The Hermitian variety $H(5, 4)$ has no ovoid

Jan De Beule
Ghent University

joint work with: Klaus Metsch
Gießen University
The Hermitian variety $H(d, q^2)$ is the set of points of $PG(d, q^2)$ satisfying the equation

$$X_0^{q+1} + X_1^{q+1} + \ldots X_d^{q+1} = 0$$

When $d = 2n + 1, 2n$ respectively, $H(d, q^2)$ contains points, lines, \ldots, n-dimensional subspaces of $PG(d, q^2)$, $(n - 1)$-dimensional subspaces of $PG(d, q^2)$ respectively.

The Hermitian variety $H(d, q^2)$ is a example of a so-called classical polar space. The subspaces of maximal dimension are also called generators.
An ovoid of a Hermitian variety $H(d, q^2)$ is a set O of points of $H(d, q^2)$ such that every generator meets O in exactly one point.
An ovoid of a Hermitian variety $H(d, q^2)$ is a set O of points of $H(d, q^2)$ such that every generator meets O in exactly one point.

If $H(d - 2, q^2)$ has no ovoids, then $H(d, q^2)$ has no ovoids.
J. A. Thas: the Hermitian variety $H(2n, q^2)$, $n > 1$, has no ovoids.
Known results

J. A. Thas: the Hermitian variety $H(2n, q^2)$, $n > 1$, has no ovoids.

G.E. Moorhouse: $H(2n + 1, q^2)$, $q = p^h$, p prime, $h > 1$ has no ovoids if

$$p^{2n+1} > \left(\frac{2n + p}{2n + 1}\right)^2 - \left(\frac{2n + p - 1}{2n + 1}\right)^2$$

Ovoids of $H(5, q^2)$ are not excluded.
Known results

J. A. Thas: the Hermitian variety $H(2n, q^2)$, $n > 1$, has no ovoids.

G.E. Moorhouse: $H(2n + 1, q^2)$, $q = p^h$, p prime, $h > 1$ has no ovoids if

$$p^{2n+1} > \binom{2n + p}{2n + 1}^2 - \binom{2n + p - 1}{2n + 1}^2$$

Ovoids of $H(5, q^2)$ are not excluded.

A. Klein: $H(2n + 1, q^2)$ has no ovoids if $n > q^3$.
Suppose that \mathcal{O} is an ovoid of $\mathbb{H}(3, 4)$. There exists a plane π, $\pi \cap \mathbb{H}(3, 4) = \mathbb{H}(2, 4)$, such that either

1. $\pi \cap \mathbb{H}(3, 4) = \mathbb{H}(2, 4) = \mathcal{O}$, or

2. $\mathcal{O} = (\mathbb{H}(2, 4) \setminus L) \cup (L^\perp \cap \mathbb{H}(3, 4))$, L a line of π, $L \cap \mathbb{H}(3, 4) = \mathbb{H}(1, 4)$.
Suppose that \(\mathcal{O} \) is an ovoid of \(\text{H}(3, 4) \). There exists a plane \(\pi \), \(\pi \cap \text{H}(3, 4) = \text{H}(2, 4) \), such that either

1. \(\pi \cap \text{H}(3, 4) = \text{H}(2, 4) = \mathcal{O} \), or
2. \(\mathcal{O} = (\text{H}(2, 4) \setminus L) \cup (L^\perp \cap \text{H}(3, 4)) \), \(L \) a line of \(\pi \), \(L \cap \text{H}(3, 4) = \text{H}(1, 4) \).

Every partial ovoid of \(\text{H}(3, 4) \) containing 8 points can be extended to an ovoid of \(\text{H}(3, 4) \).
Suppose that \mathcal{O} is an ovoid of $H(3, 4)$. There exists a plane π, $\pi \cap H(3, 4) = H(2, 4)$, such that either

1. $\pi \cap H(3, 4) = H(2, 4) = \mathcal{O}$, or
2. $\mathcal{O} = (H(2, 4) \setminus L) \cup (L^\perp \cap H(3, 4))$, L a line of π, $L \cap H(3, 4) = H(1, 4)$.

Every partial ovoid of $H(3, 4)$ containing 8 points can be extended to an ovoid of $H(3, 4)$.
Every plane π meets \mathcal{O} in 0, 1, 2, 3 or 6 points.
Suppose that \mathcal{O} is an ovoid of $H(3, 4)$. There exists a plane π, $\pi \cap H(3, 4) = H(2, 4)$, such that either

1. $\pi \cap H(3, 4) = H(2, 4) = \mathcal{O}$, or
2. $\mathcal{O} = (H(2, 4) \setminus L) \cup (L^\perp \cap H(3, 4))$, L a line of π, $L \cap H(3, 4) = H(1, 4)$.

Every partial ovoid of $H(3, 4)$ containing 8 points can be extended to an ovoid of $H(3, 4)$.

Every plane π meets \mathcal{O} in 0, 1, 2, 3 or 6 points.

If π is a plane, $|\pi \cap \mathcal{O}| = 3$, then the points of $\pi \cap \mathcal{O}$ are collinear.
Suppose that \mathcal{O} is an ovoid of $H(5, 4)$. Let p be a point of $H(5, 4) \setminus \mathcal{O}$. Then $|p^\perp \cap \mathcal{O}| = 9$. If π is a plane in p^\perp, $\pi \cap H(5, 4) = H(2, 4)$, then $|\langle p, \pi \rangle| \in \{0, 1, 2, 3, 6, 9\}$
Suppose that \mathcal{O} is an ovoid of $H(5, 4)$. Let p be a point of $H(5, 4) \setminus \mathcal{O}$. Then $|p^\perp \cap \mathcal{O}| = 9$. If π is a plane in p^\perp, $\pi \cap H(5, 4) = H(2, 4)$, then $|\langle p, \pi \rangle| \in \{0, 1, 2, 3, 6, 9\}$

Suppose that \mathcal{O} is an ovoid of $H(5, q^2)$. Consider a plane π that meets the variety in $H(2, q^2)$ and put $m := |\pi \cap \mathcal{O}|$.

Suppose furthermore that $1 \leq m < q^3 + 1$. Let A, resp. B, be the set consisting of all points $x \in \mathcal{O} \setminus \pi$ such that $\langle \pi, x \rangle$ meets $H(5, q^2)$ in a cone $sH(2, q^2)$, resp. an $H(3, q^2)$.

- We have $|A| = (q^2 - 1)(q^2 - 1 + m)$ and $|B| = q^2(q^3 - q^2 + 2 - m)$.

- If $q = 2$ and x is a point of $(\pi \cap H(5, 4)) \setminus \mathcal{O}$, then $|x^\perp \cap B| \in \{0, 3, 6, 7, 8, 9\}$.
Suppose that \mathcal{O} is an ovoid of $H(5, 4)$. Then $|\pi \cap \mathcal{O}| \leq 3$ for every plane π, $\pi \cap H(5, 4) = H(2, 4)$ and $|\alpha \cap \mathcal{O}| < 6$ for every 3-dimensional space α, $\alpha \cap H(5, 4) = H(3, 4)$.

The last steps

The Hermitian variety $H(5, 4)$ has no ovoid – p.7/8
The last steps

Suppose that \(O \) is an ovoid of \(H(5, 4) \). Then \(|\pi \cap O| \leq 3\) for every plane \(\pi \), \(\pi \cap H(5, 4) = H(2, 4) \) and \(|\alpha \cap O| < 6\) for every 3-dimensional space \(\alpha \), \(\alpha \cap H(5, 4) = H(3, 4) \).

The Hermitian variety \(H(5, 4) \) has no ovoids
References

