ∈ Ê; let y be the unique point of ξ564

symplectic to x and let ζ be the symp defined by x and y. Then ζ ∈ Ξ(Ê), and hence Hy :=565

y⊥ ∩ T̂ ∩ ζ is a hyperplane of T̂ ∩ ζ. This implies that y and Hy generate a subhyperplane of ζ.566

Using Fact 2.5, the set of points of ξ collinear to some point of Hy constitutes a subhyperplane567

of ξ all points of which are collinear to y, and which is contained in Ĥ (as each point is collinear568

to some point of T̂). Repeating this argument with x′ /∈ ζ, x′ ⊥⊥ x, such that ξ(x, x′) is opposite569

ξ, we obtain a second subhyperplane of ξ all points of which are this time collinear to y′, which570

is not collinear to y (as x and x′ are not collinear), and which is contained in Ĥ. Hence the two571

subhyperplanes do not coincide and therefore generate a geometric hyperplane of ξ, contained572

in Ĥ. �573

Proposition 3.11. If A = K and charK 6= 2, then the embedding and generating ranks of F4,4(K, A)574

are both equal to 26; if A is a separable quadratic extension of K, then the embedding and generating575

ranks of F4,4(K, A) are both equal to 27.576

Proof. Proposition 3.10 implies, by Theorem 2.2 in [18], that the generating rank is at most 26577

and 27, respectively; Proposition 3.7 then implies the assertions. �578

In the quaternionic case, the previous results only imply that the generating and embeddings579

ranks belong to {28, 29}, since we have an embedding in projective 27-space, and we know580

that the geometry is generated by at most 29 points. Our next objective is to show that Ĥ,581

as defined in Proposition 3.10, coincides with F4,4(K, A), if A = H is a quaternion division582

algebra over K.583

To that end, we use the construction of F4,4(K, H) via Galois descent. Let L be a separable584

quadratic extension of K contained in H such that the standard involution σ of H acts as the585

Galois involution on L/K. Then in view of the Tits index E9
7,4 , there exists a σ-586

semilinear involution θ on E7,7(L) such that its fixed lines can be identified with the points587
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of F4,4(K, H), the fixed 3-spaces with the lines of F4,4(K, H), the fixed maximal 5-spaces with588

the planes of F4,4(K, H), and the fixed symps with the symps of F4,4(K, H). First we interpret589

extended equators of F4,4(K, H) in E7,7(K).590

Lemma 3.12. An extended equator geometry of F4,4(K, H) corresponds to the set of lines intersect-591

ing two opposite symps ξ and ξθ and inducing in each a laxly embedded subquadric isomorphic to592

B4,1(K, H). This induced set in ξ generates ξ as a subspace of itself.593

Proof. Let p, q be opposite points in F4,4(K, H) and let Lp, Lq be the corresponding lines in594

E7,7(L). Since θ is a Galois automorphism of algebraic groups, the lines Lp and Lq are opposite.595

Let x ∈ Lp be a point, and let y ∈ Lq be the unique point at distance 2 from x. Denote by ξ the596

symp containing x and y. Let r be a point of F4,4(K, H) symplectic to both p, q, and let Lr be597

the corresponding line in E7,7(L). We claim that ξ contains a unique point of Lr. Indeed, by the598

definition of r there exist symps ζ and ν containing Lp and Lq, respectively, and intersecting in599

Lr. The point x is collinear to a unique point z ∈ Lr, and z is collinear to a unique point of Lq.600

Since y is the unique point on Lq not opposite x, we necessarily have y ⊥ z, and so y ∈ ξ. The601

claim is proved. Likewise, Lr contains yθ ∈ ξθ .602

Interpreting the previous claim, we have shown that Ê laxly embeds in ξ. This proves the first603

assertion. Define the following involution θξ : ξ → ξ : u 7→ uθξ , where uθξ is the unique point604

of ξ collinear to uθ . Since Lp and Lq are opposite, the symps ξ and ξθ are opposite and so θξ605

is well defined. Moreover, the fixed point set of θξ corresponds precisely to Ê. Clearly, θξ is a606

semi-linear involution, and hence the fixed point set is a fully embedded quadric B4,1(K, H)607

in a subspace over K. Since the only full embeddings of B4,1(K, H) occur in dimension 11 (by608

[30, Theorem 8.6]), the second assertion follows. �609

From now one we fix a pair of opposite symps ξ, ξθ such that the fixed lines intersecting both610

correspond to the points of an extended equator Ê. We denote the subspace generated by Ê⊥⊥611

by Ĥ. Each point x ∈ Ê corresponds to a fixed line Lx intersecting both ξ and ξθ in points612

which we denote by xξ and xθ
ξ , respectively.613

We say that a line is far from a symp if every point has a unique collinear point in the symp.614

Note that the latter point cannot be the same for all points of L as otherwise a point of the symp615

at distance 2 from that point is at distance 3 from all points of L, contradicting Corollary 2.7.616

Lemma 3.13. A line L is far from a symp ζ if and only if at least two distinct points of L are collinear617

to distinct unique points of the symp.618

Proof. The “only if” part being obvious, we suppose for a contradiction that some point x of619

L is close to ζ, say collinear with the 5-space U, and that x1, x2 ∈ L are such that xi ⊥ x′i ∈ ζ,620

i = 1, 2, with x1 6= x2 and x′1 6= x′2 unique. If x1 ∈ U, then L ⊥ x′1 6= x′2, a contradiction to621

the uniqueness of x′2. Hence x′1 /∈ U and so there is a symp through x′1 and x. That symp also622

contains L and a 4-subspace of U. Within that symp, the point x1 is now collinear to at least a623

3-space of U, the final contradiction. �624

Lemma 3.14. If a line L is far from a symp ζ, then it is contained in a unique symp ζ ′ intersecting ζ in625

a line. Moreover, every symp locally opposite ζ ′ at L is globally opposite ξ.626

Proof. Let x, y be two points on L, and let x′, y′ be the corresponding points in ζ (so x ⊥ x′ and627

y ⊥ y′). By the note above, we may assume x′ 6= y′. We show that x′ ⊥ y′. Indeed, if not, then628

y′ is opposite x by Fact 2.6, contradicting x ⊥ y ⊥ y′. Hence x′ and y′ span a line L′. Now the629
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symp ζ ′ through x and y′ contains L and L′. If ζ ∩ ζ ′ were a 5-space, then x would be collinear to630

a 5-space of ζ, a contradiction. The last assertion follows from a translation to E7,1(K), where631

symps become points and lines become symps. The assertion is then equivalent to the well632

known fact in long root geometries that, if two symps intersect precisely in one point x, and633

the symps are locally opposite at x, then every point of one symp not collinear to x, is opposite634

each point of the other symp not collinear to x. �635

Lemma 3.15. Let ζ be a fixed symp disjoint from ξ ∪ ξθ . Suppose ζ is not opposite ξ. Then each line L636

of ζ disjoint from the unique 5-space U ⊆ ζ that is contained in a symp together with some 5-space of637

ξ, is far from ξ.638

Proof. Each point of L is collinear to exactly one point of ξ, by Fact 2.8(v). �639

Lemma 3.16. A symp of F4,4(K, H) corresponding to a fixed symp ζ of E7,7(L) opposite ξ entirely640

belongs to Ĥ.641

Proof. Let x be a point of Ê. There is a unique line through xξ intersecting ζ in a unique point642

y. Hence xθ
ξ is collinear to a unique point yθ of ζ. Lemma 3.13 asserts that Lx is far from ζ643

and hence, by Lemma 3.14, it is contained in a(n automatically fixed) symp intersecting ζ in a644

(necessarily fixed) line Mx, which contains both y and yθ . Now Mx corresponds to a point of645

Ĥ since it is contained in a symp through some point of Ê.646

Also, the set of points xξ , as x runs through Ê, generates ξ (as a subspace); hence, by Fact 2.8(v),647

the points y generated ζ, and so the points of F4,4(K, H) corresponding to the lines Mx generate648

the symp corresponding to ζ. �649

Lemma 3.17. The subspace Ĥ coincides with F4,4(K, H).650

Proof. We first claim that, if a point x of F4,4(K, H) corresponds to a line L of E7,7(L) far from651

ξ, then it belongs to Ĥ. Indeed, local opposition at L in E7,7(L) corresponds to local opposition652

at x in F4,4(K, H). This implies that Lemma 3.14 yields a symp of F4,4(K, H) through x corre-653

sponding to a symp of E7,7(L) opposite ξ, and hence completely contained in Ĥ. The claim is654

proved.655

Now suppose the line L is not far from ξ. We can include x in a symp disjoint from Ê; hence L656

is contained in a symp ζ of E7,7(L) disjoint from ξ. If ζ is opposite ξ, then we are done by the657

first claim. Suppose ζ is special to ξ. Then Lemma 3.15 yields a (fixed) 5-space U of ζ with the658

property that every fixed line outside U is far from ξ. The point of F4,4(K, H) corresponding659

to such lines are contained in Ĥ, by the above claim. These points clearly generate the symp of660

F4,4(K, H) corresponding to ζ (as they are the points not contained in the plane corresponding661

to U). Hence x belongs to Ĥ and the lemma follows. �662

This now implies that F4,4(K, H) is generated by 28 points, and so Proposition 3.7 implies:663

Proposition 3.18. The embedding and generating ranks of F4,4(K, H) are both equal to 28.664

This completes the proof of Theorem A.665

Remark 3.19. It is routine to check that Proposition 3.10 is also valid in the octonionic case666

(A = O nonassociative). Moreover, by [22], C3,1(O, K) is generated by the common perp667

of two opposite points, together with one other well-chosen point. Hence, if we have two668

symplectic points in E, then we may substitute these by one point in the symp generated by669
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the two symplectic points. Since we can clearly choose E in such a way that we have 16 pairs of670

symplectic points, we can replace this by a set E′ of 8 points in such a way that T ∪ E′ generates671

T̂⊥. Using Theorem 2.2 of [18], we then need at most one more point to generate the whole of672

F4,4(K, O). Hence F4,4(K, O) is generated by at most 25 points, which is slightly surprising.673

However, if it were exactly 25, then it would remarkably but nicely complete our series of674

26, 27, 28 points for A dimension 1, 2, 4 over K, respectively, at the “wrong” side!675

Remark 3.20. The inseparable case, that is, the case of F4,4(K, A), where A is an inseparable676

field extension of K in characteristic 2, is a true exception to our theorem. For instance, if677

K = A2, then F4,4(K, A) ∼= F4,1(K, K) and so admits an embedding in PG(51, K), namely,678

its Weyl embedding, see [3]. The universal embedding always exists, however, but there is no679

explicit (geometric) description available.680

4 Abstract dual polar varieties681

In this section we introduce abstract dual polar varieties and we will prove Theorem C.682

4.1 Axioms683

The usual axioms for an abstract Veronesean variety, as considered for the first time in full684

generality in the split case in [27], require a (spanning) point set X in some projective space,685

and a number of subspaces, called host spaces, intersecting X in a quadric. In our case, the686

quadrics are replaced by Hermitian varieties and/or symplectic polar spaces. In the latter687

case, the intersection of the ambient projective subspace with X does not determine the polar688

space, since there are lines of the subspace which are not lines of the polar space. Hence in689

the set-up of the present paper, we have to furnish every host space with a line set of a polar690

space. This also allows for host spaces to admit several polar spaces. In order not to overload691

the notation, we will denote the polar space in question by a greek letter, usually ξ, and think692

of it as a pair (P(ξ), L (ξ)), where P(ξ) is the ambient subspace (the host space), and L is693

the set of lines of ξ. In the Hermitian case, L is completely determined by P(ξ) ∩ X. We call694

points of ξ the points of P(ξ) ∩ X.695

Denote with A an associative division algebra (a skew field). Suppose N ∈ N ∪ {∞}, and696

denote with PN(A) an N-dimensional projective space over A. Let X be a spanning point set697

of PN(A), and let Ξ be a nonempty collection of embedded generalized quadrangles viewed698

(as explained above) as pairs ξ = (P(ξ), L (ξ)) with P(ξ) a 3-dimensional subspace of PN(A)699

and L (ξ) the line set of a thick generalized quadrangle with point set P(ξ) ∩ X which is fully700

embedded in P(ξ). For each point x of ξ ∈ Ξ, denote with Tx(ξ) the tangent space at x to ξ701

(this is generated by the members of L (ξ) containing x), and let Tx be the subspace of PN(A)702

generated by all the subspaces Tx(ξ) for ξ running through all members of Ξ containing x.703

We assume connectivity, that is, the graph on the points of X, adjacent when contained in a704

common member of Ξ, is connected.705

We assume that the following axioms hold.706

(DP1) For any two points x, y ∈ X, either there exists an element ξ ∈ Ξ with x, y ∈ P(ξ), or707

Tx ∩ Ty = ∅. The latter occurs at least once.708

(DP2) For ξ1, ξ2 ∈ Ξ with ξ1 6= ξ2, we have P(ξ1) ∩P(ξ2) ⊆ X.709

(DP3) For each x ∈ X, the subspace Tx is at most 3-dimensional.710
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We call (X, Ξ) an abstract dual polar variety.711

We denote by L the union of all L (ξ) for ξ running through Ξ. By our connectivity as-712

sumption, the geometry (X, L ) itself is connected. If two points x, y ∈ X are contained in a713

common member of L , then we write x ⊥ y and call x and y collinear (if not collinear, they are714

noncollinear). In accordance with the first paragraph, we often identify the member ξ ∈ Ξ with715

its point or line set, using expressions like “a point x of ξ” when we mean x ∈ P(ξ) ∩ X, or “a716

line L of ξ” when we mean L ∈ L (ξ), and we denote x ∈ ξ or L ⊆ ξ, respectively.717

4.2 Convexity718

Our first goal is to show a convexity property, that is, if for x, y ∈ X, we have Tx ∩ Ty 6= ∅, then719

the member ξ(x, y) of Ξ containing x and y is unique as soon as x and y do not belong to the720

same member of L . Note that this is immediate from (DP2) if the generalized quadrangle ξ is721

not symplectic. We proceed with a series of lemmas.722

Lemma 4.1. If a point x ∈ X is contained in the intersection P(ξ1) ∩P(ξ2), for ξ1, ξ2 ∈ Ξ, ξ1 6= ξ2,723

then there is a line L ∈ L through x which is contained in P(ξ1) ∩ P(ξ2), and L belongs to both724

L (ξ1) and L (ξ2).725

Proof. Note that x ∈ X. The planes Tx(ξ1) and Tx(ξ2) are contained in the 3-space Tx and726

hence have a line in common. This line is contained in P(ξ1) ∩P(ξ2), and hence in X. Since it727

is contained in Tx(ξ1), it actually belongs to L (ξ1). Similarly for ξ2. �728

Lemma 4.2. The diameter of (X, L ) is equal to 3.729

Proof. Suppose for a contradiction that x and y are two points of X at distance 4 from each730

other and let x ⊥ u ⊥ v ⊥ w ⊥ y, u, v, w ∈ X. Since u ∈ Tx ∩ Tv, there exists ξx ∈ Ξ containing731

x and v; likewise there exists ξy ∈ Ξ containing v and y. By Lemma 4.1, ξx and ξy share a732

line L ∈ L . Then there are points x′ ⊥ x and y′ ⊥ y on L in ξx and ξy, respectively, so that733

x ⊥ x′ ⊥ y′ ⊥ y, contradicting d(x, y) = 4. �734

Lemma 4.3. Let ξ1, ξ2 ∈ Ξ. If ξ1 ∩ ξ2 is a plane π, then there is some x ∈ π such that π = Tx(ξ1) =735

Tx(ξ2).736

Proof. Let y be an arbitrary point in ξ1 ∩ ξ2. By Lemma 4.1 Ty(ξ1) ∩ Ty(ξ2) contains a line Ly737

which is a line in both ξ1 and ξ2. Let z be a point in ξ1 ∩ ξ2 \ Ly. We similarly obtain a line Lz.738

The unique intersection point x = Ly ∩ Lz is contained in two lines in both ξ1 and ξ2, hence739

π = Tx(ξ1) = Tx(ξ2). �740

Lemma 4.4. Let ξ1 and ξ2 be arbitrary distinct members of Ξ. If P(ξ1) = P(ξ2), then there is a unique741

line L of P(ξ1), which automatically belongs to L (ξ1) ∩L (ξ2), such that:742

(i) For each x ∈ L, the subspace Tx ∩P(ξ1) is a plane, which coincides with Tx(ξ1) and Tx(ξ2).743

(ii) For each x ∈ P(ξ1) \ L, the set Tx coincides with P(ξ1).744

Also, for ξ ′ ∈ Ξ with P(ξ ′) ∩P(ξ1) 6= ∅, one has P(ξ ′) ∩P(ξ1) = L.745

Proof. Note that this only occurs when P(ξ1) = X(ξ1). Moreover, if for all x ∈ P(ξ1), one746

would have that Tx ⊆ P(ξ1), then every ξ ′ intersecting ξ1 would have the same point set747

P(ξ1), connectedness then implies that X = P(ξ1), a contradiction to Lemma 4.2.748
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We can hence find some point x ∈ P(ξ1) with Tx 6= Tx(ξ1) = Tx ∩ P(ξ1). Note that Tx(ξ2)749

is contained in Tx ∩ P(ξ1), implying that Tx(ξ1) = Tx(ξ2). Also, Tx is 3-dimensional, and so750

there exists some ξ ∈ Ξ such that x ∈ P(ξ) 6= P(ξ1). By Lemma 4.1, there is a line L contained751

in Tx(ξ) ∩ P(ξ1). If there is some point y of L for which Ty ⊆ P(ξ1), then clearly P(ξ) ∩752

P(ξ1) = Ty(ξ). Now Lemma 4.3 implies Ty(ξ) = Ty(ξ1). For each point z ∈ Ty(ξ) \ L, we753

have Tz(ξ) is not contained in P(ξ1); consequently Tz(ξ1) = Tz(ξ2) (as otherwise Tz would be754

at least 4-dimensional). However, it now follows directly from the Remark after Application 1755

of Section 3 of [17] that ξ1 = ξ2, a contradiction. Hence for each y ∈ L the tangent space Ty is756

not contained in P(ξ1); so Ty(ξ1) = Ty(ξ2). This shows (i).757

Now the same remark in [17] shows (ii) and the uniqueness of L. The last assertion follows758

from the uniqueness of L. �759

Lemma 4.5. If ξ1, ξ2 ∈ Ξ, and ξ1 6= ξ2, then P(ξ1) 6= P(ξ2).760

Proof. Suppose for a contradiction that P(ξ1) = P(ξ2). Let L be the line obtained in Lemma 4.4,761

and let x ∈ L. Since X contains two points with disjoint tangent spaces (by (DP1)), there762

exist points of X outside P(ξ1). By connectivity of (X, L ), there exists ξ ′ ∈ Ξ intersecting763

P(ξ1) nontrivially, and then the last assertion of Lemma 4.4 yields P(ξ ′) ∩ P(ξ1) = L. Let764

x′ ∈ Tx(ξ ′) \ L (with x′ ∈ X) and x1 ∈ Tx(ξ) \ L. Then x ∈ T′x ∩ Tx1 , so there exists some ξ ′′ ∈ Ξ765

with x1, x′ ∈ P(ξ ′′), but x1 6∈ L, a contradiction to the last assertion of Lemma 4.4. �766

Remark 4.6. From now on we can identify ξ with its 3-dimensional subspace P(ξ) in PN(A),767

so we drop the notation P(ξ).768

Corollary 4.7. Take ξ1, ξ2 ∈ Ξ. If a line L is contained in ξ1 ∩ ξ2, then it belongs to L (ξ1) if, and769

only if, it belongs to L (ξ2).770

Proof. Immediate from Lemmas 4.1, 4.3 and 4.5. �771

Definition 4.8. The distance δ(x, y), x, y ∈ X, is the distance in the collinearity graph of (X, L ),772

that is, the graph with vertices the members of X, adjacent when collinear.773

Lemma 4.9. Let x and y be two points of X with δ(x, y) > 2, then Tx ∩ Ty = ∅.774

Proof. This follows from (DP1) since symps have diameter 2. �775

Lemma 4.10. Let x and y be two points of X with δ(x, y) = 3, and let z be collinear to x and at distance776

2 of y. For any ξ ∈ Ξ containing z and y, the point z is the unique point in ξ collinear to x. Moreover,777

every point of ξ that is noncollinear to z is at distance 3 from x.778

Proof. Suppose for a contradiction that x is collinear to some point z′ of ξ, different from z.779

Then Tx intersects ξ in at least a line, and hence Ty in a point, a contradiction to Lemma 4.9.780

Next, let y′ be a point of ξ that is noncollinear to z. It is clear that δ(x, y′) ≤ δ(x, z)+ δ(z, y′) = 3.781

Suppose for a contradiction that δ(x, y′) = 2. Then there exists some ξ ′ ∈ Ξ that contains both782

x and y′. By Lemma 4.1, the intersection ξ ∩ ξ ′ is a line of X. The point x is collinear to a783

point of this line, which, by the previous argument, equals z. But then z is collinear to y′, a784

contradiction. �785

Lemma 4.11. Let x and y be two points of X with δ(x, y) = 3, and let x ⊥ z1 ⊥ z2 ⊥ y be a path in786

X such that there is some ξ ∈ Ξ which contains z1, z2 and y. If ξ ′ ∈ Ξ contains x and z2, then it also787

contains z1.788
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Proof. Let ξ ′ ∈ Ξ contain x and z2. By Lemma 4.1, there is a line L of X through z2 that789

is contained in ξ ∩ ξ ′. Both x and L are contained in the generalized quadrangle ξ ′, so x is790

collinear to some point of L. It follows from Lemma 4.10 that this point is z1, implying that z1791

is contained in ξ ′. �792

Lemma 4.12. Let y be a point of X. The points at distance at most 2 from y form a subspace of X.793

Proof. Let L be a line of X containing a point z1 at distance 2 from y, and suppose that L contains794

a point x at distance 3 from y. Since Tz1 ∩ Ty 6= ∅, there is some member ξ1 of Ξ that contains795

y and z1. Let z2 be point of X in ξ1 that is collinear to both z1 and y. As before, one can take an796

element ξ ∈ Ξ that contains x and z2. By Lemma 4.11, we find z1 ∈ ξ, and hence also L ⊂ ξ.797

The assertion now follows from Lemma 4.10. �798

Lemma 4.13. Let ξ be an arbitrary member of Ξ. Suppose that (A) is some property of ordered pairs of799

non-collinear points such that, whenever (A) holds for the ordered pair (p, q) of noncollinear points of ξ,800

it also holds for all ordered pairs (p, q′) and (p′, q) of noncollinear points with p ⊥ p′ and q ⊥ q′. If (A)801

holds for some ordered pair of two noncollinear points of ξ, it holds for all ordered pairs of noncollinear802

points of ξ.803

Proof. This follows from the connectivity of the geometry far from a point in any generalized804

quadrangle, see [5] or [28, Lemma 7.5.2]. �805

Lemma 4.14. Let ξ ∈ Ξ be arbitrary and suppose that there is an ordered pair of noncollinear points806

(y, z) in ξ for which807

(A) there exists a point x ⊥ z with δ(x, y) = 3.808

Then Property (A) holds every ordered pair of noncollinear points of ξ.809

Proof. By Lemma 4.13, it suffices to prove this for ordered pairs of noncollinear points (y′, z)810

and (y, z′) with y′ collinear to y and z′ collinear to z. For such point y′, this immediately follows811

from Lemma 4.12. We prove it for z′. To that end, let z2 be the unique point on zz′ collinear812

to y, and take an element ξ2 ∈ Ξ that contains x and z2. By Lemma 4.11, we have that z ∈ ξ2,813

implying that z′ ∈ ξ2. By Lemma 4.10, and any point on ξ2 noncollinear to z2 is at distance 3814

from y. So by taking x′ to be a point of ξ2 collinear with z′ not on zz′, we find δ(x′, z′) = 1 and815

δ(z′, y) = 3. The lemma is proved. �816

Lemma 4.15. For any two points (y, z) of X at distance two, there exists a point x with δ(x, z) = 1817

and δ(x, y) = 3.818

Proof. By Lemma 4.2, there exist such points y and z. Let ξ be an element of Ξ containing y and819

z. By Lemma 4.14, the claim holds for any two noncollinear points in ξ. Let ξ ′ be an element of820

Ξ that intersects ξ in at least a line L, we prove that the claim also holds for all pairs in ξ ′. To821

that end, take some point y1 on L and some z1 on ξ \ ξ ∩ ξ ′ noncollinear to y1. Let w be the point822

on L collinear to z1. There is some point x1 collinear to z1 and at distance 3 from y1. Let ξ ′′ be823

an element that of Ξ that contains x1 and w, then ξ ′′ intersects ξ ′ in a point, and, by Lemma 4.1,824

in at least a line. The point x1 is hence collinear to some point of ξ ′. We find that the claim also825

holds for noncollinear pointpairs of ξ ′. We can conclude the proof using connectedness. �826

Lemma 4.16. For any two points y and z at distance two, there is a unique element of Ξ that contains827

both y and z.828
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Proof. Let ξ be an element of Ξ that contains y and z. We prove that ξ contains every point829

collinear to both y and z. Let w be such a point, and suppose for a contradiction that it is not830

contained in ξ. Then Ty = 〈w, Ty(ξ)〉 and Tz = 〈w, Tz(ξ)〉. In particular, the intersection Ty ∩ Tz831

is a plane. By Lemma 4.15, there is a point x with δ(x, z) = 1 and δ(x, y) = 3. The line xz lies832

in Tx, and must hence intersect Tx ∩ Ty in a point, a contradiction to Lemma 4.9. �833

Proof of Theorem C. By the classification of 0-lacunary parapolar spaces [13, Table 2 p.11] X is834

isomorphic to B3,3(?). Since both X and its dual are embeddable we obtain that X is isomorphic835

to B3,3(K, A) by [30, Proposition 10.10].836

We now show that N = 7. By assumption, there are two points x and y with Tx ∩ Ty = ∅, thus837

N ≥ 7. We prove that all points of X are contained in Y = 〈Tx, Ty〉.838

Let z ∈ X be such that δ(z, x) = 1 and δ(z, y) = 2, we prove that Tz ⊆ Y. Let ξ be the symp839

through z and y, then Y contains Ty(ξ) and z, and hence ξ. Both the line xz and the plane Tz(ξ)840

are contained in Y, hence Tz ⊆ Y.841

Next, let z′ be an arbitrary point on xz. There are at least two elements ξ1, ξ2 of Ξ that842

contain xz. By the previous argument, each of these two symps is contained in Y. Since843

Tz′ = 〈Tz′(ξ1), Tz′(ξ2)〉, we find that T′z ⊂ Y.844

Since X is contained in the span of the above tangent spaces we obtain that N = 7.845

By a result of Kasikova and Shult [19, p. 285] the absolute universal embedding exists and by846

Lemma 3.2 it occurs in dimension 7. �847

5 Metasymplectic spaces848

5.1 The axioms849

Denote with A an associative division algebra. Suppose N ∈ N ∪ {∞}, and denote with850

PN(A) an N-dimensional projective space over A. Let X be a spanning point set of PN(A),851

let Ξ be a nonempty collection of polar spaces of rank 3, viewed as pairs ξ = (P(ξ), L (ξ))852

with P(ξ) a 5-dimensional subspace of PN(A) and L (ξ) the line set of the polar space ξ of853

rank 3 with thick hyperbolic lines that is fully embedded in P(ξ) and has point set P(ξ) ∩ X.854

Let Π be a (possibly empty) collection of planes such that, for all π ∈ Π, π ∩ X is a pair of855

distinct lines, intersecting in a point xπ. For x ∈ X and ξ ∈ Ξ with x ∈ P(ξ), we denote with856

Tx(ξ) the tangent space at x to ξ, and let Tx be the subspace of PN(A) generated by all these857

subspaces Tx(ξ) for x ∈ ξ ∈ Ξ. We call every line of PN(A) that either is a member of some858

L (ξ), ξ ∈ Ξ, or is contained in X ∩ π, for some π ∈ Π a singular line or line of X for short, if859

no confusion is possible. We again assume connectivity, that is, the graph on the points of X,860

adjacent when contained in a common member of Ξ, is connected. We also assume that for861

each point p ∈ X, the graph on the singular lines through p, adjacent if contained as members862

in a common L (ξ), for some ξ ∈ Ξ, is connected. We refer to the latter assumption as local863

connectivity. We impose the following axioms.864

(F1) Every pair of intersecting singular lines of X is contained in some member of Ξ∪Π (with865

“contained in a member ξ of Ξ” we mean that the singular lines belong to L (ξ)).866

(F1′) For two points x, y ∈ X we have |Tx ∩ Ty| > 1 if and only if x, y are contained in a member867

of Ξ; if |Tx ∩ Ty| = 1 then Tx ∩ Ty ⊆ X and the unique point of Tx ∩ Ty is collinear to both x868

and y (we say that the pair {x, y} is special); finally there are points x, y with Tx ∩ Ty = ∅.869
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(F2) For ξ1 6= ξ2 ∈ Ξ, P(ξ1) ∩P(ξ2) ⊆ X.870

(F3) For every point x ∈ X, the subspace Tx is at most 8-dimensional.871

So we again do not assume that symps are convexly closed here.872

We call (X, Ξ, Π) an abstract metasymplectic variety (AMV) and we will prove Theorem B in this873

section.874

Terminology and Notation: The members of Ξ are called symps. If x and y are special points875

with Tx ∩ Ty = {z}, we denote z = xony. A point x ∈ X is called a bowtie when x = x1onx2 for876

some points x1, x2 ∈ X. A hyperbolic line of X is a hyperbolic line in some element ξ ∈ Ξ. Only877

if ξ is a symplectic polar space the corresponding hyperbolic line is a full line of PN(A). Two878

points of X are collinear when they are contained in a singular line of X. A priori, a line L of879

PN(A) can both be a line of X and a hyperbolic line of X. A singular space of X is a subspace of880

P(A) contained in X such that every pair of points of it is collinear in X. Two points that are881

not collinear but are contained in a symp are called symplectic.882

We note that for each member ξ ∈ Ξ, the associated embedded polar space (P(ξ) ∩ X, L (ξ))883

has the property that no line of P(ξ) intersects X in exactly two points. Hence, if x and y are884

symplectic points, then the line 〈x, y〉 intersects X in at least three points. It follows that two885

symplectic points can never be contained in a common plane π ∈ Π.886

Lemma 5.1. Every singular line is contained in a symp.887

Proof. Let L be any singular line and pick a point p ∈ L. By connectivity, p is contained in a888

symp, hence in at least two singular lines. By local connectivity, L is contained in a symp. �889

Lemma 5.2. If x is collinear to distinct points y and z, which are either collinear or symplectic, then all890

points of the projective line L = 〈y, z〉 that belong to X are collinear to x.891

Proof. By Axiom (F1) there is a symp ξ containing xy and xz. Hence each point of L that892

belongs to X belongs to ξ. The lemma follows. �893

Lemma 5.3. If three nonconcurrent lines in a plane π of P(A) are lines of X, then π is a singular894

plane of X.895

Proof. By Lemma 5.2 all lines through the intersection points of the three lines are singular. Let896

L be an arbitrary line which intersects one of the lines in a point p. By the above p is contained897

in two singular lines, hence again by Lemma 5.2, L is singular. �898

5.2 All symps are symplectic or every symp is convexly closed899

Lemma 5.4. Every symp ξ ∈ Ξ that is not symplectic, is convexly closed.900

Proof. Let x, y be two noncollinear points of ξ, and suppose for a contradiction that p /∈ ξ is901

a point of X collinear to both x and y. Since hyperbolic lines are thick, it follows from (F1)902

that there is a symp ξ ′ ∈ Ξ that contains the lines px and py. Note that xy ⊆ P(ξ) ∩ P(ξ ′).903

However, since ξ is not symplectic, the line xy contains points that are not in X, a contradiction904

to (F2). �905

Lemma 5.5. Let π be a plane of P(A) such that every pair of points of π ∩ X is contained in a symp.906

If π ∩ X contains a line, and a point outside of that line, then either π ⊂ X, or there is a symp ξ ∈ Ξ907

with π ⊂ P(ξ).908
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Proof. Suppose that π ∩ X contains a point p and a line L, and suppose that π contains a point909

q that does not belong to X. Denote with ξ ∈ Ξ a symp that contains p and L ∩ pq. Let q′ be a910

point of L \ pq, and denote with ξ ′ ∈ Ξ a symp that contains p and q′. By assumption, the polar911

space (P(ξ ′) ∩ X, L (ξ ′)) has thick hyperbolic lines, so there is a point x on pq′ \ {p, q′} that912

belongs to X. Denote with ξx ∈ Ξ a symp that contains x and qx ∩ L. Since q ∈ P(ξx) ∩P(ξ),913

Axiom (F2) implies that ξ = ξx, implying that P(ξ) contains π. �914

Lemma 5.6. Either all symps of Ξ are symplectic, or no symp of Ξ is symplectic. In the latter case, all915

symps are convexly closed.916

Proof. Suppose that Ξ contains a symplectic symp ξ1. Suppose that ξ2 is a symp of Ξ such917

that π = P(ξ1) ∩ P(ξ2) has dimension at least two, and suppose for a contradiction that ξ2918

is not symplectic. It follows from (F2) that π ⊂ X. Since ξ2 is not symplectic, every line in919

P(ξ2) is a line of ξ2, so π is a singular subspace of ξ2, and hence a singular plane of X. Let920

p ∈ π be such that π ⊂ Tp(ξ1). Let q ∈ π be different from p, and select r ∈ π not on pq.921

Moreover, for i = 1, 2, let xi be a point of X on Tp(ξi) ∩ Tq(ξi) ∩ X, not in π. Both x1 and r922

are points of ξ1, so the line x1r is contained in X. Since q is collinear to r (inside ξ2 and to x1923

(inside ξ1), Lemma 5.2 implies that q is collinear to each point of rx1. Since each point of rx1924

is also collinear to p (inside ξ1), Lemma 5.2 implies that each point of rx1 is collinear to pq. In925

ξ2, each point of rx2 ∩ X is collinear to each point of pq. Now let x be an arbitrary point of the926

plane α spanned by r, x1, x2 not on rx1 and distinct from x2. Set y = rx1 ∩ xx2. Then by the927

previous arguments, y and x2 are collinear or symplectic (both are collinear to p and q), and so928

Lemma 5.2 again implies that p and q are collinear to x. It follows that all points of α ∩ X are929

collinear to both p and q and hence every pair of such points is symplectic. Since x2 and r are930

noncollinear points of ξ2, there are points on the line rx2 that are not in X. It then follows from931

Lemma 5.5 that there is a symp that contains α. But, by Lemma 5.4, the symp ξ2 is the unique932

symp that contains x2 and r. This is a contradiction to x1 6∈ π.933

Next, suppose that ξ2 is a symp of Ξ such that L = P(ξ1) ∩ P(ξ2) has dimension one, and934

suppose again for a contradiction that ξ2 is not symplectic. Let p and q be distinct points of L,935

let x1 be a point of Tp(ξ1)∩ Tq(ξ1) not on L, and let x2, y2 be noncollinear points in X contained936

in Tp(ξ2) ∩ Tq(ξ2). First suppose that every point of x1x2 is contained in X. Since x1 and x2 are937

collinear to both p and q, they are symplectic, and so Lemma 5.2 implies that each point of x1x2938

is collinear to both p, q. Since also y2 is collinear to both p and q, the argument above with α can939

be copied for the plane β spanned by x1, x2, y2 showing that all points of β ∩ X are collinear to940

both p and q, and so each pair of points of β∩X is symplectic. Then it follows from Lemma 5.5941

and the fact that x2y2 contains points not in X, that there is a symp ξ ∈ Ξ that contains β. This942

symp ξ is not symplectic as β is not contained in X. It follows from Lemma 5.4 that ξ = ξ2, and943

hence that x1 ∈ ξ2, a contradiction. We hence obtain that there are points on x1x2 that are not944

in X. Let ξ ′ ∈ Ξ be a symp that contains x1 and x2. This symp is not symplectic, so Lemma 5.4945

implies that it is convexly closed, and in particular, that it contains p and q. We hence obtain946

that P(ξ ′) ∩P(ξ1) and P(ξ ′) ∩P(ξ2) both have dimension at least two, the contradiction then947

follows from the previous paragraph.948

Now the assertion follows from the connectivity and the local connectivity. �949

We now introduce the notion of the residue at a point and show in the next subsection that,950

under a mild condition, it is an abstract dual polar variety.951

Definition 5.7. Let x ∈ X be arbitrary and let Cx be a subspace of Tx of co-dimension 1 not952

containing x. Let Xx be the set of points of Cx which are contained in a singular line of X953

24



with x. For each ξ ∈ Ξ containing x, let ξx be the generalized quadrangle obtained from ξ by954

intersecting Cx with each member of L (ξ) that contains x. Define P(ξx) = Tx(ξ) ∩ Cx and955

L (ξx) = {L ∈ L (ξ) | L ⊆ Cx ∩ Tx(ξ)}. We view ξx as the pair (P(ξx), L (ξx)). Let Ξx be the956

collection of all such pairs ξx for x ∈ ξ. Then we call (Xx, Ξx) the residue of (X, Ξ, Π) at x and957

denote it by Res(x).958

5.3 All points of a diameter 3 residue are polar959

In this subsection all notation and terminology refer to elements of Res(x) for a fixed point960

x ∈ X unless explicitly mentioned otherwise.961

For every point y in Res(x), we denote

Tx
y := 〈π |π is singular plane of X through xy〉 ∩ Cx

Two points y and z of Res(x) are collinear in Res(x) if and only if they are collinear in X.962

Moreover d(y, z) denotes the distance in Res(x) between points y and z of Res(x). Given a963

point y of Res(x) not contained in a given symp ξ of Res(x), we call a point z of ξ the gate of ξ964

for y if z is the unique point of ξ collinear with y.965

Lemma 5.8. The point-line space Res(x) is connected, in other words, d(y, z) ∈N for all points y and966

z of Res(x).967

Proof. This follows by local connectivity and Axiom (F1). �968

Lemma 5.9. For two points y and z of Res(x), we have d(y, z) ≥ 3 if, and only if, x = yonz.969

Lemma 5.10. For ξ = (P(ξ), L (ξ)) ∈ Ξx, one has that ξ is a generalized quadrangle, with dim(P(ξ)) =970

3. For a point y of ξ, the subspace Tx
y (ξ) is a plane.971

Lemma 5.11. Every pair of points of Res(x) at distance at most two (in Res(x)) is contained in a972

common symp of Res(x), which is not necessarily unique.973

Proof. Let y, z with d(y, z) ≤ 2. Then Tx
y ∩ Tx

z contains some point p, implying that both x and974

p are contained in Ty ∩ Tz. There is hence a symp in Ξ that contains xy and xz by Axiom (F1)975

which yields a member of Ξx containing y and z. �976

While it follows from Lemma 5.11 that every two collinear points y and z of Res(x) are con-977

tained in a symp ξ ∈ Ξx, it is a priori not clear whether y and z are collinear in ξ.978

Lemma 5.12. For every point y of Res(x), we have 〈Tx
y (ξ) | ξ ∈ Ξx, y ∈ ξ〉 ⊆ Tx ∩ Ty ∩ Cx = Tx

y .979

Definition 5.13. A point y of Res(x) is called a polar point when there is some point z of Res(x)980

for which x = yonz.981

Lemma 5.14. Suppose that y is a polar point of Res(x). Then dim(Tx
y ) = 3 and moreover 〈Tx

y (ξ) | ξ ∈982

Ξx, y ∈ ξ〉 = Tx
y .983

Proof. Using Lemma 5.11, we find a symp ξ ∈ Ξx that contains y. Since Tx
y (ξ) ⊆ Tx

y , we find984

dim(Tx
y ) ≥ dim(Tx

y (ξ)) = 2. Suppose for a contradiction that dim(Tx
y ) = 2. Since y is a polar985

point, Lemma 5.9 implies that there is some point z with d(z, y) ≥ 3. Without loss of generality,986

we may assume that d(y, z) = 3. Let w be a point collinear to y for which d(w, z) = 2. By987
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Lemma 5.11, there exists a symp ξ ′ ∈ Ξx that contains w and z. Let w1 and w2 be two distinct988

points of ξ ′ collinear (in ξ ′) to w and z. For i = 1, 2, we have d(y, wi) ≤ 2, so, again by989

Lemma 5.11, there is a symp ξi ∈ Ξx through y and wi. Note that Tx
y (ξi) is 2-dimensional, and990

hence coincides with Tx
y . In particular, this implies that w ∈ Tx

y ⊆ ξi, and hence that wwi ⊆ ξi.991

We claim that for every point p of Tx
y \ yw, the point p is collinear to a (hyperbolic) line of992

Tx
w(ξ

′). Let p be such a point. In ξi, the point p is collinear to some point w′i of wwi. Since993

(P(ξi), L (ξi)) is a generalized quadrangle, w′i 6= w. By Lemma 5.2, the point p is indeed994

collinear to the (hyperbolic) line hp = X ∩ w1w2.995

Let p be a point of Tx
y \ yw as in the previous paragraph, and let p′ be a point on py \ {p, y}. By996

the foregoing, both p and p′ are collinear to a hyperbolic line hp and hp′ , respectively, of Tx
w(ξ

′).997

Since Tx
w(ξ

′) is a plane, there is a point q ∈ 〈hp〉 ∩ 〈hp′〉.998

If q ∈ X then q is collinear to p and p′, so, by Lemma 5.2, also to y. Note that y is collinear to999

both q and w, so after again applying Lemma 5.2, we obtain wq ⊆ Ty. The line wq however1000

intersects w1w2 ⊆ Tz in a point, so this implies that Ty ∩ Tz 6= ∅, a contradiction.1001

If q /∈ X, then ξ ′ is not symplectic, and is, by Lemma 5.4, convexly closed. Both p and p′ are1002

collinear to two noncollinear points of ξ ′, which implies that y ∈ pp′ ⊂ ξ ′, a contradiction1003

to d(y, z) = 3. We conclude that dim(Tx
y ) ≥ 3. The same arguments applied to z, yield1004

dim(Tx
z ) ≥ 3. The assertion then follows from the fact that Tx

y ∩ Tx
z = ∅. �1005

Corollary 5.15. If y is a point of Res(x) with dim(Tx
y ) = 3, and ξ1, ξ2 are two symps of Res(x) that1006

contain y, then there is a line through y all of whose points belong to Res(X) that is contained in both1007

L (ξ1) and L (ξ2). This holds in particular when y is a polar point. �1008

Lemma 5.16. In Res(x), the points at distance at most 2 from a given point form a subspace.1009

Proof. Let y be a point of Res(x). If d(y, z) ≤ 2 for all points z of Res(x), there is nothing to1010

prove. Suppose therefore that there is a point z of Res(x) with d(y, z) = 3. Note that both y1011

and z are polar points. Suppose for a contradiction that we find a line L through z in Res(x)1012

that contains two points z1 and z2 with d(y, z1) = d(y, z2) = 2. Using Lemma 5.11, we find1013

symps ξ1 and ξ2 (which are distinct as z does not belong to either) of Ξx that contain y, z1 and1014

y, z2, respectively. By Corollary 5.15, there is a line K through y contained in both ξ1 and ξ2.1015

For i = 1, 2, denote with wi the point on K collinear with zi in ξi. The symps ξ1 and ξ2 are1016

symplectic because otherwise they coincide with the symp through w1 and z2, and with the1017

one through w2 and z1, and then it also contains z, a contradiction.1018

Then w1z2 and w2z1 are hyperbolic lines in ξ2 and ξ1, respectively. Since z1 is collinear to both1019

z2 and w1, we conclude by Lemma 5.2 that z1 is collinear to every point of w1z2. Likewise,1020

z2 is collinear to every point of w2z1, w1 is collinear to each point of w2z1 and w2 is collinear1021

to each point of w1z2. Another application of Lemma 5.2 shows now that each point of w1z21022

is collinear to each point of w2z1. Hence every point on the line yz is on a singular line of X,1023

contradicting the fact that the plane 〈x, y, z〉 intersects X in xy ∪ xz. This final contradiction1024

proves the assertion. �1025

This has the following immediate consequence.1026

Corollary 5.17. Let ξ be a symp in Res(x), and let y be a point collinear with some point z of ξ but at1027

distance 3 from another point of ξ, then z is the gate of ξ for y, and every point of ξ noncollinear to z in1028

ξ is at distance 3 from y. �1029
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Lemma 5.18. Let ξ be a symp of Res(x), and let y be a point of Res(x), and assume that the point z of1030

Res(x) is the gate of ξ for y. If z′ is a point of ξ with dim(Tx
z′) = 3 and d(y, z′) = 2, then every symp1031

through y and z′ contains z.1032

Proof. Let ξ ′ be any symp of Res(x) through y and z′. Using Corollary 5.15 we see that ξ ∩ ξ ′1033

contains a line M 3 z′. The point y is collinear to a point of M (inside ξ ′), but z is the unique1034

point of ξ collinear to y, which implies that z ∈ M ⊆ ξ ′. �1035

Lemma 5.19. Let ξ be a symp of Res(x), and let y be a point of Res(x). Assume that y is collinear1036

to some point of ξ, and is at distance 3 from some other point of ξ. If there is some point z′ of ξ with1037

d(y, z′) = 2 and dim(Tx
z′) = 3, then every point of ξ is polar.1038

Proof. Let z be a point of ξ collinear to y. By Corollary 5.17, the point z is the gate in ξ for1039

y. Let y′ be a point of ξ. If y′ is noncollinear to z in ξ, then, again by Corollary 5.17, we find1040

d(y, y′) = 3, which implies that y′ is polar. Suppose that y′ is collinear to z, but is not on the1041

line zz′. Let ξ ′ be a symp through y and z′. By Lemma 5.18, this symp contains the line zz′.1042

Let w′ be a point of ξ ′ not collinear to z or z′, and let w be a point of ξ collinear to z′ but not1043

to z. Note that d(y, w) = 3, so by Corollary 5.17, the point w is at distance three from every1044

point in ξ ′ noncollinear to z′, and in particular to w′. Applying Corollary 5.17 to w′ and ξ we1045

obtain δ(w′, y′) = 3, which implies that y′ is polar, and in particular, that dim(Tx
y ) = 3. By1046

switching the roles of z′ and y′, we also find that every point of zz′ \ {z} is polar. The point w′1047

can however play the same role as y, so we also find that z is polar. �1048

We will usually apply this lemma in the following, weaker, form:1049

Corollary 5.20. Let y be a polar point of Res(x) which is collinear to a unique point of the symp ξ,1050

which contains a point at distance 3 from y. Then all points of ξ are polar as soon as some point of ξ at1051

distance 2 from y is polar.1052

Lemma 5.21. Let ξ be a symp in Res(x). If there is some point y in ξ for which P(ξ) ⊆ Tx
y , then1053

P(ξ) ⊆ Tx
z for all points z of ξ.1054

Proof. Let w be any point of ξ noncollinear to y in ξ. Then wy is a line of X which is not a line1055

of ξ, implying that P(ξ) ⊆ Tx
w. Let v then be an arbitrary point of ξ. For every point w of ξ1056

noncollinear to z in ξ, we find wv ⊆ Tx
v . In particular, this implies that P(ξ) ⊆ Tx

v . �1057

Lemma 5.22. Let ξ be a symp of Res(x) containing a polar point y. Then Tx
y ∩P(ξ) = Tx

y (ξ).1058

Proof. Suppose for a contradiction that there is some point z of ξ for which P(ξ) ⊆ Tx
z . By1059

Lemma 5.21, this is the case for all points z of ξ. Since Res(x) contains a polar point, it has1060

diameter at least three by Definition 5.13 and so we find some point w not contained in ξ.1061

Without loss of generality, we may assume that w is collinear to some point v of ξ. Note that1062

P(ξ) ⊆ Tx
v implies that v is collinear to y, and hence that d(w, y) = 2. We can hence consider1063

a symp ξ ′ containing w and y. Since dim(Tx
y ) = 3 and since Tx

y contains P(ξ), we obtain1064

Tx
y = P(ξ), and hence Tx

y (ξ
′) ⊆ P(ξ). By Lemma 5.16, there is at least one other polar point1065

y′ in Tx
y (ξ), hence for which dim(Tx

y′) = 3, and hence for which Tx
y′(ξ

′) ⊆ P(ξ). We however1066

have that P(ξ ′) = 〈Tx
y (ξ
′), Tx

y′(ξ
′)〉 = P(ξ), which implies that w ∈ ξ, a contradiction. �1067

Lemma 5.23. Let y be a polar point of Res(x), and let y′ ⊥ y. If y′ is not a polar point, then there1068

exists a singular plane containing the line yy′.1069
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Proof. Since y is polar, there exists a point z with d(y, z) = 3. If y′ is not polar, then d(y′, z) = 2.1070

Let ξ be a symp containing z and y′, and let w be a point in ξ collinear to both z and y′. Since1071

d(w, y) = 2, there is some symp ξ ′ containing w and y.1072

We claim that ξ ′ does not contain y′. Suppose for a contradiction that this would be the case,1073

and take v in ξ ′ collinear to neither w nor y. Since w is the gate of ξ ′ for z, we find d(v, z) = 3.1074

Note that v is collinear to a point v′ of wy′, different from y′ which is the gate of ξ for v. All1075

points of ξ noncollinear to v′ are hence polar. In particular there exists a polar point z′ collinear1076

to y′ not on y′v′. Corollary 5.20 (applied to v, ξ and z′) implies that all points of ξ are polar,1077

a contradiction to the assumption that y′ is not polar. We conclude that ξ ′ indeed does not1078

contain y′.1079

Let v be a point of wy′ different from w and y′. Since d(y, v) = 2, there exists a symp ξ ′′ through1080

y and v. Note that ξ ′′ ∩ wy′ = {v}, for if wy′ ⊂ ξ ′′, then the symp ξ ′′ would contain both y, y′1081

and w, which by the argument above, cannot be the case. The symps ξ ′ and ξ ′′ both contain y,1082

so, since y is polar, there is a line L through y which is both a line of ξ ′ and of ξ ′′.1083

Denote with w′ and v′ the points on L collinear to w and v respectively. We claim that w′ = v′.1084

Suppose for a contradiction that w′ 6= v′. Then, since w is the gate of ξ ′ for z, the point v′ is1085

polar. Let u be a point of ξ \ wy′ collinear to v. Since d(u, y) = 3, the point v is the gate of1086

ξ ′′ for u. Corollary 5.20 implies that all points of ξ ′′, in particular v, are polar, and applying1087

Corollary 5.20 once more implies that all points of ξ, including y′, are polar, a contradiction.1088

Hence w′ = v′, thus w′ is collinear to both w and v of wy′, and hence, by Lemma 5.2, also to y′.1089

The lines yy′, yw′ and y′w′ are three pairwise concurrent lines not containing a common point.1090

The assertion then follows from Lemma 5.3. �1091

Lemma 5.24. A polar point is contained in at most one singular plane.1092

Proof. Let y be a polar point. Suppose for a contradiction that y is contained in two singular1093

planes π1 and π2. Since dim(Tx
y ) = 3, π1 and π2 intersect in a line L. By Lemma 5.16, we1094

can find a polar point z on L different from y. Since Tx
z contains both π1 and π2, and since1095

dim(Tx
z ) = 3 we obtain Tx

y = Tx
z . Let ξ be a symp that contains both y and z. By Lemma 5.221096

the subspace Tx
y ∩P(ξ), which equals Tx

z ∩P(ξ), is a plane π. But then π = Tx
y (ξ) = Tx

z (ξ), a1097

contradiction. �1098

Lemma 5.25. If Res(x) contains at least one polar point, that is, if x is a bowtie, then every point of1099

Res(x) is polar.1100

Proof. By assumption, we find points z and y with d(z, y) ≥ 3, hence y and z are polar. By1101

connectivity of Res(x), it suffices to prove that every point collinear to y is polar. Suppose for a1102

contradiction that y′ ⊥ y is not polar. By Lemma 5.23, there is a singular plane π in Tx
y through1103

yy′, and by Lemmas 5.23 and 5.24, all points of Tx
y not on π are polar. Since y′ is not polar, we1104

have d(z, y′) = 2. Let ξ be a symp containing z and y′, and let w be a point of ξ collinear to1105

both z and y′. Since d(w, y) ≤ 2, there exists a symp ξ ′ containing w and y. We claim that this1106

symp ξ ′ intersects Tx
y in a plane distinct from π.1107

Indeed, if not, then by Lemma 5.22, we have Tx
y (ξ
′) = π. Hence Tx

u (ξ
′) 6= π for each point u ∈1108

yy′ \ {y, y′} (use Lemma 5.16 and Lemma 5.22), and so Tx
u = 〈Tx

u (ξ
′), π〉 = P(ξ ′), contradicting1109

Lemma 5.22. The claim follows.1110

Now the point w is the gate of ξ ′ for z, and every point of Tx
y (ξ
′) not in π is polar. By1111

Lemma 5.19 all points of ξ ′, and in particular w, are polar. Applying Lemma 5.19 again to1112

ξ, we find that all points of ξ are polar, and in particular that y′ is polar after all. �1113
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Corollary 5.26. If x is a bowtie, then Res(x) is an abstract dual polar variety, and as such (X, L ) ∼=1114

B3,3(K, A), for some field K over which A is an associative quadratic division algebra.1115

Proof. Since for each point y of Res(x), the tangent space Tx
y is 3-dimensional, all axioms of a1116

dual polar variety are satisfied. The last assertion then follows from Theorem C. �1117

In particular, we will be using the following properties of dual polar spaces of rank 3:1118

Corollary 5.27. Suppose that x ∈ X is a bowtie.1119

(1) Every point collinear to x is collinear to a line of every symp through x.1120

(2) Every two symps through x that intersect in a line, intersect in a plane.1121

(3) Every point collinear to x is symplectic to at least one point of each line collinear to x′ but not1122

containing x′.1123

We end this subsection with a sufficient condition for the point x to be a bowtie.1124

Lemma 5.28. Suppose that Res(x) contains symps ξ1 and ξ2 for which P(ξ1) 6= P(ξ2) and every1125

point y of ξ1 ∪ ξ2 satisfies dim(Tx
y ) ≤ 3. Then x is a bowtie.1126

Proof. Suppose for a contradiction that x is not a bowtie. Then, by definition, the diameter of1127

Res(x) is equal to 2.1128

First assume that P(ξ1) ∩P(ξ2) = ∅. Select a point x1 ∈ ξ1 and x2 ∈ ξ2. Since the diameter is1129

2, there is a symp ζ of Res(x) containing x1 and x2. By the assumption on the tangent spaces,1130

ζ and ξi have at least one line Li through xi in common, i = 1, 2. We may rename x2 on L2 so1131

that x1 ⊥ x2. Now pick x′2 in ξ2 not collinear to x2 in ξ2. The symp pjζ ′ through x1 and x′2 also1132

has a line L′2 through x′2 in common with ξ2 and since x2 /∈ L′2, this yields a second point of ξ21133

collinear to x1, implying that Tx
x1

is at least 4-dimensional (as it intersects ξ1 in at least a plane1134

and ξ2 in at least a (disjoint) line). This contradiction shows that we may assume that there1135

exists some point z ∈ ξ1 ∩ ξ2. Since dim(Tx
z ) ≤ 3, we find that Tz(ξ1) ∩ Tz(ξ2) contains at least1136

a line, implying that ξ1 ∩ ξ2 is at least a line, and hence that dim(〈ξ1, ξ2〉) ≤ 5.1137

We claim that all points of Res(x) are contained in V := 〈P(ξ1), P(ξ2)〉. Suppose first that1138

P(ξ1) ∩ P(ξ2) is a plane π. Let pi be the point of π such that Tx
pi
(ξi) = π. If p1 6= p2, then1139

Tx
p1
∩P(ξ1) = π as there are points of ξ2 not in P(ξ1) collinear to p1. On the other hand, the1140

same argument shows that Tx
p2
= P(ξ1). This contradicts Lemma 5.21.1141

Consequently p1 = p2 =: p. Let y be any point of Res(x) \π and let ζ be a symp through p and1142

y (which exists as the diameter of Res(x) is equal to 2). Then Tx
p (ζ) intersects π = Tx

p (ξ1) =1143

Tx
p (ξ2) in at least a line M. Take an arbitrary point u ∈ M \ {p}. Then by assumption dim Tx

u ≤1144

3, hence Tx
u = 〈Tx

u (ξ1), Tx
u (ξ2)〉 ⊆ V. This implies Tx

u (ζ) ⊆ V. Hence, if u′ ∈ M \ {p, u}, then1145

y ∈ P(ζ) = 〈Tx
u (ζ), Tx

u′(ζ)〉 ⊆ V and the claim follows. Note that, with the previous notation,1146

Tx
u 6= Tx

u′ , as otherwise both equal P(ξ1) and P(ξ2). Hence for at least one of both, say u, holds1147

Tx
u 6= P(ζ). Then Lemma 5.21 implies that Tx

y does not contain P(ζ) and so, since dim V = 4,1148

we conclude dim Tx
y ≤ 3.1149

Now assume that P(ξ1) ∩ P(ξ2) is a line L. Note that, for each point y ∈ L, the assumption1150

dim Tx
y ≤ 3 implies that Tx

y (ξ1) ∩ Tx
y (ξ2) ⊆ P(ξ1) ∩P(ξ2) = L. This implies that L ∈ L (ξ1) ∩1151

L (ξ2).1152

(i) For each point y on L, the tangent space Tx
y contains points of ξ2, hence Tx

y is not con-1153

tained in P(ξ1). By Lemma 5.21, this implies, for each z ∈ ξ1, that Tx
z ∩P(ξ1) = Tx

z (ξ1).1154

Similarly for the points of ξ2.1155

29



(ii) Let z1 ∈ ξ1 \ L and pick z2 ∈ ξ2 such that z2 is not collinear to z⊥1 ∩ L. As the diameter of1156

Res(x) is equal to 2, there is a symp ξ that contains both z1 and z2. This symp intersects ξ21157

in a line L2 (remember by assumption dim Tx
z2
≤ 3). The point z1 is collinear with a point1158

w of this line, and by construction w 6∈ ξ1. This implies that Tx
z1
= 〈w, Tx

z1
(ξ1)〉 ⊆ V. Since1159

z1 was arbitrary, we see that every point of Res(x) collinear to some point of ξ1 belongs1160

to V.1161

(iii) Let z be any point, and by (ii) we may suppose it is not collinear to any point of ξ1.1162

Since the diameter of Res(x) is 2, it is contained in a symp ζ together with some arbitrary1163

chosen point z1 ∈ ξ1. Then ζ intersects ξ1 in a line (as Tx
z1

has dimension 3), so, looking1164

inside ζ, the point z is collinear to some point of ξ1, a contradiction. Hence z is contained1165

in V, and the claim is proved1166

Now, still assuming that P(ξ1) ∩ P(ξ2) = L, suppose for a contradiction that there exists a1167

point y with dim Tx
y ≥ 4. Then, by dimension, y is collinear to all points of a plane π of1168

ξ1. Let p be the point of π for which Tx
p (ξ1) = π. Note that Tx

p = 〈π, y〉 ⊆ Tx
y . Let ζ be a1169

symplecton that contains both p and y. Since dim Tx
p ≤ 3, the symplecton ζ shares a singular1170

line K ⊆ Tx
p (ξ1) ∩ Tx

p (ζ) through p with ξ1. Then Tx
y contains K. But since K clearly does not1171

belong to Tx
y (ζ), we deduce P(ζ) ⊆ Tx

y . Hence, using Lemma 5.21, we find that all points of ζ1172

have ζ in their tangent space. But then for each point z of K we have Tx
z = P(ζ), which would1173

imply that Tx
z (ξ1) is independent of z ∈ K, a contradiction.1174

This now implies that in this case no pair of symps intersects in a plane, as these symps satisfy1175

the assumptions of the lemma and hence the first part of the proof would imply dim V = 4.1176

Hence, if ξ1 and ξ2 intersect in a line, then the intersection of any pair of symps is a line, and the1177

same argument that showed that L is singular shows that the intersecting line of two symps is1178

always a singular line. We conclude that Res(x) defines a convexly closed geometry, hence a1179

parapolar space. By Main Result 1.1 of [14], Res(x) has nonthick symps, a contradiction since1180

we have thick hyperbolic lines in each symp.1181

Hence we may assume that P(ξ1) ∩ P(ξ2) is a plane π, and dim V = 4. If for each point1182

u ∈ (P(ξ1)∪P(ξ2)) \π the dimension of Tx
u is exactly equal to 2, then the symp through points1183

u1 ∈ P(ξ1) \ π and u2 ∈ P(ξ2) \ π with Tx
u1
∩ π 6= Tx

u2
∩ π would generate V, a contradiction.1184

Hence there exists a point u in ξ1 not in π with dim Tx
u = 3. Pick a line L1 ∈ L (ξ1) through1185

u and a disjoint line L2 ∈ L (ξ1) contained in π. Then we find distinct points yi, zi ∈ Li,1186

i = 1, 2 such that the tangent spaces at yi and zi are 3-dimensional (and distinct). Since V is1187

4-dimensional, the intersection Tx
yi
∩ Tx

zi
is a plane αi, which, by Lemma 5.3, is a singular plane1188

intersecting P(ξ1) in Li, for i = 1, 2. It follows that α1 ∩ α2 is a point u. Since α1 ∪ α2 generates1189

V, we deduce Tx
u = V, contradicting the conclusion of the third paragraph of this proof.1190

This final contradiction shows the assertion. �1191

5.4 All points of X are bowties1192

A 3-path is a tuple (x, y, z, w) such that x ⊥ y ⊥ z ⊥ w and δ(x, w) = 3.1193

Lemma 5.29. For points x, y ∈ X, we have Tx ∩ Ty = ∅ ⇐⇒ δ(x, y) ≥ 3. Moreover, there exist1194

points x1, x2 ∈ X with Tx1 ∩ Tx2 = ∅ and δ(x1, x2) = 3.1195

Proof. The first claim is immediate. By (F1′), there exist points x, y with Tx ∩ Ty = ∅, and hence1196

δ(x, y) ≥ 3, in particular, there are two points x1, x2 with δ(x1, x2) = 3. �1197
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5.4.1 When there is a bowtie on a 3-path1198

Lemma 5.30. Let x1 and x2 be points in X with δ(x1, x2) = 3, and let (x1, x, x′, x2) be a 3-path. If x1199

is a bowtie, then no symp contains both x and x2. In particular, x′ is a bowtie. Moreover, x = x1onx′1200

and x′ = xonx1.1201

Proof. Suppose that x and x2 are contained in a symp ξ. The point x is a bowtie, so by Corol-1202

lary 5.27, the point x1 is collinear to a line L of ξ. The point x2 is contained in ξ, and is hence1203

collinear to a point of L, a contradiction to δ(x1, x2) = 3. We find that x and x2 are special and1204

hence xonx2 = x′, thus x′ is a bowtie. Reversing the roles of x1 and x2 yields x = x1onx′. �1205

For collinear points x, y, we denote, abusing notation, by Tx
y the tangent space in Res(x) at the1206

point Cx ∩ xy.1207

Lemma 5.31. If the points x and y of X are collinear, then 〈x, Tx
y 〉 = 〈y, Ty

x 〉 ⊆ Tx ∩ Ty. In particular,1208

Tx
y and Ty

x have the same dimension.1209

Proof. It is clear that 〈x, Tx
y 〉 ⊆ Tx ∩ Ty. By definition, the subspace 〈y, Ty

x 〉 is the subspace1210

spanned by all planes of X through x and y, and hence coincides with 〈x, Tx
y 〉. �1211

Lemma 5.32. Let x1 and x2 be points in X with δ(x1, x2) = 3, and let (x1, x, x′, x2) be a 3-path. Then1212

Tx1
x and Tx

x1
have dimension at most 3.1213

Proof. First suppose that x is a bowtie. Then it follows from Lemma 5.14 and Lemma 5.25 that1214

Tx
x1

has dimension 3, in which case the claim follows from Lemma 5.31. Suppose that x is not a1215

bowtie. By Lemma 5.30, the point x′ is not a bowtie either. So, in particular, we find a symp ξ1216

containing xx′ and x′x2. Note that Tx(ξ) ∩ Tx2(ξ) has dimension 3 and is by (F1) contained in1217

Tx ∩ Tx2 . By assumption, we have that Tx1 ∩ Tx2 = ∅, so the fact that Tx has dimension at most1218

8 implies that Tx ∩ Tx1 has dimension at most 4. The claim now follows as Tx1
x and Tx

x1
have1219

dimension at most dim(Tx ∩ Tx1)− 1. �1220

Lemma 5.33. Let (x1, x, x′, x2) be a 3-path with x and x′ bowties. Then x1 and x2 are also bowties.1221

Proof. Without loss of generality we prove this for x1 and we may assume, for a contradiction,1222

that x1 is not a bowtie. Let L be an arbitrary line through x1 distinct from xx1 and let ξ be1223

a symplecton containing L and xx1 (which exists by Axiom (F1)). Since x is a bowtie, x′ is1224

collinear to a line M of ξ through x.1225

If there exists a point z on M which is not a bowtie, then let p be any point on L collinear in1226

ξ to z (possibly p = x1). Let ξ ′ be a symp containing p and x′ (which exists since we assume1227

that z is not a bowtie). Since x′ is a bowtie, x2 is collinear to a line N in ξ ′. Let p′ be a point in1228

ξ ′ on N collinear to p. Then we have found a 3-path (x2, p′, p, x1), which reduces to a 2-path if1229

p = x1. Hence p 6= x1 and the 3-path contains a point p on L distinct from x1.1230

Assume now that all points on M are bowties. Since x′ is a bowtie, Corollary 5.27(3) yields1231

a symp ξ ′′ containing x2 and a point z on M, which is a bowtie. Hence, by Corollary 5.27(1),1232

a point p on L collinear in ξ to z is itself collinear to a line K of ξ ′′ through z. Then, inside1233

ξ ′′, we find a point u ∈ K collinear to x2. Hence we again obtain a 3-path (x1, p, u, x2), which1234

again cannot reduce and contains a point p of L different from x1. Then Lemma 5.32 yields1235

dim Tx1
p ≤ 3.1236

Since L was an arbitrary line through x1, x1 is a bowtie after all by Lemma 5.28. �1237
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A bowtie path is a sequence (x1, x, x′, x2) of bowtie points of X such that x = x1onx′ and x′ =1238

x2onx. An example is a 3-path of bowtie points. In Lemma 5.37 we will show the converse.1239

Lemma 5.34. Let (x1, x, x′, x2) be a bowtie path and let y, y′ ∈ X be such that x1 ⊥ y ⊥ y′ ⊥ x2,1240

y ⊥ x and y′ ⊥ x′. If x, x′, y, y′ are contained in a common symp ζ, then both y and y′ are bowties,1241

y = x1ony′ and y′ = x2ony.1242

Proof. Suppose for a contradiction that y is not a bowtie. By Lemma 5.30, y′ is not a bowtie1243

either. By definition and Axiom (F1), there exists a symp ξ through y, y′ and x1. We claim that1244

ξ does not contain x. Indeed, suppose for a contradiction that ξ contains x. Since x is a bowtie,1245

x′ would be collinear to a line L of ξ through x. Hence y′ is collinear to a point p on L, and x1 is1246

collinear to a point p′ on y′p. Since x′ = x2onx, we see that x is not collinear to y′. Hence p′ 6= x.1247

But then x′ ⊥ p′ ⊥ x1 ⊥ x ⊥ x′, implying that x1 and x′ are symplectic, which contradicts1248

x = x1onx′. Hence x /∈ ξ.1249

Let w in ξ be collinear to x1 and y′ but not to y. Since x1 is a bowtie, the fact that x /∈ ξ together1250

with Corollary 5.26 imply that x1 = wonx. Since x = x1onx′, the point w is not collinear to x′.1251

Now assume first that y′ is not a bowtie either. By definition, there exists a symp ξ ′ through wy′1252

and y′x′. The intersection ξ ′ ∩ ζ contains x′y′, and, since x′ is a bowtie, it contains a singular1253

plane π through x′y′ (the intersection of two symps in a dual rank 3 polar space is either empty1254

or a line). Both w and x are collinear with a line of π, so we find a point p of π collinear to both1255

w and x. By construction however, we had x1 = wonx, but it is clear that x1 is not contained in1256

ζ, and hence also not in π, a contradiction. Hence y is a bowtie.1257

Now assume y′ is a bowtie. Then there is a line K through y′ collinear to x′ and note that by1258

the above x /∈ K. In ξ, x1 is collinear to a point z of K and so we have x′ ⊥ z ⊥ x1 ⊥ x ⊥ x′,1259

again a contradiction.1260

The equalities y = x1ony′ and y′ = x2ony are also clear from the arguments above. The assertion1261

is proved. �1262

Lemma 5.35. Let x1 and x2 be points in X with δ(x1, x2) = 3. If (x1, x, x′, x2) is a 3-path with x1263

a bowtie, then for every plane π through xx1, there is a unique line M ∈ π that is contained in a1264

symp ξ with x′; this line M contains x. Every point of M is a bowtie, and is special to x2. The set1265

{yonx2 | y ∈ M} is a line through x′, which is contained in ξ.1266

Proof. The existence and uniqueness of M follows from the fact that x = x1onx′ and the prop-1267

erty of dual rank 3 polar spaces that the set of points symplectic to a given point is a hy-1268

perplane. By Lemma 5.30, the point x′ is also a bowtie, implying that x2 is collinear with a1269

line L of ξ. Every point y of M is collinear with some point y′ of L, and the correspondence1270

M → L : y 7→ y′ is a bijection as otherwise either x or x′ is collinear to L or M, respectively,1271

contradicting one of x = x1onx′ or x′ = x2onx. By Lemma 5.34, the points y and y′ are bowties,1272

y = x1ony′, and y′ = x1ony. This proves the assertions. �1273

Lemma 5.36. Let x1 and x2 be points in X with δ(x1, x2) = 3. Suppose that (x1, x, x′, x2) is a 3-1274

path with x a bowtie. Every line L through x1 contains a unique point at distance 2 from x2, which is1275

moreover a bowtie.1276

Proof. Since Res(x1) is connected, it suffices to prove this for lines L through x1 different from1277

x1x which are contained in a plane π1 together with x. Lemma 5.35 yields a bowtie y ∈ L1278

at distance 2 from x2. It remains to show uniqueness of y as point of L at distance 2 from x2.1279
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Therefore, suppose for a contradiction that there is some point z on L different from y for which1280

δ(z, x2) = 2. In particular, there exists some point w collinear to both z and x2.1281

As in Lemma 5.35, let ξ be a symp through xx′ that intersects π1 in the line xy. Denote with1282

π2 the plane that contains x2 and a line of ξ. The point y′ := yon x2 is contained in ξ ∩ π21283

and is a bowtie by Lemma 5.35. Note that w is not contained in x′y′ as this would imply by1284

Lemma 5.30 that z = wonx1, contradicting the fact that w is also collinear to some point of xy,1285

see Lemma 5.35.1286

We first prove that w is collinear to a line of π2. Suppose that this is not the case. By Lemma 5.33,1287

the point x2 is a bowtie, implying that there is some symp ξ2 through wx2 that intersects π2 in1288

a line. Let w′2 be the unique point of x′y′ contained in ξ2. If w is a bowtie, the point z is collinear1289

to some line Lz through w in ξ2. If w is not a bowtie, then there is a symp ξ ′ containing w, z1290

and x2. Since x2 is a bowtie, the symps ξ ′ and ξ2, intersect in at least a plane (since their in-1291

tersection contains the line x2w), so we also find a line Lz through w collinear with z (inside1292

that plane). The point w′2 is collinear with some point pz of Lz. We claim that pz /∈ xy. Indeed,1293

otherwise Lemma 5.35 implies that pz is bowtie, and by Lemma 5.30, w = x2onpz, contradicting1294

x2 ⊥ p′z ⊥ pz, with p′z ∈ x′y′ and the fact that w 6= p′z since w /∈ x′y′. The claim follows. Hence1295

the unique point w2 of xy collinear to w′2 differs from pz and so we find a symp ξ∗ through1296

w2, w′2 and z. However, the point w′2 is then contained in symps together with xy and also1297

together with w2z. Considering Res(w2), Lemma 5.16 implies that there is a symp containing1298

w2, w′2 and x1, contradicting the fact that w2 is bowtie and w2 = w′2onx1.1299

We hence find that w is collinear to a line of π2, which intersects x′y′ in some point q′2. Re-1300

placing w′2 with q′2 and w2 with w in the arguments of the previous paragraph yields a symp1301

containing q′2 and x1, again a contradiction as above. This proves the nonexisteince of z 6= y1302

and the proof of the lemma is complete. �1303

Lemma 5.37. Let (x1, x2, x3, x4) be a bowtie path. Then it is a 3-path, so δ(x1, x4) = 3.1304

Proof. Suppose for a contradiction that δ(x1, x4) ≤ 2. Then δ(x1, x4) = 2 as x1 ⊥ x4 implies1305

{x4, x2} ⊆ Tx1 ∩ Tx3 , contradicting our assumptions. Now suppose that there is a symp ξ1306

containing x1 and x4. Note that x2 /∈ ξ. As x1 is bowtie, there is a line L1 through x1 in ξ1307

coplanar with x2. On L1 we find a point x′3 collinear to x4. Then x′3 6= x3 and {x3, x′3} ⊆1308

Tx2 ∩ Tx4 , a contradiction.1309

Hence we may assume that Tx1 ∩ Tx4 = {x}, x ∈ X, and note that x is a bowtie. Let ξ23 be1310

any symp through x2x3. Looking in Res(x2), we see that there exists a line L2 in ξ23 through x21311

collinear with x1. Similarly, there exists a line L3 in ξ23 through x3 collinear with x4. As in the1312

proof of Lemma 5.35, the correspondence L2 → L3 : y2 7→ y3 ⊥ y2 is bijective. By Lemma 5.34,1313

all points on L2 and L3 are bowties. Since x1 is a bowtie, there is a symp ξ containing x1, x and1314

some point y2 ∈ L2. Since x is a bowtie, x4 /∈ ξ and there is a line L in ξ through x collinear1315

to x4. Since x2 is a bowtie, x3 /∈ ξ and hence the unique point x′3 of ξ on L collinear to x2 is1316

distinct from x3. Thus x2 ⊥ x3 ⊥ x4 ⊥ x′3 ⊥ x2, a contradiction to x3 = x2onx4. We conclude1317

that δ(x1, x4) = 3. �1318

Corollary 5.38. Let x1 and x2 be points in X with δ(x1, x2) = 3. Suppose that (x1, x, x′, x2) is a1319

3-path with x a bowtie, then every point of X is a bowtie.1320

Proof. Let y1 ∈ X be arbitrary. We show by induction on δ(y1, x1) that y1 is contained in a1321

3-path (y1, y, y′, y2) with y a bowtie. This then implies the assertion by Lemma 5.30.1322
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If δ(y1, x1) = 0, then this follows from our assumption. Now assume δ(y1, x1) ≥ 1. By1323

the induction hypothesis, we may in fact assume y1 ⊥ x1. Set L = x1y1. Then, according1324

to Lemma 5.36, there is a unique point y on L at distance 2 from x2, and it is a bowtie. If1325

y1 6= y, then δ(y, x2) = 3 and there is a 3-path containing y1, y, x2. The assertion follows from1326

Lemma 5.33. Hence we may assume that y1 = y.1327

Since x1 is a bowtie, Corollary 5.27 yields a line K through x1 such that for each point z ∈1328

K \ {x1} we have x1 = yonz. By Lemma 5.36, we may assume that z = x. Now (y, x1, x, x′) is a1329

bowtie path, and Lemma 5.37 implies that it is a 3-path, with x1 a bowtie. The corollary now1330

follows from the connectivity of X. �1331

5.4.2 When a point is at distance 3 from another point1332

Lemma 5.39. Let x1 and x2 be points in X with δ(x1, x2) = 3. Then both x1 and x2 are bowties.1333

Proof. Suppose for a contradiction that x1 is not a bowtie. We first show that x2 is a bowtie.1334

Since δ(x1, x2) = 3, there exists at least one 3-path (x1, x, x′, x2). By Corollary 5.38, the point1335

x is not a bowtie. In particular, there is a symp ξ containing x1, x and x′. Every point y in ξ1336

collinear to both x1 and x′ is contained in a 3-path connecting x1 and x′, which, by Lemma 5.32,1337

implies that dim Tx1
y ≤ 3.1338

Now, since x′ is not a bowtie (again by Corollary 5.38), there is some symp ξ ′ containing x, x′1339

and x2. Suppose, for a contradiction, that Tx(ξ ′) ⊆ P(ξ) (which is only possible if the symps1340

are symplectic). Since x1 /∈ ξ ′, the space Tx1(ξ) ∩ Tx(ξ ′) ∩ Tx2(ξ
′) is 2-dimensional and, since1341

the symps are symplectic (implying Tx(ξ ′) ⊆ X), we find a point z ∈ X collinear to both x1 and1342

x2, a contradiction to δ(x1, x2) = 3.1343

Hence there exists a point u collinear to both x and x2, and not contained in ξ. As x is not a1344

bowtie, we find a symp ζ containing x1, x and u, and clearly P(ξ) 6= P(ζ). Again, for each point1345

y ∈ ζ collinear to both u and x1 we have dim Tx1
y ≤ 3. If Tx1(ξ) 6= Tx1(ζ), then Lemma 5.281346

implies that x1 is a bowtie.1347

So suppose Tx1(ξ) = Tx1(ζ). Let y1 ∈ xx1 \ {x, x1}.1348

If δ(x2, y1) = 2, then x2 and y1 are not special (as otherwise every point is a bowtie by Corol-1349

lary 5.38) and so there is a symp ζ1 through x2 and y1. If Tx2(ζ1) = Tx2(ξ
′), then, by dimen-1350

sion, some point collinear to x2 is collinear to both x and y1, and so also to x1, contradicting1351

δ(x1, x2) = 3. The argument of the first paragraph applied to ξ ′ and ζ1 implies that x2 is a1352

bowtie. We refer to the arguments in this paragraph by (*).1353

So we may assume that δ(x2, y1) = 3. Since P(ξ) 6= P(ζ), we deduce that Ty1(ξ) 6= Ty1(ζ).1354

Hence, interchanging the roles of x1 and y1, we find that y1 is a bowtie. Now let y1 vary over1355

A := Tx1(ξ) \ Tx′(ξ). Let αi, i = 1, 2, be a singular plane of ξ through x1, with α1 6= α2 and pick1356

a point y1 ∈ α1 ∩ α2 ∩ A and a point u1 ∈ (A ∩ α1) \ α2. Let L 6= x1y1 be any line in α2 through1357

y1. Note that L contains a unique point a ∈ A. Since y1 is a bowtie, there is a plane β through L1358

with the property that each point of β \ L is special to u1. Let M be a line in β containing a and1359

not y1. then by the previous arguments, all points of M \ {a} are at distance 3 from x2, we can1360

let two of them play the roles of x1 and y1 and obtain a bowtie w1 ∈ M. Hence we have three1361

bowties u1 ⊥ y1 ⊥ w1 with y1 = u1onw1. Completely similar there exists a bowtie v1 ⊥ u1 with1362

u1 = y1onv1. Consequently we have a bowtie path (v1, u1, y1, w1). Lemma 5.37 implies that this1363

is a 3-path and Corollary 5.38 then implies that all points are bowties, a contradiction.1364
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Hence we have shown that x2 is a bowtie. Interchanging the roles of x1 and x2 in (*), we deduce1365

that the set of points at distance at most 2 from x1 is a subspace. Moreover, since x1 is not a1366

bowtie, every point at distance 3 from x1 is a bowtie, by our previous arguments. But then the1367

arguments in the previous paragraph can be copied to prove the existence of a bowtie path1368

starting with a plane of ξ ′ through x2. This shows that x1 is a bowtie after all.1369

The proof of the lemma is complete. �1370

Lemma 5.40. If X contains a point that is not a bowtie, then for all points x ∈ X, the points at distance1371

at most two from x form a subspace.1372

Proof. Let x be a point of X, and let L be a line containing two points y1 and y2 with δ(x, y1) =1373

δ(x, y2) = 2. Suppose for a contradiction that there is a point y on L with δ(x, y) = 3. By1374

Lemma 5.39, both x and y are bowties. For i = 1, 2, let y′i be arbitrary but such that x ⊥ y′i ⊥ yi.1375

By Corollary 5.38, the point y′i is not a bowtie, hence there exists a symp ξi containing x, y′i1376

and yi, i = 1, 2. We claim that y′1 and y′2 are not special. To that end, denote with ζi a symp1377

through L and yiy′i (the existence of ζi is ensured by Corollary 5.38, which implies that yi is not1378

a bowtie), i = 1, 2. The symps ζ1 and ζ2 intersect in the line L. The point y ∈ L however is a1379

bowtie, so they intersect in a plane, which contains a point p 6= x collinear to both y′1 and y′2.1380

This proves that Ty′1
∩ Ty′2

contains both x and p, and hence the claim follows.1381

The point x is a bowtie, so Res(x) is a dual rank 3 polar space. In this residue, ξ1 and ξ2 corre-1382

spond to two symps ξ ′1 and ξ ′2, respectively, such that, by the above claim and the randomness1383

of y′i in ξi collinear to x, i = 1, 2, every pair of points (u′1, u′2) of ξ ′1 × ξ ′2 is equal, collinear or1384

symplectic. This can only be the case when ξ ′1 and ξ ′2 intersect in line of Res(x), or, in other1385

words, when ξ1 and ξ2 share a singular plane α through x. But then there is a point q of α1386

collinear to both y1 and y2, and hence, by Lemma 5.2, to y ∈ L. This is a contradiction to the1387

fact that δ(x, y) = 3. �1388

Lemma 5.41. All points of X are bowties.1389

Proof. Suppose for a contradiction that not all points are bowties. Axiom (F1′) yields two points1390

x and y at distance 3. By Lemma 5.39, both x and y are bowties. Let (x, q, p, y) be a 3-path. By1391

Corollary 5.38 neither p nor q is a bowtie. This yields symps ξ and ζ containing x, q, p and1392

y, p, q, respectively. Let y′ be a point of ζ collinear to y and not collinear to either p or q. Then1393

y′ ⊥ p′, with p′ ∈ pq \ {p, q}. Next, let q′ be a point of ξ collinear to both p′ and x, but not to p.1394

The points at distance 2 from y form a subspace S by Lemma 5.40. Then S intersects ξ in a1395

subspace containing all points collinear to p in ξ, and not containing x. Hence S ∩ P(ξ) =1396

Tp(ξ). It follows that δ(y, q′) = 3 and hence q′ is a bowtie. Likewise, δ(x, y′) = 3. But then1397

(y′, p′, q′, x) is a 3-path with q′ a bowtie, implying by Corollary 5.38 that all points are bowties1398

after all. �1399

5.5 Identifying the geometry1400

Define the following incidence geometry G (X) with objects of type 1 up to 4. The objects of1401

type 1 are the symps of (X, Ξ), the ones of type 2 are the singular planes, the type 3 objects are1402

the singular lines, and, finally, the objects of type 4 are the points of X.1403

Incidence is containment made symmetric. We show that the diagram of this geometry is F4,1404

where we have chosen the types above so that they conform to the Bourbaki labeling [4].1405
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By Corollary 5.26 and Lemma 5.41, the residue at each point is isomorphic to B3,3(K, A), for1406

some field K over which A is a quadratic associative division algebra. Whence we know all1407

rank 2 residues of type {i, j}, with {i, j} ⊆ {1, 2, 3}. Also, in the same way, the residues of type1408

{2, 3, 4} of G (X) correspond to the geometry of the symps, which are polar spaces isomorphic1409

to C3,1(A, K). This establishes all rank 2 residues of type {i, j}, for all {i, j} ⊆ {2, 3, 4}. It1410

remains to check the residues of type {1, 4}. But these are trivially all generalized digons.1411

Now we want to apply Proposition 9 of Tits [31]. Hence we have to verify the following four1412

properties of X:1413

(LL) If two singular lines are both incident to two distinct points, they coincide. This is trivially true1414

since we are working in a projective space.1415

(LH) If a line and a symp are both incident to two distinct points, they are incident. This is also1416

trivially true by working in a projective space.1417

(HH) If two distinct symps are both incident to two distinct points, the latter are incident to a line.1418

This follows from the convexity that we proved.1419

(O) If two lines contain the same point set, they coincide. This follows from (LL)1420

It now follows that G (X) is a geometry isomorphic to F4,4(K, A), associated to the building1421

F4(K, A) and the proof of Theorem B is complete.1422

6 About admissible quotients1423

By definition, an admissible quotient of the universal embedding of F4,4(K, A) is an injective1424

projection from a subspace such that the Axioms (F1), (F1′), (F2) and (F3) hold. We show1425

with an example that these exist. We need some preparation, but our treatment will be rather1426

sketchy (motivated by the fact that this is not the essential part of our results).1427

We begin with defining a certain variety denoted F4,4(K), which is the universal embedding1428

of F4,4(K, K) in PG(25, K). This is done by intersecting another variety, denoted E6,1(K), in1429

PG(26, K) with a hyperplane. The latter variety is the universal embedding of the minuscule1430

geometry E6,1(K) related to the building E6(K). It is defined as follows (see [35],1431

which is based on [2] and to which we refer for undefined notions here; some ideas also stem1432

from [25]).1433

Let Γ = (X, L ) be the unique generalized quadrangle of order (2, 4). Let V be the 27-dimensional1434

vector space over K whose standard basis is labeled by the points of Γ, that is, the standard1435

basis of V can be written as {ep | p ∈ X}. Let S be a Hermitian spread of Γ. Each point p ∈ X1436

defines a unique quadratic form Qp : V → K given in coordinates by1437

Qp(v) = xq1 xq2 − ∑
{p,r1,r2}∈L \S

xr1 xr2 , (1)

where v = (xr)r∈X and {p, q1, q2} ∈ S . Now define the map φ : V → V : v 7→ (Qp(v))p∈X.
Then φ(φ(v)) = C(v)v, where

C(v) = ∑
{p,q,r}∈S

xpxqxr − ∑
{p,q,r}∈L \S

xpxqxr

is a cubic form and φ(v) = ∇C(v) (the gradient in the classical sense). Denoting the ordinary1438

dot or inner product of two vectors v and w by v.w, we have the identity1439

C(v + λw) = C(v) + λφ(v).w + λ2v.φ(w) + λ3C(w),
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for all v, w ∈ V and λ ∈ K. Note also that v.w = v∗(w) = w∗(v).1440

Following the terminology in [2], let us call a point 〈v〉, v ∈ V×, of PG(V)1441

(i) white if φ(v) =~o;1442

(ii) gray if C(v) = 0 and φ(v) 6=~o;1443

(iii) black if C(v) 6= 0.1444

The set of white points is the co-called exceptional variety E6,1(K).1445

Let V∗ be the dual vector space and let { fp | p ∈ X} be the corresponding dual basis. Every1446

vector v = ∑ xpep corresponds to its dual vector v∗ = ∑ xp fp, and each dual vector v∗ on1447

its turn defines a unique hyperplane H(v) of the projective space PG(V) corresponding to1448

V (and consisting of the points 〈w〉 with v∗(w) = v.w = 0). Let 〈b〉 be a black point, then1449

H(b) intersects E6,1(K) in (a copy of) F4,4(K). Let us call a hyperplane H(v) white, grey, black1450

according to whether the corresponding point 〈v〉 is white, grey or black, respectively. White1451

hyperplanes H have the characterizing property of intersecting E6,1(K) in a hyperplane of1452

E6,1(K) consisting of a unique symp ξ(H) and all points of E6,1(K) collinear to some point of1453

ξ(H).1454

Concretely, let {p1, p2, p3} be a member of S . Then b = ep1 + ep2 + ep3 is a black point with1455

φ(b) = b and C(b) = 1. We now assume charK = 3. Then the hyperplane H(b) contains the1456

point 〈b〉. We claim that the projection of F4,4(K), obtained as the intersection E6,1(K) ∩ H(b),1457

from 〈b〉 is admissible. In order to sketch a proof of this, we note that the following polarity ρ1458

of PG(26, K), given by its action on the basis of V, induces a polarity, also denoted ρ, of E6,1(K)1459

(interchanging points and symps) the set of absolute points (that is, points lying in their image)1460

of which is exactly F4,4(K).1461

ρ : V → V∗ : ep 7→
{

fp if p ∈ {p1, p2, p3}
fq if p /∈ {p1, p2, p3} and {p, q, pi} ∈ L for some i ∈ {1, 2, 3}

For an absolute point x ∈ F4,4(K), the symp ξ(xρ) intersects E6,1(K) precisely in x⊥ ∩ ξ(xρ)1462

(where ⊥ stands for collinearity in E6,1(K)) and this intersection is precisely the set of points1463

of F4,4(K) collinear to x (in F4,4(K)). We also call these symps ξ(xρ) absolute.1464

Each symp ξ of E6,1(K) can be seen through gray points in E6,1(K) as follows. There exists1465

a white point 〈w〉 such that the gray points of 〈ξ〉 are precisely those points 〈v〉 for which1466

φ(v) ∈ Kw. We denote 〈w〉 = c(ξ). Then, moreover, for each symp ξ of E6,1(K), we have that1467

ξ, as a quadric in E6,1(K), is absolute if and only if c(ξ) is absolute (but ξ might be different1468

from ξ(c(ξ)ρ)).1469

Now we note that the projection X of F4,4(K) from any black point satisfies (F1), (F2) and (F3).1470

It is (F1′) we are concerned with, and in particular the part where the members of Π intersect1471

X in a pair of lines and nothing more, the tangent subspaces of two points are disjoint if these1472

points are opposite in F4,4(K), and they intersect in a unique point if these points are special1473

in F4,4(K). All of these obstructions are killed if we show the nonexistence of a line L in H(b)1474

containing 〈b〉 and two distinct points 〈w1〉 and 〈w2〉 such that φ(wi) = λivi, with λi ∈ K and1475

〈vi〉 an absolute point (hence contained in H(b)), i = 1, 2. By redefining λi if necessary, we1476

may assume b = w1 + w2. Since 〈vi〉 belongs to F4,4(K), it is a white point and so φ(vi) = 01477

(〈wi〉 could be gray or white), i = 1, 2. This implies C(wi) = 0, i = 1, 2. Using φ(b) = b and1478

C(b) = 1, we derive from the above identity1479

0 = C(w2) = C(b− w1) = C(b)− φ(b).w1 + φ(w1).b− C(w1) = 1− b.w1 − λ1b.v1 = 1,

clearly a contradiction. Hence we established our example.1480

37



Remark 6.1. It is tempting to conjecture that the above is essentially the only example of a non-1481

trivial admissible projection; however this is not entirely clear to us, and especially the cases1482

A 6= K seem rather hopeless at the moment. A safer conjecture would be that an admissible1483

projection is always from a subspace of dimension at most 1 (a point or the empty subspace),1484

stemming from our inability to find an admissible projection from a line.1485
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