Large maximal partial spreads of the Hermitian variety

\[H(5, q^2) \]

Jan De Beule

Ghent University

(Joint work with Klaus Metsch)

We consider the Hermitian variety in 5-dimensions, denoted by \(H(5, q^2) \). This is an example of a finite classical polar space of rank 3. The Hermitian variety \(H(5, q^2) \) contains points, lines and planes of the ambient projective space \(PG(5, q^2) \). The planes contained in \(H(5, q^2) \) are called \textit{generators}.

A \textit{spread} of \(H(5, q^2) \) is a set \(S \) of generators such that every point of \(H(5, q^2) \) is contained in exactly one element of \(S \). A spread contains exactly \(q^5 + 1 \) elements. A \textit{partial spread} of \(H(5, q^2) \) is a set \(S \) of generators such that every point of \(H(5, q^2) \) is contained in at most one element of \(S \). A partial spread is called \textit{maximal} if no generator of \(H(5, q^2) \setminus S \) can be added to \(S \).

Since spreads of \(H(5, q^2) \) does not exist by a result of J. A. Thas ([3]), the natural question is how many elements the largest maximal partial spread contains.

Using counting arguments and the particular geometrical structure, we can improve the known upper bounds ([3] and [2]) and show that a maximal partial spread contains at most \(q^3 + 1 \) elements. Furthermore, from [1], we know that any spread of the symplectic polar space \(W(5, q) \) embedded in \(H(5, q^2) \), constitutes a maximal partial spread of \(H(5, q^2) \), of size \(q^3 + 1 \). Hence, the new upper bound is sharp.

References

