Universiteit Gent
Faculteit Wetenschappen

Vakgroep Wiskunde: Analyse, Logica en Discrete Wiskunde

Families of Intersecting Subspaces

Jozefien D'haeseleer

UNIVERSITEIT

GENT

Academiejaar 2020-2021
Promotoren:
prof. dr. Leo Storme
(Universiteit Gent)
dr. Mafrten De boeck
(Technische Universiteit Eindhoven)
dr. Geertrui Van de Voorde
(University of Canterbury, Christchurch, New-Zealand)
Proefschrift voorgelegd aan de Faculteit Wetenschappen tot het behalen van de graad van Doctor in de Wetenschappen: wiskunde.

Contents

Preface 7
1 Preliminaries 11
1.1 Incidence geometries 11
1.2 Finite projective spaces 12
1.3 Collineations of $\operatorname{PG}(n, q)$ 14
1.4 Affine geometries 14
1.5 Finite classical polar spaces 15
1.6 Arcs, reguli, spreads and pencils 18
1.7 Graph theory 21
1.7.1 General graph theory 21
1.7.2 Algebraic graph theory 22
1.7.3 Graph colorings 22
1.8 Tactical decompositions 23
1.9 Association schemes 24
1.10 Useful countings and bounds 25
I Intersection problems for subspaces in projective and affine spaces 27
2 Introduction 29
3 Subspaces of dimension k, pairwise intersecting in at least a $(k-2)$-space 33
3.1 Introduction and preliminaries 33
3.2 There are three elements of \mathcal{S} that meet in a $(k-4)$-space 39
3.2.1 α is a $(k-1)$-space 41
3.2.2 α is a k-space 41
3.2.3 α is a $(k+1)$-space 42
3.2.4 α is a $(k+2)$-space 45
3.3 Every three elements of \mathcal{S} meet in at least a $(k-3)$-space 49
3.4 There is at least a point contained in all k-spaces of \mathcal{S} 52
3.5 Main Theorem 55
4 Hilton-Milner problems in $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$ 57
4.1 Introduction 57
4.2 Two examples in $\operatorname{PG}(n, q)$ 57
4.3 Two examples in $\operatorname{AG}(n, q)$ 59
4.4 Classification results 61
4.4.1 Classification result in $\mathrm{PG}(n, q)$ 62
4.4.2 Classification of the largest t-intersecting sets in $\operatorname{AG}(n, q)$ 65
4.4.3 Classification of the largest non-trivial t-intersecting sets in $\mathrm{AG}(n, q)$ 66
4.5 Appendix 71
5 The Sunflower bound 89
5.1 Introduction 89
5.2 Preliminaries 90
5.3 Main Lemma and results 92
6 The chromatic number of some Kneser graphs 99
6.1 Introduction 99
6.2 The chromatic number of the Kneser graph $q K_{5 ;\{2,4\}}$ of line-solid flags in PG(4,q) 100
6.3 The chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ of line-plane flags in PG $(4, q)$ 102
6.3.1 Colorings of the Kneser graph $q K_{5 ;\{2,3\}}$ 103
6.3.2 A lemma on point sets 105
6.3.3 The chromatic number of $q K_{5 ;\{2,3\}}$ 106
6.3.4 Appendix 117
6.4 The chromatic number of the Kneser graph $q K_{2 d+1 ;\{d, d+1\}}, d \geq 3$ 118
II Cameron-Liebler sets 121
7 Introduction 123
7.1 Definition 123
8 Cameron-Liebler sets of k-spaces in PG (n, q) 127
8.1 The characterization theorem 127
8.2 Boolean degree one functions 134
8.3 Properties of Cameron-Liebler sets of k-spaces in PG (n, q) 135
8.4 Classification results 139
9 Cameron-Liebler sets of k-spaces in $\mathrm{AG}(n, q)$ 147
10 Cameron-Liebler sets of generators in finite classical polar spaces 149
10.1 Introduction 149
10.1.1 The association scheme for generators in polar spaces 151
10.2 Degree one Cameron-Liebler sets 155
10.3 Polar spaces $Q^{+}(2 d-1, q)$, d even 159
10.4 Classification results 160
10.5 New example of a degree one Cameron-Liebler set in $Q^{+}(5, q)$ 164
III Linear Sets 169
11 Translation hyperovals and \mathbb{F}_{2}-linear sets of pseudoregulus type 171
11.1 Introduction 171
11.1.1 Linear sets 171
11.1.2 The Barlotti-Cofman and André/Bruck-Bose constructions 173
11.1.3 Main theorem 175
11.2 The proof of the main theorem 175
11.2.1 The $(q-1)$-secants to D are disjoint 176
11.2.2 The set D of directions in H_{∞} is a linear set 178
11.2.3 The set D is an \mathbb{F}_{2}-linear set of pseudoregulus type 179
11.2.4 There exists a suitable Desarguesian $(k-1)$-spread \mathcal{S} in $\mathrm{PG}(2 k-1, q)$ 181
11.2.5 The point set \mathcal{Q} defines a translation hyperoval in the André/Bruck-Bose plane $\mathcal{P}(S)$ 182
11.2.6 Every translation hyperoval defines a linear set of pseudoregulus type 183
11.3 The generalisation of a characterisation of Barwick and Jackson 184
IV Appendix 187
A English summary 189
A. 1 Introduction 189
A. 2 Intersection problems 189
A.2.1 Sets of k-spaces pairwise intersecting in at least a $(k-2)$-space 190
A.2.2 Hilton-Milner problems in PG (n, q) and $\mathrm{AG}(n, q)$ 191
A.2.3 The Sunflower bound 192
A.2.4 The chromatic number of some q-Kneser graphs 193
A. 3 Cameron-Liebler sets 194
A.3.1 Cameron-Liebler sets of k-spaces in PG($n, q)$ 194
A.3.2 Cameron-Liebler sets of k-spaces in AG($n, q)$ 195
A.3.3 Degree one Cameron-Liebler sets in finite classical polar spaces 196
A.3. 4 New example of a degree one Cameron-Liebler set of generators in $Q^{+}(5, q)$ 197
A. 4 Linear sets 198
B Nederlandstalige samenvatting 201
B. 1 Inleiding 201
B. 2 Intersectie problemen 201
B.2.1 Verzamelingen van k-ruimten die paarsgewijs snijden in een $(k-2)$-ruimte 202
B.2.2 Hilton-Milner problemen in PG (n, q) en AG (n, q) 203
B.2.3 De Zonnebloemgrens 205
B.2.4 Het chromatisch getal van enkele q-Kneser grafen 205
B. 3 Cameron-Lieblerverzamelingen 206
B.3.1 Cameron-Liebler k-ruimten in $\operatorname{PG}(n, q)$ 207
B.3.2 Cameron-Liebler k-ruimten in $\operatorname{AG}(n, q)$ 208
B.3.3 Cameron-Lieblerverzamelingen van graad één in eindige klassieke polaire ruimten 208
B.3.4 Nieuw voorbeeld van een Cameron-Lieblerverzameling van graad één van generatoren in $Q^{+}(5, q)$ 210
B. 4 Lineaire verzamelingen 211
Bibliography 217

Preface

66 The way to get started is to quit talking and begin doing.
-Walt Disney

My engagement towards mathematics started at secondary school. I always liked to solve exercises, and I loved to accept the challenges the teachers gave me. After my graduation in secondary school, I really wanted to further discover the beautiful parts of mathematics. So it was clear that I wanted to study this. During the bachelor and master years, I enjoyed seeing all the different parts of mathematics. It gave me a broad view and a chance to sample every branch in mathematics. During my bachelor project, I got the opportunity to work on different topics in finite geometry. I really liked the freedom to think about some new things, and due to the combination of good ideas and excellent aid of my supervisors we discovered new characteristics about Sudoku Latin Squares. This was the start of my first publication. Together with prof. Klaus Metsch from the University of Gießen, we generalized the first results and continued the research on this topic. This was an interesting chance to start exploring the research world. In the last master year, I focused on the master thesis. During this period, I also got the opportunity to go abroad. With the Erasmus program, I went to the Technical University of Eindhoven. Here I got the chance to work together with prof. Aart Blokhuis on the Sunflower bound. Thanks to enriching conversations and discussions with prof. Aart Blokhuis and other researchers in Eindhoven, I discovered the advantages of working together with international academics. I realized for the second time that I enjoyed doing research and discovering new things. Beside that, I was aware, by reading lots of articles, of the fact that my knowledge at that time, only corresponds to the tip of the iceberg. That was the reason why I wanted to continue the research, to get a more fundamental understanding and to reach the bottom of the iceberg.

So, more or less 4 years ago, I got the great opportunity to start with a PhD in finite geometry. I got the chance to work on topics in finite geometry that interest me, such as Cameron-Liebler sets and intersection problems. The result of this research is collected in this thesis.

This thesis contains three main parts. The first part handles several intersection problems.
During the first months of the PhD , I started with the first intersection problem. I investigated sets of solids pairwise intersecting in at least a line. Later on, we could generalise this to a classification of the largest sets of k-spaces in $\mathrm{PG}(n, q)$, pairwise intersecting in at least a $(k-2)$-space. With the aid of dr. Giovanni Longobardi, dr. Ago Riet and prof. Leo Storme, we were able to classify the ten largest examples, see Chapter 3. Thorough this thesis, it will become clear that I like to classify different structures in finite geometries.

A second intersection problem handles a Hilton-Milner problem in projective and affine spaces. Here, I investigated large sets of k-spaces pairwise intersecting in at least a t-space in both $\mathrm{PG}(n, q)$ and AG (n, q). A straightforward example of these sets is a t-pencil; the set of all k-spaces containing a fixed t-space. In this research, I classified the largest examples of pairwise t-intersecting sets in both $\mathrm{PG}(n, q)$ and $\mathrm{AG}(n, q)$, different from a t-pencil. This classification result can be found in Chapter 4

Recall that, in my master thesis, I started investigating the Sunflower bound in projective spaces. For this, I studied large sets of k-spaces in a projective space, pairwise intersecting in precisely a point. A classical example of such a set is the sunflower, where all subspaces pass through the same point. The Sunflower bound states that a set S of k-spaces, pairwise intersecting in a point must be a sunflower if $|S|$ surpasses the Sunflower bound. Prof. Aart Blokhuis, dr. Maarten De Boeck and I could lower this Sunflower bound significantly. How we succeeded in this, can be read in Chapter 5

In spring 2020 , I got the opportunity to visit prof. Klaus Metsch in Gießen. Together with dr. Daniel Werner, we investigated the chromatic number of q-Kneser graphs of flags in projective spaces. This problem can be translated to the following research problem: finding a partition of flags such that every two flags in a partition class intersect. We found the chromatic number of the q-Kneser graph of line-solid flags and of line-plane flags in $\operatorname{PG}(4, q)$. Furthermore, if we assume that structural information on the large intersecting sets of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$ is known, then we were also able to generalize our results. Hence, given a Hilton-Milner type conjecture, we found the chromatic number of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$. These results are written in Chapter 6 which concludes the first main part.

In the second main part of this thesis, I describe several Cameron-Liebler results in different contexts.

In [28], Cameron and Liebler introduced specific line classes in $\mathrm{PG}(3, q)$ when investigating the orbits of the projective groups $\operatorname{PGL}(n+1, q)$. These line sets \mathcal{L} have the property that every line spread \mathcal{S} in $\operatorname{PG}(3, q)$ has the same number of lines in common with \mathcal{L}. One of the main reasons for studying Cameron-Liebler sets is that there are several equivalent definitions for them, some algebraic, some geometrical or combinatorial in nature. The main question, independent of the context where Cameron-Liebler sets are investigated, is always the same: for which values of the parameter x do there exist Cameron-Liebler sets and which examples correspond to a given parameter x ?

In the first year of my PhD, I started defining and investigating Cameron-Liebler sets of k-spaces in PG($n, q)$. Prof. Aart Blokhuis, dr. Maarten De Boeck and I found many equivalent definitions, and we could prove a classification result. These results are described in Chapter 8

During this first Cameron-Liebler project, my interest grew, and I was curious to discover CameronLiebler sets in different contexts.

In a second Cameron-Liebler project, Cameron-Liebler sets of generators in finite classical polar spaces were investigated. Dr. Maarten De Boeck and I introduced degree one Cameron-Liebler sets in finite classical polar spaces. These sets are Cameron-Liebler sets with an extra assumption, and they give a link between Boolean degree one functions (see [59]) and Cameron-Liebler sets of generators in finite classical polar spaces (see [36]). These results can be found in Chapter 10

In summer 2019, prof. Morgan Rodgers found a new, non-trivial example of a Cameron-Liebler set of generators in $Q^{+}(5,3)$ by using a computer search. Dr. Maarten De Boeck and I investigated this example, and generalized it. In this way, we found a non-trivial example of a degree one CameronLiebler set of generators in $Q^{+}(5, q)$. The construction for this example is described in Section 10.5

In the second year of my PhD, I got the opportunity to mentor the master thesis of Jonathan Mannaert. Prof. Leo Storme suggested to investigate Cameron-Liebler sets in an affine context. During this research, we first defined Cameron-Liebler line sets in $\mathrm{AG}(3, q)$. We found many equivalent definitions, and some classification results. In a second step, we generalized these Cameron-Liebler
line sets in $\operatorname{AG}(3, q)$ to Cameron-Liebler k-sets in $\operatorname{AG}(n, q)$. These results are described in Chapter 9

The last main part of this thesis discusses Linear sets of pseudoregulus type. In spring 2019, I visited my co-supervisor dr. Geertrui Van de Voorde in Christchurch, New-Zealand, where she immersed me in the world of linear sets. In [7], a characterisation for translation hyperovals in $\mathrm{PG}(4, q), q$ even, was given. Originally our research goal was to generalize these results for $\mathrm{PG}(2 k, q), q$ even. While investigating this topic, we could characterise the point sets defined by translation hyperovals in the André/Bruck-Bose representation. We showed that the affine point sets of translation hyperovals in $\operatorname{PG}\left(2, q^{k}\right)$ are precisely those that have a scattered \mathbb{F}_{2}-linear set of pseudoregulus type in $\mathrm{PG}(2 k-1, q)$ as set of directions. These results are described in Chapter 11

I hope that this introduction could engage you for reading this thesis. I already want to thank you for the interest and I hope you enjoy reading this exciting math story.

Jozefien D'haeseleer
March 2021

66 La mathématique est l'art de donner le même nom à des choses différentes.

In this first chapter, we introduce important concepts and known results that will be used throughout the thesis. We suppose that the reader is familiar with the basic notions in finite geometry, combinatorics, linear algebra and graph theory.

1.1 Incidence geometries

Several geometries, such as projective geometries, affine geometries and finite classical polar spaces, are investigated in this thesis. These geometries all are incidence geometries, and therefore we start with introducing the notion of a general incidence geometry.

Definition 1.1.1. An incidence geometry \mathcal{S} is a quadruple $\mathcal{S}=\left(\mathcal{V}, \omega_{n}, t, \mathcal{I}\right)$, with \mathcal{V} a non-empty set, $\omega_{n}=\{0,1, \ldots, n-1\}, t$ a surjective map from \mathcal{V} to ω_{n} and \mathcal{I} a symmetric incidence relation on \mathcal{V}, such that $\left(v_{1}, v_{2}\right) \in \mathcal{I}$, implies that $t\left(v_{1}\right) \neq t\left(v_{2}\right)$, for all $v_{1}, v_{2} \in \mathcal{V}$.

The elements of \mathcal{V} are called the varieties of \mathcal{S}. Varieties of type 0 and 1 are called the points and lines respectively. The map t is called the type map and in this thesis, this map will always be the dimension map. The integer n is called the rank of the geometry \mathcal{S}. If $\left(v_{1}, v_{2}\right) \in \mathcal{I}$, then these elements v_{1} and v_{2} are called incident. Moreover, if $t\left(v_{1}\right)<t\left(v_{2}\right)$, then we say that v_{1} is contained in v_{2}, that v_{2} contains v_{1} or that v_{2} goes through v_{1}. A set of points, incident with a fixed line, is said to be collinear, and a set of lines incident with a fixed point, is said to be concurrent.

If the rank of the incidence geometry is 2 , then the set \mathcal{V} of varieties consists of points and lines. This geometry is called a point-line geometry. For this, we use the notation $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$, with \mathcal{I} the incidence relation such that $\mathcal{I} \subseteq(\mathcal{P} \times \mathcal{B}) \cup(\mathcal{B} \times \mathcal{P})$. In this geometry, the elements of \mathcal{P} are the points and the elements of \mathcal{B} are the lines. The elements of \mathcal{B} are sometimes also called the blocks of \mathcal{S}.

The dual of an incidence geometry $\mathcal{S}=\left(\mathcal{V}, \omega_{n}, t, \mathcal{I}\right)$ is the incidence geometry $\mathcal{S}^{\prime}=\left(\mathcal{V}, \omega_{n}, t^{\prime}, \mathcal{I}\right)$ with $t^{\prime}=\mathcal{V} \rightarrow \omega_{n}: v \mapsto n-t(v)-1$. Note that the dual of a point-line geometry $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ can be obtained by interchanging the roles of points and lines. Hence, the dual of the point-line geometry \mathcal{S} is the point-line geometry $\mathcal{S}^{\prime}=(\mathcal{B}, \mathcal{P}, \mathcal{I})$.

Let $\mathcal{S}_{1}=\left(\mathcal{V}_{1}, \omega_{n}, t_{1}, \mathcal{I}_{1}\right)$ and $\mathcal{S}_{2}=\left(\mathcal{V}_{2}, \omega_{n}, t_{2}, \mathcal{I}_{2}\right)$ be two incidence geometries of the same rank n. A bijection $\alpha: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ with the property that $\left(v, v^{\prime}\right) \in \mathcal{I}_{1} \Leftrightarrow\left(\alpha(v), \alpha\left(v^{\prime}\right)\right) \in \mathcal{I}_{2}, \forall v, v^{\prime} \in \mathcal{V}_{1}$, and $t_{1}(v)=t_{2}(\alpha(v)), \forall v \in \mathcal{V}_{1}$, is an isomorphism between \mathcal{S}_{1} and \mathcal{S}_{2}. In the case that $\mathcal{S}_{1}=\mathcal{S}_{2}$, then α is called an automorphism of \mathcal{S}_{1}. If \mathcal{S}_{1} is the dual of \mathcal{S}_{2}, then α is called a duality.

Definition 1.1.2. The incidence matrix H of a point-line geometry $(\mathcal{P}, \mathcal{B}, \mathcal{I})$, with \mathcal{P} the set of points $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and \mathcal{B} the set of blocks $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is the $m \times n$ matrix over the field \mathbb{R}, in which the rows are labeled by the points and the columns are labeled by the blocks, so that $H_{i j}=1$ if $\left(p_{i}, b_{j}\right) \in \mathcal{I}$, and $H_{i j}=0$ otherwise.

In this thesis, we denote the $n \times n$ identity matrix by I_{n}, the $n \times n$ all one matrix by J_{n} and the all one column vector of dimension n by \boldsymbol{j}_{n}. If the size n is clear from the context, we also use the notations I, J, and \boldsymbol{j} respectively. In general, all vectors in this thesis are regarded as column vectors.

For a subset S of a finite set Ω, which can consist of points or blocks, we will often use the corresponding characteristic vector χ_{S}.

Definition 1.1.3. Consider a set $\Omega=\left\{x_{1}, \ldots, x_{n}\right\}$ of size n. Then we define for every subset S of Ω a characteristic vector $\chi_{S} \in \mathbb{R}^{n}$ as a $\{0,1\}$-valued column vector that has a one on position i if and only $x_{i} \in S$.

We end this section with a first example of an incidence geometry.
Definition 1.1.4. A $t-(v, k, \lambda)$ design, $v>k>1, k \geq t \geq 1, \lambda>0$, is a point-line geometry $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ with incidence matrix \mathcal{I} with the following properties:

- $|\mathcal{P}|=v$,
- every element of \mathcal{B} contains k points of \mathcal{P},
- every set of t distinct points of \mathcal{P} is contained in precisely λ different lines of \mathcal{B},
- no two lines of \mathcal{B} are incident with the same k points of \mathcal{P}.

In this thesis, we will often investigate $2-(v, k, \lambda)$ designs, or in short, 2-designs. For these designs, we give a classical result in design theory, which follows from the proof of Fisher's inequality by Bose [19].

Result 1.1.5. The incidence matrix of a 2-design has full row rank over \mathbb{R}.

1.2 Finite projective spaces

Consider the finite field \mathbb{F}_{q} of order q, with $q=p^{h}, p$ prime and $h>0$. Let $V(n+1, q)$ denote the vector space of dimension $n+1$ over $\mathbb{F}_{q}: V(n+1, q)=\mathbb{F}_{q}^{n+1}$.

Let $D(V)$ be the set of non-trivial subspaces of $V(n+1, q)$. Define the incidence relation \mathcal{I} as follows: $(U, W) \in \mathcal{I}$ if $U \subseteq W$ or $W \subseteq U$. Let $\operatorname{dim}: D(V) \rightarrow\{0,1, \ldots, n-1\}$ be the map such that $\operatorname{dim}(\pi)$ is the vector dimension of π minus one. Then the incidence geometry $(D(V),\{0,1, \ldots, n-1\}, \operatorname{dim}, \mathcal{I})$ is by definition the projective space corresponding with $V(n+1, q)$. This projective space has projective dimension n and is denoted by $\mathrm{PG}(n, q)$. Note that the projective dimension $\operatorname{dim}(\pi)$ of a subspace π is its vector dimension minus one. In this thesis we will always use the projective dimension for subspaces of a projective geometry. Recall that the subspaces of $\mathrm{PG}(n, q)$ of dimension 0 and 1 are the points and lines of the projective space. The subspaces of dimension 2,3 and $n-1$ are called the planes, solids, and hyperplanes, respectively. We will consider the empty set as the subspace with dimension -1 . Often, a k-dimensional subspace is called a k-space, and we will sometimes consider a k-space as its set of points.

In this thesis, we will count many objects. For the notation of these countings, we will use Gaussian binomial coefficients $\left[\begin{array}{l}a \\ b\end{array}\right]_{q}$ for $a, b \in \mathbb{N} \backslash\{0\}, a \geq b$, and prime power $q \geq 2$:

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\frac{\left(q^{a}-1\right) \cdots\left(q^{a-b+1}-1\right)}{\left(q^{b}-1\right) \cdots(q-1)}
$$

Furthermore, we define $\left[\begin{array}{l}a \\ b\end{array}\right]_{q}=1$ if $b=0$, and $\left[\begin{array}{l}a \\ b\end{array}\right]_{q}=0$ if $b<0$ or $b>a$.
The Gaussian binomial coefficient $\left[\begin{array}{l}a \\ b\end{array}\right]_{q}$ is equal to the number of b-spaces of the vector space \mathbb{F}_{q}^{a}, or in the projective context, the number of $(b-1)$-spaces in the projective space $\operatorname{PG}(a-1, q)$. Moreover, we will denote the number $\left[\begin{array}{c}n+1 \\ 1\end{array}\right]_{q}$ of points in $\operatorname{PG}(n, q)$ by the symbol $\theta_{n}(q)$. If the field size q is clear from the context, we will write $\left[\begin{array}{l}a \\ b\end{array}\right]$ and θ_{n} instead of $\left[\begin{array}{l}a \\ b\end{array}\right]_{q}$ and $\theta_{n}(q)$, respectively.
The intersection of two subspaces U and W of $\operatorname{PG}(n, q)$, is the subspace of $\operatorname{PG}(n, q)$ containing all points that are contained in both U and W, and is denoted by $U \cap W$. The span of two subspaces U and W of $\mathrm{PG}(n, q)$, is the smallest subspace of $\operatorname{PG}(n, q)$ containing the points of both U and W, and is denoted by $\langle U, W\rangle$.

A frequently used identity in this thesis is the Grassmann identity for subspaces of a projective space:

$$
\operatorname{dim}(U)+\operatorname{dim}(V)=\operatorname{dim}(\langle U, V\rangle)+\operatorname{dim}(U \cap V)
$$

for all subspaces U and V of $\operatorname{PG}(n, q)$.
We started introducing projective spaces by using vector spaces. On the other side, we want to mention that a projective space can also be defined by axioms. A projective space is a point-line geometry $(\mathcal{P}, \mathcal{B}, \mathcal{I})$ that satisfies the following three axioms.

1. Through every two points of \mathcal{P}, there is exactly one line of \mathcal{B}.
2. If P, Q, R, S are distinct points of \mathcal{P} and the lines $P Q$ and $R S$ intersect, then so do the lines $P R$ and $Q S$.
3. There are at least 3 points on a line.

Veblen and Young proved in [111] that if the dimension of the projective space is at least 3, then every finite projective space (defined by the three axioms above) of dimension $n \geq 3$, is derived from a vector space, and so, it is isomorphic with $\operatorname{PG}(n, q)$, with q a prime power.

For finite projective planes, the classification is more complicated, as not all of them are isomorphic to $\mathrm{PG}(2, q)$. We continue with the definition of a Desarguesian plane.

Definition 1.2.1. A Desarguesian plane is an (axiomatic) projective plane Π such that for all two triangles of points P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} in Π, with the property that the lines $P_{1} Q_{1}, P_{2} Q_{2}$ and $P_{3} Q_{3}$ are concurrent, it holds that points $P_{1} P_{2} \cap Q_{1} Q_{2}, P_{2} P_{3} \cap Q_{2} Q_{3}$ and $P_{1} P_{3} \cap Q_{1} Q_{3}$ are collinear.

The Desarguesian planes are precisely the planes coming from a three-dimensional vector space over a division ring, see [70]. Since we know, by Wedderburn [88], that a finite division ring is a (finite) field, it follows that a finite Desarguesian projective plane is a projective plane $\mathrm{PG}(2, q)$.

Many non-Desarguesian projective planes are known, for example the Hall planes, Moulton planes and Figueroa planes, see [75].

In this thesis we will only consider the projective spaces coming from a vector space.

1.3 Collineations of $\operatorname{PG}(n, q)$

A linear map on a vector space $V=V(n+1, q)$ is a mapping $f_{A}: V \rightarrow V: x \mapsto A x$, with A a non-singular $(n+1) \times(n+1)$-matrix over \mathbb{F}_{q}. We identify this matrix with the corresponding linear map. The set of all linear maps on $V(n+1, q)$ corresponds to the set of all non-singular $(n+1) \times(n+1)$-matrices over \mathbb{F}_{q} and they form the general linear group, denoted by $\mathrm{GL}(n+1, q)$.

A semi-linear map on a vector space $V=V(n+1, q)$ is a mapping $f_{A, \sigma}: V \rightarrow V: x \mapsto A x^{\sigma}$, with $x \in V$ again a column vector, A a non-singular $(n+1) \times(n+1)$-matrix over \mathbb{F}_{q} and σ an automorphism of the field \mathbb{F}_{q}. The automorphisms of the field $\mathbb{F}_{q}, q=p^{r}$, p prime, are precisely the maps $\phi^{k}: \mathbb{F}_{p^{r}} \rightarrow \mathbb{F}_{p^{r}}: x \mapsto x^{p^{k}}, 0 \leq k<r$. The group of all semi-linear maps on $V(n+1, q)$ is denoted by $\Gamma \mathrm{L}(n+1, q)$.

An automorphism of the projective space $\operatorname{PG}(n, q), n \geq 2$, is called a collineation. The set of all collineations of $\operatorname{PG}(n, q)$ forms the group $\operatorname{Aut}(\operatorname{PG}(n, q))$. Let $V(n+1, q)$ be the corresponding vector space of the projective space $\operatorname{PG}(n, q)$. The fundamental theorem of projective geometry states that each collineation of $\mathrm{PG}(n, q), n \geq 2$, arises from an invertible semi-linear map $f_{A, \sigma}$ of the points of $\operatorname{PG}(n, q)$ (and so of the 1-dimensional subspaces of $V=V(n+1, q)$): $f_{A, \sigma}$: $V \rightarrow V: x \mapsto A x^{\sigma}$. The set of semi-linear maps on $\operatorname{PG}(n, q)$ forms a group and is denoted by $\operatorname{P\Gamma L}(n+1, q)$. Hence, it follows that $\mathrm{P} \Gamma \mathrm{L}(n+1, q) \simeq \operatorname{Aut}(\mathrm{PG}(n, q))$. If we consider a linear map on $V(n+1, q)$, then the corresponding collineation of $\operatorname{PG}(n, q)$ is called a projectivity. The group of all projectivities of $\operatorname{PG}(n, q)$ is called the projective (general) linear group $\operatorname{PGL}(n+1, q)$.

A perspectivity of $\mathrm{PG}(n, q)$ with axis the hyperplane H is an element of $\mathrm{P} \Gamma \mathrm{L}(n+1, q)$ that fixes all points of H. Let α be a perspectivity of $\operatorname{PG}(n, q)$ with axis H, then a point P is called a center if α fixes every hyperplane through P. It can be proven that every perspectivity, different from the identity map, contains precisely one axis and precisely one center.

An elation with axis a hyperplane H and center a point P of $\operatorname{PG}(n, q)$ is a perspectivity whose center is contained in its axis; $P \in H$.

1.4 Affine geometries

Definition 1.4.1. Let H_{∞} be a hyperplane of an n-dimensional projective space $\mathrm{PG}(n, q)$, and let Δ_{A} be the set of subspaces of $\operatorname{PG}(n, q)$ that are not contained in H_{∞}. Let \mathcal{I}_{A} and dim_{A} be the restriction of the natural incidence relation and the type map of $\operatorname{PG}(n, q)$ to Δ_{A}, respectively. Then the incidence geometry using the subspaces of Δ_{A}, the type map dim_{A} and the incidence relation \mathcal{I}_{A} defines the n-dimensional affine space $\operatorname{AG}(n, q)$. We call H_{∞} the hyperplane at infinity of $\operatorname{AG}(n, q)$.

We introduced affine geometries by using projective geometries. The affine spaces used in this thesis, will always arise from a vector space. We want to note that, similar to the projective spaces, affine spaces can also be defined by axioms, see Theorem 2.4 and Theorem 2.6 in [73] for dimension 2 and dimension $n \geq 3$, respectively. Similar to the projective space, every axiomatic affine space of dimension n arise from a vector space for $n \geq 3$. For $n=2$ this is not the case.

1.5 Finite classical polar spaces

Finite classical polar spaces play an important role in finite geometries. We start introducing these structures in vector spaces, but we will translate them to projective spaces later. Let \mathbb{F} be a field, and let σ be a field automorphism. Let V be a vector space over \mathbb{F}. A sesquilinear form is a map $f: V \times V \rightarrow \mathbb{F}$ that is linear in its first argument and semi-linear in its second argument, hence for all $u_{1}, u_{2}, v_{1}, v_{2} \in V, a \in \mathbb{F}: f\left(a u_{1}+u_{2}, v_{1}\right)=a f\left(u_{1}, v_{1}\right)+f\left(u_{2}, v_{1}\right)$ and $f\left(u_{1}, a v_{1}+v_{2}\right)=$ $a^{\sigma} f\left(u_{1}, v_{1}\right)+f\left(u_{1}, v_{2}\right)$. A bilinear form is a map $f: V \times V \rightarrow \mathbb{F}$ that is linear in both arguments. A quadratic form Q on a vector space V is a map $Q: V \rightarrow F$ that is homogeneous of degree two, and with the property that $f: V \times V \rightarrow \mathbb{F}:(v, w) \mapsto Q(v+w)-Q(v)-Q(w)$ is a bilinear form.

A sesquilinear form f on V is reflexive if $f(u, v)=0$ implies that $f(v, u)=0, \forall u, v \in V$. It is called symplectic if $f(v, v)=0, \forall v \in V$, and called Hermitian if the corresponding field automorphism σ is a non-trivial involution, so σ^{2} is the identity, and if $f(v, w)=f(w, v)^{\sigma}, \forall v, w \in V$. We note that every non-trivial reflexive sesquilinear form is a bilinear form or a non-zero scalar multiple of a Hermitian form.

A reflexive sesquilinear form f is called degenerate if there exists a vector $v \in V \backslash\{0\}$ with $f(v, w)=$ $0, \forall w \in V$. A quadratic form is degenerate if there exists a vector $v \in V \backslash\{0\}$ with $Q(v)=0$ and with $f(v, w)=0, \forall w \in V$.

A subspace is called totally isotropic with respect to a sesquilinear or quadratic form, when the form is trivial on this subspace.

Now we are able to describe the classical polar spaces.
Definition 1.5.1. Let Δ be the set of subspaces in a vector space $V(n+1, \mathbb{F})$, that are totally isotropic with respect to a quadratic, symplectic or Hermitian form on V, and let d be the maximum of the vector dimensions of the elements of Δ. Furthermore, let $\mathcal{I}_{\mathcal{P}}$ be the restriction of the natural incidence relation of $V(n+1, \mathbb{F})$ to Δ, and let $\operatorname{dim}_{\mathcal{P}}$ be the map such that $\operatorname{dim}_{\mathcal{P}}(\pi)$ is the vector dimension of π minus one. Then, the incidence geometry $\mathcal{P}=\left(\Delta,\{0,1, \ldots, d-1\}, \operatorname{dim}_{\mathcal{P}}, \mathcal{I}_{\mathcal{P}}\right)$ is a classical polar space.

These classical polar spaces can be seen as substructures in the projective geometry $\mathrm{PG}(n, \mathbb{F})$. If \mathbb{F} is the finite field \mathbb{F}_{q}, then, these polar spaces are called the finite classical polar spaces. Note that we will always consider the finite classical polar spaces through their embedding in the projective space.

In this thesis, all polar spaces we will handle are finite classical polar spaces, so we will refer to them as the polar spaces. Although there is a broad theory linked to these geometrical structures, we will briefly discuss the most important properties and definitions, which will be of importance in the following chapters. For an extensive introduction to finite classical polar spaces, we refer to [74].

A polar space arising from a quadratic form is called a quadric. Consider a non-degenerate quadratic form Q on the vector space $V=V(n+1, q)$. If n is even, we can find an appropriate basis for V, so that Q can be written as

$$
Q\left(X_{0}, \ldots, X_{n}\right)=X_{0}^{2}+X_{1} X_{2}+\cdots+X_{n-1} X_{n}
$$

This non-degenerate quadratic form is called parabolic. If n is odd, then we can again, by using an appropriate basis for V, write Q as

$$
\begin{align*}
Q\left(X_{0}, \ldots, X_{n}\right) & =X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n} \tag{1.1}\\
\text { or as } Q\left(X_{0}, \ldots, X_{n}\right) & =X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-3} X_{n-2}+h\left(X_{n-1}, X_{n}\right), \tag{1.2}
\end{align*}
$$

with h an irreducible homogeneous polynomial over \mathbb{F}_{q} of degree 2 . The non-degenerate quadratic form in $\sqrt{1.1}$ is called hyperbolic ; and the non-degenerate quadratic form in $\sqrt{1.2}$ is called elliptic. The polar spaces arising from a non-degenerate parabolic, hyperbolic or elliptic quadratic form are called a non-degenerate parabolic, hyperbolic or elliptic quadric, respectively. Embedded in $\mathrm{PG}(n, q)$, they are denoted by $Q(n, q), Q^{+}(n, q)$ and $Q^{-}(n, q)$ respectively.

A polar space arising from a symplectic form is called a symplectic polar space. A non-degenerate symplectic form f on $V(m, q)$ only exists if m is even. Let $m=2 n$, then we can find an appropriate basis $\left\{e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ for $V(2 n, q)$, so that $f\left(e_{i}, e_{j}\right)=f\left(e_{i}^{\prime}, e_{j}^{\prime}\right)=0$ and $f\left(e_{i}, e_{j}^{\prime}\right)=$ $\delta_{i, j}, \forall i, j \in\{1,2, \ldots, n\}$. Embedded in $\operatorname{PG}(2 n-1, q)$, this symplectic polar space is denoted by $W(2 n-1, q)$. Note that a symplectic polar space contains all points of $\operatorname{PG}(2 n-1, q)$, but not all subspaces of dimension at least one.

A polar space arising from a Hermitian form is called a Hermitian polar space. The construction of a Hermitian form over $\mathbb{F}_{q^{\prime}}$ requires an involutory field automorphism of $\mathbb{F}_{q^{\prime}}$, which only exists for q^{\prime} a square, $q^{\prime}=q^{2}$. The only involutory field automorphism of $\mathbb{F}_{q^{2}}$ is the map $\sigma: \mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q^{2}}: x \mapsto x^{q}$. Let f be a non-degenerate Hermitian form on the vector space $V\left(n+1, q^{2}\right)$. An appropriate basis $\left\{e_{0}, \ldots, e_{n}\right\}$ for $V\left(n+1, q^{2}\right)$ can be found, such that $f\left(e_{i}, e_{j}\right)=\delta_{i, j}, \forall i, j \in\{0,1,2, \ldots, n\}$.

Note that quadrics and Hermitian varieties are completely determined by their point sets, and can be described as a set of points satisfying the corresponding quadratic or Hermitian form. This is not the case for the symplectic polar spaces.

We continue with the definition of the rank and the parameter of a polar space.
Definition 1.5.2. A generator of a polar space is a subspace of maximal dimension and the rank d of a polar space is the projective dimension of a generator plus 1. The parameter e of a polar space \mathcal{P} of rank d over \mathbb{F}_{q} is defined as the number so that the number of generators through a $(d-2)$-space of \mathcal{P} equals $q^{e}+1$.

In Table 1.1. we give the parameter e of the polar spaces of rank d.

Polar space	e
$Q^{+}(2 d-1, q)$	0
$H(2 d-1, q)$	$1 / 2$
$W(2 d-1, q)$	1
$Q(2 d, q)$	1
$H(2 d, q)$	$3 / 2$
$Q^{-}(2 d+1, q)$	2

Table 1.1: The parameter e of the polar spaces

Another important notion are the polarities associated to a polar space. Consider a non-degenerate Hermitian form, or the bilinear form f, based on a non-degenerate quadratic form Q on the vector
space $V=V(n+1, q)$. Recall that $f(v, w)=Q(v+w)-Q(v)-Q(w)$. For a subspace W of V, we can define its orthogonal complement regarding f :

$$
W^{\perp}=\{v \in V \mid \forall w \in W: f(v, w)=0\} .
$$

If we see the subspaces of V as subspaces of $\operatorname{PG}(n, q)$, then the map β that maps the subspace W onto the subspace W^{\perp}, is an involutory duality. This map β is called a polarity. For q odd, the subspaces of a quadric or Hermitian variety in $\operatorname{PG}(n, q)$ are precisely the subspaces that are contained in their image under the polarity. Geometrically, for q odd, the image of a subspace on the polar space under the corresponding polarity, is its tangent space.

Consider now a quadric or a Hermitian variety $\mathcal{F} \subseteq \operatorname{PG}(n, q)$. A tangent line in a point P to \mathcal{F} is a line ℓ through this point such that $\ell \cap \mathcal{F}$ is $\{P\}$ or the whole line ℓ. A point $P \in \operatorname{PG}(n, q)$ is singular for \mathcal{F}, if every line through P is a tangent line, or equivalently, if for every line ℓ through $P: \ell \cap \mathcal{F}=\{P\}$ or $\ell \cap \mathcal{F}=\ell$. The polar space \mathcal{F} is singular if it contains a singular point. For a non-singular point P of \mathcal{F}, we define the tangent space as the union of the tangent lines of \mathcal{F} in P. This tangent space forms a hyperplane, which we call the tangent hyperplane $T_{P}(\mathcal{F})$ in P. For q odd, this tangent hyperplane is the image of the point P under the corresponding polarity, as mentioned above.

It is known that all singular points of a singular quadric or Hermitian variety \mathcal{F} form a subspace. In this case, \mathcal{F} is a cone $\pi_{n-r-1} \mathcal{F}^{\prime}$. The vertex π_{n-r-1} of this cone is the $(n-r-1)$-space of singular points of $\mathcal{F}, n>r$, and the basis of the cone is a non-singular quadric or Hermitian variety (depending on the type of \mathcal{F}), in a subspace $\mathrm{PG}(r, q)$ of $\mathrm{PG}(n, q)$ that is disjoint from π_{n-r-1}.

A symplectic polar space can also be singular. Similar to the quadrics and Hermitian varieties, a singular symplectic polar space in $\operatorname{PG}(n, q)$ is a cone. The vertex of this cone is an s-dimensional subspace π_{s}, and the basis of the cone is a non-singular symplectic polar space in an $(n-s-1)$ dimensional subspace, disjoint from π_{s}. Note that $n-s-1$ must be odd, since non-singular symplectic polar spaces only exist in a projective space with odd dimension. The singular points of a singular symplectic polar space are the points contained in the vertex of the cone. For more information, we refer to [73 74].

We continue with some important counting results and remarks on some specific finite classical polar spaces.

Lemma 1.5.3 ([23, Lemma 9.4.1]). The number of k-spaces in a finite classical polar space \mathcal{F} of rank d and with parameter e, embedded in a projective space over the field \mathbb{F}_{q}, is given by

$$
\left[\begin{array}{c}
d \\
k+1
\end{array}\right] \prod_{i=1}^{k+1}\left(q^{d+e-i}+1\right)
$$

Hence, the number of points in \mathcal{F} is $\left[\begin{array}{l}d \\ 1\end{array}\right]\left(q^{d+e-1}+1\right)$. The number of generators in \mathcal{F} is $\prod_{i=1}^{d}\left(q^{d+e-i}+\right.$ 1).

Example 1.5.4. The non-singular parabolic quadric $Q(2, q)$ is a set of $q+1$ points in a plane $\operatorname{PG}(2, q)$, such that no three points are collinear. This parabolic quadric is also called a conic.

Remark 1.5.5. For q even, there exists a special point N, not belonging to the parabolic quadric $Q(2 k, q), k \geq 1$, such that every line through N in $\mathrm{PG}(2 k, q)$ meets the quadric in a unique point. Hence, every such line is a tangent line to the quadric. This point N is called the nucleus of the quadric.

Example 1.5.6. Consider a hyperbolic quadric $Q=Q^{+}(2 n+1, q)$. The set of generators Ω of Q can be partitioned into two equivalence classes Ω_{1} and Ω_{2}. The corresponding equivalence relation \sim is defined as follows: $\pi_{1} \sim \pi_{2} \Leftrightarrow \operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right) \equiv n(\bmod 2)$, for any two generators π_{1} and π_{2} in $Q^{+}(2 n+1, q)$. The two equivalence classes Ω_{1} and Ω_{2} are called the Latin and Greek generators. In Section 1.6. we will see that for $n=1$, the equivalence classes in $Q^{+}(3, q)$ are two opposite reguli.

Remark 1.5.7 ([74]). The polar spaces $Q(2 d, q)$ and $W(2 d-1, q)$ are isomorphic for q even. We find $W(2 d-1, q)$, for q even, by a projection of $Q(2 d, q)$ from the nucleus N of $Q(2 d, q)$ to a hyperplane not through N in the ambient projective space $\operatorname{PG}(2 d, q)$. In this way, there is a one-to-one connection between the generators of $W(2 d-1, q)$ and the generators of $Q(2 d, q)$.

We finish this section with the Klein correspondence, which is a map from the lines of $\mathrm{PG}(3, q)$ to the points of the hyperbolic quadric $Q^{+}(5, q)$.

Definition 1.5.8. Let l be a line in $\operatorname{PG}(3, q)$, and let $Y\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ and $Z\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ be two different points of l. The ordered set $\left(p_{01}, p_{02}, p_{03}, p_{23}, p_{31}, p_{12}\right)$, with

$$
p_{i j}=y_{i} z_{j}-y_{j} z_{i}
$$

is called the set of Plücker coordinates of l. The Klein correspondence maps a line l to the point P_{l} in $\mathrm{PG}(5, q)$, such that the set of coordinates of P_{l} is $\left(p_{01}, p_{02}, p_{03}, p_{23}, p_{31}, p_{12}\right)$.

Note that all points P_{l} in $\operatorname{PG}(5, q)$, with l a line in $\operatorname{PG}(3, q)$, are contained in the hyperbolic quadric $Q^{+}(5, q)$, defined by the equation $x_{0} x_{3}+x_{1} x_{4}+x_{2} x_{5}=0$. We also denote this quadric by the Klein quadric. This correspondence has the advantage that constructions in $\mathrm{PG}(3, q)$ can lead to good constructions of subspaces in $\operatorname{PG}(5, q)$. In Section 10.5 we use this correspondence to give a new, non-trivial Cameron-Liebler example in $Q^{+}(5, q)$.

In Table 1.2, we give an overview of the most important correspondences.

$\mathbf{P G (3 , q)}$	$\boldsymbol{Q}^{+} \mathbf{(5 , q)}$
Line	Point
Two intersecting lines	Two points, contained in a common line
The set of lines through a fixed point P and in a fixed plane π with $P \in \pi$	Line
The set of lines in a fixed plane	Greek plane
The set of lines through a fixed point	Latin plane
Lines in a regulus	Points of a conic, not contained in a Latin or Greek plane
Lines of a hyperbolic quadric	Points of two conics, contained in two planes that are each others image under the polarity of $Q^{+}(5, q)$.

Table 1.2: The image of sets of subspaces under the Klein correspondence.

1.6 Arcs, reguli, spreads and pencils

A line meeting a point set \mathcal{A} in 0,1 or 2 points, is called an external line, a tangent line or a bisecant to \mathcal{A}, respectively. In general, a line, meeting \mathcal{A} in i points, is called an i-secant.

Definition 1.6.1. A set \mathcal{S} of k-spaces in $\operatorname{PG}(n, q), \operatorname{AG}(n, q)$ or in a polar space \mathcal{P}, that pairwise have no point in common, is called a partial k-spread in $\operatorname{PG}(n, q), \operatorname{AG}(n, q)$ or \mathcal{P} respectively. If \mathcal{S} cannot be extended to a larger partial k-spread, then \mathcal{S} is called maximal. A partial k-spread \mathcal{S} such that every point of $\operatorname{PG}(n, q), \operatorname{AG}(n, q)$ or \mathcal{P} is contained in an element of \mathcal{S}, is called a k-spread. The elements of a $(d-1)$-spread in a polar space \mathcal{P} of rank d are generators of \mathcal{P}. A $(d-1)$-spread is also called a spread in \mathcal{P}. For $k=1$, a (partial) k-spread is called a (partial) line spread.

It is known that not every projective space $\operatorname{PG}(n, q)$ contains a k-spread.
Theorem 1.6.2 ([109]). There exists a k-spread in $\operatorname{PG}(n, q)$ if and only if $k+1$ is a divisor of $n+1$.
Since $\operatorname{PG}(n, q)$ contains $\frac{q^{n+1}-1}{q-1}$ points, and a k-space contains $\frac{q^{k+1}-1}{q-1}$ points, it follows that a k spread only can exist if $k+1$ is a divisor of $n+1$. It is also a sufficient condition, which follows from the construction of a Desarguesian spread, see for example [73] Theorem 4.1]. For this construction, field reduction is used to determine the spread elements. Let $r=\frac{n+1}{k+1}$. The points of $\mathrm{PG}\left(r-1, q^{k+1}\right)$ correspond to 1-dimensional subspaces of $V\left(r, q^{k+1}\right)$. By considering this vector space over \mathbb{F}_{q}, we obtain a vector space isomorphic to $V(r(k+1), q)=V(n+1, q)$, such that the 1-dimensional subspaces of $V\left(r, q^{k+1}\right)$ correspond to $(k+1)$-dimensional subspaces of $V(n+1, q)$. This is the concept of field reduction. In this way, the point set of $\operatorname{PG}\left(r-1, q^{k+1}\right)$ corresponds to a set \mathcal{D} of k-dimensional subspaces of $\mathrm{PG}(n, q)$, which partitions the point set of $\mathrm{PG}(n, q)$. Hence, these subspaces form a k-spread in $\operatorname{PG}(n, q)$. More specifically, this set \mathcal{D} is called a Desarguesian spread, and we have a one-to-one correspondence between the points of $\operatorname{PG}\left(r-1, q^{k+1}\right)$ and the elements of \mathcal{D}.

We will also introduce regular spreads. For this, we first give the definition of a regulus.
Definition 1.6.3. A regulus in $\operatorname{PG}(2 k+1, q)$ is a set \mathcal{S} of $q+1$ pairwise disjoint k-spaces, such that every line that meets three elements of \mathcal{S}, meets all elements of \mathcal{S}.

It is known that every three pairwise disjoint k-spaces S_{1}, S_{2}, S_{3} in $\operatorname{PG}(2 k+1, q)$ are contained in a unique regulus, see [72] Lemma 15.1.1, Theorem 15.3.12]. For $k=1$, a regulus consists of $q+1$ lines in $\operatorname{PG}(3, q)$. For every three lines l_{1}, l_{2}, l_{3} in a regulus R, the $q+1$ lines, meeting l_{1}, l_{2} and l_{3}, also form a regulus, which we call the opposite regulus. A regulus and its opposite regulus in $\mathrm{PG}(3, q)$ form a hyperbolic quadric $Q^{+}(3, q)$, see Section 1.5 .

Definition 1.6.4. A k-spread \mathcal{S} in $\operatorname{PG}(2 k+1, q)$ is regular if for every three elements S_{1}, S_{2}, S_{3} in \mathcal{S}, it holds that all k-spaces of the regulus, determined by these subspaces, are also contained in \mathcal{S}.

For $q=2$, every k-spread in $\operatorname{PG}(2 k+1,2)$ is regular. For $q>2$, a spread \mathcal{S} is regular if and only if \mathcal{S} is Desarguesian [25].

Definition 1.6.5. A k-spread \mathcal{S} in $\operatorname{PG}(r(k+1)-1, q)$ is normal if the subspace spanned by any two spread elements is partitioned by elements of \mathcal{S}.

For $r \leq 2$, every k-spread in $\operatorname{PG}(r(k+1)-1, q)$ is normal. For $r>2$, it can be proven that \mathcal{S} is normal, if and only if \mathcal{S} is Desarguesian, see [4].

Definition 1.6.6. A k-arc in $\operatorname{PG}(n, q)$ is a set of k points such that every subset of $n+1$ points spans the whole space $\operatorname{PG}(n, q)$. A k-arc is called complete if it is not contained in a $(k+1)$-arc.

It is known that an arc in $\operatorname{PG}(2, q)$ has at most $q+1$ elements for q odd, and at most $q+2$ elements for q even, see [101]. A $(q+1)$-arc in $\operatorname{PG}(2, q)$ is called an oval and a $(q+2)$-arc a hyperoval. A hyperoval can only exist for q even. In this case, a hyperoval is a complete arc. For q odd, an oval is a complete arc. It can be proven that, for q even, every oval is contained in a hyperoval, and hence,
is not complete [18]. For q even, the $q+1$ tangent lines to an oval are concurrent, see [18]. The intersection point of the tangent lines is called the nucleus of the oval. In this case, for q even, the union of an oval and its nucleus is a hyperoval.

It is clear that a non-singular parabolic quadric in $\operatorname{PG}(2, q)$, so a conic $Q(2, q)$, is an oval, see Example 1.5.4 Moreover, Segre [106] could prove the converse for q odd.

Theorem 1.6.7 ([106]). Every oval in $\mathrm{PG}(2, q), q$ odd, is a conic.
For $\operatorname{PG}(2, q), q$ even, this result is not true. A counterexample for this can be found by considering a hyperoval which is a conic together with its nucleus. If we delete a point, different from the nucleus, then we find an oval. This set is not a conic if $q \geq 8$.

In an unpublished manuscript from Penttila, a characterisation for ovals in $\operatorname{PG}\left(2, q^{2}\right), q$ even, is given.

Result 1.6.8 ([98]). Let O be an oval of $\mathrm{PG}\left(2, q^{2}\right), q$ even. Then O is a conic if and only if every triple of distinct points of O, together with the nucleus of O, lies in a Baer subplane that meets O in $q+1$ points.

A set \mathcal{S} of points in $\mathrm{PG}(2, q)$ is called a translation set, with respect to a line ℓ, if the group of elations with axis ℓ, fixing \mathcal{S}, acts transitively on the points of $\mathcal{S} \backslash \ell$. The line ℓ is called the translation line. If a hyperoval H in $\operatorname{PG}(2, q)$ is a translation set, then it is called a translation hyperoval. To avoid the trivial and special cases, we suppose that $q=2^{h}, h>2$. It is known that the translation line must be a bisecant of H, and that every translation hyperoval in $\mathrm{PG}(2, q)$ is PGL-equivalent to the point set $H_{i}=\left\{\left(1, t, t^{2^{i}}\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(0,1,0),(0,0,1)\}$, for a certain $i<\frac{h}{2}$ and $\operatorname{gcd}(i, h)=1$ (see e.g. [73] Theorem 8.5.4], [97]). For $i=1$, the hyperoval H_{i} corresponds to a conic and its nucleus. All hyperovals, equivalent with H_{1}, are called regular. In this case, every bisecant of H_{1}, through the nucleus of the conic, is a translation line for the hyperoval, and so the translation line is not unique.

The hyperovals H_{i}, with $1<i<\frac{h}{2}$, were the first examples of irregular hyperovals, and were determined by Segre in [107]. The translation line of these hyperovals is unique: $\ell: X=0$. In this case, the group G of elations with axis the line ℓ, that fixes H_{i}, is the translation group containing all elements of the form

$$
M_{a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
a^{2^{i}} & 0 & 1
\end{array}\right]
$$

with $a \in \mathbb{F}_{q}$. From this representation of the group, it is clear that $G \cong\left(\mathbb{F}_{q},+\right)$.
Ovoids can be defined in several incidence geometries, but in this thesis, we only use them in the context of polar spaces.

Definition 1.6.9. A partial ovoid in a polar space \mathcal{P} is a set of points in \mathcal{P} such that each generator contains at most one point of this set. It is called an ovoid if each generator contains precisely one point of the set.

To end this section, we also give the definition of a pencil and a sunflower in $\mathrm{PG}(n, q)$, in $\mathrm{AG}(n, q)$ and in a polar space \mathcal{P}.

Definition 1.6.10. The set of all k-spaces through a fixed t-space $\tau, k \geq t$, is called a t-pencil of k-spaces with vertex τ, and, in particular, a point-pencil if $t=0$ and a line-pencil if $t=1$.

Note that for all k-spaces U, V in a t-pencil with vertex τ, it holds that $\tau \subseteq U \cap V$. In this thesis, we will always use the notation vertex, except in Chapter 6 In this chapter, graphs are involved, and to avoid confusion, we will denote the vertex of a point-pencil by the base point.

We use the notation $\operatorname{Star}(P)$ for all lines through the point P, Lines (π) for all lines in the subspace π, and $\operatorname{Pencil}(P, \pi)$ for all lines through the point P contained in the subspace π.

Definition 1.6.11. A sunflower \mathcal{S}, with vertex τ, is a set of subspaces through τ, such that for every two distinct subspaces $U, V \in \mathcal{S}$ it holds that $U \cap V=\tau$.

1.7 Graph theory

1.7.1 General graph theory

In this thesis, we will use graphs to model some incidence geometries.
Definition 1.7.1. A graph $\Gamma=(V(\Gamma), E(\Gamma))$ consists of a set $V(\Gamma)$ of vertices and a set $E(\Gamma)$ of unordered pairs of $V(\Gamma)$, which are called edges. If we only use one graph Γ, then we use the notation V and E, instead of $V(\Gamma)$ and $E(\Gamma)$. A vertex v and an edge e are incident if the vertex v is contained in the edge e. Two vertices v and w are adjacent if there is an edge containing both vertices. We denote this by $v \sim w$. The vertices adjacent to a fixed vertex v are called the neighbours of v. Two edges are adjacent if they have a vertex in common.

Definition 1.7.2. A path of length l, from a vertex v_{0} to a vertex v_{l} in a graph Γ is a sequence of (distinct) vertices $\left(v_{0}, v_{1}, v_{2}, \ldots, v_{l-1}, v_{l}\right)$, such that the vertices v_{i-1} and v_{i} are adjacent for all $i, 1 \leq i \leq l$. The distance $d(x, y)$ between two vertices x and y is the minimal length of a path $\left(v_{0}, \ldots, v_{l}\right)$ with $v_{0}=x, v_{l}=y$. For a given vertex $v \in V$, the set of vertices in Γ at distance i from v is denoted by $\Gamma_{i}(v)$. A graph Γ is connected if there exists a path between every two vertices of Γ. The maximal distance that occurs between two vertices of a connected graph Γ is called the diameter of the graph.

In this thesis, we suppose that every pair of vertices can be contained in at most one edge and that every edge contains two different vertices. We also suppose that every two vertices can be connected by a path. In other words, we will only consider connected, simple graphs.

Definition 1.7.3. The degree of a vertex v in a graph $\Gamma=(V, E)$ is the number of vertices in V adjacent with v, or equivalently the number of edges in E that are incident with v. The graph Γ is k-regular, or regular of degree $k \in \mathbb{N}$ if every edge of E has degree k.

Let d be the diameter of Γ. If there exist integers $c_{1}, \ldots, c_{d}, a_{0}, \ldots, a_{d}, b_{0}, \ldots, b_{d-1}$, such that for all vertices v and w in V, we have that

- $a_{i}=\left|\Gamma_{i}(v) \cap \Gamma_{1}(w)\right|$ if $i=d(v, w)$,
- $b_{i}=\left|\Gamma_{i+1}(v) \cap \Gamma_{1}(w)\right|$ if $i=d(v, w)<d$,
- $c_{i}=\left|\Gamma_{i-1}(v) \cap \Gamma_{1}(w)\right|$ if $i=d(v, w)>0$,
then Γ is a distance-regular graph with intersection array $\left\{c_{1}, \ldots, c_{d} ; a_{0}, \ldots, a_{d} ; b_{0}, \ldots, b_{d-1}\right\}$.
Note that all distance-regular graphs are regular.
Definition 1.7.4. A graph Γ is strongly regular if Γ is k-regular and if there exist integers λ and $\mu>0$ such that
- every two adjacent vertices have λ common neighbours,
- every two non-adjacent vertices have μ common neighbours.

1.7.2 Algebraic graph theory

We continue with introducing some aspects in algebraic graph theory. These topics will be useful in the context of Cameron-Liebler sets.

Let $\Gamma=(V, E)$ be a graph, and let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, n \geq 1$.
Definition 1.7.5. The adjacency matrix of Γ is the matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$, with $a_{i j}=1$ if the vertices v_{i} and v_{j} are adjacent and $a_{i j}=0$ if the vertices v_{i} and v_{j} are non-adjacent. The elements $a_{i i}$ are zero for all i.

Note that the adjacency matrix of a graph depends on the order of the vertices.
Definition 1.7.6. The characteristic polynomial of a graph Γ is the characteristic polynomial of its adjacency matrix A, i.e. the polynomial $p(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)$. Likewise, the eigenvalues of Γ are the eigenvalues of its adjacency matrix, i.e. the (complex) roots of the characteristic polynomial of the graph Γ. If Γ is k-regular, then $A \boldsymbol{j}=k \boldsymbol{j}$, and so, we have that k is an eigenvalue of Γ. This eigenvalue is often called the trivial eigenvalue. The multiplicity of an eigenvalue is the algebraic multiplicity as a root of the characteristic polynomial. As A is a real symmetric matrix, we know that all eigenvalues of A, and so of Γ, are real.

We end with the definition of intriguing and tight sets, which have a strong link with CameronLiebler sets.

Definition 1.7.7. Let $\Gamma=(V, E)$ be a connected k-regular graph. A set Y of vertices of Γ is an intriguing set if there are integers y and y^{\prime} such that every vertex of Y is adjacent to y^{\prime} vertices of Y and every vertex of $V \backslash Y$ is adjacent to y vertices of Y.

Note that \emptyset and V are examples of intriguing sets in $\Gamma=(V, E)$. An intriguing set, different from \emptyset and V, is called non-trivial.

Lemma 1.7.8. Let $\Gamma=(V, E)$ be a connected k-regular graph. A set Y of vertices, with $Y \neq \emptyset, V$, is intriguing if and only if its characteristic vector lies in the span of the all-one vector and an eigenvector v_{θ} of Γ such that $y^{\prime}-y=\theta$.

If θ is the largest or smallest non-trivial eigenvalue of Γ, then Y is called a tight set of type 1 or 2 respectively.

1.7.3 Graph colorings

Many problems in finite geometry can be translated to finding specific families or partitions of vertices in a certain graph. To see this, we start with the definition of a clique and coclique.

Definition 1.7.9. Let $\Gamma=(V, E)$ be a graph.

- A set \mathcal{S} of vertices in V is called a clique if every two vertices in \mathcal{S} are adjacent.
- A set \mathcal{S} of vertices in V is an independent set if no two vertices in \mathcal{S} are adjacent. An independent set is also called a coclique.

A clique or coclique is maximal if it is not contained in a larger clique or coclique, respectively. The size of the largest clique or coclique in a graph Γ is called the clique number $\omega(\Gamma)$ and independence number $\alpha(\Gamma)$ respectively.

We end this section on graphs with the definition of a coloring.
Definition 1.7.10. A coloring of a graph Γ is an assignment of colors to the vertices of Γ, such that every vertex has one color and such that adjacent vertices get different colors. The sets of vertices with the same color are called the color classes.

The chromatic number $\chi(\Gamma)$ of a graph Γ is the smallest number c such that there exists a coloring of Γ with c colors.

1.8 Tactical decompositions

The first exploration of Cameron-Liebler sets, by Cameron and Liebler [28], uses the theory of tactical decompositions. Tactical decompositions were first introduced by Dembowski [42]. This section is based on the notes in [38].

Definition 1.8.1. Let $(\mathcal{P}, \mathcal{B}, I)$ be an incidence geometry with \mathcal{P} a set of points and \mathcal{B} a set of blocks. Let $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}, P_{i} \neq \emptyset$, be a partition of \mathcal{P}, and let $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}, B_{i} \neq \emptyset$, be a partition of \mathcal{B}.

- If there exists an $(s \times r)$-matrix X with $\left|\left\{p \in P_{i} \mid p I b\right\}\right|=X_{i j}, \forall b \in B_{j}$, then the decomposition is called block-tactical.
- If there exists an $(s \times r)$-matrix Y with $\left|\left\{b \in B_{i} \mid p I b\right\}\right|=Y_{i j}, \forall p \in P_{j}$, then the decomposition is called point-tactical.

The decomposition is called tactical if it is both block- and point-tactical.
Lemma 1.8.2. Let $(\mathcal{P}, \mathcal{B}, I)$ be an incidence geometry with \mathcal{P} a set of points, \mathcal{B} a set of blocks and A the point-block incidence matrix. Let $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}, P_{i} \neq \emptyset$, be a partition of \mathcal{P}, and let $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}, B_{i} \neq \emptyset$, be a partition of \mathcal{B}.

- If the partition is block-tactical with corresponding matrix X, then

$$
A^{T} \chi_{\mathcal{P}_{i}}=\sum_{l=1}^{r} X_{i l} \chi_{\mathcal{B}_{l}}, \forall i \in\{1, \ldots, s\}
$$

- If the partition is point-tactical with corresponding matrix Y, then

$$
A \chi_{\mathcal{B}_{i}}=\sum_{l=1}^{s} Y_{l j} \chi_{\mathcal{P}_{l}}, \forall i \in\{1, \ldots, r\}
$$

The action of (a subgroup of) the automorphism group of an incidence geometry gives rise to a tactical decomposition of the point- and block-set.

Lemma 1.8.3. Let $(\mathcal{P}, \mathcal{B}, I)$ be an incidence geometry, with \mathcal{P} the set of points and \mathcal{B} the set of blocks. Consider a subgroup G of the automorphism group of $(\mathcal{P}, \mathcal{B}, I)$, with orbits $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ on the points and orbits $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ on the blocks. Then these partitions form a tactical decomposition.

1.9 Association schemes

In this section, we give a short introduction on association schemes. We rely on [23] Chapter 2]. For more details, we refer to [22, Section 2], [23, Chapter 2] and [20].

Definition 1.9.1 ([22, Section 2.1]). Let X be a finite set of size n, whose members are known as vertices. A d-class association scheme is a pair (X, \mathcal{R}), where $\mathcal{R}=\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right\}$ is a set of binary symmetric relations with the following properties:

1. $\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right\}$ is a partition of $X \times X$,
2. \mathcal{R}_{0} is the identity relation,
3. there are constants $p_{i j}^{l}$ such that for all $(x, y) \in \mathcal{R}_{l}$, there are exactly $p_{i j}^{l}$ elements $z \in X$ such that $(x, z) \in \mathcal{R}_{i}$ and $(z, y) \in \mathcal{R}_{j}$. These constants are called the intersection numbers of the association scheme.

Note that the association schemes defined above are sometimes also called symmetrical association schemes. Since the relations \mathcal{R}_{i} are symmetric, we have that $p_{i j}^{l}=p_{j i}^{l}, \forall 0 \leq i, j, l \leq d$.

We now investigate the (binary) adjacency matrices A_{i} corresponding to the relations \mathcal{R}_{i}.

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if }(x, y) \in \mathcal{R}_{i} \\ 0 & \text { else }\end{cases}
$$

Property 1.9.2. For all values $0 \leq i, j \leq d$, it holds that:

1. $\sum_{i=0}^{d} A_{i}=J$,
2. $A_{0}=I$,
3. $A_{i}=A_{i}^{T}$,
4. $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}=A_{j} A_{i}$.

From the first property, it follows that the matrices A_{i} are linearly independent, and from the third and fourth property we find that these matrices generate a $(d+1)$-dimensional commutative algebra \mathcal{A} of symmetric matrices, which is called the Bose-Mesner algebra.

Since the matrices A_{i} commute, they can be diagonalized simultaneously. This gives the following result, which was originally proven in [41].

Result 1.9.3. Consider a d-class association scheme (X, \mathcal{R}), with adjacency matrices A_{i} corresponding to the relations $\mathcal{R}_{i}, 0 \leq i \leq d$, and with $|X|=n$. Then, there is an orthogonal decomposition of \mathbb{R}^{n} as a direct sum of $d+1$ orthogonal eigenspaces of the matrices A_{i}, corresponding to the common eigenvectors. Hence, we have that $\mathbb{R}^{n}=V_{0} \perp V_{1} \perp \cdots \perp V_{d}$, with V_{0}, \ldots, V_{d} the common spaces of eigenvectors with associated eigenvalues $P_{j i}$, with $P_{j i}$ the eigenvalue of A_{i} on V_{j}. Note that one of the spaces of eigenvectors, w.l.o.g. V_{0}, will be 1-dimensional since $J \in \mathcal{A}$ has eigenvalue n with multiplicity 1 .

Let $\left(\Delta_{k}, \mathcal{R}\right)$ be an association scheme linked to a geometrical structure, such as a projective space, an affine space or a finite classical polar space. The elements Δ_{k} of the association scheme correspond to the k-spaces in the geometrical structure. For these schemes, a classical ordering of the eigenspaces V_{0}, \ldots, V_{d} is imposed; V_{0} is the 1-dimensional eigenspace $\langle\boldsymbol{j}\rangle$ and V_{1} is the eigenspace such that $\operatorname{im}\left(A^{T}\right)=V_{0} \perp V_{1}$, with A the point- k-space incidence matrix.

We end this subsection with two well-known association schemes. For more information on these, we refer to [41], [23] Section 9.1 and 9.3] and [67 Section 6 and 9].

Example 1.9.4 (The Johnson scheme). Let X be a finite set of size n, and let $\mathcal{F}_{k}, k<n$, be the set of all subsets of size k. The Johnson graph $J(n, k)$ is the graph whose vertices are the elements of \mathcal{F}_{k}, and two vertices are adjacent if they have $k-1$ elements in common. The relations of the corresponding association scheme are $\mathcal{R}_{i}=\left\{\left(\Pi_{1}, \Pi_{2}\right) \in \mathcal{F}_{k} \times \mathcal{F}_{k}| | \Pi_{1} \cap \Pi_{2} \mid=k-i\right\}$, with $i \in\{0, \ldots, k\}$.

Example 1.9.5 (The Grassmann scheme). Consider the n-dimensional projective space $\mathrm{PG}(n, q)$ over the field \mathbb{F}_{q}, and let $\Delta_{k}, k<n$, be the set of all k-dimensional subspaces. The Grassmann graph $J_{q}(n+1, k+1)$ is the graph whose vertices are the elements of Δ_{k}, and two vertices are adjacent if the corresponding subspaces intersect in a $(k-1)$-space. The relations of the corresponding association scheme are $\mathcal{R}_{i}=\left\{\left(\pi_{1}, \pi_{2}\right) \in \Delta_{k} \times \Delta_{k} \mid \operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)=k-i\right\}$, with $i \in\{0, \ldots, k+1\}$. This scheme is also called the q-analogue of the Johnson scheme.

There are many other mathematical structures that can be linked to an association scheme, for example polar spaces, affine spaces and groups, see [114 Introduction]. In Chapter 10 we will often use the association schemes on the generators of finite classical polar spaces.

1.10 Useful countings and bounds

In this thesis, we will frequently use counting arguments to find classification results. For this, we will often use the following lemma.

Lemma 1.10.1 ([108, Section 170]). The number of j-spaces disjoint from a fixed m-space in $\operatorname{PG}(n, q)$ equals $q^{(m+1)(j+1)}\left[\begin{array}{c}n-m \\ j+1\end{array}\right]$.
Furthermore, we will use bounds on the Gaussian binomial coefficients found in [77. Lemma 2.1] and [78, Lemma 34, Lemma 37].

Lemma 1.10.2. Let $n \geq k \geq 0$.

1. Let $q \geq 3$. Then $\left[\begin{array}{l}n \\ k\end{array}\right] \leq 2 q^{k(n-k)}$.
2. Let $q \geq 4$. Then $\left[\begin{array}{l}n \\ k\end{array}\right] \leq\left(1+\frac{2}{q}\right) q^{k(n-k)}$.
3. Let $q \geq 2$ and $n \geq 1$. Then $\theta_{n} \leq \frac{q^{n+1}}{q-1}$.
4. Let $n>k>0$. Then $\left[\begin{array}{l}n \\ k\end{array}\right] \geq\left(1+\frac{1}{q}\right) q^{k(n-k)}$.

We end with another result on the Gaussian binomial coefficients. First, we formulate the (double) q-analogue of Pascal's rule:

Result 1.10.3 (Pascal's Rule).

$$
q^{b}\left[\begin{array}{c}
a-1 \tag{1.3}\\
b
\end{array}\right]+\left[\begin{array}{l}
a-1 \\
b-1
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a-1 \\
b
\end{array}\right]+q^{a-b}\left[\begin{array}{l}
a-1 \\
b-1
\end{array}\right]
$$

Lemma 1.10.4. For integers a, b, c, with $0 \leq b, c \leq a$, we have that

$$
\left[\begin{array}{l}
a \tag{1.4}\\
b
\end{array}\right]=\sum_{i=0}^{c}\left[\begin{array}{l}
a-c \\
b-i
\end{array}\right]\left[\begin{array}{l}
c \\
i
\end{array}\right] q^{(b-i)(c-i)}
$$

Proof. We use induction on c. For $c=0$, the statement is trivial, so suppose that $\sqrt{1.4}$ is true for a value $c-1$. Then we will prove that it is also true for the value c. We first use the left equality of (1.3). In the second last step, we use the right equality of (1.3).

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\sum_{i=0}^{c-1}\left[\begin{array}{c}
a-c+1 \\
b-i
\end{array}\right]\left[\begin{array}{c}
c-1 \\
i
\end{array}\right] q^{(b-i)(c-1-i)} \\
& =\sum_{i=0}^{c-1}\left(\left[\begin{array}{l}
a-c \\
b-i
\end{array}\right] q^{b-i}+\left[\begin{array}{c}
a-c \\
b-i-1
\end{array}\right]\right)\left[\begin{array}{c}
c-1 \\
i
\end{array}\right] q^{(b-i)(c-1-i)} \\
& =\sum_{i=0}^{c-1}\left[\begin{array}{l}
a-c \\
b-i
\end{array}\right]\left[\begin{array}{c}
c-1 \\
i
\end{array}\right] q^{(b-i)(c-i)}+\sum_{i=0}^{c-1}\left[\begin{array}{c}
a-c \\
b-i-1
\end{array}\right]\left[\begin{array}{c}
c-1 \\
i
\end{array}\right] q^{(b-i)(c-1-i)} \\
& =\sum_{i=0}^{c-1}\left[\begin{array}{c}
a-c \\
b-i
\end{array}\right]\left[\begin{array}{c}
c-1 \\
i
\end{array}\right] q^{(b-i)(c-i)}+\sum_{j=1}^{c}\left[\begin{array}{c}
a-c \\
b-j
\end{array}\right]\left[\begin{array}{c}
c-1 \\
j-1
\end{array}\right] q^{(b-j+1)(c-j)} \\
& =\left[\begin{array}{c}
a-c \\
b
\end{array}\right] q^{b c}+\sum_{k=1}^{c-1}\left[\begin{array}{c}
a-c \\
b-k
\end{array}\right] q^{(b-k)(c-k)}\left(\left[\begin{array}{c}
c-1 \\
k
\end{array}\right]+\left[\begin{array}{c}
c-1 \\
k-1
\end{array}\right] q^{(c-k)}\right)+\left[\begin{array}{c}
a-c \\
b-c
\end{array}\right] \\
& =\left[\begin{array}{c}
a-c \\
b
\end{array}\right] q^{b c}+\sum_{k=1}^{c-1}\left[\begin{array}{c}
a-c \\
b-k
\end{array}\right]\left[\begin{array}{l}
c \\
k
\end{array}\right] q^{(b-k)(c-k)}+\left[\begin{array}{c}
a-c \\
b-c
\end{array}\right] \\
& =\sum_{k=0}^{c}\left[\begin{array}{l}
a-c \\
b-k
\end{array}\right]\left[\begin{array}{l}
c \\
k
\end{array}\right] q^{(b-k)(c-k)} .
\end{aligned}
$$

Part I

Intersection problems for subspaces in projective and affine spaces

One of the classical problems in extremal set theory is to determine the size of the largest sets of pairwise non-trivially intersecting subsets. This problem was solved in 1961 by Erdős, Ko and Rado [55], and their result was improved by Wilson in 1984.

Theorem 2.0.1 ([[113]]). Let n, k and t be positive integers and suppose that $k \geq t \geq 1$ and $n \geq$ $(t+1)(k-t+1)$. If \mathcal{S} is a family of subsets of size k in a set Ω with $|\Omega|=n$, such that the elements of \mathcal{S} pairwise intersect in at least t elements, then $|\mathcal{S}| \leq\binom{ n-t}{k-t}$.
Moreover, if $n \geq(t+1)(k-t+1)+1$, then $|\mathcal{S}|=\binom{n-t}{k-t}$ holds if and only if \mathcal{S} is the set of all the subsets of size k through a fixed subset of Ω of size t.

Note that if $t=1$, then \mathcal{S} is a collection of subsets of size k of an arbitrary set, which are pairwise not disjoint. In the literature, a family of subsets that are pairwise not disjoint, is called an Erdős-Ko-Rado set, in short EKR set and the classification of the largest Erdős-Ko-Rado sets is called the Erdős-Ko-Rado problem. Furthermore, as new families of any size can be found by deleting elements, the research is focused on maximal families: these are families of pairwise intersecting subsets, not extendable to a larger family with the same property.

Hilton and Milner [71] described the largest Erdo"s-Ko-Rado sets \mathcal{S} with the property that there is no element contained in all elements of \mathcal{S}.

Theorem 2.0.2 ([71]). Let Ω be a set of size n and let \mathcal{S} be an Erdős-Ko-Rado set of k-subsets in Ω, $k \geq 3$ and $n \geq 2 k+1$. If there is no element in Ω which is contained in all subsets in \mathcal{S}, then

$$
|\mathcal{S}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1
$$

Moreover, equality holds if and only if

- \mathcal{S} is the union of $\{F\}$, for some fixed k-subset F, and the set of all k-subsets G of Ω containing a fixed element $x \notin F$, such that $G \cap F \neq \emptyset$, or
- $k=3$ and \mathcal{S} is the set of all subsets of size 3 having an intersection of size at least 2 with a fixed subset F of size 3 .

The classification of the second largest maximal EKR set is often called a Hilton-Milner result.
This set-theoretical problem can be generalized in a natural way to many other structures such as designs [102], permutation groups [66], affine spaces and projective geometries [37]. In this thesis, we work in the projective and affine setting, where this problem is known as the q-analogue of the Erdős-Ko-Rado problem. Frankl and Wilson classified the largest set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q)$.

Theorem 2.0.3 ([60]). Let t and k be integers, with $0 \leq t \leq k$. Let \mathcal{S} be a set of k-spaces in $\mathrm{PG}(n, q)$, pairwise intersecting in at least a t-space.
(i) If $n \geq 2 k+1$, then $|\mathcal{S}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. Equality holds if and only if \mathcal{S} is the set of all the k-spaces, containing a fixed t-space of $\mathrm{PG}(n, q)$, or $n=2 k+1$ and \mathcal{S} is the set of all the k-spaces in a fixed $(2 k-t)$-space.
(ii) If $2 k-t \leq n \leq 2 k$, then $|\mathcal{S}| \leq\left[\begin{array}{c}2 k-t+1 \\ k-t\end{array}\right]$. Equality holds if and only if \mathcal{S} is the set of all the k-spaces in a fixed $(2 k-t)$-space.

Corollary 2.0.4. Let \mathcal{S} be an Erdo"s-Ko-Rado set of k-spaces in $\operatorname{PG}(n, q)$, so $t=0$. If $n \geq 2 k+1$, then $|\mathcal{S}| \leq\left[\begin{array}{l}n \\ k\end{array}\right]$. Equality holds if and only if \mathcal{S} is the set of all the k-spaces, containing a fixed point of $\operatorname{PG}(n, q)$, or $n=2 k+1$ and \mathcal{S} is the set of all the k-spaces in a fixed hyperplane.

Note that in Theorem 2.0 .3 the condition $n \geq 2 k-t$ is not a restriction, since any two k-dimensional subspaces in $\operatorname{PG}(n, q)$, with $n \leq 2 k-t$, meet in at least a t-dimensional subspace.

Related to this question, we report the q-analogue of the Hilton-Milner result on the second largest maximal Erdős-Ko-Rado sets of subspaces in a finite projective space, due to Blokhuis et al.

Theorem 2.0.5 ([12]). Let \mathcal{S} be a maximal set of pairwise intersecting k-spaces in $\mathrm{PG}(n, q)$, with $n \geq 2 k+2, k \geq 2$ and $q \geq 3$ (or $n \geq 2 k+4, k \geq 2$ and $q=2$). If \mathcal{S} is not a point-pencil, then

$$
|\mathcal{S}| \leq\left[\begin{array}{l}
n \\
k
\end{array}\right]-q^{k(k+1)}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]+q^{k+1}
$$

Moreover, if equality holds, then
(i) either \mathcal{S} consists of all the k-spaces through a fixed point P, meeting a fixed $(k+1)$-space τ, with $P \in \tau$, in a j-space, $j \geq 1$, and all the k-spaces in τ; or
(ii) $k=2$ and \mathcal{S} is the set of all the planes meeting a fixed plane π in at least a line.

The Erdős-Ko-Rado problem for $k=1$ has been solved completely. Indeed, in $\operatorname{PG}(n, q)$ with $n \geq 3$, a maximal Erdős-Ko-Rado set of lines is either the set of all the lines through a fixed point or the set of all the lines contained in a fixed plane. It is possible to generalize this result for a maximal family \mathcal{S} of k-spaces, pairwise intersecting in a $(k-1)$-space, in a projective space $\operatorname{PG}(n, q), n \geq k+2$.

Theorem 2.0.6 ([23, Section 9.3]). Let \mathcal{S} be a set of projective k-spaces, pairwise intersecting in a $(k-1)$-space in $\operatorname{PG}(n, q), n \geq k+2$. Then, all the k-spaces of \mathcal{S} contain a fixed $(k-1)$-space or they are contained in a fixed $(k+1)$-space.

All intersection problems we discuss in this part, can be linked to the Erdős-Ko-Rado problem.
In Chapter 3 we classify the largest examples of k-spaces, pairwise intersecting in at least a $(k-2)$ space in $\mathrm{PG}(n, q)$. In Chapter 4 , we investigate the second largest Erdős-Ko-Rado sets of k-spaces in both a projective and affine context. This Hilton-Milner result classifies large sets \mathcal{S} of k-spaces pairwise intersecting in a t-space, such that \mathcal{S} is not a t-pencil.

Note that in Chapters 3 and 4 we investigate subspaces pairwise intersecting in at least a subspace of a certain dimension. However, in Chapter 5 we investigate sets \mathcal{S} of k-spaces in $\mathrm{PG}(n, q)$ pairwise intersecting in precisely a point. The Sunflower bound states that if the number of elements in such a set \mathcal{S} surpasses the Sunflower bound, then \mathcal{S} must be a sunflower. We were able to lower this bound for $k \geq 3$ and $q \geq 9$.

In Chapter 6 we do not investigate subspaces in $\operatorname{PG}(n, q)$, but flags of subspaces. By definition, two flags are intersecting if they are not in general position. Hence, an Erdős-Ko-Rado set of flags, is a set of flags that are pairwise not in general position. In this thesis, we investigate how we can cover all flags of a specific type in PG (n, q), by using as few Erdős-Ko-Rado sets as possible. We
discuss this question for line-solid flags in $\operatorname{PG}(4, q)$ and for flags containing a $(d-1)$ - and a d-space in $\mathrm{PG}(2 d, q), d \geq 2$.

Subspaces of dimension k, pairwise intersecting in at least a $(k-2)$-space

66 Not everything that counts can be counted, and not everything that can be counted counts.

-Albert Einstein

The results in this chapter are joint work with dr. Giovanni Longobardi, dr. Ago-Erik Riet and prof. Leo Storme, and will appear in [45].

3.1 Introduction and preliminaries

In this chapter, we investigate large sets of k-spaces, pairwise intersecting in at least a $(k-2)$-space in $\mathrm{PG}(n, q)$. For $k=2$, this corresponds to large sets of planes, pairwise intersecting in at least a point. This Erdős-Ko-Rado problem for sets of projective planes is trivial if $n \leq 4$. For $n=5$, Blokhuis, Brouwer and Szőnyi classified the six largest examples [13, Section 6].
De Boeck investigated the maximal Erdős-Ko-Rado sets of planes in $\operatorname{PG}(n, q)$ with $n \geq 5$, see [33]. He characterized those sets with sufficiently large size and showed that they belong to one of the 11 known examples, explicitly described in his work.

In [53], a classification of the largest examples of sets of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in precisely a $(k-2)$-space is given. In [21], Brouwer and Hemmeter investigated sets of generators, pairwise intersecting in at least a space with codimension 2 , in quadrics and symplectic polar spaces. In this chapter, we will study the projective analogue of this question. Let $f(k, q)=\max \left\{3 q^{4}+\right.$ $\left.6 q^{3}+5 q^{2}+q+1, \theta_{k+1}+q^{4}+2 q^{3}+3 q^{2}\right\}$ and so

$$
f(k, q)= \begin{cases}3 q^{4}+6 q^{3}+5 q^{2}+q+1 & \text { if } k=3, q \geq 2 \text { or } k=4, q=2 \\ \theta_{k+1}+q^{4}+2 q^{3}+3 q^{2} & \text { if } k=4, q>2 \text { or } k>4\end{cases}
$$

We analyze the sets of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a $(k-2)$-space and with more than $f(k, q)$ elements. We will suppose that these sets \mathcal{S} of subspaces are maximal, and during this discussion, we will give bounds on the size of the largest examples.

In [54], and in Chapter 4 families of subspaces pairwise intersecting in at least a t-space were investigated. More specifically, the largest non-trivial examples of a set of k-spaces, pairwise intersecting in at least a t-space in $\operatorname{PG}(n, q)$ were given.

Theorem 3.1.1 ([54] and Theorem 4.4.7). Let \mathcal{F} be a set of k-spaces pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q), k>t+1, t>0, n>2 k+3+t, q \geq 3$, of maximum size, with \mathcal{F} not a t-pencil, then \mathcal{F} is one of the following examples:
$i)$ the set of k-spaces, meeting a fixed $(t+2)$-space in at least a $(t+1)$-space,
ii) the set of k-spaces in a fixed $(k+1)$-space ξ together with the set of k-spaces through a t-space $\delta \subset \xi$, that have at least a $(t+1)$-space in common with ξ.

Note that the two examples in the previous theorem correspond to Example 3.1.2 (ii) and (iii) for $t=k-2$ respectively (see below). While, in [54] and in Chapter 4 the largest non-trivial example for all values of t is classified, here, for $t=k-2$ we improve on this result by classifying the ten largest examples, see Main Theorem 3.5.1

We end this section with some examples of maximal sets \mathcal{S} of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a $(k-2)$-space, $n \geq k+2$ and $k \geq 3$. We add a proof of maximality for the examples for which it is not straightforward.

Example 3.1.2. Examples of maximal sets \mathcal{S} of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least $a(k-2)$-space.
(i) $(k-2)$-pencil: the set \mathcal{S} is the set of all k-spaces that contain a fixed $(k-2)$-space. Then $|\mathcal{S}|=\left[\begin{array}{c}n-k+2 \\ 2\end{array}\right]$.
(ii) Star: there is a k-space ζ such that \mathcal{S} contains all k-spaces that have at least a $(k-1)$-space in common with ζ. Then $|\mathcal{S}|=q \theta_{k} \theta_{n-k-1}+1$.
(iii) Generalized Hilton-Milner example: there is $a(k+1)$-space ν and $a(k-2)$-space $\pi \subset \nu$ such that \mathcal{S} consists of all k-spaces in ν (type 1), together with all k-spaces of $\mathrm{PG}(n, q)$, not in ν, through π that intersect ν in a $(k-1)$-space (type 2). Then $|\mathcal{S}|=\theta_{k+1}+q^{2}\left(q^{2}+q+1\right) \theta_{n-k-2}$.
(iv) There is a $(k+2)$-space ρ, a k-space $\alpha \subset \rho$ and $a(k-2)$-space $\pi \subset \alpha$ so that \mathcal{S} contains all k-spaces in ρ that meet α in a $(k-1)$-space not through π (type 1), all k-spaces in ρ through π (type 2), and all k-spaces in $\mathrm{PG}(n, q)$, not in ρ, that contain a $(k-1)$-space of α through π (type 3). Then $|\mathcal{S}|=(q+1) \theta_{n-k}+q^{3}(q+1) \theta_{k-2}+q^{4}-q$.

Figure 3.1: Example ($i v$): the blue, red and green k-spaces correspond to the k-spaces of type 1,2 and 3 , respectively.

Lemma 3.1.3. The set \mathcal{S} from Example 3.1.2 (iv) is maximal.
Proof. Suppose there is a k-space $E \notin \mathcal{S}$, meeting all elements of \mathcal{S} in at least a $(k-2)$-space. We start with the case $\pi \not \subset E$. If $\operatorname{dim}(E \cap \alpha) \leq k-2$, then there is a $(k-1)$-space μ through π in α with $\operatorname{dim}((E \cap \alpha) \cap \mu) \leq k-3$. There are elements of type 3 through μ that meet E in a subspace of dimension at most $k-3$, which gives a contradiction. Hence, E contains a $(k-1)$-space $\sigma_{E} \subset \alpha$. Let G be an element of \mathcal{S} of type 2 such that $\langle G, \alpha\rangle=\rho$, and so $G \cap \alpha=\pi$. We have

$$
\begin{aligned}
\operatorname{dim}(E \cap \rho) \geq \operatorname{dim}(\langle E \cap G, E \cap \alpha\rangle) & \geq \operatorname{dim}(E \cap \alpha)+\operatorname{dim}(E \cap G)-\operatorname{dim}(E \cap G \cap \alpha) \\
& \geq(k-1)+(k-2)-(k-3) \geq k
\end{aligned}
$$

So, $E \subset \rho$, which implies that $E \in \mathcal{S}$ (type 1), a contradiction. Now, we suppose that $\pi \subset E$. Let F_{1} and F_{2} be two elements of \mathcal{S} of type 1 , with $\left\langle F_{1}, F_{2}\right\rangle=\rho$ and $\operatorname{dim}\left(\pi \cap F_{1} \cap F_{2}\right)=k-4$. First we show that their existence is assured. Indeed, let π_{1} and π_{2} be two different $(k-3)$ spaces in π and let α_{i} be a $(k-1)$-space in α through $\pi_{i}, i=1,2$. Let P_{1} be a point in $\rho \backslash \alpha$ and let $F_{1}=\left\langle P_{1}, \alpha_{1}\right\rangle$. Finally, consider P_{2} to be a point in $\rho \backslash\left\langle\alpha, F_{1}\right\rangle$ and let $F_{2}=\left\langle P_{2}, \alpha_{2}\right\rangle$. Since $E \notin \mathcal{S}$ and $\pi \subset E$, we know that E cannot contain a $(k-1)$-space of α, and so, $E \cap \alpha=\pi$. Hence, from $F_{1} \cap F_{2} \subset \alpha$, it follows that $\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right)=\operatorname{dim}\left(\pi \cap F_{1} \cap F_{2}\right)$. Then

$$
\begin{aligned}
\operatorname{dim}(E \cap \rho) & =\operatorname{dim}\left(E \cap\left\langle F_{1}, F_{2}\right\rangle\right) \\
& \geq \operatorname{dim}\left(E \cap F_{1}\right)+\operatorname{dim}\left(E \cap F_{2}\right)-\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right) \\
& \geq(k-2)+(k-2)-(k-4) \geq k
\end{aligned}
$$

Hence, $E \subset \rho$ which implies that $E \in \mathcal{S}$, type 2 , again a contradiction.
(v) There is a $(k+2)$-space ρ, and $a(k-1)$-space $\alpha \subset \rho$ such that \mathcal{S} contains all k-spaces in ρ that meet α in at least a $(k-2)$-space (type 1), and all k-spaces in $\operatorname{PG}(n, q)$, not in ρ, through α (type 2). Note that all k-spaces in $\operatorname{PG}(n, q)$ through α are contained in \mathcal{S}.

$$
\text { Then }|\mathcal{S}|=\theta_{n-k}+q^{2}\left(q^{2}+q+1\right) \theta_{k-1}
$$

Figure 3.2: Example (v) : the blue and red k-spaces correspond to the k-spaces of type 1,2 , respectively.

Lemma 3.1.4. The set \mathcal{S} from Example 3.1.2 (v) is maximal.
Proof. Suppose there is a k-space $E \notin \mathcal{S}$, meeting all elements of \mathcal{S} in at least a $(k-2)$ space. Then E contains a $(k-2)$-space σ_{E} in α, since E meets all elements of \mathcal{S} of type 2. Note that E cannot contain α, since then, E would be a k-space in \mathcal{S}. Let σ_{1} and σ_{2} be two distinct $(k-2)$-spaces in α with $\operatorname{dim}\left(\sigma_{1} \cap \sigma_{2} \cap \sigma_{E}\right)=k-4$. Consider F_{1} and F_{2}, two elements of \mathcal{S} of type 1 through σ_{1} and σ_{2}, respectively, with $\operatorname{dim}\left(F_{1} \cap F_{2}\right)=k-2$. Note that $\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right)=k-4$. Indeed,

$$
k-4 \leq \operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right) \leq k-2
$$

(a) If $\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right)=k-2$, then $E \cap F_{1} \cap F_{2} \cap \alpha=F_{1} \cap F_{2} \cap \alpha$, a contradiction.
(b) If $\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right)=k-3$, there exists a point $P \in F_{1} \cap F_{2} \cap E$ not in α and $\operatorname{dim}(E \cap \rho) \geq k-1$. Since $E \notin \mathcal{S}$, then $E \not \subset \rho$. The only possibility is $\operatorname{dim}(E \cap \rho)=$ $k-1$, but then we can find a k-space F of type 1 such that $E \cap F$ is a ($k-3$)-space, again a contradiction.

Hence, $\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right)=k-4$ and

$$
\begin{aligned}
\operatorname{dim}(E \cap \rho) & =\operatorname{dim}\left(E \cap\left\langle F_{1}, F_{2}\right\rangle\right) \\
& \geq \operatorname{dim}\left(E \cap F_{1}\right)+\operatorname{dim}\left(E \cap F_{2}\right)-\operatorname{dim}\left(E \cap F_{1} \cap F_{2}\right) \\
& \geq(k-2)+(k-2)-(k-4) \geq k
\end{aligned}
$$

So, $E \subset \rho$, which implies that $E \in \mathcal{S}$, a contradiction.
(vi) There are two ($k+2$)-spaces ρ_{1}, ρ_{2} intersecting in a $k+1$)-space $\alpha=\rho_{1} \cap \rho_{2}$. There are two $(k-1)$-spaces $\pi_{A}, \pi_{B} \subset \alpha$ with $\pi_{A} \cap \pi_{B}$ the $(k-2)$-space λ, there is a point $P_{A B} \in \alpha \backslash\left\langle\pi_{A}, \pi_{B}\right\rangle$, and let $\lambda_{A}, \lambda_{B} \subset \lambda$ be two different $(k-3)$-spaces. Then \mathcal{S} contains
type 1. all k-spaces in α,
type 2. all k-spaces of $\operatorname{PG}(n, q)$ through $\left\langle P_{A B}, \lambda\right\rangle$, not in ρ_{1} and not in ρ_{2}.
type 3. all k-spaces in ρ_{1}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{A} through λ_{A},
type 4. all k-spaces in ρ_{1}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{B} through λ_{B},
type 5. all k-spaces in ρ_{2}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{A} through λ_{B},
type 6. all k-spaces in ρ_{2}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{B} through λ_{A}.

$$
\text { Then }|\mathcal{S}|=\theta_{n-k}+q^{2} \theta_{k-1}+4 q^{3}
$$

Figure 3.3: Example $(v i)$: the orange k-space is of type 1 , the green one of type 2, the red ones of type 3 and 6 , and the blue ones of type 4 and 5.

Lemma 3.1.5. The set \mathcal{S} from Example 3.1.2 (vi) is maximal.

Proof. Suppose there is a k-space $E \notin \mathcal{S}$, meeting all elements of \mathcal{S} in at least a ($k-2$)-space. Suppose first that $P_{A B} \notin E$. As E contains at least a $(k-2)$-space of all elements of \mathcal{S}, type 1 and $2, E$ contains a $(k-1)$-space β in α such that β contains a $(k-2)$-space of $\left\langle P_{A B}, \lambda\right\rangle$, not through $P_{A B}$. Consider now the elements F and G of \mathcal{S}, type 3 and 4 respectively, with $F \cap G \cap \alpha=\left\langle P_{A B}, \lambda_{A} \cap \lambda_{B}\right\rangle$. If $E \not \subset \rho_{1}$, then $\operatorname{dim}(E \cap F \cap G) \leq k-4$ and

$$
\begin{aligned}
k-1 & =\operatorname{dim}(E \cap \alpha)=\operatorname{dim}\left(E \cap \rho_{1}\right)=\operatorname{dim}(E \cap\langle F, G\rangle) \\
& \geq \operatorname{dim}(E \cap F)+\operatorname{dim}(E \cap G)-\operatorname{dim}(E \cap F \cap G) \\
& \geq(k-2)+(k-2)-(k-4) \geq k,
\end{aligned}
$$

a contradiction. Hence, $E \subset \rho_{1}$. Analogously, we find that $E \subset \rho_{2}$, using two elements of \mathcal{S} of type 5 and 6 . And so, $E \subset \rho_{1} \cap \rho_{2}=\alpha$, which implies that $E \in \mathcal{S}$, type 1, a contradiction. So now we may suppose that $P_{A B} \in E$. Then E contains a $(k-1)$-space of α that meets λ in a $(k-3)$-space. This follows since E meets the elements of \mathcal{S} of type 1 and 2 in at least a ($k-2$)-space. Note that the dimension of $E \cap \pi_{A}$ and $E \cap \pi_{B}$ is $k-2$ or $k-3$ as $E \cap \lambda$ is a $(k-3)$-space. Moreover, the latter spaces do not both have the same dimension. Indeed, if $\operatorname{dim}\left(E \cap \pi_{A}\right)=\operatorname{dim}\left(E \cap \pi_{B}\right)=k-2$, then $E \subset \alpha$, type 1, a contradiction. Moreover, since E contains $P_{A B}$, and since $\operatorname{dim}(E \cap \alpha)=k-1$, we know that $\operatorname{dim}\left(E \cap\left\langle\pi_{A}, \pi_{B}\right\rangle\right)=k-2$. If $\operatorname{dim}\left(E \cap \pi_{A}\right)=\operatorname{dim}\left(E \cap \pi_{B}\right)=k-3$, then w.l.o.g. we may suppose that $E \cap \lambda \neq \lambda_{A}$. Consider now an element X of type 3 such that $\lambda \nsubseteq X$. Then $\operatorname{dim}(X \cap E \cap \alpha)=k-3$, and so, $E \cap X \nsubseteq \alpha$. Hence, E and X also share points in $\rho_{1} \backslash \alpha$ and so, $E \subset \rho_{1}$. Similarly, $E \subset \rho_{2}$ and so $E \subset \rho_{1} \cap \rho_{2}=\alpha$ which cannot occur.
By a similar argument, we find that the dimension of $E \cap \lambda_{A}$ and $E \cap \lambda_{B}$ is $k-3$ or $k-4$, both not the same dimension. Then E contains a $(k-2)$-space of π_{A} or π_{B}, and E contains λ_{A} or λ_{B}. W.l.o.g. we may suppose that E contains λ_{A} and a $(k-2)$-space of π_{A}, and meets π_{B} in λ_{A}.
Let H be an element of type 1 of \mathcal{S}, and let G be an element of type 4 of \mathcal{S} through a ($k-2$)space $\sigma \neq \lambda$ in π_{B} with $H \cap G=\sigma$. Then, since $\operatorname{dim}(E \cap G \cap H)=k-4$,

$$
\begin{aligned}
\operatorname{dim}\left(E \cap \rho_{1}\right) & =\operatorname{dim}(E \cap\langle G, H\rangle) \\
& \geq \operatorname{dim}(E \cap G)+\operatorname{dim}(E \cap H)-\operatorname{dim}(E \cap G \cap H) \\
& \geq(k-2)+(k-2)-(k-4) \geq k,
\end{aligned}
$$

and so $E \subset \rho_{1}$. Hence, $E \in \mathcal{S}$, type 3, a contradiction.

Figure 3.4: Example(vii): the red, blue and green planes correspond to the k-spaces of type 1,2 and 3 in $\mathrm{PG}(n, q) / \gamma$, respectively.
(vii) There is a $(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\operatorname{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example VIII in
[33]: let Ψ be an $(n-k+2)$-space, disjoint from γ, in $\operatorname{PG}(n, q)$. Consider two solids σ_{1} and σ_{2} in Ψ, intersecting in a line l. Take the points P_{1} and P_{2} on l. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$ (type 1), all k-spaces through $\left\langle\gamma, P_{1}\right\rangle$ that contain a line in σ_{1} and a line in σ_{2} (type 2), and all k-spaces through $\left\langle\gamma, P_{2}\right\rangle$ in $\left\langle\gamma, \sigma_{1}\right\rangle$ or in $\left\langle\gamma, \sigma_{2}\right\rangle$ (type 3). Then $|\mathcal{S}|=\theta_{n-k}+q^{4}+2 q^{3}+3 q^{2}$.

In Lemma 3.4.2, we prove that the set \mathcal{S} is maximal.
(viii) There is $a(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\operatorname{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example $I X$ in [33]: let Ψ be an $(n-k+2)$-space, disjoint from γ, in $\operatorname{PG}(n, q)$, and let l be a line and σ a solid skew to l, both in Ψ. Denote $\langle l, \sigma\rangle$ by ρ. Let P_{1} and P_{2} be two points on l and let \mathcal{R}_{1} and \mathcal{R}_{2} be a regulus and its opposite regulus in σ. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$ (type 1), all k-spaces through $\left\langle\gamma, P_{1}\right\rangle$ in the $(k+1)$-space generated by γ, l and a fixed line of \mathcal{R}_{1} (type 2), and all k-spaces through $\left\langle\gamma, P_{2}\right\rangle$ in the $(k+1)$-space generated by γ, l and a fixed line of \mathcal{R}_{2} (type 3). Then $|\mathcal{S}|=\theta_{n-k}+2 q^{3}+2 q^{2}$.
In Lemma 3.4.3, we prove that the set \mathcal{S} is maximal.

Figure 3.5: Example(viii): the red, green and blue planes correspond to the k-spaces of type $1,2,3$ in $\operatorname{PG}(n, q) / \gamma$, respectively.
(ix) There is a $(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\operatorname{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example VII in [33]: let Ψ be an $(n-k+2)$-space, disjoint from γ in $\operatorname{PG}(n, q)$ and let ρ be a 5 -space in Ψ. Consider a line l and a 3-space σ disjoint from l, both in ρ. Choose three points P_{1}, P_{2}, P_{3} on l and choose four non-coplanar points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ in σ. Denote $l_{1}=Q_{1} Q_{2}, \bar{l}_{1}=Q_{3} Q_{4}, l_{2}=Q_{1} Q_{3}$, $\bar{l}_{2}=Q_{2} Q_{4}, l_{3}=Q_{1} Q_{4}$, and $\bar{l}_{3}=Q_{2} Q_{3}$. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$ (type 0) and all k-spaces through $\left\langle\gamma, P_{i}\right\rangle$ in $\left\langle\gamma, l, l_{i}\right\rangle$ or in $\left\langle\gamma, l, \bar{l}_{i}\right\rangle, i=1,2,3$ (type i). Then $|\mathcal{S}|=\theta_{n-k}+6 q^{2}$.

In Lemma 3.4.1, we prove that the set \mathcal{S} is maximal.
$(x) \mathcal{S}$ is the set of all k-spaces contained in a fixed $(k+2)$-space ρ. Then $|\mathcal{S}|=\left[\begin{array}{c}k+3 \\ 2\end{array}\right]$.
From now on, let \mathcal{S} be a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$-space in the projective space $\operatorname{PG}(n, q)$ with $n \geq k+2$.

We will focus on the sets \mathcal{S} such that $|\mathcal{S}|>f(k, q)$. In Section 3.2 we investigate the sets \mathcal{S} of k-spaces in $\operatorname{PG}(n, q)$ such that there is no point contained in all elements of \mathcal{S} and such that \mathcal{S} contains a set of three k-spaces that meet in a $(k-4)$-space. In Section 3.3 , we assume again

Figure 3.6: Example $(i x)$: the red, blue, green and orange planes correspond to the k-spaces of type $0,1,2$ and 3 respectively.
that there is no point contained in all elements of \mathcal{S} and that for any three k-spaces X, Y, Z in \mathcal{S}, $\operatorname{dim}(X \cap Y \cap Z) \geq k-3$. In Section 3.4 we investigate the maximal sets \mathcal{S} of k-spaces such that there is at least a point contained in all elements of \mathcal{S}. We end this chapter with the Main Theorem 3.5.1 that classifies all sets of k-spaces pairwise intersecting in at least a $(k-2)$-space with size larger than $f(k, q)$.

3.2 There are three elements of \mathcal{S} that meet in a $(k-4)$-space

Note that for three k-spaces A, B, C in \mathcal{S}, it holds that $\operatorname{dim}(A \cap B \cap C) \geq k-4$. Suppose there exist three k-spaces A, B, C in \mathcal{S} with $\operatorname{dim}(A \cap B \cap C)=k-4$, and suppose that there is no point contained in all elements of \mathcal{S}. If all k-spaces are contained in a $(k+2)$-space, then we find Example $3.1 .2(x)$, so we may assume that the elements of \mathcal{S} span at least a $(k+3)$-space. In this subsection, we will use the following notation.

Notation 3.2.1. Let \mathcal{S} be a maximal set of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a $(k-2)$-space. Let A, B and C in \mathcal{S} be three k-spaces with $\pi_{A B C}=A \cap B \cap C$ a $(k-4)$-space. Let $\pi_{A B}=A \cap B, \pi_{A C}=A \cap C$ and $\pi_{B C}=B \cap C$. Let \mathcal{S}^{\prime} be the set of k-spaces of \mathcal{S} not contained in $\langle A, B\rangle$, and let α be the span of all subspaces $D^{\prime}:=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$.

Figure 3.7: Notation 3.2.1

Note, by the Grassmann dimension property, that $\pi_{A B}, \pi_{B C}$ and $\pi_{A C}$ are $(k-2)$-spaces and $\langle A, B\rangle=\langle B, C\rangle=\langle A, C\rangle$.

We first present a lemma that will be useful for the later classification results in this section.
Lemma 3.2.2. [Using Notation 3.2.1] If there exist three k-spaces A, B and C in \mathcal{S}, with $\operatorname{dim}(A \cap$ $B \cap C)=k-4$, then a k-space of \mathcal{S}^{\prime} meets $\langle A, B\rangle$ in a $(k-1)$-space. More specifically, it contains $\pi_{A B C}$ and meets $\pi_{A B}, \pi_{A C}$ and $\pi_{B C}$, each in a $(k-3)$-space through $\pi_{A B C}$.

Proof. Consider a k-space E of \mathcal{S}^{\prime}. Clearly,

$$
k-2 \leq \operatorname{dim}(E \cap\langle A, B\rangle) \leq k-1
$$

If $\operatorname{dim}(E \cap\langle A, B\rangle)=k-2$, then this $(k-2)$-space has to lie in A, B and C, and so in the $(k-4)$ space $\pi_{A B C}$, a contradiction. Hence, we know that $\operatorname{dim}(E \cap\langle A, B\rangle)=k-1$. By the symmetry of the k-spaces A, B and C, it suffices to prove that E contains $\pi_{A B C}$ and meets $\pi_{A B}$ in a $(k-3)$-space through $\pi_{A B C}$. Using the Grassmann dimension property we find that

$$
\begin{aligned}
\operatorname{dim}\left(E \cap \pi_{A B}\right) & \geq \operatorname{dim}(E \cap A)+\operatorname{dim}(E \cap B)-\operatorname{dim}(E \cap\langle A, B\rangle) \\
& =(k-2)+(k-2)-(k-1)=k-3
\end{aligned}
$$

and so, $\operatorname{dim}\left(E \cap \pi_{A B}\right)$ is $k-2$ or $k-3$. If $\operatorname{dim}\left(E \cap \pi_{A B}\right)=k-2$, then

$$
\begin{aligned}
\operatorname{dim}(E \cap C) & \leq \operatorname{dim}\left(E \cap \pi_{A B C}\right)+\operatorname{dim}\left(E \cap\left\langle C, \pi_{A B}\right\rangle\right)-\operatorname{dim}\left(E \cap \pi_{A B}\right) \\
& \leq(k-4)+(k-1)-(k-2)=k-3
\end{aligned}
$$

a contradiction since any two elements of \mathcal{S} meet in at least a $(k-2)$-space. Hence, $\operatorname{dim}\left(E \cap \pi_{A B}\right)$ is $k-3$, and so

$$
\begin{aligned}
\operatorname{dim}\left(E \cap \pi_{A B C}\right) & \geq \operatorname{dim}(E \cap C)+\operatorname{dim}\left(E \cap \pi_{A B}\right)-\operatorname{dim}\left(E \cap\left\langle C, \pi_{A B}\right\rangle\right) \\
& \geq(k-2)+(k-3)-(k-1)=k-4
\end{aligned}
$$

This implies that the $(k-4)$-space $\pi_{A B C}$ is contained in E.
Let D be a k-space of \mathcal{S}^{\prime}. By Lemma 3.2 .2 we know that $D \cap\langle A, B\rangle$ is a $(k-1)$-space. For the remaining part of this chapter, we will denote this $(k-1)$-space by D^{\prime}.

Corollary 3.2.3. [Using Notation 3.2.1] Suppose \mathcal{S} contains three elements A, B and C, meeting in a $(k-4)$-space, and α is $a(k+i)$-space. Up to a suitable labelling of A, B and C, we have the following results.
a) If $i=-1$, then $\alpha=D \cap\langle A, B\rangle$ for every $D \in \mathcal{S}^{\prime}$.
b) If $i=0$, then $\alpha=\left\langle\rho_{1}, \rho_{2}, \rho_{3}\right\rangle$, with $\rho_{1} a(k-3)$-space in $\pi_{A B}, \rho_{2} a(k-3)$-space in $\pi_{B C}$, $\rho_{3}=\pi_{A C}$ and $\pi_{A B C} \subset \rho_{j}, j=1,2,3$. In this case, all elements of \mathcal{S}^{\prime} contain the $(k-2)$-space $\left\langle\rho_{1}, \rho_{2}\right\rangle$.
c) If $i=1$, then $\alpha=\left\langle\rho_{1}, \rho_{2}, \rho_{3}\right\rangle$, with $\rho_{1} a(k-3)$-space in $\pi_{A B}, \rho_{2}=\pi_{B C}, \rho_{3}=\pi_{A C}$ and $\pi_{A B C} \subset \rho_{j}, j=1,2,3$. In this case, all elements of \mathcal{S}^{\prime} contain the $(k-3)$-space ρ_{1}.
d) If $i=2$, then $\alpha=\langle A, B\rangle$.

Proof. For $i=-1$ and $i=2$, the corollary follows immediately from Lemma 3.2.2 Hence, we start with the case that α is a k-space. Consider two elements of \mathcal{S}^{\prime}, say D_{1}, D_{2}, meeting $\langle A, B\rangle$ in two different $(k-1)$-spaces $D_{1}^{\prime}, D_{2}^{\prime}$. These two elements of \mathcal{S}^{\prime} exist, as otherwise $\operatorname{dim}(\alpha)=k-1$. Since D_{1}^{\prime} and D_{2}^{\prime} span the k-space α, they meet in a $(k-2)$-space. By Lemma 3.2 .2 , this $(k-2)$-space $D_{1}^{\prime} \cap D_{2}^{\prime}$ contains $\pi_{A B C}$, together with a $(k-3)$-space ρ_{1} through $\pi_{A B C}$ in $\pi_{X Y}$ and a $(k-3)$-space ρ_{2} through $\pi_{A B C}$ in $\pi_{Y Z}$, with $\{X, Y, Z\}=\{A, B, C\}$. By Lemma3.2.2. every other element of \mathcal{S}^{\prime} will meet $\langle A, B\rangle$ in a $(k-1)$-space through this $(k-2)$-space $D_{1}^{\prime} \cap D_{2}^{\prime}=\left\langle\rho_{1}, \rho_{2}\right\rangle$, which proves the statement.

Suppose now that α is a $(k+1)$-space. Then, we consider two elements D_{3}, D_{4} of \mathcal{S}^{\prime} meeting $\langle A, B\rangle$ in two $(k-1)$-spaces $D_{3}^{\prime}, D_{4}^{\prime}$ such that $\operatorname{dim}\left(D_{3}^{\prime} \cap D_{4}^{\prime}\right)=k-3$. These elements of \mathcal{S}^{\prime} exist as otherwise all elements of \mathcal{S}^{\prime} correspond to $(k-1)$-spaces pairwise intersecting in a $(k-2)$ space. But then, since these $(k-1)$-spaces span a $(k+1)$-space, they form a $(k-2)$-pencil (see Theorem 2.0.6. Using Lemma 3.2.2 and the proof above of the case $\operatorname{dim}(\alpha)=k$ or $i=0$, it follows that α would be a k-space. Now, again by Lemma 3.2.2. we see that $D_{3}^{\prime} \cap D_{4}^{\prime}$ contains $\pi_{A B C}$ and a $(k-3)$-space ρ_{1} through $\pi_{A B C}$ in $\pi_{X Y}$, with $\{X, Y, Z\}=\{A, B, C\}$. Using dimension properties and the fact that $D_{3}^{\prime} \cap D_{4}^{\prime}=\rho_{1}$, we see that every other element of \mathcal{S}^{\prime} will contain ρ_{1}, which proves the statement.

We will now use Corollary 3.2.3 to explicitly describe the possibilities, depending on the dimension of $\alpha=\left\langle D \cap\langle A, B\rangle \mid D \in \mathcal{S}^{\prime}\right\rangle$.

3.2.1 α is a $(k-1)$-space

Proposition 3.2.4. [Using Notation 3.2.1] If \mathcal{S} contains three k-spaces that meet in a $(k-4)$-space and $\operatorname{dim}(\alpha)=k-1$, then \mathcal{S} is Example 3.1.2 (v).

Proof. From Corollary 3.2.3 we have that for all $D \in \mathcal{S}^{\prime}, D \cap\langle A, B\rangle=\alpha$, so all the k-spaces in \mathcal{S}^{\prime} meet $\langle A, B\rangle$ in α. As a k-space of \mathcal{S} in $\langle A, B\rangle$ needs to have at least a $(k-2)$-space in common with every $D \in \mathcal{S}^{\prime}$, we find that every k-space of \mathcal{S} in $\langle A, B\rangle$ meets α in at least a ($k-2$)-space. Note that the condition that every two k-spaces of \mathcal{S} in $\langle A, B\rangle$ meet in at least a $(k-2)$-space is fulfilled. Hence, \mathcal{S} is Example $3.1 .2(v)$ with $\rho=\langle A, B\rangle$.

3.2.2 α is a k-space

Proposition 3.2.5. [Using Notation 3.2.1] If \mathcal{S} contains three k-spaces that meet in a $(k-4)$-space and $\operatorname{dim}(\alpha)=k$, then \mathcal{S} is Example 3.1.2(iv).
Proof. If α is a k-space, we may suppose w.l.o.g., by Corollary 3.2 .3 that $\alpha=\left\langle\pi_{A B}, P_{A C}, P_{B C}\right\rangle$ with $P_{A C}$ and $P_{B C}$ points in $\pi_{A C} \backslash \pi_{A B C}$ and $\pi_{B C} \backslash \pi_{A B C}$, respectively. We also know that all the k-spaces $D \in \mathcal{S}^{\prime}$ have a $(k-1)$-space D^{\prime} in common with α and they contain the ($k-2$)-space $\pi=\left\langle\pi_{A B C}, P_{A C} P_{B C}\right\rangle$. So, every pair of k-spaces in \mathcal{S}^{\prime} meets in a $(k-2)$-space inside $\langle A, B\rangle$. Consider a k-space E of \mathcal{S} in $\langle A, B\rangle$, not having a $(k-1)$-space in common with α, and let D_{1} and D_{2} be k-spaces of \mathcal{S}^{\prime} with $D_{1}^{\prime} \cap D_{2}^{\prime}=\pi$, and so $\left\langle D_{1}^{\prime}, D_{2}^{\prime}\right\rangle=\alpha$. If E does not contain π, then

$$
\operatorname{dim}(E \cap \alpha) \geq \operatorname{dim}\left\langle E \cap D_{1}^{\prime}, E \cap D_{2}^{\prime}\right\rangle \geq k-2+k-2-\operatorname{dim}(E \cap \pi) \geq k-1
$$

This is a contradiction. Hence, every k-space of $\mathcal{S} \backslash \mathcal{S}^{\prime}$ contains π or has a $(k-1)$-space in common with α. From the maximality of \mathcal{S}, it follows that \mathcal{S} is Example 3.1.2 $(i v)$ with $\rho=\langle A, B\rangle$ and $\pi=\left\langle\pi_{A B C}, P_{A C} P_{B C}\right\rangle$.

3 Subspaces of dimension k, pairwise intersecting in at least a $(k-2)$-space

3.2.3 α is a $(k+1)$-space

To understand the structure of these sets of k-spaces, we will first investigate the case $k=3$ and then we will generalize our results to $k \geq 3$.

$k=3$ and α is a 4-space

Note that for $k=3$, the spaces $\pi_{A B}, \pi_{B C}$ and $\pi_{A C}$ are pairwise disjoint lines and $\pi_{A B C}$ is the empty space. By Corollary 3.2 .3 we may suppose w.l.o.g. that $\alpha=\left\langle P_{A B}, \pi_{A C}, \pi_{B C}\right\rangle$, with $P_{A B}$ a point in $\pi_{A B} \backslash \pi_{A B C}$. Hence, each of the planes $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$, contains $P_{A B}$ and the set of all these planes D^{\prime} span the 4 -space α.

From now on, let \mathcal{L} be the set of lines $D \cap C, D \in \mathcal{S}^{\prime}$.

Figure 3.8: There are three solids A, B, C in \mathcal{S}, with $A \cap B \cap C=\emptyset$ and $\operatorname{dim}(\alpha)=4$

Proposition 3.2.6. [Using Notation 3.2.1] If \mathcal{S} contains three solids such that there is no point contained in the three of them, and if $\operatorname{dim}(\alpha)=4$, then a solid of \mathcal{S} in $\langle A, B\rangle$ either
i) is contained in α, or
ii) contains $P_{A B}$ and a line r of C, intersecting all lines of \mathcal{L}.

Proof. Recall that each of the intersection planes $D \cap\langle A, B\rangle$ contains $P_{A B}$ and that the set of all these planes span the $(k+1)$-space α. Hence, we can see that there exist solids $D_{1}, D_{2} \in \mathcal{S}^{\prime}$, such that their intersection planes D_{1}^{\prime} and D_{2}^{\prime} with α, meet exactly in the point $P_{A B}$. Indeed, by Theorem 2.0.6 if all the planes $D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$, would pairwise intersect in a line, then these planes lie in a fixed solid or contain a fixed line. Neither possibility can occur since α is a 4 -space, and $P_{A B}$ is the only point contained in all intersection planes.

Suppose first that E is a solid of \mathcal{S} in $\langle A, B\rangle$, not containing $P_{A B}$. As E needs to contain at least a line of every plane $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$, we have that E contains at least a line $l_{1} \subset D_{1}^{\prime} \subset \alpha$ and a line $l_{2} \subset D_{2}^{\prime} \subset \alpha$. Note that l_{1} and l_{2} are disjoint as they do not contain the point $P_{A B}$. Hence, $E=\left\langle l_{1}, l_{2}\right\rangle \subset \alpha$.

So now we may suppose that E contains the point $P_{A B}$ and meets α in precisely the plane γ. The plane γ is the span of $P_{A B}$ and the line $r=\gamma \cap C$. As $E \cap D$ is at least a line of the plane
$D^{\prime}=D \cap\langle A, B\rangle$ for every $D \in \mathcal{S}^{\prime}$, and since every two lines in the plane γ meet each other, we have that r has to intersect all the lines of \mathcal{L}. Hence, we find the second possibility.

In the previous proposition, we proved that there are two types of solids of \mathcal{S} contained in $\langle A, B\rangle$. One of them are the solids containing $P_{A B}$ and a line $r \subset C$, intersecting all lines of \mathcal{L}. The number of these solids depends on the number of lines r meeting all lines of \mathcal{L}.

We first investigate the case that there is a line $l \in \mathcal{L}$ that intersects all the lines of \mathcal{L}. Note that there cannot be two lines in \mathcal{L} intersecting all the lines of \mathcal{L}, since then all lines of \mathcal{L} would lie in a plane or go through a fixed point in C. This gives a contradiction as the lines of \mathcal{L} span C and at least two points of both $\pi_{A B}$ and $\pi_{B C}$ are covered by the lines of \mathcal{L}.

Proposition 3.2.7. If there is a line $l \in \mathcal{L}$ that intersects all the lines of \mathcal{L}, then \mathcal{S} is Example 3.1.2(vi) for $k=3$.
Proof. Let $P_{A}=l \cap \pi_{A C}, P_{B}=l \cap \pi_{B C}, \pi_{A}=\left\langle\pi_{A C}, l\right\rangle$ and $\pi_{B}=\left\langle\pi_{B C}, l\right\rangle$. Since every line $m \neq l$ of \mathcal{L} intersects the lines $\pi_{A C}, \pi_{B C}$ and l, it follows that m contains the point P_{A} and is contained in π_{B}, or m contains the point P_{B} and is contained in π_{A}. Note that since $\operatorname{dim}(\alpha)=4$, there is at least one line $m_{1} \neq l$ in \mathcal{L} through P_{A} and there is at least one line $m_{2} \neq l$ in \mathcal{L} through P_{B}. As a consequence of Proposition 3.2.6 we have that a solid of \mathcal{S} in $\langle A, B\rangle$, not contained in α, contains $P_{A B}$ and it meets C in a line r that meets all lines of \mathcal{L}. Hence, r is a line of the plane π_{A} through P_{A} or in a line of π_{B} through P_{B}. Consider now the set \mathcal{F} of solids of \mathcal{S}^{\prime}, not through $\left\langle P_{A B}, l\right\rangle$. We will prove that these solids lie in a 5 -space that meets $\langle A, B\rangle$ in α. Let $E_{A}, E_{B} \in \mathcal{F}$ be two solids through $m_{1} \ni P_{A}$ and $m_{2} \ni P_{B}$ respectively. Since the planes $E_{A} \cap \alpha$ and $E_{B} \cap \alpha$ meet in precisely the point $P_{A B}$, the solids E_{A} and E_{B} have precisely a line in common, and so, they span a 5 -space ρ_{2} through α. Then every other solid $F \in \mathcal{F}$ is contained in ρ_{2} as it meets $E_{A} \cap \alpha$, or $E_{B} \cap \alpha$, precisely in one point, namely $P_{A B}$, and so it must contain at least a point of E_{A}, or E_{B} respectively, in $\rho_{2} \backslash \alpha$. This point, together with the plane $F \cap \alpha$, spans F and so $F \subset \rho_{2}$. Hence, \mathcal{S} is Example 3 3.1.2 $(v i)$, with $\rho_{1}=\langle A, B\rangle, \pi_{A}=\left\langle\pi_{A C}, l\right\rangle, \pi_{B}=\left\langle\pi_{B C}, l\right\rangle, \lambda_{A}=P_{A}, \lambda_{B}=P_{B}$ and $\lambda=l$.

Hence, in this case, we find that \mathcal{S} has the following size

$$
\begin{equation*}
|\mathcal{S}|=\theta_{n-3}+q^{2} \theta_{2}+4 q^{3}=\theta_{n-3}+q^{4}+5 q^{3}+q^{2} . \tag{3.1}
\end{equation*}
$$

Suppose now that there is no line in \mathcal{L} that intersects all the lines of \mathcal{L}. Hence, for every line in \mathcal{L}, there exists another line in \mathcal{L} disjoint from the given line. We will prove that

$$
\begin{equation*}
|\mathcal{S}| \leq 2 q^{4}+3 q^{3}+4 q^{2}+q+1 . \tag{3.2}
\end{equation*}
$$

Since this number is smaller than $f(3, q)=3 q^{4}+6 q^{3}+5 q^{2}+q+1$, we will not consider these maximal sets of solids in our classification result for $k=3$ (Main Theorem 3.5.1).
For every intersection plane D^{\prime} in α, there are at most $\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]=q^{2}$ ways to extend the plane to a solid $D \in \mathcal{S}^{\prime}$, as this solid also has to meet several solids of \mathcal{S}^{\prime} in a point $Q \notin\langle A, B\rangle$. And since the number of planes D^{\prime} equals the number of lines in \mathcal{L}, there are at most $q^{2} \cdot|\mathcal{L}|$ solids outside of $\langle A, B\rangle$. Let R be the set of lines meeting all lines of \mathcal{L}. For the solids inside $\langle A, B\rangle$, there are $\left[\begin{array}{l}5 \\ 1\end{array}\right]=\theta_{4}$ solids in α and $|R| \cdot q^{2}$ solids of the second type of Proposition 3.2.6 respectively. We find this number by multiplying the number $|R|$ of possibilities for the line r and the number q^{2} of 3 -spaces through a plane in $\langle A, B\rangle$, not contained in α. So, in total, we have that $|\mathcal{S}| \leq q^{2}|\mathcal{L}|+\theta_{4}+R q^{2}=$ $\theta_{4}+q^{2}(|\mathcal{L}|+R)$. For every possible set of lines \mathcal{L}, we prove that $|\mathcal{S}| \leq 2 q^{4}+3 q^{3}+4 q^{2}+q+1$, or equivalently, that $|\mathcal{L}|+|R| \leq q^{2}+2 q+3$.

Since every element of \mathcal{L} meets both $\pi_{A C}$ and $\pi_{B C}$, we know that $|\mathcal{L}| \leq(q+1)^{2}$. If $R=$ $\left\{\pi_{A C}, \pi_{B C}\right\}$, then we have that $|\mathcal{L}|+|R|=|\mathcal{L}|+2 \leq(q+1)^{2}+2$. Hence, we may assume that $\left\{\pi_{A C}, \pi_{B C}\right\} \subsetneq R$, and so $|R| \geq 3$.

Suppose first that \mathcal{L} contains three pairwise disjoint lines l_{1}, l_{2} and l_{3}. These three lines are contained in a unique regulus \mathcal{R}, and the lines, meeting l_{1}, l_{2} and l_{3}, are contained in the opposite regulus \mathcal{R}^{\prime}. Hence, $R \subseteq \mathcal{R}^{\prime}$, and since R contains at least three pairwise disjoint lines, we know that \mathcal{L} must be contained in the regulus \mathcal{R}, opposite to \mathcal{R}^{\prime}. In this way, we find that $|\mathcal{L}| \leq q+1$ and $|R| \leq q+1$, and so $|\mathcal{L}|+|R| \leq 2 q+2<q^{2}+2 q+3$.

For the other case, so if \mathcal{L} contains no three pairwise disjoint lines, we may suppose that \mathcal{L} contains at least two disjoint lines l_{1}, l_{2}, since the lines of \mathcal{L} span the solid C. In this case, we prove the following lemma.

Lemma 3.2.8. The set \mathcal{L} is contained in the union of two point-pencils such that their vertices are contained either in $\pi_{A C}$ or in $\pi_{B C}$.

Proof. Let $P_{i}=\pi_{A C} \cap l_{i}$ and $Q_{i}=\pi_{B C} \cap l_{i}$, for $i=1,2$. As there are no three pairwise disjoint lines in \mathcal{L} we see that every line $l \in \mathcal{L}$ contains at least one of the points P_{i} and Q_{i}, with $i=1,2$, and so \mathcal{L} is contained in the union of 4 point-pencils with vertices $P_{1}, P_{2}, Q_{1}, Q_{2}$. If $|\mathcal{L}| \leq 4$, then it is easy to see that \mathcal{L} is contained in the union of two point-pencils. Suppose now that $|\mathcal{L}| \geq 5$ and that \mathcal{L} is not contained in the union of two of these point-pencils. Due to the symmetry, we may suppose that $\mathcal{L} \backslash\left\{l_{1}, l_{2}, P_{1} Q_{2}\right\}$ contains three lines l_{3}, l_{4}, l_{5}, such that $P_{1} \in l_{3}, Q_{2} \in l_{4}$ and $P_{2} \in l_{5}$. Let $Q_{3}=l_{3} \cap \pi_{B C}$ and $P_{4}=l_{4} \cap \pi_{A C}$. Then l_{5} contains the point Q_{3} as otherwise l_{3}, l_{4} and l_{5} would be pairwise disjoint. So $l_{5}=P_{2} Q_{3}$, but then we see that l_{1}, l_{4} and l_{5} are three pairwise disjoint lines, a contradiction. Hence, \mathcal{L} is contained in the union of two point-pencils.

Hence, $|\mathcal{L}| \leq 2 q+2$. If $|\mathcal{L}|=2$, then there are at most $(q+1)^{2}$ lines meeting both l_{1} and l_{2}, and so $|\mathcal{L}|+|R| \leq 2+(q+1)^{2}$.

If $3 \leq|\mathcal{L}| \leq 2 q+2$ then we may assume that \mathcal{L} contains a line $l_{0} \neq l_{1}, l_{2}$ with $P_{1} \in l_{0}$. Every line r of R must meet both lines l_{0}, l_{1}, and so, it contains $P_{1}=l_{0} \cap l_{1}$ or it is contained in $\left\langle l_{0}, l_{1}\right\rangle$. Taking into account that r must meet l_{2} as well, we find that there are $q+1$ possibilities for the line r, containing the point P_{1} and a point of l_{2}. Furthermore, if r does not contain P_{1}, then r is contained in the plane $\left\langle l_{0}, l_{1}\right\rangle$, and meets $l_{2} \cap\left\langle l_{0}, l_{1}\right\rangle$. Since $l_{2} \nsubseteq\left\langle l_{0}, l_{1}\right\rangle$, we find that $l_{2} \cap\left\langle l_{0}, l_{1}\right\rangle=Q_{2}$, and so there are q possibilities for the line r in $\left\langle l_{0}, l_{1}\right\rangle$ through the point Q_{2}, not through P_{1}. This implies that $|\mathcal{L}|+|R| \leq(2 q+2)+(q+1+q)=4 q+3 \leq q^{2}+2 q+3$.

General case $k>3$ and α is a $(k+1)$-space
By Corollary 3.2.3 we may suppose w.l.o.g., that α is spanned by $\pi_{A C}, \pi_{B C}$ and a point $P_{A B}$ of $\pi_{A B}$ outside of $\pi_{A B C}$, and that all $(k-1)$-spaces $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$, contain $\left\langle P_{A B}, \pi_{A B C}\right\rangle$.

Proposition 3.2.9. [Using Notation 3.2.1] If \mathcal{S} contains three k-spaces that meet in a $(k-4)$-space and $\operatorname{dim}(\alpha)=k+1$, then a k-space of \mathcal{S} in $\langle A, B\rangle$ is contained in α or contains $\pi_{A B C}$. More specifically, if $|\mathcal{S}|>f(k, q)$, then \mathcal{S} is Example 3.1.2(vi).

Proof. We suppose that E is a k-space of \mathcal{S} in $\langle A, B\rangle$, not through $\pi_{A B C}$. As E contains at least a ($k-2$)-space of all the ($k-1$)-spaces D^{\prime}, with $D \in \mathcal{S}^{\prime}$, we find that E contains a hyperplane τ_{0} of $\pi_{A B C}$, a $(k-4)$-space τ_{1} of $\alpha \cap \pi_{A B}$, a $(k-3)$-space τ_{2} of $\pi_{A C}$ and a $(k-3)$-space τ_{3} of $\pi_{B C}$. As $\tau_{1} \cap \tau_{2}=\tau_{1} \cap \tau_{3}=\tau_{2} \cap \tau_{3}=\tau_{0}$, and by the Grassmann dimension property, we see that $E \subset \alpha$.

For the k-spaces through $\pi_{A B C}$, we can investigate the solids $E / \pi_{A B C}, E \in \mathcal{S}$, in the quotient space $\operatorname{PG}(n, q) / \pi_{A B C}$, and use the results for $k=3$ in the first part of Section 3.2.3 These results imply that a k-space in $\langle A, B\rangle$ through $\pi_{A B C}$ is contained in α or contains $\left\langle P_{A B}, \pi_{A B C}\right\rangle$ and a line in $C \backslash \pi_{A B C}$ that meets all the $(k-2)$-spaces $D \cap C, D \in \mathcal{S}^{\prime}$. Then there are two cases:

- Case 1. If there is a line $l \in C \backslash \pi_{A B C}$ meeting the subspaces $D \cap C$ for all $D \in \mathcal{S}^{\prime}$, then we can use (3.1) in the quotient space $\mathrm{PG}(n, q) / \pi_{A B C} \cong \mathrm{PG}(n-k+3, q)$. Hence, there are $\theta_{n-k}+q^{4}+5 q^{3}+q^{2} k$-spaces of \mathcal{S} that contain $\pi_{A B C}$.
- CAsE 2. If there is no line $l \in C \backslash \pi_{A B C}$ meeting the subspaces $D \cap C$ for all $D \in \mathcal{S}^{\prime}$, then we use (3.2). Hence, there are at most $2 q^{4}+3 q^{3}+4 q^{2}+q+1 k$-spaces of \mathcal{S} that contain $\pi_{A B C}$.

It is clear that two elements of \mathcal{S} in α meet in at least a $(k-1)$-space. From the investigation of the quotient space $\operatorname{PG}(n, q) / \pi_{A B C}$, it follows that two elements of \mathcal{S} through $\pi_{A B C}$, not in α, meet in at least a ($k-2$)-space. A k-space E_{1} of \mathcal{S} in α and a k-space E_{2} of \mathcal{S} not in α, but through $\pi_{A B C}$, will also meet in a ($k-2$)-space. This follows since E_{2} contains the $(k-3)$-space $\left\langle P_{A B}, \pi_{A B C}\right\rangle \subset \alpha$ and a line in $C \backslash \pi_{A B C} \subset \alpha$. Hence, E_{2} meets α in a $(k-1)$-space. Since E_{1} is contained in α, it follows that E_{1} and E_{2} meet in at least a $(k-2)$-space.

Now, as every element of \mathcal{S}, not through $\pi_{A B C}$, is contained in α, there are $\theta_{k+1}-\theta_{4}$ elements of \mathcal{S} not through $\pi_{A B C}$. Hence, in CASE 1, \mathcal{S} is Example 3.1.2 (vi) and $|\mathcal{S}|=\theta_{n-k}+\theta_{k+1}+4 q^{3}-q-1$. In CASE $2,|\mathcal{S}| \leq \theta_{k+1}+q^{4}+2 q^{3}+3 q^{2}$, which proves the proposition.

3.2.4 α is a $(k+2)$-space

Here again, we first consider the case $k=3$.
$k=3$ and α is a 5 -space

We start with a lemma that will often be used in this subsection.
Lemma 3.2.10. [Using Notation 3.2.1] If \mathcal{S} contains three solids A, B, C, with $A \cap B \cap C=\emptyset$, then every two intersection planes D_{1}^{\prime} and D_{2}^{\prime}, with $D_{i}^{\prime}=D_{i} \cap\langle A, B\rangle, D_{i} \in \mathcal{S}^{\prime}, i=1,2$, share a point on $\pi_{A B}, \pi_{A C}$ or $\pi_{B C}$.

Proof. Consider two solids D_{1} and D_{2} in \mathcal{S}^{\prime}, with corresponding intersection planes D_{1}^{\prime} and D_{2}^{\prime} in $\langle A, B\rangle$. Since D_{1} and D_{2} meet in at least a line, D_{1}^{\prime} and D_{2}^{\prime} have to meet in at least a point. If D_{1}^{\prime} and D_{2}^{\prime} do not meet in a point of $\pi_{A B}, \pi_{A C}$ or $\pi_{B C}$, then these planes define 6 different intersection points P_{1}, \ldots, P_{6} on the lines $\pi_{A B}, \pi_{A C}$ and $\pi_{B C}$. As $\left\langle D_{1}^{\prime}, D_{2}^{\prime}\right\rangle=\left\langle P_{1}, \ldots, P_{6}\right\rangle=$ $\left\langle\pi_{A B}, \pi_{A C}, \pi_{B C}\right\rangle$, we find that D_{1}^{\prime} and D_{2}^{\prime} span a 5 -space, so these planes are disjoint, a contradiction.

If α is a 5 -space, we distinguish two cases, depending on the planes $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$.
Lemma 3.2.11. [Using Notation 3.2.1] IfS contains three solids A, B, C, with $A \cap B \cap C=\emptyset$, and if $\operatorname{dim}(\alpha)=5$, then we have one of the following possibilities for the planes $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$:
i) There are four possibilities for the planes $D^{\prime}:\left\langle P_{1}, P_{3}, P_{6}\right\rangle,\left\langle P_{1}, P_{4}, P_{5}\right\rangle,\left\langle P_{2}, P_{4}, P_{6}\right\rangle$ and $\left\langle P_{2}, P_{3}, P_{5}\right\rangle$, where $P_{1} P_{2}=\pi_{A B}, P_{3} P_{4}=\pi_{B C}$ and $P_{5} P_{6}=\pi_{A C}$. Each of them appears as an intersection plane D^{\prime} for a solid D.
ii) There are three points $P \in \pi_{A B}, Q \in \pi_{B C}$ and $R \in \pi_{A C}$ so that every plane D^{\prime} contains at least two of the three points of $\{P, Q, R\}$. For every two different points in $\{P, Q, R\}$, there exists a plane D^{\prime} containing these two points, but not the remaining point.

Proof. We prove the Lemma by construction and we start with a plane, we say D_{1}^{\prime}, intersecting $\pi_{A B}, \pi_{B C}$ and $\pi_{A C}$ in the points P, Q and R^{\prime} respectively.
Case (a) : there exists a plane D_{2}^{\prime} such that $D_{1}^{\prime} \cap D_{2}^{\prime}$ is a point (w.l.o.g. P, see Lemma 3.2.10) and let $D_{2}^{\prime} \cap \pi_{B C}$ be Q^{\prime} and $D_{2}^{\prime} \cap \pi_{A C}$ be R. In this case we know that there exists a third plane D_{3}^{\prime} intersecting $\pi_{A B}$ in a point P^{\prime} different from $P($ as $\operatorname{dim}(\alpha)=5)$. Then D_{3}^{\prime} needs to have at least a point of D_{2}^{\prime} and D_{1}^{\prime}. This implies that D_{3}^{\prime} contains Q and R or Q^{\prime} and R^{\prime} (w.l.o.g. Q and R) by Lemma 3.2.10 Now there are two possibilities:
i) There exists a plane $D_{4}^{\prime}=\left\langle P^{\prime}, Q^{\prime}, R^{\prime}\right\rangle$, and then, by construction, we cannot add another plane D_{i}^{\prime}. (In the formulation of the lemma $P=P_{1}, P^{\prime}=P_{2}, Q=P_{3}, Q^{\prime}=P_{4}, R=$ $P_{5}, R^{\prime}=P_{6}$.)
ii) There does not exist a plane $D_{4}^{\prime}=\left\langle P^{\prime}, Q^{\prime}, R^{\prime}\right\rangle$, then, by construction, we see that all the planes need to contain at least two of the three points P, Q, R by Lemma 3.2.10

Case (b): all the planes D_{i}^{\prime} intersect pairwise in a line. Then all these planes have to lie in a solid (contradiction since they span a 5 -space) or they go through a fixed line l. In the latter, l cannot be one of the lines $\pi_{A B}, \pi_{A C}, \pi_{B C}$ and also, l cannot intersect one of these lines, as otherwise all the planes D_{i}^{\prime} would contain the intersection point of this line and l (which gives a contradiction since $\operatorname{dim}(\alpha)=5$). Consider now the disjoint lines l and $\pi_{A B}$. Then all the planes D_{i}^{\prime} would contain l and a point of $\pi_{A B}$, but this implies that $\operatorname{dim}(\alpha)=3$ which also gives a contradiction. We conclude that this case does not occur.

We start with the case that there are four intersection planes D^{\prime}.
In this situation, using the notation from Lemma 3.2.11, there are four possibilities for the planes $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}:\left\langle P_{1}, P_{3}, P_{6}\right\rangle,\left\langle P_{1}, P_{4}, P_{5}\right\rangle,\left\langle P_{2}, P_{4}, P_{6}\right\rangle$ and $\left\langle P_{2}, P_{3}, P_{5}\right\rangle$, where $P_{1}, P_{2} \in$ $\pi_{A B}, P_{3}, P_{4} \in \pi_{B C}$ and $P_{5}, P_{6} \in \pi_{A C}$. We show that the only solids of \mathcal{S} in $\langle A, B\rangle$ are A, B and C.

Figure 3.9: There are three elements A, B, C in \mathcal{S} with $A \cap B \cap C=\emptyset$ and $\operatorname{dim}(\alpha)=5$

Proposition 3.2.12. [Using Notation 3.2.1] If contains three solids A, B, C, with $A \cap B \cap C=\emptyset$, $\operatorname{dim}(\alpha)=5$, and so that there are exactly four intersection planes D^{\prime}, see Lemma 3.2.11 (i), then the only solids of \mathcal{S} in $\langle A, B\rangle$ are A, B and C.

Proof. Let P_{1}, \ldots, P_{6} be the intersection points of $D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$, with the lines $\pi_{A B}, \pi_{A C}, \pi_{B C}$, and let E be a solid in $\langle A, B\rangle$ different from A, B, C. The solid E cannot contain all the points P_{1}, \ldots, P_{6}, by its dimension so we may suppose that $P_{1} \notin E$. We will first show that E contains the point P_{2}. As E has a line in common with every plane intersection $D^{\prime}=D \cap\langle A, B\rangle$, with $D \in \mathcal{S}^{\prime}, E$ has at least a point in common with every line of these planes D^{\prime}. This implies that E has at least a point in common with $P_{1} P_{3}, P_{1} P_{4}, P_{1} P_{5}$, and $P_{1} P_{6}$ or equivalently, a line l_{A} in common with $\left\langle P_{1}, \pi_{A C}\right\rangle$ and a line l_{B} in common with $\left\langle P_{1}, \pi_{B C}\right\rangle$. Hence, $E=\left\langle l_{A}, l_{B}\right\rangle$ and so $E \subset\left\langle P_{1}, C\right\rangle$. If $P_{2} \notin E$ then we find by symmetry that $E \subset\left\langle P_{2}, C\right\rangle$, and so that $E \subseteq\left\langle P_{1}, C\right\rangle \cap\left\langle P_{2}, C\right\rangle$ and $E=C$, a contradiction. Then $P_{2} \in E$; furthermore E cannot contain P_{2}, \ldots, P_{6}, by the dimension, and so we may suppose that $P_{6} \notin E$. Then, by the previous arguments and symmetry, we know that P_{5} lies in E. In A, the solid E needs an extra point P of $P_{1} P_{6}$ since E shares a line with $\left\langle P_{1}, P_{3}, P_{6}\right\rangle$. This gives that E contains the plane $\gamma=\left\langle P, P_{2}, P_{5}\right\rangle$ of A. As E also needs to have at least a point of each line $P_{1} P_{3}, P_{1} P_{4}, E$ needs at least one extra line, disjoint from γ. This gives the contradiction, again by the dimension, and so E cannot be different from A, B, C.

There are at most $4 \cdot\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$ solids in \mathcal{S}^{\prime}. The first factor of this number follows since every solid in \mathcal{S}^{\prime} meets $\langle A, B\rangle$ in one of the four intersection planes. The second factor follows as each of these intersection planes is contained in at most $\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]$ solids of \mathcal{S}^{\prime} : any two solids, intersecting $\langle A, B\rangle$ in different intersection planes, have to intersect in at least a point Q outside of $\langle A, B\rangle$. There are only 3 solids, A, B, C, in $\langle A, B\rangle$. Hence $|\mathcal{S}| \leq 4 q^{2}+3$.

The second possibility is that every intersection plane D^{\prime} contains at least two of the points P, Q, R, and for every two different points in $\{P, Q, R\}$, there exists a plane D^{\prime} containing these two points, but not the remaining point. Note that in this situation we have at least the red, green and blue plane (see Figure 3.10) as intersection planes $D^{\prime}=D \cap\langle A, B\rangle, D \in \mathcal{S}^{\prime}$. In the following proposition, we prove how the solids in $\langle A, B\rangle$ lie with respect to the points P, Q, R.

Figure 3.10: There are three elements A, B, C in \mathcal{S} with $A \cap B \cap C=\emptyset$ and $\operatorname{dim}(\alpha)=5$

Proposition 3.2.13. [Using Notation 3.2.1] Suppose that \mathcal{S} contains three solids A, B, C, with $A \cap$ $B \cap C=\emptyset, \operatorname{dim}(\alpha)=5$, and so that every intersection plane D^{\prime} contains at least two of the points
P, Q, R, such that for every two different points in $\{P, Q, R\}$, there exists a plane D^{\prime} containing these two points, but not the remaining point (see Lemma 3.2.11(ii)). Then all the solids of \mathcal{S} in $\langle A, B\rangle$, also contain at least two of the points P, Q, R.

Proof. Let E be a solid of \mathcal{S} in $\langle A, B\rangle$, different from A, B and C. Suppose $P \notin E$, then we have to prove that E contains the points R and Q. We find that $E \cap A$ and $E \cap B$ are subspaces that meet the lines $P R, P R^{\prime}, P^{\prime} R$ and $P Q, P Q^{\prime}, P^{\prime} Q$, respectively, as E meets every intersection plane D^{\prime} in at least a line. Hence, E meets A in a line $l_{A E}$ through R and a point of $P R^{\prime}$, or E has a plane $\gamma_{A E}$ in common with A. By symmetry, E meets B in a line $l_{B E}$ through Q and a point of $P Q^{\prime}$, or E has a plane $\gamma_{B E}$ in common with B.
a) If $\operatorname{dim}(A \cap E)=\operatorname{dim}(B \cap E)=2$, then the planes $\gamma_{A E}$ and $\gamma_{B E}$ meet in a point of $\pi_{A B}$ as they cannot contain the line $\pi_{A B}$ since $P \notin E$. Hence, E contains two planes meeting in a point, which gives a contradiction since $\operatorname{dim}(E)=3$.
b) If $\operatorname{dim}(A \cap E)=2$ and $\operatorname{dim}(B \cap E)=1$, then $\gamma_{A E} \cap \pi_{A B}=l_{B E} \cap \pi_{A B}$. First note that $l_{B E} \cap \pi_{A B}$ is not empty by the dimension of E. Now, if $\gamma_{A E} \cap \pi_{A B} \neq l_{B E} \cap \pi_{A B}$, then $\pi_{A B} \subset E$, which gives a contradiction as $P \notin E$. Since $l_{B E}$ can only meet $\pi_{A B}$ in the point P, we find a contradiction, again as $P \notin E$. Clearly, by symmetry, an analogous argument holds also if $\operatorname{dim}(A \cap E)=1$ and $\operatorname{dim}(B \cap E)=2$.

Hence, we know that E contains a line $l_{A E} \subset A$ through R and a line $l_{B E} \subset B$ through Q, which proves the proposition.

There are at most $\left(3 \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]-2\right)\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$ solids not in $\langle A, B\rangle$. This follows as two solids D_{1}, D_{2}, intersecting $\langle A, B\rangle$ in the intersection planes D_{1}^{\prime} and D_{2}^{\prime} meeting in a point, then D_{1} and D_{2} have to intersect in at least a point not in $\langle A, B\rangle$. And there are at most $3 \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]-2$ intersection planes D^{\prime}. There are at most $\left[\begin{array}{l}3 \\ 1\end{array}\right]+3 q\left[\begin{array}{l}3 \\ 1\end{array}\right]$ solids in $\langle A, B\rangle$, namely all the solids through the plane $\langle P, Q, R\rangle$ and all solids through precisely two of the three points P, Q, R in $\langle A, B\rangle$. Hence, $|\mathcal{S}| \leq$ $6 q^{3}+5 q^{2}+4 q+1$.

Remark 3.2.14. Note that if \mathcal{S} contains three elements A, B, C, with $A \cap B \cap C=\emptyset$, and if $\operatorname{dim}(\alpha)=5$, then the number of elements of \mathcal{S} is at most $f(3, q)=3 q^{4}+6 q^{3}+5 q^{2}+q+1$, and so we will not consider these maximal sets of solids in our classification.

General case $k>3$ and α is a $(k+2)$-space
In this case, we prove that all the k-spaces of \mathcal{S} contain $\pi_{A B C}$. This implies that we will be able to investigate this case by considering the quotient space of $\pi_{A B C}$ and use the previous results for $k=3$.

Proposition 3.2.15. [Using Notation 3.2.1] If \mathcal{S} contains three k-spaces A, B, C, with $\operatorname{dim}(A \cap B \cap$ $C)=k-4$, and $\operatorname{dim}(\alpha)=k+2$, then every k-space in \mathcal{S} contains $\pi_{A B C}$.

Proof. By Lemma 3.2.2 we know that all the k-spaces of \mathcal{S} outside of $\langle A, B\rangle$ contain $\pi_{A B C}$. It is also clear that A, B and C contain $\pi_{A B C}$.
Suppose that there is a k-space E in $\langle A, B\rangle$, not through $\pi_{A B C}$. As E has to meet all the ($k-1$)spaces D_{i}^{\prime} in at least a ($k-2$)-space, E has to meet $\pi_{A B C}$ in a ($k-5$)-space γ and $\pi_{A B}, \pi_{B C}$, $\pi_{A C}$ in three distinct $(k-3)$-spaces such that they meet pairwise in γ. This would imply that $\operatorname{dim}(E)=k+1$, which gives a contradiction.

Clearly, the previous proposition implies that in order to have an estimate of the number of k spaces in and outside of $\langle A, B\rangle$, we can use the results for $k=3$ in the first part of Section 3.2.4 $|\mathcal{S}| \leq 4 \cdot\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)+3$ or $|\mathcal{S}| \leq\left(3 \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]-2\right)\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)+\left[\begin{array}{l}3 \\ 1\end{array}\right]\left(3 q^{2}+1\right)$. In both cases, $|\mathcal{S}|<\theta_{k+1}+q^{4}+2 q^{3}+3 q^{2}=f(k, q)$.

To conclude this section, we give a theorem which summarizes Proposition 3.2.4 Proposition 3.2.5 Proposition 3.2.9 and Proposition 3.2.15 and so, it gives an overview of the different cases studied in this section.

Proposition 3.2.16. [Using Notation 3.2.1] In the projective space $\operatorname{PG}(n, q)$, with $n \geq k+2$ and $k \geq 3$, let \mathcal{S} be a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$-space such that \mathcal{S} contains three k-spaces A, B, C, with $\operatorname{dim}(A \cap B \cap C)=k-4$, and such that $|\mathcal{S}| \geq f(k, q)$. Then we have one of the following possibilities:
i) there are no k-spaces of \mathcal{S} outside of $\langle A, B\rangle$ and \mathcal{S} is Example 3.1.2(x),
ii) $\operatorname{dim}(\alpha)=k-1$ and \mathcal{S} is Example 3.1.2(v),
iii) $\operatorname{dim}(\alpha)=k$ and \mathcal{S} is Example 3.1.2(iv),
iv) $\operatorname{dim}(\alpha)=k+1$ and \mathcal{S} is Example 3.1.2(vi).

3.3 Every three elements of \mathcal{S} meet in at least a $(k-3)$-space

Throughout this section, we suppose that every three elements of \mathcal{S} meet in at least a $(k-3)$-space. Moreover, to avoid trivial cases, we may suppose that there exist two k-spaces in \mathcal{S} intersecting in precisely a $(k-2)$-space. We can find those two k-spaces as otherwise all subspaces would pairwise intersect in a $(k-1)$-space and the classification in this case is known: all the k-spaces go through a fixed $(k-1)$-space or all the k-spaces lie in a $(k+1)$-dimensional space, see Theorem 2.0 .6 . We also suppose that \mathcal{S} is not a $(k-2)$ - or a $(k-3)$-pencil as in this case either \mathcal{S} is Example 3.1.2 (i) or we can investigate the quotient space and use the known Erdős-Ko-Rado results on planes intersecting in at least a point [33]. We begin this section with a useful lemma.

Lemma 3.3.1. Let \mathcal{S} be a maximal set of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a ($k-2$)-space such that for every $X, Y, Z \in \mathcal{S}, \operatorname{dim}(X \cap Y \cap Z) \geq k-3$, and such that there is no point contained in all elements of \mathcal{S}. Then there exist three elements A, B, C of \mathcal{S} such that
a) $\pi=A \cap B \cap C$ is a $(k-3)$-space,
b) at least two of the three subspaces $\pi_{A B}=A \cap B, \pi_{B C}=B \cap C, \pi_{A C}=A \cap C$ have dimension $k-2$, and at most one of them has dimension $k-1$.
c) $\zeta=\left\langle\pi_{A B}, \pi_{B C}, \pi_{A C}\right\rangle$ has dimension k or $k+1$.

Every k-space in \mathcal{S} not through π meets the space $\zeta=\left\langle\pi_{A B}, \pi_{B C}, \pi_{A C}\right\rangle$ in at least a $(k-1)$-space.
Proof. If every three k-spaces in \mathcal{S} meet (at least) in a $(k-2)$-space, then \mathcal{S} is a $(k-2)$-pencil, and so there is a point contained in all the k-spaces of \mathcal{S}. Therefore, there exist three elements $A, B, C \in \mathcal{S}$ such that $\pi=A \cap B \cap C$ is a $(k-3)$-space. Let $\pi_{A B}=A \cap B, \pi_{B C}=B \cap C$ and $\pi_{A C}=A \cap C$, and let $\zeta=\left\langle\pi_{A B}, \pi_{B C}, \pi_{A C}\right\rangle$. Note that at least two of the three subspaces $\pi_{A B}, \pi_{B C}, \pi_{A C}$ have dimension $k-2$. Otherwise, if, for example, $\operatorname{dim}\left(\pi_{A B}\right)=\operatorname{dim}\left(\pi_{A C}\right)=k-1$, then the k-space A contains two $(k-1)$-spaces, $\pi_{A B}$ and $\pi_{A C}$, meeting in at most a $(k-3)$-space, a contradiction.
W.l.o.g. we may suppose that $\operatorname{dim}\left(\pi_{A B}\right)=\operatorname{dim}\left(\pi_{A C}\right)=k-2$ and $\operatorname{dim}\left(\pi_{B C}\right) \in\{k-1, k-2\}$. This also implies that the dimension of ζ is at most $k+1$. On the other hand, note that ζ has at least dimension k. Otherwise, if $\zeta=\left\langle\pi_{A B}, \pi_{B C}, \pi_{A C}\right\rangle$ is a $(k-1)$-space, then $\zeta=\left\langle\pi_{A B}, \pi_{A C}\right\rangle$ and so $\zeta \subset A$. By the same argument, $\zeta \subset B$, and $\zeta \subset C$. Hence, $\zeta \subset A \cap B \cap C=\pi$, a contradiction.

CASE 1. Suppose that $\pi_{A B}, \pi_{A C}$ and $\pi_{B C}$ are ($k-2$)-spaces. Then, ζ is a k-space. Since there is no point contained in all elements of \mathcal{S}, we know that not all elements of \mathcal{S} contain π. Let G be such a k-space G in \mathcal{S} not through π. Since any three elements of \mathcal{S} meet in at least a ($k-3$)-space and $\pi \nsubseteq G$, we have that G meets π in a $(k-4)$-space π_{G} and it contains at least a ($k-3$)-space of $\pi_{A B}, \pi_{B C}$ and $\pi_{A C}$. Since the three subspaces $G \cap \pi_{A B}, G \cap \pi_{B C}$ and $G \cap \pi_{A C}$ have dimension at least $k-3$, since they pairwise meet in the $(k-4)$-space π_{G}, and since $\pi_{A B}, \pi_{A C}$ and $\pi_{B C}$ span at least a k-space, G contains the subspace $\left\langle G \cap \pi_{A B}, G \cap \pi_{B C}, G \cap \pi_{A C}\right\rangle$, with at least dimension $k-1$, in ζ.

CASE 2. Suppose that $\operatorname{dim}\left(\pi_{A B}\right)=\operatorname{dim}\left(\pi_{A C}\right)=k-2$ and $\operatorname{dim}\left(\pi_{B C}\right)=k-1$. They meet in the ($k-3$)-space π. Now, ζ is a $(k+1)$-space and consider a k-space G not through π. As before G meets π in a $(k-4)$-space; the spaces $G \cap \pi_{A B}$ and $G \cap \pi_{A C}$ are ($k-3$)-spaces otherwise G goes through π and finally $\operatorname{dim}\left(G \cap \pi_{B C}\right) \in\{k-3, k-2\}$.

Case 2a. $\operatorname{dim}\left(G \cap \pi_{B C}\right)=k-3$. Then $G \cap \pi_{A C}$ and $G \cap \pi_{B C}$ cannot be contained in $\pi_{A B}$ otherwise $\operatorname{dim}(G \cap \pi)=k-3$. Hence, $G \cap \pi_{A C}, G \cap \pi_{B C}$ and $G \cap \pi_{A B}$ are linearly independent ($k-3$)spaces (i.e. the span of two of them does not meet the other space) pairwise intersecting in $G \cap \pi$. Therefore,

$$
\operatorname{dim}\left\langle\pi_{A B} \cap G, \pi_{A C} \cap G, \pi_{B C} \cap G\right\rangle=k-1 .
$$

Case 2b. $\operatorname{dim}\left(G \cap \pi_{B C}\right)=k-2$. Note that $G \cap \pi_{B C}$ cannot meet $\pi_{A B}$ in a $(k-3)$ space, otherwise G goes through π. Then, again, $G \cap \pi_{X Y}$, with $\{X, Y\} \subset\{A, B, C\}$, are linearly independent $(k-3)$-spaces pairwise intersecting in $G \cap \pi$ and

$$
\operatorname{dim}\left\langle\pi_{A B} \cap G, \pi_{A C} \cap G, \pi_{B C} \cap G\right\rangle=k .
$$

Hence, the k-space G is inside of ζ.
So, in any case, we get that a k-space not through π meets ζ in at least a ($k-1$)-space.
Theorem 3.3.2. Let \mathcal{S} be a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$-space in $\mathrm{PG}(n, q)$. If for every three elements X, Y, Z of $\mathcal{S}: \operatorname{dim}(X \cap Y \cap Z) \geq k-3$, and if there is no point contained in all elements of \mathcal{S}, then \mathcal{S} is one of the following examples:
(i) Example 3.1.2 (ii): Star.
(ii) Example 3.1.2(iii): Generalized Hilton-Milner example.

Proof. From Lemma 3.3.1 it follows that we may suppose that there are three k-spaces A, B, C with $\operatorname{dim}(A \cap B \cap C)=k-3, \operatorname{dim}\left(\pi_{A B}\right)=\operatorname{dim}\left(\pi_{A C}\right)=k-2$ and $\operatorname{dim}\left(\pi_{B C}\right) \in\{k-1, k-2\}$.

CASE 1. $\operatorname{dim}\left(\pi_{B C}\right)=k-2$. In this case we know, again from Lemma3.3.1 that $\zeta=\left\langle\pi_{A B}, \pi_{A C}, \pi_{B C}\right\rangle$ has dimension k and that any element of \mathcal{S}, not through $\pi=A \cap B \cap C$, meets ζ in at least a ($k-1$)space.

Case 1.1. Suppose that there exists a k-space D, not containing π, with $\operatorname{dim}(D \cap A)=\operatorname{dim}(D \cap B)=$ $\operatorname{dim}(D \cap C)=k-2$.
Let $\pi_{A D}, \pi_{B D}$ and $\pi_{C D}$ be these ($k-2$)-spaces. Note that each of them contains the $(k-4)$-space $\pi_{D}=D \cap \pi$ and that they are contained in ζ. We prove that all elements of \mathcal{S} meet ζ in at least a $(k-1)$-space. From Lemma 3.3.1 it follows that we only have to check that all elements of \mathcal{S} through π have this property. Let E be a k-space in \mathcal{S} through π. Then E contains a ($k-3$)-space
of $\pi_{A D}, \pi_{B D}$ and $\pi_{C D}$. At least two of these $(k-3)$-spaces are different, since π is not contained in D, and span together with π at least a $(k-1)$-space contained in the k-space ζ. Hence, every k-space of \mathcal{S} meets ζ in at least a $(k-1)$-space. Then \mathcal{S} is Example 3.1.2 $(i i)$.

Case 1.2. For every k-space $D \in \mathcal{S}$, it holds that $\pi \subset D$ or at least one of the dimensions $\operatorname{dim}(D \cap A)$, $\operatorname{dim}(D \cap B), \operatorname{dim}(D \cap C)$ is larger than $k-2$.
In this case, we will prove that if not every k-space of \mathcal{S} meets ζ in a $(k-1)$-space, then \mathcal{S} is the second example described in the theorem. Let D be a k-space of \mathcal{S} not containing π and meeting A, B or C in a ($k-1$)-space. W.l.o.g. we may suppose that $C \cap D$ is the $(k-1)$-space $\pi_{C D}$ and that $A \cap D$ and $B \cap D$ are ($k-2$)-spaces ($\pi_{A D}$ and $\pi_{B D}$ respectively). Note that these subspaces $\pi_{A D}, \pi_{B D}, \pi_{C D}$ contain the $(k-4)$-space $\pi_{D}=D \cap \pi$ and that $\pi_{A D}, \pi_{B D} \subset \zeta$. This follows since D meets $\pi_{A B}, \pi_{A C}, \pi_{B C}$ in a ($k-3$)-space, and $D \cap \pi_{A B}$ and $D \cap \pi_{A C}$ span $\pi_{A D}$. The same argument holds for the space B. Suppose that \mathcal{S} is not a Star, then there does not exist a k-space γ such that each element of \mathcal{S} meets γ in at least a ($k-1$)-space. In particular, there exists a k-space $F \in \mathcal{S}$ that meets ζ in (at most) a ($k-2$)-space. As every k-space in \mathcal{S}, not containing π, meets ζ in a $(k-1)$-space (Lemma 3.3.1), we see that F contains π. Now, since every three elements of \mathcal{S} meet in a $(k-3)$-space, F also contains a $(k-3)$-space of the two $(k-2)$-spaces $\pi_{A D}$ and $\pi_{B D}$ in $\zeta\left(\pi_{A D F}, \pi_{B D F}\right.$ respectively). As F has no $(k-1)$-space in common with ζ, and since $\pi_{A D}, \pi_{B D} \subset \zeta, \pi_{C D} \nsubseteq \zeta$, we find that $\pi_{A D F}=\pi_{B D F}=\pi_{A B} \cap D$ and that $\pi_{C D F} \nsubseteq \zeta$. Hence, $F \cap \zeta=\pi_{A B}$ and $C \cap F=\left\langle\pi_{C D F}, \pi\right\rangle$. Let $\nu=\langle\zeta, C\rangle$. Then we prove that every k-space in \mathcal{S} is contained in ν or contains $\pi_{A B}$ and meets ν in a $(k-1)$-space. Every k-space in \mathcal{S} containing $\pi_{A B}$ must contain at least a $(k-2)$-space of C. Hence, this k-space meets ν in at least a $(k-1)$-space. Consider now a k-space $E \in \mathcal{S}$ not through $\pi_{A B}$. From the arguments above, it follows that, if $\pi \subset E$, then $E \subset \nu$. Moreover, if $\pi \nsubseteq E$, then, by Lemma3.3.1 E contains a $(k-1)$-space in ζ and a point in $C \backslash \zeta$ as otherwise we have Case 1.1, and so \mathcal{S} would be a Star, a contradiction. Hence, $E \subset \nu$.

CASE 2. For every three k-spaces $X, Y, Z \in \mathcal{S}$, we have that $\operatorname{dim}(X \cap Y \cap Z) \geq k-2$ or two of these spaces meet in $a(k-1)$-space. Since we suppose that there is no point contained in all elements of \mathcal{S}, we see that not every three elements meet in a fixed ($k-2$)-space. Recall that $A \cap B=\pi_{A B}$ is a ($k-2$)-space. Hence, every other element of \mathcal{S} contains $\pi_{A B}$ or meets A or B in a ($k-1$)-space. Note that the elements of \mathcal{S}, not through $\pi_{A B}$, are contained in $\langle A, B\rangle$. By Example 3.1.2 (x), we may suppose that not all elements of \mathcal{S} are contained in $\langle A, B\rangle$. Hence, let $D \in \mathcal{S}$ be a k-space not contained in $\langle A, B\rangle$.
If $D \cap A=D \cap B=\pi_{A B}$, then, by symmetry, it follows that every element of \mathcal{S}, not through $\pi_{A B}$, meets two of the three elements A, B, D in a ($k-1$)-space. This is a contradiction since a k-space cannot contain two ($k-1$)-spaces, meeting in a $(k-3)$-space.
Hence, every k-space in \mathcal{S}, not in $\langle A, B\rangle$, meets A or B in a $(k-1)$-space through $\pi_{A B}$. W.l.o.g. we suppose that $B \cap D=\pi_{B D}$ is a ($k-1$)-space, and so $A \cap D=\pi_{A D}=\pi_{A B}$. Consider now an element $E \in \mathcal{S}$ not through $\pi_{A B}$. Then, $E \subset\langle A, B\rangle$, and since both A, B and A, D meet in a ($k-2$)-space, E contains a ($k-1$)-space in A or E contains a ($k-1$)-space in both D and B. Note that E cannot contain a ($k-1$)-space of D, since $E \subset\langle A, B\rangle$, but $D \cap\langle A, B\rangle$ is a ($k-1$)-space through $\pi_{A B} \nsupseteq E$. Hence, E must contain a ($k-1$)-space of A and a $(k-2)$-space of $B \cap D$ and so every element of \mathcal{S}, not through $\pi_{A B}$, is contained in $\nu=\left\langle A, \pi_{B D}\right\rangle$.
To conclude this proof, we show that every element of \mathcal{S}, through $\pi_{A B}$, meets $\nu=\left\langle A, \pi_{B D}\right\rangle$ in at least a $(k-1)$-space, which proves that \mathcal{S} is the Generalized Hilton-Milner example. So, consider a k-space $F \in \mathcal{S}, \pi_{A B} \subset F$. Then F must contain a $(k-2)$-space $\pi_{E F}$ of E. Hence, F contains the $(k-1)$-space $\left\langle\pi_{E F}, \pi_{A B}\right\rangle \subset\left\langle A, \pi_{B D}\right\rangle$.

3.4 There is at least a point contained in all k-spaces of \mathcal{S}

To classify all maximal sets of k-spaces pairwise intersecting in at least a $(k-2)$-space, we also have to investigate the families of k-spaces such that there is a subspace contained in all its elements. More precisely, in this section, we will consider a set \mathcal{S} of k-spaces of $\operatorname{PG}(n, q)$ such that there is at least a point contained in all elements of \mathcal{S}. So, let g, with $0 \leq g \leq k-3$, be the dimension of the maximal subspace γ contained in all elements of \mathcal{S}, and let $k^{\prime}=k-g-1$. In the quotient space of $\operatorname{PG}(n, q)$ with respect to γ, the set \mathcal{S} of k-spaces corresponds to a set \mathcal{T} of k^{\prime}-spaces in $\mathrm{PG}(n-g-1, q)$ that pairwise intersect in at least a $\left(k^{\prime}-2\right)$-space, and so that there is no point contained in all elements of \mathcal{T}. Since we are interested in sets \mathcal{S} of k-spaces with $|\mathcal{S}|>f(k, q)$, this corresponds with sets \mathcal{T} of k^{\prime}-spaces with $|\mathcal{T}|>f(k, q)$.

Since $f(k, q) \geq f\left(k^{\prime}, q\right)=f(k-g-1, q)$, we can use Theorem 3.2.16 and Theorem 3.3.2 for the sets \mathcal{T} in $\operatorname{PG}(n-g-1, q)$, in the case that $k-g-1>2$. For each example, we show that it can be extended to one of the examples discussed in the previous sections.

1. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.2.16 i), so that \mathcal{T} is Example $3.1 .2(x)$: there exists a $\left(k^{\prime}+2\right)$-space ρ^{\prime} such that \mathcal{T} is the set of all k^{\prime}-spaces in ρ. Then \mathcal{S} can be extended to Example 3.1.2 (x) in $\operatorname{PG}(n, q)$, with $\rho=\left\langle\rho^{\prime}, \gamma\right\rangle$.
2. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.2 .16 (ii), so that \mathcal{T} is Example $3.1 .2(v)$: there are a $\left(k^{\prime}+2\right)$-space ρ^{\prime}, and a $\left(k^{\prime}-1\right)$-space $\alpha^{\prime} \subset \rho^{\prime}$ so that \mathcal{T} contains all k^{\prime}-spaces in ρ^{\prime} that meets α^{\prime} in at least a $\left(k^{\prime}-2\right)$-space, and all k^{\prime}-spaces in $\mathrm{PG}(n-g-1, q)$ through α^{\prime}. Then \mathcal{S} can be extended to Example 3.1.2 (v) in $\mathrm{PG}(n, q)$, with $\rho=\left\langle\rho^{\prime}, \gamma\right\rangle$ and $\alpha=\left\langle\alpha^{\prime}, \gamma\right\rangle$.
3. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.2.16(iii), so that \mathcal{T} is Example 3.1.2 $(i v)$: there are a $\left(k^{\prime}+2\right)$-space ρ^{\prime}, a k^{\prime}-space $\alpha^{\prime} \subset \rho^{\prime}$ and a $\left(k^{\prime}-2\right)$-space $\pi^{\prime} \subset \alpha^{\prime}$ so that \mathcal{T} contains all k^{\prime}-spaces in ρ^{\prime} that meet α^{\prime} in at least a $\left(k^{\prime}-1\right)$-space, all k^{\prime}-spaces in ρ^{\prime} through π^{\prime}, and all k^{\prime}-spaces in $\operatorname{PG}(n-g-1, q)$ that contain a $\left(k^{\prime}-1\right)$-space of α^{\prime} through π^{\prime}. Then \mathcal{S} can be extended to Example 3.1.2 $(i v)$ in $\operatorname{PG}(n, q)$, with $\pi=\left\langle\pi^{\prime}, \gamma\right\rangle, \rho=\left\langle\rho^{\prime}, \gamma\right\rangle$ and $\alpha=\left\langle\alpha^{\prime}, \gamma\right\rangle$.
4. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.2 .16 (iv). Since we suppose that $|\mathcal{S}|=|\mathcal{T}|>f(k, q)$, we know that \mathcal{T} is Example $3.1 .2(v i)$: there are two $\left(k^{\prime}+2\right)$-spaces $\rho_{1}^{\prime}, \rho_{2}^{\prime}$ intersecting in a $\left(k^{\prime}+1\right)$-space $\alpha^{\prime}=\rho_{1}^{\prime} \cap \rho_{2}^{\prime}$. There are two $\left(k^{\prime}-1\right)$-spaces $\pi_{A}^{\prime}, \pi_{B}^{\prime} \subset \alpha^{\prime}$, with $\pi_{A}^{\prime} \cap \pi_{B}^{\prime}$ the $\left(k^{\prime}-2\right)$-space l^{\prime}, there is a point $P^{\prime} \in \alpha^{\prime} \backslash\left\langle\pi_{A}^{\prime}, \pi_{B}^{\prime}\right\rangle$, and let $P_{A}^{\prime}, P_{B}^{\prime} \subset l^{\prime}$ be two different ($k^{\prime}-3$)-spaces. Then \mathcal{T} contains

- all k^{\prime}-spaces in α^{\prime},
- all k^{\prime}-spaces through $\left\langle P^{\prime}, l^{\prime}\right\rangle$,
- all k^{\prime}-spaces in ρ_{1}^{\prime} through P^{\prime} and a $\left(k^{\prime}-2\right)$-space in π_{A}^{\prime} through P_{A}^{\prime},
- all k^{\prime}-spaces in ρ_{1}^{\prime} through P^{\prime} and a $\left(k^{\prime}-2\right)$-space in π_{B}^{\prime} through P_{B}^{\prime},
- all k^{\prime}-spaces in ρ_{2}^{\prime} through P^{\prime} and a $\left(k^{\prime}-2\right)$-space in π_{A}^{\prime} through P_{B}^{\prime},
- all k^{\prime}-spaces in ρ_{2}^{\prime} through P^{\prime} and a $\left(k^{\prime}-2\right)$-space in π_{B}^{\prime} through P_{A}^{\prime}.

Then \mathcal{S} can be extended to Example 3.1.2 $(v i)$ in $\operatorname{PG}(n, q)$, with $P_{A}=\left\langle P_{A}^{\prime}, \gamma\right\rangle, P_{B}=\left\langle P_{B}^{\prime}, \gamma\right\rangle$, $\pi_{A}=\left\langle\pi_{A}^{\prime}, \gamma\right\rangle, \pi_{B}=\left\langle\pi_{B}^{\prime}, \gamma\right\rangle, l=\left\langle l^{\prime}, \gamma\right\rangle, \alpha=\left\langle\alpha^{\prime}, \gamma\right\rangle, \rho_{1}=\left\langle\rho_{1}^{\prime}, \gamma\right\rangle, \rho_{2}=\left\langle\rho_{2}^{\prime}, \gamma\right\rangle$ and $P_{A B}=P^{\prime}$.
5. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.3.2 i): there exists a k^{\prime}-space ζ^{\prime} such that \mathcal{T} is the set of all k^{\prime}-spaces that have a $\left(k^{\prime}-1\right)$-space in common with ζ^{\prime}. Then \mathcal{S} can be extended to example (i) in Theorem 3.3.2 and so to Example 3.1.2 $(i i)$, with $\zeta=\left\langle\zeta^{\prime}, \gamma\right\rangle$.
6. \mathcal{T} is the set of k^{\prime}-spaces of Theorem 3.3.2 ii : there exists a $\left(k^{\prime}+1\right)$-space ν^{\prime} and a $\left(k^{\prime}-2\right)$ space $\pi^{\prime} \subset \nu$ such that \mathcal{T} consists of all k^{\prime}-spaces in ν^{\prime}, together with all k^{\prime}-spaces through π^{\prime} that intersect ν^{\prime} in at least a $\left(k^{\prime}-1\right)$-space. Then \mathcal{S} can be extended to example (ii) in Theorem 3.3.2 and so to Example 3.1.2 $(i i i)$, with $\nu=\left\langle\nu^{\prime}, \gamma\right\rangle, \pi=\left\langle\pi^{\prime}, \gamma\right\rangle$.

We note that if \mathcal{T} is one of the set of k^{\prime}-spaces described in Section 3.2.4 then \mathcal{S} can be extended to a set \mathcal{S}^{\prime} of k-spaces pairwise intersecting in a $(k-2)$-space such that \mathcal{S}^{\prime} contains three k-spaces that meet in a $(k-4)$-space with $\operatorname{dim}(\alpha)=k+2$. Hence, $\left|\mathcal{S}^{\prime}\right|<f(k, q)$ and so these sets \mathcal{T} do not lead to large examples of \mathcal{S}.

If $k-g-1=2$, the set \mathcal{T} is a set of planes in $\operatorname{PG}(n-k+2, q)$ pairwise intersecting in at least a point, i.e. an Erdős-Ko-Rado set of planes. In [13] Section 6], Blokhuis et al. classified the maximal Erdős-Ko-Rado sets \mathcal{T} of planes in $\operatorname{PG}(5, q)$ with $|\mathcal{T}| \geq 3 q^{4}+3 q^{3}+2 q^{2}+q+1$. In [33], De Boeck generalized these results and classified the largest examples of sets of planes pairwise intersecting in at least a point in $\mathrm{PG}(n, q), n \geq 5$. Below we retrace the examples in [13] and [33] with size at least $f(k, q)$ and such that there is no point contained in all their elements. For each example, we show that it can be extended to one of the examples discussed in the previous sections, or that it gives rise to a new maximal example.

1. \mathcal{T} is the set of planes of Example $I I$ in [33]: consider a 3-space σ and a point $P_{0} \in \sigma$. Let \mathcal{T} be the set of all planes that either are contained in σ or else intersect σ in a line through P_{0}. Then \mathcal{S} can be extended to Example 3.1.2 $(i i i)$, with ζ the ($k+1$)-space spanned by σ and γ, and $\pi_{A B}=\left\langle\gamma, P_{0}\right\rangle$.
2. \mathcal{T} is the set of planes of Example $I I I$ in [33]: consider a plane π, then \mathcal{T} is the set of planes meeting π in at least a line. Then \mathcal{S} can be extended to Example 3.1.2 $(i i)$, with ζ the k-space spanned by π and γ.
3. \mathcal{T} is the set of planes of Example $I V$ in [33]: consider a 4-space τ, a plane $\delta \subset \tau$ and a point $P_{0} \in \delta$. Then \mathcal{T} is the set containing the planes in τ intersecting δ in a line, the planes intersecting δ in a line through P_{0} and the planes in τ through P_{0}. Then we can refer to Subsection 3.2 and so \mathcal{S} can be extended to Example 3.1.2 $(i v)$, with $\rho=\langle\gamma, \tau\rangle, \alpha=\langle\gamma, \delta\rangle$ and $\pi=\left\langle\gamma, P_{0}\right\rangle$.
4. \mathcal{T} is the set of planes of Example V in [33]: consider a 4-space τ, and a line $l \subset \tau$. Then \mathcal{T} is the set containing the planes through l and all planes in τ containing a point of l. Then we can refer to Subsection 3.2.1 and \mathcal{S} can be extended to Example 3.1.2 (v), with $\rho=\langle\gamma, \tau\rangle$ and $\alpha=\langle\gamma, l\rangle$.
5. \mathcal{T} is the set of planes of Example $V I$ in [33]: let τ_{1} and τ_{2} be two 4 -spaces such that $\sigma=\tau_{1} \cap \tau_{2}$ is a 3 -space. Let π_{1} and π_{2} be two planes in σ with intersection line l_{0} and let P_{1} and P_{2} be two different points on l_{0}. Then \mathcal{T} is the set of planes through l_{0}, the planes in σ, the planes in τ_{1} containing a line through P_{1} in π_{1} or a line through P_{2} in π_{2}, and the planes in τ_{2} containing a line through P_{1} in π_{2} or a line through P_{2} in π_{1}. Then by using Section 3.2.3 Case $1, \mathcal{S}$ can be extended to Example 3.1.2 $(v i)$ with $\rho_{i}=\left\langle\gamma, \tau_{i}\right\rangle, \alpha=\langle\gamma, \sigma\rangle, \pi_{A}=\left\langle\gamma, \pi_{1}\right\rangle$, $\pi_{B}=\left\langle\gamma, \pi_{2}\right\rangle, \lambda=\left\langle\gamma, l_{0}\right\rangle, \lambda_{A}=\left\langle\gamma, P_{1}\right\rangle, \lambda_{B}=\left\langle\gamma, P_{2}\right\rangle$ and $P_{A B}$ a point in γ.
6. \mathcal{T} is the set of planes of Example $V I I$ in [33]: let ρ be a 5 -space. Consider a line $l \subset \rho$ and a 3 -space $\sigma \subset \rho$ disjoint from l. Choose three points P_{1}, P_{2}, P_{3} on l and choose four non-coplanar points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ in σ. Denote $l_{1}=Q_{1} Q_{2}, \bar{l}_{1}=Q_{3} Q_{4}, l_{2}=Q_{1} Q_{3}$, $\bar{l}_{2}=Q_{2} Q_{4}, l_{3}=Q_{1} Q_{4}$, and $\bar{l}_{3}=Q_{2} Q_{3}$. Then \mathcal{T} is the set containing all planes through l and all planes through P_{i} in $\left\langle l, l_{i}\right\rangle$ or in $\left\langle l, \bar{l}_{i}\right\rangle, i=1,2,3$. Note that this set \mathcal{S} is the set described in Example $3.1 .2(i x)$. We can prove the following lemma.

Lemma 3.4.1. The set \mathcal{S} of k-spaces described in Example $3.1 .2(i x)$ is a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$-space.

Proof. We have to prove that there does not exist a k-space E in $\operatorname{PG}(n, q)$, with $\gamma \nsubseteq E$ and so that E meets all elements of \mathcal{S} in at least a $(k-2)$-space. Suppose there exists such a k-space E. As \mathcal{S} contains all k-spaces through the $(k-1)$-space $\langle\gamma, l\rangle, E$ contains a $(k-2)$-space π_{0} of $\langle\gamma, l\rangle$, not through γ. Hence, $\operatorname{dim}(E \cap \gamma)=g-1=k-4$. As \mathcal{S} contains all k-spaces through $\left\langle\gamma, P_{i}\right\rangle$ in the $(k+1)$-space $\left\langle\gamma, l, l_{i}\right\rangle$ (or $\left\langle\gamma, l, \bar{l}_{i}\right\rangle$), E contains a $(k-1)$-space of each of those $(k+1)$-spaces. Consider now the quotient space $\operatorname{PG}(n, q) / \gamma$, and let $E^{\prime}=\langle\gamma, E\rangle / \gamma$, $Q_{i}^{\prime}=\left\langle Q_{i}, \gamma\right\rangle / \gamma, P_{i}^{\prime}=\left\langle P_{i}, \gamma\right\rangle / \gamma$, and $l^{\prime}=\langle l, \gamma\rangle / \gamma$. Then E^{\prime} is a solid in $\operatorname{PG}(n, q) / \gamma$ through l^{\prime} that contains a point of each of the lines $Q_{i}^{\prime} Q_{j}^{\prime}, 1 \leq i<j \leq 4$, but this gives a contradiction as $\operatorname{dim}\left(E^{\prime}\right)=3$.
7. \mathcal{T} is the set of planes of Example VIII in $\mathrm{PG}(n-k+2, q)$ in [33]: consider two solids σ_{1} and σ_{2}, intersecting in a line l. Take the points P_{1} and P_{2} on l. Then \mathcal{T} is the set containing all planes through l, all planes through P_{1} that contain a line in σ_{1} and a line in σ_{2}, and all planes through P_{2} in σ_{1} of σ_{2}. Note that this set \mathcal{S} is the set described in Example 3.1.2 (vii). We can prove that the set \mathcal{S} of k-spaces is not extendable.

Lemma 3.4.2. The set \mathcal{S} ofk-spaces described in Example 3.1.2(vii) is a maximal set ofk-spaces pairwise intersecting in at least a $(k-2)$-space.

Proof. We have to prove that there does not exist a k-space E in $\operatorname{PG}(n, q)$, with $\gamma \nsubseteq E$ and so that E meets all elements of \mathcal{S} in at least a $(k-2)$-space. Suppose there exists such a k-space E. As \mathcal{S} contains all k-spaces through the $(k-1)$-space $\langle\gamma, l\rangle, E$ contains a $(k-2)$ space π_{0} of $\langle\gamma, l\rangle$, not through γ. Hence, $\operatorname{dim}(\gamma \cap E)=k-4$. As \mathcal{S} contains all k-spaces through $\left\langle\gamma, P_{2}\right\rangle$ in the $(k+1)$-space $\left\langle\gamma, \sigma_{1}\right\rangle$ (or $\left\langle\gamma, \sigma_{2}\right\rangle$), E contains a $(k-1)$-space of each of those $(k+1)$-spaces. These two $(k-1)$-spaces, α_{1} and α_{2} respectively, span E and meet in a $(k-2)$-space π_{0}. Then we show that there exists a k-space $A \in \mathcal{S}$, containing γ, that meets E in precisely a $(k-3)$-space. Consider the quotient space $\operatorname{PG}(n, q) / \gamma$, and let $E^{\prime}=\langle\gamma, E\rangle / \gamma$, $\sigma_{i}^{\prime}=\left\langle\sigma_{i}, \gamma\right\rangle / \gamma, P_{i}^{\prime}=\left\langle P_{i}, \gamma\right\rangle / \gamma, A^{\prime}=\langle A, \gamma\rangle / \gamma$ and $l^{\prime}=\langle l, \gamma\rangle / \gamma=\left\langle\pi_{0}, \gamma\right\rangle / \gamma$. Then E^{\prime} is a solid in $\operatorname{PG}(n, q) / \gamma$ through l^{\prime} that contains planes $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ in σ_{1}^{\prime} and σ_{2}^{\prime} respectively. Note that $\alpha_{1}^{\prime} \cap \alpha_{2}^{\prime}=l^{\prime}$. Let $l_{1} \in \sigma_{1}^{\prime}$ and $l_{2} \in \sigma_{2}^{\prime}$ be two lines containing P_{1}^{\prime} so that $l_{1} \cap \alpha_{1}^{\prime}=l_{2} \cap \alpha_{2}^{\prime}=P_{1}^{\prime}$, and let A^{\prime} be the plane spanned by l_{1} and l_{2}. Then $E^{\prime} \cap A^{\prime}$ is a point in $\operatorname{PG}(n, q) / \gamma$. Since $\gamma \subseteq A$ and $\gamma \nsubseteq E$, we find that $E \cap A$ is a $(k-3)$-space of $\left\langle\gamma, P_{1}\right\rangle$ in $\operatorname{PG}(n, q)$, and so these elements of \mathcal{S} meet in a $(k-3)$-space, a contradiction.
8. \mathcal{T} is the set of planes of Example $I X$ in $\operatorname{PG}(n-k+2, q)$ in [33]: let l be a line and σ a solid skew to l. Denote $\langle l, \sigma\rangle$ by ρ. Let P_{1} and P_{2} be two points on l and let \mathcal{R}_{1} and \mathcal{R}_{2} be a regulus and its opposite regulus in σ. Then \mathcal{T} is the set containing all planes through l, all planes through P_{1} in the solid generated by l and a line of \mathcal{R}_{1}, and all planes through P_{2} in the solid generated by l and a line of \mathcal{R}_{2}. Note that this set \mathcal{S} is the set described in Example 3.1.2 (viii). We can prove the following lemma.

Lemma 3.4.3. The set \mathcal{S} of k-spaces described in Example 3.1.2(viii) is a maximal set of k spaces pairwise intersecting in at least a $(k-2)$-space.

Proof. We have to prove that there does not exist a k-space E in $\operatorname{PG}(n, q)$, with $\gamma \nsubseteq E$, and so that E meets all elements of \mathcal{S} in at least a $(k-2)$-space. Suppose there exists such a k space E. Let $\mathcal{R}_{1}=\left\{l_{1}, l_{2}, \ldots, l_{q+1}\right\}$ and $\mathcal{R}_{2}=\left\{\bar{l}_{1}, \bar{l}_{2}, \ldots, \bar{l}_{q+1}\right\}$. As \mathcal{S} contains all k-spaces through the ($k-1$)-space $\langle\gamma, l\rangle, E$ contains a ($k-2$)-space π_{0} of $\langle\gamma, l\rangle$, not through γ. Hence, $\operatorname{dim}(\gamma \cap E)=k-4$. As \mathcal{S} contains all k-spaces through $\left\langle\gamma, P_{i}\right\rangle$ in the $(k+1)$-spaces $\left\langle\gamma, l, l^{\prime}\right\rangle$ (or $\left\langle\gamma, l, \bar{l}^{\prime}\right\rangle$), with $l^{\prime} \in \mathcal{R}_{i}, E$ contains a $(k-1)$-space of each of those $(k+1)$-spaces. Consider now the quotient space $\operatorname{PG}(n, q) / \gamma$, and let $E^{\prime}=\langle\gamma, E\rangle / \gamma, l_{i}^{\prime}=\left\langle l_{i}, \gamma\right\rangle / \gamma, \bar{l}_{i}^{\prime}=\left\langle\bar{l}_{i}, \gamma\right\rangle / \gamma$, $P_{i}^{\prime}=\left\langle P_{i}, \gamma\right\rangle / \gamma$, and $l^{\prime}=\langle l, \gamma\rangle / \gamma=\left\langle\pi_{0}, \gamma\right\rangle / \gamma$. Then E^{\prime} is a solid in $\operatorname{PG}(n, q) / \gamma$ through l^{\prime} that contains a point of each of the lines l_{i}^{\prime} and $\bar{l}_{i}^{\prime}, 1 \leq i \leq q+1$, but this gives a contradiction as $\operatorname{dim}\left(E^{\prime}\right)=3$.

We see that example $(f),(g)$ and (h) give rise to maximal examples of sets \mathcal{S} of k-spaces pairwise intersecting in at least a $(k-2)$-space, described in Example $3.1 .2(i x),(v i i),(v i i i)$ respectively. From [33], it follows that the number of elements in \mathcal{S} equals $\theta_{n-k}+6 q^{2}, \theta_{n-k}+q^{4}+2 q^{3}+3 q^{2}$ and $\theta_{n-k}+2 q^{3}+2 q^{2}$ respectively.

Finally, if $k-g-1=1$, then $g=k-2$ and so, there is a $(k-2)$-space contained in all solids of \mathcal{S}. This case gives rise to Example 3.1.2 i).

3.5 Main Theorem

By collecting the results from Propositions 3.2.16 Theorem 3.3.2 and Section 3.4 we find the following result.

Main Theorem 3.5.1. Let \mathcal{S} be a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$ space in $\mathrm{PG}(n, q), n \geq 2 k, k \geq 3$. Let

$$
f(k, q)= \begin{cases}3 q^{4}+6 q^{3}+5 q^{2}+q+1 & \text { if } k=3, q \geq 2 \text { or } k=4, q=2 \\ \theta_{k+1}+q^{4}+2 q^{3}+3 q^{2} & \text { else. }\end{cases}
$$

If $|\mathcal{S}|>f(k, q)$, then \mathcal{S} is one of the families described in Example 3.1.2 Note that for $n>2 k+1$, the examples $(i)-(i x)$ are stated in decreasing order of the sizes.

Proof. - If there is no point contained in all elements of \mathcal{S} and \mathcal{S} contains three k-spaces A, B, C with $\operatorname{dim}(A \cap B \cap C)=k-4$, then we distinguished the possibilities for \mathcal{S} depending on the dimension of $\alpha=\left\langle D \cap\langle A, B\rangle \mid D \in \mathcal{S}^{\prime}\right\rangle$, where $\mathcal{S}^{\prime}=\{D \in \mathcal{S} \mid D \not \subset\langle A, B\rangle\}$, see Section 3.2 By Proposition 3.2 .16 it follows that \mathcal{S} is one of the examples $(i v),(v),(v i),(x)$ in Example 3.1.2

- If there is no point contained in all elements of \mathcal{S} and if for every three elements A, B, C in \mathcal{S}, we have that $\operatorname{dim}(A \cap B \cap C) \geq k-3$, then the only possibilities for \mathcal{S} are described in Example 3.1.2 (ii) and (iii), see Theorem 3.3.2
- If there is at least a point contained in all k-spaces of \mathcal{S}, then we refer to Section 3.4 Let γ be the maximal subspace contained in all k-spaces of \mathcal{S}, with $\operatorname{dim}(\gamma)=g$. Then $\mathcal{T}=$ $\{D / \gamma \mid D \in \mathcal{S}\}$ is a set of $(k-g-1)$-spaces of $\mathrm{PG}(n-g-1, q) \simeq \mathrm{PG}(n, q) / \gamma$ pairwise intersecting in at least a $(k-g-3)$-space. The only examples of sets \mathcal{T} that give rise to maximal examples of sets of k-spaces are described in Section 3.4 in the examples $(f),(g),(h)$. In these examples, $g=k-3$. They correspond to Example 3.1.2 (i), (ix), (vii), (viii).

66 Equations are just the boring part of mathematics. I attempt to see things in terms of geometry.

The results in this chapter will appear in [43].

4.1 Introduction

Before we start with the introduction, we would like to indicate how this chapter came about. We started investigating the Hilton-Milner problem in the affine context: we studied the second largest examples of sets of affine k-spaces pairwise intersecting in at least a t-space in $\mathrm{AG}(n, q)$. Thanks to prof. Tamás Szőnyi, we received notes of David Ellis about the projective analogue of this problem [54]. In these notes, he studied the second largest families of projective k-spaces, pairwise intersecting in at least a t-space in $\operatorname{PG}(n, q)$. These notes helped me to shorten my, affine, arguments. Since these notes are not published, we integrate them in this chapter. The results that are mostly influenced by the ideas in the notes of David Ellis are Lemmas 4.4.3, 4.4.4, 4.4.5 and 4.4.6. In his notes, David Ellis used the kernel method [67, Section 15.1].
While finishing the last details of this project, the paper [29] appeared on Arxiv. In that paper, the authors deduce similar results as ours in the vector space setting. It is worth noting that our results were obtained independently, and our paper deals with both the affine and projective case at once. A comparison between the results of this chapter and the results in [29] is given in Remark 4.4.8.

In [69], Guo and Xu investigated the Erdős-Ko-Rado problem in affine spaces. They proved that the largest t-intersecting family of k-spaces in $\operatorname{AG}(n, q), n \geq 2 k+t+2$, is the set of all k-spaces through a fixed t-space. In Section 4.4.2, we give a shorter proof for their result and improve their bound on n to $n \geq 2 k+1$. For $t=0$, the second largest t-intersecting set of k-spaces in $\mathrm{PG}(n, q)$ and $\mathrm{AG}(n, q)$ were already described in [12] (see Theorem 2.0.5) and [68] respectively. We describe the result from [68] in Theorem4.4.10 The main goal in this chapter is to describe the second largest Erdős-Ko-Rado sets for $t \geq 1$, for both $\operatorname{PG}(n, q)$ and $\operatorname{AG}(n, q)$.

In Section 4.2 and in Section 4.3 we give two examples of maximal sets of k-spaces in $\operatorname{PG}(n, q)$ and $\operatorname{AG}(n, q)$, respectively, pairwise intersecting in at least a t-space, which are not t-pencils. In Section 4.4 we prove the Hilton-Milner results.

4.2 Two examples in $\operatorname{PG}(n, q)$

We start by giving two examples of maximal sets of k-spaces in $\operatorname{PG}(n, q)$, pairwise meeting in at least a t-space. Note that for $n \leq 2 k-t$, all projective k-spaces in $\operatorname{PG}(n, q)$ are pairwise intersecting in at least a t-space. Hence, we may suppose that $n \geq 2 k-t+1$.

Example 4.2.1. Let δ be at-space, $t \leq k-1$, in $\mathrm{PG}(n, q), n \geq 2 k-t+1$, and let ξ be $a(k+1)$-space in $\mathrm{PG}(n, q)$ with $\delta \subset \xi$. Let S_{1} be the set of all k-spaces in ξ. Let S_{2} be the set of all k-spaces through δ and meeting ξ in at least a $(t+1)$-space. Let \mathcal{S} be the union of the sets S_{1} and S_{2}.

Lemma 4.2.2. The set \mathcal{S}, described in Example 4.2.1. is a maximal set of k-spaces in $\operatorname{PG}(n, q)$, $n \geq 2 k-t+1$, pairwise intersecting in at least a t-space, of size

$$
|\mathcal{S}|=\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]
$$

Proof. We start with determining the size of \mathcal{S}. First note that the number of elements of $S_{1} \backslash S_{2}$ is equal to the number of k-spaces in the $(k+1)$-space ξ, not containing δ. Hence, $\left|S_{1} \backslash S_{2}\right|=$ $\theta_{k+1}-\theta_{k-t}$.

All elements of S_{2} contain δ. To determine $\left|S_{2}\right|$, we consider the quotient space $\operatorname{PG}(n, q) / \delta$, which is isomorphic to $\operatorname{PG}(n-t-1, q)$. Let σ_{0} be the projective $(k-t)$-space in $\operatorname{PG}(n, q) / \delta$, corresponding to ξ. A $(k-t-1)$-space, corresponding to an element of S_{2} in $\operatorname{PG}(n, q) / \delta$ has at least a point in common with σ_{0}. Hence, $\left|S_{2}\right|$ is the number of $(k-t-1)$-spaces in $\operatorname{PG}(n-t-1)$, minus the number of $(k-t-1)$-spaces, disjoint from σ_{0}. From Lemma 1.10.1 we have that $\left|S_{2}\right|=$ $\left[\begin{array}{c}n-t \\ k-t\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}n-k-1 \\ k-t\end{array}\right]$. Hence,

$$
|\mathcal{S}|=\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \tag{4.1}\\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]
$$

It is clear that all elements of S_{2} pairwise meet in at least the t-space δ. Every two elements of S_{1} meet in a $(k-1)$-space, since they are contained in a $(k+1)$-space. Note that $k-1 \geq t$. Consider now a k-space π_{1} in S_{1} and a k-space π_{2} in S_{2}. Note that $\pi_{1} \subset \xi$, and π_{2} meets ξ in at least a $(t+1)$-space. Again, from the Grassmann dimension property, it follows that they meet in at least a t-space.

Now we prove that \mathcal{S} cannot be extended to a larger set of k-spaces pairwise intersecting in at least a t-space. Suppose that $\alpha \notin \mathcal{S}$ is a k-space that meets every element of \mathcal{S} in at least a t-space. If $\delta \subset \alpha$, then, since $\alpha \notin \mathcal{S}$, α meets ξ only in δ. Hence, there is an element π of S_{1} such that $\operatorname{dim}(\pi \cap \delta)=t-1$, and so, $\operatorname{dim}(\pi \cap \alpha)<t$. This gives a contradiction with the fact that α meets all elements of \mathcal{S} in at least a t-space. Hence, we may suppose that $\delta \nsubseteq \alpha$. So, α meets δ in a d-space with $d \leq t-1$. Note that $\operatorname{dim}(\alpha \cap \xi) \geq t+1$ since α meets all elements of S_{1} in at least a t-space. Let $\pi_{0} \subset \xi$ be a $(k-t-1)$-space disjoint from δ. For every point $P \in \pi_{0}$, consider the set \mathcal{S}_{P} of elements of \mathcal{S} that meet ξ in $\langle\delta, P\rangle$. If $\operatorname{dim}(\alpha \cap\langle\delta, P\rangle)<t$, then α must meet all elements of \mathcal{S}_{P} in a subspace outside of ξ. We now prove that this gives a contradiction since $n \geq 2 k-t+1$. Let $\alpha \cap\langle P, \delta\rangle=\nu$ and suppose that $\operatorname{dim}(\nu)=r<t$. We investigate the quotient space $\operatorname{PG}(n, q) / \nu$, and let α^{\prime} be the subspace in this quotient space corresponding to α. Let β be a k-space through $\langle P, \delta\rangle$ with β^{\prime} be the corresponding subspace in $\operatorname{PG}(n, q) / \nu$, such that $\operatorname{dim}\left(\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle\right)$ is maximal. Hence, $\operatorname{dim}\left(\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle\right)=\min \{n-r-1,2 k-2 r-1\}$. From the Grassmann dimension property, and since α and β have at least a $(t-r-1)$-space in common in the quotient space, we then have that

$$
\begin{gathered}
\operatorname{dim}\left(\alpha^{\prime} \cap \beta^{\prime}\right)=\operatorname{dim}\left(\alpha^{\prime}\right)+\operatorname{dim}\left(\beta^{\prime}\right)-\operatorname{dim}\left(\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle\right) \\
\Rightarrow t-r-1 \leq 2 k-2 r-2-\min \{n-r-1,2 k-2 r-1\}
\end{gathered}
$$

This gives a contradiction since $r<t$ and $n \geq 2 k-t+1$. Hence, $\operatorname{dim}(\alpha \cap\langle\delta, P\rangle)=t$ for all points $P \in \pi_{0}$. This implies that $\operatorname{dim}(\alpha \cap \delta)=t-1$, and α must have a t-space in common with all $(t+1)$-spaces $\langle\delta, P\rangle$ with $P \in \pi_{0}$. Hence, $\alpha \subseteq \xi$, and so $\alpha \in S_{1}$, a contradiction.

Example 4.2.3. Suppose $k \geq t+1$ and let ω be a $(t+2)$-space in $\mathrm{PG}(n, q), n \geq 2 k-t+1$. Let \mathcal{S} be the set of all k-spaces in $\mathrm{PG}(n, q)$, meeting ω in at least a $(t+1)$-space.

Lemma 4.2.4. The set \mathcal{S}, described in Example 4.2.3 is a maximal set of k-spaces in $\operatorname{PG}(n, q)$, pairwise intersecting in at least a t-space, of size

$$
|\mathcal{S}|=\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+2} \cdot\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)
$$

Proof. The number of elements in \mathcal{S} is the number of k-spaces through ω, together with the number of k-spaces, meeting ω in a $(t+1)$-space:

$$
|\mathcal{S}|=\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+2} \cdot\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)
$$

Consider two elements $\pi_{1}, \pi_{2} \in \mathcal{S}$. Then $\pi_{1} \cap \omega$ and $\pi_{2} \cap \omega$ are two subspaces with dimension at least $t+1$ in a $(t+2)$-space, and so, they meet in at least a t-space.

Now we prove that \mathcal{S} cannot be extended to a larger set of k-spaces pairwise intersecting in at least a t-space. Suppose that $\alpha \notin \mathcal{S}$ is a k-space that meets every element of \mathcal{S} in at least a t-space. Since $\alpha \notin \mathcal{S}$, we know that $\operatorname{dim}(\alpha \cap \omega) \leq t$. Let γ be a $(t+1)$-space in ω such that $\operatorname{dim}(\alpha \cap \omega \cap \gamma) \leq t-1$. Then α must meet all elements of \mathcal{S} through γ in a subspace outside of ω. Since $n \geq 2 k-t+1$, this is not possible. Hence, \mathcal{S} cannot be extended.

Remark 4.2.5. Note that for $k=t+1$, Example 4.2.1 and Example 4.2.3 coincide. In that case, \mathcal{S} is the set of all $(t+1)$-spaces in a fixed $(t+2)$-space in $\mathrm{PG}(n, q)$, see Theorem 2.0.6.

Remark 4.2.6. In the previous chapter, k-spaces pairwise intersecting in at least a $(k-2)$-space in $\mathrm{PG}(n, q)$ were investigated. For $t=k-2$, Example 4.2.1 coincides with Example 3.1.2 (iii), and Example 4.2.3 coincides with Example 3.1.2 (ii).

4.3 Two examples in $\operatorname{AG}(n, q)$

We also give two examples of maximal sets of k-spaces in $\operatorname{AG}(n, q)$, pairwise meeting in at least a t-space. For the remainder of this chapter, we suppose that $n \geq 2 k-t+1$ and $t \geq 1$. In Section 4.4 we prove that the largest non-trivial sets of k-spaces, pairwise meeting in at least a t-space, in $\mathrm{AG}(n, q)$ are given by Examples 4.3.1 and 4.3.3 If $k \geq 2 t+2$, Example 4.3.1 is the largest set, whereas if $k \leq 2 t+1$, Example 4.3 .3 is the largest one.

For an affine subspace α, we denote the projective extension of α by $\tilde{\alpha}$, and let $H_{\infty}=\operatorname{PG}(n, q) \backslash$ $\mathrm{AG}(n, q)$ be the hyperplane at infinity. Similarly, if $\mathcal{S}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\}$ is a set of affine spaces, then we denote the corresponding set of projective spaces by $\tilde{\mathcal{S}}=\left\{\tilde{\pi}_{1}, \tilde{\pi}_{2}, \ldots, \tilde{\pi}_{m}\right\}$.

Example 4.3.1. Let δ be a t-space, $t \leq k-1$, in $\mathrm{AG}(n, q)$, and let ξ be a $(k+1)$-space in $\mathrm{AG}(n, q)$ with $\delta \subset \xi$. Let S_{1} be a maximal set of affine k-spaces in ξ, such that for any two elements π_{1}, π_{2} of $S_{1}, \tilde{\pi}_{1} \cap H_{\infty} \neq \tilde{\pi}_{2} \cap H_{\infty}$, and such that for every $\pi_{1} \in S_{1}: \tilde{\delta} \cap H_{\infty} \nsubseteq \tilde{\pi}_{1}$. Let S_{2} be the set of all k-spaces through δ and meeting ξ in at least a $(t+1)$-space. Let \mathcal{S} be the union of the sets S_{1} and S_{2}.

Note that this example corresponds to the affine case of Example 4.2.1

Lemma 4.3.2. The set \mathcal{S}, described in Example 4.3.1, is a maximal set of k-spaces in $\operatorname{AG}(n, q)$, $n \geq 2 k-t+1$, pairwise intersecting in at least a t-space, of size

$$
|\mathcal{S}|=\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \tag{4.2}\\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]
$$

Proof. We start with determining the size of \mathcal{S}. Note first that the number of elements of S_{1} is equal to the number of $(k-1)$-spaces in $H_{\infty} \cap \xi$, not containing $\delta \cap H_{\infty}$. Hence, $\left|S_{1}\right|=\theta_{k}-\theta_{k-t}$.

Let $\tilde{\sigma_{0}}$ be the projective $(k-t)$-space, corresponding to $\tilde{\xi}$ in the quotient space $\mathrm{PG}(n, q) / \tilde{\delta}$. An extended element of S_{2} to $\operatorname{PG}(n, q)$, corresponds to a $(k-t-1)$-space in $\operatorname{PG}(n, q) / \tilde{\delta}$, that has at least a point in common with $\tilde{\sigma_{0}}$. Hence, $\left|S_{2}\right|$ is the number of projective $(k-t-1)$-spaces in $\operatorname{PG}(n, q) / \tilde{\delta} \cong \mathrm{PG}(n-t-1, q)$, minus the number of $(k-t-1)$-spaces, disjoint from $\tilde{\sigma_{0}}$. By Lemma 1.10 .1 we have that $\left|S_{2}\right|=\left[\begin{array}{c}n-t \\ k-t\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}n-k-1 \\ k-t\end{array}\right]$. Hence,

$$
|\mathcal{S}|=\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \tag{4.3}\\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]
$$

It is clear that all elements of S_{2} pairwise meet in at least a t-space (δ). Consider now two elements $\pi_{1}, \pi_{2} \in S_{1}$. It follows, from the Grassmann dimension property, that $\tilde{\pi}_{1} \cap \tilde{\pi}_{2}$ is a $(k-1)$-space in the $(k+1)$-space $\tilde{\xi}$. This $(k-1)$-space is not contained in H_{∞} by the definition of S_{1}. Let π_{1} be a k-space in S_{1} and let π_{3} be a k-space in S_{2}. Since $\pi_{1} \subset \xi$, and $\operatorname{dim}\left(\pi_{3} \cap \xi\right) \geq t+1$, we know, again by the Grassmann dimension property, that $\tilde{\pi}_{1} \cap \tilde{\pi}_{3}$ meet in at least a projective t-space. Now, $\tilde{\pi}_{1} \cap \tilde{\pi}_{3}$ is not contained in H_{∞}, since there is an affine $(t-1)$-space contained in both π_{1} and π_{3}.

Now we prove that \mathcal{S} cannot be extended to a larger set of k-spaces pairwise intersecting in at least an affine t-space. Suppose that $\alpha \notin \mathcal{S}$ is an affine k-space that meets every element of \mathcal{S} in at least an affine t-space. If α contains δ, then, since $\alpha \notin \mathcal{S}$, we know that $\alpha \cap \xi=\delta$. Let $\pi \in S_{1}$ with $\delta \nsubseteq \pi$. Then α meets π only in a ($t-1$)-space, and so, there is an element of \mathcal{S} that meets α not in a t-space, which contradicts the statement. Hence, we may suppose that $\delta \nsubseteq \alpha$, and this implies that $\operatorname{dim}(\alpha \cap \delta) \leq t-1$. Note that there is no affine t-space contained in all elements of S_{1}, as $t \geq 1$. Hence, we have that $\operatorname{dim}(\alpha \cap \xi) \geq t+1$ as α meets all elements of S_{1} in at least a t-space. Let π_{0} be a projective $(k-t)$-space in $\tilde{\xi} \backslash \tilde{\delta}$. For every point $P \in \pi_{0}$, consider the set \mathcal{S}_{P} of elements of $\tilde{\mathcal{S}}$ that meet $\tilde{\xi}$ in $\langle\tilde{\delta}, P\rangle$. If $\operatorname{dim}(\tilde{\alpha} \cap\langle\tilde{\delta}, P\rangle)<t$, then $\tilde{\alpha}$ must meet all elements of \mathcal{S}_{P} in a subspace outside of $\tilde{\xi}$. This gives a contradiction since $n \geq 2 k-t+1$. Hence, $\operatorname{dim}(\tilde{\alpha} \cap\langle\tilde{\delta}, P\rangle)=t$ for all points $P \in \pi_{0}$. This implies that $\operatorname{dim}(\alpha \cap \delta)=t-1$, and $\tilde{\alpha}$ must have a t-space in common with all $(t+1)$-spaces $\langle\tilde{\delta}, P\rangle$, with $P \in \pi_{0}$. Hence, $\alpha \subseteq \xi$, and so $\alpha \in S_{1}$, a contradiction, since we supposed that $\alpha \notin \mathcal{S}$.

Example 4.3.3. Suppose $k \geq t+1$. Let ω be an affine $(t+2)$-space in $\operatorname{AG}(n, q)$, and let \mathcal{R} be a set of θ_{t+1} affine $(t+1)$-spaces in ω such that \mathcal{R} contains precisely one element through every t-space in $H_{\infty} \cap \tilde{\omega}$. Note that every two different elements of \mathcal{R} meet in an affine t-space. Let \mathcal{S} be the set of all k-spaces in $\operatorname{AG}(n, q)$, containing ω or meeting ω in an element of \mathcal{R}.

Note that this example corresponds to the affine case of Example 4.2.3
Lemma 4.3.4. The set \mathcal{S}, described in Example 4.3.3. is a maximal set of k-spaces in $\operatorname{AG}(n, q)$, $n \geq 2 k-t+1$, pairwise intersecting in at least a t-space, of size

$$
|\mathcal{S}|=\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+1} \cdot\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)
$$

Proof. Since \mathcal{R} is a maximal set, we have that $|\mathcal{R}|$ is the number of all t-spaces in $\tilde{\omega} \cap H_{\infty}$. Hence, $|\mathcal{R}|=\theta_{t+1}$. The number of elements in \mathcal{S} is the number of k-spaces through ω, together with the number of k-spaces, meeting ω in an element of \mathcal{R} :

$$
|\mathcal{S}|=\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+1} \cdot\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right) .
$$

Consider two elements $\pi_{1}, \pi_{2} \in \mathcal{S}$. If π_{1} or π_{2} contains ω, then π_{1} and π_{2} intersect in at least a $(t+1)$-dimensional space. Hence, we suppose that $\pi_{1} \cap \omega$ and $\pi_{2} \cap \omega$ are two $(t+1)$-spaces of \mathcal{R} in a $(t+2)$-space. Since every two elements of \mathcal{R} meet in an affine space with dimension at least t, we have that π_{1} and π_{2} meet in at least an affine t-space.

Now we prove that \mathcal{S} cannot be extended to a larger set of k-spaces pairwise intersecting in at least a t-space. Suppose that $\alpha \notin \mathcal{S}$ is an affine k-space that meets every element of \mathcal{S} in at least a t-space. Consider an element $\sigma \in \mathcal{R}$. Since α must meet all affine k-spaces through σ in at least a t-space, we find that α contains a t-space of σ, as $n \geq 2 k-t+1$. As σ is an arbitrary element of \mathcal{R}, we see that α must meet every element of \mathcal{R} in at least an affine t-space. As $t \geq 1$, there cannot be an affine t-space contained in all elements of \mathcal{R}. This implies that α meets ω in a $(t+1)$-space α_{ω}. Now, α_{ω} must meet every element of \mathcal{R} in an affine t-space. From the maximality of \mathcal{R}, we have that $\alpha_{\omega} \in \mathcal{R}$, and so that $\alpha \in \mathcal{S}$, a contradiction.

4.4 Classification results

We start with a classification result on maximal sets of k-spaces pairwise intersecting in a $(k-1)$ space. In the projective case, we know that a set of k-spaces, pairwise intersecting in a $(k-1)$-space in $\mathrm{PG}(n, q), n \geq k+2$, is a set of k-spaces through a fixed $(k-1)$-space or a set of k-spaces such that each element is contained in a fixed $(k+1)$-space, see Theorem 2.0 .6

We use this classification to deduce the classification of maximal sets of k-spaces pairwise intersecting in a $(k-1)$-space in $\operatorname{AG}(n, q)$.

Theorem 4.4.1. Let \mathcal{S} be a set of k-spaces in $\mathrm{AG}(n, q), n \geq k+1$, pairwise intersecting in a $(k-1)$ space such that \mathcal{S} is not a $(k-1)$-pencil, then $|\mathcal{S}| \leq \theta_{k}$, and equality occurs if and only if \mathcal{S} is Example 4.3 .3 for $t=k-1$. Hence, all elements of \mathcal{S} are contained in $a(k+1)$-space.

Proof. As before, let $\tilde{\mathcal{S}}$ be the set of projective extensions of the elements in \mathcal{S}. So, $\tilde{\mathcal{S}}$ is a set of projective k-spaces pairwise intersecting in a $(k-1)$-space, and such that there is no $(k-1)$-space contained in all these elements. Hence, $\tilde{\mathcal{S}}$ is contained in a $(k+1)$-space Π, by Theorem 2.0 .6 Now, every two elements of \mathcal{S} must meet in $\mathrm{AG}(n, q)$. So, for every two elements $\pi_{1}, \pi_{2} \in \mathcal{S}$, $\tilde{\pi}_{1} \cap \tilde{\pi}_{2} \nsubseteq H_{\infty}$. This implies that every k-space in $\Pi \cap H_{\infty}$ is contained in precisely one element of $\tilde{\mathcal{S}}$. This is Example 4.3.3 for $k=t+1$, which proves the theorem.

Remark 4.4.2. Note that for $t=k-1$, the set of all examples described in Example 4.3.1 is a subset of the set of examples in Example 4.3.3. This follows since for $t=k-1$, the k-spaces of a set \mathcal{S} from Example 4.3.1 are contained in a fixed $(t+2)$ - or, $(k+1)$-space (ξ). Moreover, the set of examples in Example 4.3.1 and 4.3.3 are not equal, since in Example 4.3.1 an extra condition is imposed. For these sets, all k-spaces $\pi \in \tilde{\mathcal{S}}$ through $\tilde{\delta} \cap H_{\infty}$ contain δ.

For $t=k-1$, the number of elements of Example 4.3.3 (and so of Example 4.3.1), is θ_{k}, while, the number of affine subspaces in $\operatorname{AG}(n, q)$ through a fixed affine $(k-1)$-space is θ_{n-k}. Hence, for
$n<2 k$, Example 4.3 .3 is the largest example of a set of affine k-spaces, pairwise intersecting in at least a ($k-1$)-space.

From now on, we suppose that $k \geq t+2$. In Section 4.4.1 and Section 4.4.3, we classify the largest non-trivial t-intersecting sets of k-spaces in $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$, respectively. In Section 4.4.2 we give a shorter proof of the classification result for the largest t-intersecting sets of k-spaces in $\mathrm{AG}(n, q)$, which was first proven in [69]. We will also improve the bound on n in their result to $n \geq 2 k+1$. As mentioned in the introduction, several ideas in the following subsection are based on the notes of David Ellis [54].

4.4.1 Classification result in $\operatorname{PG}(n, q)$

Let \mathcal{S}_{p} be a maximal set of k-spaces in $\mathrm{PG}(n, q), n \geq 2 k-t+1, k \geq t+2$, and $t \geq 1$, pairwise meeting in at least a t-space. Let

$$
\psi\left(\mathcal{S}_{p}\right)=\min \left\{\operatorname{dim}(T) \mid T \subset \mathrm{PG}(n, q), \operatorname{dim}(T \cap \alpha) \geq t, \forall \alpha \in \mathcal{S}_{p}\right\} .
$$

Note that $\psi\left(S_{p}\right)$ is well-defined. Every element $\beta \in \mathcal{S}_{p}$ is an example of a subspace such that $\operatorname{dim}(\beta \cap \alpha) \geq t, \forall \alpha \in \mathcal{S}_{p}$. Let \mathcal{T} be the collection of all $\psi\left(\mathcal{S}_{p}\right)$-dimensional spaces in $\operatorname{PG}(n, q)$, that meet every element of \mathcal{S}_{p} in at least a t-space.
Lemma 4.4.3. We have the following properties for $\psi\left(\mathcal{S}_{p}\right)$ and \mathcal{T}.

1. We have that $t \leq \psi\left(\mathcal{S}_{p}\right) \leq k$, and if $\psi\left(\mathcal{S}_{p}\right)=t$, then \mathcal{S}_{p} is a t-pencil.
2. If $T \in \mathcal{T}$, then all k-spaces through T are contained in \mathcal{S}_{p}.
3. The elements of \mathcal{T} are t-intersecting in $\operatorname{PG}(n, q)$.

Proof. 1. Let $\pi_{1} \in \mathcal{S}_{p}$. Since every element of \mathcal{S}_{p} meets π_{1} in at least a t-space, we have that $\psi\left(\mathcal{S}_{p}\right) \leq k$. Let $T \in \mathcal{T}$. Since all elements of \mathcal{S}_{p} meet T in at least a t-space, we have that $\psi\left(\mathcal{S}_{p}\right) \geq t$. If $\psi\left(\mathcal{S}_{p}\right)=t$, then all elements of \mathcal{S}_{p} contain the t-space T, and, hence, \mathcal{S}_{p} is a t-pencil.
2. This property follows from the maximality of \mathcal{S}_{p}.
3. Suppose that there are two elements $T_{1}, T_{2} \in \mathcal{T}$, with $\operatorname{dim}\left(T_{1} \cap T_{2}\right)=l<t$. Since $n \geq$ $2 k-t+1$, there are two k-spaces π_{1} and π_{2} through T_{1} and T_{2}, respectively, such that $\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)<t$. From the second item, we have that $\pi_{1}, \pi_{2} \in \mathcal{S}_{p}$, a contradiction since they have no t-space in common.

Lemma 4.4.4. Let $\psi\left(\mathcal{S}_{p}\right)=t+x, x \geq 1, k \geq t+2, t \geq 1$ and $n \geq 2 k-t+1$. Then the number of elements of \mathcal{S}_{p} through a projective $(t+x-j)$-space, with $j \in\{0,1,2, \ldots, x\}$, is at most $\left(\theta_{k-t}\right)^{j}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$.

Proof. Let $\psi\left(\mathcal{S}_{p}\right)=t+x, x \geq 2$. We prove, by induction on $j \in\{0,1,2, \ldots, x\}$, that the number of k-spaces of \mathcal{S}_{p} through a $(t+x-j)$-space is at most $\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left(\theta_{k-t}\right)^{j}$. Note that the statement is true for $j=0$. Let $j \in\{1,2,3, \ldots, x\}$ and suppose now that the number of k-spaces of \mathcal{S}_{p} through a projective $\left(t+x-j_{0}\right)$-space, is at most $\left(\theta_{k-t}\right)^{j_{0}}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$, for all $j_{0}<j$. Then we prove that this also holds for j. Consider a projective $(t+x-j)$-space γ_{j}. Since $\psi\left(\mathcal{S}_{p}\right)=t+x$, we know that there exists a k-space π_{j} of \mathcal{S}_{p}, meeting γ_{j} in at most a $(t-1)$-space. Let $\max \left\{\operatorname{dim}\left(\gamma_{j} \cap \pi\right) \mid \pi \in\right.$ $\left.\mathcal{S}_{p}, \operatorname{dim}\left(\gamma_{j} \cap \pi\right)<t\right\}=t-l$, then $l \geq 1$, and suppose that $\pi_{j} \in \mathcal{S}_{p}$ is an element such that $\operatorname{dim}\left(\pi_{j} \cap \gamma_{j}\right)=t-l$. Let $\pi_{j \gamma}$ be a projective $(k-t+l-1)$-space in $\pi_{j} \backslash \gamma_{j}$. Then every element of \mathcal{S}_{p} through γ_{j} contains at least an $(l-1)$-space of $\pi_{j \gamma}$. Since there are $\left[\begin{array}{c}k-t+l \\ l\end{array}\right]$ subspaces of
dimension $l-1$ in $\pi_{j \gamma}$, and since the number of projective k-spaces through a $(t+x-j+l)$ space is at most $\left(\theta_{k-t}\right)^{j-l}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$, we find that the number of elements of \mathcal{S}_{p} through γ_{j} is at most $\left[\begin{array}{c}k-t+l \\ l\end{array}\right]\left(\theta_{k-t}\right){ }^{j-l}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$. Note that

$$
\begin{aligned}
{\left[\begin{array}{c}
k-t+l \\
l
\end{array}\right]\left(\theta_{k-t}\right)^{j-l} } & =\frac{\left(q^{k-t+l}-1\right) \ldots\left(q^{k-t+1}-1\right)}{\left(q^{l}-1\right) \ldots(q-1)}\left(\theta_{k-t}\right)^{j-l} \\
& \leq\left(\frac{\left(q^{k-t+1}-1\right)}{(q-1)}\right)^{l}\left(\theta_{k-t}\right)^{j-l}=\left(\theta_{k-t}\right)^{j}
\end{aligned}
$$

Hence, we find that the number of elements of \mathcal{S}_{p} through γ_{j} is at most $\left(\theta_{k-t}\right)^{j}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$.
Lemma 4.4.5. Let \mathcal{S}_{p} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q)$. If $\psi\left(\mathcal{S}_{p}\right)=t+x, x \geq 2, k \geq t+2, t \geq 1$, and $n \geq 2 k-t+1$, then $\left|\mathcal{S}_{p}\right| \leq$ $\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left[\begin{array}{c}t+x+1 \\ t+1\end{array}\right]$.

Proof. Suppose that $\psi\left(\mathcal{S}_{p}\right)=t+x, x \geq 2$. By Lemma 4.4.4 we know, for $j \in\{0,1,2, \ldots, x\}$, that the number of k-spaces of \mathcal{S}_{p} through a $(t+x-j)$-space is at most $\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left(\theta_{k-t}\right)^{j}$.

Consider now an element $T \in \mathcal{T}$. Then every element of \mathcal{S}_{p} meets T in at least a t-space. Since there are $\left[\begin{array}{c}t+x+1 \\ t+1\end{array}\right]$ projective t-spaces in T and since every t-space is contained in at most $\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$ elements of \mathcal{S}_{p}, we find that \mathcal{S}_{p} has at most $\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left[\begin{array}{c}t+x+1 \\ t+1\end{array}\right]$ elements.

Lemma 4.4.6. Let \mathcal{S}_{p} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q), n \geq 2 k-t+1, k \geq t+1$ and $t \geq 1$. If $\psi\left(\mathcal{S}_{p}\right)=t+1$ and $|\mathcal{T}| \leq 2$, then

$$
\left|\mathcal{S}_{p}\right| \leq 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]
$$

Proof. Let T be a $(t+1)$-space of \mathcal{T}. Since \mathcal{S}_{p} is a maximal set, we know that all $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$ subspaces of dimension k, through T, are contained in \mathcal{S}_{p}. Now we determine the size of the set $\mathcal{S}_{p 0}$ of k-spaces of \mathcal{S}_{p} not through T. For every $\pi \in \mathcal{S}_{p 0}, \operatorname{dim}(\pi \cap T)=t$. Let E be a t-space in T, then there exists an element $\alpha \in \mathcal{S}_{p 0}$ not through E, and so $\operatorname{dim}(\alpha \cap E)=t-1$. Hence, every element π of $\mathcal{S}_{p 0}$ through E must contain a $(t+1)$-space τ, different from T, such that $E \subset \tau$ and $\tau \cap(\alpha \backslash E) \neq \emptyset$. Note that there are $\theta_{k-t}-1$ possibilities for τ. Fix such a $(t+1)$-space τ.

- If $\mathcal{T}=\{T\}$, we know that $\tau \notin \mathcal{T}$, and hence there exists an element σ of \mathcal{S}_{p}, meeting τ in at most a $(t-1)$-space. Hence, every element of $\mathcal{S}_{p 0}$ through τ meets $\sigma \backslash \tau$, and so the number of elements of $\mathcal{S}_{p 0}$ through τ is at most $\theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. Since there are θ_{t+1} possibilities for E, and at most $\theta_{k-t}-1$ for τ, we have that

$$
\left|\mathcal{S}_{p}\right| \leq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{t+1}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]
$$

- Suppose $|\mathcal{T}|=2$, and let $\mathcal{T}=\{T, \Psi\}$. If $\tau=\Psi$, then \mathcal{S}_{p} contains all $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right] k$-spaces through τ. If $\tau \neq \Psi$, then we can follow the argument in the previous item, and we find that the number of elements of $\mathcal{S}_{p 0}$ through τ is at most $\theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. Note that there are $\theta_{t+1}-1$ possibilities for $E \neq T \cap \Psi$. If $E \neq T \cap \Psi$, there are at $\operatorname{most} \theta_{k-t}-1$ possibilities for $\tau \notin\{\Psi, T\}$, through E. Furthermore, if $E=T \cap \Psi$, there are at most $\theta_{k-t}-2$ possibilities
for $\tau \notin\{\Psi, T\}$ through $E=T \cap \Psi$. Hence, we have that

$$
\begin{aligned}
\left|\mathcal{S}_{p}\right| \leq & {\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\sum_{E \subset T} \sum_{\tau \supseteq E}\left|\left\{\pi \in \mathcal{S}_{p 0} \mid \tau \subset \pi\right\}\right| } \\
\leq & {\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\sum_{E \neq T \cap \Psi} \sum_{\tau \supseteq E} \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\sum_{\tau \supset T \cap \Psi}\left|\left\{\pi \in \mathcal{S}_{p 0} \mid \tau \subset \pi\right\}\right| } \\
\leq & {\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1}-1\right)\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] } \\
& +\sum_{\tau \neq \Psi, T} \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
\leq & 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1}-1\right)\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\left(\theta_{k-t}-2\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
= & 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] .
\end{aligned}
$$

The lemma follows since

$$
\begin{aligned}
& 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{t+1}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]
\end{aligned}
$$

for $n \geq 2 k-t+1, k \geq t+1, q \geq 2$ (see Lemma 4.5.3.
From now on, we define $f_{p}(q, n, k, t)$ as the maximum of the number of elements in the sets described in Example 4.2.1 and Example 4.2.3

$$
\begin{aligned}
& f_{p}(q, n, k, t)=\max \left\{\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]\right. \\
&\left.\theta_{t+2} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right\}
\end{aligned}
$$

From Lemma 4.5.5 4.5.6 and 4.5.7 we find, for $n \geq 2 k-t+1, k \geq t+2, q \geq 3$, that

$$
f_{p}(q, n, k, t)= \begin{cases}\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right] & \text { if } k \geq 2 t+3 \\
\theta_{t+2} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] & \text { if } k \leq 2 t+2\end{cases}
$$

Theorem 4.4.7. Let \mathcal{S}_{p} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q), k \geq t+2$, $t \geq 1$, with $q \geq 3$, and $n \geq 2 k+t+3$.. If \mathcal{S}_{p} is not a t-pencil, then

$$
\left|\mathcal{S}_{p}\right| \leq f_{p}(q, n, k, t)
$$

Equality occurs if and only if \mathcal{S}_{p} is Example 4.2 .1 for $k \geq 2 t+3$ or Example 4.2 .3 for $k \leq 2 t+2$.
Proof. Let \mathcal{S}_{p} be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in $\operatorname{PG}(n, q)$, with \mathcal{S}_{p} not a t-pencil, and suppose that $\left|\mathcal{S}_{p}\right| \geq f_{p}(q, n, k, t)$. From Lemma 4.4.5 and Lemma 4.5.13 it follows that $\psi\left(\mathcal{S}_{p}\right)<t+2$. Since \mathcal{S}_{p} is not a t-pencil, $\psi\left(\mathcal{S}_{p}\right)>t$, and so $\psi\left(\mathcal{S}_{p}\right)=t+1$. From Lemma 4.4.6. it follows that if $|\mathcal{T}| \leq 2$, then $\left|\mathcal{S}_{p}\right| \leq 2\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$,
a contradiction, by Lemma 4.5.16 Hence, $|\mathcal{T}|>2$. From Lemma 4.4.3(3), it follows that \mathcal{T} is a t-intersecting set of $(t+1)$-spaces. Hence, \mathcal{T} is contained in a t-pencil or all elements of \mathcal{T} are contained in a $(t+2)$-space (see Theorem 2.0.6.

We first suppose that there is no t-space contained in all elements of \mathcal{T}. Hence, we know that all elements of \mathcal{T} are contained in a $(t+2)$-space ω. This implies that every element of \mathcal{S}_{p} must meet ω in at least a $(t+1)$-space. Since \mathcal{S}_{p} is maximal, we know that \mathcal{S}_{p} contains all k-spaces meeting ω in at least a $(t+1)$-space, which is Example 4.2 .3 . Hence, $\left|\mathcal{S}_{p}\right|=\theta_{t+2} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$, if there is no t-space contained in all elements of \mathcal{T}. This number is larger than $\theta_{k+1}-\theta_{k-t}+$ $\left[\begin{array}{c}n-t \\ k-t\end{array}\right]-q^{(k-t-1)(k-t)}\left[\begin{array}{c}n-k-1 \\ k-t\end{array}\right]$, if and only if $k \leq 2 t+2$. So, for $k \geq 2 t+3$, we find a contradiction.

It follows that we may suppose that the elements of \mathcal{T} are contained in a t-pencil with vertex the t-space δ. Let Z be the span of all elements of \mathcal{T} and let $\operatorname{dim}(Z)=t+x, x \geq 2$. Since \mathcal{S}_{p} is not a t-pencil, we know that there are k-spaces in \mathcal{S}_{p} that do not contain δ. These elements of \mathcal{S}_{p}, not through δ, meet δ in a $(t-1)$-space, since they have a t-space in common with every $(t+1)$-space of \mathcal{T}. We can also check that each such element meets Z in a $(t+x-1)$-space: suppose to the contrary that there is an element α of \mathcal{S}_{p}, not through δ, that meets Z in the subspace $Z_{0}=\alpha \cap Z$, with dimension at most $t+x-2$. Since α meets all $(t+1)$-spaces of \mathcal{T} in a t-space different from δ, it follows that the span of all elements of \mathcal{T} is equal to $\left\langle Z_{0}, \delta\right\rangle$, which has dimension at most $t+x-1$. This contradicts the assumption that the span of all elements of \mathcal{T} has dimension $t+x$.

The dimension of the span Z of all the $(t+1)$-spaces in \mathcal{T} is at most $k+1$: if $\operatorname{dim}(Z)>k+1$, then every k-space of \mathcal{S}_{p}, not through δ, would meet Z in a subspace with dimension $\operatorname{dim}(Z)-1>k$, a contradiction.

Let $\pi \in \mathcal{S}_{p}$ be an element that does not contain δ, and let $\xi=\langle\delta, \pi\rangle$. Note that every element of \mathcal{S}_{p} through δ has at least a $(t+1)$-space in common with ξ. Now we claim that all elements of \mathcal{S}_{p}, not through δ, are contained in ξ. Suppose that this is not the case, then there exists an element $\pi_{1} \in \mathcal{S}_{p}$ with $\delta \nsubseteq \pi_{1}$ and $\pi_{1} \nsubseteq \xi$. Then every element of \mathcal{S}_{p} through δ meets both $\pi \backslash \delta$ and $\pi_{1} \backslash \delta$. Hence, the number of elements of \mathcal{S}_{p}, through δ, is at most $\theta_{k-t}^{2}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$. Here, the first term is an upper bound on the number of elements meeting both $\pi \backslash \pi_{1}$ and $\pi_{1} \backslash \pi$. The second term is an upper bound on the number of elements meeting $\left(\pi \cap \pi_{1}\right) \backslash \delta$. Since every element of \mathcal{S}_{p} not through δ meets Z in a $(t+x-1)$-space, we find that $\left|\mathcal{S}_{p}\right| \leq \theta_{t+x}\left[\begin{array}{c}n-t-x+1 \\ k-t-x+1\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$. For $2 \leq x \leq k-t+1, k \geq 2 t+3, n \geq 2 k+t+3, t \geq 1$ and $q \geq 3$; this gives a contradiction by Lemma 4.5.20 since $|S| \geq f_{p}(q, n, k, t)$. Hence, we find that \mathcal{S}_{p} is contained in Example 4.2.1. The theorem follows from the maximality of \mathcal{S}_{p}.

Remark 4.4.8. As already mentioned in the introduction of this chapter, a similar result was found independently by Cao, Lv, Wang and Zhou in [29]. They could prove the same result as in Theorem 4.4.7 for all values of q and $n \geq 2 k+t+6$. Hence, the difference between the results is that they also covered the case for $q=2$, but we found a better bound on the possible values of the dimension $n: n \geq 2 k+t+3$.

4.4.2 Classification of the largest t-intersecting sets in $\mathrm{AG}(n, q)$

In [69], the authors prove that the largest t-intersecting set of k-spaces in $\mathrm{AG}(n, q)$, with $n \geq$ $2 k+t+2$, is the set of all k-spaces through a fixed affine t-space. They use geometrical and combinatorial techniques, but they do not use the connection between $\operatorname{AG}(n, q)$ and $\operatorname{PG}(n, q)$. Below we give a shorter proof for this result, for $n \geq 2 k+1$, by using Theorem 2.0.3

Theorem 4.4.9. Let \mathcal{S} be a set of k-spaces in $\mathrm{AG}(n, q), n \geq 2 k+1, k \geq t \geq 0$, pairwise intersecting in at least a t-space. Then $|\mathcal{S}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$, and equality occurs if and only if \mathcal{S} is a t-pencil.

Proof. Let \mathcal{S} be a set of k-spaces in $\operatorname{AG}(n, q)$, pairwise intersecting in at least a t-space. Every affine element α in \mathcal{S} can be extended to the corresponding projective k-space $\tilde{\alpha}$ in $\operatorname{PG}(n, q)$. Let $\tilde{\mathcal{S}}$ be the set of these extended k-spaces. Note that then, $\tilde{\mathcal{S}}$ is a t-intersecting set of k-spaces in $\operatorname{PG}(n, q)$. If there would exist such a set \mathcal{S} with $|\mathcal{S}|>\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$, then $|\tilde{\mathcal{S}}|>\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$, which contradicts Theorem 2.0.3 Hence, $|\mathcal{S}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$ for all t-intersecting sets \mathcal{S} in $\operatorname{AG}(n, q)$.

Note that the set of all affine k-spaces through a fixed affine t-space is a t-intersecting set of k spaces in $\operatorname{AG}(n, q)$ with size $\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. Suppose now that there exists a t-intersecting set \mathcal{S} of k-spaces in $\mathrm{AG}(n, q)$ with $\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$ elements, which is not a t-pencil. Then $\tilde{\mathcal{S}}$ is a t-intersecting set of k-spaces in $\operatorname{PG}(n, q)$ with $|\tilde{\mathcal{S}}|=\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. It follows from Theorem 2.0 .3 that $n=2 k+1$ and that all elements of $\tilde{\mathcal{S}}$ are contained in a projective $(2 k-t)$-space. Since the number of affine k-spaces in a projective $(2 k-t)$-space is $\left[\begin{array}{c}2 k-t+1 \\ k+1\end{array}\right]-\left[\begin{array}{c}2 k-t \\ k+1\end{array}\right]$, we see that in this case $|\mathcal{S}|<\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. Hence, an affine t-pencil is the only example of a set of pairwise t-intersecting k-spaces in $\operatorname{AG}(n, q)$ with size $\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$.

4.4.3 Classification of the largest non-trivial t-intersecting sets in $\mathrm{AG}(n, q)$

In this subsection, we investigate the largest non-trivial sets of k-spaces in $\mathrm{AG}(n, q)$ pairwise intersecting in at least a t-space. For $t=0$, the largest non-trivial example was found in [68].

Theorem 4.4.10 ([68]). Suppose $k \geq 3, n \geq 2 k+4$ and $(n, q) \neq(2 k+4,2)$. Let \mathcal{S} be a non-trivial intersecting family in $\mathrm{AG}(n, q)$, then $|\mathcal{S}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k}$. Equality holds if and only if

1. \mathcal{S} is Example 4.3.1 for $t=0$, or
2. \mathcal{S} is Example 4.3.3 for $t=0$.

Many results and proofs in this affine setting are similar to the results and proofs in the projective setting, but because of some structural differences, we decided to discuss the Hilton-Milner problem, in the projective and affine context, in different subsections.

We again suppose that $k \geq t+2$ and $t \geq 1$. Let \mathcal{S}_{a} be a maximal set of k-spaces in $\operatorname{AG}(n, q)$, $n \geq 2 k-t+1$, pairwise meeting in at least a t-space. Let

$$
\psi\left(\mathcal{S}_{a}\right)=\min \left\{\operatorname{dim}(T) \mid T \subset \mathrm{AG}(n, q), \operatorname{dim}(T \cap \alpha) \geq t, \forall \alpha \in \mathcal{S}_{a}\right\}
$$

Let \mathcal{T} be the set of all $\psi\left(\mathcal{S}_{a}\right)$-dimensional spaces in $\operatorname{AG}(n, q)$ that meet every element of \mathcal{S}_{a} in at least a t-space.

Lemma 4.4.11. We have the following properties for $\psi\left(\mathcal{S}_{a}\right)$ and \mathcal{T}.

1. $t \leq \psi\left(\mathcal{S}_{a}\right) \leq k$, and if $\psi\left(\mathcal{S}_{a}\right)=t$, then \mathcal{S}_{a} is a t-pencil.
2. Let $T \in \mathcal{T}$, then all k-spaces through T are contained in \mathcal{S}_{a}.
3. The elements of \mathcal{T} are t-intersecting in $\operatorname{AG}(n, q)$.

Proof. Analogous to the proof of Lemma 4.4.3.
Lemma 4.4.12. Let $\psi\left(\mathcal{S}_{a}\right)=t+x, x \geq 1, k \geq t+2, t \geq 1$, and $n \geq 2 k-t+1$. Then the number of elements of \mathcal{S}_{a} through an affine $(t+x-j)$-space, with $j \in\{0,1,2, \ldots, x\}$, is at most $\left(\theta_{k-t}\right)^{j}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$.

Proof. Suppose that $\psi\left(\mathcal{S}_{a}\right)=t+x, x \geq 2$. We prove, by induction on $j \in\{0,1,2, \ldots, x\}$, that the number of k-spaces of \mathcal{S}_{a} through an affine $(t+x-j)$-space is at most $\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left(\theta_{k-t}\right)^{j}$. Note that the statement is true for $j=0$, by counting the total number of k-spaces through an affine $(t+x)$-space.

Let $j \in\{1,2,3, \ldots, x\}$ and suppose now that the number of k-spaces of \mathcal{S}_{a} through an affine $\left(t+x-j_{0}\right)$-space, is at most $\left(\theta_{k-t}\right)^{j_{0}}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$, for all $j_{0}<j$. Then we prove that this also holds for j. Consider an affine $(t+x-j)$-space γ_{j}. Since $\psi\left(\mathcal{S}_{a}\right)=t+x$, we know that there exists a k-space π_{j} of \mathcal{S}_{a}, meeting γ_{j} in at most an affine $(t-1)$-space.
Let $\max \left\{\operatorname{dim}\left(\gamma_{j} \cap \pi\right) \mid \pi \in \mathcal{S}_{a}, \operatorname{dim}\left(\gamma_{j} \cap \pi\right)<t\right\}=t-l$, then $l \geq 1$, and suppose that $\pi_{j} \in \mathcal{S}_{a}$ is an element such that $\operatorname{dim}\left(\pi_{j} \cap \gamma_{j}\right)=t-l$. Let $\pi_{j \gamma}$ be a projective $(k-t+l-1)$-space in $\tilde{\pi}_{j} \backslash \tilde{\gamma}_{j}$. Then every element of $\tilde{\mathcal{S}}_{a}$ through $\tilde{\gamma}_{j}$ contains at least an $(l-1)$-space of $\pi_{j \gamma}$. Since there are $\left[\begin{array}{c}k-t+l \\ l\end{array}\right]$ ($l-1$)-spaces in $\pi_{j \gamma}$, and since the number of affine k-spaces in \mathcal{S}_{a} through a $(t+x-j+l)$ space is at most $\left(\theta_{k-t}\right)^{j-l}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$, we find that the number of elements of $\tilde{\mathcal{S}}_{a}$ through $\tilde{\gamma}_{j}$ is at most $\left[\begin{array}{c}k-t+l \\ l\end{array}\right]\left(\theta_{k-t}\right)^{j-l}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$. Note that

$$
\begin{aligned}
{\left[\begin{array}{c}
k-t+l \\
l
\end{array}\right]\left(\theta_{k-t}\right)^{j-l} } & =\frac{\left(q^{k-t+l}-1\right) \ldots\left(q^{k-t+1}-1\right)}{\left(q^{l}-1\right) \ldots(q-1)}\left(\theta_{k-t}\right)^{j-l} \\
& \leq\left(\frac{q^{k-t+1}-1}{q-1}\right)^{l}\left(\theta_{k-t}\right)^{j-l}=\left(\theta_{k-t}\right)^{j}
\end{aligned}
$$

Hence, also in this case, we find that the number of elements of $\tilde{\mathcal{S}}_{a}$ through $\tilde{\gamma}_{j}$, and so, the number of elements of \mathcal{S}_{a} through γ_{j} is at most $\left(\theta_{k-t}\right)^{j}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$.
Lemma 4.4.13. Let \mathcal{S}_{a} be a set of k-spaces, pairwise intersecting in at least at-space in $\operatorname{AG}(n, q)$. If $\psi\left(\mathcal{S}_{a}\right)=t+x, x \geq 2, k \geq t+2, t \geq 1$, and $n \geq 2 k-t+1$, then $\left|\mathcal{S}_{a}\right| \leq q^{x}\left[\begin{array}{c}t+x \\ x\end{array}\right]\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$.
Proof. Suppose that $\psi\left(\mathcal{S}_{a}\right)=t+x, x \geq 2$. By Lemma 4.4.12 we know, for $j \in\{0,1,2, \ldots, x\}$, that the number of k-spaces of \mathcal{S}_{a} through an affine $(t+x-j)$-space is at most $\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]\left(\theta_{k-t}\right)^{j}$.
Consider now an element $T \in \mathcal{T}$. Then every element of \mathcal{S}_{a} meets T in at least a t-space. Since there are $q^{x}\left[\begin{array}{c}t+x \\ x\end{array}\right]$ affine t-spaces in T and since every t-space is contained in at most $\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$ elements of \mathcal{S}_{a}, we find that \mathcal{S}_{a} has at most $q^{x}\left[\begin{array}{c}t+x \\ x\end{array}\right]\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}n-t-x \\ k-t-x\end{array}\right]$ elements.
Lemma 4.4.14. Let \mathcal{S}_{a} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{AG}(n, q), n \geq 2 k-t+1, k \geq t+1$ and $t \geq 1$. If $\psi\left(\mathcal{S}_{a}\right)=t+1$ and $|\mathcal{T}| \leq 2$, then

$$
\left|\mathcal{S}_{a}\right| \leq 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] .
$$

Proof. Let T be an element of \mathcal{T}. Since \mathcal{S}_{a} is a maximal set, we know that all $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right] k$-spaces through T are contained in \mathcal{S}_{a}. Now we count the size of the set $\mathcal{S}_{a 0}$ of k-spaces of \mathcal{S}_{a} not through T. For every $\pi \in \mathcal{S}_{a 0}, \operatorname{dim}(\pi \cap T)=t$, and let E be an affine t-space in T. Then there exists an element $\alpha \in \mathcal{S}_{a 0}$ not through E, and so $\operatorname{dim}(\alpha \cap E)=t-1$. Hence, every element π of $\mathcal{S}_{a 0}$, through E must contain a $(t+1)$-space τ, different from T, such that $E \subset \tau$ and $\tau \cap(\alpha \backslash E) \neq \emptyset$. Note that there are $\theta_{k-t}-1$ possibilities for τ. Fix such a $(t+1)$-space τ.

- If $\mathcal{T}=\{T\}$, we know that $\tau \notin \mathcal{T}$, and hence there exists an element σ of \mathcal{S}_{a}, meeting τ in at most a $(t-1)$-space. Hence, every element of $\mathcal{S}_{a 0}$ through τ meets $\sigma \backslash \tau$, and so the number of elements of $\mathcal{S}_{a 0}$ through τ is at most $\theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. Since there are $q \theta_{t}$ possibilities for E, and at most $\theta_{k-t}-1$ for τ, we have that

$$
\left|\mathcal{S}_{a}\right| \leq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+q \theta_{t}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] .
$$

- Suppose $|\mathcal{T}|=2$, and let $\mathcal{T}=\{T, \Psi\}$. If $\tau=\Psi$, then \mathcal{S}_{a} contains all $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right] k$-spaces through τ. If $\tau \neq \Psi$, then we can follow the argument in the previous item, and we find that the number of elements of $\mathcal{S}_{a 0}$ through τ is at most $\theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. Note that there are $q \theta_{t}-1$ possibilities for $E \neq T \cap \Psi$, and at most $\theta_{k-t}-1$ for $\tau \neq \Psi, T$, through $E \neq T \cap \Psi$. Moreover, there are at most $\theta_{k-t}-2$ possibilities for $\tau \neq \Psi, T$ through $E=T \cap \Psi$. Hence, we have that

$$
\begin{aligned}
\left|\mathcal{S}_{a}\right| & \leq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\sum_{E \subset T} \sum_{\tau \supseteq E}\left|\left\{\pi \in \mathcal{S}_{a 0} \mid \tau \subset \pi\right\}\right| \\
& \leq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\sum_{E \neq T \cap \Psi} \sum_{\tau \supseteq E} \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\sum_{\tau \supset T \cap \Psi}\left|\left\{\pi \in \mathcal{S}_{a 0} \mid \tau \subset \pi\right\}\right| \\
& \leq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(q \theta_{t}-1\right)\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& +\sum_{\tau \neq \Psi, T} \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \leq 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(q \theta_{t}-1\right)\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\left(\theta_{k-t}-2\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& =2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] .
\end{aligned}
$$

The lemma follows since

$$
\begin{aligned}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}\right. & \left.-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+q \theta_{t}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]
\end{aligned}
$$

for $k \geq t+1, n \geq 2 k-t, q \geq 2$ (see Lemma 4.5.4).
From now on, we define $f_{a}(q, n, k, t)$ as the maximum of the number of elements in the sets described in Example 4.3.1 and Example 4.3.3 for $n \geq 2 k-t+1$.

$$
\begin{aligned}
& f_{a}(q, n, k, t)=\max \left\{\theta_{k}-\theta_{k-t}+\left[\begin{array}{l}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]\right. \\
&\left.\theta_{t+1} \cdot\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right\} .
\end{aligned}
$$

From Lemma 4.5.8 4.5.9 and 4.5.10 we find for $n \geq 2 k-t+1, k \geq t+2, q \geq 3$ that

$$
f_{a}(q, n, k, t)= \begin{cases}\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]} \begin{array}{l}
\text { if } k \geq 2 t+2 \\
\theta_{t+1} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]
\end{array} \quad \text { if } k \leq 2 t+1\end{cases}
$$

Theorem 4.4.15. Let \mathcal{S}_{a} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\operatorname{AG}(n, q), k \geq t+2, t \geq 1$, with $q \geq 3$, and $n \geq 2 k+t+3$. If \mathcal{S}_{a} is not a t-pencil, then

$$
\left|\mathcal{S}_{a}\right| \leq f_{a}(q, n, k, t)
$$

Equality occurs if and only if \mathcal{S}_{a} is Example 4.3 .1 for $k \geq 2 t+2$ or Example 4.3 .3 for $k \leq 2 t+1$.

Proof. Let \mathcal{S}_{a} be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in $\operatorname{AG}(n, q)$, with \mathcal{S}_{a} not a t-pencil, and suppose that $\left|\mathcal{S}_{a}\right| \geq f_{a}(q, n, k, t)$. From Lemma 4.4.13 and Lemma 4.5.15 it follows that $\psi\left(\mathcal{S}_{a}\right)<t+2$. Since \mathcal{S}_{a} is not a t-pencil, we find that $\psi\left(\mathcal{S}_{a}\right)>t$, and so $\psi\left(\mathcal{S}_{a}\right)=t+1$.

From Lemma 4.4.14 it follows that if $|\mathcal{T}| \leq 2$, then $\left|\mathcal{S}_{a}\right| \leq 2\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\right.$ $\left.\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$, a contradiction by Lemma 4.5 .17 Hence, $|\mathcal{T}|>2$. From Lemma 4.4.11 (3), it follows that \mathcal{T} is a t-intersecting set of $(t+1)$-spaces. Hence, \mathcal{T}, is contained in a t-pencil or all elements of \mathcal{T} are contained in a $(t+2)$-space (see Theorem 4.4.1).

We first suppose that there is no t-space contained in all elements of \mathcal{T}. Hence, we know that all elements of \mathcal{T} are contained in a $(t+2)$-space ω. We also know that the elements of \mathcal{T} are t intersecting in the affine space, and so, every t-space in $\tilde{\omega} \cap H_{\infty}$ is contained in at most one element of \mathcal{T}. Moreover, we also find that every element π_{1} of \mathcal{S}_{a} must meet ω in at least a $(t+1)$-space. This follows since π_{1} must meet all elements of \mathcal{T}, that are contained in a $(t+2)$-space, in at least a t-space, and that there is no t-space contained in all elements of \mathcal{T}.

In this case, we claim the following.
Claim (*) The number of elements of \mathcal{S}_{a} is at most $\theta_{t+1} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$, and equality holds if and only if \mathcal{S}_{a} is Example 4.3.3.

Proof of claim: We first of all note that all k-spaces through ω are contained in \mathcal{S}_{a}. Consider a projective t-space $\alpha_{t} \subset \tilde{\omega} \cap H_{\infty}$. Then we count the number of elements of $\tilde{\mathcal{S}_{a}}$ through α_{t}, not through ω. There are two possibilities.

- All these elements meet $\tilde{\omega}$ in the same affine $(t+1)$-space α_{t}^{+}through α_{t}. Then the number of elements of $\tilde{\mathcal{S}_{a}}$ through α_{t} and not through ω is at most $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. If this is the case for all t-spaces $\alpha_{t} \subset \tilde{\omega} \cap H_{\infty}$, then $\left|\mathcal{S}_{a}\right| \leq \theta_{t+1} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. Note that two elements through the same t-space α_{t} meet in at least an affine $(t+1)$-space; α_{t}^{+}. Two k-spaces through different t-spaces $\alpha_{t 1}$ and $\alpha_{t 2}$ will also have a t-space in common, since they both contain the affine t-space $\alpha_{t 1}^{+} \cap \alpha_{t 2}^{+}$. Since \mathcal{S}_{a} is a maximal set of t-intersecting k-spaces, we find that $\left|\mathcal{S}_{a}\right|=\theta_{t+1} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$, and that \mathcal{S}_{a} has the form described in Example 4.3.3.
- There is a t-space $\alpha_{t} \subset \tilde{\omega} \cap H_{\infty}$, such that there are two elements $\pi_{1}, \pi_{2} \in \mathcal{S}_{a}$, not contained in ω, with $\alpha_{t} \subset \tilde{\pi}_{1} \cap \tilde{\pi}_{2}$, but $\pi_{1} \cap \omega \neq \pi_{2} \cap \omega$. Then every element π of $\tilde{\mathcal{S}}_{a}$ through α_{t}, not through $\pi_{1} \cap \omega$, meets π_{1} in an affine point outside of ω. For the elements of $\tilde{\mathcal{S}}_{a}$ through $\pi_{1} \cap \omega$, but not through $\tilde{\omega}$, we can use the same argument by using π_{2}.

Note that $\tilde{\pi}$ meets $\tilde{\omega}$ in one of the q affine $(t+1)$-spaces in $\tilde{\omega}$ through α_{t}.

- If $\tilde{\pi} \cap \tilde{\omega} \neq \tilde{\pi}_{1} \cap \tilde{\omega}$, then there are $q^{k-t-1}-1$ ways to extend this $(t+1)$-space $\pi \cap \omega$ to a $(t+2)$-space, meeting π_{1} in an affine $(t+1)$-space, not in ω. By investigating $\tilde{\pi}_{1}$ in the quotient space $\operatorname{PG}(n, q) / \alpha_{t}$, we find that there are q^{k-t-1} ways to extend $\tilde{\pi} \cap \tilde{\omega}$ to a $(t+2)$-space meeting π_{1} in an affine $(t+1)$-space, and one of these extended $(t+2)$-spaces is equal to ω.
- If $\tilde{\pi} \cap \tilde{\omega}=\tilde{\pi}_{1} \cap \tilde{\omega}$, then $\tilde{\pi} \cap \tilde{\omega} \neq \tilde{\pi}_{2} \cap \tilde{\omega}$. Hence, we can use the same argument from the previous point to see that there are $q^{k-t-1}-1$ ways to extend this $(t+1)$-space to a $(t+2)$-space, meeting π_{2} in an affine $(t+1)$-space, not in ω.

Hence, there are at most $q\left(q^{k-t-1}-1\right) \cdot\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ elements of $\tilde{\mathcal{S}}_{a}$ through α_{t} and not through ω, and as there are θ_{t+1} possibilities for α_{t}, and $\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ elements through ω, we find that $\left|\mathcal{S}_{a}\right|=\left|\tilde{\mathcal{S}}_{a}\right| \leq \theta_{t+1} q\left(q^{k-t-1}-1\right) \cdot\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$. We can check that this upper bound is smaller than $\theta_{t+1} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$, since

$$
\begin{aligned}
& \\
&
\end{aligned} \theta_{t+1}\left(q^{k-t}-q\right)\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]<\theta_{t+1}\left(\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\right)
$$

is valid for $n \geq 2 k-t+1, k \geq t+2, q \geq 3$. This proves that if there exists a t-space $\alpha_{t} \in H_{\infty} \cap \tilde{\omega}$, such that not all elements of \tilde{S}_{a} through α_{t} meet ω in the same $(t+1)$-space, then the number of elements in \mathcal{S}_{a} is smaller than the number of elements in Example 4.3.3

This proves Claim (*).
So $\left|\mathcal{S}_{a}\right|=\theta_{t+1} \cdot\left(\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]-\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]\right)+\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ if there is no t-space contained in all elements of \mathcal{T}. This number is larger than $\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}n-t \\ k-t\end{array}\right]-q^{(k-t-1)(k-t)}\left[\begin{array}{c}n-k-1 \\ k-t\end{array}\right]$, if and only if $k \leq 2 t+1$. So, for $k \geq 2 t+2$, we find a contradiction.

Now we continue with the case that all elements of \mathcal{T} are contained in a t-pencil with vertex the affine t-space δ. Let Z be the span of all elements of \mathcal{T} and let $\operatorname{dim}(Z)=t+x, x \geq 2$. Since \mathcal{S}_{a} is not a t-pencil, we know that there are k-spaces in \mathcal{S}_{a} that do not contain δ. These elements of \mathcal{S}_{a}, not through δ, meet δ in a $(t-1)$-space, since they have an affine t-space in common with every $(t+1)$-space of \mathcal{T}. We can also check that each such element meets Z in a $(t+x-1)$ space: suppose to the contrary that there is an element α of \mathcal{S}_{a}, not through δ, that meets Z in the subspace $Z_{0}=\alpha \cap Z$, with dimension at most $t+x-2$. Since α meets all $(t+1)$-spaces of \mathcal{T} in a t-space different from δ, it follows that the span of all elements of \mathcal{T} is equal to $\left\langle Z_{0}, \delta\right\rangle$, which has dimension at most $t+x-1$. This contradicts the assumption that the span of all elements of \mathcal{T} has dimension $t+x$.

The dimension of the span Z of all the $(t+1)$-spaces in \mathcal{T} is at most $k+1$: if $\operatorname{dim}(Z)>k+1$, then every k-space of \mathcal{S}_{a}, not through δ, would meet Z in a subspace with dimension $\operatorname{dim}(Z)-1>k$, a contradiction.

Let $\pi \in \mathcal{S}_{a}$ be an element that does not contain δ, and let $\xi=\langle\delta, \pi\rangle$. Note that every element of \mathcal{S}_{a} through δ has at least a $(t+1)$-space in common with ξ. Now we claim that all elements of \mathcal{S}_{a}, not through δ, are contained in ξ. Suppose that this is not the case, then there exists an element $\pi_{2} \in \mathcal{S}_{a}$ with $\delta \nsubseteq \pi_{2}$ and $\pi_{2} \nsubseteq \xi$. Then every element of \mathcal{S}_{a} through δ meets both $\pi \backslash \delta$ and $\pi_{2} \backslash \delta$. Hence, the number of elements of \mathcal{S}_{a}, through δ, is at most $\theta_{k-t}^{2}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$. Here, the first term is an upper bound on the number of elements meeting both $\pi \backslash \pi_{2}$ and $\pi_{2} \backslash \pi$. The second term is an upper bound on the number of elements meeting $\left(\pi \cap \pi_{2}\right) \backslash \delta$, since $\operatorname{dim}\left(\left(\pi \cap \pi_{2}\right) \backslash \delta\right) \leq k-t-1$. Every element of \mathcal{S}_{a} not through δ meets Z in a $(t+x-1)$-space. This implies that $\left|\mathcal{S}_{a}\right| \leq$ $\theta_{t+x}\left[\begin{array}{c}n-t-x+1 \\ k-t-x+1\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$. For $n \geq 2 k+t+3, k \geq 2 t+2, t \geq 1, x \geq 3, q \geq 3$; this gives a contradiction by Lemma 4.5.21, since $\left|\mathcal{S}_{a}\right| \geq f_{a}(q, n, k, t)$. Now, in a last step, we also
have to find a contradiction for $x=2$, and so Z a $(t+2)$-space. In this situation, all k-spaces not through δ must meet Z in a $(t+1)$-space, not through δ. Now, every two elements of \mathcal{S}, not through δ, must meet in at least a t-space. The same argument, used to deduce Claim (*), can be used to show the following. For every t-space $\alpha_{t} \subset \tilde{Z} \cap H_{\infty}, \tilde{\delta} \cap H_{\infty} \nsubseteq \alpha_{t}$, we have that all elements of $\tilde{\mathcal{S}}_{a}$ through α_{t} must meet Z in the same $(t+1)$-space. Hence, there are at most $\theta_{t+1}-\theta_{1}$ possibilities for the intersection $\pi \cap Z$, with $\pi \in \mathcal{S}_{a}, \delta \nsubseteq \pi$, and there are at most $\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right] k$-spaces through a fixed $(t+1)$-space. Hence, we find that the number of elements of \mathcal{S}_{a}, not through δ, is at most $q^{2} \theta_{t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$, and so $\left|\mathcal{S}_{a}\right| \leq q^{2} \theta_{t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$. This gives a contradiction for $n \geq 2 k+t+3, k \geq 2 t+2$ and $q \geq 3$ by Lemma 4.5 .22 since $\left|\mathcal{S}_{a}\right| \geq f_{a}(q, n, k, t)$. Hence, we find that every element of \mathcal{S}_{a}, not through δ, is contained in ξ, and so \mathcal{S}_{a} is contained in Example 4.3.1 The theorem follows from the maximality of \mathcal{S}_{a}.

4.5 Appendix

In this appendix, we will often use the bounds on the binomial Gaussian coefficient, see Lemma 1.10.2

We start with two lemmas that give two formulas for the number of elements in each of the Examples 4.2.1 4.2.3 4.3.1 and 4.3.3. We will use these different expressions of the number of elements of a set, depending on which formula simplifies the counting argument.
Lemma 4.5.1. Let $S_{2.1}$ be the set of elements described in Example 4.2.1 and let $S_{2.3}$ be the set of elements described in Example 4.2.3. then we have that

$$
\begin{align*}
\left|S_{2.1}\right| & =\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right] \tag{4.4}\\
& =\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right], \tag{4.5}\\
& <q^{k-t+1} \theta_{t}+\theta_{k-t}\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right] \tag{4.6}\\
\left|S_{2.3}\right| & =\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+2} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right) \tag{4.7}\\
& =\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) . \tag{4.8}
\end{align*}
$$

Proof. We will use the notation from Examples 4.2 .1 and 4.2 .3 The first equality for $\left|S_{2.1}\right|$ follows from Lemma 4.2.2 For the second equality, we count the number of elements of $S_{2.1}$ in a different way. We have that $\left|S_{2.1}\right|=\theta_{k+1}+\sum_{j=0}^{k-t-2}\left|Q_{j}(n, k, t)\right|$, with $Q_{j}(n, k, t)=\left\{\beta \in S_{2.1} \mid \beta \nsubseteq\right.$ $\xi, \operatorname{dim}(\beta \cap \xi)=j+t+1\}, j \in\{0,1, \ldots, k-t-2\}$. Let σ_{0} be the $(k-t)$-space corresponding to ξ in the quotient space $\operatorname{PG}(n, q) / \delta$. Note that the first term in the sum is the number of k-spaces in ξ. Since an element in Q_{j} corresponds to a $(k-t-1)$-space in $\mathrm{PG}(n, q) / \delta$, meeting σ_{0} in a j-space, and since there are $\left[\begin{array}{c}k-t+1 \\ j+1\end{array}\right] j$-spaces in σ_{0}, we find, by using Lemma 1.10.1 that

$$
\left|S_{2.1}\right|=\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] .
$$

Inequality (4.6) follows since $q^{k-t+1} \theta_{t}$ is the number of elements of $S_{2.1}$ contained in ξ but not
containing δ. The second term $\theta_{k-t}\left[\begin{array}{c}n-t-1 \\ k-t-1\end{array}\right]$ is the total number of k-spaces through a $(t+1)$-space in ξ through δ. Note that in this term, the k-spaces meeting ξ in a subspace with dimension more than $t+1$ are counted multiple times.
The first equality for $\left|S_{2.3}\right|$ follows from Lemma 4.2 .4 and the second from the definition of the Gaussian coefficients.

Lemma 4.5.2. Let $R_{3.1}$ be the set of elements described in Example 4.3.1 and let $R_{3.3}$ be the set of elements described in Example 4.3.3, then we have that

$$
\begin{align*}
\left|R_{3.1}\right| & =\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right] \tag{4.9}\\
& =\theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \tag{4.10}\\
& <q^{k-t+1} \theta_{t}+\theta_{k-t}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \tag{4.11}\\
\left|R_{3.3}\right| & =\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{t+1} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right) \tag{4.12}\\
& =\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \tag{4.13}
\end{align*}
$$

Proof. The first equality for $\left|R_{3.1}\right|$ follows from Lemma 4.2 .2 For the second equality, we use the equality between the two formulas for $\left|S_{2.1}\right|$ in Lemma 4.5.1 since the formulas for $\left|S_{2.1}\right|$ and $\left|R_{3.1}\right|$ only differ in the first term. Inequality (4.11) follows from inequality (4.6) and the fact that $\left|R_{3.1}\right|<\left|S_{2.1}\right|$. The first equality for $\left|S_{2.3}\right|$ follows from Lemma 4.2.4 and the second from the definition of the Gaussian coefficients.

Lemma 4.5.3. For $n \geq 2 k-t+1, k \geq t+1$ and $q \geq 2$, we have that

$$
\begin{aligned}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+ & \left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{t+1}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] .
\end{aligned}
$$

Proof. The inequality is equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \geq \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] } \\
\Leftrightarrow & \frac{q^{n-t-1}-1}{q^{k-t-1}-1} \geq \frac{q^{k-t+1}-1}{q-1} \\
\Leftrightarrow & q^{n-t}-q^{n-t-1}-q+1 \geq q^{2 k-2 t}-q^{k-t+1}-q^{k-t-1}+1 \\
\Leftrightarrow & q^{2 k-2 t}\left(q^{n-2 k+t}-q^{n-2 k+t-1}-1\right)+q\left(q^{k-t}-1\right)+q^{k-t-1} \geq 0
\end{aligned}
$$

The last inequality is valid since all terms in the left hand side of the last inequality are non-negative for $n \geq 2 k-t+1, k \geq t+1$ and $q \geq 2$.

Lemma 4.5.4. For $n \geq 2 k-t, k \geq t+1$ and $q \geq 2$, we have that

$$
\begin{aligned}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+ & \left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+q \theta_{t}\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]
\end{aligned}
$$

Proof. The inequality follows by subtracting $\left(\theta_{k-t}-1\right) \theta_{k-t}\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ on both sides of the inequality from Lemma 4.5.3.

Lemma 4.5.5. Let $n \geq 2 k-t+1, q \geq 3$ and consider Example 4.2.1 and Example 4.2.3 in $\mathrm{PG}(n, q)$. The number of elements in Example 4.2 .1 is larger than the number of elements in Example 4.2 .3 if $k \geq 2 t+3$.

Proof. Suppose to the contrary that the number of elements in Example 4.2 .3 is larger than the number of elements in Example 4.2.1 for $k \geq 2 t+3$. By using (4.5) and 4.8, we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)} \\
& \geq \theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \stackrel{j=0}{\Longrightarrow} \quad\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)>\theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{l}
n-k-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow{L \boxed{1.10 .2}} 2 q^{(k-t-2)(n-k)}\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \\
& >\left(1+\frac{1}{q}\right)^{2} q^{k-t+(k-t)(k-t-1)+(k-t-1)(n-2 k+t)} \\
& \Rightarrow \quad 2+2 \theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}>\left(1+\frac{1}{q}\right)^{2} q^{n-t} \\
& \Rightarrow \quad 2(q-1)\left(q^{k-t-1}-1\right)+2\left(q^{t+3}-1\right) q^{k-t-1}\left(q^{n-k}-1\right) \\
& >\left(1+\frac{1}{q}\right)^{2}(q-1)\left(q^{k-t-1}-1\right) q^{n-t} \\
& \Rightarrow \quad 2 q^{k-t}-2 q^{k-t-1}-2 q+2+2 q^{n+2}-2 q^{n-t-1}-2 q^{k+2}+2 q^{k-t-1} \\
& >\left(1+\frac{1}{q}\right)^{2}\left(q^{n+k-2 t}-q^{n+k-2 t-1}-q^{n-t+1}+q^{n-t}\right) \\
& =q^{n+k-2 t}+q^{n+k-2 t-1}-q^{n+k-2 t-2}-q^{n+k-2 t-3}-q^{n-t+1}-q^{n-t} \\
& +q^{n-t-1}+q^{n-t-2} \\
& \Rightarrow \quad q^{n-t+1}\left(-q^{k-t-1}+2 q^{t+1}+1\right)+q^{n-t}\left(-q^{k-t-1}+q^{k-t-2}+q^{k-t-3}+1\right) \\
& +\left(-2 q^{k+2}+2 q^{k-t}+2\right)+\left(-2 q-3 q^{n-t-1}-q^{n-t-2}\right)>0 .
\end{aligned}
$$

In the left hand side of the last inequality, all terms are at most zero for $k \geq 2 t+3$ and $q \geq 3$. Hence, we find a contradiction which proves the statement.

Lemma 4.5.6. Let $n \geq 2 k-t+1, k \geq t+2, q \geq 3$, and consider Example 4.2.1 and Example 4.2 .3 in $\mathrm{PG}(n, q)$. The number of elements in Example 4.2 .3 is larger than the number of elements in Example 4.2.1 if $k \leq 2 t+1$.

Proof. Let $k \leq 2 t+1$ and suppose to the contrary that the number of elements in Example 4.2 .3 is
at most the number of elements in Example 4.2.3 Then we have, by using (4.6) and (4.8) that

$$
\begin{array}{ll}
& {\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)<q^{k-t+1} \theta_{t}+\theta_{k-t}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]} \\
\xlongequal{L \boxed{1.10 .2}} \quad & \left(1+\frac{1}{q}\right) q^{(n-k)(k-t-2)}\left(\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)<q^{k-t+1} \theta_{t}+2 \theta_{k-t} q^{(n-k)(k-t-1)} \\
\Rightarrow \quad & \left(1+\frac{1}{q}\right)\left(q^{t+3}-1\right)\left(q^{n-k}-1\right) q^{k-t-1} \\
\Rightarrow \quad<\frac{\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)}{q^{(n-k)(k-t-2)-k+t-1}}+2\left(q^{k-t+1}-1\right)\left(q^{k-t-1}-1\right) q^{n-k} \\
\Rightarrow & q^{n+2}+q^{k-t-1}+q^{n+1}+q^{k-t-2}-q^{n-t-1}-q^{k+2}-q^{n-t-2}-q^{k+1} \\
\quad<2 q^{n+k-2 t}+2 q^{n-k}-2 q^{n-t-1}-2 q^{n-t+1} \\
\Rightarrow \quad+q^{k-t+1-(n-k)(k-t-2)}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right) \\
& \left(q^{n+2}-2 q^{n+k-2 t}-q^{k-t+1-(n-k)(k-t-2)}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)\right)+q^{n-t-2}(q-1) \\
& \quad+q^{k+1}\left(q^{n-k}-q-1\right)+q^{k-t-1}\left(2 q^{n-k+2}+1-2 q^{n-2 k+t+1}\right)+q^{k-t-2}<0
\end{array}
$$

Now, the contradiction follows since all terms in the left hand side of the last inequality are positive. For the last four terms, this follows immediately since $n \geq 2 k-t+1, k<2 t+2, k \geq t+2, q \geq 3$. We end this proof by proving that the first term is also positive. Since $k \geq t+2$ and $n \geq 2 k-t+1=$ $k+(k-t)+1 \geq k+2$, we have that

$$
\begin{aligned}
& 1 \leq(n-k-1)(k-t-1) \\
& \begin{aligned}
\Leftrightarrow \quad n+1 \geq 2 k-t+1- & (n-k)(k-t-2) \\
\Rightarrow \quad q^{n+2} \geq 2 q^{n+1}+q^{n+1} & \geq 2 q^{n+k-2 t}+q^{2 k-t+1-(n-k)(k-t-2)} \\
& >2 q^{n+k-2 t}+q^{k-t+1-(n-k)(k-t-2)}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)
\end{aligned}
\end{aligned}
$$

Lemma 4.5.7. Let $n \geq 2 k-t+1, q \geq 3$, and consider Example 4.2.1 and Example 4.2.3 in $\mathrm{PG}(n, q)$. The number of elements in Example 4.2 .3 is larger than the number of elements in Example 4.2.1 if $k=2 t+2$.

Proof. Let $S_{2.1}$ and $S_{2.3}$ be the set of elements in Example 4.2 .1 and in Example 4.2 .3 respectively. Suppose that $k=2 t+2$, then we have to prove that $\left|S_{2.3}\right\rangle>\left|S_{2.1}\right|$. From (4.7) and Lemma 1.10.4 for $\left[\begin{array}{l}a \\ b\end{array}\right]$ equal to $\left[\begin{array}{c}n-t-1 \\ t+1\end{array}\right]$ and $\left[\begin{array}{c}n-t-2 \\ t\end{array}\right]$, and with for both $c=t+1$, we find that

$$
\begin{align*}
\left|S_{2.3}\right| & =\left[\begin{array}{c}
n-t-2 \\
t
\end{array}\right]+\sum_{j=0}^{t+1} \theta_{t+2}\left[\begin{array}{c}
t+1 \\
j
\end{array}\right]\left(q^{(t-j+1)^{2}}\left[\begin{array}{c}
n-2 t-2 \\
t-j+1
\end{array}\right]-q^{(t-j)(t-j+1)}\left[\begin{array}{c}
n-2 t-3 \\
t-j
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
n-t-2 \\
t
\end{array}\right]+\sum_{j=0}^{t} \theta_{t+2}\left[\begin{array}{c}
t+1 \\
j
\end{array}\right] q^{(t-j+1)(t-j)}\left[\begin{array}{c}
n-2 t-3 \\
t-j
\end{array}\right] \frac{q^{n-t-j-1}-2 q^{t-j+1}+1}{q^{t-j+1}-1}+\theta_{t+2} . \tag{4.14}
\end{align*}
$$

On the other hand, by (4.5), we have that

$$
\left|S_{2.1}\right|=\theta_{2 t+3}+\sum_{j=0}^{t}\left[\begin{array}{l}
t+3 \tag{4.15}\\
j+1
\end{array}\right] q^{(t+2-j)(t+1-j)}\left[\begin{array}{c}
n-2 t-3 \\
t+1-j
\end{array}\right]
$$

From (4.14) and 4.15), it follows that $\left|S_{2.3}\right|-\left|S_{2.1}\right|$ is equal to

$$
\underbrace{\left[\begin{array}{c}
n-t-2 \\
t
\end{array}\right]+\theta_{t+2}-\theta_{2 t+3}}_{=w_{1}}+\sum_{j=0}^{t} q^{(t+1-j)(t-j)}\left[\begin{array}{c}
n-2 t-3 \\
t-j
\end{array}\right]\left[\begin{array}{c}
t+1 \\
j
\end{array}\right] \frac{q^{t+3}-1}{q^{t-j+1}-1} w_{2}
$$

with

$$
w_{2}=\frac{q^{n-t-j-1}-2 q^{t-j+1}+1}{q-1}-q^{2(t+1-j)} \frac{\left(q^{n-3 t-3+j}-1\right)\left(q^{t+2}-1\right)}{\left(q^{j+1}-1\right)\left(q^{t+2-j}-1\right)}
$$

We will prove that $w_{1} \geq 0$ and $w_{2} \geq 0$, which proves that $\left|S_{2.3}\right| \geq\left|S_{2.1}\right|$ for $k=2 t+2$.

$$
\begin{aligned}
w_{1}=\left[\begin{array}{c}
n-t-2 \\
t
\end{array}\right]+\theta_{t+2}-\theta_{2 t+3} & \stackrel{L 1.10 .2}{\geq}\left(1+\frac{1}{q}\right) q^{(n-2 t-2) t}+\theta_{t+2}-\frac{q^{2 t+4}}{q-1} \\
& \geq \frac{1}{q(q-1)}\left(q^{(n-2 t-2) t+2}-q^{(n-2 t-2) t}-q^{2 t+5}\right)+\theta_{t+2}
\end{aligned}
$$

As
$q^{(n-2 t-2) t+2}-q^{(n-2 t-2) t}-q^{2 t+5} \geq 3 q^{(n-2 t-2) t+1}-q^{(n-2 t-2) t}-q^{2 t+5}>q^{(n-2 t-2) t+1}-q^{2 t+5}$,
it is sufficient to prove that $q^{(n-2 t-2) t+1} \geq q^{2 t+5}$. This inequality is valid for $n \geq 2 t+4+\frac{4}{t}$. For $t>1$, this assumption holds since $n \geq 2 k-t+1=3 t+5$. If $t=1$ and $n \geq 10$, we also find that $q^{(n-2 t-2) t+1} \geq q^{2 t+5}$. For $n=9$ and $t=1$, we find that $w_{1}=\theta_{3}>0$. In the last remaining case; $n=8, t=1$, we have that $w_{1}<0$. For this case, we used a computer algebra package to calculate both numbers $\left|S_{2.3}\right|,\left|S_{2.1}\right|$ to see that $\left|S_{2.3}\right| \geq\left|S_{2.1}\right|$.

$$
\begin{aligned}
w_{2} & =\frac{q^{n-t-j-1}-2 q^{t-j+1}+1}{q-1}-q^{2(t+1-j)} \frac{\left(q^{n-3 t-3+j}-1\right)\left(q^{t+2}-1\right)}{\left(q^{j+1}-1\right)\left(q^{t+2-j}-1\right)} \\
& =\frac{q^{n-t-j}\left(q^{t+1}+1-q^{j}-q^{t-j+1}\right)+q^{2 t-j+4}\left(q^{t-j+1}-q^{t-j}-2\right)}{(q-1)\left(q^{j+1}-1\right)\left(q^{t+2-j}-1\right)} \\
& \quad+\frac{2 q^{t-j+1}\left(q^{j+1}-1\right)+\left(q^{t+3}-q^{j+1}-q^{t-j+2}\right)+q^{2 t-2 j+2}+q^{2 t-2 j+3}+1}{(q-1)\left(q^{j+1}-1\right)\left(q^{t+2-j}-1\right)}
\end{aligned}
$$

For $0 \leq j \leq t$, we find that both the nominator and denominator are positive, since we have that $q \geq 3$. So $w_{2} \geq 0$. Hence, we have that $\left|S_{2.3}\right|>\left|S_{2.1}\right|$.

Lemma 4.5.8. Let $n \geq 2 k-t+1, q \geq 3$, and consider Example 4.3.1 and Example 4.3.3 in $\mathrm{AG}(n, q)$. The number of elements in Example 4.3.1 is larger than the number of elements in Example 4.3.3 if $k \geq 2 t+2$.

Proof. Let $k \geq 2 t+2$ and suppose to the contrary that the number of elements in Example 4.3.1 is
at most the number of elements in Example 4.3.3 Then by using 4.10) and 4.13), we have that

$$
\begin{aligned}
& {\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)} \\
& \geq \theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \xrightarrow{j=0} \\
& {\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)>\theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{l}
n-k-1 \\
k-t-1
\end{array}\right]} \\
& \underline{\underline{~ 1.10 .2}} \\
& 2 q^{(k-t-2)(n-k)}\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \\
& >\left(1+\frac{1}{q}\right)^{2} q^{k-t+(k-t)(k-t-1)+(k-t-1)(n-2 k+t)} \\
& \Rightarrow \quad 2+2 \theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}>\left(1+\frac{1}{q}\right)^{2} q^{n-t} \\
& \Rightarrow \quad 2(q-1)\left(q^{k-t-1}-1\right)+2\left(q^{t+2}-1\right) q^{k-t-1}\left(q^{n-k}-1\right) \\
& >\left(1+\frac{1}{q}\right)^{2}(q-1)\left(q^{k-t-1}-1\right) q^{n-t} \\
& \Rightarrow \quad 2 q^{k-t}-2 q^{k-t-1}-2 q+2+2 q^{n+1}-2 q^{n-t-1}-2 q^{k+1}+2 q^{k-t-1} \\
& >\left(1+\frac{1}{q}\right)^{2}\left(q^{n+k-2 t}-q^{n+k-2 t-1}-q^{n-t+1}+q^{n-t}\right) \\
& =q^{n+k-2 t}+q^{n+k-2 t-1}-q^{n+k-2 t-2}-q^{n+k-2 t-3}-q^{n-t+1}-q^{n-t} \\
& +q^{n-t-1}+q^{n-t-2} \\
& \Rightarrow \quad q^{n-t+1}\left(-q^{k-t-1}+2 q^{t}+1\right)+q^{n-t}\left(-q^{k-t-1}+q^{k-t-2}+q^{k-t-3}+1\right) \\
& +2\left(-q^{k+1}+q^{k-t}+1\right)-\left(2 q+3 q^{n-t-1}+q^{n-t-2}\right)>0 .
\end{aligned}
$$

In the left hand side of the last inequality, all terms are at most zero for $k \geq 2 t+2$ and $q \geq 3$. Hence, we find a contradiction which proves the statement.

Lemma 4.5.9. Let $n \geq 2 k-t+1, k \geq t+2, q \geq 3$, and consider Example 4.3.1 and Example 4.3.3 in AG (n, q). The number of elements in Example 4.3.3 is larger than the number of elements in Example 4.3 .1 if $k \leq 2 t$.

Proof. Let $k \leq 2 t$ and suppose to the contrary that the number of elements in Example 4.3.1 is at least the number of elements in Example 4.3.3. Then we have, by using (4.11) and (4.13), that

$$
\begin{aligned}
& {\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)<q^{k-t+1} \theta_{t}+\theta_{k-t}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] } \\
\xlongequal{L \underline{1.10 .2}} & \left(1+\frac{1}{q}\right) q^{(n-k)(k-t-2)}\left(\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)<q^{k-t+1} \theta_{t}+2 \theta_{k-t} q^{(n-k)(k-t-1)} \\
\Rightarrow \quad & \left(1+\frac{1}{q}\right)\left(q^{t+2}-1\right)\left(q^{n-k}-1\right) q^{k-t-1} \\
& \quad<\frac{\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)}{q^{(n-k)(k-t-2)-k+t-1}}+2\left(q^{k-t+1}-1\right)\left(q^{k-t-1}-1\right) q^{n-k}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad & q^{n+1}+q^{k-t-1}+q^{n}+q^{k-t-2}-q^{n-t-1}-q^{k+1}-q^{n-t-2}-q^{k} \\
& <2 q^{n+k-2 t}+2 q^{n-k}-2 q^{n-t-1}-2 q^{n-t+1}+\frac{q^{k-t+1}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)}{q^{(n-k)(k-t-2)}} \\
\Rightarrow \quad & \left(q^{n+1}-2 q^{n+k-2 t}-q^{k-t+1-(n-k)(k-t-2)}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right)\right)+q^{n-t-2}(q-1) \\
& \quad+q^{k}\left(q^{n-k}-q^{n-2 k}-q-1\right)+q^{k-t-2}\left(2 q^{n-k+3}+q+1-q^{n-2 k+t+2}\right)<0
\end{aligned}
$$

Now, the contradiction follows since all terms in the left hand side of the last inequality are positive. For the last three terms, this follows immediately since $n \geq 2 k-t+1, k<2 t+1, k \geq t+2, q \geq 3$. We end this proof by proving that the first term is also positive. Since $k \geq t+2$ and $n \geq 2 k-t+1=$ $k+(k-t)+1 \geq k+3$, we have that

$$
\begin{aligned}
& \quad 2 \leq(n-k-1)(k-t-1) \\
& \Leftrightarrow \\
& \begin{aligned}
& n \geq 2 k-t+1-(n-k)(k-t-2) \\
\Rightarrow & q^{n+1} \geq 2 q^{n}+q^{n} \geq 2 q^{n+k-2 t}+q^{2 k-t+1-(n-k)(k-t-2)} \\
& \quad>2 q^{n+k-2 t}+q^{k-t+1-(n-k)(k-t-2)}\left(q^{t+1}-1\right)\left(q^{k-t-1}-1\right) .
\end{aligned}
\end{aligned}
$$

Lemma 4.5.10. Let $n \geq 2 k-t+1, q \geq 3$, and consider Example 4.3 .1 and Example 4.3.3 in $\mathrm{AG}(n, q)$. The number of elements in Example 4.3 .3 is at least the number of elements in Example 4.3.1 if $k=2 t+1$.

Proof. Let $R_{3.1}$ and $R_{3.3}$ be the set of elements in Example 4.3 .1 and in Example 4.3 .3 respectively. Suppose that $k=2 t+1$, then we have to prove that $\left|R_{3.3}\right| \geq\left|R_{3.1}\right|$. By (4.12) and Lemma 1.10.4 for $\left[\begin{array}{l}a \\ b\end{array}\right]$ equal to $\left[\begin{array}{c}n-t-1 \\ t\end{array}\right]$ and $\left[\begin{array}{c}n-t-2 \\ t-1\end{array}\right]$, and with for both $c=t$, we find that

$$
\begin{align*}
\left|R_{3.3}\right| & =\left[\begin{array}{c}
n-t-2 \\
t-1
\end{array}\right]+\sum_{j=0}^{t} \theta_{t+1}\left[\begin{array}{l}
t \\
j
\end{array}\right]\left(q^{(t-j)^{2}}\left[\begin{array}{c}
n-2 t-1 \\
t-j
\end{array}\right]-q^{(t-j-1)(t-j)}\left[\begin{array}{c}
n-2 t-2 \\
t-j-1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
n-t-2 \\
t-1
\end{array}\right]+\sum_{j=0}^{t-1} \theta_{t+1}\left[\begin{array}{c}
t \\
j
\end{array}\right] q^{(t-j)(t-j-1)}\left[\begin{array}{c}
n-2 t-2 \\
t-j-1
\end{array}\right] \frac{q^{n-t-j-1}-2 q^{t-j}+1}{q^{t-j}-1}+\theta_{t+1} . \tag{4.16}
\end{align*}
$$

On the other hand, by 4.10, we have that

$$
\left|R_{3.1}\right|=\theta_{2 t+1}+\sum_{j=0}^{t-1}\left[\begin{array}{l}
t+2 \tag{4.17}\\
j+1
\end{array}\right] g^{(t+1-j)(t-j)}\left[\begin{array}{c}
n-2 t-2 \\
t-j
\end{array}\right]
$$

Hence, it follows that

$$
\left|R_{3.3}\right|-\left|R_{3.1}\right|=\underbrace{\left[\begin{array}{c}
n-t-2 \\
t-1
\end{array}\right]+\theta_{t+1}-\theta_{2 t+1}}_{=w_{1}}+\sum_{j=0}^{t-1} q^{(t-j)(t-j-1)}\left[\begin{array}{c}
n-2 t-2 \\
t-j
\end{array}\right]\left[\begin{array}{c}
t \\
j
\end{array}\right]\left(q^{t+2}-1\right) w_{2},
$$

with

$$
w_{2}=\frac{q^{n-t-j-1}-2 q^{t-j}+1}{(q-1)\left(q^{n-3 t+j-1}-1\right)}-\frac{q^{t+1}-1}{\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)} q^{2(t-j)} .
$$

We will prove that $w_{1} \geq 0$ and $w_{2} \geq 0$, which proves that $\left|R_{3.3}\right| \geq\left|R_{3.1}\right|$ for $k=2 t+1$.

$$
\begin{aligned}
w_{1} & =\left[\begin{array}{c}
n-t-2 \\
t-1
\end{array}\right]+\theta_{t+1}-\theta_{2 t+1} \\
& \geq\left(1+\frac{1}{q}\right) q^{(n-2 t-1)(t-1)}+\theta_{t+1}-\frac{q^{2 t+2}}{q-1} \\
& =\frac{1}{q(q-1)}\left(q^{(n-2 t-1)(t-1)+2}-q^{(n-2 t-1)(t-1)}-q^{2 t+3}\right)+\theta_{t+1}
\end{aligned}
$$

Note that we used Lemma 1.10 .2 for the inequality on the second line. Since

$$
\begin{aligned}
q^{(n-2 t-1)(t-1)+2}-q^{(n-2 t-1)(t-1)}-q^{2 t+3} & \geq 3 q^{(n-2 t-1)(t-1)+1}-q^{(n-2 t-1)(t-1)}-q^{2 t+3} \\
& >q^{(n-2 t-1)(t-1)+1}-q^{2 t+3}
\end{aligned}
$$

it is sufficient to prove that $q^{(n-2 t-1)(t-1)+1} \geq q^{2 t+3}$. This inequality is valid for $n \geq 2 t+3+\frac{4}{t-1}$. For $t \geq 3$, this assumption holds since $n \geq 2 k-t+1=3 t+3$. For $t=2$, the assumption holds for $n \geq 11$. For $t=2, n=10$, we have that $w_{1}=\theta_{3}>0$. Since $n \geq 2 k-t+1=3 t+3$, the only remaining cases are $t=2$ and $n=9$, and $t=1$ and $n \geq 6$. In these cases, we immediately calculate $\left|R_{3.3}\right|-\left|R_{3.1}\right|$. For $t=2, n=9$, we have that $\left|R_{3.3}\right|-\left|R_{3.1}\right|=q^{9}+2 q^{8}+3 q^{7}+2 q^{6}+q^{5}>0$. For $t=1, n>5$, we have that $\left|R_{3.3}\right|=\left|R_{3.1}\right|=1+q \theta_{2} \theta_{n-4}$.

Now we investigate w_{2} :

$$
\begin{aligned}
w_{2}= & \frac{q^{n-t-j-1}-2 q^{t-j}+1}{(q-1)\left(q^{n-3 t+j-1}-1\right)}-\frac{q^{t+1}-1}{\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)} q^{2(t-j)} \\
= & \frac{\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)\left(q^{n-t-j-1}-2 q^{t-j}+1\right)-(q-1)\left(q^{n-3 t+j-1}-1\right)\left(q^{t+1}-1\right) q^{2(t-j)}}{(q-1)\left(q^{n-3 t+j-1}-1\right)\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)} \\
= & \frac{q^{n-2 j-t}\left(q^{j+t}-q^{2 j}-q^{t}\right)+q^{2 t-j+2}\left(q^{t-j}-q^{t-j-1}-2\right)}{(q-1)\left(q^{n-3 t+j-1}-1\right)\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)} \\
& \quad+\frac{\left(q^{t+2}+2 q^{t+1}-q^{t-j+1}-2 q^{t-j}-q^{j+1}\right)+q^{2 t-2 j+1}+q^{2 t-2 j}+1+q^{n-j-t}}{(q-1)\left(q^{n-3 t+j-1}-1\right)\left(q^{j+1}-1\right)\left(q^{t-j+1}-1\right)} .
\end{aligned}
$$

As $0 \leq j \leq t-1$ and $q \geq 3$, we find that all terms in the nominator are at least 0 , which proves that $w_{2} \geq 0$. Hence, we find that $\left|R_{3.3}\right| \geq\left|R_{3.1}\right|$.

Lemma 4.5.11. Suppose $n \geq 2 k+t+3, q \geq 2, k \geq t+2, t \geq 1$, then

$$
\left(\theta_{k-t}\right)^{x}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right]\left[\begin{array}{c}
t+x+1 \\
t+1
\end{array}\right]<\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right]
$$

for all $2<x \leq k-t$.

Proof. It is sufficient to prove that

$$
\left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{l}
n-t-x-1 \tag{4.18}\\
k-t-x-1
\end{array}\right]\left[\begin{array}{c}
t+x+2 \\
t+1
\end{array}\right]<\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}
n-t-x \\
k-t-x
\end{array}\right]\left[\begin{array}{c}
t+x+1 \\
t+1
\end{array}\right]
$$

for all $x \geq 2$.

$$
\begin{aligned}
& \left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{l}
n-t-x-1 \\
k-t-x-1
\end{array}\right]\left[\begin{array}{c}
t+x+2 \\
t+1
\end{array}\right]<\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}
n-t-x \\
k-t-x
\end{array}\right]\left[\begin{array}{c}
t+x+1 \\
t+1
\end{array}\right] \\
\Leftrightarrow \quad & \frac{q^{k-t+1}-1}{q-1}\left(q^{t+x+2}-1\right)<\frac{q^{n-t-x}-1}{q^{k-t-x}-1}\left(q^{x+1}-1\right) \\
\Leftrightarrow & \left(q^{k-t+1}-1\right)\left(q^{k-t-x}-1\right)\left(q^{t+x+2}-1\right)<(q-1)\left(q^{n-t-x}-1\right)\left(q^{x+1}-1\right) \\
\Leftrightarrow & \left(q^{n-t+2}-q^{n-t+1}-q^{n-t-x+1}-q^{2 k-t+3}\right)+q^{k-t-x}\left(q^{n-k}-1\right)+q^{t+x+2}\left(q^{k-t+1}-1\right) \\
& \quad+\left(q^{k+2}-q^{x+2}-q^{k-t+1}\right)+q\left(q^{2 k-2 t-x}+q^{x}+1\right)>0 .
\end{aligned}
$$

The last four terms are positive for $q \geq 2$ since $k>x \geq 2$. For the first term, we have that

$$
q^{n-t+2}-q^{n-t+1} \geq q^{n-t+1} \geq 2 q^{n-t}>q^{n-t-x+1}+q^{2 k-t+3}
$$

which is true since $x \geq 2$ and $n \geq 2 k+t+3$.
Lemma 4.5.12. Suppose $k \geq 2 t+2, t \geq 1, q \geq 3$ and $n \geq 2 k+t+3$, then

$$
\begin{aligned}
\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right]\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
\quad<\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right],
\end{aligned}
$$

for all $j \in\{0, \ldots, k-t-2\}$.
Proof.

$$
\begin{aligned}
& \quad\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right]\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
& \quad<\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \Leftrightarrow \quad \frac{\left(q^{k-t+1}-1\right)^{2}}{(q-1)^{2}} \frac{\left(q^{t+3}-1\right)\left(q^{t+2}-1\right)}{\left(q^{2}-1\right)(q-1)}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
& \quad \cdot\left(\frac{\left(q^{j+1}-1\right)\left(q^{k-t-j}-1\right)\left(q^{k-t-j-1}-1\right)}{\left(q^{k-t+1}-1\right)\left(q^{k-t}-1\right)\left(q^{k-t-1}-1\right)}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right]\right) \\
& \quad<\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right]\left(\frac{\left(q^{n-2 k+t+j+2}-1\right)\left(q^{n-2 k+t+j+1}-1\right)}{\left(q^{n-k}-1\right)\left(q^{k-t-j-1}-1\right)}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right]\right) q^{3 k-3 t-3 j-4} \\
& \Leftrightarrow \quad \frac{\left(q^{k-t+1}-1\right)}{(q-1)^{2}} \frac{\left(q^{t+3}-1\right)\left(q^{t+2}-1\right)}{\left(q^{2}-1\right)(q-1)} \frac{\left(q^{j+1}-1\right)\left(q^{k-t-j}-1\right)\left(q^{k-t-j-1}-1\right)}{\left(q^{k-t}-1\right)\left(q^{k-t-1}-1\right)} \\
& \quad<\frac{\left(q^{n-2 k+t+j+2}-1\right)\left(q^{n-2 k+t+j+1}-1\right)}{\left(q^{n-k}-1\right)\left(q^{k-t-j-1}-1\right)} q^{3 k-3 t-3 j-4} \\
& \Leftrightarrow \quad\left(q^{n-k}-1\right)\left(q^{k-t-j-1}-1\right)\left(q^{k-t+1}-1\right) \frac{\left(q^{k-t-j}-1\right)\left(q^{k-t-j-1}-1\right)}{\left(q^{k-t}-1\right)\left(q^{k-t-1}-1\right)} \\
& \\
& \quad<(q-1)^{3}\left(q^{2}-1\right) \frac{q^{n-2 k+t+j+1}-1}{q^{j+1}-1} \frac{q^{n-2 k+t+j+2}-1}{\left(q^{t+3}-1\right)\left(q^{t+2}-1\right)} q^{3 k-3 t-3 j-4}
\end{aligned}
$$

It is true that $\frac{q^{a}-1}{q^{b}-1} \leq q^{a-b}$ if and only if $b \geq a$. We use this bound twice in the last fraction on the left side of the inequality. Moreover, since $\frac{q^{n-2 k+t+j+2}-1}{\left(q^{++3}-1\right)\left(q^{t+2}-1\right)} \geq q^{n-2 k-t+j-3} \geq 1$ it is sufficient to
prove that

$$
\begin{aligned}
& q^{n+k-2 t-3 j}<(q-1)^{3}\left(q^{2}-1\right) \frac{q^{n-2 k+t+j+1}-1}{q^{j+1}-1} q^{n+k-4 t-2 j-7} \\
\Leftrightarrow & \frac{q^{2 t-j+7}}{q^{n-2 k+t+j+1}-1}<\frac{(q-1)^{3}\left(q^{2}-1\right)}{q^{j+1}-1} \\
\Leftarrow & \frac{q^{2 t-j+7}}{q^{2 t+j+4}-1}\left(q^{j+1}-1\right)<(q-1)^{3}\left(q^{2}-1\right) \\
\Leftarrow & \frac{q^{7-j}}{q^{j+4}-1}\left(q^{j+1}-1\right)<(q-1)^{3}\left(q^{2}-1\right) \\
\Leftarrow & \frac{q^{7}}{q^{4}-1}(q-1)<(q-1)^{3}\left(q^{2}-1\right)
\end{aligned}
$$

The third inequality follows since $f(n)=\frac{q^{2 t-j+7}}{q^{n-2 k+t+j+1}-1}$ is decreasing and $n \geq 2 k+t+3$. The fourth inequality follows since $h(t)=\frac{q^{2 t-j+7}}{q^{2 t+j+4}-1}$ is decreasing and $t \geq 0$ while the last inequality follows as $g(j)=\frac{q^{7-j}}{q^{j+4}-1}\left(q^{j+1}-1\right)$ is decreasing and $j \geq 0$. The last inequality is true for all $q \geq 3$.

Lemma 4.5.13. Suppose $k \geq t+2, t \geq 1, q \geq 3$ and $n \geq 2 k+t+3$, then

$$
\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}
n-t-x \\
k-t-x
\end{array}\right]\left[\begin{array}{c}
t+x+1 \\
t+1
\end{array}\right]<f_{p}(q, n, k, t)
$$

for all $2 \leq x \leq k-t$.
Proof. From Lemma 4.5.11, it follows that it is sufficient to prove the lemma for $x=2$. Hence, we have to prove the following inequalities, for which we use 4.8 and (4.5):

$$
\begin{align*}
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right]<\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \quad \text { for } k \leq 2 t+2 \\
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left[\begin{array}{c}
t+3 \\
t+1
\end{array}\right] \tag{4.19}\\
& \quad<\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \quad \text { for } k \geq 2 t+3 \tag{4.20}
\end{align*}
$$

We start by proving inequality 4.19 . Suppose to the contrary that this inequality does not hold. Then we have that

$$
\begin{aligned}
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right] \geq 1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
& \xrightarrow{L \underline{1.10 .2}} \\
& \xrightarrow{n \geq 2 k+t+3} \\
& \frac{q^{2 k-2 t+2}}{(q-1)^{2}} 2 q^{2 t+2}>\frac{q^{t+3}-1}{q-1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
& 2 q^{k+t+5}\left(q^{k-t-1}-1\right)>(q-1)\left(q^{t+3}-1\right)\left(q^{n-k}-1\right) \\
& \geq(q-1)\left(q^{t+3}-1\right)\left(q^{k+t+3}-1\right) \\
& \Rightarrow \quad 0>q^{2 k+4}\left(q^{2 t-k+3}-q^{2 t-k+2}-2\right)+q^{t+4}\left(2 q^{k+1}-q^{k}-1\right) \\
& +(q-1)+q^{t+3}+q^{k+t+3} .
\end{aligned}
$$

All terms in the right hand side of the last inequality are non-negative since $k \leq 2 t+2$ and $q \geq 3$. Hence, we have a contradiction which proves (4.19).

Now we prove inequality 4.20 . We use Lemma 1.10 .4 for the factor $\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ with $c=k-t-2$, and so, we have to prove the following inequality

$$
\begin{aligned}
\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right] \sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
<\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] .
\end{aligned}
$$

Hence, it is sufficient to prove that

$$
\begin{aligned}
&\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
t+3 \\
t+1
\end{array}\right]\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
&<\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] g^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right]
\end{aligned}
$$

for all $j \in\{0,1, \ldots, k-t-2\}$. This follows from Lemma 4.5.12
Lemma 4.5.14. Suppose $n \geq 2 k+t+3, q \geq 2, k \geq t+2, t \geq 1$, then

$$
\left(\theta_{k-t}\right)^{x}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right] q^{x}\left[\begin{array}{c}
t+x \\
x
\end{array}\right]<\left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] q^{2}\left[\begin{array}{c}
t+2 \\
2
\end{array}\right]
$$

for all $2<x \leq k-t$.
Proof. It is sufficient to prove that

$$
\left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{l}
n-t-x-1 \\
k-t-x-1
\end{array}\right] q^{x+1}\left[\begin{array}{c}
t+x+1 \\
x+1
\end{array}\right]<\left(\theta_{k-t}\right)^{x}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right] g^{x}\left[\begin{array}{c}
t+x \\
x
\end{array}\right] .
$$

Since $n \geq 2 k+t+3, q \geq 2, k \geq t+2, t \geq 1,2 \leq x<k$, we have from (4.18) that

$$
\begin{aligned}
\left(\left(\theta_{k-t}\right)^{x}\left[\begin{array}{c}
n-t-x \\
k-t-x
\end{array}\right]\right) q^{x}\left[\begin{array}{c}
t+x \\
x
\end{array}\right] & \left.>\left(\left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{l}
n-t-x-1 \\
k-t-x-1
\end{array}\right] \frac{\left[\begin{array}{c}
t+x+2 \\
t+1
\end{array}\right]}{[t+x+1} t\right]\right) q^{x}\left[\begin{array}{c}
t+x \\
x
\end{array}\right] \\
& >\left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{l}
n-t-x-1 \\
k-t-x-1
\end{array}\right] g^{x} \frac{q^{t+x+2}-1}{q^{t+x+1}-1}\left[\begin{array}{c}
t+x+1 \\
x+1
\end{array}\right] \\
& >\left(\theta_{k-t}\right)^{x+1}\left[\begin{array}{c}
n-t-x-1 \\
k-t-x-1
\end{array}\right] g^{x+1}\left[\begin{array}{c}
t+x+1 \\
x+1
\end{array}\right] .
\end{aligned}
$$

This proves the lemma.
Lemma 4.5.15. Suppose $k \geq t+2, t \geq 1, q \geq 3$, and $n \geq 2 k+t+3$, then

$$
\left(\theta_{k-t}\right)^{x}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right] q^{x}\left[\begin{array}{c}
t+x \\
x
\end{array}\right]<f_{a}(q, n, k, t)
$$

for all $2 \leq x \leq k-t$.

Proof. From Lemma 4.5 .14 it follows that it is sufficient to prove the lemma for $x=2$. Hence we have to prove the following inequalities, for which we use 4.13 and (4.10):

$$
\begin{align*}
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] q^{2}\left[\begin{array}{c}
t+2 \\
2
\end{array}\right]<\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \quad \text { for } k \leq 2 t+1 \\
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] q^{2}\left[\begin{array}{c}
t+2 \\
2
\end{array}\right] \tag{4.21}\\
& \quad<\theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \quad \text { for } k \geq 2 t+2 \tag{4.22}
\end{align*}
$$

We start by proving inequality 4.21). Suppose to the contrary that this inequality doesn't hold. Then we have that

$$
\begin{aligned}
& \left(\theta_{k-t}\right)^{2}\left[\begin{array}{c}
t+2 \\
2
\end{array}\right] q^{2} \geq 1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
& \xrightarrow{L \boxed{1.10 .2}} \\
& \frac{q^{2 k-2 t+2}}{(q-1)^{2}} 2 q^{2 t+2}>\frac{q^{t+2}-1}{q-1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
& \xrightarrow{n \geq 2 k+t+3} \\
& 2 q^{k+t+5}\left(q^{k-t-1}-1\right)>(q-1)\left(q^{t+2}-1\right)\left(q^{n-k}-1\right) \\
& >(q-1)\left(q^{t+2}-1\right)\left(q^{k+t+3}-1\right) \\
& \Rightarrow \quad 0>q^{2 k+4}\left(q^{2 t-k+2}-q^{2 t-k+1}-2\right)+q^{t+3}\left(2 q^{k+2}-q^{k+1}-1\right) \\
& +q^{t+2}+q^{k+t+3}+(q-1) .
\end{aligned}
$$

All terms in the right hand side of the last inequality are non-negative since $k \leq 2 t+1$ and $q \geq 3$. Hence we have a contradiction which proves 4.21.
Now we prove inequality 4.22 . We use Lemma 1.10 .4 for the factor $\left[\begin{array}{c}n-t-2 \\ k-t-2\end{array}\right]$ with $c=k-t-2$, and so, we have to prove the following inequality.

$$
\begin{aligned}
& \left(\theta_{k-t}\right)^{2} q^{2}\left[\begin{array}{c}
t+2 \\
2
\end{array}\right] \sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] \\
& \quad<\theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right]
\end{aligned}
$$

Note that it is sufficient to prove the inequality below for all $j \in\{0, \ldots, k-t-2\}$.

$$
\begin{aligned}
&\left(\theta_{k-t}\right)^{2} q^{2} {\left[\begin{array}{c}
t \\
+ \\
2
\end{array}\right]\left[\begin{array}{c}
k-t-2 \\
j
\end{array}\right] q^{(k-t-j-2)^{2}}\left[\begin{array}{c}
n-k \\
k-t-j-2
\end{array}\right] } \\
& \quad<\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right]
\end{aligned}
$$

This inequality follows from Lemma 4.5 .12 since $q^{2}\left[\begin{array}{c}t+2 \\ 2\end{array}\right]<\left[\begin{array}{c}t+3 \\ 2\end{array}\right]$.
Lemma 4.5.16. Suppose $n \geq 2 k+t+3, q \geq 3, k \geq t+2, t \geq 1$, then

$$
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]<f_{p}(q, n, k, t)
$$

Proof. We have to prove the following inequalities:

$$
\begin{align*}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] & +\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& <\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \quad \text { for } k \leq 2 t+2 \tag{4.23}\\
2\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right] & +\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] \\
& <\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \text { for } k \geq 2 t+3 \tag{4.24}
\end{align*}
$$

We start by proving inequality 4.23 . Suppose to the contrary that this inequality doesn't hold. Then we have that

$$
\begin{array}{ll}
& 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \\
\Leftrightarrow & 2 \frac{q^{n-t-1}-1}{q^{k-t-1}-1}+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t} \geq 1+\theta_{t+2} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
\Rightarrow & 2\left(q^{n-t-1}-1\right)+\left(q^{k-t-1}-1\right)\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t} \geq \theta_{t+2} q^{k-t-1}\left(q^{n-k}-1\right) \\
\xlongequal{L \boxed{1.10 .2}} \quad 2\left(q^{n-t-1}-1\right)(q-1)+\left(q^{k-t-1}-1\right)\left(q^{k-t+1}-1\right) \frac{q^{k+3}}{(q-1)^{2}} \\
\Rightarrow \quad>\left(q^{t+3}-1\right) q^{k-t-1}\left(q^{n-k}-1\right) \\
\Rightarrow \quad & 2 q^{n-t}-2 q^{n-t-1}-2 q+2+\frac{q^{3 k-2 t+3}}{(q-1)^{2}}>q^{n+2}-q^{n-t-1}-q^{k+2}+q^{k-t-1} \\
\Rightarrow & 0>\left(q^{n+2}-\frac{q^{3 k-2 t+3}}{(q-1)^{2}}-2 q^{n-t}\right)+\left(q^{n-t-1}-q^{k+2}-2\right)+q^{k-t-1}+2 q \\
\Rightarrow & 0>\left(q^{2 k+3}\left(q^{t+2}-2\right)-\frac{q^{2 k+5}}{(q-1)^{2}}\right)+\left(q^{2 k+2}-q^{k+2}-2\right)+q^{k-t-1}+2 q .
\end{array}
$$

The last implication follows since $n \geq 2 k+t+3$ and $k \leq 2 t+2$. For $q \geq 3$, we have that all terms on the right hand side of the last inequality are non-negative. Hence we find a contradiction, which proves 4.23.

Now we prove inequality $\sqrt{4.24}$ for $k \geq 2 t+3$. Suppose again to the contrary that this inequality
doesn't hold. Then we have that

$$
\begin{aligned}
& 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq \theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \xrightarrow{j=0} \\
& 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-1\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq \theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{l}
n-k-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow{\underline{1.10 .2}} \\
& 4 q^{(n-k)(k-t-1)}+\frac{q^{2 k-t+4}}{(q-1)^{3}} 2 q^{(n-k)(k-t-2)} \\
& \geq \theta_{k-t}\left(1+\frac{1}{q}\right) q^{(k-t)(k-t-1)+(n-2 k+t)(k-t-1)} \\
& \Rightarrow \quad 4+\frac{2}{q^{n-3 k+t-4}(q-1)^{3}} \geq \theta_{k-t}\left(1+\frac{1}{q}\right)>\theta_{k-t}+4 \\
& \xrightarrow{n \geq 2 k+t+3} \frac{2 q^{k-2 t+1}}{(q-1)^{2}}>q^{k-t+1}-1 \\
& \xrightarrow{q \geq 3} \quad q^{k-2 t+1}>q^{k-t+1}-1 .
\end{aligned}
$$

The last inequality gives a contradiction for $q \geq 3, t \geq 1$.

Lemma 4.5.17. Suppose $n \geq 2 k+t+3, q \geq 3, k \geq t+2, t \geq 1$, then

$$
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]<f_{a}(q, n, k, t)
$$

Proof. We have to prove the following inequalities:

$$
\begin{align*}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] & +\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& <\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right) \quad \text { for } k \leq 2 t+1 \tag{4.25}\\
2\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right] & +\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] \\
& <\theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \text { for } k \geq 2 t+2 . \tag{4.26}
\end{align*}
$$

We start by proving inequality (4.25). Suppose to the contrary that this inequality doesn't hold. Then we have that

$$
\begin{aligned}
2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] & +\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]\left(1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad 2 \frac{q^{n-t-1}-1}{q^{k-t-1}-1}+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t} \geq 1+\theta_{t+1} q^{k-t-1} \frac{q^{n-k}-1}{q^{k-t-1}-1} \\
& \Rightarrow \quad 2\left(q^{n-t-1}-1\right)+\left(q^{k-t-1}-1\right)\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t} \\
& >\theta_{t+1} q^{k-t-1}\left(q^{n-k}-1\right) \\
& L \underline{ } \\
& 2\left(q^{n-t-1}-1\right)(q-1)+\left(q^{k-t-1}-1\right)\left(q^{k-t+1}-1\right) \frac{q^{k+3}}{(q-1)^{2}} \\
& >\left(q^{t+2}-1\right) q^{k-t-1}\left(q^{n-k}-1\right) \\
& \Rightarrow \quad 2 q^{n-t}-2 q^{n-t-1}-2 q+2+\frac{q^{3 k-2 t+3}}{(q-1)^{2}}>q^{n+1}-q^{n-t-1}-q^{k+1}+q^{k-t-1} \\
& \Rightarrow \quad 0>\left(q^{n+1}-\frac{q^{3 k-2 t+3}}{(q-1)^{2}}-2 q^{n-t}\right)+\left(q^{n-t-1}-q^{k+1}-2\right)+q^{k-t-1}+2 q \\
& \xrightarrow[k \leq 2 t+1]{n \geq 2 k+t+3} \\
& 0>\left(q^{2 k+3}\left(q^{t+1}-2\right)-\frac{q^{2 k+4}}{(q-1)^{2}}\right)+\left(q^{2 k+2}-q^{k+1}-2\right)+q^{k-t-1}+2 q .
\end{aligned}
$$

For $q \geq 3$, we have that all terms on the right hand side of the last inequality are non-negative. Hence we find a contradiction, which proves (4.25).

Now we prove inequality (4.26). Suppose again to the contrary that this inequality doesn't hold. Then we have that

$$
\begin{aligned}
& 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq \theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \stackrel{j=0}{\Longrightarrow} \quad 2\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\left(\theta_{t+1} \theta_{k-t}-\theta_{t+1}-\theta_{k-t}\right) \theta_{k-t}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \\
& \geq \theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow{L \boxed{1.10 .2}} \\
& 4 q^{(n-k)(k-t-1)}+\frac{q^{2 k-t+4}}{(q-1)^{3}} 2 q^{(n-k)(k-t-2)} \\
& \geq \theta_{k-t} q^{(k-t)(k-t-1)}\left(1+\frac{1}{q}\right) q^{(n-2 k+t)(k-t-1)} \\
& \Rightarrow \quad 4+\frac{2}{q^{n-3 k+t-4}(q-1)^{3}} \geq \theta_{k-t}\left(1+\frac{1}{q}\right)>\theta_{k-t}+4 \\
& \xrightarrow{n \geq 2 k+t+3} \frac{2 q^{k-2 t+1}}{(q-1)^{2}}>q^{k-t+1}-1 \\
& \xrightarrow{q \geq 3} \quad q^{k-2 t+1}>q^{k-t+1}-1 .
\end{aligned}
$$

The last inequality gives a contradiction for $q \geq 3$, since $t \geq 1$.

Lemma 4.5.18. For $2 \leq x<k-t+1, q \geq 3$ and $n \geq k+2$, we have that

$$
\theta_{t+x+1}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right]<\theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right]
$$

Proof.

$$
\begin{aligned}
& \theta_{t+x+1}\left[\begin{array}{l}
n-t-x \\
k-t-x
\end{array}\right]<\theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right] \\
\Leftrightarrow & q^{t+x+2}-1<\left(q^{t+x+1}-1\right) \frac{q^{n-t-x+1}-1}{q^{k-t-x+1}-1} \\
\Leftrightarrow & q^{k+3}-q^{t+x+2}-q^{k-t-x+1}<q^{n+2}-q^{n-t-x+1}-q^{t+x+1} \\
\Leftrightarrow & -q^{k-t-x+1}<\left(q^{n+2}-q^{n-t-x+1}-q^{k+3}\right)+q^{t+x+1}(q-1) .
\end{aligned}
$$

Note that the right hand side of the last inequality is positive for $q \geq 3$, which proves the inequality.

Corollary 4.5.19. For $x<k-t+1, q \geq 3$ and $n \geq k+2$, we have that

$$
\begin{aligned}
& \theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right] \leq \theta_{t+2}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \text { if } x \geq 2 \\
& \theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right] \leq \theta_{t+3}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right] \text { if } x \geq 3
\end{aligned}
$$

Lemma 4.5.20. Suppose that $n \geq 2 k+t+3, k \geq 2 t+3,2 \leq x \leq k-t+1, t \geq 1$. Then we have that

$$
\begin{aligned}
\theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
\quad>\theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]
\end{aligned}
$$

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn't hold. Then we have that

$$
\begin{aligned}
& \theta_{k+1}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \leq \theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow[{C[4.5 .1} 9]{x \geq 2, j=0} \quad \theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{l}
n-k-1 \\
k-t-1
\end{array}\right] \\
& <\theta_{t+2}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xlongequal{L \boxed{1.10 .2}} \frac{q^{k-t+1}-1}{q-1} q^{(k-t)(k-t-1)}\left(1+\frac{1}{q}\right) q^{(n-2 k+t)(k-t-1)} \\
& <\frac{q^{t+3}-1}{q-1} 2 q^{(n-k)(k-t-1)}+\frac{\left(q^{k-t+1}-1\right)^{2}}{(q-1)^{2}} 2 q^{(n-k)(k-t-2)} \\
& +\frac{q^{k-t}-1}{q-1} 2 q^{(n-k)(k-t-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(q^{k-t+1}-1\right)\left(1+\frac{1}{q}\right)<2\left(q^{t+3}-1\right)+2 \frac{\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}+2\left(q^{k-t}-1\right) \\
& \Rightarrow \quad q^{t+3}\left(q^{k-2 t-2}-2 q^{k-2 t-3}-2\right)+\left(3-\frac{1}{q}\right) \\
&+\left(\frac{q^{n-t}(q-1)-2\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}\right)<0
\end{aligned}
$$

For $k \geq 2 t+4, q \geq 3$ and $n \geq 2 k+t+3$ all terms in the left hand side of the last inequality are non-negative, which gives a contradiction. For $k=2 t+3$ we have

$$
\begin{array}{ll}
& \left(q^{t+4}-3 q^{t+3}\right)+\left(3-\frac{1}{q}-2 \frac{\left(q^{t+4}-1\right)^{2}}{q^{n-2 t-3}(q-1)}\right)<0 \\
\xrightarrow{n \geq 5 t+9} & \left(q^{t+4}-3 q^{t+3}\right)+\left(3-\frac{1}{q}-2 \frac{\left(q^{t+4}-1\right)^{2}}{q^{3 t+7}(q-1)}\right)<0 \\
\stackrel{t \geq 1}{\Longrightarrow} & \left(q^{t+4}-3 q^{t+3}\right)+\left(1-\frac{1}{q}\right)<0
\end{array}
$$

which also gives a contradiction for $q \geq 3$ and $t \geq 1$.
Lemma 4.5.21. Suppose that $n \geq 2 k+t+3, k \geq 2 t+2,3 \leq x \leq k-t+1, t \geq 1, q \geq 3$. Then we have that

$$
\begin{aligned}
\theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
\quad>\theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]
\end{aligned}
$$

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn't hold. Then we have that

$$
\begin{aligned}
& \theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \leq \theta_{t+x}\left[\begin{array}{l}
n-t-x+1 \\
k-t-x+1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow[C 【 4.5 .19]{x \geq 3, j=0} \quad \theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-1
\end{array}\right] \\
& <\theta_{t+3}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xlongequal{L \underline{1.10 .2}} \frac{q^{k-t+1}-1}{q-1} q^{(k-t)(k-t-1)}\left(1+\frac{1}{q}\right) q^{(n-2 k+t)(k-t-1)} \\
& <\frac{q^{t+4}-1}{q-1} 2 q^{(n-k)(k-t-2)}+\frac{\left(q^{k-t+1}-1\right)^{2}}{(q-1)^{2}} 2 q^{(n-k)(k-t-2)}+\frac{q^{k-t}-1}{q-1} 2 q^{(n-k)(k-t-1)} \\
& \Rightarrow \quad\left(q^{k-t+1}-1\right)\left(1+\frac{1}{q}\right)<2 \frac{q^{t+4}-1}{q^{n-k}}+2 \frac{\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}+2\left(q^{k-t}-1\right) \\
& \Rightarrow \quad\left(q^{k-t+1}-2 q^{k-t}-2 \frac{q^{t+4}-1}{q^{n-k}}\right)+\left(1-\frac{1}{q}\right)+\left(q^{k-t}-2 \frac{\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}\right)<0 \\
& \stackrel{q \geq 3}{\Longrightarrow} \quad\left(q^{k-t}-2 \frac{q^{t+4}-1}{q^{n-k}}\right)+\left(1-\frac{1}{q}\right)+2\left(\frac{q^{n-t}-\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}\right)<0 .
\end{aligned}
$$

For $n \geq 2 k+t+3, q \geq 3$ the terms in the left hand side of the last inequality are non-negative, which gives a contradiction.

Lemma 4.5.22. Suppose that $n \geq 2 k+t+3, k \geq 2 t+2$ and $q \geq 3$. Then we have that

$$
\begin{aligned}
& \theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \quad>q^{2} \theta_{t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]
\end{aligned}
$$

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn't hold. Then we have that

$$
\begin{align*}
& \theta_{k}+\sum_{j=0}^{k-t-2}\left[\begin{array}{c}
k-t+1 \\
j+1
\end{array}\right] q^{(k-t-j)(k-t-j-1)}\left[\begin{array}{c}
n-k-1 \\
k-t-j-1
\end{array}\right] \\
& \leq q^{2} \theta_{t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xrightarrow{j=0} \quad \theta_{k}+\theta_{k-t} q^{(k-t)(k-t-1)}\left[\begin{array}{l}
n-k-1 \\
k-t-1
\end{array}\right] \\
& <q^{2} \theta_{t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right]+\theta_{k-t}^{2}\left[\begin{array}{l}
n-t-2 \\
k-t-2
\end{array}\right]+\theta_{k-t-1}\left[\begin{array}{l}
n-t-1 \\
k-t-1
\end{array}\right] \\
& \xlongequal{L \boxed{1.10 .2}} \frac{q^{k-t+1}-1}{q-1} q^{(k-t)(k-t-1)}\left(1+\frac{1}{q}\right) q^{(n-2 k+t)(k-t-1)} \\
& <\frac{q^{t}-1}{q-1} 2 q^{(n-k)(k-t-1)+2}+\frac{\left(q^{k-t+1}-1\right)^{2}}{(q-1)^{2}} 2 q^{(n-k)(k-t-2)} \\
& +\frac{q^{k-t}-1}{q-1} 2 q^{(n-k)(k-t-1)} \\
& \Rightarrow \quad\left(q^{k-t+1}-1\right)\left(1+\frac{1}{q}\right)<2\left(q^{t+2}-q^{2}\right)+2 \frac{\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}+2\left(q^{k-t}-1\right) \\
& \Rightarrow \quad\left(q^{k-t+1}-2 q^{k-t}-2 q^{t+2}\right)+\left(1-\frac{1}{q}\right)+\left(q^{k-t}+2 q^{2}-2 \frac{\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}\right)<0 \tag{4.27}\\
& \xrightarrow{q \geq 3} \quad q^{t+2}\left(q^{k-2 t-2}-2\right)+\left(1-\frac{1}{q}\right)+2\left(\frac{q^{n-t}+2 q^{n-k+2}-\left(q^{k-t+1}-1\right)^{2}}{q^{n-k}(q-1)}\right)<0 \\
& \Rightarrow \quad q^{t+2}\left(q^{k-2 t-2}-2\right)+\left(1-\frac{1}{q}\right)+2 q^{2 k-2 t+2}\left(\frac{q^{n-2 k+t-2}+2 q^{n-3 k+2 t}-1}{q^{n-k}(q-1)}\right)<0 .
\end{align*}
$$

For $k \geq 2 t+3, q \geq 3$ and $n \geq 2 k+t+3$ all terms in the left hand side of the last inequality are non-negative, which gives a contradiction. For $k=2 t+2$ we have that $n>2 k+t+2=5 t+6$, and by using (4.27) we have that

$$
\begin{array}{ll}
& \left(q^{t+3}-3 q^{t+2}\right)+\left(2 q^{2}+1-\frac{1}{q}-2 \frac{\left(q^{t+3}-1\right)^{2}}{q^{n-2 t-2}(q-1)}\right)<0 \\
\stackrel{n \geq 5 t+7}{ } & \left(q^{t+3}-3 q^{t+2}\right)+\left(2 q^{2}+1-\frac{1}{q}-2 \frac{\left(q^{t+3}-1\right)^{2}}{q^{3 t+5}(q-1)}\right)<0 \\
\stackrel{t \geq 1}{\Longrightarrow} & \left(q^{t+3}-3 q^{t+2}\right)+\left(2 q^{2}-1-\frac{1}{q}\right)<0
\end{array}
$$

which also gives a contradiction for $q \geq 3$.

5 The Sunflower bound

66 It never hurts to keep looking for sunshine.
-Eeyore

The results in this chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and will appear in [15].

5.1 Introduction

A $(k+1, t+1)$-SCID is a set of k-dimensional subspaces in $\operatorname{PG}(n, q)$, that pairwise intersect in precisely a t-dimensional space (SCID stands for: Subspaces with Constant Intersection Dimension). Note that this set corresponds to a set of $(k+1)$-dimensional vector spaces, pairwise intersecting in a $(t+1)$-dimensional vector space. This indicates why we use the $(k+1, t+1)$-notation. A $(k+1, t+1)$-SCID is also called a t-intersecting constant dimension subspace code, where the code words have projective dimension k. Note that $(k+1,0)$-SCIDs correspond with partial k-spreads in $\operatorname{PG}(n, q)$.

Investigating SCIDs is interesting for the link with coding theory. Network coding is a segment of information theory dealing with data transmission over lossy and noisy networks. In such networks, information travels from a set of sources to a set of receivers through several intermediate nodes. An optimal information rate can be achieved by performing linear combinations during transmissions in the intermediate nodes. This approach is called random network coding, and utilizes subspace codes [81]. In a subspace code, the code words are subspaces in a projective space, and the subspace distance $d(U, V)$ between two code words U and V is defined as follows: $d(U, V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)$. Constant dimension subspace codes are subspace codes whose elements all have the same dimension. They are the q-analogues of the classical codes. SCIDs are equidistant constant dimension subspace codes since the pairwise distances between the code words are equal.

An example of a $(k+1, t+1)$-SCID is a sunflower, which is a set of k-spaces, passing through the same t-space and having no points in common outside of this t-space. It can be shown that a t-intersecting constant dimension subspace code is a sunflower if the code has many code words.

Theorem 5.1.1 ([56, Theorem 1]). $A(k+1, t+1)$-SCID C is a sunflower if

$$
|C|>\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)^{2}+\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)+1
$$

It is believed that the Sunflower bound is in general not tight. In [6], the Sunflower bound for ($k+1,1$)-SCIDs was studied.

Theorem 5.1.2 ([6, Theorem 2.1]). Let C be a $(k+1,1)$-SCID, with $k \geq 4$. If

$$
|C| \geq\left(\frac{q^{k+1}-q}{q-1}\right)^{2}+\left(\frac{q^{k+1}-q}{q-1}\right)-q^{k}
$$

then C is a sunflower.
In this chapter, we will give a better result for $(k+1,1)$-SCIDs, see Theorem 5.3.6. In this result, we improve the Sunflower bound with a factor $\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$, while in [6], the authors improve the bound with a lower order term q^{k}.

We suppose that $k \geq 3$ as for (2,1)-SCIDs we, more generally, known that every $(k+1, k)$-SCID is a sunflower or consists of k-spaces in a fixed $(k+1)$-space, see Theorem 2.0.6 For $(3,1)$-SCIDs, an almost complete classification is known, see [9].

Result 5.1.3 ([9]). Let C be a set of planes in $\operatorname{PG}(n, q), q \geq 3$, pairwise intersecting in exactly a point. $I f|C| \geq 3\left(q^{2}+q+1\right)$, then C is contained in a Klein quadric in $\operatorname{PG}(5, q)$, or C is a dual partial spread in $\mathrm{PG}(4, q)$, or all elements of C pass through a common point.

In Section5.2 we give some definitions and general lemmas. In Section 5.3 we start with the Main Lemma that gives an important inequality. Using this inequality, we continue with Theorem 5.3.6 that gives an improvement on the Sunflower bound if $k \geq 3$ and $q \geq 9$ (and if $q \geq 7$ and $k \geq 5$).

5.2 Preliminaries

From now on, we consider a fixed $(k+1,1)$-SCID \mathcal{S} that is not a sunflower, of size $|\mathcal{S}|=(1-s) \theta_{k}^{2}$, $0<s<1$. Note that the size of $|\mathcal{S}|$ is smaller than the Sunflower bound for $s>\frac{1}{\theta_{k}}-\frac{1}{\theta_{k}^{2}}$. We will derive, for a fixed value of k and field size q, an upper bound on $1-s$.

Definition 5.2.1. Consider the $\operatorname{SCID} \mathcal{S}$. The sets of points and lines that are contained in an element of \mathcal{S} are denoted by $\mathcal{P}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}}$ respectively.

Lemma 5.2.2. Suppose $P \in \mathcal{P}_{\mathcal{S}}$, then P lies in at most θ_{k} elements of \mathcal{S} and on at most $\theta_{k} \cdot \theta_{k-1}$ lines of $\mathcal{L}_{\mathcal{S}}$.

Proof. There exists an element $S_{0} \in \mathcal{S}$ not through P, since \mathcal{S} is not a sunflower. Every k-space of \mathcal{S} through P contains a point Q of S_{0} and every line $P Q$ with $Q \in S_{0}$ is contained in at most one k-space. In this way we find at most θ_{k} elements of \mathcal{S} that contain P. The lemma follows since the number of lines through a point in a k-space is θ_{k-1}.

From now on, we distinguish 'rich' and 'poor' points and lines in $\mathcal{P}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}}$. First we give the definition, then we continue with some counting arguments.

Definition 5.2.3. Suppose c, d are constants between s and 1 . A point $P \in \mathcal{P}_{\mathcal{S}}$ is c-rich if it is included in more than $(1-c) \theta_{k}$ elements of \mathcal{S}. A point is c-poor if it is not c-rich. A line $l \in \mathcal{L}_{\mathcal{S}}$ is (c, d)-rich if it contains more than $(1-d)(q+1) c$-rich points.

We will call c-rich and c-poor points, and (c, d)-rich lines rich and poor points, and rich lines respectively, if the constants c and d are clear from the context.

Lemma 5.2.4. For the number r of c-rich points in an element of \mathcal{S}, we find:

$$
r \geq r_{0}=\left(1-\frac{s}{c}\right) \theta_{k}
$$

Proof. Fix $S_{0} \in \mathcal{S}$, and count the number of elements in \mathcal{S} that intersect S_{0} in a point. By Lemma 5.2.2 we have that through every rich point P of S_{0}, there are at most $\theta_{k}-1$ elements of \mathcal{S} different from S_{0}. Through every line spanned by P and a point of such a k-space, there is at most one element of \mathcal{S}.
Every poor point of S_{0} lies in at most $(1-c) \theta_{k}-1$ other elements of \mathcal{S} by definition. We doublecount pairs (P, Z), with $P \in Z, Z \in \mathcal{S}$ where $P \in S_{0}$ and $Z \neq S_{0}$, to obtain the following inequality:

$$
\begin{array}{rlrl}
& & r\left(\theta_{k}-1\right)+\left(\theta_{k}-r\right)\left((1-c) \theta_{k}-1\right) & \geq|\mathcal{S}|-1 \\
\Leftrightarrow & r\left(\theta_{k}-1-(1-c) \theta_{k}+1\right) & \geq(1-s) \theta_{k}^{2}-1-(1-c) \theta_{k}^{2}+\theta_{k} \\
\Rightarrow & r c \theta_{k} & \geq(c-s) \theta_{k}^{2} \\
\Leftrightarrow & r & \geq\left(1-\frac{s}{c}\right) \theta_{k} .
\end{array}
$$

Lemma 5.2.5. An element of \mathcal{S} contains at least

$$
\alpha=\frac{\theta_{k} \theta_{k-1}}{q+1} \cdot\left(1-\frac{s}{c d}\right)
$$

(c, d)-rich lines and the total number of (c, d)-rich lines is at least $\alpha(1-s) \theta_{k}^{2}$.
Proof. Consider a k-space $S_{0} \in \mathcal{S}$ and let β denote the number of poor lines in S_{0}. By counting pairs (P, l), with P a rich point in S_{0}, l a line in S_{0} and $P \in l$, we find:

$$
\left(\left[\begin{array}{c}
k+1 \\
2
\end{array}\right]-\beta\right)(q+1)+\beta(1-d)(q+1) \geq r_{0} \theta_{k-1}=\left(1-\frac{s}{c}\right) \theta_{k} \theta_{k-1}
$$

which gives

$$
\beta \leq \frac{s \theta_{k} \theta_{k-1}}{c d(q+1)}
$$

Hence, an element of \mathcal{S} contains at least $\left[\begin{array}{c}k+1 \\ 2\end{array}\right]-\beta=\frac{\theta_{k} \theta_{k-1}}{q+1}-\frac{s \theta_{k} \theta_{k-1}}{c d(q+1)}(c, d)$-rich lines.
Remark 5.2.6. In order to get a useful bound in the previous lemma, we need values of s, c and d such that $1-\frac{s}{c d} \geq 0$ or $s \leq c d$. Later we will see that the values that we use for c and d satisfy these inequalities.

We continue with a lemma that will be useful to prove the Main Lemma and the theorems in the following section.

Lemma 5.2.7. Let $\rho(s)$ be the average number of (c, d)-rich lines meeting two distinct elements S_{1}, S_{2} of \mathcal{S} in a c-rich point different from $S_{1} \cap S_{2}$ (in the case the latter is c-rich). Then $\rho(s)$ is at least

$$
f(s)=\theta_{k} \theta_{k-1} q \frac{1-d}{1-s}\left(1-\frac{s}{c d}\right)\left(1-c-\frac{1}{\theta_{k}}\right)^{2}\left(1-d-\frac{d}{q}\right)
$$

Proof. We count triples $\left(S_{1}, S_{2}, r\right)$ where r is a rich line connecting a rich point in $S_{1} \backslash S_{2}$ with a rich point in $S_{2} \backslash S_{1}$. Let $\rho_{\left\{S_{1}, S_{2}\right\}}, S_{1}, S_{2} \in \mathcal{S}, S_{1} \neq S_{2}$, be the number of rich lines meeting both $S_{1} \backslash S_{2}$ and $S_{2} \backslash S_{1}$ in a rich point. We define $\rho(s)$ as the average of the values $\rho_{\left\{S_{1}, S_{2}\right\}}$ with $S_{1}, S_{2} \in \mathcal{S}$ and $S_{1} \neq S_{2}$. On the one hand, the number of triples equals

$$
(1-s) \theta_{k}^{2}\left((1-s) \theta_{k}^{2}-1\right) \rho(s) \leq(1-s)^{2} \theta_{k}^{4} \rho(s)
$$

On the other hand, the number of triples is at least

$$
(1-s) \theta_{k}^{2} \frac{\theta_{k} \theta_{k-1}}{q+1}\left(1-\frac{s}{c d}\right) \cdot(1-d)(q+1)((1-d) q-d) \cdot\left((1-c) \theta_{k}-1\right)^{2}
$$

as by Lemma 5.2 .5 there are at least $(1-s) \theta_{k}^{2} \frac{\theta_{k} \theta_{k-1}}{q+1}\left(1-\frac{s}{c d}\right)$ rich lines, and on a rich line there are at least $(1-d)(q+1)((1-d) q-d)$ possibilities for an ordered pair of two distinct rich points P_{1}, P_{2}. Through those points, we find at least $\left((1-c) \theta_{k}-1\right)^{2}$ possibilities for the k-spaces $S_{1}, S_{2} \in \mathcal{S}$ (not containing the line $P_{1} P_{2}$). This gives that the average $\rho(s)$ is at least $f(s)$.

5.3 Main Lemma and results

Using the combinatorial lemmas in the previous section, the main goal in this section is to find a an upper bound on $(1-s)$, as a function of the field size q. We start with the Main Lemma, that will be the basis of the theorems at the end of this section.

Main Lemma 5.3.1. Let \mathcal{S} be a $(k+1,1)$-SCID in $\operatorname{PG}(n, q)$, with $|\mathcal{S}|=(1-s) \theta_{k}^{2}$, $k \geq 3$, that is not a sunflower. For all values $0<s<c, d<1$, we have the following inequality:

$$
\begin{align*}
&\left(1-\frac{s}{c d}\right)(1-d)(1-c)\left(1-c-\frac{1}{q^{3}}\right)^{2}\left(1-d-\frac{d}{q}\right)\left(1-d-\frac{1+d}{q}\right) q \\
& \leq(1-s)^{2}+\frac{1-s}{q} \tag{5.1}
\end{align*}
$$

Proof. Consider a pair of different k-spaces $S_{1}, S_{2} \in \mathcal{S}$ having at least $f(s)$ connecting rich lines, then the $2 k$-space $T=\left\langle S_{1}, S_{2}\right\rangle$ contains at least

$$
f(s) \cdot \frac{(1-d)(q+1)-2}{q}=\left(1-d-\frac{1+d}{q}\right) f(s)
$$

rich points: every rich line contains at least $(1-d)(q+1)-2$ rich points, not contained in $S_{1} \cup S_{2}$. Furthermore, every point P in the $2 k$-space T, not in the union $S_{1} \cup S_{2}$, lies on at most q such connecting lines. That there are indeed at most q such lines, follows since $\left\langle P, S_{1}\right\rangle$ meets S_{2} in a line ℓ through $S_{1} \cap S_{2}$. Hence, the lines through P, meeting both S_{1} and S_{2}, are precisely the lines through P in the plane $\langle P, \ell\rangle$. In this plane there are q lines through P that do not contain $\mathcal{S}_{1} \cap \mathcal{S}_{2}$. Hence, each such point P is counted at most q times.

Since the dual of a $(k+1,1)$-SCID in a $2 k$-space is a partial $(k-1)$-spread in this $2 k$-space, we have that a $2 k$-space contains at most $\left\lfloor\theta_{2 k} / \theta_{k-1}\right\rfloor=q^{k+1}+q$ elements of \mathcal{S}. On the other hand, this $2 k$ space contains at most θ_{k-1} points from each element of \mathcal{S} not contained in T. Hence, the number of pairs $\left(P, S_{0}\right)$, with $P \in\left\langle S_{1}, S_{2}\right\rangle$ a rich point in the k-space S_{0}, is at least $\left(1-d-\frac{1+d}{q}\right) f(s)(1-$ c) θ_{k} and at most $\left(q^{k+1}+q\right) \theta_{k}+\left((1-s) \theta_{k}^{2}-\left(q^{k+1}+q\right)\right) \theta_{k-1}$. Hence,

$$
\begin{aligned}
& \left(1-d-\frac{1+d}{q}\right)(1-c) f(s) \theta_{k} \leq\left(q^{k+1}+q\right) \theta_{k}+\left((1-s) \theta_{k}^{2}-\left(q^{k+1}+q\right)\right) \theta_{k-1} \\
\Rightarrow & \left(1-d-\frac{1+d}{q}\right)(1-c) \frac{f(s)}{\theta_{k} \theta_{k-1}} \leq 1-s+\frac{q^{k+1}+q}{\theta_{k}^{2} \theta_{k-1}} q^{k} \leq 1-s+\frac{1}{q^{k-2}}
\end{aligned}
$$

The last inequality follows since $q^{k}\left(q^{k+1}+q\right) \leq q^{2-k} \theta_{k}^{2} \theta_{k-1}$. This implies that

$$
\begin{array}{r}
\left(1-\frac{s}{c d}\right)(1-d)(1-c)\left(1-c-\frac{1}{\theta_{k}}\right)^{2}\left(1-d-\frac{d}{q}\right)\left(1-d-\frac{1+d}{q}\right) q \\
\leq(1-s)^{2}+\frac{1-s}{q^{k-2}} \tag{5.2}
\end{array}
$$

which proves the lemma since $k \geq 3$.
Corollary 5.3.2. Let \mathcal{S} be $a(k+1,1)-\operatorname{SCID}$ in $\operatorname{PG}(n, q)$, with $|\mathcal{S}|=(1-s) \theta_{k}^{2}, k \geq 3$, that is not a sunflower. Suppose that

$$
\left(\frac{1}{q}-\frac{B(q, c, d)}{c d}\right)^{2}-4 B(q, c, d)\left(\frac{1}{c d}-1\right) \geq 0
$$

Then we have, for all values $0<s<c, d<1$, that

$$
\begin{gathered}
(1-s) \leq F(q, c, d)=\frac{1}{2}\left(\frac{B(q, c, d)}{c d}-\frac{1}{q}-\sqrt{\left(\frac{1}{q}-\frac{B(q, c, d)}{c d}\right)^{2}-4 B(q, c, d)\left(\frac{1}{c d}-1\right)}\right) \\
o r(1-s) \geq G(q, c, d)=\frac{1}{2}\left(\frac{B(q, c, d)}{c d}-\frac{1}{q}+\sqrt{\left(\frac{1}{q}-\frac{B(q, c, d)}{c d}\right)^{2}-4 B(q, c, d)\left(\frac{1}{c d}-1\right)}\right)
\end{gathered}
$$

with $B(q, c, d)=(1-d)(1-c)\left(1-c-\frac{1}{q^{3}}\right)^{2}\left(1-d-\frac{d}{q}\right)\left(1-d-\frac{1+d}{q}\right) q$.
Proof. Using inequality (5.1) from the Main Lemma, we immediately find the following quadratic inequality

$$
(1-s)^{2}+\left(\frac{1}{q}-\frac{B(q, c, d)}{c d}\right) \cdot(1-s)+B(q, c, d)\left(\frac{1}{c d}-1\right) \geq 0
$$

which proves the corollary.

From now on, we put $c(q)=d(q)=1-\frac{1}{\sqrt[6]{q}}-\frac{1}{2 \sqrt[3]{q}}$. Since c and d must be non-negative by definition, we have to assume that $q \geq 7$. We denote $c(q), F(q, c(q), c(q)), G(q, c(q), c(q))$ and $B(q, c(q), c(q))$ by c_{q}, F_{q}, G_{q} and B_{q} respectively. We first give a lower bound on B_{q}.

Lemma 5.3.3. Let $t=\sqrt[6]{q}, q \geq 7$, then

$$
\begin{align*}
B_{q} & >\left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{4}}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{5}}\right)\left(1+\frac{1}{2 t}-\frac{2}{t^{5}}\right), \text { and } \tag{5.3}\\
B_{q} & >\left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{3 t}\right)^{2} . \tag{5.4}
\end{align*}
$$

Proof. By using the equality $c_{q}=c_{t^{6}}=1-\frac{1}{t}-\frac{1}{2 t^{2}}$ and $t=\sqrt[6]{q} \geq \sqrt[6]{7}$, we have

$$
\begin{aligned}
B_{q}= & \left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q \\
= & \left(\frac{1}{t}+\frac{1}{2 t^{2}}\right)^{2}\left(\frac{1}{t}+\frac{1}{2 t^{2}}-\frac{1}{t^{18}}\right)^{2}\left(\frac{1}{t}+\frac{1}{2 t^{2}}-\frac{1}{t^{6}}+\frac{1}{t^{7}}+\frac{1}{2 t^{8}}\right) \\
& \cdot\left(\frac{1}{t}+\frac{1}{2 t^{2}}-\frac{2}{t^{6}}+\frac{1}{t^{7}}+\frac{1}{2 t^{8}}\right) t^{6} \\
= & \left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{17}}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{5}}+\frac{1}{t^{6}}+\frac{1}{2 t^{7}}\right)\left(1+\frac{1}{2 t}-\frac{2}{t^{5}}+\frac{1}{t^{6}}+\frac{1}{2 t^{7}}\right)
\end{aligned}
$$

Using this expression for B_{q}, we can check that the following two inequalities are true for all $t \geq \sqrt[6]{7}$, and so, for all $q \geq 7$.

$$
\begin{aligned}
B_{q} & >\left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{4}}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{5}}\right)\left(1+\frac{1}{2 t}-\frac{2}{t^{5}}\right), \text { and } \\
B_{q} & >\left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{3 t}\right)^{2} .
\end{aligned}
$$

We continue by investigating for which values of $q \geq 7$ the condition $\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right) \geq$ 0 , in Corollary 5.3.2 is true. Or equivalently, for which values of q, the argument of the square root in F_{q} and G_{q} is non-negative.

Lemma 5.3.4. For $q \geq 7$, it is true that $\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right) \geq 0$, with
$B_{q}=\left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q$ and $c_{q}=1-\frac{1}{\sqrt[8]{q}}-\frac{1}{2 \sqrt[3]{q}}$.
Proof. Note that it follows from Lemma 5.3.3 that $B_{q}>0$ if $q \geq 7$. Suppose that the inequality in the statement of the lemma does not hold. Then we have

$$
\begin{array}{ll}
& \frac{B_{q}^{2}}{c_{q}^{4}}-\frac{2 B_{q}}{q c_{q}^{2}}+\frac{1}{q^{2}}<4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right) \\
\Rightarrow & \frac{B_{q}^{2}}{c_{q}^{4}}<2 B_{q}\left(\frac{2}{c_{q}^{2}}-2+\frac{1}{q c_{q}^{2}}\right) \\
\stackrel{B_{q}>0}{\Longleftrightarrow} & B_{q}<2 c_{q}^{2}\left(2\left(1-c_{q}^{2}\right)+\frac{1}{q}\right) \\
\stackrel{t=\sqrt[6]{q}}{\Longleftrightarrow} & B_{t^{6}}<2\left(1-\frac{1}{t}-\frac{1}{2 t^{2}}\right)^{2}\left(\frac{4}{t}-\frac{2}{t^{3}}-\frac{1}{2 t^{4}}+\frac{1}{t^{6}}\right) \\
\stackrel{\sqrt{5.4}}{\Longleftrightarrow} & \left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{3 t}\right)^{2}<2\left(1-\frac{1}{t}\right)^{2}\left(\frac{4}{t}-\frac{1}{t^{3}}\right) \\
\Leftrightarrow & \left(t+\frac{1}{2}\right)^{2}\left(t+\frac{1}{3}\right)^{2}<2(t-1)^{2}\left(4 t-\frac{1}{t}\right) \\
\Leftrightarrow & t^{4}+\frac{5}{3} t^{3}+\frac{37}{36} t^{2}+\frac{5}{18} t+\frac{1}{36}<8 t^{3}-16 t^{2}+6 t+4-\frac{2}{t} \\
\Leftrightarrow & t^{4}-\frac{19}{3} t^{3}+\frac{613}{36} t^{2}-\frac{103}{18} t-\frac{143}{36}+\frac{2}{t}<0 .
\end{array}
$$

The last inequality gives a contradiction for all values of $t \geq \sqrt[6]{7}$, and so for all $q \geq 7$, which proves the lemma.

Now we prove that $G_{q}>1$. This implies that the first bound in Corollary 5.3 .2 holds, since $0<$ $s<1$.

Lemma 5.3.5. For $q \geq 7$, it is true that

$$
G_{q}=\frac{1}{2}\left(\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}+\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)}\right)>1
$$

with

$$
\begin{aligned}
B_{q} & =\left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q \\
c_{q} & =1-\frac{1}{\sqrt[6]{q}}-\frac{1}{2 \sqrt[3]{q}}
\end{aligned}
$$

Proof. We have to prove that

$$
\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}+\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)}>2
$$

For all values of $q \geq 7$ such that $2-\frac{B_{q}}{c_{q}^{2}}+\frac{1}{q}<0$, the previous inequality is true. If $2-\frac{B_{q}}{c_{q}^{2}}+\frac{1}{q} \geq 0$, then it is equivalent to proving that

$$
\begin{aligned}
& \left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)>4+4\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)+\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2} \\
\Leftrightarrow & -\frac{B_{q}}{c_{q}^{2}}+B_{q}>1+\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}} \\
\Leftrightarrow & B_{q}>1+\frac{1}{q}
\end{aligned}
$$

Set $t=\sqrt[6]{q}$. From Lemma $5.3 .3 \sqrt{5.4}$, we know that it is sufficient to prove the following inequality.

$$
\begin{aligned}
& \left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{3 t}\right)^{2}>1+\frac{1}{t^{6}} \\
\Leftrightarrow & t^{4}+\frac{5}{3} t^{3}+\frac{37}{36} t^{2}+\frac{5}{18} t+\frac{1}{36}>t^{4}+\frac{1}{t^{2}} \\
\Leftrightarrow & \frac{5}{3} t^{3}+\frac{37}{36} t^{2}+\frac{5}{18} t+\frac{1}{36}-\frac{1}{t^{2}}>0 .
\end{aligned}
$$

This last inequality is true for $t=\sqrt[6]{q} \geq \sqrt[6]{7}$, and so for $q \geq 7$, which proves the lemma.
Theorem 5.3.6. $A(k+1,1)$-SCID in $\operatorname{PG}(n, q), k \geq 3, q \geq 7$, that has more than $F_{q} \theta_{k}^{2}$ elements, is a sunflower. Here, we use

$$
F_{q}=\frac{1}{2}\left(\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)}\right)
$$

and

$$
\begin{aligned}
B_{q} & =\left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q \\
c_{q} & =1-\frac{1}{\sqrt[6]{q}}-\frac{1}{2 \sqrt[3]{q}}
\end{aligned}
$$

In particular, we have that $a(k+1,1)$-SCID in $\operatorname{PG}(n, q)$, with more than $\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \theta_{k}^{2}$ elements is a sunflower.

Proof. From Corollary 5.3.2 Lemma 5.3.4 and Lemma 5.3.5 we know that $F_{q} \theta_{k}^{2}$ gives an upper bound on the size $|\mathcal{S}|=(1-s) \theta_{k}^{2}$ of a $(k+1,1)$-SCID, with \mathcal{S} not a sunflower. Hence, a $(k+1,1)$ SCID with more than $F_{q} \theta_{k}^{2}$ elements is a sunflower.

We have to prove that

$$
\begin{aligned}
& F_{q} \leq \frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}} \\
\Leftrightarrow & \frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)} \leq \frac{4}{\sqrt[6]{q}}+\frac{8}{\sqrt[3]{q}}-\frac{10}{\sqrt{q}} .
\end{aligned}
$$

If $\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\frac{4}{\sqrt[6]{q}}-\frac{8}{\sqrt[3]{q}}+\frac{10}{\sqrt{q}} \leq 0$, then this is true for all values of $q \geq 7$. If $\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\frac{4}{\sqrt[6]{q}}-\frac{8}{\sqrt[3]{q}}+\frac{10}{\sqrt{q}}>0$, then it is equivalent to proving that

$$
\begin{aligned}
& \left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right) \\
& \geq\left(\frac{4}{\sqrt[6]{q}}+\frac{8}{\sqrt[3]{q}}-\frac{10}{\sqrt{q}}\right)^{2}+2\left(\frac{4}{\sqrt[6]{q}}+\frac{8}{\sqrt[3]{q}}-\frac{10}{\sqrt{q}}\right)\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)+\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2} \\
& \Leftrightarrow \quad B_{q}\left(-\frac{1}{c_{q}^{2}}+1+\frac{1}{c_{q}^{2}}\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)\right) \\
& \geq\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)^{2}+\frac{1}{q}\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \\
& \Leftrightarrow \quad B_{q}\left(c_{q}^{2}-1+\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \\
& \geq c_{q}^{2}\left(\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)^{2}+\frac{1}{q}\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)\right) \\
& \stackrel{t=\sqrt[6]{q}}{\Longleftrightarrow} B_{t^{6}}\left(\frac{1}{4 t^{4}}+\frac{4}{t^{2}}-\frac{4}{t^{3}}\right) \geq\left(1-\frac{1}{t}-\frac{1}{2 t^{2}}\right)^{2}\left(\left(\frac{2}{t}+\frac{4}{t^{2}}-\frac{5}{t^{3}}\right)^{2}+\frac{1}{t^{6}}\left(\frac{2}{t}+\frac{4}{t^{2}}-\frac{5}{t^{3}}\right)\right) .
\end{aligned}
$$

In view of equation (5.3) in Lemma 5.3.3 it is sufficient to prove that

$$
\begin{gathered}
\left(1+\frac{1}{2 t}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{4}}\right)^{2}\left(1+\frac{1}{2 t}-\frac{1}{t^{5}}\right)\left(1+\frac{1}{2 t}-\frac{2}{t^{5}}\right)\left(\frac{1}{4 t^{4}}+\frac{4}{t^{2}}-\frac{4}{t^{3}}\right) \\
\geq\left(1-\frac{1}{t}-\frac{1}{2 t^{2}}\right)^{2}\left(\left(\frac{2}{t}+\frac{4}{t^{2}}-\frac{5}{t^{3}}\right)^{2}+\frac{1}{t^{6}}\left(\frac{2}{t}+\frac{4}{t^{2}}-\frac{5}{t^{3}}\right)\right), \\
\Leftrightarrow \quad \frac{157}{4 t^{4}}+\frac{95}{4 t^{5}}-\frac{2165}{16 t^{6}}+\frac{173}{8 t^{7}}+\frac{1411}{64 t^{8}}+\frac{383}{64 t^{9}}+\frac{1313}{256 t^{10}}+\frac{69}{2 t^{11}}+\frac{1177}{32 t^{1^{2}}}-\frac{37}{8 t^{13}} \\
\\
-\frac{3315}{128 t^{14}}-\frac{219}{8 t^{15}}-\frac{1631}{64 t^{16}}+\frac{3}{32 t^{17}}+\frac{557}{32 t^{18}}+\frac{151}{16 t^{19}}+\frac{293}{32 t^{20}}-\frac{1}{8 t^{21}} \\
\\
-\frac{11}{2 t^{22}}-\frac{3}{2 t^{23}}+\frac{1}{8 t^{24}} \geq 0 .
\end{gathered}
$$

This inequality is true for all $t=\sqrt[6]{q} \geq \sqrt[6]{7}$, and so for $q \geq 7$. So, a $(k+1,1)$-SCID in $\operatorname{PG}(n, q)$, with at least $\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \theta_{k}^{2}$ elements, has more than $F_{q} \theta_{k}^{2}$ elements. This implies that this SCID is a sunflower, which proves the theorem.

Note that the bound $1-s \leq \frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$ only gives an improvement for the Sunflower bound for large values of q. It is possible to show that for $q \geq 473$, this bound is an improvement on the bound in Theorem[5.1.2 For fixed, smaller values of q, an improved Sunflower bound can be found by investigating the bound $1-s \leq F_{q}$. This bound gives an improvement on the Sunflower bound if $F_{q}<1-\frac{1}{\theta_{k}}+\frac{1}{\theta_{k}^{2}}$. For $k=3$ and $k=4$, this is the case for $q \geq 9$ and $q \geq 8$ respectively. For $k>4$, we have that $F_{q}<1-\frac{1}{\theta_{k}}+\frac{1}{\theta_{k}^{2}}$, if $F_{q}<1-\frac{1}{\theta_{5}}$, which is the case for $q \geq 7$. For these values of q and k, we also found that the bound $1-s \leq F_{q}$ improves the bound in Theorem 5.1.2

q	F_{q}	$\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$	Bound Theorem 5.1 .2
2^{4}	0.97698136	1.59732210	0.99975770
2^{6}	0.89046942	1.37500000	0.99999619
2^{8}	0.78319928	1.11116105	0.99999999
2^{10}	0.67282525	0.87056078	0.99999999
2^{12}	0.56493296	0.67187500	1.00000000
2^{14}	0.46301281	0.51527789	1.00000000
2^{16}	0.37118406	0.39466158	1.00000000
2^{18}	0.29280283	0.30273438	1.00000000
2^{20}	0.22886576	0.23291485	1.00000000

Table 5.1: Upper bound F_{q} and $\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$ on $1-s=\frac{|\mathcal{S}|}{\theta_{k}^{2}}$ in column 1 and 2. Upper bound from Theorem 5.1.2 for $k=3$ on $\frac{|\mathcal{S}|}{\theta_{k}^{2}}$ in column 3 .

In Table 5.1 we give the values of the upper bound F_{q} and $\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$ on $1-s=\frac{|\mathcal{S}|}{\theta_{k}^{2}}$, for some specific values of q. The values in this table confirm that the bound $\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}$ is a good approximation for F_{q} for large values of q. In the third column, the upper bound from Theorem 5.1.2 for $k=3$ on $\frac{|\mathcal{S}|}{\theta_{k}^{2}}$ is given.

Note that for fixed values of k and q, there is a possibility to find a slightly better bound than the bound F_{q}, by using our techniques. Given the fixed values for k and q in inequality (5.2), we can choose the values of c and d such that we get the best bound for $(1-s)$. We describe this technique in the example below.
Example 5.3.7. Suppose that $q=2^{8}=256$ and $k=5$, then we find from (5.2), that

$$
\begin{aligned}
&\left(1-\frac{s}{c d}\right)(1-d)(1-c)\left(1-c-\frac{1}{\theta_{5}\left(2^{8}\right)}\right)^{2}\left(1-d-\frac{d}{2^{8}}\right)\left(1-d-\frac{1+d}{2^{8}}\right) 2^{8} \\
& \leq(1-s)^{2}+\frac{1-s}{2^{24}} \\
& \Leftrightarrow\left(1-\frac{s}{c d}\right) B(c, d) \leq(1-s)^{2}+\frac{1-s}{2^{24}} \\
& \Leftrightarrow(1-s)^{2}+(1-s)\left(\frac{1}{2^{24}}-\frac{B(c, d)}{c d}\right)-\left(1-\frac{1}{c d}\right) B(c, d) \geq 0 \\
& \Leftrightarrow 1-s \leq \frac{1}{2}\left(\frac{B(c, d)}{c d}-\frac{1}{2^{24}}-\sqrt{\left(\frac{1}{2^{24}}-\frac{B(c, d)}{c d}\right)^{2}-4\left(\frac{1}{c d}-1\right) B(c, d)}\right),
\end{aligned}
$$

with $B(c, d)=(1-d)(1-c)\left(1-c-\frac{1}{\theta_{5}\left(2^{8}\right)}\right)^{2}\left(1-d-\frac{d}{2^{8}}\right)\left(1-d-\frac{1+d}{2^{8}}\right) 2^{8}$. By using a computer algebra package, we find a very good bound on $1-s$ for $c=0.53152285$ and $d=0.5294$. For these
values, we find the bound $1-s \leq 0.7825095$. Hence, this gives a small improvement on the bound $1-s \leq F_{q}=0.78319928$, for which we used $c\left(2^{8}\right)=d\left(2^{8}\right)=0.5244047$. Note that the bound, given by the Sunflower Theorem 5.1.1, and the bound given in [6] are both larger than $0.99999999 \theta_{k}^{2}$ for $q=2^{8}=256$ and $k=5$. This indicates that our new bound is a clear improvement.

66 All colors are the friends of their neighbors and the lovers of their opposites.
-Marc Chagall

The results in this chapter have been obtained in a collaboration with prof. Klaus Metsch and dr. Daniel Werner, and will appear in [48] and [47].

6.1 Introduction

A flag in $\operatorname{PG}(n, q)$ is a set F of non-trivial subspaces of $\operatorname{PG}(n, q)$ (that is, different from \emptyset and $\operatorname{PG}(n, q))$ such that for all $\alpha, \beta \in F$ one has $\alpha \subset \beta$ or $\beta \subset \alpha$. The subset $\{\operatorname{dim}(\alpha)+1 \mid \alpha \in F\}$, in which we use the projective dimension, is called the type of F and it is a subset of $\{1,2, \ldots, n\}$. Note that the number of elements in a flag is equal to the size of its type, since every two elements in a flag have a different dimension. Two flags F and G are in general position if $\alpha \cap \beta=\emptyset$ or $\langle\alpha, \beta\rangle=\mathrm{PG}(n, q)$ for all $\alpha \in F$ and $\beta \in G$.

Notation 6.1.1. Although a flag is a set, we will write flags $\{\alpha, \beta\}$ of cardinality two of projective spaces as ordered pairs (α, β) where $\operatorname{dim}(\alpha)<\operatorname{dim}(\beta)$.
For $\Omega \subseteq\{1,2, \ldots, n\}$, we define the q-Kneser graph $q K_{n+1 ; \Omega}$ to be the graph whose vertices are all the flags of type Ω of $\mathrm{PG}(n, q)$ with two vertices adjacent when the corresponding flags are in general position. For $k \in\{1, \ldots, n\}$, we put $q K_{n+1 ; k}=q K_{n+1 ;\{k\}}$, and this q-Kneser graph is the graph in the Grassmann scheme corresponding to the relation \mathcal{R}_{k}, see Example 1.9.5.

We are interested in the chromatic number of these graphs and hence in their independence number α. An independent set of the Kneser graph is a set of flags that are mutually not in general position. An independent set of flags in this graph, will also be called an Erdős-Ko-Rado set of flags, in short, EKR set. Thus, the chromatic number of a Kneser graph is the smallest number of EKR sets whose union comprises all flags.

An example of an EKR set of flags of type $\Omega \subseteq\{2,3, \ldots, n\}$ is a point-pencil $\mathcal{F}_{\Omega}(P)$ with base point $P \in \mathrm{PG}(n, q)$. This is the set of all flags F of type Ω and for which $F \cup\{P\}$ is a flag. We use the notation $\mathcal{F}(P)$ if the type of the flags is clear from the context. Note that a point-pencil $\mathcal{F}_{\Omega}(P)$ for $|\Omega|=1$, is equal to a point-pencil of subspaces in a projective space, which is defined in Section 1.6

We now describe a strategy that - in some cases - is sufficient to determine the independence number and that we will apply in this chapter. Recall that χ and α are the chromatic and independence number of a graph, and let V be its vertex set. Let $\Gamma=q K_{n+1 ; \Omega}$ be the q-Kneser graph with $\Omega \subseteq\{1,2, \ldots, n\}$. We assume that we have constructed a coloring of Γ of size χ, and we suppose that C is a coloring with $|C| \leq \chi$. Furthermore, we assume that $\alpha^{\prime}(\Gamma)$ is an integer, smaller than $\alpha(\Gamma)$, such that one has structural information on all cocliques with more than $\alpha^{\prime}(\Gamma)$ vertices. Hence, this last assumption asks for a Hilton-Milner type theorem on the flags. Now, if $\alpha^{\prime}(\Gamma) \cdot|C|<|V|$, then at least $\left(|V|-\alpha^{\prime}(\Gamma)|C|\right) /\left(\alpha(\Gamma)-\alpha^{\prime}(\Gamma)\right)$ color classes of g have cardinality
larger than $\alpha^{\prime}(\Gamma)$ and hence one has structural information on these color classes. This structural information is sometimes enough to provide a lower bound on $|C|$ and sometimes even suffices to show that $|C|=\chi$.

This approach was successfully applied for many Kneser graphs $q K_{n, \Omega}$ with $|\Omega|=1$ in [12, 13]. One of the most important results for $|\Omega|=1$ is the following one.

Theorem 6.1.2 ([12, Theorem 1.5]). If $k \geq 2$, and either $q \geq 3$ and $n \geq 2 k+2$, or $q=2$ and $n \geq 2 k+3$, then the chromatic number of the q-Kneser graph is $\chi\left(q K_{n+1 ; k+1}\right)=\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]$. Moreover, each color class of a minimum coloring is contained in a point-pencil and the base points of these point-pencils are the points of a fixed subspace of dimension $n+1-k$.
For $|\Omega| \geq 2$, much less is known. Even the independence number of these graphs is only known in a few cases. One recent result is the following.

Theorem 6.1.3 ([32, Theorem 3.1]). If S is an independent set of the q-Kneser graph $q K_{n+1, \Omega}$, with $\Omega=\{1,2, \ldots, n\}$, then

$$
|S| \leq \frac{\theta_{n} \theta_{n-1} \theta_{n-2} \ldots \theta_{2} \theta_{1}}{q^{(n+1) / 2}+1}
$$

The proof of this result uses algebraic arguments and thus does not produce structural information on cocliques that have fewer than this number of vertices. So this result only gives a lower bound for the chromatic number. In contrast to this, the independence number as well as structural information on large cocliques of $q K_{5 ;\{2,4\}}$ has been given in [14]. For $q K_{2 d+1,\{d, d+1\}}$, it has been given for $d=2$ in [11] and for $d=3$ in [94].

This chapter is organized as follows. In Section 6.2 we determine the optimal colorings of the Kneser graph $q K_{5 ;\{2,4\}}$. In Section 6.3 we investigate the Kneser graph $q K_{5 ;\{2,3\}}$. In Section 6.3.1 we provide several examples for optimal colorings of this graph. In Section 6.3.2 we consider three points P_{1}, P_{2}, P_{3} and a set M of points in $\operatorname{PG}(4, q), q$ large, with $M \cap\left\langle P_{1}, P_{2}, P_{3}\right\rangle=\emptyset$ and $|M|=c q^{3}$ for some positive constant $c<1$. We prove that, if for each of the three points P_{i}, the number of lines through this point meeting M is small, then there exists a solid S that contains at least $m q^{2}$ points of M, where m is a constant. This will be a crucial tool in Section 6.3.3, where we determine the chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ for large values of q. Recently, also the chromatic number of the Kneser graph $q K_{2 d+1 ;\{d, d+1\}}$, for $d \geq 3$, was investigated [48]. In Section 6.4, we give an overview of the main results.

6.2 The chromatic number of the Kneser graph $q K_{5 ;\{2,4\}}$ of line-solid flags in $\operatorname{PG}(4, q)$

Recall that a point-pencil $\mathcal{F}(P)=\mathcal{F}_{\{2,4\}}(P)$ is the set of all line-solid flags in $\operatorname{PG}(4, q)$, whose line (and so solid) contains the point P. Note that $|\mathcal{F}(P)|=\theta_{3} \theta_{2}$.

Example 6.2.1. If S is a solid of $\mathrm{PG}(4, q)$, then $\{\mathcal{F}(P) \mid P \in S\}$ is a covering of $q K_{5 ;\{2,4\}}$ with θ_{3} independent sets.

This example shows that there exists a coloring of $q K_{5 ;\{2,4\}}$ with θ_{3} color classes where each color class is a subset of a point-pencil. Theorem 6.2.3 below implies that every coloring with at most θ_{3} color classes has the same structure as Example 6.2.1 For the proof of Theorem6.2.3, we use the following result.

Theorem 6.2.2 ([14, Theorem 1]). The independence number of $q K_{5 ;\{2,4\}}$ is $a_{0}=\theta_{3} \theta_{2}$ and every independent set of $q K_{5 ;\{2,4\}}$ that is not contained in a point-pencil has at most $a_{1}=2 q^{4}+3 q^{3}+$ $4 q^{2}+2 q+1$ elements.

Theorem 6.2.3. Let $q \geq 3$. Suppose that \mathcal{C} is a covering of the vertices of $q K_{5 ;\{2,4\}}$ consisting of $q^{3}+q^{2}+q+1$ maximal independent sets. Then \mathcal{C} consists of all point-pencils with base point contained in a given solid.

Proof. From Theorem 6.2.2 and using its notation, we have $|F|=a_{0}$ or $|F| \leq a_{1}$ for each $F \in \mathcal{C}$. Moreover, $|F|=a_{0}$ implies $F=\mathcal{F}(P)$ for some point P. Let M be the set of points P with $\mathcal{F}(P) \in \mathcal{C}$. Let \mathcal{L} be the set of lines that contain at least one point of M. For $L \in \mathcal{L}$, we denote by c_{L} the number of points in M that are contained in L. By double counting the pairs (P, L), with $P \in M$ and $L \in \mathcal{L}$, we find

$$
\sum_{L \in \mathcal{L}} c_{L}=|M| \theta_{3}
$$

since every point is contained in θ_{3} lines. Next, we double count all triples $\left(P, P^{\prime}, L\right) \in M \times M \times \mathcal{L}$ with $L=\left\langle P, P^{\prime}\right\rangle$. Since any two distinct points of M span a line, we find

$$
\sum_{L \in \mathcal{L}} c_{L}\left(c_{L}-1\right)=|M|(|M|-1)
$$

For $L \in \mathcal{L}$, we have $1 \leq c_{L} \leq q+1$, and $c_{L}=q+1$ if all points of L belong to M. It follows that

$$
(q+1) \sum_{L \in \mathcal{L}}\left(c_{L}-1\right) \geq|M|(|M|-1)
$$

and so

$$
\begin{equation*}
|\mathcal{L}|=\sum_{L \in \mathcal{L}} c_{L}-\sum_{L \in \mathcal{L}}\left(c_{L}-1\right) \leq|M| \theta_{3}-\frac{|M|(|M|-1)}{q+1} \tag{6.1}
\end{equation*}
$$

with equality if and only if $c_{L} \in\{1, q+1\}$ for all $L \in \mathcal{L}$. Since the number of solids through a line is θ_{2}, the union of all sets $\mathcal{F}(P)$, with $P \in M$, contains $|\mathcal{L}| \theta_{2}$ flags of type $\{2,4\}$. If we put $x=\theta_{3}-|M|$, then \mathcal{C} contains x independent sets of cardinality at most a_{1} and, hence, we have

$$
\begin{equation*}
\left|\bigcup_{F \in \mathcal{C}} F\right| \leq\left(|M| \theta_{3}-\frac{|M|(|M|-1)}{q+1}\right) \theta_{2}+x a_{1} \tag{6.2}
\end{equation*}
$$

Since the union of all independent sets in \mathcal{C} is the set of all flags of type $\{2,4\}$ and thus has cardinality $\left[\begin{array}{l}5 \\ 2\end{array}\right] \theta_{2}$, it follows that (use $|M|=\theta_{3}-x$ and $a_{1}=\left(2 q^{2}+q+1\right) \theta_{2}$)

$$
\begin{array}{ll}
& \frac{\theta_{4} \theta_{3}}{q+1} \theta_{2}-\frac{\left(\theta_{3}-x\right) \theta_{3}(q+1)-\left(\theta_{3}-x\right)\left(\theta_{3}-x-1\right)}{q+1} \theta_{2} \leq x a_{1} \\
\Leftrightarrow & \frac{\theta_{4} \theta_{3}-\left(\theta_{3}-x\right)\left(\theta_{4}+x\right)}{q+1} \theta_{2} \leq x\left(2 q^{2}+q+1\right) \theta_{2} \\
\Leftrightarrow & \frac{x^{2}+x q^{4}}{q+1} \leq x\left(2 q^{2}+q+1\right) \\
\stackrel{q+1>0}{\Longleftrightarrow} & x\left(x+q^{4}-\left(2 q^{2}+q+1\right)(q+1)\right) \leq 0 \\
\Leftrightarrow \quad & x\left(x+q^{4}-2 q^{3}-3 q^{2}-2 q-1\right) \leq 0 . \tag{6.3}
\end{array}
$$

First, consider the case $q \geq 4$. Then $q^{4}-2 q^{3}-3 q^{2}-2 q-1>0$, and so 6.3 implies $x=0$ and we have equality in (6.2), and so as well in (6.1). Hence, $c_{L} \in\{1, q+1\}$ for all $L \in \mathcal{L}$. That is, each $L \in \mathcal{L}$ has the property that either one or all of its points belong to M. This implies that the union of all points of M is itself a subspace. Since it contains $|M|=q^{3}+q^{2}+q+1$ points, this subspace has dimension 3 and we are done.

Now, suppose that $q=3$. Then (6.3) gives $x(x-7) \leq 0$, which shows that $x \leq 7$ and thus $|M| \geq 33$. If $c_{L} \leq q$ holds for all $L \in \mathcal{L}$, then we could improve the bound 6.2 by replacing $q+1$ in the denominator by q :

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q} \theta_{2} \leq\left(|M| \theta_{3}-\frac{|M|(|M|-1)}{q}\right) \theta_{2}+x a_{1} } \\
\stackrel{q=3}{\Longrightarrow} & \frac{-13}{3} x^{2}+\frac{325}{3} x-1690 \geq 0
\end{aligned}
$$

which gives a contradiction for $x \geq 0$. Hence, there exists some $L \in \mathcal{L}$ with $c_{L}=q+1=4$. Each of the remaining $|M|-4 \geq 29$ points of M spans a plane with L. Since the number of planes through L is 13 , it follows that there exists a plane π (through L) that contains at least $4+3=7$ elements of M. Similarly, since $|M| \geq 33=26+7$, one of the four solids through π contains at least $7+\left\lceil\frac{26}{4}\right\rceil=14$ elements of M. Let τ be a solid through π which contains at least $t \geq 14$ elements of M. Then the number of lines, that contain one of these t points is at most $130+27 t$. The first term is the total number of lines in τ, and the second term is the product of the number t of points of M in τ and the number of lines through such a point not in τ. We have equality only if all 130 lines of τ belong to \mathcal{L}. If $P \in M$, with $P \notin \tau$, then t of the 40 lines through P contain an element of M that is contained in τ. It follows that

$$
|\mathcal{L}| \leq 130+27 t+(|M|-t)(40-t)
$$

The union of the independent sets $\mathcal{F}(P)$, with $P \in M$, has size $|\mathcal{L}| \theta_{2}$. Since the remaining x independent sets of \mathcal{C} each contain at most a_{1} flags, and since the total number of $\{2,4\}$-flags is $\left[\begin{array}{l}5 \\ 2\end{array}\right]_{3} \theta_{2}$, it follows that

$$
\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{3} \theta_{2}(3) \leq|\mathcal{L}| \theta_{2}(3)+x a_{1} \leq(130+27 t+(40-x-t)(40-t)) \theta_{2}(3)+x a_{1}
$$

Since $a_{1}=22 \cdot \theta_{2}(3)$, we can divide by $\theta_{2}(3)$ and find

$$
\begin{equation*}
0 \leq(t-14)(t+x-39)-4 x-26 \tag{6.4}
\end{equation*}
$$

Since $14 \leq t \leq|M|=40-x$, it follows first that $t>39-x$, that is $t=40-x=|M|$. Then (6.4) gives $0 \leq-5 x$ and, hence, $x=0, t=40$ and $|M|=40$. This implies that \mathcal{C} consists of the sets $\mathcal{F}(P)$ for the 40 points P of τ.

Remark 6.2.4. From Theorem 6.2.3 and duality, it follows that the chromatic number of the Kneser graph $q K_{5 ;\{1,3\}}$ is θ_{3}. Moreover, for every color class C of a minimum coloring, it holds that all planes of the flags in C are contained in a solid S_{C}, and all these solids S_{C} contain the same fixed point P.

6.3 The chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ of line-plane flags in $\mathrm{PG}(4, q)$

In this section, we will prove that, for large q, the chromatic number of the Kneser Graph $q K_{5,\{2,3\}}$ is $\theta_{3}-q$. More specifically, we will prove the following result.

Theorem 6.3.1. For $q>160 \cdot 36^{5}$, the chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ is $q^{3}+q^{2}+1$. Up to duality, for each color class C of a minimum coloring there is a unique point-pencil F such that $F \cup C$ is independent, and the base points of these point-pencils are $q^{3}+q^{2}+1$ distinct points of a solid.

6.3.1 Colorings of the Kneser graph $q K_{5 ;\{2,3\}}$

Recall that a flag of type $\{2,3\}$ corresponds to a line-plane flag of $\mathrm{PG}(4, q)$. Hence, it is a set $\{\ell, \pi\}$ of a line ℓ and a plane π, with ℓ contained in π. Two flags (ℓ, π) and $\left(\ell^{\prime}, \pi^{\prime}\right)$ are adjacent in $q K_{5 ;\{2,3\}}$ if and only if the flags are in general position in $\operatorname{PG}(4, q)$. This means $l \cap \pi^{\prime}=\emptyset=l^{\prime} \cap \pi$ and also implies that $\pi \cap \pi^{\prime}$ is a point. Recall that an independent set of the Kneser graph is a set of lineplane flags pairwise not in general position, or in short, an EKR set of line-plane flags. Thus, the chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ is the smallest number of EKR sets whose union comprises all line-plane flags.

Point-pencils of line-plane flags are EKR sets. However, these are not maximal and are contained in more than one maximal EKR set, as we shall see below. Note that the flags of type $\{d, d+1\}$ in $\mathrm{PG}(2 d, q)$ are self-dual, and that the dual of two flags in general position are flags that are in general position too. Hence, there are maximal EKR sets that arise as the dual of the maximal EKR sets that contain a point-pencil.

Example 6.3.2 (EKR sets). Let \mathcal{M} be the set of all line-plane flags of $\mathrm{PG}(4, q)$. For point-line flags (P, ℓ), point-solid flags (P, S), and plane-solid flags (τ, S), we define the EKR sets

$$
\begin{aligned}
\mathcal{F}(P, \ell) & =\{(h, \pi) \in \mathcal{M} \mid P \in h \text { or } \ell \subset \pi\} \\
\mathcal{F}(P, S) & =\{(h, \pi) \in \mathcal{M} \mid P \in h \text { or } P \in \pi \subset S\} \\
\mathcal{F}(S, P) & =\{(h, \pi) \in \mathcal{M} \mid \pi \subset S \text { or } P \in h \subset S\} \\
\mathcal{F}(S, \tau) & =\{(h, \pi) \in \mathcal{M} \mid \pi \subset S \text { or } h \subset \tau\}
\end{aligned}
$$

Let F be one of the examples above. In the first two cases we call $\mathcal{F}(P)=\{(h, \pi) \in \mathcal{M} \mid P \in h\}$ the generic part and $F \backslash \mathcal{F}(P)$ the special part of F. In the remaining two cases, we call $\mathcal{F}(S)=$ $\{(h, \pi) \in \mathcal{M} \mid \pi \subset S\}$ the generic part and $F \backslash \mathcal{F}(S)$ the special part of F.
Note that examples 1 and 4 as well as 2 and 3 are each other's dual. Also, all four examples have cardinality

$$
e_{0}=\theta_{2}\left(\theta_{3}+q^{2}\right)
$$

and their special parts have cardinality $q^{2} \theta_{2}$. It was shown in [11] that these examples are the largest EKR sets of line-plane flags in $\mathrm{PG}(4, q)$. We reformulate their result as follows.

Theorem 6.3.3 ([11, Proposition 2.1]). Let \mathcal{F} be an EKR set of line-plane flags of PG $(4, q)$. Then $|\mathcal{F}| \leq e_{0}$ and equality occurs if and only if \mathcal{F} is one of the sets defined in Example 6.3.2

We will explain in the appendix (Section 6.3.4) how the following stability result can be derived from [11].

Result 6.3.4. Every EKR set of line-plane flags of $\operatorname{PG}(4, q)$, which is not a subset of one of the sets defined in Example 6.3.2, has cardinality at most

$$
e_{1}=4 q^{4}+9 q^{3}+4 q^{2}+q+1
$$

Example 6.3.5 (Coverings of $q K_{5 ;\{2,3\}}$). Let S be a solid of $\mathrm{PG}(4, q)$.

1) Consider a set W of q points of S and suppose that there is a map ν from the set of points in $S \backslash W$ to the set of lines of S such that $P \in \nu(P)$ for all $P \in S \backslash W$ and such that every line of S that meets W lies in the image of ν. Then $\mathfrak{F}=\{\mathcal{F}(P, \nu(P)) \mid P \in S \backslash W\}$ is a set of EKR sets whose union is the set of all line-plane flags of $\mathrm{PG}(4, q)$.

Proof. We show that every line-plane flag (l, π) in $\operatorname{PG}(4, q)$ is covered by the set \mathfrak{F}. If (l, π) is a flag such that $l \cap S$ contains a point P of $S \backslash W$, then $(l, \pi) \in \mathcal{F}(P, \nu(P))$. If (l, π) is a flag such that $l \cap S$ contains no point of $S \backslash W$, then $l \cap S$ is a point Q contained in W. The line $l_{0}=\pi \cap S$ contains the point $Q \in W$, and so this line is the image of ν of a point P^{\prime}. Hence, $\nu\left(P^{\prime}\right)=l_{0}$, and so (l, π) is contained in the flag $\mathcal{F}\left(P^{\prime}, \nu\left(P^{\prime}\right)\right)$. This proves that every line-plane flag is contained in an element of \mathfrak{F}.

We provide examples of a set W and a map ν satisfying these conditions:
(a) Suppose that W is a set of q points P_{1}, \ldots, P_{q} which are contained in a common line ℓ and let P_{0} be the last remaining point of ℓ. For each plane π of S through ℓ, fix a numbering $\ell_{1}(\pi), \ldots, \ell_{q}(\pi)$ of the lines of π through P_{0}, different from ℓ. Define the map ν from the set $S \backslash W$ to the line-set of S by $\nu\left(P_{0}\right)=\ell$ and $\nu(P)=P P_{i}$, if $P \notin \ell$ and $P \in \ell_{i}(\langle P, \ell\rangle)$.
(b) Suppose that W is a set of q points P_{1}, \ldots, P_{q} in a plane π. Furthermore, suppose that there is a map ν from $\pi \backslash W$ to the set of lines in π, such that every line in π through a point of W is contained in the image of ν. Then one can extend this map to $S \backslash W$ as follows: the q points in W meet at most $q(q+1)$ lines of π and thus there is at least one line $g \subseteq \pi$ which does not meet the set W. Let π_{1}, \ldots, π_{q} be the planes through g in S different from π and, for all $i \in\{1, \ldots, q\}$ and all $P \in \pi_{i} \backslash \pi$, set $\nu(P)=P P_{i}$.

Obviously, one can define such a map ν on a plane $\pi \backslash W$ if W only spans a line therein, because then the construction in (a) can be used. However, one can also find such a map ν if W spans the plane π and we give a simple construction in the case where $q-1$ points P_{1}, \ldots, P_{q-1} of W are contained in a common line ℓ_{0} and the last point P_{q} of W satisfies $\pi=\left\langle P_{q}, \ell_{0}\right\rangle$. We let Q_{0} and Q_{1} be the two remaining points of ℓ_{0} and we fix a numbering $\ell_{1}, \ldots, \ell_{q}$ of the lines different from ℓ_{0} of π through Q_{0}, such that $\ell_{q}=Q_{0} P_{q}$. Then, for all $i \in\{1, \ldots, q-1\}$ and all $P \in \ell_{i} \backslash\left\{Q_{0}\right\}$, we set $\nu(P)=P P_{i}$. Furthermore, we set $\nu\left(Q_{0}\right)=\ell_{0}, \nu\left(Q_{1}\right)=Q_{1} P_{q}$ and for all $P \in \ell_{q} \backslash\left\{Q_{0}, P_{q}\right\}$, we set $\nu(P)=\ell_{q}$.
2) Finally, we give an example which uses both EKR sets with special part coming from a solid and EKR sets with special part coming from a line, that is, EKR sets $\mathcal{F}(P, Z)$ and $\mathcal{F}(Q, l)$ for a point-solid flag (P, Z) and a point-line flag (Q, l), respectively.

Here, let W be again a set of q points P_{1}, \ldots, P_{q} of S, and suppose that these points only span a line ℓ of S. Let P_{0} be the last remaining point of ℓ. For any plane π with $\ell \subseteq \pi \subseteq S$, fix a numbering $\ell_{1}(\pi), \ldots, \ell_{q}(\pi)$ of the lines of π through P_{0} different from ℓ as well as a numbering $S_{1}(\pi), \ldots, S_{q}(\pi)$ of the solids containing π, and different from S. Put

$$
\begin{aligned}
& \mathfrak{F}_{1}(\pi)=\bigcup_{i=1}^{q}\left\{\mathcal{F}\left(P, P P_{i}\right) \mid P_{0} \neq P \in \ell_{i}(\pi)\right\}, \\
& \mathfrak{F}_{2}(\pi)=\bigcup_{i=1}^{q}\left\{\mathcal{F}\left(P, S_{i}(\pi)\right) \mid P_{0} \neq P \in \ell_{i}(\pi)\right\} .
\end{aligned}
$$

Now, let Π be the set consisting of all planes of S that contain ℓ and for every subset R of Π, put

$$
\mathfrak{F}(R)=\left\{\mathcal{F}\left(P_{0}, \ell\right)\right\} \cup \bigcup_{\pi \in R} \mathfrak{F}_{1}(\pi) \cup \bigcup_{\pi \in \Pi \backslash R} \mathfrak{F}_{2}(\pi)
$$

Then, for all $R \subseteq \Pi$, the set $\mathfrak{F}(R)$ consists of $\theta_{3}-q E K R$ sets whose union is the set of all lineplane flags. Note that for $R=\Pi$, this example $\mathfrak{F}(\Pi)$ coincides with the example described above in (a)

Proof. We show that every line-plane flag (l, α) in $\operatorname{PG}(4, q)$ is covered by the set $\mathfrak{F}(R)$. If (l, α) is a flag such that $l \cap S$ contains a point P of $S \backslash W$, then (l, α) is contained in the point-pencil $\mathcal{F}(P)$. This point-pencil is contained in $\mathcal{F}\left(P_{0}, \ell\right)$ if $P=P_{0}$. If $P \neq P_{0}$, then $\mathcal{F}(P)$ is contained in an element of $\mathfrak{F}_{1}(\langle P, \ell\rangle)$ or in $\mathfrak{F}_{2}(\langle P, \ell\rangle)$ depending on whether $\langle P, \ell\rangle$ is contained in R or not. If (l, α) is a flag such that $l \cap S$ contains no point of $S \backslash W$, then $l \cap S$ is a point P_{i} contained in W, and the line $l_{0}=\alpha \cap S$ contains this point. Now there are two cases, depending on whether $\pi=\left\langle\ell, l_{0}\right\rangle$ is contained in R or not. If $\pi \in R$, then $(l, \alpha) \in \mathcal{F}\left(l_{0} \cap \ell_{i}, \nu\left(l_{0} \cap \ell_{i}\right)\right)$, which is contained in $\mathfrak{F}_{1}(\pi)$. Suppose now that $\pi \notin R$, and let $S_{j}(\pi)$ be the solid through π spanned by π and α. Then $(l, \alpha) \in \mathcal{F}\left(l_{0} \cap \ell_{j}, S_{j}(\pi)\right)$, which is contained in $\mathfrak{F}_{2}(\pi)$. This proves that every line-plane flag is contained in an element of \mathfrak{F}.

This list of examples is not a complete list of all colorings with $\theta_{3}-q$ colors. For example, one can also find colorings by replacing all EKR sets in a coloring described above by their dual structure. However, since there are examples of colorings with $\theta_{3}-q$ colors, we know that the chromatic number of Γ is at most $\theta_{3}-q$ and the list above provides several examples of colorings of this size. We will prove in Section 6.3.3 that the chromatic number is in fact equal to $\theta_{3}-q$, provided q is large enough.

6.3.2 A lemma on point sets

Lemma 6.3.6. Suppose that M is a set of points in $\operatorname{PG}(4, q)$, and that P_{1}, P_{2}, P_{3} are three noncollinear points such that the plane $\pi=\left\langle P_{1}, P_{2}, P_{3}\right\rangle$ has no points in M. Let m, n and d be positive real numbers such that the following hold:

- Each of the points P_{1}, P_{2}, P_{3} lies on at most nq q^{2} lines that meet M,
- $|M|=d q^{3}$,
- $q>32 \frac{n^{5} m}{d^{5}}$.

Then there exists a solid S through π with $|S \cap M| \geq m q^{2}$.
Proof. Let $\pi_{j}, 1 \leq j \leq q^{2}+q$, be the planes through the line $P_{1} P_{2}$ different from π, and, for $i \in\{1,2\}$ and $j \in\left\{1, \ldots, q^{2}+q\right\}$, let $a_{i j}$ be the number of lines of π_{j} through P_{i} that meet M. Then $x_{j}=\left|\pi_{j} \cap M\right| \leq a_{1 j} a_{2 j}$. This implies that $\sqrt{x_{j}} \leq \frac{1}{2}\left(a_{1 j}+a_{2 j}\right)$. Since each of P_{1} and P_{2} lies on at most $n q^{2}$ lines that meet M, it follows that

$$
n q^{2} \geq \frac{1}{2} \sum_{j}\left(a_{1 j}+a_{2 j}\right) \geq \sum_{j} \sqrt{x_{j}}
$$

Put $R=\left\{j \mid x_{j} \geq c q^{2}\right\}$ with $c=\frac{d^{2}}{4 n^{2}}$. Then

$$
n q^{2} \geq \sum_{j \notin R} \sqrt{x_{j}} \geq \frac{1}{\sqrt{c} q} \sum_{j \notin R} x_{j} \geq \frac{1}{\sqrt{c} q}\left(|M|-|R| q^{2}\right)
$$

since the sum of x_{j} over all j is $|M|$ and since each plane π_{j}, with $j \in R$, meets M in at most q^{2} points. It follows that

$$
|R| q^{2} \geq|M|-n q^{2} \sqrt{c} q
$$

Assume to the contrary that every solid through π meets M in at most $m q^{2}$ points. Then every solid through π contains at most $\frac{m q^{2}}{c q^{2}}$ planes π_{j}, with $j \in R$. Hence, the number of solids through π that contain a plane π_{j}, with $j \in R$, is at least $\frac{|R| c}{m}$. This implies that P_{3} lies on at least

$$
\frac{|R| c}{m} \cdot c q^{2}
$$

lines that meet M. Hence,

$$
\frac{|R|}{m} c^{2} q^{2} \leq n q^{2} .
$$

Comparing this to the lower bound for $|R|$, we find

$$
\begin{aligned}
\left(|M|-n q^{2} \sqrt{c} q\right) \frac{c^{2}}{m} \leq n q^{2} & \Rightarrow|M| \leq \sqrt{c} n q^{3}+\frac{m n q^{2}}{c^{2}} \\
& \Rightarrow d q^{3} \leq \frac{d}{2} q^{3}+16 \frac{m n^{5} q^{2}}{d^{4}} \\
& \Rightarrow q \leq 32 \frac{m n^{5}}{d^{5}}
\end{aligned}
$$

in which the second implication follows since $c=\frac{d^{2}}{4 n^{2}}$. This contradicts the hypothesis in the statement of the lemma.

Remark 6.3.7. The restriction on q, imposed by this lemma, is the main reason why we can prove Theorem6.3.1 only for very large values of q. The remaining arguments in the next section are valid for smaller values of q.

6.3.3 The chromatic number of $q K_{5 ;\{2,3\}}$

In this section we prove, for large values of q, that the chromatic number of $q K_{5 ;\{2,3\}}$ is $\theta_{3}-q$. Note that from Example 6.3 .5 we already know a coloring with this many colors, so we only have to show that one cannot do better.

Theorem 6.3.8. Let $\mathfrak{F}=\left\{F_{1}, \ldots, F_{\theta_{3}-q}\right\}$ be a multiset (so we allow $F_{i}=F_{j}$ for $i \neq j$) of $\theta_{3}-q$ EKR sets of line-plane flags of $\mathrm{PG}(4, q), q>160 \cdot 36^{5}$, whose union consists of all line-plane flags of $\operatorname{PG}(4, q)$. We put $J=\left\{1 \leq j \leq \theta_{3}-q:\left|F_{j}\right|>e_{1}\right\}$ and $I \subseteq J$ is the set of indices i such that the generic part of F_{i} is based on a point P_{i}. We suppose the following:

1. For $j \in J$, the set F_{j} is one of the EKR sets defined in Example 6.3.2 which implies that $\left|F_{j}\right|=e_{0}$.
2. For distinct $i, j \in J$, the $E K R$ sets F_{i} and F_{j} have distinct generic parts.
3. For at least $\frac{1}{2}|J|$ indices $j \in J$, the generic part of F_{j} is based on a point. Hence, $|I| \geq \frac{1}{2}|J|$.

Then each $F \in \mathfrak{F}$ has e_{0} elements and is based on a point P_{F} and the points $P_{F}, F \in \mathfrak{F}$, are $\theta_{3}-q$ mutually distinct points of a solid.

Note that in this theorem, we suppose that the sets F_{j}, with $j \in J$, are maximal EKR sets. The proof of this theorem is carried out in Lemmas 6.3.9 6.3.20 In all these lemmas, we suppose that \mathfrak{F} is as in the theorem and that $q>160 \cdot 36^{5}$. We note that Lemma 6.3.9 is valid for all q and Lemma 6.3.10 requires only $q \geq 41$.

Lemma 6.3.9. The number of all line-plane flags of $\operatorname{PG}(4, q)$ is equal to

$$
\left[\begin{array}{l}
5 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]=|\mathfrak{F}| e_{0}-q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right)
$$

Lemma 6.3.10. Let S be a solid and let $q \geq 41$. Denote by c_{1} the number of indices $i \in I$ with $P_{i} \notin S$ and by c_{3} the number of EKR sets $F \in \mathfrak{F}$ with $|F| \leq e_{1}$. Then $\left(|I|-c_{1}\right)+c_{3}<5 q^{2}$ or $c_{1}+c_{3} \leq 4 q^{2}$.

Proof. We have $|I| \geq \frac{1}{2}|J|=\frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$. We know that for all $i \in I$ the set F_{i} is based on a point P_{i} and we set $A=\left\{a \in I \mid P_{a} \in S\right\}$. For $a \in A$, the set F_{a} contains θ_{2}^{2} flags (ℓ, π) with $P \in \ell \subseteq S$. Since there are $\left(q^{2}+1\right) \theta_{2}$ lines in S, there are at most $\left(q^{2}+1\right) \theta_{2}^{2}$ flags (ℓ, π) with $\ell \subseteq S$. It follows that

$$
\begin{equation*}
\left|\bigcup_{a \in A} F_{a}\right| \leq|A|\left(e_{0}-\theta_{2}^{2}\right)+\left(q^{2}+1\right) \theta_{2}^{2} \tag{6.5}
\end{equation*}
$$

If $i \in I \backslash A$, then for each $a \in A$, the sets F_{i} and F_{a} share the θ_{2} line-plane flags ($P_{i} P_{a}, \pi$). Different values of a in A correspond to disjoint sets of θ_{2} flags, and, hence, F_{i} contains at least $|A| \theta_{2}$ flags that are contained in $\cup_{a \in A} F_{a}$. It follows that

$$
\begin{equation*}
\left|\bigcup_{i \in I} F_{i} \backslash \bigcup_{a \in A} F_{a}\right| \leq|I \backslash A| e_{0}-|A||I \backslash A| \theta_{2} \tag{6.6}
\end{equation*}
$$

Therefore, we have that

$$
\begin{aligned}
& \quad\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \leq\left|\bigcup_{a \in A} F_{a}\right|+\left|\bigcup_{i \in I} F_{i} \backslash \bigcup_{a \in A} F_{a}\right|+\left|\bigcup_{i \in J \backslash I} F_{i}\right|+\left|\bigcup_{i \notin J} F_{i}\right| \\
& \Rightarrow|\mathfrak{F}| e_{0}-q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \\
& \quad \leq|A|\left(e_{0}-\theta_{2}^{2}\right)+\left(q^{2}+1\right) \theta_{2}^{2}+|I \backslash A| e_{0}-|A||I \backslash A| \theta_{2}+|J \backslash I| e_{0}+c_{3} e_{1} \\
& \Rightarrow|A| \theta_{2}^{2}- \\
& \quad\left(q^{2}+1\right) \theta_{2}^{2}+|A|(|I|-|A|) \theta_{2}+c_{3}\left(e_{0}-e_{1}\right) \\
& \quad \leq q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) .
\end{aligned}
$$

The first implication follows by Lemma 6.3 .9 and the inequalities 6.5 and (6.6). The second implication follows since $|\mathfrak{F}|=\theta_{3}-q=|A|+|I \backslash A|+|J \backslash I|+c_{3}$.

We use that $|A|=|I|-c_{1}$, and $e_{0}-e_{1} \geq \theta_{2}\left(q^{3}-2 q^{2}-4 q+5\right)$ for $q \geq 3$. If we divide both sides by θ_{2}, then we have that

$$
\begin{equation*}
\left(|I|-c_{1}\right) \theta_{2}+c_{1}\left(|I|-c_{1}\right)+c_{3}\left(q^{3}-2 q^{2}-4 q+5\right) \leq 2 q^{5}+\left(2 q^{2}+1\right) \theta_{2} \tag{6.7}
\end{equation*}
$$

Assume the statement of the lemma is not true. Then

$$
\begin{equation*}
0 \leq\left(c_{1}+c_{3}-4 q^{2}\right)\left(|I|-c_{1}+c_{3}-5 q^{2}\right) \tag{6.8}
\end{equation*}
$$

If we add the right hand side of (6.8) to the right hand side of 6.7, we find the following inequality.

$$
\begin{aligned}
& \left(|I|-c_{1}\right) \theta_{2}+c_{1}\left(|I|-c_{1}\right)+c_{3}\left(q^{3}-2 q^{2}-4 q+5\right) \\
& \quad \leq 2 q^{5}+\left(2 q^{2}+1\right) \theta_{2}+\left(c_{1}+c_{3}-4 q^{2}\right)\left(|I|-c_{1}+c_{3}-5 q^{2}\right)
\end{aligned}
$$

If we replace in this inequality $|I|$ by $\frac{1}{2}\left(\theta_{3}-q-c_{3}\right)+z$ with $z=|I|-\frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$, and multiply both sides with 2, we find that

$$
\begin{align*}
& \quad\left(\theta_{3}-q-c_{3}+2 z\right) \theta_{2}-2 c_{1} \theta_{2}+c_{1}\left(\theta_{3}-q-c_{3}+2 z\right)-2 c_{1}^{2}+2 c_{3}\left(q^{3}-2 q^{2}-4 q+5\right) \\
& \quad \leq 4 q^{5}+2\left(2 q^{2}+1\right) \theta_{2}+\left(c_{1}+c_{3}-4 q^{2}\right)\left(\theta_{3}-q+c_{3}+2 z-2 c_{1}-10 q^{2}\right) \\
& \Leftrightarrow 2\left(5 q^{2}+q+1-c_{3}\right) z+\left(q^{3}+8 q^{2}-9 q+8-c_{3}\right) c_{3}+q^{5} \\
& \quad \leq 38 q^{4}+2 q^{3}+q+1+(2 q+2) c_{1} \tag{6.9}
\end{align*}
$$

Since $|I| \geq \frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$, we have that $z \geq 0$. Furthermore, from 6.7, we have that

$$
c_{3}\left(q^{3}-2 q^{2}-4 q+5\right) \leq 2 q^{5}+\left(2 q^{2}+1\right) \theta_{2}
$$

which implies that $c_{3} \leq 3 q^{2}$ for $q \geq 10$. Hence, $\left(q^{3}+8 q^{2}-9 q+8-c_{3}\right) c_{3} \geq 0$ as well as $2\left(5 q^{2}+q+1-c_{3}\right) z \geq 0$, so, for $q \geq 10$, 6.9 implies that

$$
q^{5} \leq 38 q^{4}+2 q^{3}+q+1+(2 q+2) c_{1}
$$

As $c_{1} \leq|I| \leq|\mathfrak{F}|=\theta_{3}-q$, this is a contradiction for $q \geq 41$.
Lemma 6.3.11. There exists a solid S such that

$$
\left|\left\{F \in \mathfrak{F}:|F| \leq e_{1}\right\}\right|+\left|\left\{i \in I: P_{i} \notin S\right\}\right| \leq 4 q^{2}
$$

Proof. Let c_{3} be the number of $F \in \mathfrak{F}$ with $|F| \neq e_{0}$ and thus $|F| \leq e_{1}$. Then \mathfrak{F} contains $|I| \geq$ $\frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$ EKR sets that are maximal EKR sets based on a point. Let these be $G_{i}, i=1, \ldots,|I|$, let R_{i} be the base point of G_{i} and put

$$
g_{i}=\left|G_{i} \cap \bigcup_{j=1}^{i-1} G_{j}\right| .
$$

Then we have that

$$
\begin{equation*}
\left|\bigcup_{i \in I} G_{i}\right|=|I| e_{0}-\sum_{i \in I} g_{i} \tag{6.10}
\end{equation*}
$$

We may assume that the sequence $g_{1}, \ldots, g_{|I|}$ is monotone increasing. We want to show that g_{j} for $j=\frac{1}{4} q^{3}+q^{2}+2 q+1$ is less than $9 q^{2} \theta_{2}$. Suppose that this is not the case, then we would have that $\sum_{i=j}^{|I|} g_{i} \geq(|I|-j+1) 9 q^{2} \theta_{2}$. We know that

$$
\begin{aligned}
& \quad\left[\begin{array}{c}
5 \\
3
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \leq\left|\bigcup_{i \in I} G_{i}\right|+\left|\bigcup_{i \in J \backslash I} F_{i}\right|+\left|\bigcup_{i \notin J} F_{i}\right| \\
& \Rightarrow|\mathfrak{F}| e_{0}-q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \\
& \quad \leq|I| e_{0}-\sum_{i \in I} g_{i}+|J \backslash I| e_{0}+c_{3} e_{1} \\
& \Rightarrow \\
& \Rightarrow \sum_{i \in I} g_{i}+c_{3}\left(e_{0}-e_{1}\right) \leq q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \\
& \Rightarrow \\
& (|I|-j+1) 9 q^{2} \theta_{2}+c_{3}\left(e_{0}-e_{1}\right) \leq q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) .
\end{aligned}
$$

The first implication follows again by Lemma 6.3.9 and 6.10). The second implication follows since $|\mathfrak{F}|=\theta_{3}-q=|I|+|J \backslash I|+c_{3}$, and the third implication follows by the assumption that $\sum_{i=j}^{|I|} g_{i} \geq(|I|-j+1) 9 q^{2} \theta_{2}$.
Using the lower bound for $|I| \geq \frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$, as well as $e_{0}-e_{1} \geq \theta_{2}\left(q^{3}-2 q^{2}-4 q+5\right)$ for $q \geq 3$, and $j=\frac{1}{4} q^{3}+q^{2}+2 q+1$, we find that

$$
\begin{aligned}
& \left(\frac{1}{4} q^{3}-\frac{1}{2} q^{2}-2 q+\frac{1}{2}-\frac{1}{2} c_{3}\right) 9 q^{2} \theta_{2}+c_{3} \theta_{2}\left(q^{3}-2 q^{2}-4 q+5\right) \leq q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \\
\Leftrightarrow & c_{3}\left(2 q^{3}-13 q^{2}-8 q+10\right) \leq-\frac{1}{2} q^{5}+11 q^{4}+38 q^{3}-7 q^{2} \\
\Rightarrow & c_{3}<0
\end{aligned}
$$

The last implication is true for $q \geq 26$. Since $c_{3} \geq 0$, we find a contradiction, and so our assumption was false. Hence, we have that $g_{j}<9 q^{2} \theta_{2}$ and, therefore, $g_{i}<9 q^{2} \theta_{2}$ for all $i \leq j$. Now, let Q_{1}, Q_{2} and Q_{3} be three non-collinear points in $\left\{R_{i}: i \in\{j-q-1, \ldots, j\}\right\}$ and let \mathcal{P} be the set of all points R_{i}, with $i \leq j-q-2$, that do not lie in the plane $\pi=\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$. Recall that $j=\frac{1}{4} q^{3}+q^{2}+2 q+1$. Then $|\mathcal{P}| \geq j-q-2-\left(\theta_{2}-3\right)>\frac{1}{4} q^{3}$. Also, each of the points Q_{i} is contained in less than $9 q^{2}$ lines that meet \mathcal{P}, since every such line lies in θ_{2} flags that are contained in the union of the G_{i}, with $i \leq j-q-2$. Then we use Lemma 6.3.6 with $M=\mathcal{P}, n=9, d=\frac{1}{4}$ and $m=5$. Hence, since $q \geq 32 \frac{n^{5} m}{d^{5}}=160 \cdot 36^{5}$, we find a solid that contains at least $5 q^{2}$ points of \mathcal{P}. The statement follows now from Lemma 6.3.10,

Remark 6.3.12. Note that there is precisely one solid that contains all but at most $4 q^{2}$ points $P_{i}, i \in$ I : if there would be two such solids S_{1}, S_{2}, then the number of points $P_{i}, i \in I$, in $S_{1} \cup S_{2}$ would be at least $2\left(\theta_{3}-q-4 q^{2}\right)-\theta_{2}$. For $q \geq 9$, this number of points is larger than the total number $\theta_{3}-q$ of EKR sets F_{i} in \mathfrak{F}, which gives a contradiction.

Notation 6.3.13. From now on, we denote by S the unique solid that contains all but at most $4 q^{2}$ of the points P_{i}, with $i \in I$, and we use the following notation:

- $C_{0}=\left\{F_{i} \mid i \in I, P_{i} \in S\right\}$.
- $C_{1}=\left\{F_{i} \mid i \in I, P_{i} \notin S\right\}$.
- $C_{2}=\left\{F_{i} \mid i \in J \backslash I\right\}$.
- $C_{3}=\left\{F_{i} \mid i \in\left\{1, \ldots, \theta_{3}-q\right\} \backslash J\right\}$.
- $c_{i}=\left|C_{i}\right|$ for $i \in\{0, \ldots, 3\}$.
- $W=\left\{P \in S \mid P \neq P_{i}, \forall i \in I\right\}$.
- Let M be the set of all line-plane flags (l, π) for which $l \cap S$ is a point which lies in W.

Lemma 6.3.14. We have
(a) $C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$ is a partition of \mathfrak{F}.
(b) $c_{1}+c_{3} \leq 4 q^{2}$.
(c) $|W|=\theta_{3}-c_{0}$.
(d) Every point of W lies in the plane of exactly $q^{3} \theta_{2}$ flags of M.
(e) $|M|=|W| q^{3} \theta_{2}$.
(f) $c_{3} \leq 2 q^{2}+6 q$ for $q \geq 22$.

Proof. Statement (a) is obvious from the notation introduced above. The choice of S implies statement (b). Since no two members of \mathfrak{F} of size e_{0} have the same generic part, we have $|W|=\left|S \backslash C_{0}\right|=$ $|S|-\left|C_{0}\right|=\theta_{3}-c_{0}$ and thus statement (c). Furthermore, each point $P \in W$ is contained in q^{3} lines that meet S only in P and each such line lies in θ_{2} planes. Hence, for every point $P \in W$, exactly $q^{3} \theta_{2}$ flags (ℓ, π) of M satisfy $\ell \cap S=P$, which proves statements (d) and (e). Finally, statement (f) follows from Lemma 6.3.9 and $q \geq 22$:

$$
\begin{aligned}
& |\mathfrak{F}| e_{0}-q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \leq|J| e_{0}+c_{3} e_{1} \\
\Leftrightarrow & c_{3}\left(e_{0}-e_{1}\right) \leq q^{2} \theta_{2}\left(2 q^{3}+q^{2}+q+1\right) \\
\Rightarrow & c_{3} \leq 2 q^{2}+6 q .
\end{aligned}
$$

Lemma 6.3.15.

(a) Suppose that $F \in C_{0}$. Then the generic part of F does not contain a flag of M.
(b) Suppose that $F \in C_{1}$. Then $|F \cap M| \leq|W| \theta_{2}+q^{2} \theta_{2}$.
(c) Suppose that $F \in C_{2}$, with base solid H. If $H=S$, then we have that $|F \cap M| \leq q^{2} \theta_{2}$. If $H \neq S$, then $|F \cap M| \leq|H \cap W| q^{2}(q+1)+q^{2} \theta_{2}$.

Proof. (a) The flags of the generic part of F either have a line that is contained in S or that meets S in the base point of F, which is not in W. Therefore these flags do not belong to M.
(b) We know that F is based on a point P. The generic part of F consists of all flags whose line contains P. As $P \notin S$, we see that the generic part of F has exactly $|W| \theta_{2}$ flags in M. The special part of F has $q^{2} \theta_{2}$ flags and thus at most this many flags of M.
(c) We know that F is based on a solid H. The generic part of H consists of all flags whose plane lies in H. Hence, if $H=S$, the generic part contains no flag of M, and if $H \neq S$, it contains exactly $|H \cap W| q^{2}(q+1)$ flags of M. The special part of F has $q^{2} \theta_{2}$ flags and thus at most this many flags of M.

Lemma 6.3.16. Suppose that z is an integer such that all except at most one plane of S have at most z points in W. Then

$$
|W| q^{3} \theta_{2} \leq c_{1}\left(|W|+q^{2}\right) \theta_{2}+c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+c_{3} e_{1}+s+q^{3}(q+1) \theta_{2}
$$

where s is the number of flags of M that are contained in the special part of F for some EKR set F of C_{0}. If every plane of S has at most z points in W, then

$$
|W| q^{3} \theta_{2} \leq c_{1}\left(|W|+q^{2}\right) \theta_{2}+c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+c_{3} e_{1}+s
$$

Proof. Each of the $|M|=|W| q^{3} \theta_{2}$ flags of M is contained in some member of $\mathfrak{F}=C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$. Hence, $|W| q^{3} \theta_{2} \leq \sum_{i=0}^{3}\left|\left(\cup_{F \in C_{i}} F\right) \cap M\right|$. If there exists a plane of S with more than z points in W, then denote by z^{\prime} its number of points in W. Otherwise put $z^{\prime}=z$. Since a plane of S lies in q solids other than S, the preceding lemma shows that $\cup_{F \in C_{2}} F$ and M share at most

$$
\begin{array}{r}
\left(c_{2}-q\right)\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+q\left(z^{\prime} q^{2}(q+1)+q^{2} \theta_{2}\right) \\
\quad=c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+\left(z^{\prime}-z\right) q^{3}(q+1)
\end{array}
$$

flags. Using this, together with the previous lemma and the fact that $|F| \leq e_{1}$ for $F \in C_{3}$, we find that

$$
\begin{aligned}
&|W| q^{3} \theta_{2} \leq\left|\left(\bigcup_{F \in C_{0}} F\right) \cap M\right|+\left|\left(\bigcup_{F \in C_{1}} F\right) \cap M\right|+\left|\left(\bigcup_{F \in C_{2}} F\right) \cap M\right|+\left|\left(\bigcup_{F \in C_{3}} F\right) \cap M\right| \\
& \leq \sum_{F \in C_{0}}|F \cap M|+\sum_{F \in C_{1}}|F \cap M|+\sum_{F \in C_{3}}|F \cap M| \\
& \quad \quad+c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+\left(z^{\prime}-z\right) q^{3}(q+1) \\
& \leq s+c_{1}\left(|W|+q^{2}\right) \theta_{2}+c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+\left(z^{\prime}-z\right) q^{3}(q+1)+c_{3} e_{1} .
\end{aligned}
$$

Now we use $z^{\prime}-z \leq \theta_{2}$ to find the first assertion and $z^{\prime}-z=0$ to find the second assertion in the statement of the lemma.
Lemma 6.3.17. Let π_{1} and π_{2} be distinct planes of S. Then

$$
\begin{equation*}
\left|\left(\pi_{1} \cup \pi_{2}\right) \cap W\right| q^{2}(q+1) \leq 6 q^{3}(q+4)+3 q(|W|-q)(q+1) \tag{6.11}
\end{equation*}
$$

Proof. Put $W^{\prime}=\left(\pi_{1} \cup \pi_{2}\right) \cap W$, and let M^{\prime} be the subset of M that consists of all flags of M whose line meets S in a point of W^{\prime}. Lemma 6.3.14 (d) shows that $\left|M^{\prime}\right|=\left|W^{\prime}\right| q^{3} \theta_{2}$. Each flag of M^{\prime} lies in at least one of the EKR sets of $\mathfrak{F}=C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$. Hence, $\left|M^{\prime}\right| \leq d_{0}+d_{1}+d_{2}+d_{3}$, where d_{i} is the number of elements of M^{\prime} that lie in some member of C_{i}.
For $F \in C_{3}$, we have $\left|F \cap M^{\prime}\right| \leq|F| \leq e_{1}$. Hence, $d_{3} \leq c_{3} e_{1}$.
If $F \in C_{1}$, then $|F|=e_{0}$ and F is based on a point $P \notin S$, so the flags of M^{\prime} that lie in the generic part of F are precisely the $\left|W^{\prime}\right| \theta_{2}$ flags whose line contains P and a point of W^{\prime}. Since the special part of F has $q^{2} \theta_{2}$ flags, it follows that $d_{1} \leq c_{1}\left(\left|W^{\prime}\right|+q^{2}\right) \theta_{2}$.
Consider $F \in C_{2}$. Then $|F|=e_{0}$ and F is based on a solid H. If $H=S$, then the lines of all flags of the generic part of F are contained in S and hence $F \cap M^{\prime}=\emptyset$. Now we consider the case when $H \neq S$. Then the number of flags of M^{\prime} in the generic part of F is $\left|H \cap W^{\prime}\right| q^{2}(q+1)$. This number is at most $(2 q+1) q^{2}(q+1)$, if the plane $H \cap S$ is different from π_{1} and from π_{2}, and it is $\left|W \cap \pi_{i}\right| q^{2}(q+1)$, if $H \cap S=\pi_{i}$. Since there are exactly q solids that meet S in π_{1} and as many that meet S in π_{2}, it follows that the number of flags of M^{\prime} that lie in the generic part of at least one EKR set of C_{2} is at most

$$
\begin{aligned}
& q\left(\left|W \cap \pi_{1}\right|+\left|W \cap \pi_{2}\right|\right) q^{2}(q+1)+\left(c_{2}-2 q\right)(2 q+1) q^{2}(q+1) \\
& \quad \leq q\left(\left|W \cap \pi_{1}\right|+\left|W \cap \pi_{2}\right|\right) q^{2}(q+1)+c_{2}(2 q+1) q^{2}(q+1) .
\end{aligned}
$$

The special part of each EKR set of C_{2} has $q^{2} \theta_{2}$ flags and thus at most this many flags of M^{\prime}. Using $\left|W \cap \pi_{1}\right|+\left|W \cap \pi_{2}\right| \leq\left|W^{\prime}\right|+q+1$, it follows that

$$
d_{2} \leq q\left(\left|W^{\prime}\right|+q+1\right) q^{2}(q+1)+c_{2}(2 q+1) q^{2}(q+1)+c_{2} q^{2} \theta_{2} .
$$

Finally, we consider an EKR set F of C_{0}. Then $|F|=e_{0}$ and F is based on a point P. We know from Lemma 6.6.15(a) that only the special part T of F can contribute to M^{\prime}. For T, there are the following possibilities:

- There exists a line ℓ with $P \in \ell$ and T consists of all flags whose plane contains ℓ and whose line does not contain P. If ℓ meets S only in P, then $\left|T \cap M^{\prime}\right|=\left|W^{\prime}\right| q$. If ℓ is contained in S, then $\left|T \cap M^{\prime}\right|=\left|\ell \cap W^{\prime}\right| q^{3}$ which is at most $2 q^{3}$ if $P \notin \pi_{1} \cup \pi_{2}$, and at most q^{4} if $P \in \pi_{1} \cup \pi_{2}$. Since $\left|W^{\prime}\right| \leq 2 q^{2}+q+1$, it follows that $\left|T \cap M^{\prime}\right| \leq q^{4}$ if $P \in \pi_{1} \cup \pi_{2}$, and $\left|T \cap M^{\prime}\right| \leq q\left(2 q^{2}+q+1\right)$ otherwise.
- There exists a solid H with $P \in H$ and T consists of all line-plane flags (h, τ) with $P \in$ $\tau \subseteq H$ and $P \notin h$. Then $T \cap M^{\prime}=\emptyset$ if $H=S$, and $\left|T \cap M^{\prime}\right|=\left|H \cap W^{\prime}\right| q^{2}$ if $H \neq S$. In the second case, this number is $\left|W^{\prime} \cap \pi_{i}\right| q^{2}$ if $H \cap S=\pi_{i}$ for some $i \in\{1,2\}$, and it is at most $(2 q+1) q^{2}$ if $H \cap S \notin\left\{\pi_{1}, \pi_{2}\right\}$. Note that $H \cap S=\pi_{i}$ implies $P \in \pi_{i}$, so that $\left|W^{\prime} \cap \pi_{i}\right| \leq q^{2}+q$ and hence $\left|W^{\prime} \cap \pi_{i}\right| q^{2} \leq q^{3}(q+1)$.

Summarizing, we see that $\left|T \cap M^{\prime}\right| \leq q\left(2 q^{2}+q+1\right)$ if $P \notin \pi_{1} \cup \pi_{2}$, and $\left|T \cap M^{\prime}\right| \leq q^{3}(q+1)$ if $P \in \pi_{1} \cup \pi_{2}$, which proves

$$
\begin{aligned}
d_{0} & \leq\left(c_{0}-2 q^{2}-q-1+\left|W^{\prime}\right|\right) q\left(2 q^{2}+q+1\right)+\left(2 q^{2}+q+1-\left|W^{\prime}\right|\right) q^{3}(q+1) \\
& =c_{0} q\left(2 q^{2}+q+1\right)+2 q^{6}-q^{5}-2 q^{4}-4 q^{3}-2 q^{2}-q-\left|W^{\prime}\right|\left(q^{4}-q^{3}-q^{2}-q\right) \\
& \leq c_{0} q\left(2 q^{2}+q+1\right)+2 q^{6}-q^{5}-\left|W^{\prime}\right|\left(q^{4}-q^{3}-q^{2}-q\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|W^{\prime}\right| q^{3} \theta_{2}= & \left|M^{\prime}\right| \leq d_{0}+d_{1}+d_{2}+d_{3} \\
\leq & c_{0} q\left(2 q^{2}+q+1\right)+2 q^{6}-q^{5}-\left|W^{\prime}\right|\left(q^{4}-q^{3}-q^{2}-q\right) \\
& +c_{1}\left(\left|W^{\prime}\right|+q^{2}\right) \theta_{2}+q\left(\left|W^{\prime}\right|+q+1\right) q^{2}(q+1) \\
& +c_{2}(2 q+1) q^{2}(q+1)+c_{2} q^{2} \theta_{2}+c_{3} e_{1}
\end{aligned}
$$

and simplifications show that

$$
\begin{align*}
\left|W^{\prime}\right| q^{4} \theta_{1} \leq & \left|W^{\prime}\right| q \theta_{2}+q^{3}\left(2 q^{3}+2 q+1\right)+c_{0} q\left(q^{2}+\theta_{2}\right) \\
& +\underbrace{c_{1}\left(\left|W^{\prime}\right|+q^{2}\right) \theta_{2}+c_{2} q^{2}\left(\theta_{2}+2 q^{2}+3 q+1\right)+c_{3} e_{1}}_{=\xi} \tag{6.12}
\end{align*}
$$

We put $\delta=c_{1}+c_{2}+c_{3}$, which also implies that $c_{0}=\theta_{3}-q-\delta$. Since $\left|W^{\prime}\right| \leq 2 q^{2}+q+1$, we have that

$$
\begin{aligned}
\xi & \leq c_{1}\left(3 q^{2}+q+1\right) \theta_{2}+c_{2} q^{2}\left(\theta_{2}+2 q^{2}+3 q+1\right)+c_{3} e_{1} \\
& =\delta\left(3 q^{2}+q+1\right) \theta_{2}-c_{2}\left(3 q^{2}+2 q+1\right)+c_{3}\left(e_{1}-\left(3 q^{2}+q+1\right) \theta_{2}\right) \\
& \leq \delta\left(3 q^{2}+q+1\right) \theta_{2}+\left(2 q^{2}+6 q\right)\left(q^{4}+5 q^{3}-q^{2}-q\right)
\end{aligned}
$$

The last inequality follows from Lemma 6.3.14(f).
Using this bound on ξ, as well as $\left|W^{\prime}\right| \leq q^{2}+\theta_{2}$ and $c_{0}=\theta_{3}-q-\delta$ on the right hand side of inequality 6.12, we find that

$$
\begin{aligned}
\left|W^{\prime}\right| q^{4} \theta_{1} & \leq 6 q^{6}+21 q^{5}+35 q^{4}-3 q^{2}+2 q+\delta\left(3 q^{4}+2 q^{3}+4 q^{2}+q+1\right) \\
& \leq 6 q^{6}+24 q^{5}+\delta\left(3 q^{4}+3 q^{3}\right) \\
& =6 q^{5}(q+4)+3 q^{3} \delta(q+1)
\end{aligned}
$$

Substituting $\delta=|W|-q$ in the last expression implies the statement.
Lemma 6.3.18. We have $c_{0} \geq q^{3}-18 q+1$ and thus $|W| \leq q^{2}+19 q$.
Proof. Let π_{1} and π_{2} be planes of S such that $\left|\pi_{1} \cap W\right| \geq\left|\pi_{2} \cap W\right| \geq|\pi \cap W|$ for every plane π of S other than π_{1} and π_{2}. Put $z=\left|\pi_{2} \cap W\right|$. The number s occurring in the assertion of Lemma 6.3.16 is at most $c_{0} q^{2} \theta_{2}$, since the special part of each EKR set of C_{0} has cardinality $q^{2} \theta_{2}$. Therefore, Lemma 6.3.16 shows that

$$
|W|\left(q^{3}-c_{1}\right) \theta_{2} \leq c_{0} q^{2} \theta_{2}+c_{1} q^{2} \theta_{2}+c_{2}\left(z q^{2}(q+1)+q^{2} \theta_{2}\right)+c_{3} e_{1}+q^{3}(q+1) \theta_{2}
$$

Since $c_{0}+c_{1}+c_{2}+c_{3}=\theta_{3}-q$, the right hand side is equal to

$$
\left(\theta_{3}-q\right) q^{2} \theta_{2}+c_{2} z q^{2}(q+1)+c_{3}\left(e_{1}-q^{2} \theta_{2}\right)+q^{3}(q+1) \theta_{2}
$$

Using $c_{3} \leq 2 q^{2}+6 q$ from Lemma 6.3.14(f) and the definition of e_{1} implies

$$
\begin{aligned}
|W|\left(q^{3}-c_{1}\right) \theta_{2} & \leq q^{7}+9 q^{6}+38 q^{5}+58 q^{4}+22 q^{3}+9 q^{2}+6 q+c_{2} z q^{2}(q+1) \\
& \leq q^{7}+10 q^{6}+c_{2} z q^{2}(q+1)
\end{aligned}
$$

The last inequality follows since $q \geq 40$. We put $\delta=c_{1}+c_{2}+c_{3}$, such that $|W|=\theta_{3}-c_{0}=\delta+q$ and thus

$$
\begin{equation*}
(\delta+q)\left(q^{3}-c_{1}\right) \theta_{2} \leq q^{7}+10 q^{6}+\delta z q^{2}(q+1) \tag{6.13}
\end{equation*}
$$

Now, Lemma 6.3.17 states

$$
\left|\left(\pi_{1} \cup \pi_{2}\right) \cap W\right| q^{2}(q+1) \leq 6 q^{4}+24 q^{3}+3 \delta\left(q^{2}+q\right)
$$

and, since $\left|\left(\pi_{1} \cup \pi_{2}\right) \cap W\right| \geq\left|\pi_{1} \cap W\right|+\left|\pi_{2} \cap W\right|-(q+1) \geq 2 z-q-1$, this implies

$$
\begin{equation*}
2 z q^{2}(q+1) \leq 7 q^{4}+26 q^{3}+q^{2}+3 \delta\left(q^{2}+q\right) \leq 8 q^{4}+3 \delta\left(q^{2}+q\right) \tag{6.14}
\end{equation*}
$$

The last inequality uses $q \geq 27$. Combining wish with and using $c_{1} \leq 4 q^{2}$ results in

$$
\begin{align*}
& (\delta+q)\left(q^{3}-4 q^{2}\right) \theta_{2} \leq q^{7}+10 q^{6}+\delta\left(4 q^{4}+\frac{3}{2} \delta\left(q^{2}+q\right)\right) \\
\Leftrightarrow & \delta^{2} \frac{3}{2}(q+1)+\delta\left(4 q^{3}-q \theta_{2}(q-4)\right)+q^{6}+10 q^{5}-q^{2} \theta_{2}(q-4) \geq 0 \tag{6.15}
\end{align*}
$$

It is easy to verify that this inequality is not satisfied for $\delta=q^{2}+18 q$ nor for $\delta=\frac{2}{3} q^{3}-7 q^{2}$. Since 6.15) is a quadratic inequality in δ, it follows that δ does not lie in the interval $\left[q^{2}+18 q, \frac{2}{3} q^{3}-7 q^{2}\right]$. However, we have $\delta=\theta_{3}-q-c_{0}$ as well as $c_{0}+c_{1}=|I| \geq \frac{1}{2}\left(\theta_{3}-q-c_{3}\right)$. Furthermore, since $c_{1}+c_{3} \leq 4 q^{2}$ by Lemma 6.3.14(b), this implies $\delta<\frac{2}{3} q^{3}-7 q^{2}$ for $q \geq 70$. We conclude that $\delta \leq q^{2}+18 q$, and hence $|W| \leq q^{2}+19 q$.

Lemma 6.3.19. Every plane of S has at most $10 q$ points in W.
Proof. From Lemma 6.3.17 and Lemma 6.3.18, it follows, for $q \geq 72$, that

$$
\begin{aligned}
& \left|\left(\pi_{1} \cup \pi_{2}\right) \cap W\right| q^{2}(q+1) \leq 6 q^{3}(q+4)+3 q\left(q^{2}+18 q\right)(q+1) \\
\Rightarrow & \left|\left(\pi_{1} \cup \pi_{2}\right) \cap W\right| \leq 9 q+72 \leq 10 q \\
\Rightarrow & \left|\pi_{1} \cap W\right| \leq 10 q
\end{aligned}
$$

for all planes $\pi_{1}\left(\right.$ and $\left.\pi_{2} \neq \pi_{1}\right)$ in \mathcal{S}.
Lemma 6.3.20. We have $\mathfrak{F}=C_{0}$.
Proof. As in the previous proofs, we put $\delta=c_{1}+c_{2}+c_{3}$, which again implies $|W|=q+\delta$ as well as $\delta=\theta_{3}-q-c_{0}$. From Lemmas 6.3.18 and 6.3.19 we have $|W| \leq q^{2}+19 q$ and $|\pi \cap W| \leq 10 q$ for all planes π of S. Therefore, Lemma 6.3 .15 shows that $|F \cap M| \leq\left(2 q^{2}+19 q\right) \theta_{2}$ for $F \in C_{1}$, and $|F \cap M| \leq 11 q^{4}+11 q^{3}+q^{2}$ for $F \in C_{2}$. Hence, each of the EKR sets $F \in C_{1} \cup C_{2}$ satisfies $|F \cap M| \leq 12 q^{4}$ for $q \geq 12$. Since $e_{1}<12 q^{4}$, the same holds for $F \in C_{3}$. Therefore, the total contribution of all EKR sets in $C_{1} \cup C_{2} \cup C_{3}$ to M is at most $12 \delta q^{4}=12(|W|-q) q^{4}$. Furthermore,
the generic part of every EKR set in C_{0} is disjoint from M and thus it remains to consider the special parts $T(F)$ of the EKR sets $F \in C_{0}$. In view of that we define

$$
\begin{aligned}
\alpha & =\mid\left\{F \in C_{0}: T(F) \text { is based on a line } \ell \subset S\right\} \mid, \\
\beta & =\mid\left\{F \in C_{0}: T(F) \text { is based on a solid } H\right\} \mid, \\
\gamma & =\mid\left\{F \in C_{0}: T(F) \text { is based on a line } \ell \nsubseteq S\right\} \mid .
\end{aligned}
$$

Moreover, we let A be the set of lines ℓ of S such that $\mathcal{F}(P, \ell) \in C_{0}$ for some point P of ℓ and we let B be the set of all point-solid pairs (P, H) with $\mathcal{F}(P, H) \in C_{0}$ and $H \neq S$. Then $\alpha+\beta+\gamma=c_{0}$, $|A| \leq \alpha$ and $|B| \leq \beta$. Recall that if $F \in C_{0}$ is such that $T(F)$ is solid based with solid S, then $T(F)$ does not contribute to M. Therefore, we find an upper bound on the number $|M|=|W| q^{3} \theta_{2}$ of flags of M :

$$
\begin{equation*}
|W| q^{3} \theta_{2} \leq 12(|W|-q) q^{4}+\sum_{\ell \in A}|\ell \cap W| q^{3}+\sum_{(P, H) \in B}|H \cap W| q^{2}+\gamma|W| q \tag{6.16}
\end{equation*}
$$

Furthermore, since the product of two consecutive integers is non-negative we have

$$
\begin{aligned}
0 & \leq \sum_{\ell \in A}(|\ell \cap W|-1)(|\ell \cap W|-2) \\
& =\sum_{\ell \in A}|\ell \cap W|(|\ell \cap W|-1)-2 \sum_{\ell \in A}|\ell \cap W|+2|A| \\
& \leq|W|(|W|-1)-2 \sum_{\ell \in A}|\ell \cap W|+2|A|
\end{aligned}
$$

The last inequality follows from counting the triples $\left(P_{1}, P_{2}, l\right)$, with $P_{1}, P_{2} \in W \cap l, P_{1} \neq P_{2}$ and $l \in A$, in two ways. Since $\alpha+\beta+\gamma=\theta_{3}-|W|$ and $|A| \leq \alpha$, we have $|A| \leq \theta_{3}-|W|-\beta-\gamma$ and thus this equation implies

$$
\sum_{\ell \in A}|\ell \cap W| \leq \frac{1}{2}|W|(|W|-3)+\theta_{3}-\beta-\gamma
$$

Using this and $|B| \leq \beta$ in 6.16, we find

$$
\begin{align*}
L=|W| q^{3}\left(\theta_{2}-\frac{1}{2}(|W|-3)\right) \leq & 12(|W|-q) q^{4}+\left(\theta_{3}-\gamma\right) q^{3} \\
& +\gamma|W| q+\sum_{(P, H) \in B}(|H \cap W|-q) q^{2} . \tag{6.17}
\end{align*}
$$

Now, we first show that the coefficient of γ in this inequality is negative, so that we may omit the term in γ therein. Since $|W| \leq q^{2}+19 q$, we have $L \geq \frac{1}{3}|W| q^{5}$ for $q \geq 52$. Furthermore, Lemma 6.3.19 shows $|H \cap W| \leq 10 q$ for all $(P, H) \in B$ and, since $|B|+\gamma \leq \beta+\gamma \leq \theta_{3}-|W|$, we find that

$$
\gamma|W| q+\sum_{(P, H) \in B}(|H \cap W|-q) q^{2} \leq \gamma\left(q^{3}+19 q^{2}\right)+9 q^{3}|B| \leq\left(\theta_{3}-|W|\right) 9 q^{3}
$$

Using this as well as $|W| \leq q^{2}+19 q$ and $L \geq \frac{1}{3}|W| q^{5}$ in Equation 6.17, we have that

$$
\begin{aligned}
& \frac{1}{3}|W| q^{5} \leq 12\left(q^{2}+18 q\right) q^{4}+\theta_{3} q^{3}+\left(\theta_{3}-|W|\right) 9 q^{3} \\
\Leftrightarrow & |W|\left(\frac{q^{2}}{3}+9\right) \leq 12\left(q^{2}+18 q\right) q+10 \theta_{3} \\
\Rightarrow & |W| \leq 66 q+678 .
\end{aligned}
$$

Hence, the coefficient $|W| q-q^{3}$ of γ in 6.17) is negative for $q \geq 76$ and therefore the term in γ can be omitted in the inequality. Doing that, replacing $|W|$ by $q+\delta$ and simplifying we find that

$$
\begin{equation*}
(q+\delta) q\left(q^{2}+\frac{1}{2}(q-\delta+5)\right) \leq 12 \delta q^{2}+\theta_{3} q+\sum_{(P, H) \in B}(|H \cap W|-q) \tag{6.18}
\end{equation*}
$$

If π is a plane of S, then the number of $(P, H) \in B$, with $H \cap S=\pi$, is at most $\theta_{2}-|\pi \cap W|$. Also, if π_{1} and π_{2} are distinct planes of S, then

$$
\begin{equation*}
\left|\pi_{1} \cap W\right|+\left|\pi_{2} \cap W\right| \leq|W|+\left|\pi_{1} \cap \pi_{2} \cap W\right| \leq 2 q+1+\delta \tag{6.19}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sum_{(P, H) \in B}(|H \cap W|-q) \leq \frac{1}{2}\left(\theta_{3}-q-\delta\right)(\delta+1) \tag{6.20}
\end{equation*}
$$

Since $|B| \leq \theta_{3}-q-\delta$, this is clear if $|H \cap W|-q \leq \frac{1}{2}(\delta+1)$ for all $H \in B$. Hence, we may assume that there exists a flag $\left(P_{0}, H_{0}\right) \in B$ with $x=\left|H_{0} \cap W\right|-q \geq \frac{1}{2}(\delta+1)$. From $q+x=\left|H_{0} \cap W\right| \leq|W|=q+\delta$, we find $x \leq \delta$. If $(P, H) \in B$, with $H \cap S=H_{0} \cap S$, then $P \in H_{0} \cap S$ and $P \notin W$ and hence there are at most $\theta_{2}-q-x=q^{2}+1-x$ such points. If $(P, H) \in B$, with $H \cap S \neq H_{0} \cap S$, then (6.19) implies $|H \cap W|-q \leq \delta+1-x$.
Now, if $|B| \geq 2\left(q^{2}+1-x\right)$, then for at most half of the elements of B, it holds that $|H \cap W|-q=x$, while for the other elements of B, we have that $|H \cap W|-q \leq \delta+1-x$. Hence, the average value of $|H \cap W|-q$ taken over all $(P, H) \in B$ is less than $\frac{1}{2}(x+(\delta+1-x))=\frac{1}{2}(\delta+1)$ and then (6.20) follows from $|B| \leq \theta_{3}-q-\delta$.

If, on the other hand, $|B| \leq 2\left(q^{2}+1-x\right)$, then $|B| \leq 2 q^{2}$ and since $|H \cap W|-q \leq x$ for all $(P, H) \in B$ we find, using $q>160 \cdot 36^{5}$ and $\delta=|W|-q \leq q^{2}+18 q$ from Lemma 6.3.18, that

$$
\sum_{(P, H) \in B}(|H \cap W|-q) \leq 2 q^{2} x \leq 2 q^{2} \delta \leq \frac{1}{2}\left(\theta_{3}-q-\delta\right) \delta \leq \frac{1}{2}\left(\theta_{3}-q-\delta\right)(\delta+1)
$$

We have handled all cases and thus 6.20 is verified. Now, we may use the bound 6.20 in Equation 6.18) to find

$$
(q+\delta) q\left(q^{2}+\frac{1}{2}(q-\delta+5)\right) \leq 12 \delta q^{2}+\theta_{3} q+\frac{1}{2}\left(\theta_{3}-q-\delta\right)(\delta+1)
$$

which is equivalent to

$$
\begin{align*}
& \frac{1}{2} \delta q\left(q^{2}-25 q-\delta+5\right)+\frac{1}{2} \delta^{2} \leq\left(q^{2}-q+1\right) q+\frac{1}{2} \\
\Leftrightarrow \quad & \delta^{2}(q-1)-\delta q\left(q^{2}-25 q+5\right)+2 q\left(q^{2}-q+1\right)+1 \geq 0 \tag{6.21}
\end{align*}
$$

For $q \geq 73$, this inequality is false for $\delta=3$ and $\delta=\frac{1}{2} q^{2}$. Hence, this inequality is false for all values of δ between 3 and $\frac{1}{2} q^{2}$. Using $\delta=|W|-q<\frac{1}{2} q^{2}$, this implies $\delta<3$ and thus $\delta \leq 2$, that is, it remains to show $\delta \notin\{1,2\}$.

First consider $\delta=2$. Then Equation shows that

$$
\frac{1}{2}\left(3 q^{3}-45 q^{2}+4 q\right) \leq \sum_{(P, H) \in B}(|H \cap W|-q)
$$

Since $|B| \leq c_{0}=\theta_{3}-q-\delta$ and since $|H \cap W| \leq|W|=q+2$ for all $(P, H) \in B$, this implies $|H \cap W|>q+1$ and thus $|H \cap W|=q+2=|W|$ for at least $\frac{1}{2}\left(q^{3}-47 q^{2}+4 q+2\right)$ elements $(P, H) \in B$. Note that $|H \cap W|=q+2$ implies $W \subseteq H$, that is, $W \subseteq H \cap S$. Therefore, W spans a plane σ of S. However, $(P, H) \in B$ with $W \subseteq H$ implies $P \in H \cap S=\sigma$ and this may happen at most $\theta_{2}-|W|=q^{2}-1$ times, a contradiction for $q \geq 49$.

Now, suppose that $\delta=1$. Then Equation (6.18) shows that

$$
\frac{1}{2}\left(q^{3}-21 q^{2}+2 q\right) \leq \sum_{(P, H) \in B}(|H \cap W|-q)
$$

and, since $|H \cap W| \leq|W|=q+1$ for all $(P, H) \in B$, this implies that there are $\frac{1}{2}\left(q^{3}-21 q^{2}+2 q\right)$ elements $(P, H) \in B$ with $|H \cap W|>q$ and thus $|H \cap W|=|W|=q+1$. Now, if W spans a plane σ, then we have seen above that there are at most $\theta_{2}-|W|=q^{2}$ elements $(P, H) \in B$ with $W \leq H$, a contradiction for $q \geq 24$. Therefore, we may assume that W spans a line ℓ, only. Hence, finally, there exists only one EKR set F in $\mathfrak{F} \backslash C_{0}$. Now, the special parts of the EKR sets of C_{0} do not contain any flag (h, π) with $\pi \cap S=\ell$ and therefore these $q^{2} \theta_{2}$ flags must lie in F. This implies that F may not be a subset of a solid-based EKR set, nor may it be a subset of a point based EKR set with point outside of S. Hence, we have $|F| \leq e_{1}$.

Now, reconsider the set M of all $|W| q^{3} \theta_{2}=(q+1) q^{3} \theta_{2}$ flags (h, τ) such that $h \cap S$ is a point of W. Each point $P \in S \backslash W$ is the base point of exactly one EKR set of C_{0} and we let $S(P)$ be its special part. Then M is a subset of the union of F and the sets $S(P)$ with $P \in S \backslash W$. The $q^{2}(q+1)$ points of $S \backslash W$ are distributed in the $q+1$ planes of S through ℓ. Consider such a plane π and let

- γ_{π} be the number of points $P \in \pi \backslash \ell$ for which $S(P)$ is based on a line that meets S only in P,
- let α_{π} be the number of points $P \in \pi \backslash \ell$ for which $S(P)$ is based on a line that is contained in S, and
- let β_{π} be the number of pairs $(P, H) \in B$ with $P \in \pi$.

Then there are at most $\gamma_{\pi}(q+1) q+\alpha_{\pi} q^{3}$ flags in M that lie in $S(P)$ for some point $P \in \pi \backslash \ell$ such that $S(P)$ is based on a line. Now, consider the β_{π} pairs $(P, H) \in B$ with $P \in \pi$. The special part $S(P)$ of every such pair contains $|H \cap \ell| q^{2}$ pairs of M. If $\ell \nsubseteq H$, then this is q^{2} and otherwise it is $q^{2}(q+1)$. For distinct $\left(P_{1}, H_{1}\right),\left(P_{2}, H_{2}\right) \in B$ with $P_{1}, P_{2} \in \pi$ and $\pi \subseteq H_{1}=H_{2}$, the q^{2} flags $(g, \tau) \in M$ for which $\tau \cap S=P_{1} P_{2}$ (and hence $g \cap S=P_{1} P_{2} \cap g$) lie in both $S\left(P_{1}, H_{1}\right)$ and $S\left(P_{2}, H_{2}\right)$, so that the number of flags of M that lie in $S\left(P_{2}\right)$ but not in $S\left(P_{1}\right)$ is at most q^{3}. Since there are q solids through π different from S, these arguments show that the union of the special parts $S(P)$ for the β_{π} points is at most $q \cdot(q+1) q^{2}+\left(\beta_{\pi}-q\right) q^{3}=\left(\beta_{\pi}+1\right) q^{3}$. Therefore, since $\alpha_{\pi}+\beta_{\pi}+\gamma_{\pi}$ equals the number q^{2} of points of $\pi \backslash \ell$, we have that the union of the special parts $S(P)$ for all points $P \in \pi \backslash \ell$ contains at most

$$
\gamma_{\pi}(q+1) q+\alpha_{\pi} q^{3}+\left(\beta_{\pi}+1\right) q^{3} \leq\left(\gamma_{\pi}+\alpha_{\pi}+\beta_{\pi}\right) q^{3}+q^{3}=\left(q^{2}+1\right) q^{3} .
$$

Since there are $q+1$ planes of S through ℓ, it follows that

$$
(q+1) q^{3} \theta_{2} \leq|F|+(q+1)\left(q^{2}+1\right) q^{3}
$$

which shows that $|F| \geq(q+1) q^{4}$. This is a contradiction to $|F| \leq e_{1}$ for $q \geq 5$.

The previous lemma concludes the proof of Theorem 6.3.8

Proof of Theorem 6.3.1 Consider a coloring of the Kneser graph $q K_{5 ;\{2,3\}}, q>160 \cdot 36^{5}$, with $t \leq \theta_{3}-q$ color classes C_{1}, \ldots, C_{t}. Define $C_{i}=\emptyset$ for $t<i \leq \theta_{3}-q$. Each set C_{i} is an EKR set of line-plane flags of $\mathrm{PG}(4, q)$. If $\left|C_{i}\right|>e_{1}$, then let \bar{C}_{i} be a maximal EKR set containing C_{i}; it follows from Theorem 6.3 .3 and the appendix below that $\left|\bar{C}_{i}\right|=e_{0}$ and \bar{C}_{i} is one of the sets defined in Example 6.3.2 For each i, we now define a set F_{i}. For each i, with $\left|C_{i}\right| \leq e_{1}$, define $F_{i}=C_{i}$. Now consider an index i with $\left|C_{i}\right|>e_{1}$. If there exists an index $j<i$ with $\left|C_{j}\right|>e_{1}$ and such that \bar{C}_{i} and \bar{C}_{j} have the same generic part, then let F_{i} be the special part of \bar{C}_{i} (this implies $\left|F_{i}\right|=q^{2} \theta_{2}<e_{1}$), and otherwise put $F_{i}=\bar{C}_{i}$. Let J be the set of indices i with $\left|F_{i}\right|=e_{0}$. Consider the multiset $\mathfrak{F}=\left\{F_{i} \mid 1 \leq i \leq \theta_{3}-q\right\}$. Then each F_{i} is an EKR set and the union of the F_{i} is the set of all line-plane flags.
Case 1. For at least $\frac{1}{2}|J|$ indices $i \in J$, the generic part of F_{i} is based on a point. Then \mathfrak{F} satisfies the hypotheses of Theorem 6.3.8 The conclusion of this theorem implies that $J=\left\{1,2, \ldots, \theta_{3}-q\right\}$, that the generic part of all F_{i} is based on a point, and that the base points are $\theta_{3}-q$ distinct points of a solid. This implies that $t=\theta_{3}-q$, that $\left|C_{i}\right|>e_{1}$ and $F_{i}=\bar{C}_{i}$ for all i. Note that $F_{i}=\bar{C}_{i}$ might not be uniquely determined by C_{i}, however its base point is. This follows from the fact that two maximal EKR sets based on distinct points (are easily seen to) have less than e_{1} elements in common and, hence, C_{i} can not be contained in both. This proves Theorem6.3.1 in this case.
Case 2. For less than $\frac{1}{2}|J|$, indices $i \in J$ the generic part of F_{i} is based on a point. Then for more than $\frac{1}{2}|J|$ indices i, the generic part is based on a solid and we can apply the first case in the dual space. This proves Theorem 6.3.1 in this case.

6.3.4 Appendix

In [11], the authors investigate EKR sets of line-plane flags in $\mathrm{PG}(4, q)$. We adapt their notation in this appendix and suppose that $q \geq 3$. In the proof of their classification result, they consider EKR sets \mathcal{C} of line-plane flags in $\operatorname{PG}(4, q)$ which are not contained in one of the sets given in Example 6.3.2 For this, the authors distinguish several cases for the structure of such a set \mathcal{C}, depending on the number of red lines.

1. If there are θ_{3} red lines, then the EKR set \mathcal{C} must be one of the sets in Example 6.3.2 see Case F in [11 Section 4.1].
2. If there are θ_{2} red lines through a point in a solid, then $|\mathcal{C}| \leq \theta_{2}^{2}+q^{2}\left(q^{2}-1\right)+2 q^{2}(q+1)^{2}<e_{1}$, see Case E in [11 Section 4.1].
3. If there are θ_{2} red lines in a plane A_{0}, then there the authors do not provide an upper bound, but only show that in this case, the sets cannot be contained in a set of Example 6.3.2, see Case D in [11. Section 4.1]. In order to derive Result 6.3 .4 we first have to provide an upper bound for that case, too, and we shall do so below.
We are in the situation that there is one red plane A_{0} and all of its lines are red as well. If there are more than $q+1$ red planes, then the arguments in the second paragraph of [11] Section D] show that the number of elements in the EKR set is at most $\theta_{2}^{2}+q^{2}(q+1)^{2}+q^{4}+q^{3}$, which is smaller than e_{1}. So here we consider the case that there are at most q red planes apart from A_{0}.

Note first that if A is a yellow plane, then $A \cap A_{0}$ is a line (so $\left\langle A_{0}, A\right\rangle$ is a solid) and A has a unique point $p(A)$ which lies in A_{0} and such that a flag (L, A) is in \mathcal{C} if and only if $p(A) \in L$.

The following holds and will be used several times below: if A_{1} and A_{2} are yellow planes, then

$$
\begin{equation*}
p\left(A_{1}\right) \in A_{2} \text { or } p\left(A_{2}\right) \in A_{1} \text { or }\left\langle A_{0}, A_{1}\right\rangle=\left\langle A_{0}, A_{2}\right\rangle \tag{6.22}
\end{equation*}
$$

Now there are two possibilities.

- Suppose that for any two yellow planes A_{1} and A_{2} with $p\left(A_{1}\right)=p\left(A_{2}\right)$ we have $A_{0} \cap$ $A_{1}=A_{0} \cap A_{2}$. Then each point $P=p(B)$, with B a yellow plane, corresponds to a unique line $l_{B}=B \cap A_{0}$. If there is a line $l_{B} \subset A_{0}$ such that l_{B} is contained in more than q yellow planes, different from A_{0}, then for every other yellow plane C with $p(C) \neq p(B)$, it holds that $p(C) \in l_{B}$ or $p(B) \in l_{C}$, see 6.22. Hence, there are at most $(2 q+1)\left(q^{2}+q\right)$ yellow planes. If there is no line $l \subset A_{0}$ contained in more than q yellow planes, then there are at most $q \theta_{2}$ yellow planes.
- Suppose that there is a point P and two yellow planes A_{1} and A_{2} with $A_{0} \cap A_{1} \neq$ $A_{0} \cap A_{2}$ and $p\left(A_{1}\right)=p\left(A_{2}\right)=P$. Then each yellow plane A must satisfy $P \in A$ or $A \subseteq\left\langle A_{0}, A_{1}\right\rangle$ or $A \subseteq\left\langle A_{0}, A_{2}\right\rangle$. The number of yellow planes is thus at most $2\left(q^{3}+\right.$ $\left.q^{2}+q\right)+(q+1)\left(q^{2}-q\right)$. Note that equality can occur only when the solids $\left\langle A_{0}, A_{1}\right\rangle$ and $\left\langle A_{0}, A_{2}\right\rangle$ are distinct.

In any case, the number of yellow planes is at most $y=3 q^{3}+2 q^{2}+q$. If A_{0} is the only red plane, it follows that $|\mathcal{C}| \leq \theta_{2}^{2}+y q \leq 4 q^{4}+4 q^{3}+4 q^{2}+2 q+1$. If A_{0} is not the only red plane and there are q other red planes A, then we treat these as the yellow planes above by choosing for $p(A)$ any point of $A \cap A_{0}$. Then the bound for $|\mathcal{C}|$ is almost the same except that we have to add $q \cdot q^{2}$, namely q^{2} more flags for each of the q red planes. Hence, $|\mathcal{C}| \leq e_{1}$.
4. If there are at most $q+1$ red lines, then we use the proofs of Lemmas $4.1,4.2$ and 4.3 in [11] to find that $|\mathcal{C}|<4 q^{4}+9 q^{3}+4 q^{2}+q+1$.

Hence, we find that the weakest of these upper bounds is the number $e_{1}=4 q^{4}+9 q^{3}+4 q^{2}+q+1$ and it is given in the general case of the proof of [11] Lemma 4.3].

6.4 The chromatic number of the Kneser graph $q K_{2 d+1 ;\{d, d+1\}}, d \geq 3$

In this section, we give an overview of the methods and results proven in [48]. The details and proofs appeared in the PhD thesis of dr. Daniel Werner [112]. The results in this part are joint work with prof. Klaus Metsch and dr. Daniel Werner.

In this section, we investigate the Kneser graph whose vertices are flags in $\mathrm{PG}(2 d, q)$, such that each flag contains a projective $(d-1)$-space π and a projective d-space τ, with $\pi \subseteq \tau$.

For this generalized chromatic number problem, we again used the strategy mentioned in Section 6.1 For this, we assume that we have constructed a coloring of size the chromatic number χ and we used a stability result (and conjecture) on the cocliques. The coclique number as well as structural information on large cocliques of $q K_{2 d+1,\{d, d+1\}}$ has been given for $d=2$ in [11] and for $d=3$ in [94]. We used the results in [11] in the previous section, to show that $\chi\left(q K_{5,\{2,3\}}\right)=q^{3}+q^{2}+1$ for $q>160 \cdot 36^{5}$. The first aim in this project was to determine the chromatic number of $q K_{7,\{3,4\}}$ for large q using the results of [94]. However, our approach in this project was able to deal with the general case of the graphs $q K_{2 d+1,\{d, d+1\}}$, for all $d \geq 3$.

Recall that the set $\mathcal{F}(P)$ is a point-pencil of flags of $\operatorname{PG}(2 d, q)$ of type $\{d, d+1\}$. Dually, for every hyperplane H in $\operatorname{PG}(2 d, q)$, we denote by $F(H)$ the set of all flags of type $\{d, d+1\}$ whose d-space is contained in H and call this set a dual point-pencil. Note that point-pencils and dual point-pencils are cocliques of cardinality $\approx q^{d^{2}-d-1}$ but they are not maximal cocliques. For $d=2$, every maximal coclique containing a point-pencil or a dual point-pencil has cardinality $\theta_{2}\left(\theta_{3}+q^{2}\right)$. For $d \geq 3$ there are different maximal cocliques, and they do not all have the same size. However, the structure of the large maximal cocliques can still be described quite precisely.

Example 6.4.1 (EKR sets).

1. For a point P and a set \mathcal{U} of d-dimensional subspaces through P, such that for all $\tau, \tau^{\prime} \in \mathcal{U}$ we have $\operatorname{dim}\left(\tau \cap \tau^{\prime}\right) \geq 1$, we define

$$
\mathcal{F}(P, \mathcal{U})=\{(\pi, \tau) \in V(\Gamma) \mid P \in \pi \text { or } \tau \in \mathcal{U}\}
$$

We again call $\{(\pi, \tau) \in \mathcal{F}(P, \mathcal{U}) \mid P \in \pi\}$ the generic part and $\{(\pi, \tau) \in \mathcal{F}(P, \mathcal{U}) \mid P \notin \pi\}$ the special part of $\mathcal{F}(P, \mathcal{U})$. We also say that $\mathcal{F}(P, \mathcal{U})$ is based on the point P and call P the base point of $\mathcal{F}(P, \mathcal{U})$.
2. Dually, for a hyperplane H and a set \mathcal{E} of subspaces of dimension $d-1$ in H with pairwise non-empty intersection, we define

$$
\mathcal{F}(H, \mathcal{E})=\{(\pi, \tau) \in V(\Gamma) \mid \tau \subseteq H \text { or } \pi \in \mathcal{E}\}
$$

We call $\{(\pi, \tau) \in \mathcal{F}(H, \mathcal{E}) \mid \tau \subseteq H\}$ the generic part and $\{(\pi, \tau) \in \mathcal{F}(H, \mathcal{E}) \mid \tau \nsubseteq H\}$ the special part of $\mathcal{F}(P, \mathcal{U})$. We also say that $\mathcal{F}(H, \mathcal{E})$ is based on the hyperplane H.

We continue with some examples of colorings.
Example 6.4.2 (coloring of $q K_{2 d+1,\{d, d+1\}}$). Let $U \subseteq \mathrm{PG}(2 d, q)$ be a subspace of dimension $d+1$, consider a set W of q points of U and let L be the set of lines of U that meet W. Furthermore, suppose there exists an injective map ν from L to the point set $\{P \in U \mid P \notin W\}$, such that $\nu(l) \in l$ for all $l \in L$. Let S_{l} be the set of all d-spaces through the line l. Then

$$
\left\{\mathcal{F}\left(\nu(l), S_{l}\right) \mid l \in L\right\} \cup\{\mathcal{F}(P, \emptyset) \mid P \in U \backslash(\nu(L) \cup W)\}
$$

is a set of cocliques of $q K_{2 d+1,\{d, d+1\}}$ whose union contains all vertices of $q K_{2 d+1,\{d, d+1\}}$.
Remark 6.4.3. (a) Since there are $\theta_{d+1}-q$ cocliques in the given coverings, we find

$$
\chi\left(q K_{2 d+1,\{d, d+1\}}\right) \leq \theta_{d+1}-q
$$

(b) There are different possibilities for (W, ν) satisfying the required condition in Example 6.4.2 We describe an explicit example. Let P_{0}, \ldots, P_{q} be the points of a line $\ell \subseteq U$ and set $W=$ $\left\{P_{1}, \ldots, P_{q}\right\}$. For each plane π of U through ℓ, fix a numbering $h_{P}(\pi), P \in W$, of the lines different from ℓ of π, containing P_{0}. Define ν by $\nu(\ell)=P_{0}$ and $\nu(l)=l \cap h_{l \cap \ell}(\langle\ell, l\rangle)$ for $l \in L \backslash\{\ell\}$. This map ν has the property that $U=\nu(L) \cup W$.
It is also possible to construct maps ν satisfying $U \neq \nu(L) \cup W$, for example for odd $q \geq 5$, when W consists of q points of a conic in a plane of U, but we omit the details.
(c) We can find different coverings in cocliques by replacing all cocliques of the coverings described in Example 6.4.2 by their dual structure.

Recall that our strategy uses a stability result on the cocliques in the Kneser graph. Hence, we make the following conjecture.

Conjecture 6.4.4. For every integer $d \geq 2$, there is an integer $\rho(d)$ such that every maximal coclique of the Kneser graph $q K_{2 d+1,\{d, d+1\}}$ contains a point-pencil, a dual point-pencil, or has at most $\rho(d)$. $q^{d^{2}+d-2}$ elements.

This conjecture is true for $d=2$, which was implicitly proven in [11], see Section 6.3.4 and it is true for $d=3$, as is shown in [94].

Our main result is the following.
Theorem 6.4.5. If Conjecture 6.4.4 is true for some integer $d \geq 3$, then

$$
\chi\left(q K_{2 d+1,\{d, d+1\}}\right)=\frac{q^{d+2}-1}{q-1}-q
$$

for sufficiently large q, depending on d and $\rho(d)$. Moreover, if \mathfrak{F} is a family of this many maximal cocliques that cover the vertex set, then - up to duality - there exists a $(d+1)$-dimensional subspace U in $\mathrm{PG}(2 d, q)$ and an injective map μ from \mathfrak{F} to the set of points of U such that $\mathcal{F}(\mu(C)) \subseteq C$ for all $C \in \mathfrak{F}$.

Since the conjecture is true for $d=3$, we find the following corollary.
Corollary 6.4.6. For $q>3 \cdot 7^{15} \cdot 2^{56}$, we have $\chi\left(q K_{7,\{3,4\}}\right)=q^{4}+q^{3}+q^{2}+1$.

Part II

Cameron-Liebler sets

66 The main application of Pure Mathematics is to make you happy.
-Hendrik Lenstra

In the first part of the thesis, we investigated intersection problems. In this part, we continue with the research on Cameron-Liebler sets in different contexts. It will become clear that results on intersection problems can be applied.

7.1 Definition

In [28], Cameron and Liebler introduced specific line classes in $\mathrm{PG}(3, q)$ when investigating the orbits of the subgroups of the collineation group of $\mathrm{PG}(3, q)$. It is well known, by Block's Lemma [76] Section 1.6], that a collineation group of a finite projective space $\operatorname{PG}(n, q)$ has at least as many orbits on lines as on points. Cameron and Liebler tried to determine which collineation groups have equally many point and line orbits. From Lemma 1.8 .3 we know that these point and line orbits form a tactical decomposition. More specifically, a symmetrical tactical decomposition, since the number of point and line classes is the same.
We continue with some trivial examples of subgroups of $G=\mathrm{P} \Gamma \mathrm{L}(4, q)$, with equally many orbits on the lines and points of $\operatorname{PG}(3, q)$.

Example 7.1.1. Consider a point P and a plane π in $\mathrm{PG}(3, q)$, with $P \notin \pi$.

1. $\operatorname{Stab}_{G}(P)$ has two orbits on the points; namely P and $\mathrm{PG}(3, q) \backslash P$, and has two orbits on the lines, namely the lines containing P and the lines not containing P.
2. $\operatorname{Stab}_{G}(\pi)$ has two orbits on the points; namely the points in π and the points not in π, and has two orbits on the lines, namely the lines contained in π and the lines not contained in π.
3. $\operatorname{Stab}_{G}(\{P, \pi\})$, with $P \notin \pi$, has three orbits on the points; the point P, the points in π, the points in $\mathrm{PG}(3, q) \backslash(\{P\} \cup \pi)$, and has three orbits on the lines; the lines through P, the lines in π, the lines not in π and not through P.

Cameron and Liebler found that the line orbits of the subgroups with equally many orbits on lines and points, fulfill the following (equivalent) combinatorial and algebraic properties.

Result 7.1.2 ([28) Proposition 3.1]). Let \mathcal{L} be a set of lines in $\mathrm{PG}(3, q)$, with characteristic vector χ and let A be the point-line incidence matrix of $\mathrm{PG}(3, q)$. Then the following properties are equivalent.

1. $\chi \in \operatorname{im}\left(A^{T}\right)$,
2. $\chi \in \operatorname{ker}(A)^{\perp}$,
3. for every regulus \mathcal{R}, we have that $|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$, with \mathcal{R}^{\prime} the opposite regulus of \mathcal{R},
4. there is a number x such that $|\mathcal{L} \cap S|=x$ for every spread S,
5. there is a number x such that $|\mathcal{L} \cap S|=x$ for every Desarguesian spread S.

A set of lines which satisfies one of these properties (and so all of them) was first called a special line class by Cameron and Liebler, and was later called a Cameron-Liebler set of lines by other researchers. The number x in the result above, is called the parameter of the Cameron-Liebler line set.

Hence, the line orbits of a collineation group of $\operatorname{PG}(3, q)$ which has the property that it has the same number of orbits on the points as on the lines, are Cameron-Liebler line sets, see [28].

We will see later that the converse is not true, see Example 8.3.2. 4, and Remark 8.3.3. The original aim was to classify the Cameron-Liebler sets, in order to find information on the collineation groups with the 'orbit'-property. Up to now, the Cameron-Liebler line sets in $\mathrm{PG}(3, q)$ are not yet fully classified. On the other hand, the original group theoretic question, in $\mathrm{PG}(n, q)$, is solved by Cameron, Bamberg and Penttila [27] 3].

Theorem 7.1.3. A subgroup G of $\mathrm{P} \Gamma \mathrm{L}(n, q)$, having equally many orbits on points and lines

1. stabilizes a hyperplane π and acts line-transitively on it, or (dually)
2. fixes a point P and acts line-transitively on the quotient space, or
3. is line-transitive. In this case, there are three possibilities.

- G contains $\operatorname{PSL}(n+1, q)$,
- $G=A_{7} \leq \operatorname{PGL}(4,2)$,
- G is the normalizer in $\operatorname{PGL}(5,2)$ of a Singer cyclic group of $\operatorname{PG}(4,2)$.

The link between the group theoretical question and Cameron-Liebler sets, can be generalized to other contexts. The lemma below follows from the ideas in Block's Lemma [10], and was given in [110 Lemma 3.3.11].

Lemma 7.1.4. Let G be a group acting on two finite sets X and X^{\prime} with orbits $O_{1}, O_{2}, \ldots, O_{m}$ in X and orbits $O_{1}^{\prime}, O_{2}^{\prime}, \ldots, O_{m^{\prime}}^{\prime}$ in X^{\prime}. Suppose $R \subseteq X \times X^{\prime}$ is a G-invariant relation with corresponding $\left(|X| \times\left|X^{\prime}\right|\right)$-matrix A, defined over \mathbb{R}.

1. The images $A^{T} \chi_{O_{i}}$ are linear combinations of the vectors $\chi_{O_{j}^{\prime}}$.
2. If A has full row rank, then $m \leq m^{\prime}$, and if $m=m^{\prime}$, then all characteristic vectors $\chi_{O_{j}^{\prime}}$ are linear combinations of the vectors $A^{T} \chi_{O_{i}}$, and so, $\chi_{O_{j}^{\prime}} \in \operatorname{im}\left(A^{T}\right)$.

Remark 7.1.5. The set of points and lines in $\operatorname{PG}(3, q)$ forms a 2-design, and hence, its incidence matrix A has full row rank, see Result 1.1.5 So, the above lemma states that if the number of orbits on the lines equals the number of orbits on the points, then for each line orbit $\chi_{O^{\prime}}$ it follows that $\chi_{O^{\prime}} \in \operatorname{im}\left(A^{T}\right)$. From Theorem 7.1.2(1), we know that this last property, $\chi \in \operatorname{im}\left(A^{T}\right)$, defines Cameron-Liebler line sets in $\operatorname{PG}(3, q)$.

Note that Lemma 7.1.4 gives a way to define and investigate Cameron-Liebler sets in other settings.
Penttila further investigated the Cameron-Liebler line sets in $\operatorname{PG}(3, q)$, and found more equivalent definitions for them [99]. After a large number of results regarding these Cameron-Liebler sets of lines in the projective space $\operatorname{PG}(3, q)$, Cameron-Liebler sets of k-spaces in $\operatorname{PG}(2 k+1, q)$ [104], and Cameron-Liebler line sets in $\operatorname{PG}(n, q)$ [51] were defined. Drudge generalized the concept of Cameron-Liebler line sets in $\operatorname{PG}(3, q)$ to Cameron-Liebler line sets in $\operatorname{PG}(n, q)$. These line sets can also be defined by many equivalent definitions, see Definition 7.1.8.

Definition 7.1.6. A switching k-set in $\operatorname{PG}(n, q)$ is a partial k-spread \mathcal{R} for which there exists a partial k-spread \mathcal{R}^{\prime} such that $\mathcal{R} \cap \mathcal{R}^{\prime}=\emptyset$, and $\cup_{P \in \mathcal{R}} P=\cup_{P \in \mathcal{R}^{\prime}} P$, in other words, \mathcal{R} and \mathcal{R}^{\prime} have no common members and cover the same set of points in $\operatorname{PG}(n, q)$. We say that \mathcal{R} and \mathcal{R}^{\prime} form a pair of conjugate switching k-sets.

Theorem 7.1.7 ([51, Theorem 3.2]). Let A be the point-line incidence matrix of $\mathrm{PG}(n, q)$. Let \mathcal{L} be a set of lines in $\operatorname{PG}(n, q), n \geq 3$, with characteristic vector χ, and x so that $|\mathcal{L}|=x \theta_{n-1}$. Then the following properties are equivalent.

1. $\chi \in \operatorname{im}\left(A^{T}\right)$,
2. $\chi \in \operatorname{ker}(A)^{\perp}$,
3. for every pair of conjugate switching 1-sets \mathcal{R} and \mathcal{R}^{\prime}, we have that $|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$,
4. for every line ℓ, the number of lines of \mathcal{L} disjoint from ℓ is $(x-\chi(\ell)) q^{2} \theta_{n-3}$,
5. for every line ℓ, the number of lines of \mathcal{L}, different from ℓ, that intersect ℓ is $x(q+1)+$ $\chi(\ell)\left(q^{2} \theta_{n-3}-1\right)$,
6. for every point P and k-space π, with $P \in \pi$, it holds that

$$
|\operatorname{star}(P) \cap \mathcal{L}|+\frac{\theta_{n-2}}{\theta_{k-1} \theta_{k-2}}|\operatorname{line}(\pi) \cap \mathcal{L}|=x+\frac{\theta_{n-2}}{\theta_{k-2}}|\operatorname{pencil}(P, \pi) \cap \mathcal{L}|
$$

In addition, if n is odd, then the following conditions are also equivalent.
7. $|\mathcal{L} \cap \mathcal{S}|=x$ for every line spread \mathcal{S} in $\operatorname{PG}(n, q)$,
8. $|\mathcal{L} \cap \mathcal{S}|=x$ for every Desarguesian line spread \mathcal{S} in $\operatorname{PG}(n, q)$.

If $n=3$, then the above conditions are also equivalent to:
9. for every pair of disjoint lines ℓ_{1} and ℓ_{2}, there are $x+q\left(\chi\left(\ell_{1}\right)+\chi\left(\ell_{2}\right)\right)$ lines meeting both.

Definition 7.1.8. A set \mathcal{L} of lines in $\operatorname{PG}(n, q)$ that fulfills one of the statements in Theorem 7.1.7 (and consequently all of them) is called a Cameron-Liebler set of lines in $\operatorname{PG}(n, q)$ with parameter x.

Remark 7.1.9. Cameron-Liebler line sets in $\operatorname{PG}(n, q)$ correspond to tight sets of type 1 , in the Grassmann graph $J_{q}(n+1,2)$, see Definition 1.7.7 Recall that in this graph, the vertices are the lines in PG (n, q) and two vertices are adjacent if the corresponding lines meet in a point. From statement 5. in Theorem 7.1.7 it follows that a Cameron-Liebler line set \mathcal{L} in $\operatorname{PG}(n, q)$ is an intriguing set with values $y=x(q+1)$ and $y^{\prime}=x(q+1)+q^{2} \theta_{n-3}-1$. By investigating the eigenvalues of the Grassmann graph, it follows that $y^{\prime}-y=\lambda$, with λ the largest eigenvalue of the graph. Hence, \mathcal{L} is also a tight set of type 1 .

The examination of Cameron-Liebler sets in projective spaces started the motivation for defining and investigating Cameron-Liebler sets of generators in polar spaces [36], Cameron-Liebler classes in finite sets [39] and Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ and in $\mathrm{AG}(n, q)$. Furthermore, Cameron-Liebler sets can be introduced for any distance-regular graph. This has been done in the past under various names: Boolean degree 1 functions [59], completely regular codes of strength 0 and covering radius 1 [95], ... We refer to the introduction of [59] for an overview. Note that the definitions do not always coincide, e.g. for polar spaces, see Chapter 10 and [35, 36].

We have seen some algebraic, combinatorial and geometrical definitions for Cameron-Liebler sets. The main question, independent of the context where Cameron-Liebler sets are investigated, is
always the same: for which values of the parameter x do there exist Cameron-Liebler sets and which examples correspond to a given parameter x ? We will partially solve this question for CameronLiebler sets of k-spaces in $\mathrm{PG}(n, q)$, see Chapter 8 and for Cameron-Liebler sets of generators in polar spaces, see Chapter 10 . In Chapter 9 we mention the definition and several results of Cameron-Liebler sets in AG (n, q).

66 La géométrie est l'art du raisonnement correct à partir de figures mal dessinées.

-Henri Poincaré

In this chapter, we investigate Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$. The results in this chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and appeared in [16]. In Section 8.1 we list several equivalent definitions for these Cameron-Liebler sets, by generalizing the known results about Cameron-Liebler line sets in $\mathrm{PG}(n, q)$, see [51], and Cameron-Liebler sets of k-spaces in $\operatorname{PG}(2 k+1, q)$, see [104]. In Section 8.2 we make the link between these CameronLiebler sets and Boolean degree one functions. Several properties of Cameron-Liebler sets are given in Section 8.3 In the last section, we use these properties to prove the following classification result: there is no Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q), n>3 k+1$, with parameter x such that $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2} \frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$, (see Theorem 8.4.13.

8.1 The characterization theorem

Let Δ_{k} be the collection of k-spaces in $\mathrm{PG}(n, q)$, for $0 \leq k \leq n$, and let A be the incidence matrix of the points and the k-spaces of $\mathrm{PG}(n, q)$: the rows of A are indexed by the points and the columns by the k-spaces.

In this chapter, we will use the Grassmann scheme $J_{q}(n+1, k+1)$, see Example 1.9.5. Recall that there is an orthogonal decomposition $V_{0} \perp V_{1} \perp \cdots \perp V_{k+1}$ of $\mathbb{R}^{\Delta_{k}}$ in maximal common eigenspaces of $A_{0}, A_{1}, \ldots, A_{k+1}$, see Result 1.9 .3 Consider the distance one relation \mathcal{R}_{1} and let V_{j} be the eigenspace corresponding to the eigenvalue $P_{j 1}$ from Lemma 8.1.2 Using this (classical) ordering, we find the following lemma.

Lemma 8.1.1. For the Grassmann scheme $J_{q}(n+1, k+1)$, we have that $\operatorname{im}\left(A^{T}\right)=V_{0} \perp V_{1}$ and $V_{0}=\langle\boldsymbol{j}\rangle$.

Hence, this is well defined, with respect to the assumption on V_{0} and V_{1} in Section 1.9 In the following lemmas and theorems, we denote the disjointness matrix A_{k+1} by K since the corresponding graph is the q-Kneser graph $q K_{n+1: k+1}$. Kneser graphs also appeared in Chapter 6 where we investigated the chromatic number of some generalized Kneser graphs.

Before we start with proving some equivalent definitions for a Cameron-Liebler set of k-spaces, we give some lemmas and definitions that we will need in the characterization Theorem 8.1.6

Lemma 8.1.2 ([52]). Consider the Grassmann scheme $J_{q}(n+1, k+1)$. The eigenvalue $P_{j i}$ of the distance-i relation for V_{j} is given by:

$$
P_{j i}=\sum_{s=\max \{0, j-i\}}^{\min \{j, k+1-i\}}(-1)^{j+s}\left[\begin{array}{l}
j \\
s
\end{array}\right]\left[\begin{array}{c}
n-k+s-j \\
n-k-i
\end{array}\right]\left[\begin{array}{c}
k+1-s \\
i
\end{array}\right] q^{i(i+s-j)+\binom{j-s}{2} .}
$$

Lemma 8.1.3. If $P_{1 i}, i \geq 1$, is the eigenvalue of A_{i} corresponding to V_{j}, then $j=1$.
Proof. We need to prove that $P_{1 i} \neq P_{j i}$ for q a prime power and $j>1$. We will first introduce $\phi_{i}(j)=\max \left\{a\left|q^{a}\right| P_{j i}\right\}$, which is the exponent of q in the factorization of $P_{j i}$. Note that $\left[\begin{array}{l}a \\ b\end{array}\right]$ equals 1 modulo q and note that it is sufficient to show that $\phi_{i}(j), j>1$, is different from $\phi_{i}(1)$ for all i. By Lemma 8.1.2 we see that

$$
\phi_{i}(j)=\min \left\{\left.i(i+s-j)+\binom{j-s}{2} \right\rvert\, \max \{0, j-i\} \leq s \leq \min \{j, k+1-i\}\right\}
$$

unless there are two or more terms with a power of q with minimal exponent as factor and that have zero as their sum. If s is the integer in $\{\max \{0, j-i\}, \ldots, \min \{j, k+1-i\}\}$ closest to $j-i-\frac{1}{2}$, then $f_{i j}(s)=i(i+s-j)+\binom{j-s}{2}$ is minimal.

- If $j \leq i$, we see that $f_{i j}(s)$ is minimal for $s=0$. Then we find $\phi_{i}(j)=\frac{1}{2} j^{2}-\left(i+\frac{1}{2}\right) j+i^{2}$. We see that for a fixed $i, \phi_{i}(k-1)>\phi_{i}(k), k \leq i$. Note that the minimal value for $f_{i j}(s)$ is reached for only one s.
- If $j \geq i$, we see that $f_{i j}(s)$ is minimal for $s=j-i$. Then we find $\phi_{i}(j)=\binom{i}{2}$. Again we note that the minimal value for $f_{i j}(s)$ is reached for only one s.

We can conclude the following inequality for a given $i \geq 1$:

$$
\phi_{i}(1)>\phi_{i}(2)>\cdots>\phi_{i}(i)=\phi_{i}(i+1)=\cdots=\phi_{i}(k+1) .
$$

This implies the statement for $i \neq 1$.
For $i=1$, we have that

$$
\begin{aligned}
P_{11} & =P_{j 1} \\
& \Leftrightarrow-\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]+\left[\begin{array}{c}
n-k \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right] q=-\left[\begin{array}{l}
j \\
1
\end{array}\right]\left[\begin{array}{c}
k-j+2 \\
1
\end{array}\right]+\left[\begin{array}{c}
n-k \\
1
\end{array}\right]\left[\begin{array}{c}
k+1-j \\
1
\end{array}\right] q \\
& \Leftrightarrow-\left(q^{k+1}-1\right)(q-1)+\left(q^{n-k}-1\right)\left(q^{k}-1\right) q \\
& \quad=-\left(q^{j}-1\right)\left(q^{k-j+2}-1\right)+\left(q^{n-k}-1\right)\left(q^{k-j+1}-1\right) q \\
& \Leftrightarrow q^{n+1}+q=q^{n-j+2}+q^{j} \\
& \Leftrightarrow j=1 \vee j=n+1 .
\end{aligned}
$$

So, we can see that they are different if $j \neq n+1$. This is always true since $j \in\{1, \ldots, k+1\}$ and $k<n$.

Note that for $j \geq 1$, it was already known that $\left|P_{j i}\right| \leq\left|P_{1 i}\right|$. This result was shown in [22] Proposition $5.4(i i)$].

Lemma 8.1.4. Let π be a k-dimensional subspace in $\operatorname{PG}(n, q)$ with χ_{π} the characteristic vector of the set $\{\pi\}$. If \mathcal{Z} is the set of all k-spaces in $\operatorname{PG}(n, q)$ disjoint from π with characteristic vector $\chi_{\mathcal{Z}}$, then

$$
\chi_{\mathcal{Z}}-q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} j-\chi_{\pi}\right) \in \operatorname{ker}(A)
$$

Proof. Let v_{π} be the incidence vector of π with its positions corresponding to the points of $\mathrm{PG}(n, q)$.

disjoint from π and every point not in π is contained in $q^{k^{2}+k}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] k$-spaces skew to π (see Lemma 1.10.1. The lemma now follows from

$$
\begin{aligned}
& \chi_{\mathcal{Z}}-q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} j-\chi_{\pi}\right) \in \operatorname{ker}(A) \\
\Leftrightarrow & A \chi_{\mathcal{Z}}=q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} A \boldsymbol{j}-A \chi_{\pi}\right) .
\end{aligned}
$$

Definition 8.1.5. An m-cover \mathcal{S}_{m} of k-spaces in $\operatorname{PG}(n, q)$ is a (multi-)set of k-spaces such that every point in $\mathrm{PG}(n, q)$ is contained in precisely m elements of \mathcal{S}_{m}.
Note that the 1 -covers of k-spaces in $\operatorname{PG}(n, q)$ are the k-spreads in $\operatorname{PG}(n, q)$. Hence, 1 -covers only exist for $(k+1) \mid(n+1)$. For $m>1$, there are some examples of m-covers known with $(k+1) \nmid(n+1)$. A trivial example is the set of all lines in $\operatorname{PG}(4, q)$. It is easy to see that this is a θ_{3}-cover of lines, with $k+1=2 \nmid 5=n+1$.

We want to make a combination of a generalization of Theorem 3.2 in [51] and Theorem 3.7 in [104] to give several equivalent definitions for a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$.

Theorem 8.1.6. Let \mathcal{L} be a non-empty set of k-spaces in $\operatorname{PG}(n, q), n \geq 2 k+1$, with characteristic vector χ, and x so that $|\mathcal{L}|=x\left[\begin{array}{l}n \\ k\end{array}\right]$. Then the following properties are equivalent.

1. $\chi \in \operatorname{im}\left(A^{T}\right)$.
2. $\chi \in \operatorname{ker}(A)^{\perp}$.
3. For every k-space π, the number of elements of \mathcal{L} disjoint from π is $(x-\chi(\pi))\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$.
4. The vector $\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j}$ is a vector in V_{1}.
5. $\chi \in V_{0} \perp V_{1}$.
6. For a given $i \in\{1, \ldots, k+1\}$ and any k-space π, the number of elements of \mathcal{L}, meeting π in a ($k-i$)-space is given by:

$$
\left\{\begin{array}{ll}
\left((x-1) \frac{q^{k+1}}{q^{k-i+1}-1}+q^{i q^{n-k}-1}\right. \\
q^{i-1}
\end{array}\right) q^{i(i-1)}\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \quad \text { if } \pi \in \mathcal{L} .
$$

7. for every pair of conjugate switching k-sets \mathcal{R} and \mathcal{R}^{\prime}, we have that $|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$. If $\mathrm{PG}(n, q)$ admits a k-spread, then the following properties are equivalent to the previous ones.
8. $|\mathcal{L} \cap \mathcal{S}|=x$ for every k-spread \mathcal{S} in $\mathrm{PG}(n, q)$.
9. $|\mathcal{L} \cap \mathcal{S}|=x$ for every Desarguesian k-spread \mathcal{S} in $\mathrm{PG}(n, q)$.
10. For every $m \in \mathbb{N}$, it holds that $\left|\mathcal{L} \cap \mathcal{S}_{m}\right|=m x$ for every m-cover of k-spaces \mathcal{S}_{m} in $\operatorname{PG}(n, q)$.

Proof. We first prove that properties $1,2,3,4,5,6$ are equivalent by proving the following implications:

- $1 \Leftrightarrow 2$: This follows since $\operatorname{im}\left(B^{T}\right)=\operatorname{ker}(B)^{\perp}$ for every matrix B.
- $2 \Rightarrow 3$: We assume that $\chi \in \operatorname{ker}(A)^{\perp}$. Let $\pi \in \Delta_{k}$ and \mathcal{Z} the set of k-spaces disjoint from π. By Lemma 8.1.4 we know that

$$
\chi_{\mathcal{Z}}-q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} j-\chi_{\pi}\right) \in \operatorname{ker}(A)
$$

Since $\chi \in \operatorname{ker}(A)^{\perp}$, this implies

$$
\begin{aligned}
& \quad \chi_{\mathcal{Z}} \cdot \chi-q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} \boldsymbol{j} \cdot \chi-\chi_{\pi} \cdot \chi\right)=0 \\
& \Leftrightarrow|\mathcal{Z} \cap \mathcal{L}|-q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1}|\mathcal{L}|-\chi(\pi)\right)=0 \\
& \Leftrightarrow|\mathcal{Z} \cap \mathcal{L}|=(x-\chi(\pi)) q^{k^{2}+k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] .
\end{aligned}
$$

Hence, this last equality proves that the number of elements of \mathcal{L}, disjoint from π is ($x-$ $\chi(\pi)) q^{k^{2}+k}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right]$.

- $3 \Rightarrow 4$: By expressing property 3 in vector notation, we find that $K \chi=(x \boldsymbol{j}-\chi)\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ and, since by Lemma 1.10 .1 we have $K \boldsymbol{j}=q^{(k+1)^{2}}\left[\begin{array}{c}n-k \\ k+1\end{array}\right]$, we see that $v=\chi-x^{q^{k+1}-1} q^{n+1}-1 ~ i s$ an eigenvector of K :

$$
\begin{aligned}
K v & =K\left(\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j}\right) \\
& =(x \boldsymbol{j}-\chi)\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}-x \frac{q^{k+1}-1}{q^{n+1}-1} q^{(k+1)^{2}}\left[\begin{array}{c}
n-k \\
k+1
\end{array}\right] \boldsymbol{j} \\
& =\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}\left(x \boldsymbol{j}-\chi-x \frac{q^{n+1}-q^{k+1}}{q^{n+1}-1} \boldsymbol{j}\right) \\
& =-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}\left(\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j}\right) \\
& =P_{1, k+1} v .
\end{aligned}
$$

By Lemma 8.1.3, for $i=k+1$, we know that $v \in V_{1}$.

- $4 \Rightarrow 5$: This follows since $V_{0}=\langle\boldsymbol{j}\rangle$, see Lemma 8.1.1.
- $5 \Rightarrow 1$: This follows again from Lemma 8.1.1.
- $4 \Rightarrow 6$: Denote $\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} j$ by v. The matrix A_{i} corresponds to the relation \mathcal{R}_{i}. This implies that $\left(A_{i} \chi\right)_{\pi}$ gives the number of k-spaces in \mathcal{L} that intersect π in a $(k-i)$-space.

$$
\begin{aligned}
A_{i} \chi= & A_{i} v+x \frac{q^{k+1}-1}{q^{n+1}-1} A_{i} \boldsymbol{j}=P_{1 i} v+x \frac{q^{k+1}-1}{q^{n+1}-1} P_{0 i} \boldsymbol{j} \\
= & \left(-\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i(i-1)}+\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i^{2}}\right)\left(\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j}\right) \\
& +x \frac{q^{k+1}-1}{q^{n+1}-1}\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i^{2}} \boldsymbol{j} \\
= & \left(\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i^{2}}-\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right] q^{i(i-1)}\right) \chi \\
& +x \frac{q^{k+1}-1}{q^{n+1}-1} q^{i(i-1)}\left(\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]-\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i}+\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i}\right) \boldsymbol{j}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i^{2}}-\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right] q^{i(i-1)}\right) \chi \\
& +x \frac{q^{k+1}-1}{q^{n+1}-1} q^{i(i-1)}\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right]\left(\frac{q^{k+1}-1}{q^{k-i+1}-1}-\frac{q^{n-k}-1}{q^{i}-1} q^{i}\left(1-\frac{q^{k+1}-1}{q^{k-i+1}-1}\right)\right) \boldsymbol{j} \\
= & \left(\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i^{2}}-\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right] q^{i(i-1)}\right) \chi+x\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i(i-1)} \boldsymbol{j}
\end{aligned}
$$

This proves the implication for every $i \in\{1, \ldots, k+1\}$.

- $6 \Rightarrow 4$: We follow the approach of [104 Lemma 3.5] where we look for an eigenvalue of A_{i} and we define $\beta_{i}=x\left[\begin{array}{c}k+1 \\ i\end{array}\right]\left[\begin{array}{c}n-k-1 \\ i-1\end{array}\right] q^{i(i-1)}$.
From property 6, we know that

$$
\begin{aligned}
A_{i} \chi= & x\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right] q^{i(i-1)}(\boldsymbol{j}-\chi) \\
& +\left((x-1) \frac{q^{k+1}-1}{q^{k-i+1}-1}+q^{i} \frac{q^{n-k}-1}{q^{i}-1}\right) q^{i(i-1)}\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \chi \\
= & \left(\left[\begin{array}{c}
n-k \\
i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] q^{i^{2}}-\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right] q^{i(i-1)}\right) \chi+x\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i(i-1)} \boldsymbol{j} \\
= & P_{1 i} \chi+\beta_{i} \boldsymbol{j} .
\end{aligned}
$$

Then we can see that $v_{i}=\chi+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} \boldsymbol{j}$ is an eigenvector for A_{i} with eigenvalue $P_{1 i}$:

$$
\begin{aligned}
A_{i}\left(\chi+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} \boldsymbol{j}\right) & =P_{1 i} \chi+\beta_{i} \boldsymbol{j}+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} P_{0 i} \boldsymbol{j} \\
& =P_{1 i}\left(\chi+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} \boldsymbol{j}\right)
\end{aligned}
$$

By Lemma 8.1.3. we know that $\chi+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} \boldsymbol{j}=\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j} \in V_{1}$.
We show that properties 8,9 and 10 are equivalent with the previous properties if $\mathrm{PG}(n, q)$ admits a k-spread.

- $2 \Rightarrow 10$: Let \mathcal{S}_{m} be an m-cover of k-spaces in $\operatorname{PG}(n, q)$ and let χ_{m} be its characteristic vector. Note that $\chi_{m}(i)=j$ if the i 'th element is contained j times in \mathcal{S}_{m}. Hence, χ_{m} doesn't have to be a $\{0,1\}$-vector. Then we know that $\chi_{m}-m\left[\begin{array}{l}n \\ k\end{array}\right]^{-1} \boldsymbol{j} \in \operatorname{ker}(A)$. Since $\chi \in \operatorname{ker}(A)^{\perp}$, we have that

$$
0=\chi \cdot\left(\chi_{m}-m\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1} \boldsymbol{j}\right)=\left|\mathcal{L} \cap \mathcal{S}_{m}\right|-m|\mathcal{L}|\left[\begin{array}{l}
n \\
k
\end{array}\right]^{-1}
$$

so $\left|\mathcal{L} \cap \mathcal{S}_{m}\right|=m|\mathcal{L}|\left[\begin{array}{l}n \\ k\end{array}\right]^{-1}=m x$.

- $10 \Rightarrow 8$: A k-spread in $\operatorname{PG}(n, q)$ is an m-cover for $m=1$.
- $8 \Rightarrow 9$: Trivial.
- $9 \Rightarrow 3$: Suppose that $\mathrm{PG}(n, q)$ contains k-spreads, hence also Desarguesian k-spreads. We know that the group PGL $(n+1, q)$ acts transitively on the pairs of pairwise disjoint k-spaces. Let n_{i}, for $i=1,2$, be the number of Desarguesian k-spreads that contain i fixed pairwise disjoint k-spaces. This number only depends on i, and not on the chosen k-spaces, by the above transitivity property.
Let π be a fixed k-space. The number of pairs $\left(\pi^{\prime}, \mathcal{S}\right)$, with \mathcal{S} a Desarguesian k-spread that
contains π and π^{\prime} is equal to $q^{(k+1)^{2}}\left[\begin{array}{c}n-k \\ k+1\end{array}\right] \cdot n_{2}=n_{1} \cdot\left(\frac{q^{n+1}-1}{q^{k+1}-1}-1\right)$, so $\frac{n_{1}}{n_{2}}=q^{k(k+1)}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right]$. By counting the number of pairs $\left(\pi^{\prime}, \mathcal{S}\right)$, with $\pi^{\prime} \in \mathcal{L}$ and \mathcal{S} a Desarguesian k-spread that contains π and π^{\prime}, we find that the number of k-spaces in \mathcal{L}, disjoint from a fixed k-space π, is given by $(x-\chi(\pi)) \frac{n_{1}}{n_{2}}=(x-\chi(\pi)) q^{k(k+1)}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right]$.

To end this proof, we show that property 7 is equivalent with the other properties.

- $2 \Rightarrow 7$: Let $\chi_{\mathcal{R}}$ and $\chi_{\mathcal{R}^{\prime}}$ be the characteristic vectors of the pair of conjugate switching k-sets \mathcal{R} and \mathcal{R}^{\prime} respectively. As \mathcal{R} and \mathcal{R}^{\prime} cover the same set of points, we find: $\chi_{\mathcal{R}}-\chi_{\mathcal{R}^{\prime}} \in \operatorname{ker}(A)$. This implies $0=\chi \cdot\left(\chi_{\mathcal{R}}-\chi_{\mathcal{R}^{\prime}}\right)=\chi \cdot \chi_{\mathcal{R}}-\chi \cdot \chi_{\mathcal{R}^{\prime}}$, so that $\chi \cdot \chi_{\mathcal{R}}=|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|=\chi \cdot \chi_{\mathcal{R}^{\prime}}$.
- $7 \Rightarrow 1$: We first show that property 7 implies the other properties if $n=2 k+1$. For any two k-spreads $\mathcal{S}_{1}, \mathcal{S}_{2}$, the sets $\mathcal{S}_{1} \backslash \mathcal{S}_{2}$ and $\mathcal{S}_{2} \backslash \mathcal{S}_{1}$ form a pair of conjugate switching k-sets. So $\left|\mathcal{L} \cap\left(\mathcal{S}_{1} \backslash \mathcal{S}_{2}\right)\right|=\left|\mathcal{L} \cap\left(\mathcal{S}_{2} \backslash \mathcal{S}_{1}\right)\right|$, which implies that $\left|\mathcal{L} \cap \mathcal{S}_{1}\right|=\left|\mathcal{L} \cap \mathcal{S}_{2}\right|=c$.

Now we prove that this constant c equals $\left.x=|\mathcal{L}| \begin{array}{c}2 k+1 \\ k\end{array}\right]^{-1}$. Let n_{i}, for $i=0$, 1 , be the number of k-spreads containing i fixed pairwise disjoint k-spaces. This number only depends on i, and not on the chosen k-spaces. The number of pairs (π, \mathcal{S}), with \mathcal{S} a k-spread that contains π, is equal to $\left[\begin{array}{c}2 k+2 \\ k+1\end{array}\right] \cdot n_{1}=n_{0} \cdot \frac{q^{2 k+2}-1}{q^{k+1}-1}$, which implies that $\frac{n_{0}}{n_{1}}=\left[\begin{array}{c}2 k+1 \\ k\end{array}\right]$.

By counting the number of pairs (π, \mathcal{S}), with \mathcal{S} a k-spread that contains π, and where $\pi \in \mathcal{L}$, we find, that the number of k-spaces in $\mathcal{L} \cap \mathcal{S}$ equals $\left.|\mathcal{L}| \frac{n_{1}}{n_{0}}=|\mathcal{L}| \begin{array}{c}2 k+1 \\ k\end{array}\right]^{-1}=x$. This implies property 8 , and hence, property 1 .

Now we prove that implication $7 \Rightarrow 1$ also holds if $n>2 k+1$. Given a subspace τ in $\mathrm{PG}(n, q)$, we will use the notation $A_{\mid \tau}$ for the submatrix of A, where we only have the rows, corresponding with the points of τ, and the columns corresponding with the k-spaces in τ. We know that the matrix $A_{\mid \tau}$ has full rank by Result 1.1 .5
Let Π be a $(2 k+1)$-dimensional subspace in $\mathrm{PG}(n, q)$. By property 7 , we know that for every two k-spreads $\mathcal{R}, \mathcal{R}^{\prime}$ in Π, we have $|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$ since $\mathcal{R} \backslash \mathcal{R}^{\prime}$ and $\mathcal{R}^{\prime} \backslash \mathcal{R}$ are conjugate switching k-sets. This implies that $\chi_{\mathcal{L} \mid \Pi} \in \operatorname{im}\left(A_{\mid \Pi}^{T}\right)$ by the arguments above applied for the $(2 k+1)$-space Π. So, there is a linear combination of the rows of $A_{\mid \Pi}$ equal to $\chi_{\mathcal{L} \mid \Pi}$. This linear combination is unique since $A_{\mid \Pi}$ has full row rank. Now we will show that the linear combination of $\chi_{\mathcal{L}}$ is uniquely defined by the vectors $\chi_{\mathcal{L} \mid \Pi}$, with Π varying over all $(2 k+1)$-spaces in $\mathrm{PG}(n, q)$.

We show, for every two $(2 k+1)$-spaces Π, Π^{\prime}, that the coefficients of the row corresponding to a point in $\Pi \cap \Pi^{\prime}$ in the linear combination of $\chi_{\mathcal{L} \mid \Pi}$ and in the linear combination of $\chi_{\mathcal{L} \mid \Pi^{\prime}}$ are equal.

Suppose $\chi_{\mathcal{L} \mid \Pi}=a_{1} r_{1}+a_{2} r_{2}+\cdots+a_{l} r_{l}+a_{l+1} r_{l+1}+\cdots+a_{m} r_{m}$ and $\chi_{\mathcal{L} \mid \Pi^{\prime}}=b_{l+1} r_{l+1}+$ $\cdots+b_{m} r_{m}+b_{m+1} r_{m+1}+\cdots+b_{s} r_{s}$, where $r_{1}, \ldots, r_{l}, \ldots, r_{m}$ and $r_{l+1}, \ldots, r_{m}, \ldots, r_{s}$ are the rows corresponding with the points of Π and Π^{\prime}, respectively. Note that we only look at the columns corresponding with the k-spaces in Π and Π^{\prime}, respectively.

We now look at the space $\Pi \cap \Pi^{\prime}$, and at the corresponding columns in A. Recall that $A_{\mid \Pi \cap \Pi^{\prime}}$ also has full row rank, so the linear combination that gives $\chi_{\mathcal{L} \mid\left(\Pi \cap \Pi^{\prime}\right)}$ is unique, and equal to the ones corresponding with Π and Π^{\prime}, restricted to $\Pi \cap \Pi^{\prime}$. This proves that $a_{i}=b_{i}$ for $l+1 \leq i \leq m$. Here we also used the fact that the entry in A corresponding with a point of $\Pi \backslash \Pi^{\prime}$ or $\Pi^{\prime} \backslash \Pi$ and a k-space in $\Pi \cap \Pi^{\prime}$ is zero.

By using all $(2 k+1)$-spaces, we see that $\chi_{\mathcal{L}}$ is uniquely defined, and by construction we have $\chi_{\mathcal{L}} \in \operatorname{im}\left(A^{T}\right)$. Note that we only used that property 7 holds for conjugate switching k-sets inside a $(2 k+1)$-dimensional subspace.

Definition 8.1.7. A set \mathcal{L} of k-spaces in $\operatorname{PG}(n, q)$ that fulfills one of the statements in Theorem 8.1 .6 (and consequently all of them) is called a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$ with parameter $x=|\mathcal{L}|\left[\begin{array}{l}n \\ k\end{array}\right]^{-1}$.
Similar to Remark 7.1 .9 and by using statement 6 . in Theorem 8.1.6 it can be seen that the CameronLiebler sets of k-spaces in $\operatorname{PG}(n, q)$ correspond to the tight sets of type 1 in the Grassmann graph $J_{q}(n+1, k+1)$.
From Theorem 8.1.6 8 , we know that the parameter of a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$ is always an integer if $\operatorname{PG}(n, q)$ admits a k-spread, and so, if $k+1$ is a divisor of $n+1$. For $k+1 \nmid n+1$, this is not always the case, while the parameter of Cameron-Liebler line sets in $\mathrm{PG}(3, q)$ and the parameter of Cameron-Liebler sets of generators in polar spaces are always integers (see [36 Theorem 4.8]).

Remark 8.1.8. The link between Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$, and the original group theoretical question of Cameron and Liebler follows from Lemma 7.1.4 For this, we also use that the set of points and k-spaces in $\mathrm{PG}(n, q)$ forms a 2-design, and so, the incidence matrix A has full row rank, see Result 1.1 .5 So, we find that the orbits of a collineation group, with the same number of orbits on the points and k-spaces, are Cameron-Liebler sets. The reverse statement is not true: not every Cameron-Liebler set is an orbit of a collineation group with the 'orbit'-property. An example of such a Cameron-Liebler set is the union of the set of all k-spaces through a point P and the set of all k-spaces in a hyperplane H, with $P \notin H$.

We end this section with showing an extra property of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$.
Proposition 8.1.9. Let \mathcal{L} be a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$, then we find the following equality for every j-dimensional subspace α and every i-dimensional subspace τ, with $\alpha \subset \tau$ and $j<k<i$:

$$
\left|[k]_{\alpha} \cap \mathcal{L}\right|+\frac{\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]\left(q^{k-j}-1\right)}{\left[\begin{array}{c}
i \\
k
\end{array}\right]\left(q^{i-k}-1\right)}\left|[k]^{\tau} \cap \mathcal{L}\right|=\frac{\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]}{\left[\begin{array}{c}
i-j-1 \\
k-j
\end{array}\right]}\left|[k]_{\alpha}^{\tau} \cap \mathcal{L}\right|+\frac{\left[\begin{array}{c}
n-j-1 \\
k-j-1
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]}|\mathcal{L}| .
$$

Here $[k]_{\alpha},[k]^{\tau}$ and $[k]_{\alpha}^{\tau}$ denote the set of all k-spaces through α, the set of all k-spaces in τ and the set of all k-spaces in τ through α, respectively.
Proof. Let $\chi_{[\alpha]}, \chi_{[\tau]}$ and $\chi_{[\alpha, \tau]}$ be the characteristic vectors of $[k]_{\alpha},[k]^{\tau}$ and $[k]_{\alpha}^{\tau}$, respectively, and define

$$
v=\chi_{[\alpha]}+\frac{\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]\left(q^{k-j}-1\right)}{\left[\begin{array}{c}
i \\
k
\end{array}\right]\left(q^{i-k}-1\right)} \chi_{[\tau]}-\frac{\left[\begin{array}{c}
n-j-1 \\
k-j
\end{array}\right]}{\left[\begin{array}{c}
i-j-1 \\
k-j
\end{array}\right]} \chi_{[\alpha, \tau]}-\frac{\left[\begin{array}{c}
n-j-1 \\
k-j-1
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]} .
$$

Since

$$
\begin{gathered}
\left(A \chi_{[\alpha]}\right)_{P}=\left\{\begin{array}{ll}
{\left[\begin{array}{c}
n-j-1 \\
k-j-1
\end{array}\right]} & \text { for } P \notin \alpha \\
{[-j-j} \\
k-j
\end{array}\right] \\
\text { for } P \in \alpha,
\end{gathered} \quad\left(A \chi_{[\tau]}\right)_{P}=\left\{\begin{array}{ll}
0 & \text { for } P \notin \tau \\
{\left[\begin{array}{l}
i \\
k
\end{array}\right]} & \text { for } P \in \tau,
\end{array}\right] \begin{array}{ll}
0 & \text { for } P \notin \tau \\
\left(A \chi_{[\alpha, \tau]}\right)_{P}= \begin{cases}{\left[\begin{array}{l}
i-j-1 \\
k-j-1
\end{array}\right]} & \text { for } P \in \tau \backslash \alpha \\
{\left[\begin{array}{l}
i-j \\
k-j
\end{array}\right]} & \text { for } P \in \alpha,\end{cases}
\end{array}
$$

we can calculate $(A v)_{P^{\prime}}$ for every point P^{\prime}, and see that $A v=0$. This implies that $v \in \operatorname{ker}(A)$. Let χ be the characteristic vector of \mathcal{L}. By Definition 2 in Theorem 8.1.6 we know that $\chi \in \operatorname{ker}(A)^{\perp}$, so, by calculating $\chi \cdot v$, the lemma follows.

For $k=1$, K. Drudge showed in [51] that the property in Proposition 8.1.9 is not only a necessary, but also a sufficient property for a Cameron-Liebler line set in $\operatorname{PG}(n, q)$. For $k>1$ we pose it as an open problem to show that this property is also sufficient.

8.2 Boolean degree one functions

Another way to approach Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ is by the theory of Boolean degree one functions. Boolean functions are $\{0,1\}$-valued functions on a finite domain Ω. Each Boolean function f on $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ corresponds to an n-dimensional $\{0,1\}$-vector v, such that the i 'th element of v is equal to $f\left(\omega_{i}\right)$. Furthermore, f also corresponds to a set \mathcal{L}_{f}, such that $\mathcal{L}_{f}=\{\omega \in \Omega \mid f(\omega)=1\}$.

Boolean functions can be described for several classical association schemes, including the Johnson scheme, Grassmann scheme, and graphs from polar spaces, as well as for some other domains such as permutation groups. In this section, we give the link between these functions and CameronLiebler sets. For more information, we refer to [59].

In all settings, we have some form of coordinates: an element in $\{1,2, \ldots, n\}$ in the Johnson graph $J(n, k)$; a point in the Grassmann graph $J_{q}(n+1, k+1)$, or for most graphs related to polar spaces; and, a transposition $(i j)$ for the graphs derived from permutation groups. For a coordinate x, we denote the characteristic function of x by $x^{+}: x^{+}(\pi)=1$ if the element x is contained in the object π, and $x^{+}(\pi)=0$ otherwise. Then, a Boolean degree one function is a $\{0,1\}$-valued function on the vertices that can be written as $f=c+\sum_{i} c_{i} x_{i}^{+}$.

We will go into more detail for the projective setting. Let Δ_{k} be the set of all k-spaces in $\operatorname{PG}(n, q)$. A point $P \in \mathrm{PG}(n, q)$ induces a characteristic function P^{+}on Δ_{k} :

$$
\forall \pi \in \Delta_{k}: P^{+}(\pi)= \begin{cases}1 & \text { if } P \in \pi \\ 0 & \text { if } P \notin \pi\end{cases}
$$

Note that this function corresponds with the vector $A^{T} \chi_{P}$, with χ_{P} the characteristic vector of the point P, and A the point- k-space incidence matrix.

Definition 8.2.1. A Boolean degree one function on the set of k-spaces in $\operatorname{PG}(n, q)$ is a $\{0,1\}$ valued function of the form:

$$
f: \Delta_{k} \rightarrow \mathbb{R}: \pi \mapsto c+\sum_{i=1}^{\theta_{n}} a_{i} P_{i}^{+}(\pi)
$$

with $a_{i}, c \in \mathbb{R}$ and $\left\{P_{i} \mid 1 \leq i \leq \theta_{n}\right\}$ the set of points in $\operatorname{PG}(n, q)$.
Let $\mathcal{L}_{f}=\left\{\pi \in \Delta_{k} \mid f(\pi)=1\right\}$ be the set, corresponding to the Boolean degree one function f on Δ_{k}. It is clear that the Boolean function $f=P^{+}$, with P a point in $\operatorname{PG}(n, q)$, is a Boolean degree one function. Note that the set \mathcal{L}_{f}, with $f=P^{+}$, is precisely the point-pencil with vertex P. In general, the sets \mathcal{L}_{f}, with f a Boolean degree one function on the set of k-spaces in $\operatorname{PG}(n, q)$, are precisely Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$. For the proof of this theorem, we refer to [89. Theorem 2.3.2].

Theorem 8.2.2. Consider the projective space $\operatorname{PG}(n, q)$, then a set \mathcal{L} is a Cameron-Liebler set of k spaces in $\operatorname{PG}(n, q)$ if and only if $\mathcal{L}=\mathcal{L}_{f}$ for some Boolean degree one function f on the set of k-spaces in $\mathrm{PG}(n, q)$.

8.3 Properties of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$

We start with some properties of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ that can easily be proved.

Lemma 8.3.1. Let \mathcal{L} and \mathcal{L}^{\prime} be two Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ with parameters x and x^{\prime} respectively, then the following statements are valid.

1. $0 \leq x \leq \frac{q^{n+1}-1}{q^{k+1}-1}$.
2. The set of all k-spaces in $\operatorname{PG}(n, q)$ not in \mathcal{L} is a Cameron-Liebler set of k-spaces with parameter $\frac{q^{n+1}-1}{q^{k+1}-1}-x$.
3. If $\mathcal{L} \cap \mathcal{L}^{\prime}=\emptyset$, then $\mathcal{L} \cup \mathcal{L}^{\prime}$ is a Cameron-Liebler set of k-spaces with parameter $x+x^{\prime}$.
4. If $\mathcal{L}^{\prime} \subseteq \mathcal{L}$, then $\mathcal{L} \backslash \mathcal{L}^{\prime}$ is a Cameron-Liebler set of k-spaces with parameter $x-x^{\prime}$.

We continue with some examples of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$. We refer to these examples as the trivial examples.

Example 8.3.2. Trivial examples of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$.

1. The empty set (parameter 0).
2. The set of all k-spaces through a point P, so the point-pencil with vertex P (parameter 1). This follows immediately from the theory of Boolean degree one functions.
3. The set of all k-spaces in a fixed hyperplane (parameter $\frac{q^{n-k}-1}{q^{k+1}-1}$). Note that this parameter is not an integer if $k+1 \nmid n+1$, or equivalently, if $\mathrm{PG}(n, q)$ does not contain a k-spread.
4. The union of all k-spaces through a point P, together with the set of k-spaces in a fixed hyperplane H, with $P \notin H$ (parameter $x=1+\frac{q^{n-k}-1}{q^{k+1}-1}$).
5. The complement of these four examples: these are Cameron-Liebler sets with parameter $x=$ $\frac{q^{n+1}-1}{q^{k+1}-1}, x=\frac{q^{n+1}-1}{q^{k+1}-1}-1, x=q^{n-k}$ and $x=q^{n-k}-1$ respectively.

Remark 8.3.3. Example 4. is a Cameron-Liebler set \mathcal{L} in $\operatorname{PG}(n, q)$, but is not an orbit of k-spaces of a symmetrical tactical decomposition in the collineation group. This was proven in [27 96], and follows from the following observation. If \mathcal{L} would arise from a symmetrical tactical decomposition \mathcal{T}, then, since P is the unique point of $\mathrm{PG}(n, q)$, such that through P there pass $\left[\begin{array}{l}n \\ k\end{array}\right] k$-spaces of \mathcal{L}, we have that $\{P\}$ must be a point class of \mathcal{T}. But, a k-space $\pi \in \mathcal{L}$ contains either one or no points of $\{P\}$, depending on whether $P \in \pi$ or not. Hence, \mathcal{L} cannot be a class of k-spaces of \mathcal{T}.

In [93], several properties of Cameron-Liebler sets of k-spaces in $\mathrm{PG}(2 k+1, q)$ were given. We will first generalize some of these results to use them in Section 8.4 .

Lemma 8.3.4. Let π and π^{\prime} be two disjoint k-spaces in $\operatorname{PG}(n, q)$ with $\Sigma=\left\langle\pi, \pi^{\prime}\right\rangle$, let P be a point in $\Sigma \backslash\left(\pi \cup \pi^{\prime}\right)$ and let P^{\prime} be a point not in Σ. Then the number of k-spaces disjoint from π and π^{\prime} equals $W(q, n, k)$, the number of k-spaces disjoint from π and π^{\prime} through P equals $W_{\Sigma}(q, n, k)$ and the number of k-spaces disjoint from π and π^{\prime} through P^{\prime} equals $W_{\bar{\Sigma}}(q, n, k)$.

Here, $W(q, n, k), W_{\Sigma}(q, n, k), W_{\bar{\Sigma}}(q, n, k)$ are given by:

$$
\begin{aligned}
W(q, n, k) & =\sum_{i=-1}^{k} W_{i}(q, n, k) \\
W_{\Sigma}(q, n, k) & =\frac{1}{\left(q^{k+1}-1\right)^{2}} \sum_{i=0}^{k} W_{i}(q, n, k)\left(q^{i+1}-1\right) \\
W_{\bar{\Sigma}}(q, n, k) & =\frac{1}{q^{n+1}-q^{2 k+2}} \sum_{i=-1}^{k-1} W_{i}(q, n, k)\left(q^{k+1}-q^{i+1}\right) \\
W_{i}(q, n, k) & =\left\{\begin{array}{ll}
\left.q^{2 k^{2}+k+\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k} \begin{array}{cc}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i+1
\end{array}\right] \prod_{j=0}^{i}\left(q^{k-j+1}-1\right) & \text { if } i \geq 0 \\
q^{2(k+1)^{2}}\left[\begin{array}{c}
n-2 k-1 \\
k+1
\end{array}\right] & \text { ifi}=-1
\end{array} .\right.
\end{aligned}
$$

Proof. To count the number of k-spaces $\pi^{\prime \prime}$, that are disjoint from π and π^{\prime}, we first count the number of possible intersections $\pi^{\prime \prime} \cap \Sigma$.

We count the number of i-spaces in Σ, disjoint from π and π^{\prime}, by counting $\left(\left(P_{0}, P_{1}, \ldots, P_{i}\right), \sigma_{i}\right)$ in two ways. Here σ_{i} is an i-space in Σ, disjoint from π and π^{\prime}, and the points $P_{0}, P_{1}, \ldots, P_{i}$ form a basis of σ_{i}. For the ordered basis $\left(P_{0}, P_{1}, \ldots, P_{i}\right)$ we have $\prod_{j=0}^{i} \frac{q^{2 j}\left(q^{k-j+1}-1\right)^{2}}{q-1}$ possibilities since there are $\left[\begin{array}{c}2 k+2 \\ 1\end{array}\right]-2\left[\begin{array}{c}k+j+1 \\ 1\end{array}\right]+\left[\begin{array}{c}2 j \\ 1\end{array}\right]=\frac{q^{2 j}\left(q^{k-j+1}-1\right)^{2}}{q-1}$ possibilities for P_{j} if $P_{0}, P_{1}, \ldots, P_{j-1}$ are given. By a similar argument, we find that the number of ordered bases $\left(P_{0}, P_{1}, \ldots, P_{i}\right)$ for a given σ_{i} is $\prod_{j=0}^{i} \frac{q^{j}\left(q^{i-j+1}-1\right)}{q-1}$. In this way we find that the number of i-spaces in Σ, disjoint from π and π^{\prime}, is given by:

$$
\left.\frac{\prod_{j=0}^{i} \frac{q^{2 j}\left(q^{k-j+1}-1\right)^{2}}{q-1}}{\prod_{j=0}^{i} \frac{q^{j}\left(q^{i-j+1}-1\right)}{q-1}}=\prod_{j=0}^{i} \frac{q^{j}\left(q^{k-j+1}-1\right)^{2}}{q^{i-j+1}-1}=q^{(i+1} 2\right)\left[\begin{array}{c}
k+1 \\
i+1
\end{array}\right] \prod_{j=0}^{i}\left(q^{k-j+1}-1\right)
$$

Now we count, for a given i-space σ_{i} in Σ, the number of k-spaces $\pi^{\prime \prime}$ through σ_{i} such that $\pi^{\prime \prime} \cap \Sigma=$ σ_{i}. This equals the number of $(k-i-1)$-spaces in $\mathrm{PG}(n-i-1, q)$, disjoint from a $(2 k-i)$-space, and is equal to $q^{(k-i)(2 k-i+1)}\left[\begin{array}{c}n-2 k-1 \\ k-i\end{array}\right]$ by Lemma 1.10.1. By this lemma, we also see that the number of k-spaces disjoint from Σ is given by $q^{(k+1)(2 k+2)}\left[\begin{array}{c}n-2 k-1 \\ k+1\end{array}\right]$. This implies that $W_{i}(q, n, k),-1 \leq$ $i \leq k$, is the number of k-spaces disjoint from π and π^{\prime}, and intersecting Σ in an i-space.

Now we have enough information to count the number of k-spaces disjoint from π and π^{\prime} :

$$
W(q, n, k)=\sum_{i=-1}^{k} W_{i}(q, n, k)
$$

We use the same arguments to calculate $W_{\Sigma}(q, n, k)$ and $W_{\bar{\Sigma}}(q, n, k)$. By double counting $\left(P, \pi^{\prime \prime}\right)$, with $\pi^{\prime \prime}$ a k-space through $P \in \Sigma$ disjoint from π and π^{\prime}, and double counting $\left(P^{\prime}, \pi^{\prime \prime}\right)$, with $\pi^{\prime \prime}$ a
k-space through $P^{\prime} \notin \Sigma$ disjoint from π and π^{\prime}, we find:

$$
\begin{aligned}
& \left(\left[\begin{array}{c}
2 k+2 \\
1
\end{array}\right]-2\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]\right) \cdot W_{\Sigma}(q, n, k)=\sum_{i=0}^{k} W_{i}(q, n, k) \cdot\left[\begin{array}{c}
i+1 \\
1
\end{array}\right] \text { and } \\
& \left(\left[\begin{array}{c}
n+1 \\
1
\end{array}\right]-\left[\begin{array}{c}
2 k+2 \\
1
\end{array}\right]\right) \cdot W_{\bar{\Sigma}}(q, n, k)=\sum_{i=-1}^{k-1} W_{i}(q, n, k) \cdot\left(\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]-\left[\begin{array}{c}
i+1 \\
1
\end{array}\right]\right) .
\end{aligned}
$$

This implies:

$$
\begin{aligned}
& W_{\Sigma}(q, n, k)=\frac{1}{\left(q^{k+1}-1\right)^{2}} \sum_{i=0}^{k} W_{i}(q, n, k)\left(q^{i+1}-1\right) \\
& W_{\bar{\Sigma}}(q, n, k)=\frac{1}{q^{n+1}-q^{2 k+2}} \sum_{i=-1}^{k-1} W_{i}(q, n, k)\left(q^{k+1}-q^{i+1}\right) .
\end{aligned}
$$

From now on, we denote $W_{i}(q, n, k), W_{\Sigma}(q, n, k)$ and $W_{\bar{\Sigma}}(q, n, k)$ by W_{i}, W_{Σ} and $W_{\bar{\Sigma}}$ if the dimensions n, k and the field size q are clear from the context.

Lemma 8.3.5. Let \mathcal{L} be a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$ with parameter x.

1. For every $\pi \in \mathcal{L}$, there are s_{1} elements of \mathcal{L} meeting π.
2. For skew $\pi, \pi^{\prime} \in \mathcal{L}$ and a k-spread \mathcal{S}_{0} in $\Sigma=\left\langle\pi, \pi^{\prime}\right\rangle$, there exist exactly d_{2} subspaces in \mathcal{L} that are skew to both π and π^{\prime} and there exist s_{2} subspaces in \mathcal{L} that meet both π and π^{\prime}.

Here, d_{2}, s_{1} and s_{2} are given by:

$$
\begin{aligned}
d_{2}\left(q, n, k, x, \mathcal{S}_{0}\right) & =\left(W_{\Sigma}-W_{\bar{\Sigma}}\right)\left|\mathcal{S}_{0} \cap \mathcal{L}\right|-2 W_{\Sigma}+x W_{\bar{\Sigma}} \\
s_{1}(q, n, k, x) & =x\left[\begin{array}{l}
n \\
k
\end{array}\right]-(x-1)\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k} \\
s_{2}\left(q, n, k, x, \mathcal{S}_{0}\right) & =x\left[\begin{array}{l}
n \\
k
\end{array}\right]-2(x-1)\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}+d_{2}\left(q, n, k, x, \mathcal{S}_{0}\right),
\end{aligned}
$$

where W_{Σ} and $W_{\bar{\Sigma}}$ are given by Lemma 8.3.4
3. Define $d_{2}^{\prime}(q, n, k, x)=(x-2) W_{\Sigma}$ and $s_{2}^{\prime}(q, n, k, x)=x\left[\begin{array}{c}n \\ k\end{array}\right]-2(x-1)\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}+$ $d_{2}^{\prime}(q, n, k, x)$. If $n>3 k+1$, then $\left|\mathcal{S}_{0} \cap \mathcal{L}\right| \leq x$ for every k-spread \mathcal{S}_{0} in Σ. Moreover we have that $d_{2}\left(q, n, k, x, \mathcal{S}_{0}\right) \leq d_{2}^{\prime}(q, n, k, x)$ and $s_{2}\left(q, n, k, x, \mathcal{S}_{0}\right) \leq s_{2}^{\prime}(q, n, k, x)$.

Proof. 1. This follows directly from Theorem 8.1.6(3) and $|\mathcal{L}|=x\left[\begin{array}{l}n \\ k\end{array}\right]$.
2. Let χ_{π} and $\chi_{\pi^{\prime}}$ be the characteristic vectors of $\{\pi\}$ and $\left\{\pi^{\prime}\right\}$, respectively, and let \mathcal{Z} be the set of all k-spaces in $\mathrm{PG}(n, q)$ disjoint from π and π^{\prime}, and let $\chi \mathcal{z}$ be its characteristic vector. Furthermore, let v_{π} and $v_{\pi^{\prime}}$ be the incidence vectors of π and π^{\prime}, respectively, with their positions corresponding to the points of $\mathrm{PG}(n, q)$. Note that $A \chi_{\pi}=v_{\pi}$ and $A \chi_{\pi^{\prime}}=v_{\pi^{\prime}}$. By Lemma 8.3.4 we know the numbers W_{Σ} and $W_{\bar{\Sigma}}$ of k-spaces disjoint from π and π^{\prime}, through a point P, if $P \in \Sigma$ and $P \notin \Sigma$ respectively. Let \mathcal{S}_{0} be a k-spread in Σ and let v_{Σ} be the
incidence vector of Σ (as a point set). We find:

$$
\begin{aligned}
& A \chi_{\mathcal{Z}}=W_{\Sigma}\left(v_{\Sigma}-v_{\pi}-v_{\pi^{\prime}}\right)+W_{\bar{\Sigma}}\left(\boldsymbol{j}-v_{\Sigma}\right) \\
&=W_{\Sigma}\left(A \chi_{\mathcal{S}_{0}}-A \chi_{\pi}-A \chi_{\pi^{\prime}}\right)+W_{\bar{\Sigma}}\left(\left[\begin{array}{c}
n \\
k
\end{array}\right]^{-1} A \boldsymbol{j}-A \chi_{\mathcal{S}_{0}}\right) \\
& \Leftrightarrow \quad \chi_{\mathcal{Z}}-W_{\Sigma}\left(\chi_{\mathcal{S}_{0}}-\chi_{\pi}-\chi_{\pi^{\prime}}\right)-W_{\bar{\Sigma}}\left(\left[\begin{array}{c}
n \\
k
\end{array}\right]^{-1} \boldsymbol{j}-\chi_{\mathcal{S}_{0}}\right) \in \operatorname{ker}(A) .
\end{aligned}
$$

We know that the characteristic vector χ of \mathcal{L} is included in $\operatorname{ker}(A)^{\perp}$. This implies:

$$
\begin{aligned}
& & \chi \mathcal{Z} \cdot \chi & =W_{\Sigma}\left(\chi_{\mathcal{S}_{0}} \cdot \chi-\chi(\pi)-\chi\left(\pi^{\prime}\right)\right)+W_{\bar{\Sigma}}\left(x-\chi_{\mathcal{S}_{0}} \cdot \chi\right) \\
\Leftrightarrow & & |\mathcal{Z} \cap \mathcal{L}| & =W_{\Sigma}\left(\left|\mathcal{S}_{0} \cap \mathcal{L}\right|-2\right)+W_{\bar{\Sigma}}\left(x-\left|\mathcal{S}_{0} \cap \mathcal{L}\right|\right) \\
\Leftrightarrow & & |\mathcal{Z} \cap \mathcal{L}| & =\left(W_{\Sigma}-W_{\bar{\Sigma}}\right)\left|\mathcal{S}_{0} \cap \mathcal{L}\right|-2 W_{\Sigma}+x W_{\bar{\Sigma}}
\end{aligned}
$$

which gives the formula for $d_{2}\left(q, n, k, x, \mathcal{S}_{0}\right)$. The formula for $s_{2}\left(q, n, k, x, \mathcal{S}_{0}\right)$ follows from the inclusion-exclusion principle.
3. Suppose Σ is a $(2 k+1)$-space in $\operatorname{PG}(n, q)$, and suppose \mathcal{S}_{0} is a k-spread in Σ such that $\left|\mathcal{S}_{0} \cap \mathcal{L}\right|>x$. By property 1 in Theorem 8.1.6 we know that the characteristic vector χ of \mathcal{L} can be written as $\sum_{P \in \mathrm{PG}(n, q)} x_{P} r_{P}^{T}$ for some $x_{P} \in \mathbb{R}$ where r_{P} is the row of A corresponding to the point P. Let χ_{π} be the characteristic vector of the set $\{\pi\}$ with π a k-space, then $\chi_{\pi} \cdot \chi=\sum_{P \in \pi} x_{P}$ equals 1 if $\pi \in \mathcal{L}$ and 0 if $\pi \notin \mathcal{L}$. As $\chi \cdot \boldsymbol{j}=|\mathcal{L}|=x\left[\begin{array}{l}n \\ k\end{array}\right]$, we find that $\sum_{P \in \mathrm{PG}(n, q)} x_{P}=x$.
If $\left|\mathcal{S}_{0} \cap \mathcal{L}\right|>x$, then $\chi \cdot \chi_{S_{0}}=\sum_{P \in \Sigma} x_{P}>x$. From these observations, it follows that $\sum_{P \in \operatorname{PG}(n, q) \backslash \Sigma} x_{P}=\sum_{P \in \operatorname{PG}(n, q)} x_{P}-\sum_{P \in \Sigma} x_{P}$ is negative. As $n>3 k+1$, there exists a k-space τ in $\operatorname{PG}(n, q)$, disjoint from Σ, with $\chi_{\tau} \cdot \chi=\sum_{P \in \tau} x_{P}$ negative, which gives the contradiction.

It follows that $\left|\mathcal{S}_{0} \cap \mathcal{L}\right| \leq x$. Since this is true for every k-spread \mathcal{S}_{0} in every $(2 k+1)$-space in $\operatorname{PG}(n, q)$, the statement holds.

In the remainder of this chapter, we will use the upper bound $d_{2}^{\prime}(q, n, k, x)$ and $s_{2}^{\prime}(q, n, k, x)$ instead of $d_{2}\left(q, n, k, x, \mathcal{S}_{0}\right)$ and $s_{2}\left(q, n, k, x, \mathcal{S}_{0}\right)$ respectively, since they are independent of the chosen k $\operatorname{spread} \mathcal{S}_{0}$.

The following lemma is a generalization of Lemma 2.4 in [93].
Lemma 8.3.6. Let c, n, k be non-negative integers with $n>3 k+1$ and

$$
(c+1) s_{1}-\binom{c+1}{2} s_{2}^{\prime}>x\left[\begin{array}{l}
n \\
k
\end{array}\right]
$$

then no Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$ with parameter x contains $c+1$ mutually skew k-spaces.

Proof. Assume that $\operatorname{PG}(n, q)$ has a Cameron-Liebler set \mathcal{L} of k-spaces with parameter x that contains $c+1$ mutually disjoint k-spaces $\pi_{0}, \pi_{1}, \ldots, \pi_{c}$. Lemma 8.3.5 shows that π_{i} meets at least $s_{1}(q, n, k, x)-i s_{2}(q, n, k, x)$ elements of \mathcal{L} that are skew to $\pi_{0}, \pi_{1}, \ldots, \pi_{i-1}$. This implies that $x\left[\begin{array}{l}n \\ k\end{array}\right]=|\mathcal{L}| \geq(c+1) s_{1}-\sum_{i=0}^{c} i s_{2} \geq(c+1) s_{1}-\sum_{i=0}^{c} i s_{2}^{\prime}$ which contradicts the assumption.

8.4 Classification results

In this section, we will list some classification results for Cameron-Liebler sets of k-spaces in $\mathrm{PG}(n, q)$. We start with some known classification results for $k=1$. For $n=3$, Cameron and Liebler proved that the sets in Example 8.3.2 are the only examples of Cameron-Liebler line sets with parameter equal to $0,1,2, q^{2}-1, q^{2}$ and $q^{2}+1$ [28]. They also conjectured that the only Cameron-Liebler line sets in $\mathrm{PG}(3, q)$ are the trivial ones. This conjecture was disproven, and several non-trivial examples of Cameron-Liebler sets are known now. In [26, 30 , 31 51 57, 58, 63], constructions of non-trivial Cameron-Liebler line sets with parameter $x=\frac{q^{2}+1}{2}, x=\frac{q^{2}-1}{2}$ and $x=\frac{(q+1)^{2}}{3}$, were given, and other classification results were discussed in [28 62 64 65 [91 62 103].
The strongest classification results are given in [64 92], the latter of which proves the following result.

Theorem 8.4.1 ([92, Theorem 1.1]). There are no Cameron-Liebler line sets in $\operatorname{PG}(3, q)$ with parameter

$$
2<x \leq q \sqrt[3]{\frac{q}{2}}-\frac{2}{3} q
$$

In [64], Metsch and Gavrilyuk found a strong classification result, using a modular equality. This result rules out roughly at least one half of all possible parameters x.
Theorem 8.4.2 ([64, Theorem 1.1]). Let \mathcal{L} be a Cameron-Liebler line set with parameter x in $\mathrm{PG}(3, q)$. Then for every plane π and every point P of $\mathrm{PG}(3, q)$ it holds that

$$
\binom{x}{2}+n(n-x) \equiv 0 \quad \bmod (q+1) .
$$

Here, n is the number of lines of \mathcal{L} in the plane π, and through the point P respectively.
Regarding the Cameron-Liebler sets of k-spaces in $\mathrm{PG}(2 k+1, q)$, the most important classification result is described in [93].

Theorem 8.4.3 ([93]). There does not exist a Cameron-Liebler set of planes in PG(5,q) with parameter x satisfying $2<x<\frac{q}{3}$. For $k \geq 3$, there exists a positive integer q_{0} with the following properties. If q is a prime power satisfying $q \geq q_{0}$ and $k<q \log q-q-1$, then $\operatorname{PG}(2 k+1, q)$ has no Cameron-Liebler sets of k-spaces with parameter x for $2<x<\frac{q}{5}$.
Moreover, for $q \in\{2,3,4,5\}$, a complete classification is known for Cameron-Liebler sets of k spaces in $\operatorname{PG}(n, q)$, see [59]. There, the authors show that the only Cameron-Liebler sets in this context are the trivial Cameron-Liebler sets, independent of the values of k and n.
Now we continue with several new classification results for Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$. In the following lemma, we start with the classification for the parameters $x \in$] $0,1[\cup] 1,2[$.
Lemma 8.4.4. There are no Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ with parameter $x \in] 0,1[$ and if $n \geq 3 k+2$, then there are no Cameron-Liebler sets of k-spaces with parameter $x \in] 1,2[$.
Proof. Suppose there is a Cameron-Liebler set \mathcal{L} of k-spaces with parameter $x \in] 0,1[$. Then \mathcal{L} is not the empty set, so suppose $\pi \in \mathcal{L}$. By property 3 in Theorem 8.1.6, we find that the number of k-spaces in \mathcal{L} disjoint from π is negative, which gives the contradiction.

Suppose there is a Cameron-Liebler set \mathcal{L} of k-spaces with parameter $x \in] 1,2[$ in $\operatorname{PG}(n, q), n \geq$ $3 k+2$. By property 3 in Theorem 8.1.6, we know that there are at least two disjoint k-spaces
$\pi, \pi^{\prime} \in \mathcal{L}$. By Lemma 8.3.5 $(2,3)$, we know that there are $d_{2} \leq d_{2}^{\prime}$ elements of \mathcal{L} disjoint from π and π^{\prime}. Since d_{2}^{\prime} is negative for $\left.x \in\right] 1,2[$, we find a contradiction.

We continue with a classification result for Cameron-Liebler sets of k-spaces with parameter $x=1$, where we will use the Erdős-Ko-Rado result from Theorem 2.0.3 for $t=0$.

Theorem 8.4.5. Let \mathcal{L} be a Cameron-Liebler set of k-spaces with parameter $x=1$ in $\operatorname{PG}(n, q)$, $n \geq 2 k+1$. Then \mathcal{L} is a point-pencil or $n=2 k+1$ and \mathcal{L} is the set of all k-spaces in a hyperplane of $\mathrm{PG}(2 k+1, q)$.

Proof. The theorem follows immediately from Theorem 2.0 .3 since, by Theorem 8.1.6(3), we know that \mathcal{L} is a family of pairwise intersecting k-spaces of size $\left[\begin{array}{l}n \\ k\end{array}\right]$.

We continue this section by showing that there are no Cameron-Liebler sets of k-spaces in $\mathrm{PG}(n, q)$, $n \geq 3 k+2$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$. For this classification result, we will use the Hilton-Milner theorem for projective spaces, see Theorem 2.0 .5

To simplify the notations, we denote $q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$ by $f(q, n, k)$.
Recall that the set of all k-spaces in a hyperplane in $\operatorname{PG}(n, q)$ is a Cameron-Liebler set of k-spaces with parameter $x=\frac{q^{n-k}-1}{q^{k+1}-1}$ (see Example 8.3.2. 3) and note that $f(q, n, k) \in \mathcal{O}\left(\sqrt{q^{n-2 k}}\right)$ while $\frac{q^{n-k}-1}{q^{k+1}-1} \in \mathcal{O}\left(q^{n-2 k-1}\right)$.
Lemma 8.4.6. For $n \geq 2 k+2$, we have

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]>\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}>W_{\Sigma}
$$

If also $k \geq 2$, then

$$
\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}>q^{n k-k^{2}}+q^{n k-k^{2}-1}+q^{n k-k^{2}-2} .
$$

Proof. The first inequality follows since $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the number of k-spaces through a fixed point in $\operatorname{PG}(n, q),\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ is the number of k-spaces through a fixed point disjoint from a given k space not through that point (see Lemma 1.10.1), and W_{Σ} is the number of k-spaces through a fixed point and disjoint from two given k-spaces not through that point.

The second inequality, for $k \geq 2, n \geq 2 k+2$, follows from the calculations below, in which we define $\prod_{i=0}^{k-3} g(i)=1$, for $k=2$.

$$
\begin{aligned}
{\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k} } & =\left(\prod_{i=0}^{k-3}\left(\frac{q^{n-k-1-i}-1}{q^{k-i}-1}\right)\right)\left(\frac{q^{n-2 k+1}-1}{q-1} \cdot \frac{q^{n-2 k}-1}{q^{2}-1}\right) q^{k^{2}+k} \\
& >q^{(n-2 k-1)(k-2)}\left(q^{n-2 k}+q^{n-2 k-1}+q^{n-2 k-2}\right) q^{n-2 k-2} q^{k^{2}+k} \\
& =q^{n k-k^{2}}+q^{n k-k^{2}-1}+q^{n k-k^{2}-2}
\end{aligned}
$$

Notation 8.4.7. We denote $\Delta(q, n, k)=\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ and $C(q, n, k)=\left[\begin{array}{c}n \\ k\end{array}\right]-\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$. Then, according to Lemma 8.3.5 we can write

$$
\begin{aligned}
& s_{1}(q, n, k, x)=x C(q, n, k)+\Delta(q, n, k) \quad \text { and } \\
& s_{2}^{\prime}(q, n, k, x)=x C(q, n, k)+(2-x) \Delta(q, n, k)+(x-2) W_{\Sigma}
\end{aligned}
$$

We denote $\Delta(q, n, k)$ and $C(q, n, k)$ by Δ and C if q, n and k are clear from the context.

Lemma 8.4.8. If $n \geq 2 k+1$ and $q \geq 3$, then

$$
W_{\Sigma} \leq \Delta-\frac{C}{2}
$$

Proof. First, using the definition of W_{Σ} as given in Lemma 8.3.4 we find

$$
\begin{aligned}
W_{\Sigma} & =\frac{1}{\left(q^{k+1}-1\right)^{2}} \sum_{i=0}^{k}\left(q^{i+1}-1\right) q^{2 k^{2}+k+\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i+1
\end{array}\right] \prod_{j=0}^{i}\left(q^{k-j+1}-1\right) \\
& =q^{2 k^{2}+k} \sum_{i=0}^{k} q^{\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \prod_{j=1}^{i}\left(q^{k-j+1}-1\right) .
\end{aligned}
$$

Here, the final product is considered 1 if $i=0$ (the 'empty' product). Now, using the definitions of Δ and C as in Notation 8.4.7, the inequality stated above can be written as:

$$
q^{2 k^{2}+k} \sum_{i=0}^{k} q^{\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k}\left[\begin{array}{c}
n-2 k-1 \tag{8.1}\\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \prod_{j=1}^{i}\left(q^{k-j+1}-1\right) \leq \frac{3}{2}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}-\frac{1}{2}\left[\begin{array}{l}
n \\
k
\end{array}\right] .
$$

For $k=1$, this reduces to

$$
q^{3}\left[\begin{array}{c}
n-3 \\
1
\end{array}\right]+q(q-1) \leq \frac{3}{2}\left[\begin{array}{c}
n-2 \\
1
\end{array}\right] q^{2}-\frac{1}{2}\left[\begin{array}{c}
n \\
1
\end{array}\right] \quad \Leftrightarrow \quad \frac{q-1}{2} \geq 0
$$

which is true for all $q \geq 2$. So, we will from now on assume that $k \geq 2$.
Repeatedly applying the left equality in (1.3) from Result 1.10 .3 , we find that $\left[\begin{array}{l}n \\ k\end{array}\right]=q^{k^{2}+k}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right]+$ $\sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}n-i-1 \\ k-1\end{array}\right]$, so inequality (8.1) can be rewritten as

$$
\begin{aligned}
& q^{2 k^{2}+k} \sum_{i=0}^{k} q^{\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \prod_{j=1}^{i}\left(q^{k-j+1}-1\right)+\frac{1}{2} \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right] \\
& \leq\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}
\end{aligned}
$$

We now apply Lemma 1.10 .4 on the right hand side of this inequality and we see that it is equivalent with

$$
\begin{gather*}
q^{2 k^{2}+k} \sum_{i=1}^{k} q^{\frac{3 i^{2}}{2}-\frac{i}{2}-3 i k}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \prod_{j=1}^{i}\left(q^{k-j+1}-1\right)+\frac{1}{2} \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right] \\
\leq q^{k^{2}+k} \sum_{i=1}^{k} q^{(k-i)^{2}}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \tag{8.2}
\end{gather*}
$$

Now, we note that $\prod_{j=1}^{i}\left(q^{k-j+1}-1\right) \leq q^{(i-1)(k+1)-\frac{i(i-1)}{2}}\left(q^{k-i+1}-1\right)$ for $i \geq 1$. So, in order to prove (8.2), it is sufficient to show that the following inequality is valid:

$$
\begin{align*}
\frac{1}{2} \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right] & \leq q^{k^{2}+k} \sum_{i=1}^{k}\left(q^{(k-i)^{2}}-q^{(k-i)(k-i-1)-1}\left(q^{k-i+1}-1\right)\right)\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \\
& =q^{k^{2}+k} \sum_{i=1}^{k} q^{(k-i)(k-i-1)-1}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \\
& =q^{2 k^{2}-2 k+1}\left[\begin{array}{c}
n-2 k-1 \\
k-1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]+q^{k^{2}+k} \sum_{i=2}^{k} q^{(k-i)(k-i-1)-1}\left[\begin{array}{c}
n-2 k-1 \\
k-i
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \tag{8.3}
\end{align*}
$$

Applying Lemma 1.10.2. 1 on the left hand side in 8.3), we find that

$$
\frac{1}{2} \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \tag{8.4}\\
k-1
\end{array}\right] \leq q^{(k-1)(n-k)} \sum_{i=0}^{k} q^{i}=q^{(k-1)(n-k)} \frac{q^{k+1}-1}{q-1}
$$

Now applying Lemma 1.10 .24 on the first term of the right hand side in 8.3), we find that

$$
q^{2 k^{2}-2 k+1}\left[\begin{array}{c}
n-2 k-1 \tag{8.5}\\
k-1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right] \geq\left(1+\frac{1}{q}\right) q^{(k-1)(n-k)+1} \frac{q^{k}-1}{q-1}=(q+1) q^{(k-1)(n-k)} \frac{q^{k}-1}{q-1} .
$$

From (8.4) and (8.5), it follows that in order to prove (8.3), it is sufficient to show that the following inequality is valid:

$$
q^{k+1}-1 \leq(q+1)\left(q^{k}-1\right) \quad \Leftrightarrow \quad q^{k} \geq q
$$

This statement is clearly true.
Lemma 8.4.9. If $x \leq \frac{1}{\sqrt[8]{2}} f(q, n, k)$ and $n \geq 2 k+2$, then $\frac{\Delta}{C}>\sqrt[4]{2} x^{2}$.
Proof. We want to prove that

$$
\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}>\sqrt[4]{2} x^{2}\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}\right) .
$$

We first look at the case $k \geq 2$. Given a k-space π in $\mathrm{PG}(n-1, q)$, the number of $(k-1)$-spaces meeting π equals $\left[\begin{array}{c}n \\ k\end{array}\right]-\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ by Lemma 1.10.1. We know that this number is smaller than the product of the number of points $Q \in \pi$ and the number of $(k-1)$-spaces through Q. This implies that

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k} } & \leq\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] \\
& =\frac{q^{k+1}-1}{q-1} \cdot \frac{\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k-1}-1\right) \cdots(q-1)} \\
& <\frac{q^{n k-\frac{k^{2}}{2}-n+\frac{3 k}{2}+1}}{(q-1)^{\frac{k^{2}}{2}-\frac{k}{2}+1}} .
\end{aligned}
$$

From this computation and the assumption on x, it follows that

$$
\begin{aligned}
\sqrt[4]{2} x^{2}\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}\right)<(f(q, n, k))^{2} \frac{q^{n k-\frac{k^{2}}{2}-n+\frac{3 k}{2}+1}}{(q-1)^{\frac{k^{2}}{2}-\frac{k}{2}+1}} & =q^{n k-k^{2}-2}\left(q^{2}+q+1\right) \\
& \leq\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}
\end{aligned}
$$

where the final inequality is given by Lemma 8.4 .6 (which we can apply since $k \geq 2$).
Now we look at the case $k=1$. We have to prove that

$$
\left[\begin{array}{c}
n-2 \\
1
\end{array}\right] q^{2}>\sqrt[4]{2} x^{2}\left(\left[\begin{array}{c}
n \\
1
\end{array}\right]-\left[\begin{array}{c}
n-2 \\
1
\end{array}\right] q^{2}\right) \Leftrightarrow \frac{q^{n-2}-1}{q^{2}-1} q^{2}>\sqrt[4]{2} x^{2}
$$

By the assumption on x, it is sufficient to prove that

$$
\frac{q^{n-2}-1}{q^{2}-1} q^{2}>f(q, n, 1)^{2}=q^{n-5}\left(q^{3}-1\right) \quad \Leftrightarrow \quad q^{n-2}+q^{n-3}-q^{n-5}-q^{2}>0
$$

which is clearly true since $n \geq 4$.

Lemma 8.4.10. Let \mathcal{L} be a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q), n \geq 3 k+2$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} f(q, n, k)$, then \mathcal{L} cannot contain $\left\lfloor\frac{3}{2} x\right\rfloor$ mutually disjoint k-spaces.
Proof. We apply Lemma 8.3.6 with $c+1=\left\lfloor\frac{3}{2} x\right\rfloor$ and have to show that

$$
\left\lfloor\frac{3}{2} x\right\rfloor s_{1}-\binom{\left\lfloor\frac{3}{2} x\right\rfloor}{ 2} s_{2}^{\prime}>x\left[\begin{array}{l}
n \\
k
\end{array}\right] .
$$

Using Notation 8.4.7 and Lemma 8.4.8 we see that it is sufficient to prove that

$$
\begin{aligned}
&\left\lfloor\frac{3}{2} x\right\rfloor(x C+\Delta)-x(\Delta+C) \\
&-\frac{1}{2}\left\lfloor\frac{3}{2} x\right\rfloor\left(\left\lfloor\frac{3}{2} x\right\rfloor-1\right)\left(x C-(x-2) \Delta+(x-2)\left(\Delta-\frac{C}{2}\right)\right)>0 \\
& \Leftrightarrow \quad \Delta\left(\left\lfloor\frac{3}{2} x\right\rfloor-x\right)>C\left(x-\left\lfloor\frac{3}{2} x\right\rfloor x+\frac{1}{2}\left\lfloor\frac{3}{2} x\right\rfloor\left(\left\lfloor\frac{3}{2} x\right\rfloor-1\right)\left(\frac{x}{2}+1\right)\right) .
\end{aligned}
$$

From Lemma 8.4.9 we know that $\frac{\Delta}{C}>\sqrt[4]{2} x^{2}$. Hence, it is sufficient to prove that

$$
\begin{equation*}
\left(\left\lfloor\frac{3}{2} x\right\rfloor-x\right) \sqrt[4]{2} x^{2}>x-\left\lfloor\frac{3}{2} x\right\rfloor x+\frac{1}{2}\left\lfloor\frac{3}{2} x\right\rfloor\left(\left\lfloor\frac{3}{2} x\right\rfloor-1\right)\left(\frac{x}{2}+1\right) \tag{8.6}
\end{equation*}
$$

for all admissible x. We denote $\frac{3}{2} x-\left\lfloor\frac{3}{2} x\right\rfloor$ by ε. Then, $0 \leq \varepsilon<1$. We rewrite (8.6) as

$$
\begin{align*}
& \left(\frac{3}{2} x-\varepsilon-x\right) \sqrt[4]{2} x^{2}>x-\left(\frac{3}{2} x-\varepsilon\right) x+\frac{1}{2}\left(\frac{3}{2} x-\varepsilon\right)\left(\frac{3}{2} x-\varepsilon-1\right)\left(\frac{x}{2}+1\right) \\
\Leftrightarrow & -\left(\frac{x+2}{4}\right) \varepsilon^{2}+\left(\frac{(3-4 \sqrt[4]{2}) x^{2}+x-2}{4}\right) \varepsilon+\frac{(8 \sqrt[4]{2}-9) x^{3}+12 x^{2}-4 x}{16}>0 \tag{8.7}
\end{align*}
$$

The nontrivial zero of the quadratic function $f(\varepsilon)=-\left(\frac{x+2}{4}\right) \varepsilon^{2}+\left(\frac{(3-4 \sqrt[4]{2}) x^{2}+x-2}{4}\right) \varepsilon$ is smaller than 1 for any x, so $f(\varepsilon)>f(1)$ for any $\varepsilon \in[0,1[$ regardless of x. So, to prove 8.7], it is sufficient to prove

$$
\begin{gathered}
\left(\frac{1}{2} \sqrt[4]{2}-\frac{9}{16}\right) x^{3}+\left(\frac{3}{2}-\sqrt[4]{2}\right) x^{2}-\frac{1}{4} x-1 \geq 0 \\
\Leftrightarrow \quad(x-2)\left((8 \sqrt[4]{2}-9) x^{2}+6 x+8\right) \geq 0
\end{gathered}
$$

which is clearly true for $x \geq 2$.
Lemma 8.4.11. If $2 \leq x \leq \frac{1}{\sqrt[8]{2}} f(q, n, k)$ and $n \geq 2 k+2$ and $q \geq 3$, then

$$
\begin{aligned}
& \frac{x-1}{\frac{3}{2} x-2}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}-\left(\frac{3}{2} x-3\right) s_{2}^{\prime}>x\left[\begin{array}{l}
n \\
k
\end{array}\right]-x\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k} \quad \text { and } \\
& \frac{x-1}{\frac{3}{2} x-2}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}-\left(\frac{3}{2} x-3\right) s_{2}^{\prime}>\left[\begin{array}{l}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] g^{k^{2}+k}+q^{k+1} .
\end{aligned}
$$

Proof. To prove the first inequality, we rewrite it using Notation 8.4.7

$$
\frac{x-1}{\frac{3}{2} x-2} \Delta-\left(\frac{3}{2} x-3\right)\left(x C+(2-x) \Delta+(x-2) W_{\Sigma}\right)>x C .
$$

Using Lemma 8.4.8 we see that it is sufficient to prove

$$
\frac{x-1}{\frac{3}{2} x-2} \Delta>C\left(\frac{3}{4} x^{2}+x-3\right)
$$

From Lemma 8.4.9 we know that $\frac{\Delta}{C}>\sqrt[4]{2} x^{2}$. Hence, it is sufficient to prove that

$$
\frac{x-1}{\frac{3}{2} x-2} \sqrt[4]{2} x^{2}>\left(\frac{3}{4} x^{2}+x-3\right) \Leftrightarrow\left(\sqrt[4]{2}-\frac{9}{8}\right) x^{3}-\sqrt[4]{2} x^{2}+\frac{13}{2} x-6>0
$$

Using a computer algebra package, we find that the last inequality is valid for all $x \geq 2$.
To prove the second inequality for $k \geq 2$, it is sufficient to prove that

$$
\begin{aligned}
& x\left[\begin{array}{l}
n \\
k
\end{array}\right]-x\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}>\left[\begin{array}{l}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}+q^{k+1} \\
\Leftrightarrow & q^{k+1}<(x-1)\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]-\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{k^{2}+k}\right)=(x-1) \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right],
\end{aligned}
$$

whereby we applied repeatedly the left equality in 1.3 from Result 1.10 .3 We immediately see that

$$
(x-1) \sum_{i=0}^{k} q^{i k}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right]>q^{k^{2}}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]>q^{(n-k)(k-1)+k}>q^{2 k+2}>q^{k+1}
$$

For $k=1$, we prove the second inequality directly. Note that $s_{2}^{\prime}=x+2 q$. The inequality reduces to

$$
\begin{align*}
& \frac{x-1}{\frac{3}{2} x-2} \cdot \frac{q^{n-2}-1}{q-1} q^{2}-\left(\frac{3}{2} x-3\right)(x+2 q)>q^{2}+q+1 \\
\Leftrightarrow & \frac{x-1}{\frac{3}{2} x-2} \cdot \frac{q^{n-2}-1}{q-1} q^{2}>\frac{3}{2} x^{2}+3(q-1) x+q^{2}-5 q+1 . \tag{8.8}
\end{align*}
$$

Recall that $2 \leq x \leq \frac{1}{\sqrt[8]{2}} f(q, n, 1)=\frac{1}{\sqrt[8]{2}} q^{\frac{n-5}{2}} \sqrt{q^{3}-1}<q^{\frac{n-2}{2}}$. We look at the left hand side of (8.8) and find

$$
\begin{aligned}
\frac{x-1}{\frac{3}{2} x-2} \cdot \frac{q^{n-2}-1}{q-1} q^{2} & =\left(\frac{2}{3}+\frac{2}{3(3 x-4)}\right) \frac{q^{n-2}-1}{q-1} q^{2} \\
& >\left(\frac{2}{3}+\frac{2}{9(x-1)}\right) \frac{q^{n-2}-1}{q-1} q^{2} \\
& >\frac{2}{3} \frac{q^{n-2}-1}{q-1} q^{2}+\frac{2}{9\left(q^{\frac{n-2}{2}}-1\right)} \frac{q^{n-2}-1}{q-1}\left(q^{2}-1\right) \\
& =\frac{2}{3} \frac{q^{n-2}-1}{q-1} q^{2}+\frac{2}{9}\left(q^{\frac{n-2}{2}}+1\right)(q+1)
\end{aligned}
$$

For the right hand side of 8.8), we find that

$$
\begin{aligned}
\frac{3}{2} x^{2}+3(q-1) x+q^{2}-5 q+1 & <\frac{3}{2 \sqrt[4]{2}} q^{n-5}\left(q^{3}-1\right)+3(q-1) q^{\frac{n-2}{2}}+q^{2}-5 q+1 \\
& <\frac{3}{2} q^{n-5}\left(q^{3}-1\right)+3(q-1) q^{\frac{n-2}{2}}+q^{2}-5 q+1
\end{aligned}
$$

So, to prove 8.8, it is sufficient to prove that

$$
\begin{align*}
& \frac{2}{3} \frac{q^{n-2}-1}{q-1} q^{2}+\frac{2}{9}\left(q^{\frac{n-2}{2}}+1\right)(q+1) \geq \frac{3}{2} q^{n-5}\left(q^{3}-1\right)+3(q-1) q^{\frac{n-2}{2}}+q^{2}-5 q+1 \\
\Leftrightarrow & \frac{2}{3} q^{n-1}-\frac{5}{6} q^{n-2}+\frac{2}{3} \frac{q^{n-4}-1}{q-1} q^{2}+\frac{3}{2} q^{n-5}-q^{\frac{n-2}{2}}\left(\frac{25}{9} q-\frac{29}{9}\right)-q^{2}+\frac{47}{9} q-\frac{7}{9} \geq 0 . \tag{8.9}
\end{align*}
$$

For $n=4,5$, we can check this to be true for all $q \geq 3$ using computer algebra software. For $n \geq 6$, we rewrite 8.9 as follows:

$$
\begin{aligned}
& \frac{5}{18}(q-3) q^{n-2}+\frac{q^{\frac{n}{2}}}{18}\left(7 q^{\frac{n-2}{2}}-50\right)+\frac{2}{3} \frac{q^{n-4}-1}{q-1} q^{2} \\
& \quad+\left(\frac{29}{9} q^{\frac{n-2}{2}}-q^{2}\right)+\frac{47}{9} q+\left(\frac{3}{2} q^{n-5}-\frac{7}{9}\right) \geq 0 .
\end{aligned}
$$

Here each of the terms in the left hand side is positive for $q \geq 3$ since $n \geq 6$, which proves the second inequality in the statement for $k=1$.

Lemma 8.4.12. If \mathcal{L} is a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q), n \geq 3 k+2$ and $q \geq 3$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} f(q, n, k)$, then \mathcal{L} contains a point-pencil.

Proof. Let π be a k-space in \mathcal{L} and let c be the maximal number of elements of \mathcal{L} that are pairwise disjoint. By Theorem 8.1.6 3), there are $(x-1)\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k} k$-spaces in \mathcal{L} disjoint from π. Within this collection of k-spaces, we find at most $c-1$ spaces $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{c-1}$ that are pairwise disjoint. By Lemma 8.4.10 $c-1 \leq\left\lfloor\frac{3}{2} x\right\rfloor-2$. By the pigeonhole principle, we find an index i so that σ_{i} meets at least $\frac{x-1}{c-1}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k} \geq \frac{x-1}{\left[\frac{3}{2} x\right\rfloor-2}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ elements of \mathcal{L} that are skew to π. We denote this collection of k-spaces disjoint from π and meeting σ_{i} in at least a point by \mathcal{F}_{i}.

Now we want to show that \mathcal{F}_{i} contains a family of pairwise intersecting subspaces. For any σ_{j} with $j \neq i$, we find at most s_{2}^{\prime} elements that meet σ_{i} and σ_{j}. In this way, we find that there are at least $\frac{x-1}{\left[\frac{3}{2} x\right]-2}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}-(c-2) s_{2}^{\prime} \geq \frac{x-1}{\frac{3}{2} x-2}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}-\left(\frac{3}{2} x-3\right) s_{2}^{\prime}$ elements of \mathcal{L} that meet σ_{i}, are disjoint from π and that are disjoint from σ_{j} for all $j \neq i$. We denote this subset of $\mathcal{F}_{i} \subseteq \mathcal{L}$ by \mathcal{F}_{i}^{\prime}. This collection \mathcal{F}_{i}^{\prime} of k-spaces is a set of pairwise intersecting k-spaces: if two elements α, β in \mathcal{F}_{i}^{\prime} would be disjoint, then $\left(\left\{\sigma_{1}, \ldots, \sigma_{c-1}\right\} \backslash\left\{\sigma_{i}\right\}\right) \cup\{\alpha, \beta, \pi\}$ would be a collection of $c+1$ pairwise disjoint elements of \mathcal{L}, which is impossible since we supposed that c is the size of a maximal set of pairwise disjoint k-spaces in \mathcal{L}. By Lemma 8.4.11 we have $\frac{x-1}{\frac{3}{2} x-2}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}-\left(\frac{3}{2} x-3\right) s_{2}^{\prime}>$ $\left[\begin{array}{l}n \\ k\end{array}\right]-\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}+q^{k+1}$ since $2 \leq x \leq \frac{1}{\sqrt[8]{2}} f(q, n, k)$. This implies that $\cap_{F \in \mathcal{F}_{i}^{\prime}} F$ is not empty by Theorem 2.0.5 let P be a point contained in $\cap_{F \in \mathcal{F}_{i}^{\prime}} F$. We conclude that \mathcal{F}_{i}^{\prime} is a part of the point-pencil through P.

We conclude by showing that \mathcal{L} contains the whole point-pencil through P. If $\gamma \notin \mathcal{L}$ is a k-space through P, then γ meets at least $\frac{x-1}{\frac{3}{2} x-2}\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}-\left(\frac{3}{2} x-3\right) s_{2}^{\prime}>x\left[\begin{array}{l}n \\ k\end{array}\right]-x\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$ elements of $\mathcal{F}_{i}^{\prime} \subseteq \mathcal{L}$, where the inequality follows from Lemma 8.4.11. This contradicts Theorem 8.1.63.

Theorem 8.4.13. There are no Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q), n \geq 3 k+2$ and $q \geq 3$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

Proof. We prove this result using induction on x. By Lemma 8.4.12 we know that \mathcal{L} contains the point-pencil $[P]_{k}$ through a point P. By Lemma 8.3.1(4), $\mathcal{L} \backslash[P]_{k}$ is a Cameron-Liebler set of k-spaces with parameter $(x-1)$, which by the induction hypothesis (in case $x-1 \geq 2$) or by Lemma 8.4.4 (in case $1<x-1<2$) does not exist, or which is a point-pencil (in case $x-1=1$) by Theorem8.4.5. In the former case, there is an immediate contradiction; in the latter case, \mathcal{L} contains two disjoint point-pencils of k-spaces, a contradiction.

Remark 8.4.14. We cannot compare this classification result with classification results already known, for Cameron-Liebler sets of k-spaces in $\operatorname{PG}(2 k+1, q), k \geq 1$, since the parameters n and k of these spaces do not fulfill the condition " $n \geq 3 k+2$ " in Theorem 8.4.13 For $q \in\{2,3,4,5\}$, a complete classification is known for Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$, see [59]. There, the authors show that the only Cameron-Liebler sets in this context are the trivial Cameron-Liebler sets, independent of the values of k and n. Hence, for small values of q this result is stronger than the classification result in the previous theorem.

66 You know, people think mathematics is complicated.
 Mathematics is the simple bit. It's the stuff we can understand.
 It's cats that are complicated. I mean, what is it in those little molecules and stuff that make one cat behave differently than another, or that make a cat? And how do you define a cat?
 I have no idea.

-John Conway

In this section, we give a short overview of the results proven in [46] and [44]. The results in this part are joint work with dr. Ferdinand Ihringer, Jonathan Mannaert, prof. Leo Storme and prof. Andrea Švob.

Similar to the definition of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$, we have the following definition in the affine context.

Definition 9.0.1. A set \mathcal{L} of k-spaces in $\operatorname{AG}(n, q)$ is a Cameron-Liebler set of k-spaces of parameter x in $\mathrm{AG}(n, q)$ if and only if every k-spread in $\operatorname{AG}(n, q)$ has x elements in common with \mathcal{L}.

In contrast to k-spreads in $\operatorname{PG}(n, q)$, we note that there exist k-spreads in $\mathrm{AG}(n, q)$, for every $k \leq n$, which implies that the definition above is well defined. An example of an affine k-spread in $\mathrm{AG}(n, q)$ is the following. Embed $\mathrm{AG}(n, q)$ in the projective space $\operatorname{PG}(n, q)$, and let H be the hyperplane at infinity. Consider a $(k-1)$-space π in H and let S_{p} be the set of all k-spaces through π. The set of all affine k-spaces corresponding to the elements of S_{p}, restricted to $\mathrm{AG}(n, q)$, is a k-spread in this affine space.

There is a strong link between Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$.
Theorem 9.0.2. Let \mathcal{L} be a Cameron-Liebler set of k-spaces with parameter x in $\mathrm{PG}(n, q)$ which does not contain k-spaces in some hyperplane H. Then \mathcal{L} is a Cameron-Liebler set of k-spaces with parameter x of $\mathrm{AG}(n, q) \cong \mathrm{PG}(n, q) \backslash H$.
If \mathcal{L} is a Cameron-Liebler set of k-spaces of $\operatorname{AG}(n, q)$ with parameter x, then \mathcal{L} is a Cameron-Liebler set of k-spaces of $\operatorname{PG}(n, q)$ with parameter x in the projective closure $\operatorname{PG}(n, q)$ of $\mathrm{AG}(n, q)$.

Using the link between $\mathrm{PG}(n, q)$ and $\mathrm{AG}(n, q)$, it was possible to give several equivalent definitions for Cameron-Liebler sets of k-spaces in $\operatorname{AG}(n, q)$. A second consequence of this link, is that the classification result for Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ (Theorem 8.4.13) implies the following result.

Theorem 9.0.3. There are no Cameron-Liebler sets of k-spaces in $\operatorname{AG}(n, q), n \geq 3 k+2$ and $q \geq 3$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

For $k=1, n=3$, we also find a classification result, using a modular equality in the affine context, similar to Theorem 8.4.2.

Theorem 9.0.4. Let \mathcal{L} be a Cameron-Liebler line set in $\mathrm{AG}(3, q)$ with parameter x, then the following equation holds:

$$
x(x-1) \equiv 0 \quad \bmod 2(q+1)
$$

We also found a non-trivial Cameron-Liebler line example \mathcal{L}_{a} in $\mathrm{AG}(3, q)$ with parameter $x=\frac{q^{2}-1}{2}$. This example could be derived from a non-trivial Cameron-Liebler line example \mathcal{L}_{p} in $\mathrm{PG}(3, q)$ [31. 58], since in this example, there is a (hyper)plane that contains no elements of \mathcal{L}_{p}.

10

66 Isaac Newton zag een appel, en dacht 'zie ik dat goed?' Het is niet wat het is, het is wat je d'r mee doet.

The results in this chapter are joint work with dr. Maarten De Boeck and appeared in [35].

10.1 Introduction

We investigate Cameron-Liebler sets in finite classical polar spaces. The finite classical polar spaces are the hyperbolic quadrics $Q^{+}(2 d-1, q)$, the parabolic quadrics $Q(2 d, q)$, the elliptic quadrics $Q^{-}(2 d+1, q)$, the Hermitian polar spaces $H\left(2 d-1, q^{2}\right)$ and $H\left(2 d, q^{2}\right)$, and the symplectic polar spaces $W(2 d-1, q)$, with q a prime power. For more information on these polar spaces, we refer to Section 1.5

Here we study the sets of generators defined by the following definition, with A the incidence matrix of points and generators. We call these sets degree one Cameron-Liebler sets.

Definition 10.1.1. A degree one Cameron-Liebler set of generators in a finite classical polar space \mathcal{P} is a set of generators in \mathcal{P}, with characteristic vector χ such that $\chi \in \operatorname{im}\left(A^{T}\right)$.

This definition corresponds with the definition of Boolean degree one functions for generators in polar spaces. In Section 8.2, we introduced Boolean degree one functions in projective spaces. Analogously, they can be defined in polar spaces, by replacing the set Δ_{k} of k-spaces in $\mathrm{PG}(n, q)$, by the set of generators in a polar space \mathcal{P}. Similarly, for generators, their definition corresponds to the fact that the corresponding characteristic vector lies in $V_{0} \perp V_{1}$, which are eigenspaces of the related association scheme. In [36], M. De Boeck, M. Rodgers, L. Storme and A. Švob introduced Cameron-Liebler sets of generators in the finite classical polar spaces. In this article, CameronLiebler sets of generators in the polar spaces are defined by the disjointness-definition and the authors give several equivalent definitions for these Cameron-Liebler sets. Note that this definition is the polar-space-equivalent for the disjointness-definition in the projective context, see Theorem 8.1.6 3. Furthermore, this definition for polar spaces does not require that the parameter x is an integer, but it is proved in [36, Theorem 4.8] that $x \in \mathbb{N}$.

Definition 10.1.2 ([36]). Let \mathcal{P} be a finite classical polar space with parameter e and rank d. A set \mathcal{L} of generators in \mathcal{P} is a Cameron-Liebler set of generators in \mathcal{P}, with parameter x, if and only if for every generator π in \mathcal{P}, the number of elements of \mathcal{L}, disjoint from π, equals ($x-$ $\chi(\pi)) q^{\binom{d-1}{2}+e(d-1)}$.

Using association scheme notation we can interpret the previous definition as follows. The characteristic vector of a Cameron-Liebler set is contained in $V_{0} \perp W$, with W the eigenspace of the disjointness matrix A_{d} corresponding to a specific eigenvalue. It can be seen that W always contains V_{1}, but it does not necessarily coincide with V_{1}. Hence, for some polar spaces, Cameron-Liebler sets and degree one Cameron-Liebler sets will coincide, but for others not.

Type I	Type $I I$	Type $I I I$
$Q^{-}(2 d+1, q)$	$Q^{+}(2 d-1, q), d$ even	$Q(4 n+2, q)$
$Q(2 d, q), d$ even		$W(4 n+1, q)$
$Q^{+}(2 d-1, q), d$ odd		
$W(2 d-1, q), d$ even		
$H(2 d-1, q), q$ square		
$H(2 d, q), q$ square		

Table 10.1: Three types of polar spaces

In this chapter, we consider three different types of polar spaces, see Table 10.1 Type I and $I I$ correspond with type I and $I I$ respectively, defined in [36], while type $I I I$ corresponds with the union of type $I I I$ and $I V$ in [36], as we handle the symplectic polar spaces $W(4 n+1, q)$, for both q odd and q even, in the same way. Definition 10.1 .2 and Definition 10.1.1 are equivalent for the polar spaces of type I by [36, Theorem 3.7, Theorem 3.15]. For the polar spaces of type $I I$, we can consider the (degree one) Cameron-Liebler sets of one class of generators; we see that CameronLiebler sets and degree one Cameron-Liebler sets coincide when we only consider one class (see [36. Theorem 3.16]). For the polar spaces of type $I I I$, this equivalence no longer applies and for these polar spaces, any degree one Cameron-Liebler set is also a regular Cameron-Liebler set, but not vice versa.

In Table 10.2 , we give an overview of properties that we will prove throughout this chapter. For this, we distinguish between sufficient properties, necessary properties and characteristic properties or definitions, for Cameron-Liebler sets and for degree one Cameron-Liebler sets for polar spaces of type $I I I$. Note that a characteristic property is both necessary and sufficient. In the last column, also the reference to the corresponding result is given.

Suppose in this table that \mathcal{L} is a set of generators in the polar space \mathcal{P} of type $I I I$, with characteristic vector χ. Suppose also that π is a generator in \mathcal{P}, not necessarily in \mathcal{L}.

Property	CL	degree one CL		
$\chi \in V_{0} \perp V_{1}$.	S	C	(Theorem	10.1.5
$\forall \pi \in \mathcal{P},\|\{\tau \in \mathcal{L} \mid \operatorname{dim}(\tau \cap \pi)=d-i-1\}\|=10.1)$, for $0 \leq i<d$	S	C	(Theorem	10.2.1
$\forall \pi \in \mathcal{P}:\|\{\tau \in \mathcal{L} \mid \tau \cap \pi=\emptyset\}\|=(x-\chi(\pi)) q^{\binom{d}{2}}$.	C	N	(Theorem	10.2.1)
$\chi-\frac{x}{q^{d}+1} \boldsymbol{j}$ is an eigenvector of A_{d} with eigenvalue $-q^{\binom{d}{2}}$.	C	N	(Lemma	10.2.3 2)
If \mathcal{P} admits a spread, then $\|\mathcal{L} \cap S\|=x, \forall$ spread S of \mathcal{P}.	C	N	(Lemma	10.2.3 3)

Table 10.2: Overview of the sufficient (S), necessary (N) and characterising (C) properties.

Recall that Cameron-Liebler sets were originally introduced by a group-theoretical argument, see Section 7.1 Note that for a polar space \mathcal{P}, we cannot use Lemma 7.1.4 to find a group-theoretical definition for degree one Cameron-Liebler sets of generators in \mathcal{P}. This follows from the fact that the incidence matrix A does not have full row rank, see [23, Theorem 9.4.3].

In Section 10.1.1 we discuss several properties of the eigenvalues of the association scheme for generators of finite classical polar spaces. In Section 10.2 we give an overview of the equivalent definitions and several properties of degree one Cameron-Liebler sets in polar spaces. In Section 10.3 we give an equivalent definition for Cameron-Liebler sets in the hyperbolic quadrics $Q^{+}(2 d-$
$1, q), d$ even. In Section 10.4 we prove some classification results for degree one Cameron-Liebler sets, in particular in the polar spaces $W(5, q)$ and $Q(6, q)$. We end this chapter with a new, nontrivial example of a Cameron-Liebler set of planes in $Q^{+}(5, q)$, described in Section 10.5 .

10.1.1 The association scheme for generators in polar spaces

Let \mathcal{P} be a finite classical polar space of rank d and let Ω be its set of generators. The relations \mathcal{R}_{i} on Ω are defined as follows: $\left(\pi, \pi^{\prime}\right) \in \mathcal{R}_{i}$ if and only if $\operatorname{dim}\left(\pi \cap \pi^{\prime}\right)=d-i-1$, for generators $\pi, \pi^{\prime} \in \Omega$, with $i=0, \ldots, d$. We define A_{i} as the adjacency matrix of the relation \mathcal{R}_{i}. By the theory of association schemes, we know that there is an orthogonal decomposition $V_{0} \perp V_{1} \perp \cdots \perp V_{d}$ of \mathbb{R}^{Ω} in common eigenspaces of $A_{0}, A_{1}, \ldots, A_{d}$. Consider the distance one relation \mathcal{R}_{1} and let V_{j} be the eigenspace corresponding to the eigenvalue $P_{j 1}$ from Lemma 10.1.3 Although there are several association schemes linked to a polar space, in this chapter, we will refer to the association scheme defined above as the association scheme of a polar space.

Lemma 10.1.3 ([110, Theorem 4.3.6]). In the association scheme of a polar space over \mathbb{F}_{q} of rank d and parameter e, the eigenvalue $P_{j i}$ of the relation \mathcal{R}_{i} corresponding to the subspace V_{j} is given by:

$$
P_{j i}=\sum_{s=\max \{0, j-i\}}^{\min \{j, d-i\}}(-1)^{j+s}\left[\begin{array}{l}
j \\
s
\end{array}\right]\left[\begin{array}{c}
d-j \\
d-i-s
\end{array}\right] q^{e(i+s-j)+\binom{j-s}{2}+\binom{i+s-j}{2} .}
$$

Before we start with investigating the Cameron-Liebler sets of generators in finite classical polar spaces, we give an important lemma about the eigenvalues $P_{j i}$.

Lemma 10.1.4. In the association scheme of polar spaces, the eigenvalue $P_{1 i}$ of A_{i} corresponds only with the eigenspace V_{1} for $i \neq 0$, that is, $P_{1 i} \neq P_{j i}, \forall j \neq 1$, except in the following cases.

1. The hyperbolic quadrics $Q^{+}(2 d-1, q)$. Here $P_{1 i}=P_{d-1, i}$ for i even, so $P_{1 i}$ also corresponds with V_{d-1}, for every relation \mathcal{R}_{i}, i even.
2. The parabolic quadrics $Q(4 n+2, q)$ and the symplectic spaces $W(4 n+1, q)$. Here $P_{1 d}=P_{d d}$, so $P_{1 d}$ also corresponds with V_{d} for the disjointness relation \mathcal{R}_{d}.

Proof. We need to prove, given a fixed $i \neq 0$ and $j \neq 1$, that $P_{1 i} \neq P_{j i}$, except for the two cases described in the statement of the lemma. For $j=0$ and for all $i \neq 0$, it is easy to calculate that $P_{1 i} \neq P_{0 i}$, so we may suppose that $j>1$.

For $i=1$, we can directly compare the eigenvalues P_{11} and $P_{j 1}$.

$$
\begin{aligned}
P_{11}=P_{j 1} & \Leftrightarrow\left[\begin{array}{c}
d-1 \\
1
\end{array}\right] q^{e}-1=\left[\begin{array}{c}
d-j \\
1
\end{array}\right] q^{e}-\left[\begin{array}{l}
j \\
1
\end{array}\right] \\
& \Leftrightarrow \frac{-q+1+\left(q^{d-1}-1\right) q^{e}}{q-1}=\frac{-q^{j}+1+\left(q^{d-j}-1\right) q^{e}}{q-1} \\
& \Leftrightarrow\left(q^{d-j+e-1}+1\right)\left(q^{j-1}-1\right)=0
\end{aligned}
$$

Since $j>1$, the last equation gives a contradiction for any q.

For $i \geq 2$, we introduce $\phi_{i}(j)=\max \left\{k \| q^{k} \mid P_{j i}\right\}$, the exponent of q in $P_{j i}$. If $P_{j i}=0$, we put $\phi_{i}(j)=\infty$. We will show that $\phi_{i}(j)$ is different from $\phi_{i}(1)$ for most values of i and j. For $j=1$, we find that

$$
P_{1 i}=-\left[\begin{array}{c}
d-1 \\
d-i
\end{array}\right] q^{\left({\underset{2}{2}}_{2}\right)+e(i-1)}+\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{\binom{i}{2}+e i}=q^{\binom{i-1}{2}+e(i-1)}\left(\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{i-1+e}-\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right]\right)
$$

We can see that $\phi_{i}(1)=\binom{i-1}{2}+e(i-1)$, since $i-1+e \geq 1$ and $\left[\begin{array}{l}a \\ b\end{array}\right]=1(\bmod q)$ for all $0 \leq b \leq a$. In Lemma 10.1.3. we see that $\phi_{i}(j)$ depends on the last factor of every term in the sum. To find $\phi_{i}(j)$, we first need to find all integer values z such that $q^{e(i+z-j)+\binom{j-z}{2}+\left({ }^{i+z-j}{ }_{2}\right)}$ is a factor of every term in the sum, or equivalently, such that $f_{j i}: \mathbb{Z} \rightarrow \mathbb{Z}: s \mapsto e(i+s-j)+\binom{j-s}{2}+\binom{i+s-j}{2}$ reaches its minimum for such a value z. So for most cases, we have that $\phi_{i}(j)=f_{i j}(z)$, but in some cases it occurs that two values of z correspond with opposite terms with factor $q^{\phi_{i}(j)}$. These cases, we have to investigate separately.
We can check that z is the unique integer or one of two integers in $[\max \{0, j-i\}, \ldots, \min \{j, d-i\}]$ closest to $j-\frac{i}{2}-\frac{e}{2}$. Since $i \geq 2$, we have three possibilities for the value of z, as we always have $j-i \leq j-\frac{i}{2}-\frac{e}{2}<j$:

- $z=0$ if $j-\frac{i}{2}-\frac{e}{2}<0$,
- $z \in\left\{j-\frac{i}{2}-\frac{e}{2}, j-\frac{i}{2}-\frac{e}{2} \pm \frac{1}{2}\right\}$ if $0 \leq j-\frac{i}{2}-\frac{e}{2} \leq d-i$,
- $z=d-i$ if $j-\frac{i}{2}-\frac{e}{2}>d-i$.

Now we handle these three cases.

- If $j-\frac{i}{2}-\frac{e}{2}<0$, we see that $f_{j i}$ is minimal for the integer $z=0$.

We note that in this case there is only 1 value of s, namely 0 , for which the corresponding term is divisible by $q^{\phi_{i}(j)}$ but not by $q^{\phi_{i}(j)+1}$. This is important to exclude the case where 2 terms with factor $q^{\phi_{i}(j)}$ would be each others opposite.
We find that $\phi_{i}(j)=f_{j i}(0)=\binom{i}{2}+(j-i)(j-e)$, and since $\phi_{i}(1)=\binom{i-1}{2}+e(i-1)$, the values $\phi_{i}(j)$ and $\phi_{i}(1)$ are equal if and only if $j=1 \vee j=i+e-1$. We only have to check the latter case, and recall that $j-\frac{i}{2}-\frac{e}{2}<0$. It follows that $i+e<2$, a contradiction since we supposed $i \geq 2$.

- If $0 \leq j-\frac{i}{2}-\frac{e}{2} \leq d-i$, we see that $f_{j i}$ is minimal for the integer z closest to $j-\frac{i}{2}-\frac{e}{2}$.

In Table 10.3. we list the different cases depending on e and the parity of i. Note that we have to check, for $e=0, i$ odd, for $e=1, i$ even, and for $e=2, i$ odd, that the two values of z do not correspond with two opposite terms with factor $q^{\phi_{i}(j)}$. By calculating and taking into account the conditions $0 \leq j-\frac{i}{2}-\frac{e}{2} \leq d-i$, we find out that those cases do not correspond with two opposite terms, except in the following cases:

$$
\begin{aligned}
& -e=0, j=\frac{d}{2} \text { and } i \text { odd, } \\
& -e=1, j=\frac{d}{2}+1, i=\frac{d}{2} \text { and } i \text { even, } \\
& -e=2, j=\frac{d}{2}+2, i=\frac{d}{2} \text { and } i \text { odd. }
\end{aligned}
$$

In these cases, $P_{i j}=0$, so $\phi_{i}(j)=\infty \neq \phi_{i}(1)$.
Moreover, for every e, i and $j>1, \phi_{i}(j)=f_{i j}(z)$ is independent of j, see the fifth column in Table 10.3 In the last column, we give the values of i for which $\phi_{i}(j)=\phi_{i}(1)$. As we supposed $i \geq 2$, we see that we have to check the eigenvalues for $i=2$ if $e \in\left\{0, \frac{1}{2}, 1\right\}$ and for $i=3$ if $e=0$ in detail.

e	i	z	$\phi_{i}(j)=f_{j i}(z)$	$\phi_{i}(1)$	S
$Q^{+}(2 d-1, q)$					
0	even	$j-\frac{i}{2}$	$\frac{i(i-2)}{4}$	$\frac{(i-1)(i-2)}{2}$	\{2\}
	odd	$j-\frac{i}{2} \pm \frac{1}{2}$	$\begin{cases}\frac{(i-1)^{2}}{4} & \text { if } j \neq \frac{d}{2} \\ \infty & \text { if } j=\frac{d}{2}\end{cases}$	$\frac{(i-1)(i-2)}{2}$	\{3\}
$\mathcal{H}(2 d-1, q)$, with q square					
$\frac{1}{2}$	even	$j-\frac{i}{2}$	$\frac{i(i-1)}{4}$	$\frac{(i-1)^{2}}{2}$	\{2\}
	odd	$j-\frac{i}{2}-\frac{1}{2}$	$\frac{i(i-1)}{4}$	$\frac{(i-1)^{2}}{2}$	\emptyset
$Q(2 d, q), W(2 d-1, q)$, with $d \not \equiv 00 \bmod 4$					
1	even	$j-\frac{i}{2}-\frac{1}{2} \pm \frac{1}{2}$	$\frac{i^{2}}{4}$	$\frac{i(i-1)}{2}$	\{2\}
	odd	$j-\frac{i}{2}-\frac{1}{2}$	$\frac{i^{2}-1}{4}$	$\frac{i(i-1)}{2}$	\emptyset
$Q(2 d, q), W(2 d-1, q)$, with $d \equiv 0 \bmod 4$					
1	even, $i \neq \frac{d}{2}$	$j-\frac{i}{2}-\frac{1}{2} \pm \frac{1}{2}$	$\frac{i^{2}}{4}$	$\frac{i(i-1)}{2}$	\{2\}
	$i=\frac{d}{2}$	$j-\frac{i}{2}-\frac{1}{2} \pm \frac{1}{2}$	$\begin{cases}\infty & \text { if } j=\frac{d}{2}+1 \\ \frac{i^{2}}{4} & \text { else }\end{cases}$	$\frac{i(i-1)}{2}$	\{2\}
	odd	$j-\frac{i}{2}-\frac{1}{2}$	$\frac{i^{2}-1}{4}$	$\frac{i(i-1)}{2}$	\emptyset
$\mathcal{H}(2 d, q)$, with q square					
$\frac{3}{2}$	even	$j-\frac{i}{2}-1$	$\frac{(i-1)(i+2)}{4}$	$\frac{i^{2}-1}{2}$	\emptyset
	odd	$j-\frac{i}{2}-\frac{1}{2}$	$\frac{(i-1)(i+2)}{4}$	$\frac{i^{2}-1}{2}$	\emptyset
$Q^{-}(2 d+1, q)$, with $d \not \equiv 2 \bmod 4$					
2	even	$j-\frac{i}{2}-1$	$\frac{i^{2}}{4}+\frac{i}{2}-1$	$\frac{(i-1)(i+2)}{2}$	\emptyset
	odd	$j-\frac{i}{2}-1 \pm \frac{1}{2}$	$\frac{(i-1)(i+3)}{4}$	$\frac{(i-1)(i+2)}{2}$	\emptyset
$Q^{-}(2 d+1, q)$, with $d \equiv 2 \bmod 4$					
2	even	$j-\frac{i}{2}-1$	$\frac{i^{2}}{4}+\frac{i}{2}-1$	$\frac{(i-1)(i+2)}{2}$	\emptyset
	odd, $i \neq \frac{d}{2}$	$j-\frac{i}{2}-1 \pm \frac{1}{2}$	$\frac{(i-1)(i+3)}{4}$	$\frac{(i-1)(i+2)}{2}$	\emptyset
	$i=\frac{d}{2}$	$j-\frac{i}{2}-1 \pm \frac{1}{2}$	$\begin{cases}\infty & \text { if } j=\frac{d}{2}+2 \\ \frac{(i-1)(i+3)}{4} & \text { else }\end{cases}$	$\frac{(i-1)(i+2)}{2}$	\emptyset

Table 10.3: For $0 \leq j-\frac{i}{2}-\frac{e}{2} \leq d-i$, with $S=\left\{i \geq 2 \mid \phi_{i}(j)=\phi_{i}(1)\right\}$.

- Case $i=2$ and $e \in\left\{0, \frac{1}{2}, 1\right\}$:

$$
\begin{aligned}
& P_{12}=P_{j 2} \\
\Leftrightarrow & -\left[\begin{array}{c}
d-1 \\
1
\end{array}\right] q^{e}+\left[\begin{array}{c}
d-1 \\
2
\end{array}\right] q^{1+2 e}=\left[\begin{array}{l}
j \\
2
\end{array}\right] q-\left[\begin{array}{c}
d-j \\
1
\end{array}\right]\left[\begin{array}{l}
j \\
1
\end{array}\right] q^{e}+\left[\begin{array}{c}
d-j \\
2
\end{array}\right] q^{1+2 e} \\
\Leftrightarrow & \left(\left[\begin{array}{c}
d-1 \\
2
\end{array}\right]-\left[\begin{array}{c}
d-j \\
2
\end{array}\right]\right) q^{2 e}+\left[\begin{array}{c}
d-j-1 \\
1
\end{array}\right]\left[\begin{array}{c}
j-1 \\
1
\end{array}\right] q^{e}=\left[\begin{array}{l}
j \\
2
\end{array}\right] .
\end{aligned}
$$

For $e=\frac{1}{2}$ and $e=1$, we see that the right and left hand side of the last equation are different modulo q, since $j>1$. So we can assume $e=0$.

$$
\begin{aligned}
& P_{12}=P_{j 2} \\
\Leftrightarrow & \frac{\left(q^{d-1}-1\right)\left(q^{d-2}-1\right)}{\left(q^{2}-1\right)(q-1)}-\frac{\left(q^{d-j}-1\right)\left(q^{d-j-1}-1\right)}{\left(q^{2}-1\right)(q-1)}+\frac{\left(q^{d-j-1}-1\right)\left(q^{j-1}-1\right)}{(q-1)(q-1)} \\
& =\frac{\left(q^{j}-1\right)\left(q^{j-1}-1\right)}{\left(q^{2}-1\right)(q-1)} \\
\Leftrightarrow & q^{2 d-3}-q^{2 d-2 j-1}+q-q^{2 j-1}=0 \\
\Leftrightarrow & q\left(q^{2 j-2}-1\right)\left(q^{2(d-j-1)}-1\right)=0 .
\end{aligned}
$$

Since $j>1$, we see that $P_{12}=P_{j 2}$ if and only if $j=d-1$. This corresponds with the first exception in the lemma with $i=2$.

- Case $i=3$ and $e=0$.

$$
\begin{aligned}
& P_{13}=P_{j 3} \\
\Leftrightarrow & -\left[\begin{array}{c}
d-1 \\
2
\end{array}\right] q+\left[\begin{array}{c}
d-1 \\
3
\end{array}\right] q^{3}=-\left[\begin{array}{l}
j \\
3
\end{array}\right] q^{3}+\left[\begin{array}{l}
j \\
2
\end{array}\right]\left[\begin{array}{c}
d-j \\
1
\end{array}\right] q-\left[\begin{array}{l}
j \\
1
\end{array}\right]\left[\begin{array}{c}
d-j \\
2
\end{array}\right] q+\left[\begin{array}{c}
d-j \\
3
\end{array}\right] q^{3} \\
\Leftrightarrow & -\left[\begin{array}{c}
d-1 \\
2
\end{array}\right]+\left[\begin{array}{c}
d-1 \\
3
\end{array}\right] q^{2}=-\left[\begin{array}{l}
j \\
3
\end{array}\right] q^{2}+\left[\begin{array}{l}
j \\
2
\end{array}\right]\left[\begin{array}{c}
d-j \\
1
\end{array}\right]-\left[\begin{array}{c}
j \\
1
\end{array}\right]\left[\begin{array}{c}
d-j \\
2
\end{array}\right]+\left[\begin{array}{c}
d-j \\
3
\end{array}\right] q^{2} .
\end{aligned}
$$

Since the right and left hand side of the last equation are different modulo q, we see that $P_{13} \neq$ $P_{j 3}$ for $j>1$. Recall that $\left[\begin{array}{l}a \\ b\end{array}\right]=1(\bmod q)$.

- If $j-\frac{i}{2}-\frac{e}{2}>d-i$, we see that $f_{j i}$ is minimal for the integer $z=d-i$. Remark again that there is only one value of s for which the corresponding term is divisible by $q^{\phi_{i}(j)}$ but not by $q^{\phi_{i}(j)+1}$. This excludes the case where 2 terms with factor $q^{\phi_{i}(j)}$ would be each others opposite.
We find that $\phi_{i}(j)=f_{j i}(d-i)=(j-e-d+1)(j-d+i-1)+\binom{i-1}{2}+e(i-1)$, and we know that $\phi_{i}(1)=\binom{i-1}{2}+e(i-1)$. These two values $\phi_{i}(j)$ and $\phi_{i}(1)$ are equal if and only if $j=e+d-1$ or $j=d-i+1$.
- Suppose $j=d+e-1$. As $j, d \in \mathbb{Z}$, we know that $e \in \mathbb{Z}$. If $e=2$, then $j=d+1>d$, a contradiction. For $e=1$, we find that $P_{1 i}=P_{d i}$ if and only if $i=d$ and d odd. This corresponds to the polar spaces $Q(4 n+2, q)$ and $W(4 n+1, q)$. For $e=0$ and $j=d-1$, we find that $P_{1 i}=P_{d-1, i}$ for i even. This corresponds to the exception for the polar spaces $Q^{+}(2 d-1, q)$ and i even.
- Suppose $j=d-i+1$. Since $j-\frac{i}{2}-\frac{e}{2}>d-i$, we know that $i+e<2$, which gives a contradiction as we supposed $i \geq 2$.

We continue with well-known theorems, linked to the Bose-Mesner algebra of the association scheme, that will be useful in the following sections (see Result 1.9.3). The first theorem follows from [36, Theorem 2.14].

Theorem 10.1.5. Let \mathcal{P} be a finite classical polar space of rank d and parameter e, and let Ω be the set of all generators of \mathcal{P}. Consider the eigenspace decomposition $\mathbb{R}^{\Omega}=V_{0} \perp V_{1} \perp \cdots \perp V_{d}$ related to the association scheme, and using the classical order. Let A be the point-generator incidence matrix of \mathcal{P}, then $\operatorname{im}\left(A^{T}\right)=V_{0} \perp V_{1}$ and $V_{0}=\langle\boldsymbol{j}\rangle$.

The following theorem was already proved in [40, Proposition 3.7] from a different point of view. The ideas are already present in [2, Lemma 2] and [110] Lemma 2.1.3]. For the sake of completeness, we add a proof below.

Theorem 10.1.6. Let \mathcal{R}_{i} be a relation of an association scheme on the set Ω with adjacency matrix A_{i} and let $\mathcal{L} \subseteq \Omega$ be a set, with characteristic vector χ, such that for any $\pi \in \Omega$, we have that

$$
\left|\left\{x \in \mathcal{L} \mid(x, \pi) \in \mathcal{R}_{i}\right\}\right|= \begin{cases}\alpha_{i} \text { if } \pi \in \mathcal{L} \\ \beta_{i} \text { if } \pi \notin \mathcal{L}\end{cases}
$$

Then $\alpha_{i}-\beta_{i}=P$ is an eigenvalue of A_{i} and $v_{i}=\chi+\frac{\beta_{i}}{P-P_{0 i}} \boldsymbol{j} \in V$ with V the eigenspace of A_{i} for the eigenvalue P.

The eigenspace V in the previous theorem can be seen as the direct sum of several eigenspaces of the association scheme. Note that an association scheme is not necessary in this theorem, a regular relation suffices. Furthermore, the set \mathcal{L}, described in this theorem, is an intriguing set in the graph $\Gamma=\left(\Omega, \mathcal{R}_{i}\right)$, see Definition 1.7.7.

Proof. We show that $v_{i}=\chi+\frac{\beta_{i}}{P-P_{0 i}} \boldsymbol{j}$, with $P=\alpha_{i}-\beta_{i}$ is an eigenvector for the matrix A_{i} with eigenvalue P :

$$
\begin{aligned}
A_{i}\left(\chi+\frac{\beta_{i}}{P-P_{0 i}} \boldsymbol{j}\right) & =\alpha_{i} \chi+\beta_{i}(\boldsymbol{j}-\chi)+\frac{\beta_{i}}{P-P_{0 i}} P_{0 i} \boldsymbol{j} \\
& =P\left(\chi+\frac{\beta_{i}}{P-P_{0 i}} \boldsymbol{j}\right)
\end{aligned}
$$

So we find that $\chi+\frac{\beta_{i}}{P-P_{0 i}} \boldsymbol{j} \in V$.

10.2 Degree one Cameron-Liebler sets

In this section, we investigate the degree one Cameron-Liebler sets and give an equivalent definition. Every degree one Cameron-Liebler set \mathcal{L} has a parameter x, which can be defined as

$$
x=\frac{|\mathcal{L}|}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)}
$$

For now it is clear that $x \in \mathbb{Q}$, but, in Lemma 10.4.1 we will prove that $x \in \mathbb{N}$.
Using Lemma 10.1.4 and Theorem 10.1.6 we can give a new equivalent definition for these degree one Cameron-Liebler sets of generators in polar spaces. The following theorem is an extension of Lemma 4.9 in [36].

Theorem 10.2.1. Let \mathcal{P} be a finite classical polar space, of rank d with parameter e, let \mathcal{L} be a set of generators of \mathcal{P} and i be an integer with $1 \leq i \leq d$. If \mathcal{L} is a degree one Cameron-Liebler set
of generators in \mathcal{P}, with parameter x, then the number of elements of \mathcal{L} meeting a generator π in a ($d-i-1$)-space equals

$$
\left\{\begin{array}{cl}
\left.\left((x-1)\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right]+q^{i+e-1}\left[\begin{array}{c}
d-1 \\
i
\end{array}\right]\right) q^{(i-1} 2\right)+(i-1) e & \text { if } \pi \in \mathcal{L} \tag{10.1}\\
\left.x\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] q^{(i-1} 2\right)+(i-1) e & \text { if } \pi \notin \mathcal{L} .
\end{array}\right.
$$

Moreover, if this property holds for a polar space \mathcal{P} and an integer i such that

- i is odd for $\mathcal{P}=Q^{+}(2 d-1, q)$,
- $i \neq d$ for $\mathcal{P}=Q(2 d, q)$ or $\mathcal{P}=W(2 d-1, q)$ both with d odd or
- i is arbitrary otherwise,
then \mathcal{L} is a degree one Cameron-Liebler set with parameter x.
Proof. Consider first a degree one Cameron-Liebler set \mathcal{L} of generators in the polar space \mathcal{P} with characteristic vector χ. As $\chi \in V_{0} \perp V_{1}$, we have $\chi=v+a j$ for some $v \in V_{1}$ and some $a \in \mathbb{R}$. Since $|\mathcal{L}|=\langle j, \chi\rangle=x \prod_{i=0}^{d-2}\left(q^{i+e}+1\right)$, we find that $a=\frac{x}{q^{d+e-1}+1}$, hence $\chi=\frac{x}{q^{d+e-1}+1} \boldsymbol{j}+v$. Recall that the matrix A_{i} is the incidence matrix of the relation \mathcal{R}_{i}, which describes whether the dimension of the intersection of two generators equals $d-i-1$ or not. This implies that the vector $A_{i} \chi$, on the position corresponding to a generator π, gives the number of generators in \mathcal{L}, meeting π in a $(d-i-1)$-space. We have

$$
\begin{aligned}
& A_{i} \chi=A_{i} v+\frac{x}{q^{d+e-1}+1} A_{i} \boldsymbol{j}=P_{1 i} v+\frac{x}{q^{d+e-1}+1} P_{0 i} \boldsymbol{j} \\
& =\left(\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{\binom{i}{2}+e i}-\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] q^{\binom{(-1}{2}+e(i-1)}\right) v+\frac{x}{q^{d+e-1}+1}\left[\begin{array}{l}
d \\
i
\end{array}\right] q^{\binom{i}{2}+e i} \boldsymbol{j} \\
& =\left(\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{\binom{i}{2}+e i}-\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] q^{\binom{(i-1}{2}+e(i-1)}\right)\left(\chi-\frac{x}{q^{d+e-1}+1} \boldsymbol{j}\right) \\
& +\frac{x}{q^{d+e-1}+1}\left[\begin{array}{l}
d \\
i
\end{array}\right] q^{\binom{i}{2}+e i} \boldsymbol{j} \\
& =\frac{x q^{\binom{(-1}{2}+e(i-1)}}{q^{d+e-1}+1}\left(\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right]-\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{i+e-1}+\left[\begin{array}{l}
d \\
i
\end{array}\right] q^{i+e-1}\right) \boldsymbol{j} \\
& \left.+q^{(i-1}{ }^{(i-1}\right)+e(i-1)\left(\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{i+e-1}-\left[\begin{array}{l}
d-1 \\
i-1
\end{array}\right]\right) \chi \\
& =q^{\left(\frac{i-1}{2}\right)+e(i-1)}\left(x\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] \boldsymbol{j}+\left(\left[\begin{array}{c}
d-1 \\
i
\end{array}\right] q^{i+e-1}-\left[\begin{array}{l}
d-1 \\
i-1
\end{array}\right]\right) \chi\right),
\end{aligned}
$$

which proves the first implication.
For the proof of the other implication, suppose that \mathcal{L} is a set of generators in \mathcal{P} with the property described in the statement of the theorem. We apply Theorem 10.1.6 with Ω the set of all generators in $\mathcal{P}, \mathcal{R}_{i}$ the relation $\left\{\left(\pi, \pi^{\prime}\right) \mid \operatorname{dim}\left(\pi \cap \pi^{\prime}\right)=d-i-1\right\}$, and

$$
\begin{aligned}
& \alpha_{i}=\left((x-1)\left[\begin{array}{l}
d-1 \\
i-1
\end{array}\right]+q^{i+e-1}\left[\begin{array}{c}
d-1 \\
i
\end{array}\right]\right) q^{\binom{i-1}{2}+(i-1) e}, \\
& \left.\beta_{i}=x\left[\begin{array}{l}
d-1 \\
i-1
\end{array}\right] q^{(i-1} \begin{array}{c}
2 \\
2
\end{array}\right)+(i-1) e
\end{aligned}
$$

As $\alpha_{i}-\beta_{i}=P_{1 i}$, we find that $v_{i}=\chi+\frac{\beta_{i}}{P_{1 i}-P_{0 i}} \boldsymbol{j} \in V_{1}$, for the admissible values of i, by Lemma 10.1.4 Hence, by Definition 10.1.1 \mathcal{L} is a degree one Cameron-Liebler set in \mathcal{P}.

Remark 10.2.2. This definition is also a new equivalent definition for Cameron-Liebler sets of generators in polar spaces of type I, as for these polar spaces, degree one Cameron-Liebler sets and Cameron-Liebler sets coincide.

In the following lemma, we give some properties of degree one Cameron-Liebler sets in a polar space.

Lemma 10.2.3. Let \mathcal{L} be a degree one Cameron-Liebler set of generators in a polar space \mathcal{P} and let χ be the characteristic vector of \mathcal{L}. Denote $\frac{|\mathcal{L}|}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)}$ again by x. Then \mathcal{L} has the following properties:

1. $\chi=\frac{x}{q^{d+e-1}+1} \mathbf{j}+v$ with $v \in V_{1}$,
2. $\chi-\frac{x}{q^{d+e-1}+1} \boldsymbol{j}$ is an eigenvector with eigenvalue $P_{1 i}$ for all adjacency matrices A_{i} in the association scheme,
3. if \mathcal{P} admits a spread, then $|\mathcal{L} \cap S|=x$ for every spread \mathcal{S} of \mathcal{P}.

Proof. The first property follows from the first part of the proof of Theorem 10.2.1 The second property follows from the first property since $\chi-\frac{x}{q^{d+e-1}+1} \boldsymbol{j} \in V_{1}$.

Consider now a spread S in \mathcal{P} with characteristic vector χ_{S} and let A be the point-generator incidence matrix of \mathcal{P}. Since $\chi \in \operatorname{im}\left(A^{T}\right)=\operatorname{ker}(A)^{\perp}$ and by [36, Lemma 3.6(i), $m=1$], which gives that $u=\chi_{S}-\frac{1}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)} \boldsymbol{j} \in \operatorname{ker}(A)$, we find, by taking the inner product of u and χ, that

$$
|\mathcal{L} \cap S|=\left\langle\chi_{S}, \chi\right\rangle=\frac{1}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)}\langle\mathbf{j}, \chi\rangle=\frac{1}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)}|\mathcal{L}|=x
$$

We also give some properties of degree one Cameron-Liebler sets of generators in polar spaces that can easily be proved. They are similar to the properties for Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$, see Lemma 8.3.1.

Lemma 10.2.4. Let \mathcal{L} and \mathcal{L}^{\prime} be two degree one Cameron-Liebler sets of generators in a polar space \mathcal{P} with parameters x and x^{\prime} respectively, then the following statements are valid.

1. $0 \leq x, x^{\prime} \leq q^{d-1+e}+1$.
2. $|\mathcal{L}|=x \prod_{i=0}^{d-2}\left(q^{i+e}+1\right)$.
3. The set of all generators in the polar space \mathcal{P} not in \mathcal{L} is a degree one Cameron-Liebler set of generators in \mathcal{P} with parameter $q^{d-1+e}+1-x$.
4. If $\mathcal{L} \cap \mathcal{L}^{\prime}=\emptyset$, then $\mathcal{L} \cup \mathcal{L}^{\prime}$ is a degree one Cameron-Liebler set of generators in \mathcal{P} with parameter $x+x^{\prime}$.
5. If $\mathcal{L} \subseteq \mathcal{L}^{\prime}$, then $\mathcal{L} \backslash \mathcal{L}^{\prime}$ is a degree one Cameron-Liebler set of generators in \mathcal{P} with parameter $x-x^{\prime}$.

Lemma 10.2 .5 ([59, Lemma 2.3]). Let \mathcal{P} be a polar space of rank d and let \mathcal{P}^{\prime} be a polar space, embedded in \mathcal{P} with the same rank d. If \mathcal{L} is a degree one Cameron-Liebler set in \mathcal{P}, then the restriction of \mathcal{L} to \mathcal{P}^{\prime} is again a degree one Cameron-Liebler set.

Note that Theorem 10.2 .1 does not hold for some values of i, dependent on the polar space \mathcal{P}, since for these cases, we cannot apply Lemma 10.1 .4 We will now show that there are examples of generator sets that admit the property of Theorem 10.2 .1 for the non-admitted values of i, but that are not degree one Cameron-Liebler sets. These are however Cameron-Liebler sets in the sense of [36].

Example 10.2.6. By investigating [36, Example 4.6], we find an example of a Cameron-Liebler set in a polar space of type III with $d=3$, that is not a degree one Cameron-Liebler set: a base-plane. A base-plane in a polar space \mathcal{P} of rank 3 with base the plane π is the set of all planes in \mathcal{P}, intersecting π in at least a line.

Let \mathcal{P} be a polar space of type III of rank 3 , so $\mathcal{P}=W(5, q)$ or $\mathcal{P}=Q(6, q)$. Let π be a plane and let \mathcal{L} be the base-plane with base π. This set \mathcal{L} is a Cameron-Liebler set in \mathcal{P}, but not a degree one Cameron-Liebler set. This follows from Theorem 10.2 .1 with $i=1$: The number of generators of \mathcal{L}, meeting a plane α of \mathcal{L} in a line, depends on whether α equals π or not. As those two numbers, for $\alpha=\pi$ and $\alpha \neq \pi$ are different, the property in Theorem 10.2 .1 does not hold. This implies that the set \mathcal{L} is not a degree one Cameron-Liebler set. By similar arguments, we can also use Theorem 10.2 .1 with $i=2$, to show that a base-plane is not a degree one Cameron-Liebler set. However, the equalities for $i=3$ in Theorem 10.2.1 hold.

Example 10.2.7. A hyperbolic class is the set of all generators of one class of a hyperbolic quadric $Q^{+}(4 n+1, q)$ embedded in a polar space \mathcal{P} with $\mathcal{P}=Q(4 n+2, q)$ or $\mathcal{P}=W(4 n+1, q), q$ even. We know that this set is a Cameron-Liebler set, see [36, Remark 3.25], but we can prove that this set is not a degree one Cameron-Liebler set, by considering $\operatorname{im}\left(B^{T}\right)$, where B is the incidence matrix of hyperbolic classes and generators. Every hyperbolic class corresponds to a row in the matrix B. If the characteristic vectors of all hyperbolic classes would lie in $V_{0} \perp V_{1}$, then $\operatorname{im}\left(B^{T}\right) \subseteq V_{0} \perp V_{1}$. This gives a contradiction since $\operatorname{im}\left(B^{T}\right)=V_{0} \perp V_{1} \perp V_{d}$ by [36, Lemma 3.26].
Note that for the polar spaces $W(4 n+1, q), q$ odd, we do not have Example 10.2.7 as there is no hyperbolic quadric $Q^{+}(4 n+1, q)$ embedded in these symplectic polar spaces.

In the previous remark, we found that one class of a hyperbolic quadric $Q^{+}(4 n+1, q)$ embedded in a $Q(4 n+2, q)$ or $W(4 n+1, q), q$ even, is not a degree one Cameron-Liebler set. In the next example, we show that an embedded hyperbolic quadric, that is, taking both hyperbolic classes, is a degree one Cameron-Liebler set in the polar spaces $Q(4 n+2, q)$ and $W(4 n+1, q), q$ even.

Example 10.2.8 ([36, Example 4.4]). Consider a polar space \mathcal{P}, with $\mathcal{P}=Q(4 n+2, q)$ or $\mathcal{P}=$ $W(4 n+1, q)$, q even. By Lemma 10.2.5 we know that the set of generators in an embedded hyperbolic quadric $Q^{+}(4 n+1, q)$ is a degree one Cameron-Liebler set, and hence, also a Cameron-Liebler set.

Example	CL	degree one CL
All generators of \mathcal{P}.	\times	\times
Point-pencil.	\times	\times
Base-plane for $d=3$ (defined in Example 10.2.6.	\times	
Hyperbolic class (defined in Example 10.2 .7 .	\times	
Embedded hyperbolic quadric (defined in Example 10.2.8.	\times	\times

Table 10.4: Examples of Cameron-Liebler and degree one Cameron-Liebler sets.

10.3 Polar spaces $Q^{+}(2 d-1, q)$, d even

In the previous section, we introduced degree one Cameron-Liebler sets while in this section we consider Cameron-Liebler sets defined with the 'disjointness-definition' (Definition 10.1.2). We focus on Cameron-Liebler sets contained in one class of generators in the polar spaces $Q^{+}(2 d-1, q)$, d even. These Cameron-Liebler sets were introduced in [36 Section 3] and are defined in only one class of generators, in contrast to the (degree one) Cameron-Liebler sets in other polar spaces.

Recall, from Example 1.5.6, that the generators of a hyperbolic quadric $Q^{+}(2 d-1, q)$ can be divided in two classes such that for any two generators π and π^{\prime} we have $\operatorname{dim}\left(\pi \cap \pi^{\prime}\right) \equiv 1(\bmod 2)$ if and only if π and π^{\prime} belong to the same class. By restricting the classical association scheme of the hyperbolic quadric $Q^{+}(2 d-1, q)$ to the even relations, we define an association scheme for one class of generators. For more information, see [36, Remark 2.18 and Lemma 3.12]. Let \mathcal{R}_{i}^{\prime} and A_{i}^{\prime} be $\mathcal{R}_{2 i}$ and $A_{2 i}$ respectively, restricted to the rows and columns corresponding to the generators of this class. Let V_{j}^{\prime} be $V_{j} \perp V_{d-j}$, also restricted to the subspace corresponding to these generators.

For the polar spaces $Q^{+}(2 d-1, q), d$ even, we thus have the relations $\mathcal{R}_{i}^{\prime}, i=0, \ldots, \frac{d}{2}$, and the eigenspaces $V_{j}^{\prime}, j=0, \ldots, \frac{d}{2}$. For this association scheme on one class of generators, we give the analogue of Lemma 10.1.4

Lemma 10.3.1. The eigenvalue $P_{1,2 i}$ of $A_{i}^{\prime}=A_{2 i}$ corresponds only with the eigenspace $V_{1}^{\prime}=V_{1} \perp$ V_{d-1} for the classical polar spaces $Q^{+}(2 d-1, q)$, d even.

Proof. This lemma follows from Lemma 10.1 .4 as for the hyperbolic quadrics $Q^{+}(2 d-1, q)$ we found that $P_{1 k}=P_{d-1, k}$ for k even. This implies that the eigenvalue $P_{1,2 i}$ corresponds with $V_{1} \perp$ V_{d-1}.

Here again, we find a new equivalent definition.
Theorem 10.3.2. Let \mathcal{G} be a class of generators of the hyperbolic quadric $Q^{+}(2 d-1, q)$ of even rank d and let \mathcal{L} be a set of generators of \mathcal{G}. The set \mathcal{L} is a Cameron-Liebler set of generators in \mathcal{G} if and only iffor every generator π in \mathcal{G}, the number of elements of \mathcal{L} meeting π in a $(d-2 i-1)$-space equals

$$
\left\{\begin{array}{cl}
\left((x-1)\left[\begin{array}{c}
d-1 \\
2 i-1
\end{array}\right]+q^{2 i-1}\left[\begin{array}{c}
d-1 \\
2 i
\end{array}\right]\right) q^{(2 i-1)(i-1)} & \text { if } \pi \in \mathcal{L} \\
x\left[\begin{array}{c}
d-1 \\
2 i-1
\end{array}\right] q^{(2 i-1)(i-1)} & \text { if } \pi \notin \mathcal{L}
\end{array}\right.
$$

Proof. Let \mathcal{L} be a set of generators in \mathcal{G} with the property described in the theorem, then the first implication is a direct application of Theorem 10.1.6 with Ω the set of all generators in $\mathcal{G}, \mathcal{R}_{i}$ the relation $R_{i}^{\prime}=\left\{\left(\pi, \pi^{\prime}\right) \mid \operatorname{dim}\left(\pi \cap \pi^{\prime}\right)=d-2 i-1\right\}$, and

$$
\begin{aligned}
\alpha_{i} & =\left((x-1)\left[\begin{array}{c}
d-1 \\
2 i-1
\end{array}\right]+q^{2 i-1}\left[\begin{array}{c}
d-1 \\
2 i
\end{array}\right]\right) q^{(2 i-1)(i-1)} \\
\beta_{i} & =x\left[\begin{array}{c}
d-1 \\
2 i-1
\end{array}\right] q^{(2 i-1)(i-1)}
\end{aligned}
$$

As $\alpha_{i}-\beta_{i}=P_{1,2 i}$, we find that $v_{i}=\chi+\frac{\beta_{i}}{P_{1,2 i}-P_{0,2 i}} \boldsymbol{j} \in V_{1}^{\prime}$, hence $\chi \in V_{0}^{\prime} \perp V_{1}^{\prime}$ and, by [36] Lemma 3.15], we know that $\chi \in \operatorname{im}\left(A^{T}\right)$. Now it follows from [36. Definition 3.16(iv)] that \mathcal{L} is a (degree one) Cameron-Liebler set of \mathcal{G}. The other implication is [36, Lemma 4.10].

10.4 Classification results

We try to use the ideas from the classification results for Cameron-Liebler sets of polar spaces of type I and the polar spaces $Q^{+}(2 d-1, q), d$ even, in [36] Section 6], to find classification results for degree one Cameron-Liebler sets in polar spaces.
We start with a lemma that proves that the parameter x is always an integer.
Recall from the first part of this thesis that an Erdős-Ko-Rado (EKR) set of k-spaces is a set of k-spaces which are pairwise not disjoint (see Chapter 22).

Lemma 10.4.1. If \mathcal{L} is a degree one Cameron-Liebler set in a polar space \mathcal{P} with parameter x, then $x \in \mathbb{N}$.

Proof. For all polar spaces, except the hyperbolic quadrics $Q^{+}(2 d-1, q), d$ even, we refer to [36] Lemma 4.8].

Suppose that \mathcal{L} is a degree one Cameron-Liebler set in $\mathcal{P}=Q^{+}(2 d-1, q)$, d even, with parameter x. Then \mathcal{L} is also a Cameron-Liebler set in \mathcal{P} with parameter x. If Ω_{1} and Ω_{2} are the two classes of generators in \mathcal{P}, then $\mathcal{L} \cap \Omega_{1}$ and $\mathcal{L} \cap \Omega_{2}$ are Cameron-Liebler sets of Ω_{1} and Ω_{2} with parameter x, by [36 Theorem 3.20]. Hence, x is the parameter of a Cameron-Liebler set in one class of generators of $Q^{+}(2 d-1, q), d$ even. This implies, by [36 Lemma 4.8], that $x \in \mathbb{N}$.

Now we continue with a classification result for degree one Cameron-Liebler sets with parameter 1 in all polar spaces.

Theorem 10.4.2. A degree one Cameron-Liebler set in a polar space \mathcal{P} of rank d with parameter 1 is a point-pencil.

Proof. For the polar spaces of type I and $I I I$, the theorem follows from [36. Theorem 6.4] as any degree one Cameron-Liebler set is a Cameron-Liebler set and since a base-plane and a hyperbolic class, are no degree one Cameron-Liebler sets (see Remark 10.2.6 and Remark 10.2.7.

Let \mathcal{L} be a degree one Cameron-Liebler set with parameter 1 in a polar space \mathcal{P} of type $I I$. Then, \mathcal{P} is the hyperbolic quadric $Q^{+}(4 n-1, q)$ with Ω_{1} and Ω_{2} the two classes of generators. By [36] Theorem 3.20], we know that $\mathcal{L} \cap \Omega_{1}$ and $\mathcal{L} \cap \Omega_{2}$ are Cameron-Liebler sets in Ω_{1}, Ω_{2} respectively, with parameter 1. Using [36] Theorem 6.4], we see that $\mathcal{L} \cap \Omega_{i}$ is a point-pencil or a base-solid if $n=2$ for $i=1,2$. A base-solid is the set of all 3 -spaces intersecting a fixed 3 -space (the base) in precisely a plane. Note that all elements of the base-solid belong to a different class of the hyperbolic quadric than the base itself.

If $n=2$, so $d=4$, and $\mathcal{L} \cap \Omega_{1}$ or $\mathcal{L} \cap \Omega_{2}$ is a base-solid with base π, then there are at least $(q+1)\left(q^{2}+1\right)$ elements of \mathcal{L} meeting π in a plane. This contradicts Theorem 10.2.1. whether $\pi \in \mathcal{L}$ or not. So we find, for all $n \geq 1$, that $\mathcal{L} \cap \Omega_{1}$ and $\mathcal{L} \cap \Omega_{2}$ are both point-pencils with vertex v_{1} and v_{2} respectively. Now we show that $v_{1}=v_{2}$. Suppose $v_{1} \neq v_{2}$. Consider a generator $\alpha \in \Omega_{2} \backslash \mathcal{L}$ through v_{1}. Then α intersects θ_{d-2} generators of $\mathcal{L} \cap \Omega_{1}$ in a $(d-2)$-space through v_{1}. This gives a contradiction with Theorem 10.2.1. which proves that $v_{1}=v_{2}$. Hence, \mathcal{L} is a point-pencil through $v_{1}=v_{2}$.

The classification result in [36. Theorem 6.7] for polar spaces of type I is also valid for degree one Cameron-Liebler sets in all polar spaces.

Theorem 10.4.3. Let \mathcal{P} be a finite classical polar space of rank d and parameter e, and let \mathcal{L} be a degree one Cameron-Liebler set of \mathcal{P} with parameter x. If $x \leq q^{e-1}+1$, then \mathcal{L} is the union of x point-pencils whose vertices are pairwise non-collinear or $x=q^{e-1}+1$ and \mathcal{L} is the set of generators in an embedded polar space of rank d and with parameter e-1.

Proof. In Lemma 6.5, Theorem 6.6 and Theorem 6.7 of [36], the authors use [36 Lemma 4.9] to prove the classification result. We can use the same proof since we can apply Theorem 10.2.1 instead of [36, Lemma 4.9].

Note that the last possibility corresponds to an embedded hyperbolic quadric $Q^{+}(2 d-1, q)$ if $\mathcal{P}=Q(2 d, q)$ or $\mathcal{P}=W(2 d-1, q)$ with q even. For $\mathcal{P}=H(2 d, q)$, the Hermitian variety $H(2 d-1, q)$ can be embedded, and for $\mathcal{P}=Q^{-}(2 d+1, q)$, the parabolic quadric $Q(2 d, q)$ and, for q even $W(2 d-1, q)$, can be embedded. If $\mathcal{P}=W(4 n+1, q)$ with q odd, then \mathcal{P} admits no embedded polar space with rank n and parameter $e-1=0$.

For the symplectic polar space $W(5, q)$ and the parabolic quadric $Q(6, q)$, we give a stronger classification result. Recall that the polar spaces $W(5, q)$ and $Q(6, q)$ are isomorphic for q even, see Remark 1.5.7 We start with some lemmas.

Lemma 10.4.4. Let \mathcal{L} be a degree one Cameron-Liebler set of generators (planes) in $W(5, q)$ or $Q(6, q)$ with parameter x.

1. For every $\pi \in \mathcal{L}$, there are s_{1} elements of \mathcal{L} meeting π (including π).
2. For skew $\pi, \pi^{\prime} \in \mathcal{L}$, there exist exactly d_{2} subspaces in \mathcal{L} that are skew to both π and π^{\prime} and there exist s_{2} subspaces in \mathcal{L} that meet both π and π^{\prime}.

Here, d_{2}, s_{1} and s_{2} are given by:

$$
\begin{aligned}
& d_{2}(q, x)=(x-2) q^{2}(q-1) \\
& s_{1}(q, x)=x\left(q^{2}+1\right)(q+1)-(x-1) q^{3}=q^{3}+x\left(q^{2}+q+1\right) \\
& s_{2}(q, x)=x\left(q^{2}+1\right)(q+1)-2(x-1) q^{3}+d_{2}(q, x)
\end{aligned}
$$

Proof. Let \mathcal{P} be the polar space $W(5, q)$ or $Q(6, q)$, hence $d=3$ and $e=1$.

1. This follows directly from Theorem 10.2 .1 for $i=d$ and $|\mathcal{L}|=x\left(q^{2}+1\right)(q+1)$.
2. Let χ_{π} and $\chi_{\pi^{\prime}}$ be the characteristic vectors of $\{\pi\}$ and $\left\{\pi^{\prime}\right\}$, respectively. Let \mathcal{Z} be the set of all planes in \mathcal{P} disjoint from π and π^{\prime}, and let $\chi \mathcal{Z}$ be its characteristic vector. Furthermore, let v_{π} and $v_{\pi^{\prime}}$ be the incidence vectors of π and π^{\prime}, respectively, with their positions corresponding to the points of \mathcal{P}. Note that $A \chi_{\pi}=v_{\pi}$ and $A \chi_{\pi^{\prime}}=v_{\pi^{\prime}}$.
The number of planes through a point $P \notin \pi \cup \pi^{\prime}$ and disjoint from π and π^{\prime} is the number of lines in P^{\perp}, disjoint from the lines corresponding to π and π^{\prime}. By [80, Corollary 19], this number equals $q^{2}(q-1)$, and we find:

$$
\begin{aligned}
A \chi_{\mathcal{Z}} & =q^{2}(q-1)\left(\boldsymbol{j}-v_{\pi}-v_{\pi^{\prime}}\right) \\
& =q^{2}(q-1)\left(A \frac{\boldsymbol{j}}{\left(q^{2}+1\right)(q+1)}-A \chi_{\pi}-A \chi_{\pi^{\prime}}\right) \\
\Leftrightarrow \quad \chi_{\mathcal{Z}}- & q^{2}(q-1)\left(\frac{\boldsymbol{j}}{\left(q^{2}+1\right)(q+1)}-\chi_{\pi}-\chi_{\pi^{\prime}}\right) \in \operatorname{ker}(A) .
\end{aligned}
$$

We know that the characteristic vector χ of \mathcal{L} is included in $\operatorname{ker}(A)^{\perp}$. This implies:

$$
\begin{aligned}
& \chi_{\mathcal{Z}} \cdot \chi=q^{2}(q-1)\left(\frac{\boldsymbol{j} \cdot \chi}{\left(q^{2}+1\right)(q+1)}-\chi(\pi)-\chi\left(\pi^{\prime}\right)\right) \\
\Leftrightarrow & |\mathcal{Z} \cap \mathcal{L}|=(x-2) q^{2}(q-1)
\end{aligned}
$$

which gives the formula for $d_{2}(q, x)$. The formula for $s_{2}(q, x)$ follows from the inclusionexclusion principle.

In the following lemma, corollary and theorem, we will use s_{1}, s_{2}, d_{2} to denote the values $s_{1}(q, x)$, $s_{2}(q, x), d_{2}(q, x)$ if the field size q and the parameter x are clear from the context. For the definition of these values, we refer to the previous lemma.

The following lemma is a generalization of Lemma 2.4 in [93]. Note that we used a similar lemma to find classification results in the projective context, see Lemma 8.3.6.

Lemma 10.4.5. If c is a non-negative integer such that

$$
(c+1) s_{1}-\binom{c+1}{2} s_{2}>x\left(q^{2}+1\right)(q+1)
$$

then no degree one Cameron-Liebler set of generators in $W(5, q)$ or $Q(6, q)$ with parameter x contains $c+1$ mutually skew generators.

Proof. Let \mathcal{P} be the polar space $W(5, q)$ or $Q(6, q)$ and assume that \mathcal{P} has a degree one CameronLiebler set \mathcal{L} of generators with parameter x that contains $c+1$ mutually disjoint subspaces $\pi_{0}, \pi_{1}, \ldots, \pi_{c}$. Lemma 10.4.4 shows that π_{i}, meets at least $s_{1}(q, x)-i \cdot s_{2}(q, x)$ elements of \mathcal{L} that are skew to $\pi_{0}, \pi_{1}, \ldots, \pi_{i-1}$. Hence, $x\left(q^{2}+1\right)(q+1)=|\mathcal{L}| \geq(c+1) s_{1}-\sum_{i=0}^{c} i s_{2}$ which contradicts the assumption.

Corollary 10.4.6. A degree one Cameron-Liebler set of generators in $W(5, q)$ or $Q(6, q)$ with parameter $2 \leq x \leq \sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}$ contains at most x pairwise disjoint generators.
Proof. Let \mathcal{L} be a degree one Cameron-Liebler set of generators in $W(5, q)$ or $Q(6, q)$ with parameter x. Using Lemma 10.4.5 for $e=1, d=3, c=x$, we find that if $q^{3}-q^{2} x+\frac{q+1}{2} x^{2}-\frac{q+1}{2} x^{3}>0$, then \mathcal{L} contains at most x pairwise disjoint generators. Since $f_{q}(x)=q^{3}-q^{2} x-\frac{q+1}{2} x^{2}(x-1)$ is decreasing on $\left[1,+\infty\left[\right.\right.$, we find that it is sufficient that $f_{q}\left(\sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}\right)>0$, as we only consider the values of x in $\left[2, \ldots, \sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}\right]$. It can be checked that $f_{q}\left(\sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}\right)>0$ for all $q \geq 2$.

Theorem 10.4.7. A degree one Cameron-Liebler set \mathcal{L} of generators in $W(5, q)$ or $Q(6, q)$ with parameter $2 \leq x \leq \sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}$ is the union of α embedded hyperbolic quadrics $Q^{+}(5, q)$, that pairwise have no plane in common, and $x-2 \alpha$ point-pencils whose vertices are pairwise non-collinear and not contained in the α hyperbolic quadrics $Q^{+}(5, q)$. For the polar space $Q(6, q)$ or $W(5, q)$ with q even, $\alpha \in\left\{0, \ldots,\left\lfloor\frac{x}{2}\right\rfloor\right\}$, for the polar space $W(5, q)$ with q odd, $\alpha=0$.

Proof. Let \mathcal{P} be the polar space $W(5, q)$ or $Q(6, q)$ and \mathcal{L} be a degree one Cameron-Liebler set in \mathcal{P}. Note that the generators in these polar spaces are planes. By Corollary 10.4.6 there are c pairwise disjoint planes $\pi_{1}, \pi_{2}, \ldots, \pi_{c}$, with $c \leq x$, in \mathcal{L}. Let S_{i} be the set of planes in \mathcal{L} intersecting π_{i} and not intersecting π_{j} for all $j \neq i$. By Lemma 10.4 .4 there are, for a fixed i, at least $s_{1}-(c-1) s_{2} \geq$ $s_{1}-(x-1) s_{2}=q^{3}-(x-2) q^{2}-\left(x^{2}-2 x\right)(q+1)$ planes in S_{i}. As S_{i} is an EKR set by Corollary 10.4.6 S_{i} has to be a part of a point-pencil (PP), a base plane (BP) or one class of an embedded hyperbolic quadric $Q^{+}(5, q)$ (CEHQ). Note that if \mathcal{P} is $W(5, q)$, with q odd, then \mathcal{P} cannot contain
a CEHQ, so for this polar space, the only possibilities are a PP or BP, by [33. Theorem 4.9 and 4.17]. Using Theorem 10.2.1 we can prove that if the set S_{i} is a part of a PP, BP or CEHQ, then \mathcal{L} has to contain all planes of this PP, BP or CEHQ. We show this for the case where the set of planes forms a part of a PP. So assume S_{i} is a subset of the point-pencil with vertex P, and there is a plane $\gamma \notin \mathcal{L}$ through P. This would imply that γ meets at least $q^{3}-(x-2) q^{2}-\left(x^{2}-2 x\right)(q+1)$ planes in \mathcal{L} non-trivially. This gives a contradiction by Theorem 10.2 .1 for $i=1$ and $i=2$, as $\gamma \notin \mathcal{L}$ intersects precisely $x\left(q^{2}+q+1\right)<q^{3}-(x-2) q^{2}-\left(x^{2}-2 x\right)(q+1)$ planes of \mathcal{L} in a point or in a line. This argument also works for the BP and CEHQ, so we can conclude that if \mathcal{L} contains an S_{i} which is a part of a PP, BP or CEHQ, then \mathcal{L} has to contain the whole PP, BP or CEHQ respectively, which we will call \mathcal{L}_{i}.

Remark first that \mathcal{L} cannot contain a BP with base π as then $\pi \in \mathcal{L}$ intersects $q^{3}+q^{2}+q>$ $q^{2}+q+x-1$ planes of \mathcal{L} in a line, which gives a contradiction with Theorem 10.2.1 This implies that all sets \mathcal{L}_{i} are PP's or CEHQ's. Now we show that every two sets of planes \mathcal{L}_{i} and \mathcal{L}_{j} are disjoint. Suppose first that \mathcal{L}_{i} and \mathcal{L}_{j} are two PP's with vertices P_{i} and P_{j} respectively, that have at least a plane in common. Then there are at most $q+1$ planes in $\mathcal{L}_{i} \cap \mathcal{L}_{j}$ and let β be one of them. Now we see that β meets at least $2\left(q^{3}+q^{2}+q+1\right)-(q+1)$ elements of \mathcal{L} non-trivially, contradicting Theorem 10.2.1 If \mathcal{L}_{i} and \mathcal{L}_{j} are two CEHQ's or a CEHQ and a PP that have at least a plane in common, then we can use the same arguments as above: In both cases, there are at most $q+1$ planes in $\mathcal{L}_{i} \cap \mathcal{L}_{j}$, which implies that a plane $\beta \in \mathcal{L}_{i} \cap \mathcal{L}_{j}$ meets at least $2\left(q^{3}+q^{2}+q+1\right)-(q+1)$ elements of \mathcal{L} non-trivially, contradicting Theorem 10.2.1

Now we know that \mathcal{L} contains the disjoint union of $c \leq x$ sets \mathcal{L}_{i} of planes, where every set is a PP or CEHQ. As the number of planes in a PP or CEHQ equals $\left(q^{2}+1\right)(q+1)$, and the total number of planes in \mathcal{L} equals $x\left(q^{2}+1\right)(q+1)$ (see Lemma 10.2 .4 (2)), we see that \mathcal{L} equals the union of x sets \mathcal{L}_{i} such that any two sets have no plane in common.
To finish this proof, we want to show that the only possible composition of \mathcal{L} consists of PP's and embedded hyperbolic quadrics. If \mathcal{L} contains one class of an embedded hyperbolic quadric, then \mathcal{L} also contains the other class of this hyperbolic quadric. This also follows from Theorem 10.2.1 suppose \mathcal{L} contains only one class of an embedded hyperbolic quadric and let π be a plane of the other class of this embedded hyperbolic quadric. Then we can show that π is also a plane of \mathcal{L} : we know that π meets $q^{2}+q+1$ planes of the hyperbolic quadric in a line, so at least so many planes of \mathcal{L}, in a line. But if $\pi \notin \mathcal{L}$, then, by Theorem $10.2 .1 \pi$ can only meet $x<\sqrt[3]{2 q^{2}}$ planes of \mathcal{L} in a line, a contradiction.

This implies that \mathcal{L} has to be the union of point-pencils and embedded hyperbolic quadrics that pairwise have no plane in common. Note that two point-pencils have no plane in common if the corresponding vertices are non-collinear. As there exists a partial ovoid of size $q+1$ in \mathcal{P}, we can find x pairwise disjoint point-pencils. Note that for q odd and $\mathcal{P}=W(5, q)$, there are no embedded hyperbolic quadrics, so in this case \mathcal{L} is the union of x point-pencils with non-collinear vertices. We end the proof by showing that, for $\mathcal{P}=Q(6, q)$ or $\mathcal{P}=W(5, q)$ and q even, there exist embedded hyperbolic quadrics in \mathcal{P} that have no plane in common. It suffices to show this only for $\mathcal{P}=Q(6, q)$, by the connection between $Q(6, q)$ and $W(5, q)$ for q even. Consider two embedded hyperbolic quadrics $Q^{+}(5, q)$ in $Q(6, q)$, that intersect in a parabolic quadric $Q(4, q)$. These two hyperbolic quadrics have no planes in common as the generators of $Q(4, q)$ are lines. Note that the union of embedded hyperbolic quadrics that pairwise have no plane in common, together with the union of point-pencils with non-collinear vertices not contained in the embedded hyperbolic quadrics, is a degree one Cameron-Liebler set by Lemma 10.2.4(4), as a point-pencil is a degree one Cameron-Liebler set and for $\mathcal{P} \neq W(5, q)$ or q even, an embedded hyperbolic quadric of the same rank is also a degree one Cameron-Liebler set.

This theorem agrees with Conjecture 5.1.3 in [59], as this conjecture says that every degree one Cameron-Liebler set in a finite classical polar space, with rank d sufficiently large, is the union of non-degenerate hyperplane sections and point-pencils that pairwise have no generator in common.

Remark 10.4.8. Recall that the union of point-pencils and embedded hyperbolic quadrics, that pairwise have no plane in common, is also an example of a degree one Cameron-Liebler set of generators in the other polar spaces of type $I I I$ (see Lemma 10.2 .4 and Example 10.2.8.

We also note that we could not generalize this classification result to other classical polar spaces, as for these polar spaces, there is not enough information known about large EKR sets in these polar spaces. For the polar spaces $Q^{+}(4 n+1, q)$, there are some EKR results in [34]. Since in this case, the large examples of EKR sets have much more elements than the largest known Cameron-Liebler sets, we cannot use these results.

10.5 New example of a degree one Cameron-Liebler set in $Q^{+}(5, q)$

In this section, we give an example of a degree one Cameron-Liebler set of generators in $Q^{+}(5, q)$, $q=p^{h}$ odd, found by dr. Maarten De Boeck, prof. Morgan Rodgers and myself. To explain the construction of the example, we use the Klein correspondence between the lines of $\mathrm{PG}(3, q)$ and the points of $Q^{+}(5, q)$, see Section 1.5 Recall that the generators of $Q^{+}(5, q)$ are planes which can be divided into two classes (see Remark 1.5.6), the Latin planes and the Greek planes. More precisely, by the Klein correspondence, the points of a Latin plane in $Q^{+}(5, q)$ correspond to the set of lines through a fixed point in $\operatorname{PG}(3, q)$, and the points of a Greek plane in $Q^{+}(5, q)$ correspond to the set of lines in a fixed plane in $\operatorname{PG}(3, q)$.

Consider the hyperbolic quadric $Q=Q^{+}(3, q)$ in $\operatorname{PG}(3, q)$, defined by the equation $x_{0} x_{1}+x_{2} x_{3}=$ 0 . The lines of Q correspond to the set of points of two conics $C \cup C^{\prime}$ in $Q^{+}(5, q)$, such that for the planes $\alpha=\langle C\rangle$ and $\alpha^{\prime}=\left\langle C^{\prime}\right\rangle$, it holds that α^{\prime} is the image of α under the polarity of $Q^{+}(5, q)$.

Every point $P \in \mathrm{PG}(3, q)$ gives rise to a Latin plane π_{l}^{P} and a Greek plane π_{g}^{P} in $Q^{+}(5, q)$: the points of π_{l}^{P} correspond to all the lines through P in $\mathrm{PG}(3, q)$, and the points of π_{g}^{P} correspond to the all lines in the plane P^{\perp}. Here, \perp is the polarity related to the quadric Q in $\operatorname{PG}(3, q)$, with corresponding matrix:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Definition 10.5.1. A point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathrm{PG}(3, q)$ is a square point if $x_{0} x_{1}+x_{2} x_{3}$ is a square different from 0 in \mathbb{F}_{q}. A point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathrm{PG}(3, q)$ is a non-square point if $x_{0} x_{1}+x_{2} x_{3}$ is a non-square in \mathbb{F}_{q}.

Now we can partition the set of planes in $Q^{+}(5, q)$ into the following sets.

- $\mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is a square point $\}$
- $\mathcal{N} \mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is a non-square point $\}$
- $\mathcal{O}_{l}=\left\{\pi_{l}^{P} \mid P \in Q\right\}$
- $\mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is a square point $\}$
- $\mathcal{N} \mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is a non-square point $\}$
- $\mathcal{O}_{g}=\left\{\pi_{g}^{P} \mid P \in Q\right\}$

It is known that a 2 -secant to Q in $\operatorname{PG}(3, q), q$ odd, contains $\frac{q-1}{2}$ square points and $\frac{q-1}{2}$ non-square points. A line disjoint from Q in $\operatorname{PG}(3, q)$ contains $\frac{q+1}{2}$ square points and $\frac{q+1}{2}$ non-square points. For a tangent line ℓ to Q, there are two possibilities; ℓ contains q square points, or ℓ contains q non-square points, see [72, Table 15.5(c)]. In the first case, ℓ is a square tangent line. In the latter case, ℓ is a non-square tangent line.

We partition the set of points in $Q^{+}(5, q)$ into the following sets.

- The set $\mathcal{X}_{1 S}$ of points in $Q^{+}(5, q)$ corresponding to the square tangent lines to Q.
- The set $\mathcal{X}_{1 N S}$ of points in $Q^{+}(5, q)$ corresponding to the non-square tangent lines to Q.
- The set \mathcal{X}_{2} of points in $Q^{+}(5, q)$ corresponding to the 2 -secants to Q.
- The set \mathcal{X}_{0} of points in $Q^{+}(5, q)$ corresponding to the lines disjoint from Q.
- The set $\mathcal{X}_{\infty}=C \cup C^{\prime}$ of points in $Q^{+}(5, q)$ corresponding to the lines of Q.

We present two lemmas that will be useful in the remainder of the construction.
Lemma 10.5.2. Ifl is a square tangent line to Q in $\mathrm{PG}(3, q)$, then l^{\perp} is a square tangent line if $q \equiv 1$ $\bmod 4$, and l^{\perp} is a non-square tangent line if $q \equiv 3 \bmod 4$. Ifl is a non-square tangent line to Q in $\operatorname{PG}(3, q)$, then l^{\perp} is a non-square tangent line if $q \equiv 1 \bmod 4$, and l^{\perp} is a square tangent line if $q \equiv 3 \bmod 4$.

Proof. Consider a tangent line l to Q in $\operatorname{PG}(3, q)$. Since the orthogonal group $P G O_{+}(4, q)$ of $Q^{+}(3, q)$ acts transitively on the points of $Q=Q^{+}(3, q)$ (see [74 Theorem 22.6.4]), we may suppose that l contains the point $(1,0,0,0)$ of Q, and so $l=\langle(1,0,0,0),(0,0,1, t)\rangle$, for a fixed $t \in \mathbb{F}_{q} \backslash\{0\}$. Note that l is a square tangent line if and only if t is a square in \mathbb{F}_{q}. By using the matrix A of the polarity \perp, we find that $T_{(1,0,0,0)}(Q)$ is the plane defined by $x_{1}=0$, while $T_{(0,0,1, t)}(Q)$ is the plane defined by $t x_{2}+x_{3}=0$. The intersection of these two planes gives that $l^{\perp}=\langle(1,0,0,0),(0,0,1,-t)\rangle$. The lemma follows since l^{\perp} is a square line if and only if $-t$ is a square in \mathbb{F}_{q}, and -1 is a square \mathbb{F}_{q} if and only if $q \equiv 1 \bmod 4$.

Lemma 10.5.3. Ifl is a bisecant to Q in $\operatorname{PG}(3, q)$, then l^{\perp} is also a bisecant to Q. Furthermore, ifl is a line skew to Q in $\operatorname{PG}(3, q)$, then l^{\perp} is also skew to Q.

Proof. Note that for a bisecant l to Q, we have that $l \cap Q$ is a hyperbolic quadric $Q^{+}(1, q)$. For a line l skew to Q, we have that $l \cap Q$ is empty and is equal to $Q^{-}(1, q)$. The lemma follows now from [74 Theorem 22.7.2].

In the following proposition, we prove that the partitions $\left\{\mathcal{X}_{1 S}, \mathcal{X}_{1 N S}, \mathcal{X}_{2}, \mathcal{X}_{0}, \mathcal{X}_{\infty}\right\}$ and $\left\{\mathcal{S}_{l}, \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l}, \mathcal{N} \mathcal{S}_{g}, \mathcal{O}_{l}, \mathcal{O}_{g}\right\}$ form a point-tactical decomposition.

Proposition 10.5.4. The partition of the points $\left\{\mathcal{X}_{1 S}, \mathcal{X}_{1 N S}, \mathcal{X}_{2}, \mathcal{X}_{0}, \mathcal{X}_{\infty}\right\}$ and the partition of the planes $\left\{\mathcal{S}_{l}, \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l}, \mathcal{N} \mathcal{S}_{g}, \mathcal{O}_{l}, \mathcal{O}_{g}\right\}$ of $Q^{+}(5, q)$ give a point-tactical decomposition with matrix B_{1} if $q \equiv 1 \bmod 4$ and the matrix B_{3} if $q \equiv 3 \bmod 4$.

$$
B_{1}=\left(\begin{array}{cccccc}
\mathcal{S}_{l} & \mathcal{S}_{g} & \mathcal{N} \mathcal{S}_{l} & \mathcal{N} \mathcal{S}_{g} & \mathcal{O}_{l} & \mathcal{O}_{g} \\
q & q & 0 & 0 & 1 & 1 \\
0 & 0 & q & q & 1 & 1 \\
\frac{q-1}{2} & \frac{q-1}{2} & \frac{q-1}{2} & \frac{q-1}{2} & 2 & 2 \\
\frac{q+1}{2} & \frac{q+1}{2} & \frac{q+1}{2} & \frac{q+1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & q+1 & q+1
\end{array}\right) \begin{gathered}
\mathcal{X}_{1 S} \\
\mathcal{X}_{1 N S} \\
\mathcal{X}_{2} \\
\mathcal{X}_{0} \\
\mathcal{X}_{\infty}
\end{gathered}
$$

$$
B_{3}=\left(\begin{array}{cccccc}
\mathcal{S}_{l} & \mathcal{S}_{g} & \mathcal{N} \mathcal{S}_{l} & \mathcal{N} \mathcal{S}_{g} & \mathcal{O}_{l} & \mathcal{O}_{g} \\
q & 0 & 0 & q & 1 & 1 \\
0 & q & q & 0 & 1 & 1 \\
\frac{q-1}{2} & \frac{q-1}{2} & \frac{q-1}{2} & \frac{q-1}{2} & 2 & 2 \\
\frac{q+1}{2} & \frac{q+1}{2} & \frac{q+1}{2} & \frac{q+1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & q+1 & q+1
\end{array}\right) \mathcal{X}_{1 S}
$$

Proof. We find these matrices by using the Klein correspondence and so, we will prove the lemma using the lines of $\mathrm{PG}(3, q)$ instead of the points of $Q^{+}(5, q)$. This includes that we will use pointpencils of lines and the lines in fixed planes of $\operatorname{PG}(3, q)$, instead of the planes in $Q^{+}(5, q)$.

We start with the case $q \equiv 1 \bmod 4$.
The first row of B_{1} follows by investigating a square tangent line l to Q in $\operatorname{PG}(3, q)$. Since l contains q square points, and no non-square points, l is contained in q point-pencils with vertex a square point, and l is contained in no point-pencils with vertex a non-square point. This explains the first and third element in the first row. For the second and fourth element, q and 0 , in the first row, we have that $l \subset R^{\perp} \Longleftrightarrow R \in l^{\perp}$, with $R \in \operatorname{PG}(3, q)$. From Lemma 10.5.2. we find that l^{\perp} is a square tangent line, and so that there are q possibilities for R if R is a square point, and no possibilities for R if R is a non-square point. The line l contains one point $P \in Q$ and so it is contained in one point-pencil with vertex in Q and l is contained in one plane P^{\perp}. This gives the last two elements of the first row. The second row of B_{1} follows from analogous arguments.

For the third row in B_{1}, we consider a bisecant l to Q in $\operatorname{PG}(3, q)$. The first and third element of this row follow since l contains $\frac{q-1}{2}$ square points and $\frac{q-1}{2}$ non-square points. Hence, l is contained in $\frac{q-1}{2}$ point-pencils with vertex a square point, and $\frac{q-1}{2}$ point-pencils with vertex a non-square point. For the second and the fourth element of the third row, we use the fact that $l \in R^{\perp} \Longleftrightarrow R \in l^{\perp}$, and that l^{\perp} is also a bisecant, see Lemma 10.5 .3 . Hence, l^{\perp} contains $\frac{q-1}{2}$ square points and $\frac{q-1}{2}$ non-square points. The last two elements of the row follow since l contains two points $P_{1}, P_{2} \in Q$. Hence, l is contained in the point-pencils through P_{1} and P_{2}, and l is contained in the planes P_{3}^{\perp} and P_{4}^{\perp}, with P_{3} and P_{4} the two points of Q on l^{\perp}.

For the fourth row in B_{1}, we consider a line l skew to Q in $\operatorname{PG}(3, q)$. The first and third element of this row follow since l contains $\frac{q+1}{2}$ square points and $\frac{q+1}{2}$ non-square points. Hence, l is contained in $\frac{q+1}{2}$ point-pencils with vertex a square point, and $\frac{q+1}{2}$ point-pencils with vertex a non-square point. For the second and the fourth element, we again use the fact that $l \in R^{\perp} \Longleftrightarrow R \in l^{\perp}$, and that l^{\perp} is also skew to Q, see Lemma 10.5 .3 . Hence, l^{\perp} contains $\frac{q+1}{2}$ square points and $\frac{q+1}{2}$ non-square points. The last two elements of the row follow since l contains no points in Q.

The last row of B_{1} follows since a line l of Q is contained in $q+1$ tangent planes and in $q+1$ point-pencils with vertex a point of l.

The proof for $q \equiv 3 \bmod 4$ is analogous.
Theorem 10.5.5. Let q be an odd prime power.

- The sets $\mathcal{S}_{l} \cup \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ and $\mathcal{O}_{l} \cup \mathcal{O}_{g}$ are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, with parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ and $q+1$ respectively, for $q \equiv 1 \bmod 4$.
- The sets $\mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}, \mathcal{S}_{g} \cup \mathcal{N} \mathcal{S}_{l}$ and $\mathcal{O}_{l} \cup \mathcal{O}_{g}$ are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, with parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ and $q+1$ respectively, for $q \equiv 3 \bmod 4$.

Proof. We prove this theorem for $q \equiv 3 \bmod 4$. The proof for $q \equiv 1 \bmod 4$ is analogous.
From the previous proposition, and from Lemma 1.8.2. we find the following equations. Here, A is the point-plane incidence matrix of $Q^{+}(5, q)$.

$$
\begin{aligned}
A^{T} \chi_{1 S} & =q \chi_{\mathcal{S}_{l}}+q \chi_{\mathcal{N S}_{g}}+\chi_{\mathcal{O}_{l}}+\chi_{\mathcal{O}_{g}} \\
A^{T} \chi_{1 N S} & =q \chi_{\mathcal{S}_{g}}+q \chi_{\mathcal{N S}_{l}}+\chi_{\mathcal{O}_{l}}+\chi_{\mathcal{O}_{g}} \\
A^{T} \chi_{2} & =\frac{q-1}{2}\left(\chi_{\mathcal{S}_{l}}+\chi_{\mathcal{S}_{g}}+\chi_{\mathcal{N S}_{l}}+\chi_{\mathcal{N S}_{g}}\right)+2\left(\chi_{\mathcal{O}_{l}}+\chi_{\mathcal{O}_{g}}\right) \\
A^{T} \chi_{\infty} & =(q+1)\left(\chi_{\mathcal{O}_{l}}+\chi_{\mathcal{O}_{g}}\right)
\end{aligned}
$$

After some calculations, we find:

$$
\begin{aligned}
\chi_{\mathcal{S}_{l}}+\chi_{\mathcal{N S}_{g}} & =A^{T}\left(\frac{3 q+1}{2 q(q+1)} \chi_{1 S}+\frac{q-1}{2 q(q+1)} \chi_{1 N S}-\frac{1}{q+1} \chi_{2}\right) \\
\chi_{\mathcal{S}_{g}}+\chi_{N S_{l}} & =A^{T}\left(\frac{q-1}{2 q(q+1)} \chi_{1 S}+\frac{3 q+1}{2 q(q+1)} \chi_{1 N S}-\frac{1}{q+1} \chi_{2}\right) \\
\chi_{\mathcal{O}_{l}}+\chi_{\mathcal{O}_{g}} & =\frac{1}{q+1} A^{T} \chi_{\infty}
\end{aligned}
$$

The sets $\mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}, \mathcal{S}_{g} \cup \mathcal{N} \mathcal{S}_{l}$ and $\mathcal{O}_{l} \cup \mathcal{O}_{g}$ are contained in the image of A^{T}, and so they are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, for $q \equiv 3 \bmod 4$. The parameters of the Cameron-Liebler sets follow immediately from their size, see Lemma 10.2.4.

Analogously, we find that the sets $\mathcal{S}_{l} \cup \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ and $\mathcal{O}_{l} \cup \mathcal{O}_{g}$ are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, for $q \equiv 1 \bmod 4$.

Remark 10.5.6. Note that the Cameron-Liebler sets $\mathcal{O}_{l} \cup \mathcal{O}_{g}$ are the union of $q+1$ point-pencils, whose points are the elements of the conic C. Moreover, this set is also the set of point-pencils whose points are the elements of the conic C^{\prime}. Hence, this example is a well known CameronLiebler set. The other determined Cameron-Liebler sets in Theorem 10.5 .5 are new examples, in the sense that they are not a union of point-pencils.

Proposition 10.5.7. The sets $\mathcal{S}_{l} \cup \mathcal{S}_{g}$, and $\mathcal{N} \mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$, for $q \equiv 1 \bmod 4$, and the sets $\mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ and $\mathcal{S}_{g} \cup \mathcal{N} \mathcal{S}_{l}$, for $q \equiv 3 \bmod 4$ are not the union of point-pencils whose points are pairwise non-collinear.

Proof. We prove this proposition for the set $\mathcal{L}=\mathcal{S}_{l} \cup \mathcal{S}_{g}$, if $q \equiv 1 \bmod 4$. The proofs for the other cases are analogous. Suppose from the contrary that \mathcal{L} consists of point-pencils. Since the parameter of \mathcal{L} is $\frac{q(q-1)}{2}, \mathcal{L}$ must consist of this many point-pencils. Let P be the base point of one of these point-pencils. By investigating the sum of the first two columns of the matrix B_{1} in Proposition 10.5.4 we find that P contains $2 q, 0, q-1, q+1$ or 0 elements of \mathcal{L} for P contained in $\mathcal{X}_{1 S}, \mathcal{X}_{1 N S}, \mathcal{X}_{2}, \mathcal{X}_{0}$, or \mathcal{X}_{∞}, respectively. Hence, we find in any case that \mathcal{L} cannot contain all planes of $Q^{+}(5, q)$ through P, which gives the contradiction.

Part III

Linear Sets

In this last part, we discuss a research project on linear sets. dr. Geertrui Van de Voorde and I investigated point sets defined by translation hyperovals in the André/Bruck-Bose representation. The results in this chapter are based on [49].

We show that the affine point sets of translation hyperovals in the André/Bruck-Bose plane representation of $\operatorname{PG}\left(2, q^{k}\right)$ are precisely those that have a scattered \mathbb{F}_{2}-linear set of pseudoregulus type in $\mathrm{PG}(2 k-1, q)$ as set of directions. This correspondence is used to generalise the results of Barwick and Jackson who provided a characterisation of translation hyperovals in $\mathrm{PG}\left(2, q^{2}\right)$, see [7].

11.1 Introduction

Recall, from Section 1.6 that a translation hyperoval in $\operatorname{PG}(2, q)$ is a hyperoval H such that there exists a bisecant ℓ of H with the property that the group of elations with axis ℓ acts transitively on the points of H not on ℓ.

In [7], Barwick and Jackson provided a characterisation of translation hyperovals in $\operatorname{PG}\left(2, q^{2}\right)$: they considered a set \mathcal{C} of points in $\operatorname{PG}(4, q), q$ even, with certain combinatorial properties with respect to the planes of $\mathrm{PG}(4, q)$ (see Section 11.3 for details). They proved that the set \mathcal{C}^{\prime} of directions determined by the points of \mathcal{C} has the property that every line intersects \mathcal{C}^{\prime} in $0,1,3$ or $q-1$ points. They then used this to construct a Desarguesian line spread \mathcal{S} in $\operatorname{PG}(3, q)$, such that in the corresponding André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{2}\right)$, the points corresponding to \mathcal{C} form a translation hyperoval. This extended the work done in [8], where the same authors gave a similar characterisation of André/Bruck-Bose representation of conics for q odd.

We will generalise the combinatorial characterisation provided by Barwick and Jackson for translation hyperovals in $\operatorname{PG}\left(2, q^{k}\right), \forall k \geq 2$. In order to do this, we elaborate on the correspondence between translation hyperovals and linear sets (see e.g. [79, 82]).

11.1.1 Linear sets

Linear sets are a central object in finite geometry and have been studied intensively, mainly due to the connection with other objects such as semifield planes, blocking sets, and more recently, MRD codes (see e.g. [83, 86, 100]).

Let V be an r-dimensional vector space over $\mathbb{F}_{q^{n}}$, let Ω be the projective space $\operatorname{PG}(V)=\operatorname{PG}(r-$ $1, q^{n}$). A set T is said to be an \mathbb{F}_{q}-linear set of Ω of rank t if it is defined by the non-zero vectors of an \mathbb{F}_{q}-vector subspace U of V of vector dimension t, i.e.

$$
T=L_{U}=\left\{\langle u\rangle_{\mathbb{F}_{q^{n}}} \mid u \in U \backslash\{0\}\right\}
$$

By field reduction, the point set of $\operatorname{PG}\left(r-1, q^{n}\right)$ corresponds to a set \mathcal{D} of $(n-1)$-dimensional subspaces of $\mathrm{PG}(r n-1, q)$, which partitions the point set of $\mathrm{PG}(r n-1, q)$. These subspaces form a Desarguesian $(n-1)$-spread in $\operatorname{PG}(r n-1, q)$. Using coordinates, we see that a point $P=$ $\left(x_{0}, x_{1}, \ldots, x_{r-1}\right)_{q^{n}} \in \operatorname{PG}\left(r-1, q^{n}\right)$ corresponds to the set $\left\{\left(\alpha x_{0}, \alpha x_{1}, \ldots, \alpha x_{r-1}\right)_{q} \mid \alpha \in \mathbb{F}_{q^{n}}\right\}$ in $\operatorname{PG}(r n-1, q)$. Note that we have used r coordinates from $\mathbb{F}_{q^{n}}$, defined up to \mathbb{F}_{q}-scalar multiple, to define points of $\operatorname{PG}(r n-1, q)$, and the set $\left\{\left(\alpha x_{0}, \alpha x_{1}, \ldots, \alpha x_{r-1}\right)_{q} \mid \alpha \in \mathbb{F}_{q^{n}}\right\}$ consists of $\frac{q^{n}-1}{q-1}$ different points forming an $(n-1)$-dimensional space over \mathbb{F}_{q}. Hence, we find that \mathcal{D} is given by the set of $(n-1)$-spaces

$$
\left\{\left(\alpha x_{0}, \alpha x_{1}, \ldots, \alpha x_{r-1}\right)_{q} \mid \alpha \in \mathbb{F}_{q^{n}}\right\} \text { for all }\left(x_{0}, x_{1}, \ldots, x_{r-1}\right) \in V\left(r, q^{n}\right)
$$

Note that these coordinates for points in $\mathrm{PG}(r n-1, q)$ can be transformed into the usual coordinates consisting of $r n$ elements of \mathbb{F}_{q} by representing the elements of $\mathbb{F}_{q^{n}}$ as the n coordinates with respect to a fixed basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.
We also have a more geometric perspective on the notion of a linear set; namely, an \mathbb{F}_{q}-linear set of rank t is a set T of points of $\operatorname{PG}\left(r-1, q^{n}\right)$ for which there exists a subspace π of (projective) dimension $t-1$ in $\operatorname{PG}(r n-1, q)$ such that the points of T correspond to the elements of \mathcal{D} that have a non-empty intersection with π. For more on this approach to linear sets, we refer to [86]. If the subspace π intersects each spread element in at most a point, then π is called scattered with respect to \mathcal{D} and the associated linear set is called a scattered linear set.

Note that if π is $(n-1)$-dimensional and scattered, then the associated \mathbb{F}_{q}-linear set has rank n and has exactly $\frac{q^{n}-1}{q-1}$ points, and conversely. We will make use of the following bound on the rank of a scattered linear set.

Result 11.1.1 ([17, Theorem 4.3]). The rank of a scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(r-1, q^{n}\right)$ is at most $r n / 2$.

A maximum scattered linear set is a scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(r-1, q^{n}\right)$ with rank $r n / 2$. In this project we work with maximum scattered linear sets to which a geometric structure, called pseudoregulus, can be associated. These linear sets were introduced by G. Marino, O. Polverino and R. Trombetti in [90] and were generalized by M. Lavrauw and G. Van de Voorde in [85]. The name pseudoregulus originates from the geometrical construction of Freeman [61]. For more information, we refer to [50, 87].
Definition 11.1.2. Let S be a scattered \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(2 k-1, q^{n}\right)$ of rank $k n$, where $n, k \geq 2$. We say that S is of pseudoregulus type if

1. there exist $m=\frac{q^{n k}-1}{q^{n}-1}$ pairwise disjoint lines of $\operatorname{PG}\left(2 k-1, q^{n}\right)$, say $s_{1}, s_{2}, \ldots, s_{m}$, such that

$$
\left|S \cap s_{i}\right|=\frac{q^{n}-1}{q-1} \quad \forall i=1, \ldots, m
$$

2. there exist exactly two $(k-1)$-dimensional subspaces T_{1} and T_{2} of $\mathrm{PG}\left(2 k-1, q^{n}\right)$ disjoint from S such that $T_{j} \cap s_{i} \neq \emptyset$ for each $i=1, \ldots, m$ and $j=1,2$.

The set of lines $s_{i}, i=1, \ldots, m$, is called the pseudoregulus of $\mathrm{PG}\left(2 k-1, q^{n}\right)$ associated with the linear set S and we refer to T_{1} and T_{2} as transversal spaces to this pseudoregulus. Since a maximum scattered linear set spans the whole space, we see that the transversal spaces are disjoint.
For $n=3$, it is known that every maximum scattered linear set of $\Pi=\operatorname{PG}\left(2 k-1, q^{3}\right), k \geq 2$, is of pseudoregulus type, and they are all equivalent under the collineation group of Π, see [84 [85 [90].

More in general, we need the following result of [87]. Applied to \mathbb{F}_{2}-linear sets, this gives us the following result.

Result 11.1.3 ([87, Theorem 3.12]). Each \mathbb{F}_{2}-linear set of $\mathrm{PG}(2 k-1, q)$, q even, of pseudoregulus type, is of the form $L_{\rho, f}$ with

$$
L_{\rho, f}=\left\{(u, \rho f(u))_{q} \mid u \in U_{0}\right\},
$$

with $\rho \in \mathbb{F}_{q}^{*}, U_{0}, U_{\infty}$ the k-dimensional vector spaces corresponding to the transversal spaces T_{0}, T_{∞} and with $f: U_{0} \rightarrow U_{\infty}$ an invertible semi-linear map with companion automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, $\operatorname{Fix}(\sigma)=\{0,1\}$.
Note that in the previous result, $\mathrm{PG}(2 k-1, q)$ is identified with $\mathrm{PG}(V), V=U_{0} \oplus U_{\infty}$ and a point, corresponding to a vector $v=v_{0}+v_{\infty} \in U_{0} \oplus U_{\infty}$, has coordinates $\left(v_{0}, v_{\infty}\right)_{q}$.

11.1.2 The Barlotti-Cofman and André/Bruck-Bose constructions

We start with introducing the André/Bruck-Bose construction (see [1 24]). Let H_{∞} be a hyperplane in $\mathrm{PG}(2 k, q)$ and let \mathcal{S} be a $(k-1)$-spread in H_{∞}. Let \mathcal{P} be the set of affine points, together with the $q^{k}+1$ spread elements of \mathcal{S}. Let \mathcal{L} be the set of k-spaces in $\operatorname{PG}(2 k, q)$ meeting H_{∞} in an element of \mathcal{S}, together with the hyperplane at infinity H_{∞}. The incidence structure ($\mathcal{P}, \mathcal{L}, I$), with I the natural incidence relation, is isomorphic to a projective plane of order q^{k}, which is called the André/Bruck-Bose plane, corresponding with the spread \mathcal{S}. The André/Bruck-Bose plane corresponding to a spread \mathcal{S} is Desarguesian if and only if the spread \mathcal{S} is Desarguesian.

In this chapter, we will switch between the three different representations of a projective plane $\operatorname{PG}\left(2, q^{k}\right), q=2^{h}$. Using the André/Bruck-Bose correspondence, we can, on the one hand, model this plane as a subset of points and k-spaces in $\operatorname{PG}(2 k, q)$, determined by a $(k-1)$-spread in a specific hyperplane H_{∞} of $\mathrm{PG}(2 k, q)$, which we define as the hyperplane at infinity of $\mathrm{PG}(2 k, q)$. On the other hand, we can see it as a subset of points and $h k$-spaces of $\mathrm{PG}(2 h k, 2)$ determined by a $(h k-1)$-spread in a specific hyperplane \tilde{H}_{∞} of $\mathrm{PG}(2 k h, 2)$, which we call the hyperplane at infinity of $\mathrm{PG}(2 k h, 2)$. We can switch between the $\mathrm{PG}(2 k, q)$-setting and the $\mathrm{PG}(2 h k, 2)$-setting by the Barlotti-Cofman correspondence, which is a natural generalization of the André/Bruck-Bose
correspondence. Note that in this chapter, we use the ${ }^{\sim}$-symbol for the subspaces in $\mathrm{PG}(2 h k, 2)$. This is in contrast with the ${ }^{\sim}$-symbol in Chapters 4 and 9 used for the projective extension of an affine space.

The Barlotti-Cofman representation of the projective space $\operatorname{PG}\left(2 k, 2^{h}\right)$ in $\operatorname{PG}(2 h k, 2)$ is defined as follows (see [4]). Let \mathcal{S}^{\prime} be a Desarguesian $(h-1)$-spread in PG(2hk-1,2). Embed PG($2 h k-$ $1,2)$ as the hyperplane \widetilde{H}_{∞} at infinity in $\operatorname{PG}(2 h k, 2)$. Consider the following incidence structure $\mathcal{P}(\mathcal{S})=(\mathcal{P}, \mathcal{L}, I)$, where incidence is natural:

- The set \mathcal{P} of points consists of the $2^{2 h k}$ affine points P_{i} in $\mathrm{PG}(2 h k, 2)$ (i.e. the points not in \widetilde{H}_{∞}) together with elements of the $(h-1)$-spread \mathcal{S}^{\prime} in \widetilde{H}_{∞}.
- The set \mathcal{L} of lines consists of the following two sets of subspaces in $\operatorname{PG}(2 h k, 2)$.
- The set of h-spaces spanned by an element of \mathcal{S}^{\prime} and an affine point of $\operatorname{PG}(2 h k, 2)$.
- The set of $(2 h-1)$-spaces in \widetilde{H}_{∞} spanned by two different elements of \mathcal{S}^{\prime}.

This incidence structure ($\mathcal{P}, \mathcal{L}, I$) is isomorphic to $\operatorname{PG}\left(2 k, 2^{h}\right)$, and let H_{∞} be the hyperplane containing all points corresponding with the $(h-1)$-spread \mathcal{S}^{\prime}. We use the notation P for the affine point of $\mathrm{PG}\left(2 k, 2^{h}\right)$ (i.e. a point not contained in $\left.H_{\infty}\right)$ which corresponds to the affine point $\widetilde{P} \in \mathrm{PG}(2 h k, 2)$. A point, say R in H_{∞}, corresponds to the element $\mathcal{S}^{\prime}(R)$ of the $(h-1)$-spread \mathcal{S}^{\prime} in \widetilde{H}_{∞}.

As already mentioned above, we will work in the following three projective spaces:

- The $2 k$-dimensional projective space $\Psi_{q}=\mathrm{PG}(2 k, q), q=2^{h}, h>2$, with the $(2 k-1)$-space at infinity called H_{∞}.
- The projective plane $\Pi_{q^{k}}=\operatorname{PG}\left(2, q^{k}\right), q=2^{h}$, with line at infinity called ℓ_{∞}. Given a Desarguesian $(k-1)$-spread \mathcal{S} in H_{∞} in Ψ_{q}, the plane $\Pi_{q^{k}}$ is obtained by the André-BruckBose construction using \mathcal{S}.
- The $2 h k$-dimensional projective space $\Lambda_{2}=\operatorname{PG}(2 h k, 2)$, with the $(2 h k-1)$-space \widetilde{H}_{∞} at infinity. Note that a Desarguesian $(h-1)$-spread \mathcal{S}^{\prime} in \widetilde{H}_{∞} gives rise to the Barlotti-Cofman representation of Ψ_{q}. Also vice versa, the Barlotti-Cofman representation of Ψ_{q} defines a Desarguesian $(h-1)$-spread \mathcal{S}^{\prime} in \widetilde{H}_{∞}. Moreover, if \mathcal{S} is the $(k-1)$-spread in H_{∞} in Ψ_{q} such that $\Pi_{q^{k}}$ is the corresponding projective plane, the André-Bruck-Bose representation of $\Pi_{q^{k}}$ in Λ_{2} gives rise to a Desarguesian $(h k-1)$-spread $\widetilde{\mathcal{S}}$ in \widetilde{H}_{∞}, such that \mathcal{S}^{\prime} is a subspread of $\widetilde{\mathcal{S}}$.

11.1.3 Main theorem

In this chapter, we prove the following Main Theorem. A consequence of this result is the generalization of the characterization of translation hyperovals in $\mathrm{PG}\left(2, q^{2}\right)$ in [7].

Consider $\Psi_{q}=\operatorname{PG}(2 k, q)$ and the hyperplane H_{∞} of $\mathrm{PG}(2 k, q)$. Recall that a point of $\operatorname{PG}(2 k, q)$ is called affine if it is not contained in H_{∞}. Likewise, a line is called affine if it is not contained in H_{∞}. Let P_{1}, P_{2} be affine points, then the point $P_{1} P_{2} \cap H_{\infty}$ is the direction determined by the line $P_{1} P_{2}$. If \mathcal{Q} is a set of affine points, then the directions determined by \mathcal{Q} are all points of H_{∞} that appear as the direction of a line $P_{i} P_{j}$, for some $P_{i}, P_{j} \in \mathcal{Q}$.

Theorem 11.1.4. Let \mathcal{Q} be a set of q^{k} affine points in $\operatorname{PG}(2 k, q), q=2^{h}, h \geq 4, k \geq 2$, determining a set D of $q^{k}-1$ directions in the hyperplane at infinity $H_{\infty}=\mathrm{PG}(2 k-1, q)$. Suppose that every line has $0,1,3$ or $q-1$ points in common with the point set D. Then
(1) D is an \mathbb{F}_{2}-linear set of pseudoregulus type.
(2) There exists a Desarguesian spread \mathcal{S} in H_{∞} such that, in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{k}\right)$, with H_{∞} corresponding to the line l_{∞}, the points of \mathcal{Q} together with 2 extra points on ℓ_{∞}, form a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$.

Vice versa, via the André/Bruck-Bose construction, the set of affine points of a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right), q>4, k \geq 2$, corresponds to a set \mathcal{Q} of q^{k} affine points in $\mathrm{PG}(2 k, q)$ whose set of determined directions D is an \mathbb{F}_{2}-linear set of pseudoregulus type. Consequently, every line meets D in $0,1,3$ or $q-1$ points.

Note that we work with a set of affine points in $\operatorname{PG}(2 k, q)$ whose set of directions is a scattered linear set with specific properties. Using this, we can make the link with translation hyperovals in the André/Bruck-Bose-plane PG $\left(2, q^{k}\right)$. For this, we used the ideas found by V. Jha, N.L. Johnson and M. Lavrauw in [79, 82], in which a scattered $(k-1)$-space π_{H}, with respect to a $(k-1)$-spread S in the hyperplane at infinity $H_{\infty}=\operatorname{PG}(2 k-1,2) \subset \operatorname{PG}(2 k, 2)$ was used. Since π_{H} contains $2^{k}-1$ points and since $|S|=2^{k}+1$, it follows that there are two spread elements s_{1}, s_{2} disjoint from π_{H}. Let Π be a k-space in $\operatorname{PG}(2 k, 2)$, with $\Pi \cap H_{\infty}=\pi_{H}$, then it can be proven that the affine points of Π, together with s_{1} and s_{2}, correspond to the points of a translation hyperoval in the André/Bruck-Bose-plane, using the spread S.

This idea is also used in several other papers. For example, in [5], the authors gave an explicit construction of infinite families of maximal scattered linear sets in $\operatorname{PG}\left(n-1, q^{t}\right), t \geq 4$ even. For $q=2$, they used a similar technique to find complete caps in $\mathrm{AG}\left(n, 2^{t}\right)$ of size $2^{\frac{n t}{2}}$. We will use a similar idea in this chapter to generalize the results in [7].

11.2 The proof of the main theorem

From now on, we consider a set \mathcal{Q} satisfying the conditions of Theorem 11.1.4

- \mathcal{Q} is a set of q^{k} affine points in $\operatorname{PG}(2 k, q), q=2^{h}, h \geq 4, k \geq 2$;
- D, the set of directions determined by \mathcal{Q} at the hyperplane at infinity H_{∞}, has size $q^{k}-1$;
- Every line has $0,1,3$ or $q-1$ points in common with the point set D.

11.2.1 The $(q-1)$-secants to D are disjoint

Definition 11.2.1. A 0 -point in H_{∞} is a point $P \notin D$ such that P is contained in at least one $(q-1)$-secant to D.

From Proposition 11.2 .5 it will follow that a 0 -point is contained in precisely one $(q-1)$-secant to D. We first start with two lemmas.

Lemma 11.2.2. No three points of \mathcal{Q} are collinear.
Proof. Let l be an affine line in $\operatorname{PG}(2 k, q)$ containing $3 \leq t \leq q$ points of \mathcal{Q}, and let $P^{\prime}=l \cap H_{\infty}$. A point $P_{i} \in \mathcal{Q} \backslash l$ determines a plane $\alpha_{i}=\left\langle P_{i}, l\right\rangle$ such that the line $l_{i}=\alpha_{i} \cap H_{\infty}$ is a $(q-1)$ secant: the lines through P_{i} and a point of $l \cap \mathcal{Q}$ determine $t \geq 3$ directions of D on the line l_{i}, different from the point $P^{\prime} \in D$. So l contains more than three points of D, showing that l_{i} is a $(q-1)$-secant. Furthermore, the plane α_{i} contains at most q affine points of \mathcal{Q}, as every affine line in α through a 0 -point of l_{i} contains at most one element of \mathcal{Q}.

This implies that each of the $q^{k}-t$ points of $\mathcal{Q} \backslash l$ define a plane α, with $\alpha \cap H_{\infty}$ a ($q-1$)-secant, and so that α contains at most $q-t$ points of $\mathcal{Q} \backslash l$. This shows that the number of such planes α_{i} through l, and hence the number of $(q-1)$-secants through P^{\prime}, is at least $\frac{q^{k}-t}{q-t}$. This gives that there are at least $1+\frac{q^{k}-t}{q-t}(q-2)>q^{k}-1$ points of D, a contradiction since $t \geq 2$.
Lemma 11.2.3. Let γ be a plane in $\operatorname{PG}(2 k, q)$ containing 4 points P_{1}, P_{2}, P_{3} and P_{4} of \mathcal{Q}, such that $P_{1} P_{2} \cap P_{3} P_{4} \notin \mathcal{Q} \cup D$. Then γ meets H_{∞} in $a(q-1)$-secant to D.

Proof. By Lemma 11.2.2 no three points of $P_{1}, P_{2}, P_{3}, P_{4}$ are collinear. Since $P_{1} P_{2} \cap P_{3} P_{4} \notin D$, we see that $P_{1} P_{2}$ and $P_{3} P_{4}$ define two different directions in H_{∞}. The lines containing two of the four points P_{1}, P_{2}, P_{3} and P_{4} determine at least 4 directions on the line $\gamma \cap H_{\infty}$. The statement follows since a line contains $0,1,3$ or $q-1$ points of D.

Corollary 11.2.4. Let P_{0} be a point in \mathcal{Q}. Then, all directions in D are determined by the lines $P_{0} P_{i}$ with $P_{i} \in \mathcal{Q} \backslash\left\{P_{0}\right\}$.

Proof. From Lemma 11.2 .2 it follows that two lines $P_{0} P_{i}$ and $P_{0} P_{j}, P_{i} \neq P_{j}$, are different, and so, determine different points at infinity. The corollary follows since $|D|=q^{k}-1$, which is equal to the number of points $P_{i} \in \mathcal{Q}$, different from P_{0}.

Proposition 11.2.5. Every two $(q-1)$-secants to D are disjoint.
Proof. Consider a point $P_{0} \in \mathcal{Q}$. Then, by Corollary 11.2 .4 all directions in D are determined by the lines $P_{0} P_{i}$ with $P_{i} \in \mathcal{Q} \backslash\left\{P_{0}\right\}$. Let P_{i}^{\prime} denote the direction of the line $P_{0} P_{i}$, that is, the point $P_{0} P_{i} \cap H_{\infty}$. We see that a line through a point $P_{i}^{\prime} \in D$ contains 0 or 2 points of \mathcal{Q}.

Let l_{α} and l_{β} be two lines, both containing $q-1$ points of D, with $P^{\prime}=l_{\alpha} \cap l_{\beta}$. Let $\alpha=\left\langle P_{0}, l_{\alpha}\right\rangle$ and $\beta=\left\langle P_{0}, l_{\beta}\right\rangle$ and let $\left\{P_{1 \alpha}, P_{2 \alpha}\right\}$ and $\left\{P_{1 \beta}, P_{2 \beta}\right\}$ be the 0 -points in l_{α} and l_{β}. Note that P^{\prime} may be amongst these points. It follows from the argument above that there are precisely q points in $\alpha \cap \mathcal{Q}$ and that the affine points of \mathcal{Q} in α together with the two points $P_{1 \alpha}, P_{2 \alpha}$ form a hyperoval H_{α}. Similarly, we find a hyperoval H_{β} in β.
We first suppose that $P^{\prime} \in D$. This implies that there is a point $P \neq P_{0}$ of \mathcal{Q} on the line $P_{0} P^{\prime}$. Note that P_{0} and P are contained in $H_{\alpha} \cap H_{\beta}$.

Consider a point $R \in l_{\alpha}$, different from $P^{\prime}, P_{1 \alpha}, P_{2 \alpha}$. Then $R \in D$ and through R, there are $\frac{q}{2}$ bisecants to $H_{\alpha} \neq l_{\alpha}$. One of these bisecants contains P and another one contains P_{0}. Since $q>8$, there exists a bisecant to H_{α} through R which intersects the line $P_{0} P$ in a point $R_{0} \notin\left\{P_{0}, P, P^{\prime}\right\}$.

Through R_{0}, there are $\frac{q}{2}-2$ bisecants r_{i} to H_{β}, different from the lines $R_{0} P, R_{0} P_{1 \beta}$ and $R_{0} P_{2 \beta}$. Let $r_{i} \cap l_{\beta}=R_{i}, i=1, \ldots, \frac{q}{2}-2$. A plane $\left\langle R, r_{i}\right\rangle$ contains two lines, r_{i} and $m=R R_{0}$, both containing two points of \mathcal{Q} and $r_{i} \cap m=R_{0} \notin \mathcal{Q}$. Hence, by Lemma 11.2.3. we find that every line $R R_{i}$ is a $(q-1)$-secant to D.

So the number of $(q-1)$-secants of the form $R R_{i}$ is $\frac{q}{2}-2$, and the total number of 0 -points on these lines is $2\left(\frac{q}{2}-2\right)=q-4$. Let Ω be the set of these 0 -points. We call a (≤ 3)-secant in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$ a line with at most 3 points of D. A line through P^{\prime} in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$ intersects all lines $R R_{i}$. The $q-4$ points of Ω lie on the $q-1$ lines through P^{\prime} different from l_{α} and l_{β}. Since every line $R R_{i}$ contains precisely two 0-points, we find that for $q>8$ there are at most $3(\leq 3)$-secants through P^{\prime} : if there are at least four (≤ 3)-secants through P^{\prime} in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$, then the number of 0 -points of Ω on each of these lines is at least $\frac{q}{2}-2-2$, as we supposed that $P^{\prime} \in D$. This implies that there would be at least $4\left(\frac{q}{2}-4\right)>q-40$-points in Ω, which gives a contradiction for $q \geq 16$.
Now we distinguish different cases depending on the number of (≤ 3)-secants through P^{\prime}. In each of the cases we will show that there exist at least two (≤ 3)-secants l_{1}, l_{2} in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$, and a point $X \notin D$ not on these lines. This leads to a contradiction since there are at least $q+1-7$ lines through X, both intersecting l_{1} and l_{2} in a point not in D, and not through $l_{1} \cap l_{2}$. These lines contain at least 3 points not in D so they have to be (≤ 3)-secants. But this implies that there are at least $1+(q-6)(q-3)=q^{2}-9 q+19$ points in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$, not contained in D. On the other hand, there are at most three (≤ 3)-secants through P^{\prime} and the other lines through P^{\prime} contain two 0 -points. This implies that there are at most $3 q+2(q-2)=5 q-4<q^{2}-9 q+19$ points in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$, not contained in D. This gives a contradiction for $q \geq 16$.

It remains to show that in every case there exist at least two (≤ 3)-secants and a point $X \notin D$, not on these lines.

- Suppose first that there are two or three (≤ 3)-secants through P^{\prime}. These lines are different from l_{α}, so they do not contain the point $P_{1 \alpha}$. Then $X=P_{1 \alpha} \notin D$ is a point not on the (≤ 3)-secants.
- Suppose there is a unique (≤ 3)-secant l through P^{\prime}. Then every other line through P^{\prime} contains two 0-points. Suppose first that there exists a 0 -point P_{1} so that $P_{1 \alpha} P_{1} \cap l \notin D$. Then $l^{\prime}=P_{1 \alpha} P_{1}$ contains 3 points not in D, so l^{\prime} is a (≤ 3)-secant. Note that $P_{1} \neq P_{2 \alpha}$ as otherwise $P_{1 \alpha} P_{1} \cap l=l_{\alpha} \cap l=P^{\prime} \in D$. Hence, $X=P_{2 \alpha} \notin D$ is not contained in $l \cup l^{\prime}$.

If there is no point P_{1} so that $P_{1 \alpha} P_{1} \cap l \notin D$, then all $2 q-40$-points on the $(q-1)$-secants through P^{\prime}, different from l_{α}, l_{β}, lie on at most 2 lines $P_{1 \alpha} P_{1}$ and $P_{1 \alpha} P_{2}$, with $P_{1}, P_{2} \in$ $D \cap l \backslash\left\{P^{\prime}\right\}$. But then $P_{1 \alpha} P_{1}$ and $P_{1 \alpha} P_{2}$ are (≤ 3)-secants. Note that these lines are different from l_{α}, and so, they do not contain $P_{2 \alpha}$. Hence, we may take $X=P_{2 \alpha}$.

- Suppose all lines through P^{\prime} are $(q-1)$-secants with Γ the corresponding set of $2 q+20$ points. Let $G \in \Gamma$ and consider the $q+1$ lines through G in $\left\langle l_{\alpha}, l_{\beta}\right\rangle$. The $2 q+1$ other points of Γ lie on these lines and since every line contains 2 or at least $q-2$ points not in D, we find that through G there is at least one (≤ 3)-secant l_{1}. Consider now a point $G^{\prime} \in \Gamma \backslash l_{1}$. Through this point there is also a (≤ 3)-secant l_{2}. The lines $l_{1} \cup l_{2}$ contain at most $2 q+1$ points of Γ, so there is at least one 0 -point X not contained in these two lines.
This shows that two $(q-1)$-secants cannot meet in a point P^{\prime} of D. Suppose now that $P^{\prime} \notin D$. As above, we find for a given point $R \in D \cap l_{\alpha}$, at least $\frac{q}{2}-2(q-1)$-secants $R R_{i}$, different from l_{α}. But by the previous part, we know that there are no two $(q-1)$-secants through a point $R \in D$. As $\frac{q}{2}-2 \geq 2$, we find a contradiction.

We now deduce a corollary that will be useful later.

Corollary 11.2.6. $A(q-1)$-secant and a 3 -secant to D in H_{∞} cannot have a 0 -point in common.
Proof. Let l_{α} be a 3 -secant to D, l_{β} be a $(q-1)$-secant to D, and $P^{\prime}=l_{\alpha} \cap l_{\beta}$ be a 0 -point. Pick $P_{0} \in \mathcal{Q}$ and let $\alpha=\left\langle P_{0}, l_{\alpha}\right\rangle$ and $\beta=\left\langle P_{0}, l_{\beta}\right\rangle$. The points of $Q \cup D$ in α form a Fano plane: let $P_{i}^{\prime}, i=1,2,3$, be the three points of D on the line l_{α} and let $P_{i}, i=1,2,3$, be the corresponding affine points of \mathcal{Q} so that $P_{0} P_{i} \cap l_{\alpha}=P_{i}^{\prime}$. Since there are only three directions $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ of D in α, we find that $\left\{P_{1}, P_{3}, P_{2}^{\prime}\right\},\left\{P_{1}, P_{2}, P_{3}^{\prime}\right\}$ and $\left\{P_{2}, P_{3}, P_{1}^{\prime}\right\}$ are triples of collinear points. Since also $\left\{P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right\}$ and $\left\{P_{0}, P_{i}, P_{i}^{\prime}\right\}, i=1,2,3$, are triples of collinear points, we find that the points $\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right\}$ define a Fano plane $\mathrm{PG}(2,2)$. Let R_{0} be the point $P_{1}^{\prime} P_{2} \cap P^{\prime} P_{0}$. Note that $R_{0} \notin \mathcal{Q}$. As the points of \mathcal{Q} in β form a q-arc, we know that there are at least two lines $R_{0} R_{1}$ and $R_{0} R_{2}$ in β, with $R_{1}, R_{2} \in l_{\beta} \cap D$, such that both lines contain 2 points of \mathcal{Q}. By Lemma 11.2.3 we see that the lines $P_{1}^{\prime} R_{1}$ and $P_{1}^{\prime} R_{2}$ are both $(q-1)$-secants through P_{1}^{\prime}. This gives a contradiction by Proposition 11.2.5

11.2.2 The set D of directions in H_{∞} is a linear set

Recall that we use the notation \widetilde{P} for the affine point in Λ_{2}, corresponding to the affine point $P \in \Psi_{q}$. Let \mathcal{S}^{\prime} be the $(h-1)$-spread in the hyperplane \widetilde{H}_{∞} of $\mathrm{PG}(2 h k, 2)$ corresponding to the points of the hyperplane H_{∞} of Ψ_{q}. We use the notation $\mathcal{S}^{\prime}\left(P^{\prime}\right)$ for the element of \mathcal{S}^{\prime} corresponding to the point $P^{\prime} \in H_{\infty}$. We will now show that D is an \mathbb{F}_{2}-linear set in H_{∞} by showing that its points correspond to spread elements in \widetilde{H}_{∞} intersecting some fixed $(h k-1)$-subspace of \widetilde{H}_{∞}.

Let $\mathscr{Q}=\mathcal{Q} \cup D, \widetilde{\mathscr{Q}}=\widetilde{\mathcal{Q}} \cup \widetilde{D}$, with $\widetilde{\mathcal{Q}}$ the union of the points \widetilde{P}, with $P \in Q$, and \widetilde{D} the directions in \widetilde{H}_{∞} determined by the points of $\widetilde{\mathcal{Q}}$.

Lemma 11.2.7. Let $P_{0}, P_{1}, P_{2} \in \mathcal{Q}$ and $P_{i}^{\prime}=P_{0} P_{i} \cap H_{\infty}, i=1$, 2. If $P_{1}^{\prime} P_{2}^{\prime}$ is a 3 -secant to D, then the plane in $\mathrm{PG}(2 h k, 2)$ spanned by $\widetilde{P}_{0}, \widetilde{P}_{1}$ and \widetilde{P}_{2} is contained in $\widetilde{\mathscr{Q}}$.

Proof. Since $P_{1}^{\prime} P_{2}^{\prime}$ is not a $(q-1)$-secant, we know that there is a unique point $P_{3}^{\prime} \neq P_{1}^{\prime}, P_{2}^{\prime}$ in $P_{1}^{\prime} P_{2}^{\prime} \cap D$, and a point $P_{3} \in \mathcal{Q}$ such that $P_{3}^{\prime} \in P_{0} P_{3}$. Let α be the plane spanned by the points P_{0}, P_{1} and P_{2}. As $\alpha \cap D=\left\{P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right\}$, we find that $\left\{P_{1}, P_{3}, P_{2}^{\prime}\right\},\left\{P_{1}, P_{2}, P_{3}^{\prime}\right\}$ and $\left\{P_{2}, P_{3}, P_{1}^{\prime}\right\}$ are triples of collinear points. As in the proof of Corollary 11.2.6 we find that these points define a Fano plane $\operatorname{PG}(2,2)$. We claim that the corresponding points $\widetilde{P}_{0}, \widetilde{P}_{1}, \widetilde{P}_{2}$ and \widetilde{P}_{3} lie in a plane in $\operatorname{PG}(2 h k, 2)$. Suppose these points are not contained in a plane in $\operatorname{PG}(2 h k, 2)$, then they span a 3 -space β. Since $P_{1}^{\prime}=P_{0} P_{1} \cap P_{2} P_{3}, \widetilde{P}_{0} \widetilde{P}_{1}$ meets $\mathcal{S}^{\prime}\left(P_{1}^{\prime}\right)$ in a point, say A_{1}. Similarly, $\widetilde{P}_{2} \widetilde{P}_{3}$ meets $\mathcal{S}^{\prime}\left(P_{1}^{\prime}\right)$ in a point, say B_{1}. Since $\widetilde{P}_{0}, \widetilde{P}_{1}, \widetilde{P}_{2}, \widetilde{P}_{3}$ span a 3 -space, $A_{1} \neq B_{1}$. Similarly, the points $A_{2}=\widetilde{P}_{0} \widetilde{P}_{2} \cap \mathcal{S}^{\prime}\left(P_{2}^{\prime}\right)$ and $B_{2}=\widetilde{P}_{1} \widetilde{P}_{3} \cap \mathcal{S}^{\prime}\left(P_{2}^{\prime}\right)$ are different and span the line $A_{2} B_{2}$. But now $A_{1} B_{1} \in \mathcal{S}^{\prime}\left(\widetilde{P}_{1}^{\prime}\right)$ and $A_{2} B_{2} \in \mathcal{S}^{\prime}\left(\widetilde{P}_{2}^{\prime}\right)$ are two lines in the plane $\beta \cap \widetilde{H}_{\infty}$, so they intersect, a contradiction since the spread elements $\mathcal{S}^{\prime}\left(P_{1}^{\prime}\right)$ and $\mathcal{S}^{\prime}\left(P_{2}^{\prime}\right)$ are disjoint.

Theorem 11.2.8. The set D is an \mathbb{F}_{2}-linear set.
Proof. We prove, by induction on $t \in\{2, \ldots, h k\}$, that there exists a t-space β contained in $\widetilde{\mathscr{Q}}$ such that the points in H_{∞} corresponding to the spread elements intersecting $\beta \cap \widetilde{H}_{\infty}$ are not all contained in a single ($q-1$)-secant.

For the induction basis $t=2$, we use Lemma 11.2.7 and so, we have the following property: if \widetilde{P}_{0}, \widetilde{P}_{1} and \widetilde{P}_{2} are three points in $\widetilde{\mathcal{Q}}$ such that the line at infinity of the plane spanned by these points corresponds to a 3 -secant in Ψ_{q}, then we know that all points of $\left\langle\widetilde{P}_{0}, \widetilde{P}_{1}, \widetilde{P}_{2}\right\rangle$ are included in $\widetilde{\mathscr{Q}}$.

Now we suppose that there is a t-space β, with $\beta \subset \widetilde{\mathscr{Q}}$. By the induction hypothesis, we may assume that the points in H_{∞}, corresponding to the spread elements intersecting $\beta \cap \widetilde{H}_{\infty}$, are not all contained in a single ($q-1$)-secant.

If $t=h k$, then our proof is finished, so assume that $t<h k$. This implies that there exists a point $\widetilde{G} \in \widetilde{\mathcal{Q}} \backslash \beta$. Let G be the corresponding point in \mathcal{Q} in $\operatorname{PG}(2 k, q)$, and let $\gamma=\langle\beta, \widetilde{G}\rangle$. We show that every point \widetilde{X} in $\gamma \backslash \beta$ is a point of $\widetilde{\mathscr{Q}}$. Suppose first that \widetilde{X} is a point at infinity of $\gamma \backslash \beta$, then the line $\widetilde{X} \widetilde{G}$ contains an affine point \widetilde{Y} of β, as β is a hyperplane of γ. But since \widetilde{G} and \widetilde{Y} are points of $\widetilde{\mathcal{Q}}$, we find that $\widetilde{X} \in \widetilde{D} \subset \widetilde{\mathscr{Q}}$.
Suppose now that \widetilde{X} is an affine point in $\gamma \backslash \beta$, and let X be the corresponding point in $\operatorname{PG}(2 k, q)$. As the field size in $\operatorname{PG}(2 h k, 2)$ is 2 , the line $\widetilde{X} \widetilde{G}$ contains 1 extra point \widetilde{Y}. This point has to lie in β and in the hyperplane at infinity, so $\widetilde{Y} \in \beta \cap \widetilde{H}_{\infty}$. Let l_{1} be a line through \widetilde{Y} in β corresponding to a 3 -secant, which exists since we have seen that not all points corresponding to points of $\beta \cap H_{\infty}$ are contained in one single $(q-1)$-secant. The plane spanned by \widetilde{G} and l_{1} is contained in $\widetilde{\mathscr{Q}}$ by Lemma 11.2.7 and hence, since X lies on the line $\widetilde{Y} \widetilde{G}$ which is contained in this plane, $X \in \widetilde{\mathscr{Q}}$. This implies that $\gamma \subseteq \mathscr{Q}$. We can repeat this argument until we find that $\widetilde{\mathscr{Q}}$ is a $h k$-space in $\operatorname{PG}(2 h k, 2)$.
Note that D is a scattered linear set since $|D|=q^{k}-1=2^{h k}-1=|\mathrm{PG}(h k-1,2)|$. As D has rank $h k$, we find that D is maximum scattered.

Remark 11.2.9. In Lemma 11.2 .5 , we showed that the $(q-1)$-secants to D were disjoint. In Theorem 11.2 .8 , we have used this to show that D is a maximum scattered \mathbb{F}_{2}-linear set. The fact that $(q-1)$ secants to a maximum scattered \mathbb{F}_{2}-linear set are disjoint, is well-known (see e.g. [87] Proposition 3.2]).

11.2.3 The set D is an \mathbb{F}_{2}-linear set of pseudoregulus type

The proof that D is of pseudoregulus type, is based on some ideas of [85] Lemma 5 and Lemma 7].
Lemma 11.2.10. There are $\frac{q^{k}-1}{q-1}$ pairwise disjoint $(q-1)$-secants to D in $\operatorname{PG}(2 k-1, q), q>4$.
Proof. Let K be the $(h k-1)$-dimensional subspace in $\mathrm{PG}(2 h k-1,2)$ defining the \mathbb{F}_{2}-linear set D and let \mathcal{S}^{\prime} be the $(h-1)$-spread that corresponds to the point set of $\operatorname{PG}(2 k-1, q)$. For every $h k$-space Y through K in $\operatorname{PG}(2 h k-1,2)$, we find at least one element of \mathcal{S}^{\prime} that intersects Y in a line since D is maximum scattered. Every line l, through a point of K, such that l lies in an element of \mathcal{S}^{\prime}, defines a $h k$-space through K, and the number of $h k$-spaces through K is $2^{h k}-1$. This implies that there are on average $2^{h-1}-1>2$ lines contained in different spread elements of \mathcal{S}^{\prime} in a $h k$-space through K in $\operatorname{PG}(2 h k-1,2)$.

Take a $h k$-space Y through K with at least two lines contained in spread elements, and let S_{1} and S_{2} be two elements of \mathcal{S}^{\prime} that intersect Y in the lines y_{1} and y_{2} respectively. The $(2 h-1)$-space $\left\langle S_{1}, S_{2}\right\rangle$ intersects K in at least a plane, as y_{1} and y_{2} span a 3 -space. But this implies that the line l in $\operatorname{PG}(2 k-1, q)$, corresponding with $\left\langle S_{1}, S_{2}\right\rangle$ contains at least 7 points of D. This implies that l is a $(q-1)$-secant of D, and that $\left\langle S_{1}, S_{2}\right\rangle$ intersects K in a $(h-1)$-space α as a (h-1)-space contains $2^{h}-1=q-1$ points. Consider now the h-space $\beta=Y \cap\left\langle S_{1}, S_{2}\right\rangle$ through α. Since all of the $2^{h}+1(h-1)$-spaces of \mathcal{S}^{\prime} in $\left\langle S_{1}, S_{2}\right\rangle$ intersect β in a point or a line, we find that there are precisely $2^{h-1}-1$ elements of \mathcal{S}^{\prime}, meeting β, and so Y, in a line. Hence, this proves that a $h k$-space Y through K, containing at least 2 lines y_{1}, y_{2} in S_{1}, S_{2} respectively, contains at least $2^{h-1}-1$ lines y_{i} in different spread elements of \mathcal{S}^{\prime}. Now we prove, by contradiction, that Y cannot contain more lines y_{i} contained in a spread element. Suppose Y contains another line $y_{0} \subset S_{0}$ with $S_{0} \in \mathcal{S}^{\prime}$, then $y_{0} \notin\left\langle S_{1}, S_{2}\right\rangle$. Repeating the previous argument for y_{1} and y_{2} shows that there are
two (2h-1)-spaces $\left\langle S_{1}, S_{2}\right\rangle$ and $\left\langle S_{0}, S_{1}\right\rangle$, both meeting K in a $(h-1)$-space and so, there are two ($q-1$)-secants through $P_{1} \in H_{\infty}$, the point corresponding to the spread element S_{1}. This gives a contradiction by Proposition 11.2.5.

Since the average number of lines contained in a spread element in a $h k$-space through K is $2^{h-1}-$ $1>2$, we find that every $h k$-space through K contains exactly $2^{h-1}-1$ lines contained in a spread element. In particular, every line $y_{i} \subset S_{i}$, with $S_{i} \in \mathcal{S}^{\prime}$ and y_{i} through a point of K, defines a $h k$ space through K, and so a $(q-1)$-secant. So we find that every point in D is contained in at least one $(q-1)$-secant. As we already proved that two $(q-1)$-secants are disjoint (see Lemma 11.2.5, we find $\frac{q^{k}-1}{q-1}$ pairwise disjoint $(q-1)$-secants in $\operatorname{PG}(2 k-1, q)$.

We will first show that the linear set is of pseudoregulus type when $k=2$. To prove this, we begin with a lemma.

Lemma 11.2.11. Assume that $k=2$. Let l be a line in H_{∞} through two 0 -points, not on the same $(q-1)$-secant, then l contains no points of D.

Proof. Let l_{1} and l_{2} be two $(q-1)$-secants in H_{∞}. Let l be a line through a 0 -point of l_{1} and through a 0 -point of l_{2}. Recall that l_{1} and l_{2} are disjoint by Proposition 11.2 .5 Every two points $A, B, A \in l_{1}$, $B \in l_{2}$, define a third point in D on the line $A B$. Hence we find, since $|D|=q^{2}-1$, that every point $P \in D \backslash\left\{l_{1}, l_{2}\right\}$ is uniquely defined as a third point on a line, defined by two points A and B of D in l_{1} and l_{2} respectively.

Now suppose that l contains a point $X \in D$. Then X lies on a unique line l^{\prime}, intersecting l_{1} and l_{2} in precisely one point. But then l_{1} and l_{2} lie in a plane spanned by l and l^{\prime}, a contradiction since l_{1} and l_{2} are disjoint by Proposition 11.2.5

Proposition 11.2.12. Assume that $k=2$. The $(q-1)$-secants to D in $\operatorname{PG}(3, q)$ form a pseudoregulus.
Proof. By Lemma 11.2 .10 it is sufficient to prove that there exist 2 lines in $\mathrm{PG}(3, q)$ that have a point in common with all $(q-1)$-secants to D. Consider three $(q-1)$-secants l_{1}, l_{2} and l_{3} and let $P_{i}, Q_{i} \in l_{i}, i=1,2,3$, be the corresponding 0-points. Let l_{0} be the unique line through P_{1} that intersects l_{2} and l_{3} both in a point, say $R_{2}=l_{0} \cap l_{2}$ and $R_{3}=l_{0} \cap l_{3}$ respectively. By Proposition 11.2 .5 and Corollary $11.2 .6 R_{2}$ and R_{3} cannot both belong to \mathcal{Q}, so suppose R_{2} is a 0 -point of l_{2} (w.l.o.g. $R_{2}=P_{2}$). We see that $l_{0}=P_{1} P_{2}$ is a line through two 0 -points, so R_{3} is also a 0 -point by Corollary 11.2 .11 , w.l.o.g. $R_{3}=P_{3}$. By the same argument, we see that Q_{1}, Q_{2} and Q_{3} are contained in a line, say l_{∞}.

Now we want to show that every other $(q-1)$-secant has a 0 -point in common with both l_{0} and l_{∞}. Consider a $(q-1)$-secant l_{4}, different from l_{1}, l_{2}, l_{3}, with 0 -points P_{4} and Q_{4}. Consider now again the unique line m through P_{4} that intersects l_{1} and l_{2} in a point. By the previous arguments, m has to contain a 0 -point of l_{1} and a 0 -point of l_{2}, so $m=l_{0}, m=l_{\infty}, m=P_{1} Q_{2}$ or $m=Q_{1} P_{2}$. We will show that only the first two possibilities can occur, which then proves that every other 0-point lies on l_{0} or l_{∞}. Suppose to the contrary that $m=P_{1} Q_{2} P_{4}$ (the case $m=Q_{1} P_{2} P_{4}$ is completely analogous). Then the unique line through Q_{4}, meeting l_{1} and l_{2}, is the line $Q_{1} P_{2}$. Consider now the unique line m^{\prime} through P_{4} meeting l_{2} and l_{3} in a point. As we supposed that $m \neq l_{0}$ and $m \neq l_{\infty}$, we see that P_{4} cannot lie on these lines, so m^{\prime} contains the points P_{4}, P_{2}, Q_{3} or the points P_{4}, Q_{2}, P_{3}. In the former case, both lines l_{0} and l_{∞} are contained in the plane spanned by $m^{\prime}=P_{4} Q_{3} P_{2}$ and $m=P_{1} Q_{2} P_{4}$. This implies that the disjoint lines l_{1} and l_{2} are contained in this plane, a contradiction. If $m^{\prime}=P_{4} P_{3} Q_{2}$, then m and m^{\prime} both contain P_{4} and Q_{2} but intersect l_{0} in different points, a contradiction. We conclude that P_{4}, and analogously P_{4}^{\prime}, is contained in the line l_{0} or l_{∞}.

Using the previous proposition, we will prove that for all k, the \mathbb{F}_{2}-linear set D in $\mathrm{PG}(2 k-1, q)$ is of pseudoregulus type.

Theorem 11.2.13. The $(q-1)$-secants to D in $\operatorname{PG}(2 k-1, q)$ form a pseudoregulus.
Proof. By Lemma 11.2 .10 it is sufficient to prove that there exist two $(k-1)$-spaces in $\mathrm{PG}(2 k-1, q)$ that both have a point in common with all $(q-1)$-secants to D.

Consider a $(q-1)$-secant l_{0}, and let P_{0} and P_{0}^{\prime} be the 0 -points on l_{0}. Let l_{i} be a $(q-1)$-secant, different from l_{0}. The lines l_{0} and l_{i} span a 3 -space γ and since D is a scattered \mathbb{F}_{2}-linear set, $\gamma \cap D$ is also a scattered \mathbb{F}_{2}-linear set. Since γ contains $2(q-1)$ points of D on the lines l_{i}, l_{0} and $(q-1)^{2}$ points of D defined in a unique way as a third point on the line $A_{1} A_{2}$, with $A_{1} \in l_{0}, A_{2} \in l_{i}$, we have that $|D \cap \gamma|=q^{2}-1$, and hence it is a maximum scattered linear set. By Theorem 11.2.12 we find that $\gamma \cap D$ is of pseudoregulus type. This means that it has transversal lines, say m_{i} and m_{i}^{\prime}, where P_{0} lies on m_{i} and P_{0}^{\prime} lies on m_{i}^{\prime}. This holds for every $(q-1)$-secant l_{i}. The number of $(q-1)$-secants to D, which are mutually disjoint, is exactly $\frac{q^{k}-1}{q-1}$, see Lemma 11.2.10 and so, the number of 0 -points is exactly $2 \frac{q^{k}-1}{q-1}$. There are $\frac{q^{k}-1}{q-1}-1=\frac{q^{k}-q}{q-1} \operatorname{lines} l_{i}$ different from l_{0}, and each such line l_{i} defines a line m_{i} full of 0 -points. Since this line m_{i} contains q points different from P_{0}, we have proven that a 0 -point P_{0} lies on $\frac{q^{k-1}-1}{q-1}$ lines full of 0 -points (call such lines 0 -lines). Every $(q-1)$-secant l_{i} also contains a 0 -point P_{i}^{\prime} on a line m_{i}^{\prime}, hence every 0-point P_{0} is contained in $\frac{q^{k}-1}{q-1}$ lines containing precisely one other 0 -point.

Let A and A^{\prime} be the set of all points on the lines m_{i} and m_{i}^{\prime} respectively. Then we will show that $A \cup A^{\prime}$ is the union of two disjoint $(k-1)$-spaces.

Consider a line containing two 0 -points P_{1}, P_{2}, with l_{1} and l_{2} the $(q-1)$-secants through P_{1}, P_{2}. Then, as seen before, the intersection of the 3 -space spanned by l_{1} and l_{2} with D is a linear set of pseudoregulus type, and hence the line $P_{1} P_{2}$ contains 2 or $q+10$-points. This shows that every line in $\mathrm{PG}(2 k-1, q)$ intersects $A \cup A^{\prime}$ in $0,1,2$ or $q+1$ points. This in turn implies that a plane with three 0 -lines only contains 0-points. Consider now a point P_{3} on a 0 -line through P_{0}, and consider a 0 -line $m \neq P_{0} P_{3}$ through P_{3}. If m contains a point $P_{4} \neq P_{3}$ such that $P_{4} P_{0}$ is a 0 -line through P_{0}, then we see that the plane $\left\langle P_{0}, m\right\rangle$ only contains 0-points. In the other case, m contains at least two 0-points on 0-lines through P_{0}^{\prime}. In this case, all the points in the plane $\left\langle P_{0}^{\prime}, m\right\rangle$ are 0-points, and hence the line $P_{3} P_{0}^{\prime}$ is a 0 -line, a contradiction. So we find that every 0 -line through a 0 -point of A is contained in A. Since every point of A lies on $\frac{q^{k-1}-1}{q-1} 0$-lines, and A contains $\frac{q^{k}-1}{q-1} 0$-points, we find that every 2 points of A are contained in a 0 -line of A. The same argument works for the set A^{\prime}. This shows that A forms a subspace and likewise A^{\prime} forms a subspace. Since $|A|=\left|A^{\prime}\right|=\frac{q^{k}-1}{q-1}$, these subspaces are $(k-1)$-dimensional.

11.2.4 There exists a suitable Desarguesian $(k-1)$-spread \mathcal{S} in $\operatorname{PG}(2 k-1, q)$

Consider the scattered linear set $D \subset H_{\infty}$ of pseudoregulus type. Let T_{0} and T_{∞} be the transversal $(k-1)$-spaces to the pseudoregulus defined by D found in Theorem 11.2 .13 Now we want to show that there exists a Desarguesian $(k-1)$-spread \mathcal{S} in $\operatorname{PG}(2 k-1, q)$ such that $T_{0}, T_{\infty} \in \mathcal{S}$ and such that every other $(k-1)$-space of \mathcal{S} has precisely one point in common with D.

Lemma 11.2.14. There exists a Desarguesian $(k-1)$-spread \mathcal{S} in $\operatorname{PG}(2 k-1, q)$, such that $T_{0}, T_{\infty} \in \mathcal{S}$ and such that every other element of \mathcal{S} has precisely one point in common with D.

Proof. We prove this lemma using the representation of Result 11.1.3. in which we consider U_{0}, U_{∞} as $\mathbb{F}_{q^{k}}$. By [87] Theorem 3.7] we find that the linear sets $L_{\rho, f}$ and $L_{\rho^{\prime}, g}$ are equivalent if and only if $\sigma_{f}=\sigma_{g}^{ \pm 1}$, where σ_{f} and σ_{g} are the field automorphisms associated with f and g respectively. Hence, up to equivalence, we may suppose that $\rho=1$ and $f: \mathbb{F}_{q^{k}} \rightarrow \mathbb{F}_{q^{k}}: t \rightarrow t^{2^{i}}, \operatorname{gcd}(i, h k)=1$. It follows that D is equivalent to the set of points P_{u} with

$$
P_{u}:=\left(u, u^{2^{i}}\right)_{q}, u \in \mathbb{F}_{q^{k}}^{*}
$$

The transversal spaces T_{0} and T_{∞} are the point sets $T_{0}=\left\{(u, 0) \mid u \in \mathbb{F}_{q^{k}}^{*}\right\}$ and $T_{\infty}=\{(0, u) \mid u \in$ $\left.\mathbb{F}_{q^{k}}^{*}\right\}$.
Consider now the set \mathcal{S}_{0} of $(k-1)$-spaces $T_{u}, u \in \mathbb{F}_{q^{k}}^{*}$, with

$$
\begin{equation*}
T_{u}:=\left\{\left(\alpha u, \alpha u^{2^{i}}\right)_{q} \mid \alpha \in \mathbb{F}_{q^{k}}^{*}\right\} \tag{11.1}
\end{equation*}
$$

We will show that the set $\mathcal{S}=\mathcal{S}_{0} \cup\left\{T_{0}, T_{\infty}\right\}$ is a $(k-1)$-spread of $\operatorname{PG}(2 k-1, q)$. Suppose that $P=T_{u_{1}} \cap T_{u_{2}}$, for some $u_{1}, u_{2} \notin\{0, \infty\}$, then there exist elements $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{q^{k}}^{*}, \mu \in \mathbb{F}_{q}^{*}$, such that

$$
\begin{cases}\alpha_{1} u_{1} & =\mu \alpha_{2} u_{2} \tag{11.2}\\ \alpha_{1} u_{1}^{2^{i}} & =\mu \alpha_{2} u_{2}^{2^{i}}\end{cases}
$$

with $\mu \in \mathbb{F}_{q}^{*}$. This implies that $u_{1}^{2^{i}-1}=u_{2}^{2^{i}-1}$ or $\left(\frac{u_{1}}{u_{2}}\right)^{2^{i}}=\frac{u_{1}}{u_{2}}$. Hence, $\frac{u_{1}}{u_{2}} \in \mathbb{F}_{2^{i}} \cap \mathbb{F}_{2^{h k}}$ which is \mathbb{F}_{2} since $\operatorname{gcd}(i, h k)=1$. Since $u_{1}, u_{2} \in \mathbb{F}_{q^{k}}^{*}$, this implies that $u_{1}=u_{2}$, and that $T_{u_{1}}=T_{u_{2}}$. In particular, we see that $T_{u} \neq T_{u^{\prime}}$ for $u \neq u^{\prime} \in \mathbb{F}_{q^{k}}^{*}$. Since T_{0} and T_{∞} are distinct from T_{u} for all $u \in \mathbb{F}_{q^{k}}^{*}$, we obtain that $|\mathcal{S}|=q^{k}+1$.
We will now show that $T_{u} \cap T_{0}=\emptyset$ for all $u \in \mathbb{F}_{q^{k}}^{*}$. If $P=T_{u} \cap T_{0}, u \notin\{0, \infty\}$ for some $u \in \mathbb{F}_{q^{k}}^{*}$, then $P=\left(u^{\prime}, 0\right)_{q}$ with $u^{\prime} \in \mathbb{F}_{q^{k}}^{*}$ and

$$
\begin{cases}\alpha u & =\mu u^{\prime} \\ \alpha u^{2^{i}} & =0\end{cases}
$$

for some $\mu \in \mathbb{F}_{q}^{*}$ and $\alpha \in \mathbb{F}_{q^{k}}^{*}$. The second equality gives a contradiction since $u \neq 0 \neq \alpha$. Hence, $T_{u} \cap T_{0}=\emptyset$. It follows from a similar argument that $T_{u} \cap T_{\infty}=\emptyset$. This shows that \mathcal{S} is a spread which is Desarguesian as seen in Subsection 11.1.1.

Remark 11.2.15. In [87, Theorem 3.11(i)], a geometric construction of the Desarguesian spread, found in Lemma 11.2.14 using indicator sets, is given.

11.2.5 The point set \mathcal{Q} defines a translation hyperoval in the André/Bruck-Bose plane $\mathcal{P}(S)$

The Desarguesian spread \mathcal{S} found in Lemma 11.2 .14 defines the projective plane $\mathcal{P}(\mathcal{S})=\Pi_{q^{k}} \cong$ $\mathrm{PG}\left(2, q^{k}\right)$ by the André/Bruck-Bose construction. The transversal $(k-1)$-spaces $T_{0}, T_{\infty} \in \mathcal{S}$ to the pseudoregulus associated with D correspond to points P_{0}, P_{∞} contained in the line ℓ_{∞} at infinity of $\mathrm{PG}\left(2, q^{k}\right)$.

Theorem 11.2.16. The set \mathcal{Q}, together with T_{0} and T_{∞}, defines a translation hyperoval in $\Pi_{q^{k}} \cong$ $\mathrm{PG}\left(2, q^{k}\right)$.

Proof. Let \mathcal{A} be the set of points in $\Pi_{q^{k}}$ corresponding to the point set \mathcal{Q} of Ψ_{q}. Recall that T_{0} corresponds to a point P_{0} and T_{∞} to a point P_{∞}, contained in the line ℓ_{∞} of $\Pi_{q^{k}}$. We first show that every line in $\operatorname{PG}\left(2, q^{k}\right)$ contains at most 2 points of the set $\mathcal{H}=\mathcal{A} \cup P_{0} \cup P_{\infty}$.

- The line ℓ_{∞} at infinity only contains the points P_{0} and P_{∞}.
- Consider a line $l \neq \ell_{\infty}$ through P_{0} in $\mathrm{PG}\left(2, q^{k}\right)$. This line corresponds to a k-space through T_{0} in $\operatorname{PG}(2 k, q)$. As $P_{0} \in l \cap \mathcal{H}$, we have to show that this k-space contains at most one affine point of \mathcal{Q}. If this space would contain 2 (or more) affine points $X_{1}, X_{2} \in \mathcal{Q}$, then they would define a direction of D at infinity in T_{0}. But this is impossible as T_{0} has no points of D. This argument also works for the lines through P_{∞}, different from ℓ_{∞}.
- Consider a line l through a point $P_{i}, i \notin\{0, \infty\}$, at infinity. This point P_{i} corresponds to an element $T_{i} \in \mathcal{S}$ that intersects the pseudoregulus D in a unique point X_{i}. The line l corresponds to a k-space γ in $\mathrm{PG}(2 k, q)$ through T_{i}. Suppose that γ contains at least 3 points from \mathcal{Q}, say X, Y, Z. By Lemma 11.2 .2 these points are not collinear, hence they determine at least two different points of D which are contained in T_{i}, a contradiction by the choice of \mathcal{S}, see Lemma 11.2.14 This proves that γ contains at most two points of \mathcal{Q}, which implies that the line l contains at most two points of \mathcal{A}.

Since \mathcal{H} has size $q^{k}+2$, it follows that \mathcal{H} is a hyperoval.
Finally consider the group G of elations in $\operatorname{PG}(2 h k, 2)$ with axis the hyperplane at infinity \widetilde{H}_{∞}. Since the points of $\widetilde{\mathcal{Q}}$ form a subspace, we see that G acts transitively on the points of $\widetilde{\mathcal{Q}}$. Every element of G induces an element of the group G^{\prime} of elations in $\mathrm{PG}\left(2, q^{k}\right)$ with axis the line $P_{0} P_{\infty}$. Hence, G^{\prime} acts transitively on the points of \mathcal{A} in $\operatorname{PG}\left(2, q^{k}\right)$. This shows that \mathcal{H} is a translation hyperoval.

11.2.6 Every translation hyperoval defines a linear set of pseudoregulus type

In this section, we show that the vice versa part of Theorem 11.1.4 holds.
Proposition 11.2.17. Via the André/Bruck-Bose construction, the set of affine points of a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right), q=2^{h}$, where $h, k \geq 2$ corresponds to a set \mathcal{Q} of q^{k} affine points in $\mathrm{PG}(2 k, q)$ whose set of determined directions D is an \mathbb{F}_{2}-linear set of pseudoregulus type.

Proof. Consider a translation hyperoval H of $\operatorname{PG}\left(2, q^{k}\right)$. Without loss of generality we may suppose that $H=\left\{\left(1, t, t^{2^{i}}\right)_{q^{k}} \mid t \in \mathbb{F}_{q^{k}}\right\} \cup\left\{(0,1,0)_{q^{k}},(0,0,1)_{q^{k}}\right\}$ with $\operatorname{gcd}(i, h k)=1$. Let $l_{\infty}=$ $\left\langle(0,1,0)_{q^{k}},(0,0,1)_{q^{k}}\right\rangle$ be the line at infinity. The set of affine points of H corresponds to the set of points $H^{\prime}=\left\{\left(1, t, t^{2^{2}}\right)_{q} \in \mathbb{F}_{q} \oplus \mathbb{F}_{q^{k}} \oplus \mathbb{F}_{q^{k}} \mid t \in \mathbb{F}_{q^{k}}\right\}$ in $\mathrm{PG}(2 k, q)$ (for more information about the use of these coordinates for H and H^{\prime}, see [105]). The determined directions in the hyperplane at infinity $H_{\infty}: X_{0}=0$ have coordinates $\left(0, t_{1}-t_{2}, t_{1}^{2^{i}}-t_{2}^{2^{2}}\right)_{q}$ where $t_{1}, t_{2} \in \mathbb{F}_{q^{k}}$. So the set $D=\left\{\left(0, u, u^{2^{2}}\right)_{q} \mid u \in \mathbb{F}_{q^{k}}\right\}$ is precisely the set of directions determined by the points of H. By Result 11.1 .3 we find that this set of directions D is an \mathbb{F}_{2}-linear set of pseudoregulus type in the hyperplane H_{∞}.

We will now show that every line in $\mathrm{PG}(2 k-1, q)$ intersects the points of the linear set D in $0,1,3$ or $q-1$ points.

Proposition 11.2.18. Let D be the set of points of an \mathbb{F}_{2}-linear set of pseudoregulus type in $\mathrm{PG}(2 k-$ $1, q), q=2^{h}, h>2, k \geq 2$. Then every line of $\operatorname{PG}(2 k-1, q)$ meets D in $0,1,3$ or $q-1$ points.

Proof. We use the representation of Result 11.1 .3 for the points of D. Let $R_{1}=\left(u_{1}, f\left(u_{1}\right)\right)_{q}$ and $R_{2}=\left(u_{2}, f\left(u_{2}\right)\right)_{q}, u_{1}, u_{2} \in U_{0}$, be two points of D not on the same line of the pseudoregulus, so the vectors $\left\langle u_{1}\right\rangle$ and $\left\langle u_{2}\right\rangle$ in $V(k, q)$ are not an \mathbb{F}_{q}-multiple (in short $\left\langle u_{1}\right\rangle_{q} \neq\left\langle u_{2}\right\rangle_{q}$). Recall that f is an invertible semi-linear map with automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right), \operatorname{Fix}(\sigma)=\{0,1\}$. A third point $R_{3}=\left(u_{3}, f\left(u_{3}\right)\right)_{q} \in D$ is contained in $R_{1} R_{2}$ if and only if there are $\mu, \lambda \in \mathbb{F}_{q}$ such that

$$
\begin{aligned}
& \begin{cases}u_{1}+\lambda u_{2} & =\mu u_{3} \\
f\left(u_{1}\right)+\lambda f\left(u_{2}\right) & =\mu f\left(u_{3}\right)\end{cases} \\
& \Leftrightarrow \begin{cases}f\left(u_{1}\right)+\lambda^{\sigma} f\left(u_{2}\right) & =\mu^{\sigma} f\left(u_{3}\right) \\
f\left(u_{1}\right)+\lambda f\left(u_{2}\right) & =\mu f\left(u_{3}\right)\end{cases} \\
& \Leftrightarrow \begin{cases}f\left(u_{1}\right)+\lambda^{\sigma} f\left(u_{2}\right) & =\mu^{\sigma} f\left(u_{3}\right) \\
\left(\lambda^{\sigma}-\lambda\right) f\left(u_{2}\right) & =\left(\mu^{\sigma}-\mu\right) f\left(u_{3}\right)\end{cases} \\
& \Leftrightarrow \begin{cases}f\left(u_{1}+\lambda u_{2}\right) & =f\left(\mu u_{3}\right) \\
f\left(\left(\lambda-\lambda^{\sigma^{-1}}\right) u_{2}\right) & =f\left(\left(\mu-\mu^{\sigma^{-1}}\right) u_{3}\right)\end{cases} \\
& \Leftrightarrow \begin{cases}u_{1}+\lambda u_{2} & =\mu u_{3} \\
\left(\lambda^{\sigma}-\lambda\right)^{\sigma^{-1}} u_{2} & =\left(\mu-\mu^{\sigma^{-1}}\right) u_{3}\end{cases}
\end{aligned}
$$

As R_{2} and R_{3} lie on different $(q-1)$-secants to D, we have that $R_{2} \neq R_{3}$ and so, $\left\langle u_{2}\right\rangle_{q} \neq\left\langle u_{3}\right\rangle_{q}$. It follows that $\lambda^{\sigma}-\lambda=\mu-\mu^{\sigma^{-1}}=0$, so $\lambda, \mu \in \operatorname{Fix}(\sigma)=\{0,1\}$. We find that there is only one solution of this system, such that $R_{1} \neq R_{3}$ (i.e. $\left\langle u_{1}\right\rangle_{q} \neq\left\langle u_{3}\right\rangle_{q}$), namely when $\lambda=\mu=1$. Hence, given two points R_{1}, R_{2} in D, there is a unique point $R_{3} \in D \cap R_{1} R_{2}$, different from R_{1} and R_{2}.

11.3 The generalisation of a characterisation of Barwick and Jackson

Using Theorem 11.1.4 we are now able to generalise the following result of Barwick-Jackson which concerns translation hyperovals in $\mathrm{PG}\left(2, q^{2}\right)$ ([7]).

Result 11.3.1 ([7, Theorem 1.2]). Consider $\operatorname{PG}(4, q), q$ even, $q>2$, with the hyperplane at infinity denoted by Σ_{∞}. Let \mathcal{C} be a set of q^{2} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following:
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then there exists a Desarguesian spread \mathcal{S} in Σ_{∞} such that in the Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \operatorname{PG}\left(2, q^{2}\right)$, the \mathcal{C}-points, together with 2 extra points on ℓ_{∞}, form a translation hyperoval in $\operatorname{PG}\left(2, q^{2}\right)$.

Remark 11.3.2. At two different points, the proofs of [7] are inherently linked to the fact that they are dealing with hyperovals in $\mathrm{PG}\left(2, q^{2}\right)$. In [7 Lemma 4.1] the authors show the existence of a design which is isomorphic to an affine plane, of which they later need to use the parallel classes. In [7] Theorem 4.11], they use the Klein correspondence to represent lines in $\operatorname{PG}(3, q)$ in $\operatorname{PG}(5, q)$. Both techniques cannot be extended in a straightforward way to $q^{k}, k>2$.

The following Proposition shows that a set of \mathcal{C}-planes as defined by Barwick and Jackson in [7] (using $\operatorname{PG}(2 k, q)$ instead of $\operatorname{PG}(4, q))$ satisfies the conditions of Theorem 11.1.4

Proposition 11.3.3. Consider $\operatorname{PG}(2 k, q), q$ even, $q>2$, with the hyperplane at infinity denoted by H_{∞}. Let \mathcal{C} be a set of q^{k} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following:
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then \mathcal{C} determines a set of $q^{k}-1$ directions D in H_{∞} such that every line of H_{∞} meets D in $0,1,3$ or $q-1$ points.

Proof. Note that all \mathcal{C}-points are affine. Since every two \mathcal{C}-points lie on a \mathcal{C}-plane which meets \mathcal{C} in a q-arc, we have that no three \mathcal{C}-points are collinear.

Let P_{0} be a \mathcal{C}-point and let D_{0} be the set of points of the form $P_{0} P_{i} \cap H_{\infty}$, where $P_{i} \neq P_{0}$ is a point of \mathcal{C}. We first show that every line meets D_{0} in $0,1,3$ or $q-1$ points. Let M be a line of H_{∞} containing 2 points of D_{0}, say $R_{1}^{\prime}=P_{0} R_{1} \cap H_{\infty}, R_{2}^{\prime}=P_{0} R_{2} \cap H_{\infty}$, where $R_{1}, R_{2} \in \mathcal{C}$. Then $\left\langle M, P_{0}\right\rangle$ contains at least 3 points of \mathcal{C}, and hence, by (A4), either it is a \mathcal{C}-plane or it contains exactly 4 points of \mathcal{C}. If $\left\langle M, P_{0}\right\rangle$ is a \mathcal{C}-plane, it contains q points of \mathcal{C} forming a q-arc, and hence, M contains $q-1$ points of D_{0}. Now suppose that $\left\langle M, P_{0}\right\rangle$ contains exactly $4 \mathcal{C}$-points, then M contains 3 points of D_{0}.

Now let $P_{1} \neq P_{0}$ be a point of \mathcal{C} and let D_{1} be the set of points of the form $P_{1} P_{i} \cap H_{\infty}$, where $P_{i} \neq P_{1}$ is a point of \mathcal{C}. We claim that $D_{0}=D_{1}$. Let $P_{1}^{\prime}=P_{0} P_{1} \cap H_{\infty}$. We see that $P_{1}^{\prime} \in D_{0} \cap D_{1}$. Consider a point $P_{2}^{\prime} \neq P_{1}^{\prime}$ in D_{0}, then $P_{0} P_{2} \cap H_{\infty}=P_{2}^{\prime}$ for some $P_{2} \in \mathcal{C}$. Consider the plane $\pi=\left\langle P_{0}, P_{1}, P_{2}\right\rangle$.

Suppose first that π is not a \mathcal{C}-plane, then, by (A4), π contains exactly one extra point, say P_{3} of \mathcal{C}. The lines $P_{0} P_{1}$ and $P_{2} P_{3}$ lie in π and hence, meet in a point Q. By (A2), there is a \mathcal{C}-plane μ through $P_{0} P_{1}$, and likewise, there is a \mathcal{C}-plane μ^{\prime} through $P_{2} P_{3}$. Since π is not a \mathcal{C}-plane, μ and μ^{\prime} are two distinct \mathcal{C}-planes through Q. By (A3) this implies that Q is a point of H_{∞}. Likewise, $P_{0} P_{2} \cap P_{1} P_{3}$ and $P_{0} P_{3} \cap P_{1} P_{2}$ are points of H_{∞}. It follows that $D_{0} \cap \pi=D_{1} \cap \pi$. This argument shows that for all points $R \neq P_{1}^{\prime} \in D_{0}$ such that $\left\langle P_{0}, P_{1}, R\right\rangle$ is not a \mathcal{C}-plane, we have that $R \in D_{1}$. Now $P_{0} P_{1}$ lies on a unique \mathcal{C}-plane, say ν. Let $\nu \cap H_{\infty}=L$, then we have shown that $\left\langle P_{0}, P_{1}, R\right\rangle$ is not a \mathcal{C}-plane as long as $R \in H_{\infty}$ is not on L. We conclude that $D_{0} \backslash L=D_{1} \backslash L$.

Now assume that $D_{0} \neq D_{1}$ and let X be a point in D_{1} which is not contained in D_{0}. Then $X \in L$ and $P_{1} X$ contains a point $Y \neq P_{1} \in \mathcal{C}$. Consider a point $P_{4}^{\prime} \in D_{1}$, not on L, then $P_{1} P_{4}^{\prime}$ contains a point $P_{4} \neq P_{1}$ of \mathcal{C}. Since $P_{4}^{\prime} \in D_{1} \backslash L, P_{4}^{\prime} \in D_{0}$ so the line $P_{4}^{\prime} P_{0}$ contains a point $P_{5} \neq P_{1}$ of \mathcal{C}.

The plane $\left\langle P_{1}, P_{4}^{\prime}, X\right\rangle$ is not a \mathcal{C}-plane since otherwise, the points P_{1} and Y of \mathcal{C} would lie in two different \mathcal{C}-planes. This implies that $\left\langle P_{1}, P_{4}, X\right\rangle$, which contains the \mathcal{C}-points P_{1}, P_{4}, Y, contains
exactly one extra point of \mathcal{C}, say P_{6}. Denote $P_{1} P_{6} \cap H_{\infty}$ by P_{6}^{\prime}. We see that there are exactly 3 points of D_{1} on the line $P_{4}^{\prime} X$, namely P_{4}^{\prime}, X and P_{6}^{\prime}.

Now P_{6}^{\prime} is a point of D_{1}, not on L, so $P_{6}^{\prime} \in D_{0}$. Hence, there is a point $S \neq P_{0} \in \mathcal{C}$ on the line $P_{0} P_{6}^{\prime}$.

If $\left\langle P_{4}^{\prime}, P_{6}^{\prime}, P_{0}\right\rangle$ is not a \mathcal{C}-plane, then, since it contains P_{0}, P_{5}, S of \mathcal{C}, it contains precisely 3 points of D_{0} at infinity. These are the points $P_{4}^{\prime}, P_{6}^{\prime}$ and one other point, say T, which needs to be different from X by our assumption that $X \notin D_{0}$. That implies that T is not on L, and hence, $T \in D_{1}$. This is a contradiction since we have seen that the only points of D_{1} on $P_{4}^{\prime} X$ are P_{4}^{\prime}, X and P_{6}^{\prime}. Now if $\left\langle P_{4}^{\prime}, P_{6}, P_{0}\right\rangle$ is a \mathcal{C}-plane, we find $q-1$ points of D_{0} on $P_{4}^{\prime} X$, all of them are not on L. Hence, we find $q-1$ points of D_{1} on $P_{4}^{\prime} X$, not on L. This is again a contradiction since $P_{4}^{\prime} X$ has only the points P_{4}^{\prime} and P_{6}^{\prime} of D_{1} not on L.
This proves our claim that $D_{0}=D_{1}$. Since P_{1} was chosen arbitrarily, different from P_{0}, and $D_{0}=D_{1}$, we find that the set D of directions determined by \mathcal{C} is precisely the set D_{0}. The statement now follows from the fact that a line meets D_{0} in $0,1,3$ or $q-1$ points.
Proposition 11.3 .3 shows that the set \mathcal{C} satisfies the criteria of Theorem 11.1.4 Hence, we find the following generalisation of Result 11.3.1

Theorem 11.3.4. Consider $\mathrm{PG}(2 k, q)$, q even, $q>2$, with the hyperplane at infinity denoted by H_{∞}. Let \mathcal{C} be a set of q^{k} affine points, called \mathcal{C}-points, and consider a set of planes, called \mathcal{C}-planes, which satisfies the following:
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then there exists a Desarguesian spread \mathcal{S} in H_{∞} such that in the Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \operatorname{PG}\left(2, q^{k}\right)$, the \mathcal{C}-points, together with 2 extra points on ℓ_{∞}, form a translation hyperoval in $\operatorname{PG}\left(2, q^{k}\right)$.

Part IV

Appendix

66 I guess ice cream is one of those things that are beyond imagination.
-Lucy Maud Montgomery

In this chapter, we give a short summary on the most important concepts and results in this thesis. For more details, and for the proofs of the results, we refer to the chapters above.

This thesis consist of three large parts. The first part handles several intersection problems in projective and affine geometries. In the second part, we discuss Cameron-Liebler sets in affine, projective and polar spaces. The last part concerns translation hyperovals in $\operatorname{PG}(4, q), q$ even, for which we use linear sets.

A. 1 Introduction

Before we start with the first main part, we give a short introduction. In Chapter 1.1 several incidence geometries are defined. The most commonly used incidence geometry in this thesis is the projective space $\operatorname{PG}(n, q)$ of dimension n over the field \mathbb{F}_{q} with q elements, q a prime power. This is the geometry of subspaces of an $(n+1)$-dimensional vector space over the same field. The projective dimension of a subspace in $\mathrm{PG}(n, q)$ is the vector dimension of the corresponding vector space, minus one. In this thesis, we only work with projective dimensions. Subspaces of dimension k are also called k-spaces. The number of points in an n-dimensional projective space is $\theta_{n}=\frac{q^{n+1}-1}{q-1}$, while the number of k-spaces in an n-dimensional projective space is given by the Gaussian binomial coefficient $\left[\begin{array}{c}n+1 \\ k+1\end{array}\right]_{q}$.

An affine space $\mathrm{AG}(n, q)$ is the incidence geometry obtained from a projective space $\mathrm{PG}(n, q)$, by removing an $(n-1)$-dimensional space, or hyperplane H, together with all its incident subspaces. This hyperplane is also called the hyperplane at infinity.

The finite classical polar spaces are incidence geometries embedded in a projective space $\mathrm{PG}(n, q)$. They consist of the totally isotropic subspaces of a vector space $V(n+1 ; q)$, with respect to a quadratic, symplectic or Hermitian form, and are equipped with the natural incidence relation.

A. 2 Intersection problems

The first main part of this thesis handles intersection problems. In this part, we discuss the classification of several (large) families of subspaces in projective and affine spaces, that meet pre-established conditions.

A.2.1 Sets of k-spaces pairwise intersecting in at least a $(k-2)$-space

In this first research project, large families of k-spaces, pairwise intersecting in at least a ($k-$ $2)$-space in $\mathrm{PG}(n, q)$, are studied. The largest set is a $(k-2)$-pencil. This is the set of k-spaces containing a fixed $(k-2)$-space. This was proven for general t-spaces by P. Frankl and R.M. Wilson.

Theorem A.2.1. [60, Theorem 1] Let t and k be integers, with $0 \leq t \leq k$. Let \mathcal{S} be a set of k-spaces in $\mathrm{PG}(n, q)$, pairwise intersecting in at least a t-space.
(i) If $n \geq 2 k+1$, then $|\mathcal{S}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. Equality holds if and only if \mathcal{S} is the set of all the k-spaces, containing a fixed t-space of $\mathrm{PG}(n, q)$, or $n=2 k+1$ and \mathcal{S} is the set of all the k-spaces in a fixed $(2 k-t)$-space.
(ii) If $2 k-t \leq n \leq 2 k$, then $|\mathcal{S}| \leq\left[\begin{array}{c}2 k-t+1 \\ k-t\end{array}\right]$. Equality holds if and only if \mathcal{S} is the set of all the k-spaces in a fixed $(2 k-t)$-space.

In this thesis, the case $t=k-2$ is studied. We classify the ten largest maximal examples of sets of k-spaces pairwise intersecting in at least a $(k-2)$-space. For figures of the examples below, we refer to Chapter 3

Example A.2.2. Examples of maximal sets \mathcal{S} of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a $(k-2)$-space.
(i) $(k-2)$-pencil: the set \mathcal{S} is the set of all k-spaces that contain a fixed $(k-2)$-space. Then $|\mathcal{S}|=\left[\begin{array}{c}n-k+2 \\ 2\end{array}\right]$.
(ii) Star: there exists a k-space ζ such that \mathcal{S} contains all k-spaces that have at least a $(k-1)$-space in common with ζ. Then $|\mathcal{S}|=q \theta_{k} \theta_{n-k-1}+1$.
(iii) Generalized Hilton-Milner example: there exists $a(k+1)$-space ν and $a(k-2)$-space $\pi \subset \nu$ such that \mathcal{S} consists of all k-spaces in ν, together with all k-spaces of $\operatorname{PG}(n, q)$, not in ν, through π that intersect ν in a $(k-1)$-space. Then $|\mathcal{S}|=\theta_{k+1}+q^{2}\left(q^{2}+q+1\right) \theta_{n-k-2}$.
(iv) There exists a $(k+2)$-space ρ, a k-space $\alpha \subset \rho$ and $a(k-2)$-space $\pi \subset \alpha$ so that \mathcal{S} contains all k-spaces in ρ that meet α in a $(k-1)$-space not through π, all k-spaces in ρ through π, and all k-spaces in $\operatorname{PG}(n, q)$, not in ρ, that contain a $(k-1)$-space of α through π. Then $|\mathcal{S}|=(q+1) \theta_{n-k}+q^{3}(q+1) \theta_{k-2}+q^{4}-q$.
(v) There is a $(k+2)$-space ρ, and $a(k-1)$-space $\alpha \subset \rho$ such that \mathcal{S} contains all k-spaces in ρ that meet α in at least a $(k-2)$-space, and all k-spaces in $\operatorname{PG}(n, q)$, not in ρ, through α. Note that all k-spaces in $\operatorname{PG}(n, q)$ through α are contained in \mathcal{S}. Then $|\mathcal{S}|=\theta_{n-k}+q^{2}\left(q^{2}+q+1\right) \theta_{k-1}$.
(vi) There are two ($k+2$)-spaces ρ_{1}, ρ_{2} intersecting in a $(k+1)$-space $\alpha=\rho_{1} \cap \rho_{2}$. There are two $(k-1)$-spaces $\pi_{A}, \pi_{B} \subset \alpha$ with $\pi_{A} \cap \pi_{B}$ the $(k-2)$-space λ, there is a point $P_{A B} \in \alpha \backslash\left\langle\pi_{A}, \pi_{B}\right\rangle$, and let $\lambda_{A}, \lambda_{B} \subset \lambda$ be two different $(k-3)$-spaces. Then \mathcal{S} contains

- all k-spaces in α,
- all k-spaces of $\mathrm{PG}(n, q)$ through $\left\langle P_{A B}, \lambda\right\rangle$, not in ρ_{1} and not in ρ_{2}.
- all k-spaces in ρ_{1}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{A} through λ_{A},
- all k-spaces in ρ_{1}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{B} through λ_{B},
- all k-spaces in ρ_{2}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{A} through λ_{B},
- all k-spaces in ρ_{2}, not in α, through $P_{A B}$ and $a(k-2)$-space in π_{B} through λ_{A}.

Then $|\mathcal{S}|=\theta_{n-k}+q^{2} \theta_{k-1}+4 q^{3}$.
(vii) There is a $(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\operatorname{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example VIII in [33]: Let Ψ be an $(n-k+2)$-space, disjoint from γ, in $\operatorname{PG}(n, q)$. Consider two solids σ_{1} and σ_{2} in Ψ, intersecting in a line l. Take the points P_{1} and P_{2} on l. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$, all k-spaces through $\left\langle\gamma, P_{1}\right\rangle$ that contain a line in σ_{1} and a line in σ_{2} skew to γ, and all k-spaces through $\left\langle\gamma, P_{2}\right\rangle$ in $\left\langle\gamma, \sigma_{1}\right\rangle$ or in $\left\langle\gamma, \sigma_{2}\right\rangle$. Then $|\mathcal{S}|=\theta_{n-k}+q^{4}+2 q^{3}+3 q^{2}$.
(viii) There is a $(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\operatorname{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example $I X$ in [33]: Let Ψ be an $(n-k+2)$-space, disjoint from γ, in $\operatorname{PG}(n, q)$, and let l be a line and σ a solid skew to l, both in Ψ. Denote $\langle l, \sigma\rangle$ by ρ. Let P_{1} and P_{2} be two points on l and let \mathcal{R}_{1} and \mathcal{R}_{2} be a regulus and its opposite regulus in σ. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$, all k-spaces through $\left\langle\gamma, P_{1}\right\rangle$ in the $(k+1)$-space generated by γ, l and a fixed line of \mathcal{R}_{1}, and all k-spaces through $\left\langle\gamma, P_{2}\right\rangle$ in the $(k+1)$-space generated by γ, l and a fixed line of \mathcal{R}_{2}. Then $|\mathcal{S}|=\theta_{n-k}+2 q^{3}+2 q^{2}$.
(ix) There is a $(k-3)$-space γ contained in all k-spaces of \mathcal{S}. In the quotient space $\mathrm{PG}(n, q) / \gamma$, the set of planes corresponding to the elements of \mathcal{S} is the set of planes of example VII in [33]: Let Ψ be an $(n-k+2)$-space, disjoint from γ in $\mathrm{PG}(n, q)$ and let ρ be a 5 -space in Ψ. Consider a line l and a 3-space σ disjoint from l. Choose three points P_{1}, P_{2}, P_{3} on l and choose four noncoplanar points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ in σ. Denote $l_{1}=Q_{1} Q_{2}, \bar{l}_{1}=Q_{3} Q_{4}, l_{2}=Q_{1} Q_{3}, \bar{l}_{2}=Q_{2} Q_{4}$, $l_{3}=Q_{1} Q_{4}$, and $\bar{l}_{3}=Q_{2} Q_{3}$. Then \mathcal{S} is the set containing all k-spaces through $\langle\gamma, l\rangle$ and all k-spaces through $\left\langle\gamma, P_{i}\right\rangle$ in $\left\langle\gamma, l, l_{i}\right\rangle$ or in $\left\langle\gamma, l, \bar{l}_{i}\right\rangle, i=1,2,3$. Then $|\mathcal{S}|=\theta_{n-k}+6 q^{2}$.
$(x) \mathcal{S}$ is the set of all k-spaces contained in a fixed $(k+2)$-space ρ. Then $|\mathcal{S}|=\left[\begin{array}{c}k+3 \\ 2\end{array}\right]$.
Main Theorem A.2.3. Let \mathcal{S} be a maximal set of k-spaces pairwise intersecting in at least a $(k-2)$ space in $\mathrm{PG}(n, q), n \geq 2 k, k \geq 3$. Let

$$
f(k, q)=\left\{\begin{array}{l}
3 q^{4}+6 q^{3}+5 q^{2}+q+1 \quad \text { if } k=3, q \geq 2 \text { or } k=4, q=2 \\
\theta_{k+1}+q^{4}+2 q^{3}+3 q^{2} \quad \text { else }
\end{array}\right.
$$

If $|\mathcal{S}|>f(k, q)$, then \mathcal{S} is one of the families described in Example A.2.2. Note that for $n>2 k+1$, the examples $(i)-(i x)$ are stated in decreasing order of the sizes.

A.2.2 Hilton-Milner problems in $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$

As already mentioned above, we know that the largest set of k-spaces, pairwise intersecting in a t-space in $\operatorname{PG}(n, q), n \geq 2 k+1$ is a t-pencil. This example is often called the trivial example. Guo and Xu proved that the largest set of k-spaces pairwise intersecting in a t-space in $\operatorname{AG}(n, q)$, $n \geq 2 k+t+2$ is t-pencil as well, see [69]. In Chapter 4 the two largest non-trivial examples of k-spaces pairwise intersecting in at least a t-space, in both $\operatorname{PG}(n, q)$ and $\operatorname{AG}(n, q)$ are classified for $n \geq 2 k+t+3$ and $q \geq 3$. For this, we suppose that $k \geq t+1$.

We start with examples of t-intersecting sets in the projective setting.
Example A.2.4. Suppose $k \geq t+1$ and let γ be a $(t+2)$-space in $\mathrm{PG}(n, q), n \geq 2 k-t+1$. Let \mathcal{S} be the set of all k-spaces in $\operatorname{PG}(n, q)$, meeting γ in at least a $(t+1)$-space.

Example A.2.5. Let δ be at-space, $t \leq k-1$, in $\mathrm{PG}(n, q), n \geq 2 k-t+1$, and let ξ be a $(k+1)$-space in $\mathrm{PG}(n, q)$ with $\delta \subset \xi$. Let S_{1} be the set of all k-spaces in ξ. Let S_{2} be the set of all k-spaces through δ and meeting ξ in at least a $(t+1)$-space. Let \mathcal{S} be the union of the sets S_{1} and S_{2}.

Note that these examples correspond to Examples A.2.2 (ii) and (iii) respectively for $t=k-2$. These are the largest non-trivial examples of t-intersecting sets of k-spaces in $\operatorname{PG}(n, q)$.

Theorem A.2.6. Let \mathcal{S}_{p} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{PG}(n, q), k \geq t+2, t \geq 1$, with $q \geq 3$, and $n \geq 2 k+t+3$. If \mathcal{S}_{p} is not a t-pencil, then

$$
\left|\mathcal{S}_{p}\right| \leq\left\{\begin{array}{ll}
\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right] & \text { if } k>2 t+2 \\
\theta_{t+2} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] & \text { if } k \leq 2 t+2 .
\end{array} .\right.
$$

Equality occurs if and only if \mathcal{S}_{p} is Example A.2.4 for $k \leq 2 t+2$ or Example A.2.5 for $k \geq 2 t+3$.
Now we give two examples of large t-intersecting sets of k-spaces in $\mathrm{AG}(n, q)$. For an affine space α we denote the projective extension of α by $\tilde{\alpha}$, and let $H_{\infty}=\mathrm{PG}(n, q) \backslash \mathrm{AG}(n, q)$ be the hyperplane at infinity.

Example A.2.7. Suppose $k \geq t+1$. Let γ be an affine $(t+2)$-space in $A G(n, q)$, and let \mathcal{R} be a set of θ_{t+1} affine $(t+1)$-spaces in γ such that for every two distinct elements $\sigma_{1}, \sigma_{2} \in \mathcal{R}$, $\tilde{\sigma}_{1} \cap H_{\infty} \neq \tilde{\sigma}_{2} \cap H_{\infty}$. Note that every two different elements of R meet in an affine t-space. Let \mathcal{S} be the set of all k-spaces in $A G(n, q)$, containing γ or meeting γ in an element of \mathcal{R}.

Example A.2.8. Let δ be a t-space, $k \geq t+1$, in $\mathrm{AG}(n, q)$, and let ξ be a $(k+1)$-space in $\operatorname{AG}(n, q)$ with $\delta \subset \xi$. Let S_{1} be a maximal set of affine k-spaces in ξ, such that for any two elements π_{1}, π_{2} of $S_{1}, \tilde{\pi}_{1} \cap H_{\infty} \neq \tilde{\pi}_{2} \cap H_{\infty}$, and such that for every $\pi_{1} \in S_{1}: \tilde{\delta} \cap H_{\infty} \nsubseteq \tilde{\pi}_{1}$. Let S_{2} be the set of all k-spaces through δ and meeting ξ in at least a $(t+1)$-space. Let \mathcal{S} be the union of the sets S_{1} and S_{2}.

We find that the largest non-trivial t-intersecting sets in $\operatorname{AG}(n, q)$ arise from one of these two examples; which one depends on whether $k \geq 2 t+2$ or not.

Theorem A.2.9. Let \mathcal{S}_{a} be a maximal set of k-spaces, pairwise intersecting in at least a t-space in $\mathrm{AG}(n, q), k \geq t+2, t \geq 1$, with $q \geq 3$, and $n \geq 2 k+t+3$. If \mathcal{S}_{a} is not a t-pencil, then

$$
\left|\mathcal{S}_{a}\right| \leq \begin{cases}\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] & \text { if } k>2 t+1 \\
\theta_{t+1} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] & \text { if } k \leq 2 t+1 .\end{cases}
$$

Equality occurs if and only if \mathcal{S}_{a} is Example A.2.7 for $k \leq 2 t+1$ or Example A.2.8 for $k \geq 2 t+2$.

A.2.3 The Sunflower bound

In the previous sections, we investigate subspaces pairwise intersecting in at least a subspace of a certain dimension. In Chapter 5 we investigate sets of k-spaces in $\operatorname{PG}(n, q)$ pairwise intersecting in precisely a point. More generally, a $(k+1, t+1)$-SCID is a set of k-spaces, pairwise intersecting in exactly a t-space. An example of such a SCID is the set S of k-spaces, such that for each $\pi, \tau \in S$ it holds that $\pi \cap \tau=\gamma$, for a t-space γ. This example is a sunflower with vertex γ. The Sunflower bound states that if the number of elements in a $(k+1, t+1)$-SCID S surpasses the Sunflower bound, then S must be a sunflower.

Theorem A.2.10. [56, Theorem 1] $A(k+1, t+1)$-SCID S in $\mathrm{PG}(n, q)$, is a sunflower if

$$
|S|>\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)^{2}+\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)+1 .
$$

In Chapter 5 we improve this bound for $k \geq 3$ and $q \geq 7$. For $k=1$ and $k=2$, a complete classification is known: every $(k+1, k)$-SCID is a sunflower or consists of all k-spaces in a fixed $(k+1)$-space. For the classification of $(3,1)$-SCIDs, we refer to [9].

Theorem A.2.11. $A(k+1,1)$-SCID in $\mathrm{PG}(n, q), k \geq 3, q \geq 7$, with more than $F_{q} \theta_{k}^{2}$ elements is a sunflower. Here we use

$$
F_{q}=\frac{1}{2}\left(\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)}\right)
$$

with

$$
\begin{aligned}
B_{q} & =\left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q \\
c_{q} & =1-\frac{1}{\sqrt[6]{q}}-\frac{1}{2 \sqrt[3]{q}}
\end{aligned}
$$

In particular, we have that $a(k+1,1)$-SCID in $\operatorname{PG}(n, q)$, with more than $\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \theta_{k}^{2}$ elements is a sunflower.

A.2.4 The chromatic number of some q-Kneser graphs

A flag in $\operatorname{PG}(n, q)$ is a set F of non-trivial subspaces of $\operatorname{PG}(n, q)$ (that is, different from \emptyset and $\mathrm{PG}(n, q))$ such that for all $\alpha, \beta \in F$ one has $\alpha \subset \beta$ or $\beta \subset \alpha$. The subset $\{\operatorname{dim}(\alpha)+1 \mid \alpha \in F\}$, where we use the projective dimension, is called the type of F and it is a subset of $\{1,2, \ldots, n\}$. Two flags F and G are in general position if $\alpha \cap \beta=\emptyset$ or $\langle\alpha, \beta\rangle=\operatorname{PG}(n, q)$ for all $\alpha \in F$ and $\beta \in G$.

For $\Omega \subseteq\{1,2, \ldots, n\}$ the q-Kneser graph $q K_{n+1 ; \Omega}$ is the graph whose vertices are all flags of type Ω of $\mathrm{PG}(n, q)$ with two vertices adjacent when the corresponding flags are in general position. We are interested in the chromatic number of these graphs.

For any point $P \in \mathrm{PG}(n, q)$, we define the set $\mathcal{F}_{\Omega}(P)$ as the set of all flags F of type $\Omega \subseteq$ $\{2,3, \ldots, n\}$ for which $F \cup\{P\}$ is a flag. We call $\mathcal{F}_{\Omega}(P)$ the point-pencil (of flags of type Ω) with base point P.

We determine the chromatic number of the graphs $q K_{5 ; \Omega}$ for $\Omega=\{2,4\}$ and $q \neq 2$, and for $q K_{2 d+1 ;\{d, d+1\}}$, with $d \geq 2$ and q very large.
We used the independence number as well as structural information on large cocliques of $q K_{5 ;\{2,4\}}$ (see [14]), and of $q K_{2 d+1,\{d, d+1\}}$ (see [11] for $d=2$ and [94] for $d=3$). For $d \geq 4$, no structural information on large cocliques is known yet, and so, in this case, we need an extra assumption, see Conjecture A.2.15 We could prove the following results.
Theorem A.2.12. For $q \geq 3$ the chromatic number of the Kneser graph $q K_{5 ;\{2,4\}}$ is θ_{3}. Moreover, each color class of a minimum coloring is contained in a unique point-pencil and the base points of the obtained points-pencil are the points in a fixed solid.

Theorem A.2.13. For $q>160 \cdot 36^{5}$, the chromatic number of the Kneser graph $q K_{5 ;\{2,3\}}$ is $q^{3}+q^{2}+1$. Up to duality, for each color class C of a minimum coloring there is a unique point-pencil F such that $F \cup C$ is independent, and the base points of these point-pencils are $q^{3}+q^{2}+1$ distinct points of a solid.

Theorem A.2.14. For $q>3 \cdot 7^{15} \cdot 2^{56}$, the chromatic number of the Kneser graph $q K_{7 ;\{3,4\}}$ is $q^{4}+q^{3}+q^{2}+1$. Up to duality, for each color class C of a minimum coloring there is a unique pointpencil F such that $F \cup C$ is independent, and the base points of these point-pencils are $q^{4}+q^{3}+q^{2}+1$ distinct points of a solid.

Conjecture A.2.15. For every integer $d \geq 4$ there is an integer $\rho(d)$ such that every maximal coclique of the Kneser graph $q K_{2 d+1,\{d, d+1\}}$ contains a point-pencil, the dual of a point-pencil, or has at most $\rho(d) \cdot q^{d^{2}+d-2}$ elements.

Theorem A.2.16. If Conjecture A.2.15 is true for some integer $d \geq 4$, then

$$
\chi\left(q K_{2 d+1,\{d, d+1\}}\right)=\theta_{d+1}-q,
$$

for sufficiently large q, depending on d and $\rho(d)$. Moreover, if \mathfrak{F} is a family of this many maximal cocliques that cover the vertex set, then - up to duality - there exists a $(d+1)$-dimensional subspace U in $\operatorname{PG}(2 d, q)$ and an injective map μ from \mathfrak{F} to set of points of U such that the point-pencil $\mathcal{F}(\mu(C))$ is contained in C for all $C \in \mathfrak{F}$.

A. 3 Cameron-Liebler sets

In the second part of the thesis, Cameron-Liebler sets in different contexts are investigated. The central thread in this part can be summarized into two questions: What are the equivalent definitions for these sets, and for which parameters x do there exists Cameron-Liebler sets? We investigate both questions in projective, affine and polar spaces.

A.3.1 Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$

We investigate Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$. For this, we list several equivalent definitions for these Cameron-Liebler sets, by generalizing the known results about CameronLiebler line sets in $\mathrm{PG}(n, q)$, see [51], and Cameron-Liebler sets of k-spaces in $\mathrm{PG}(2 k+1, q)$, see [104].

Let A be the incidence matrix of the points and the k-spaces of $\operatorname{PG}(n, q)$: the rows of A are indexed by the points and the columns by the k-spaces. Let $V_{i}, 0 \leq i \leq k$, be the eigenspaces of the related Grassmann scheme, using the classical ordering (see Subsection 10.1.1).

Theorem A.3.1. Let \mathcal{L} be a non-empty set of k-spaces in $\operatorname{PG}(n, q), n \geq 2 k+1$, with characteristic vector χ, and x so that $|\mathcal{L}|=x\left[\begin{array}{l}n \\ k\end{array}\right]$. Then the following properties are equivalent.

1. $\chi \in \operatorname{im}\left(A^{T}\right)$.
2. $\chi \in \operatorname{ker}(A)^{\perp}$.
3. For every k-space π, the number of elements of \mathcal{L} disjoint from π is $(x-\chi(\pi))\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$.
4. The vector $\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} j$ is a vector in V_{1}.
5. $\chi \in V_{0} \perp V_{1}$.
6. For a given $i \in\{1, \ldots, k+1\}$ and any k-space π, the number of elements of \mathcal{L}, meeting π in a $(k-i)$-space is given by:

$$
\begin{cases}\left((x-1) \frac{q^{k+1}-1}{q^{k-i+1}-1}+q^{i} \frac{q^{n-k}-1}{q^{i}-1}\right) q^{i(i-1)}\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] & \text { if } \pi \in \mathcal{L} \\
x\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
i
\end{array}\right] q^{i(i-1)} & \text { if } \pi \notin \mathcal{L}\end{cases}
$$

7. for every pair of conjugate switching k-sets \mathcal{R} and \mathcal{R}^{\prime}, we have that $|\mathcal{L} \cap \mathcal{R}|=\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$.

If $\mathrm{PG}(n, q)$ admits a k-spread, then the following properties are equivalent to the previous ones.
8. $|\mathcal{L} \cap \mathcal{S}|=x$ for every k-spread \mathcal{S} in $\operatorname{PG}(n, q)$.
9. $|\mathcal{L} \cap \mathcal{S}|=x$ for every Desarguesian k-spread \mathcal{S} in $\operatorname{PG}(n, q)$.

Definition A.3.2. A set \mathcal{L} of k-spaces in $\operatorname{PG}(n, q)$ that fulfills one of the statements in Theorem A.3.1 (and consequently all of them) is called a Cameron-Liebler set of k-spaces in $\operatorname{PG}(n, q)$ with parameter $\left.x=|\mathcal{L}|^{n} \begin{array}{l}n \\ k\end{array}\right]^{-1}$.

Using the information we get from the equivalent definitions, together with some more properties that we derived, we found classification results for Cameron-Liebler sets of k-spaces in $\mathrm{PG}(n, q)$. First note that a Cameron-Liebler set of k-spaces with parameter 0 is the empty set.
In the following lemma we start with the classification for the parameters $x \in] 0,2[$.
Lemma A.3.3. There are no Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$ with parameter $x \in] 0,1[$, and if $n \geq 3 k+2$, then there are no Cameron-Liebler sets of k-spaces with parameter $x \in] 1,2[$. Let \mathcal{L} be a Cameron-Liebler set of k-spaces with parameter $x=1$ in $\operatorname{PG}(n, q), n \geq 2 k+1$. Then \mathcal{L} is a point-pencil or $n=2 k+1$ and \mathcal{L} is the set of all k-spaces in a hyperplane of $\mathrm{PG}(2 k+1, q)$.

We end with the main classification result of this project.
Theorem A.3.4. There are no Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q), n \geq 3 k+2$ and $q \geq 3$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

A.3.2 Cameron-Liebler sets of k-spaces in $\operatorname{AG}(n, q)$

In Section4.4.3. we give an overview of the most important (equivalent) definition and classification results for Cameron-Liebler sets in affine spaces, proven in [46] and [44]. Similar to the definition of Cameron-Liebler sets of k-spaces in $\operatorname{PG}(n, q)$, we have the following definition in the affine context.

Definition A.3.5. A set \mathcal{L} of k-spaces in $\operatorname{AG}(n, q)$ is a Cameron-Liebler set of k-spaces of parameter x in $\mathrm{AG}(n, q)$ if every k-spread in $\mathrm{AG}(n, q)$ has x elements in common with \mathcal{L}.

In contrast to k-spreads in $\operatorname{PG}(n, q)$, we note that there exist k-spreads in $\mathrm{AG}(n, q)$, for every $n \geq k$, which implies that the definition above is well defined.

Due to the immediate link between $\operatorname{PG}(n, q)$ and $\mathrm{AG}(n, q)$, it is possible to classify CameronLiebler sets in $\mathrm{AG}(n, q)$, by using the ideas for the same research project in projective spaces.

Theorem A.3.6. There are no Cameron-Liebler sets of k-spaces in $\operatorname{AG}(n, q), n \geq 3 k+2$ and $q \geq 3$, with parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

A.3.3 Degree one Cameron-Liebler sets in finite classical polar spaces

We study the sets of generators defined by the following definition, where A is the incidence matrix of points and generators.

Definition A.3.7. A degree one Cameron-Liebler set of generators in a finite classical polar space \mathcal{P} is a set of generators in \mathcal{P}, with characteristic vector χ, such that $\chi \in \operatorname{im}\left(A^{T}\right)$. The parameter x of a Cameron-Liebler set \mathcal{L} in the polar space \mathcal{P} of rank d and parameter e is equal to $\frac{|\mathcal{L}|}{\prod_{i=0}^{d-2}\left(q^{e+i}+1\right)}$.

This definition coincides with the definition of Boolean degree one functions for generators in polar spaces, given in [59] by Y. Filmus and F. Ihringer. Their definition corresponds to the fact that the corresponding characteristic vector lies in $V_{0} \perp V_{1}$, which are eigenspaces of the related association scheme (see Subsection 10.1.1. In [36], M. De Boeck, M. Rodgers, L. Storme and A. Švob introduced Cameron-Liebler sets of generators in the finite classical polar spaces. In this article, Cameron-Liebler sets of generators in the polar spaces are defined by the disjointness-definition and the authors give several equivalent definitions for these Cameron-Liebler sets. Note that this definition is the polar-space-equivalent for the disjointness-definition in the projective context, see Theorem A.3.1,3.

Definition A.3.8 ([36]). Let \mathcal{P} be a finite classical polar space with parameter e and rank d. A set \mathcal{L} of generators in \mathcal{P} is a Cameron-Liebler set of generators in \mathcal{P}, with parameter x, if and only if for every generator π in \mathcal{P}, the number of elements of \mathcal{L}, disjoint from π equals $(x-\chi(\pi)) q^{\binom{d-1}{2}+e(d-1)}$.

Using association scheme notation we can interpret the previous definition as follows. The characteristic vector of a Cameron-Liebler set is contained in $V_{0} \perp W$, with W the eigenspace of the disjointness matrix A_{d} corresponding to a specific eigenvalue. It can be seen that W always contains V_{1}, but it does not necessarily coincide with V_{1}. Hence, every degree one Cameron-Liebler set is a Cameron-Liebler set, and for some polar spaces Cameron-Liebler sets and degree one CameronLiebler sets will coincide, but for others this will not be the case.

Note that we defined degree one Cameron-Liebler sets in an algebraic way. In general, CameronLiebler sets in different contexts can often be defined by using both algebraic and combinatorial definitions. For these degree one Cameron-Liebler sets, we also found that this is possible, and we could give an equivalent combinatorial definition.

Theorem A.3.9. Let \mathcal{P} be a finite classical polar space, of rank d with parameter e, let \mathcal{L} be a set of generators of \mathcal{P} and i be an integer with $1 \leq i \leq d$. If \mathcal{L} is a degree one Cameron-Liebler set of generators in \mathcal{P}, with parameter x, then the number of elements of \mathcal{L} meeting a generator π in a ($d-i-1$)-space equals

$$
\left\{\begin{array}{cl}
\left((x-1)\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right]+q^{i+e-1}\left[\begin{array}{c}
d-1 \\
i
\end{array}\right]\right) q^{(i-1} 2^{(i)+(i-1) e} & \text { If } \pi \in \mathcal{L} \tag{A.1}\\
x\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] q^{\left(\frac{i-1}{2}\right)+(i-1) e} & \text { If } \pi \notin \mathcal{L} .
\end{array}\right.
$$

Moreover, if this property holds for a polar space \mathcal{P} and an integer i such that

- i is odd for $\mathcal{P}=Q^{+}(2 d-1, q)$, or
- $i \neq d$ for $\mathcal{P}=Q(2 d, q)$ or $\mathcal{P}=W(2 d-1, q)$ both with d odd, or
- i is arbitrary otherwise,
then \mathcal{L} is a degree one Cameron-Liebler set with parameter x.

Apart from these definitions, we also investigated for which values of the parameter x there exists degree one Cameron-Liebler sets. For degree one Cameron-Liebler sets in $W(5, q)$ and $Q(6, q)$ we found the following classification result.

Theorem A.3.10. A degree one Cameron-Liebler set \mathcal{L} of generators in $W(5, q)$ or $Q(6, q)$ with parameter $2 \leq x \leq \sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}$ is the union of α embedded hyperbolic quadrics $Q^{+}(5, q)$, that pairwise have no plane in common, and $x-2 \alpha$ point-pencils whose vertices are pairwise non-collinear and not contained in the α hyperbolic quadrics $Q^{+}(5, q)$. For the polar space $Q(6, q)$ or $W(5, q)$ with q even, $\alpha \in\left\{0, \ldots,\left\lfloor\frac{x}{2}\right\rfloor\right\}$, for the polar space $W(5, q)$ with q odd, $\alpha=0$.

A.3.4 New example of a degree one Cameron-Liebler set of generators in $Q^{+}(5, q)$

We give an example of a new, non-trivial Cameron-Liebler set of generators in $Q^{+}(5, q), q$ odd. To explain the construction of the example, we use the Klein correspondence between the lines of $\mathrm{PG}(3, q)$ and the points of $Q^{+}(5, q)$.

Consider the hyperbolic quadric $Q=Q^{+}(3, q)$ in $\operatorname{PG}(3, q)$, defined by the equation $x_{0} x_{1}+x_{2} x_{3}=$ 0 . The lines of Q correspond to the set of points of two conics $C \cup C^{\prime}$ in $Q^{+}(5, q)$, such that for the planes $\alpha=\langle C\rangle$ and $\alpha^{\prime}=\left\langle C^{\prime}\right\rangle$, it holds that α^{\prime} is the image of α under the polarity of $Q^{+}(5, q)$.
Every point $P \in \operatorname{PG}(3, q)$ gives rise to a Latin plane π_{l}^{P} and a Greek plane π_{g}^{P} in $Q^{+}(5, q)$: the points of π_{l}^{P} corresponds to all lines through P in $\operatorname{PG}(3, q)$, and the points of π_{g}^{P} corresponds to all lines in the plane P^{\perp}. Here, \perp is the polarity related to the quadric Q in $\operatorname{PG}(3, q)$.

Definition A.3.11. A point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathrm{PG}(3, q)$ is a square point if $x_{0} x_{1}+x_{2} x_{3}$ is a square different from 0 in \mathbb{F}_{q}. A point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathrm{PG}(3, q)$ is a non-square point if $x_{0} x_{1}+x_{2} x_{3}$ is a non-square in \mathbb{F}_{q}.

Now we can partition the set of planes in $Q^{+}(5, q)$ into the following sets.

- $\mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is a square point $\}$
- $\mathcal{N} \mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is a non-square point $\}$
- $\mathcal{O}_{l}=\left\{\pi_{l}^{P} \mid P \in Q\right\}$
- $\mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is a square point $\}$
- $\mathcal{N} \mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is a non-square point $\}$
- $\mathcal{O}_{g}=\left\{\pi_{g}^{P} \mid P \in Q\right\}$

For a tangent line ℓ to Q, there are two possibilities; ℓ contains q square points, or ℓ contains q non-square points, see [72 Table 15.5(c)]. In the first case ℓ is a square tangent line. In the later case, ℓ is a non-square tangent line.

We partition the set of points in $Q^{+}(5, q)$ into the following sets.

- The set $\mathcal{X}_{1 S}$ of points in $Q^{+}(5, q)$ corresponding to the square tangent lines to Q.
- The set $\mathcal{X}_{1 N S}$ of points in $Q^{+}(5, q)$ corresponding to the non-square tangent lines to Q.
- The set \mathcal{X}_{2} of points in $Q^{+}(5, q)$ corresponding to the 2 -secants to Q.
- The set \mathcal{X}_{0} of points in $Q^{+}(5, q)$ corresponding to the lines disjoint from Q.
- The set $\mathcal{X}_{\infty}=C \cup C^{\prime}$ of points in $Q^{+}(5, q)$ corresponding to the lines of Q.

We could prove that the partitions $\left\{\mathcal{X}_{1 S}, \mathcal{X}_{1 N S}, \mathcal{X}_{2}, \mathcal{X}_{0}, \mathcal{X}_{\infty}\right\}$ and $\left\{\mathcal{S}_{l}, \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l}, \mathcal{N} \mathcal{S}_{g}, \mathcal{O}_{l}, \mathcal{O}_{g}\right\}$ form a point-tactical decomposition. By grouping the right partition classes together, we found new Cameron-Liebler sets in $Q^{+}(5, q)$.

Theorem A.3.12. Let q be an odd prime power.

- The sets $\mathcal{S}_{l} \cup \mathcal{S}_{g}$ and $\mathcal{N} \mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, with parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ and $q+1$ respectively, for $q \equiv 1 \bmod 4$.
- The sets $\mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ and $\mathcal{S}_{g} \cup \mathcal{N} \mathcal{S}_{l}$ are degree one Cameron-Liebler sets of planes in $Q^{+}(5, q)$, with parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ and $q+1$ respectively, for $q \equiv 3 \bmod 4$.

A. 4 Linear sets

In the last part of this thesis, we discuss a research project about translation hyperovals and $\mathbb{F}_{2^{-}}$ linear sets. We give a link between the affine points of a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$ and the set of points of a scattered \mathbb{F}_{2}-linear set of pseudoregulus type in $\operatorname{PG}(2 k-1, q)$, seen as a set of directions. For this, we used the Barlotti-Cofman construction, which is a generalization of the André/Bruck-Bose construction.

The original aim of this research project was to generalize the following result of Barwick and Jackson.

Result A.4.1 ([7, Theorem 1.2]). Consider $\operatorname{PG}(4, q), q$ even, $q>2$, with the hyperplane at infinity denoted by Σ_{∞}. Let \mathcal{C} be a set of q^{2} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following properties.
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then there exists a Desarguesian spread \mathcal{S} in Σ_{∞} such that in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{2}\right)$, the \mathcal{C}-points, together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathrm{PG}\left(2, q^{2}\right)$.

In the search for a generalisation, we examined a collection C of q^{k} affine points in $\mathrm{PG}(2 k, q), q$ even, $q>2$, with similar combinatorial properties. The techniques used by Barwick and Jackson in the proof of the above result were not generalizable. Hence, we had to look for new techniques, including the use of linear sets, more specifically, those of pseudoregulus type. We were able to prove the following result.

Theorem A.4.2. Let \mathcal{Q} be a set of q^{k} affine points in $\mathrm{PG}(2 k, q), q=2^{h}, h \geq 4, k \geq 2$, determining a set D of $q^{k}-1$ directions in the hyperplane at infinity $H_{\infty}=\mathrm{PG}(2 k-1, q)$. Suppose that every line has $0,1,3$ or $q-1$ points in common with the point set D. Then
(1) D is an \mathbb{F}_{2}-linear set of pseudoregulus type.
(2) There exists a Desarguesian spread \mathcal{S} in H_{∞} such that, in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{k}\right)$, with H_{∞} corresponding to the line l_{∞}, the points of \mathcal{Q} together with 2 extra points on ℓ_{∞}, form a translation hyperoval in $\operatorname{PG}\left(2, q^{k}\right)$.

Vice versa, via the André/Bruck-Bose construction, the set of affine points of a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right), q>4, k \geq 2$, corresponds to a set \mathcal{Q} of q^{k} affine points in $\operatorname{PG}(2 k, q)$ whose set of determined directions D is an \mathbb{F}_{2}-linear set of pseudoregulus type. Consequently, every line meets D in $0,1,3$ or $q-1$ points.

An immediate corollary of this theorem is the generalization of Result A.4.1
Theorem A.4.3. Consider $\operatorname{PG}(2 k, q)$, q even, $q>2$, with the hyperplane at infinity denoted by Σ_{∞}. Let \mathcal{C} be a set of q^{k} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following properties.
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then there exists a Desarguesian spread \mathcal{S} in Σ_{∞} such that in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong$ $\mathrm{PG}\left(2, q^{k}\right)$, the \mathcal{C}-points, together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$.

66 Wiskunde is als zuurstof, als het er is, merk je het niet. Als het er niet zou zijn, merk je dat je niet zonder kunt.

-Lex Schrijver

In deze Nederlandstalige samenvatting geven we een kort overzicht van de belangrijkste begrippen en resulaten uit deze thesis. Voor meer details en de bewijzen van de resultaten, verwijzen we naar bovenstaande Engelstalige hoofdstukken.

Deze thesis bestaat uit drie delen. In het eerste deel bespreken we verschillende intersectieproblemen in projectieve en affiene ruimten. In het tweede deel worden Cameron-Lieblerverzamelingen in affiene, projectieve en polaire ruimten besproken. Het laatste deel van deze thesis gaat over translatiehyperovalen in $\mathrm{PG}(4, q), q$ even, waarbij we gebruik maken van lineaire verzamelingen.

B. 1 Inleiding

Voordat we starten met het eerste grote deel, geven we een korte inleiding. In Hoofdstuk 1.1 worden incidentiemeetkundes gedefinieerd. De meest gebruikte incidentiemeetkunde in deze thesis is de projectieve ruimte $\operatorname{PG}(n, q)$ van dimensie n over het veld \mathbb{F}_{q} met q elementen, q een priemmacht. Dit is de meetkunde van de deelruimten van een $(n+1)$-dimensionale vectorruimte over hetzelfde veld. De projectieve dimensie van een deelruimte in $\operatorname{PG}(n, q)$ is de vectoriële dimensie van de overeenkomstige vectorruimte min één. In deze thesis werken we steeds met projectieve dimensies en deelruimten van dimensie k worden ook k-ruimten genoemd. Het aantal punten in een n-ruimte is gelijk aan $\theta_{n}=\frac{q^{n+1}-1}{q-1}$ en het aantal k-ruimten in een n-ruimte wordt gegeven door de Gaussische binomiaalcoëfficient $\left[\begin{array}{c}n+1 \\ k+1\end{array}\right]_{q}$.
Een affiene ruimte $\mathrm{AG}(n, q)$ is de incidentiemeetkunde die men verkrijgt door in een projectieve ruimte $\operatorname{PG}(n, q)$ een $(n-1)$-ruimte, of hypervlak H, samen met alle incidente deelruimten te verwijderen. Dit hypervlak wordt ook het hypervlak op oneindig genoemd.

De eindige klassieke polaire ruimten zijn incidentiemeetkundes, ingebed in een projectieve ruimte $\mathrm{PG}(n, q)$. Ze bestaan uit de totaal isotrope deelruimten van een vectorruimte $V(n+1 ; q)$, met betrekking tot een kwadratische, symplectische of Hermitische vorm, en zijn voorzien van de natuurlijke incidentierelatie.

B. 2 Intersectie problemen

Het eerste deel van deze thesis gaat over intersectie problemen. In dit gedeelte bespreken we de classificatie van verschillende (grote) verzamelingen van deelruimten in projectieve en affiene ruimten, die voldoen aan voorop opgestelde voorwaarden betreffende hun paarsgewijze doorsnede.

B.2.1 Verzamelingen van k-ruimten die paarsgewijs snijden in een $(k-2)$-ruimte

In dit eerste onderzoeksproject werden grote verzamelingen van k-ruimten, die paarsgewijs snijden in minstens een $(k-2)$-ruimte in $\mathrm{PG}(n, q)$ bestudeerd. Het grootste voorbeeld hiervan is een ($k-2$)-bundel, of de verzameling van k-ruimten die een vaste ($k-2$)-ruimte bevatten. Dit werd bewezen, voor algemene t-ruimten door P. Frankl en R.M. Wilson.

Stelling B.2.1 ([60, Theorem 1]). Zij k en t gehele getallen, met $0 \leq t \leq k$, en zij \mathcal{S} een verzameling van k-ruimten in $\mathrm{PG}(n, q)$, paarsgewijs snijdend in minstens een t-ruimte.
(i) Als $n \geq 2 k+1$, dan geldt er dat $|\mathcal{S}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$. Gelijkheid geldt enkel en alleen in het geval dat \mathcal{S} de verzameling is van alle k-ruimten die een vaste t-ruimte bevatten, of $n=2 k+1$, en \mathcal{S} is de verzameling van alle k-ruimten in een vaste $(2 k-t)$-ruimte.
(ii) Als $2 k-t \leq n \leq 2 k$, dan geldt er dat $|\mathcal{S}| \leq\left[\begin{array}{c}2 k-t+1 \\ k-t\end{array}\right]$. Gelijkheid geldt enkel en alleen in het geval dat \mathcal{S} de verzameling is van alle k-ruimten in een vaste $(2 k-t)$-ruimte.

In deze thesis wordt het geval $t=k-2$ behandeld. Hierin worden de tien grootste maximale voorbeelden, van k-ruimten paarsgewijs snijdend in minstens een $(k-2)$-ruimte besproken. Voor figuren van onderstaande voorbeelden verwijzen we naar Hoofdstuk 3
Voorbeeld B.2.2. Voorbeelden van maximale verzamelingen \mathcal{S} van k-ruimten in $\operatorname{PG}(n, q)$ paarsgewijs snijdend in een $(k-2)$-ruimte.
(i) ($k-2$)-bundel: de verzameling \mathcal{S} van alle k-ruimten die een vaste $(k-2)$-ruimte bevatten. Dan is $|\mathcal{S}|=\left[\begin{array}{c}n-k+2 \\ 2\end{array}\right]$.
(ii) Ster: er bestaat een k-ruimte ζ zodat \mathcal{S} alle k-ruimten bevat die minstens een $(k-1)$-ruimte gemeen hebben met ζ. Dan is $|\mathcal{S}|=q \theta_{k} \theta_{n-k-1}+1$.
(iii) Veralgemeend Hilton-Milner voorbeeld: er bestaat een $(k+1)$-ruimte ν en een $(k-2)$-ruimte $\pi \subset \nu$ zodat \mathcal{S} bestaat uit alle k-ruimten in ν, samen met alle k-ruimten door π die ν snijden in minstens een $(k-1)$-ruimte. Dan is $|\mathcal{S}|=\theta_{k+1}+q^{2}\left(q^{2}+q+1\right) \theta_{n-k-2}$.
(iv) Er bestaat een ($k+2$)-ruimte ρ, een k-ruimte $\alpha \subset \rho$ en een $(k-2)$-ruimte $\pi \subset \alpha$, zodat \mathcal{S} alle k-ruimten in ρ bevat die α snijden in een $(k-1)$-ruimten niet door π, alle k-ruimten in ρ door π, en alle k-ruimten in $\operatorname{PG}(n, q)$, niet in ρ, die een $(k-1)$-ruimte van α door π bevatten. Dan is $|\mathcal{S}|=(q+1) \theta_{n-k}+q^{3}(q+1) \theta_{k-2}+q^{4}-q$.
(v) Er bestaat een $(k+2)$-ruimte ρ, en een $(k-1)$-ruimte $\alpha \subset \rho$ zodat \mathcal{S} alle k-ruimten van ρ bevat die α snijden in minstens een $(k-2)$-ruimte, en alle k-ruimten in $\operatorname{PG}(n, q)$, door α en niet in ρ. Merk op dat alle k-ruimten in $\operatorname{PG}(n, q)$ door α bevat zijn in \mathcal{S}. Dan is $|\mathcal{S}|=$ $\theta_{n-k}+q^{2}\left(q^{2}+q+1\right) \theta_{k-1}$.
(vi) Er bestaan twee ($k+2$)-ruimten ρ_{1}, ρ_{2}, snijdend in een $(k+1)$-ruimte $\alpha=\rho_{1} \cap \rho_{2}$. Daarnaast zijn er twee ($k-1$)-ruimten $\pi_{A}, \pi_{B} \subset \alpha$ met $\pi_{A} \cap \pi_{B}$ gelijk aan de ($k-2$)-ruimte λ, en een punt $P_{A B} \in \alpha \backslash\left\langle\pi_{A}, \pi_{B}\right\rangle$. Stel $\lambda_{A}, \lambda_{B} \subset \lambda$ gelijk aan twee verschillende ($k-3$)-ruimten. Dan bevat \mathcal{S} de volgende elementen

- alle k-ruimten in α,
- alle k-ruimten van $\mathrm{PG}(n, q)$ door $\left\langle P_{A B}, \lambda\right\rangle$, maar niet bevat in ρ_{1} of ρ_{2}.
- alle k-ruimten in ρ_{1}, niet in α, door het punt $P_{A B}$ en een $(k-2)$-ruimte in π_{A} door λ_{A},
- alle k-ruimten in ρ_{1}, niet in α, door het punt $P_{A B}$ en een $(k-2)$-ruimte in π_{B} door λ_{B},
- alle k-ruimten in ρ_{2}, niet in α, door het punt $P_{A B}$ en een $(k-2)$-ruimte in π_{A} door λ_{B},
- alle k-ruimten in ρ_{2}, niet in α, door het punt $P_{A B}$ een een $(k-2)$-ruimte in π_{B} door λ_{A}.

Dan is $|\mathcal{S}|=\theta_{n-k}+q^{2} \theta_{k-1}+4 q^{3}$.
(vii) Er bestaat een $(k-3)$-ruimte γ bevat in alle k-ruimten van \mathcal{S}. In de quotiëntruimte $\mathrm{PG}(n, q) / \gamma$, is de verzameling van vlakken, komende van de elementen van \mathcal{S}, de verzameling van de vlakken van voorbeeld VIII in [33]: beschouw een $(n-k+2)$-ruimte Ψ, scheef aan γ, in $\mathrm{PG}(n, q)$. Beschouw twee drie-ruimten σ_{1} en σ_{2} in Ψ, sijdend in een rechte l. Neem twee punten P_{1} en P_{2} opl. Dan is \mathcal{S} de verzameling van alle k-ruimten door $\langle\gamma, l\rangle$, alle k-ruimten door $\left\langle\gamma, P_{1}\right\rangle$ die een rechte in σ_{1} en een rechte in σ_{2} scheef aan γ bevatten, en alle k-ruimten door $\left\langle\gamma, P_{2}\right\rangle$ in $\left\langle\gamma, \sigma_{1}\right\rangle$ of in $\left\langle\gamma, \sigma_{2}\right\rangle$. Dan is $|\mathcal{S}|=\theta_{n-k}+q^{4}+2 q^{3}+3 q^{2}$.
(viii) Er bestaat een $(k-3)$-ruimte γ bevat in alle k-ruimten van \mathcal{S}. In de quotiëntruimte $\mathrm{PG}(n, q) / \gamma$, is de verzameling van vlakken, komende van de elementen van \mathcal{S}, de verzameling van de vlakken van voorbeeld $I X$ in [33]: Beschouw een $(n-k+2)$-ruimte Ψ, scheef aan γ, in $\mathrm{PG}(n, q)$, en beschouw een rechte l en een drie-ruimte σ scheef aan l, en beide bevat in Ψ. Stel $\rho=\langle l, \sigma\rangle$. Beschouw twee punten P_{1} en P_{2} op l, en beschouw een regulus \mathcal{R}_{1} en zijn tegenovergestelde regulus \mathcal{R}_{2} in σ. Dan is \mathcal{S} de verzameling van alle k-ruimten door $\langle\gamma, l\rangle$, alle k-ruimten door $\left\langle\gamma, P_{1}\right\rangle$ in de $(k+1)$-ruimte opgespannen door γ, l en een vaste rechte van \mathcal{R}_{1}, en alle k-ruimten door $\left\langle\gamma, P_{2}\right\rangle$ in de $(k+1)$-ruimte opgespannen door γ, l en een vaste rechte van \mathcal{R}_{2}. Dan is $|\mathcal{S}|=\theta_{n-k}+2 q^{3}+2 q^{2}$.
(ix) Er bestaat een $(k-3)$-ruimte γ bevat in alle k-ruimten van \mathcal{S}. In de quotiëntruimte $\mathrm{PG}(n, q) / \gamma$, is de verzameling van vlakken, komende van de elementen van \mathcal{S}, de verzameling van de vlakken van voorbeeld VII in [33]: Zij Ψ een $(n-k+2)$-ruimte, disjunct aan γ in $\operatorname{PG}(n, q)$ en zij ρ een 5 -ruimte in Ψ. Beschouw een rechte l en een 3 -ruimte σ, disjunct aan l. Kies drie punten P_{1}, P_{2}, P_{3} op l en kies vier niet-coplanaire punten $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ in σ. Stel $l_{1}=Q_{1} Q_{2}$, $\bar{l}_{1}=Q_{3} Q_{4}, l_{2}=Q_{1} Q_{3}, \bar{l}_{2}=Q_{2} Q_{4}, l_{3}=Q_{1} Q_{4}$, en $\bar{l}_{3}=Q_{2} Q_{3}$. Dan is \mathcal{S} de verzameling van alle k-ruimten door $\langle\gamma, l\rangle$ en alle k-ruimten door $\left\langle\gamma, P_{i}\right\rangle$ in $\left\langle\gamma, l, l_{i}\right\rangle$ of in $\left\langle\gamma, l, \bar{l}_{i}\right\rangle, i=1,2,3$. Dan is $|\mathcal{S}|=\theta_{n-k}+6 q^{2}$.
$(x) \mathcal{S}$ is de verzameling van alle k-ruimten in een vaste $(k+2)$-ruimte ρ. Dan is $|\mathcal{S}|=\left[\begin{array}{c}k+3 \\ 2\end{array}\right]$.
Hoofdstelling B.2.3. Zij \mathcal{S} een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens een $(k-2)$-ruimte in $\operatorname{PG}(n, q), n \geq 2 k, k \geq 3$. Zij

$$
f(k, q)= \begin{cases}3 q^{4}+6 q^{3}+5 q^{2}+q+1 & \text { als } k=3, q \geq 2 \text { of } k=4, q=2 \\ \theta_{k+1}+q^{4}+2 q^{3}+3 q^{2} & \text { anders }\end{cases}
$$

Als $|\mathcal{S}|>f(k, q)$, dan is \mathcal{S} één van de verzamelingen beschreven in Voorbeeld B.2.2. Merk op dat voor $n>2 k+1$, de voorbeelden $(i)-(i x)$ vermeld staan in dalende volgorde van grootte.

B.2.2 Hilton-Milner problemen in $\operatorname{PG}(n, q)$ en $\operatorname{AG}(n, q)$

Zoals hierboven reeds vermeld, is het geweten dat het grootste voorbeeld van k-ruimten, paarsgewijs snijden in een t-ruimte in $\operatorname{PG}(n, q), n \geq 2 k+1$ een t-bundel is. Dit voorbeeld wordt soms ook het triviale voorbeeld genoemd. Guo en Xu bewezen dat het grootste voorbeeld voor k-ruimten paarsgewijs snijdend in een t-ruimte in $\mathrm{AG}(n, q), n \geq 2 k+t+2$ ook een t-bundel is, zie [69]. In hoofstuk 4 worden de twee grootste niet-triviale voorbeelden van k-ruimten, paarsgewijs snijdend
in een t-ruimte, in zowel $\mathrm{PG}(n, q)$ als $\mathrm{AG}(n, q)$ geclassificeerd voor $n>2 k+t+2$ en $q \geq 3$. Hierbij veronderstellen we dat $k>t$.

We starten met t-snijdende verzamelingen in een projectieve setting.
Voorbeeld B.2.4. Zij Γ een $(t+2)$-ruimte in $\mathrm{PG}(n, q), n \geq 2 k-t+1$. Stel \mathcal{S} gelijk aan de verzameling van alle k-ruimten in $\mathrm{PG}(n, q)$, die Γ snijden in minstens een $(t+1)$-ruimte.

Voorbeeld B.2.5. Zij δ een t-ruimte in $\operatorname{PG}(n, q), n \geq 2 k-t+1$, en zij ξ een $(k+1)$-ruimte in $\mathrm{PG}(n, q)$ met $\delta \subset \xi . Z i j S_{1}$ de verzameling van alle k-ruimten in ξ. Zij S_{2} de verzameling van alle k-ruimten door δ die ξ snijden in minstens een $(t+1)$-ruimte. De verzameling \mathcal{S} is de unie van de verzamelingen S_{1} en S_{2}.

Merk op dat bovenstaande voorbeelden, voor $t=k-2$ overeenkomen met Voorbeeld B.2.2 (ii) en (iii) respectievelijk. Deze voorbeelden zijn de grootste niet-triviale voorbeelden van t-snijdende veramelingen van k-ruimten in $\operatorname{PG}(n, q)$.

Stelling B.2.6. $Z i j \mathcal{S}_{p}$ een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens een t-ruimte in $\mathrm{PG}(n, q), k \geq t+2, t \geq 1$, met $q \geq 3$, en $n \geq 2 k+t+3$. Als \mathcal{S}_{p} verschillend is van een t-bundel, dan is

$$
\left|\mathcal{S}_{p}\right| \leq \begin{cases}\theta_{k+1}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] & \text { als } k>2 t+2 \\
\theta_{t+2} \cdot\left(\left[\begin{array}{c}
n-t-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right] & \text { als } k \leq 2 t+2 .\end{cases}
$$

Gelijkheid geldt als en slechts als \mathcal{S}_{p} gelijk is aan Voorbeeld B.2.4 voor $k \leq 2 t+2$ of Voorbeeld B.2.5 voor $k \geq 2 t+3$.

Nu geven we twee voorbeelden van grote t-snijdende verzamelingen van k-ruimten in $\operatorname{AG}(n, q)$. Voor een affiene ruimte α noteren we de projectieve uitbreiding van α als $\tilde{\alpha}$, en stel vervolgens $H_{\infty}=\mathrm{PG}(n, q) \backslash \mathrm{AG}(n, q)$ gelijk aan het hypervlak op oneindig.

Voorbeeld B.2.7. Zij Γ een affiene $(t+2)$-ruimte in $\mathrm{AG}(n, q)$, en zij \mathcal{R} een verzameling van θ_{t+1} affiene $(t+1)$-ruimten in Γ zodat voor elke twee verschillende elementen $\sigma_{1}, \sigma_{2} \in \mathcal{R}$, $\tilde{\sigma}_{1} \cap H_{\infty} \neq$ $\tilde{\sigma}_{2} \cap H_{\infty}$. Merk op dat elke twee verschillende elementen van \mathcal{R} snijden in een affiene t-ruimte. Dan is \mathcal{S} de verzameling van alle k-ruimten in $\mathrm{AG}(n, q)$, die Γ bevatten of Γ snijden in een element van \mathcal{R}.

Voorbeeld B.2.8. Zij δ een t-ruimte in $\mathrm{AG}(n, q)$, en zij ξ een $(k+1)$-ruimte in $\operatorname{AG}(n, q)$ met $\delta \subset \xi$. Stel S_{1} een maximale verzameling van affiene k-ruimten in ξ, zodat voor elke twee elementen π_{1}, π_{2} van $S_{1}, \tilde{\pi}_{1} \cap H_{\infty} \neq \tilde{\pi}_{2} \cap H_{\infty}$, en zodat voor elke $\pi_{1} \in S_{1}: \tilde{\delta} \cap H_{\infty} \nsubseteq \tilde{\pi}_{1}$. Stel S_{2} de verzameling van alle k-ruimten door δ die ξ snijden in minstens een affiene $(t+1)$-ruimte. Dan is \mathcal{S} de unie van de twee verzamelingen S_{1} en S_{2}.

We vinden dat de grootste niet triviale voorbeelden van t-snijdende verzamelingen in $\operatorname{AG}(n, q)$ komen van bovenstaande voorbeelden.

Stelling B.2.9. $Z_{i j} \mathcal{S}_{a}$ een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens een t-ruimte in $\operatorname{AG}(n, q), k \geq t+2, t \geq 1$, met $q \geq 3$, en $n \geq 2 k+t+3$. Als \mathcal{S}_{a} verschillend is van een t-bundel, dan is

$$
\left|\mathcal{S}_{a}\right| \leq \begin{cases}\theta_{k}-\theta_{k-t}+\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]-q^{(k-t+1)(k-t)\left[\begin{array}{c}
n-k-1 \\
k-t
\end{array}\right]} \begin{array}{l}
\text { als } k>2 t+1 \\
\theta_{t+1} \cdot\left(\left[\begin{array}{c}
n-t-1 \\
k-t-1
\end{array}\right]-\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]\right)+\left[\begin{array}{c}
n-t-2 \\
k-t-2
\end{array}\right]
\end{array} \text { als } k \leq 2 t+1 .\end{cases}
$$

Gelijkheid geldt als en slechts als \mathcal{S}_{a} gelijk is aan Voorbeeld B.2.7 voor $k \leq 2 t+1$ of Voorbeeld B.2.8 voor $k \geq 2 t+2$.

B.2.3 De Zonnebloemgrens

In de vorige hoofdstukken bestudeerden we deelruimten paarsgewijs snijdend in minstens een deelruimte van een zeker dimensie. In Hoofdstuk 5 worden verzamelingen S van k-ruimten in $\mathrm{PG}(n, q)$ onderzocht, met de eigenschap dat de elementen van S paarsgewijs snijden in precies een punt. Meer algemeen is een $(k+1, t+1)$-SCID een verzameling van k-ruimten, paargeswijs snijdend in precies een t-ruimte in $\operatorname{PG}(n, q)$. Een voorbeeld van zo een SCID is de verzameling S van k-ruimten, zodat voor elke $\pi, \tau \in S$ er geldt dat $\pi \cap \tau=\gamma$ voor een vaste t-ruimte γ. Dit voorbeeld is een zonnebloem met centrum γ. De Zonnebloemgrens stelt dat, als het aantal elementen van $(k+1, t+1)$-SCID S, deze grens overschrijdt, dan moet S een zonnebloem zijn.

Stelling B.2.10 ([56, Theorem 1]). Een $(k+1, t+1)-S C I D S$ in $\operatorname{PG}(n, q)$, is een zonnebloem als

$$
|S|>\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)^{2}+\left(\frac{q^{k+1}-q^{t+1}}{q-1}\right)+1
$$

In Hoofdstuk 5 wordt bewezen dat deze grens, voor $t=0$, kan verbeterd worden voor $k \geq 3$ en $q \geq 7$. Voor $k=1$ en $k=2$, is er een complete classificatie gekend: Elke $(k+1, k)$-SCID is een zonnebloem of bestaat uit alle k-ruimten in een vaste $(k+1)$-ruimte. Voor de classificatie van $(3,1)$-SCID's, verwijzen we naar [9].

Stelling B.2.11. Een verzameling an k-ruimten in $\operatorname{PG}(n, q), k \geq 3, q \geq 7$, die paarsgewijs snijden in precies een punt, met meer dan $F_{q} \theta_{k}^{2}$ elementen is een zonnebloem. Hierbij gebruiken we

$$
F_{q}=\frac{1}{2}\left(\frac{B_{q}}{c_{q}^{2}}-\frac{1}{q}-\sqrt{\left(\frac{1}{q}-\frac{B_{q}}{c_{q}^{2}}\right)^{2}-4 B_{q}\left(\frac{1}{c_{q}^{2}}-1\right)}\right)
$$

met

$$
\begin{aligned}
B_{q} & =\left(1-c_{q}\right)^{2}\left(1-c_{q}-\frac{1}{q^{3}}\right)^{2}\left(1-c_{q}-\frac{c_{q}}{q}\right)\left(1-c_{q}-\frac{1+c_{q}}{q}\right) q \\
c_{q} & =1-\frac{1}{\sqrt[6]{q}}-\frac{1}{2 \sqrt[3]{q}}
\end{aligned}
$$

In het bijzonder vinden we dat een dergelijke verzameling met meer dan $\left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right) \theta_{k}^{2}$ elementen een zonnebloem is.

B.2.4 Het chromatisch getal van enkele q-Kneser grafen

Een vlag in $\mathrm{PG}(n, q)$ is een verzameling F van niet-triviale deelruimten van $\mathrm{PG}(n, q)$ (dus, deelruimten verschillend van \emptyset en $\mathrm{PG}(n, q)$) zodat voor alle $\alpha, \beta \in F$ er geldt dat $\alpha \subset \beta$ of $\beta \subset \alpha$. De deelverzameling $\{\operatorname{dim}(\alpha)+1 \mid \alpha \in F\}$, waarbij we gebruik maken van de projectieve dimensie, wordt het type van F genoemd, en is bevat in $\{1,2, \ldots, n\}$. Twee vlaggen F en G zijn in algemene positie als $\alpha \cap \beta=\emptyset$ of $\langle\alpha, \beta\rangle=\mathrm{PG}(n, q)$ voor alle $\alpha \in F$ en $\beta \in G$.

Voor $\Omega \subseteq\{1,2, \ldots, n\}$ is de q-Knesergraaf $q K_{n+1 ; \Omega}$ de graaf waarin de toppen overeenkomen met de vlaggen van type Ω in $\mathrm{PG}(n, q)$, en waarin twee toppen zijn adjacent, als de overeenkomstige vlaggen in algemene positie zijn. Wij zijn geïnteresseerd in het chromatisch getal van deze grafen.

Voor een punt $P \in \mathrm{PG}(n, q)$, definiëren we de verzameling $\mathcal{F}_{\Omega}(P)$ als de verzameling van alle vlaggen F van type $\Omega \subseteq\{2,3, \ldots, n\}$ waarvoor $F \cup\{P\}$ ook een vlag is. We noemen deze verzameling $\mathcal{F}_{\Omega}(P)$ de punt-bundel (van vlaggen van type Ω) met basispunt P.

We bepaalden het chromatisch getal van de grafen $q K_{5 ; \Omega}$ voor $\Omega=\{2,4\}$ en $q \neq 2$, en voor $q K_{2 d+1 ;\{d, d+1\}}$, met $d \geq 2$ en q heel groot.

We gebruikten het cokliekgetal, samen met structurele informatie over grote coklieken van $q K_{5 ;\{2,4\}}$ en $q K_{2 d+1,\{d, d+1\}}, q \geq 2$. Deze structurele informatie is te vinden in de Hilton-Milner type resultaten in [14] voor $q K_{5 ;\{2,4\}}$, in [11] voor $q K_{2 d+1,\{d, d+1\}}$, $\operatorname{met} d=2$ en in [94] voor $q K_{2 d+1,\{d, d+1\}}$, met $d=3$. Voor $d \geq 4$ is er geen structurele informatie gekend over grote coklieken in $q K_{2 d+1,\{d, d+1\}}$. Daarom nemen we, in dit geval, een extra assumptie aan, zie Vermoeden B.2.15. We vonden de volgende resultaten.

Stelling B.2.12. Voor $q \geq 3$ is het chromatisch getal van de Knesergraaf $q K_{5 ;\{2,4\}}$ gelijk aan θ_{3}. Daarnaast is elke kleurklasse van een minimale kleuring bevat in een punt-bundel. De basispunten van deze punt-bundels zijn de punten van een drie-ruimte.

Stelling B.2.13. Voor $q>160 \cdot 36^{5}$, is het chromatisch getal van de Knesergraaf $q K_{5 ;\{2,3\}}$ gelijk aan $\theta_{3}-q$. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke punt-bundel F, zodat $F \cup C$ een cokliek is. De basispunten van deze punt-bundels zijn $\theta_{3}-q$ verschillende punten van een drie-ruimte.

Stelling B.2.14. Voor $q>3 \cdot 7^{15} \cdot 2^{56}$, is het chromatisch getal van de Knesergraaf $q K_{7 ;\{3,4\}}$ gelijk aan $\theta_{4}-q$. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke puntbundel F, zodat $F \cup C$ een cokliek is. De basispunten van deze punt-bundels zijn $\theta_{4}-q$ verschillende punten van een vier-ruimte.

Vermoeden B.2.15. Voor elk natuurlijk getal $d \geq 4$ bestaat er een $\rho(d) \in \mathbb{N}$, zodat elke maximale cokliek van de Knesergraaf $q K_{2 d+1,\{d, d+1\}}$ een punt-bundel, het duale van een punt-bundel, of hoogstns $\rho(d) \cdot q^{d^{2}+d-2}$ elementen bevat.

Stelling B.2.16. Als Vermoeden B.2.15 waar is voor een zeker natuurlijk getal $d \geq 4$, dan is

$$
\chi\left(q K_{2 d+1,\{d, d+1\}}\right)=\theta_{d+1}-q
$$

voor q voldoende groot, afhankelijk van d en $\rho(d)$. Bijkomend, als \mathfrak{F} een familie is van dit aantal maximale coklieken die de volledige toppenverzameling bedekt, dan bestaat er - op dualiteit na - een $(d+1)$-ruimte U in $\operatorname{PG}(2 d, q)$ en een injectieve afbeelding μ van \mathfrak{F} naar een verzameling van punten van U, zodat de punt-bundel $\mathcal{F}(\mu(C))$ bevat is in C voor alle $C \in \mathfrak{F}$.

B. 3 Cameron-Lieblerverzamelingen

In het tweede deel van deze thesis worden Cameron-Lieblerveramelingen, in verschillende contexten onderzocht. De rode draad in dit deel kan samengevat worden met twee centrale vragen; wat zijn de equivalent definities voor deze verzamelingen, en voor welke parameters x bestaan er Cameron-Lieblerverzamelingen? We onderzoeken beide vragen in projectieve, affiene en polaire ruimten.

B.3.1 Cameron-Liebler k-ruimten in $\operatorname{PG}(n, q)$

We onderzoeken Cameron-Lieblerverzamelingen van k-ruimten in $\operatorname{PG}(n, q)$. Hiervoor lijsten we verschillende equivalente definities op voor deze verzamelingen, door de gekende resultaten voor Cameron-Liebler rechte verzamelingen in $\operatorname{PG}(n, q)$, zie [51], en Cameron-Lieblerverzamelingen van k-ruimten $\operatorname{PG}(2 k+1, q)$, zie [104], te veralgemenen.

Zij A de incidentiematrix van de punten en k-ruimten van $\mathrm{PG}(n, q)$: de rijen van A zijn gelabeld door de punten, en de kolommen door de k-ruimten. $\mathrm{Zij} V_{i}, 0 \leq i \leq k$, de eigenruimten van het bijhorende Grassmannschema, in de klassieke ordening, zie Hoofdstuk 10.1.1

Stelling B.3.1. Zij \mathcal{L} een niet-ledige verzameling van k-ruimten in $\mathrm{PG}(n, q), n \geq 2 k+1$, met karakteristieke vector χ, en x zodat $|\mathcal{L}|=x\left[\begin{array}{l}n \\ k\end{array}\right]$. Dan zijn de volgende eigenschappen equivalent.

1. $\chi \in \operatorname{im}\left(A^{T}\right)$.
2. $\chi \in \operatorname{ker}(A)^{\perp}$.
3. Voor elke k-ruimte π is het aantal elementen van \mathcal{L} scheefaan π gelijk aan $(x-\chi(\pi))\left[\begin{array}{c}n-k-1 \\ k\end{array}\right] q^{k^{2}+k}$.
4. De vector $\chi-x \frac{q^{k+1}-1}{q^{n+1}-1} \boldsymbol{j}$ is een vector in V_{1}.
5. $\chi \in V_{0} \perp V_{1}$.
6. Voor een gegeven $i \in\{1, \ldots, k+1\}$ en een k-ruimte π, is het aantal elementen van \mathcal{L}, die π snijden in een $(k-i)$-ruimte, gegeven door:

$$
\left\{\begin{array}{ll}
\left((x-1) \frac{q^{k+1}-1}{q^{k-i+1}-1}+q^{i} \frac{q^{n-k}-1}{q^{i}-1}\right.
\end{array}\right) q^{i(i-1)}\left[\begin{array}{c}
n-k-1 \\
i-1
\end{array}\right]\left[\begin{array}{c}
k \\
i
\end{array}\right] \quad \text { als } \pi \in \mathcal{L} .
$$

7. Voor elk paar van toegevoegde omwisselende k-verzamelingen \mathcal{R} en \mathcal{R}^{\prime}, geldt er dat $|\mathcal{L} \cap \mathcal{R}|=$ $\left|\mathcal{L} \cap \mathcal{R}^{\prime}\right|$.

Als er k-spreads bestaan in $\operatorname{PG}(n, q)$, dan zijn de volgende eigenschappen equivalent aan de vorige.
8. $|\mathcal{L} \cap \mathcal{S}|=x$ voor elke k-spread \mathcal{S} in $\mathrm{PG}(n, q)$.
9. $|\mathcal{L} \cap \mathcal{S}|=x$ voor elke Desarguesiaanse k-spread \mathcal{S} in $\operatorname{PG}(n, q)$.

Definitie B.3.2. Een verzameling \mathcal{L} van k-ruimten in $\operatorname{PG}(n, q)$ die voldoet aan één van de eigenschappen in Stelling A.3.1 (en dus aan ze allemaal) wordt een Cameron-Lieblerverzameling van k ruimten in $\mathrm{PG}(n, q)$ genoemd, met parameter $x=|\mathcal{L}|\left[\begin{array}{l}n \\ k\end{array}\right]^{-1}$.

Gebruik makend van de informatie uit de equivalente definities, samen met enkele extra eigenschappen, vonden we verschillende classificatieresultaten voor Cameron-Lieblerverzamelingen van k-ruimten in $\mathrm{PG}(n, q)$. Merk op dat een Cameron-Lieblerverzameling van k-ruimten met parameter 0 gelijk is aan de ledige verzameling.

In het volgende lemma geven we de classificatie van de parameters $x \in] 0,2[$.

Lemma B.3.3. Er bestaat geen Cameron-Lieblerverzameling van k-ruimten in $\operatorname{PG}(n, q)$ met parameter $x \in] 0,1[$, en voor $n \geq 3 k+2$, bestaan er ook geen Cameron-Lieblerverzamelingen van k-ruimten met parameter $x \in] 1,2[$. Zij \mathcal{L} een Cameron-Lieblerverzameling van k-ruimten met parameter $x=1$ in $\mathrm{PG}(n, q), n \geq 2 k+1$. Dan is \mathcal{L} een punt-bundel, of $n=2 k+1$ en \mathcal{L} is de verzameling van alle k-ruimten in een hypervlak van $\operatorname{PG}(2 k+1, q)$.

We eindigen met het belangrijkste classificatieresultaat uit dit project.
Stelling B.3.4. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in $\operatorname{PG}(n, q), n \geq$ $3 k+2$ en $q \geq 3$, met parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

B.3.2 Cameron-Liebler k-ruimten in $\operatorname{AG}(n, q)$

In Hoofdstuk 4.4.3, geven we een overzicht van de belangrijkste (equivalente) definities en classificatieresultaten voor Cameron-Lieblerverzamelingen in affiene ruimten. De resultaten in dit hoofdstuk werden bewezen in [46] en [44]. Vergelijkbaar met de definitie van Cameron-Lieblerverzamelingen van k-ruimten in $\operatorname{PG}(n, q)$, kunnen we Cameron-Lieblerverzamelingen in $\operatorname{AG}(n, q)$ als volgt definiëren.

Definitie B.3.5. Een verzameling \mathcal{L} van k-ruimten in $\operatorname{AG}(n, q)$ is een Cameron-Lieblerverzameling van k-ruimten in $\mathrm{AG}(n, q)$ met parameter x als en slechts als elke k-spread in $\operatorname{AG}(n, q) x$ elementen gemeen heeft met \mathcal{L}.

In tegenstelling tot k-spreads in $\operatorname{PG}(n, q)$ zien we dat er k-spreads bestaan in $\operatorname{AG}(n, q)$, voor elke $n \geq k$, wat impliceert dat de bovenstaande definitie goed gedefinieerd is.

Door het onmiddellijke verband tussen $\operatorname{PG}(n, q)$ en $\mathrm{AG}(n, q)$ is het mogelijk om Cameron-Lieblerverzamelingen in $\mathrm{AG}(n, q)$ te classificeren, door gebruik te maken van de ideeën voor hetzelfde onderzoeksproject in projectieve ruimten.

Stelling B.3.6. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in $\mathrm{AG}(n, q), n \geq$ $3 k+2$ en $q \geq 3$, met parameter $2 \leq x \leq \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2}-\frac{k^{2}}{4}-\frac{3 k}{4}-\frac{3}{2}}(q-1)^{\frac{k^{2}}{4}-\frac{k}{4}+\frac{1}{2}} \sqrt{q^{2}+q+1}$.

B.3.3 Cameron-Lieblerverzamelingen van graad één in eindige klassieke polaire ruimten

In dit hoofdstuk bestuderen we Cameron-Lieblerverzamelingen van graad éen, van generatoren in eindige klassieke polaire ruimten. De matrix A is de incidentiematrix van punten en generatoren.

Definitie B.3.7. Een Cameron-Lieblerverzameling van graad één van generatoren in een eindige klassieke polaire ruimte \mathcal{P} is een verzameling van generatoren in \mathcal{P}, met karakteristieke vector χ zodat $\chi \in \operatorname{im}\left(A^{T}\right)$.

Deze definitie kan gelinkt worden aan de definitie van een Boolean degree one functie voor generatoren in polaire ruimten, zie [59]. De definitie in dit artikel komt overeen met het feit dat de karakteristieke vector van de verzameling gelegen is in $V_{0} \perp V_{1}$. Dit zijn de eigenruimten van het bijhorende associatie schema (zie Sectie 1.9]. In [36], M. De Boeck, M. Rodgers, L. Storme en A. Švob introduceerden Cameron-Lieblerverzamelingen van generatoren in eindige klassieke polaire ruimten. In dit artikel, worden Cameron-Lieblerverzamelingen van generatoren in een polaire ruimte gedefinieerd door de disjunctheidsdefinitie. Daarbij geven de auteurs verschillende equivalente definities voor deze verzamelingen. Merk op dat deze definitie de polaire-ruimte-versie is voor de disjunctheidsdefinitie in de projectieve context, zie Stelling B.3.1,3.

Definitie B. 3.8 ([36]). Zij \mathcal{P} een eindige klassieke polaire ruimte met parameter e en rang d. Een verzameling \mathcal{L} van generatoren in \mathcal{P} is een Cameron-Lieblerverzameling van generatoren in \mathcal{P}, met parameter x, als en slechts als voor elke generator π in \mathcal{P}, het aantal elementen van \mathcal{L}, disjunct aan π is gelijk aan $(x-\chi(\pi)) q^{\left(\frac{d-1}{2}\right)+e(d-1)}$.

We kunnen deze definitie, gebruik makend van de notatie van associatie schema's, als volgt interpreteren. De karakteristieke vector van een Cameron-Lieblerverzameling is bevat in $V_{0} \perp W$, met W de eigenruimte van de disjunctie matrix A_{d}, horende bij een specifieke eigenwaarde. Men kan inzien dat V_{1} steeds bevat is in W, maar het is er niet steeds aan gelijk. Hieruit volgt dat elke Cameron-Lieblerverzameling van graad één ook een Cameron-Lieblerverzameling is.

Elke Cameron-Lieblerverzameling van graad één is dus een Cameron-Lieblerverzameling, en voor sommige polaire ruimten vallen Cameron-Lieblerverzamelingen en Cameron-Lieblerverzamelingen van graad één samen, maar voor andere zal dit niet het geval zijn.

Merk op dat we Cameron-Lieblerverzamelingen van graad éen op een algebraïsche manier gedefinieerd hebben. Over het algemeen kunnen Cameron-Lieblerverzamelingen, in verschillende contexten, gedefinieerd worden door zowel algebraïsche als combinatorische definities te gebruiken. Voor deze Cameron-Lieblerverzamelingen van graad éen vonden we ook dat dit mogelijk is, en vonden we een equivalente combinatorische definitie.

Stelling B.3.9. Zij \mathcal{P} een eindige klassieke polaire ruimte, van rang d met parameter e, zij \mathcal{L} een verzameling van generatoren van \mathcal{P} en i een natuurlijk getal met $1 \leq i \leq d$. Als \mathcal{L} een CameronLieblerverzameling van graad één, van generatoren in \mathcal{P} is, met parameter x, dan is het aantal elementen van \mathcal{L} dat een generator π snijdt in een $(d-i-1)$-ruimte gelijk aan

$$
\left\{\begin{array}{cl}
\left.\left((x-1)\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right]+q^{i+e-1}\left[\begin{array}{c}
d-1 \\
i
\end{array}\right]\right) q^{(i-1} 2\right)+(i-1) e & \text { als } \pi \in \mathcal{L} \\
x\left[\begin{array}{c}
d-1 \\
i-1
\end{array}\right] q^{\left(\frac{(i-1}{2}\right)+(i-1) e} & \text { als } \pi \notin \mathcal{L}
\end{array}\right.
$$

Bovendien, als deze eigenschap geldt voor een polaire ruimte \mathcal{P} en een geheel getal i zo dat

- i is oneven voor $\mathcal{P}=Q^{+}(2 d-1, q)$,
- $i \neq d$ voor $\mathcal{P}=Q(2 d, q)$ of $\mathcal{P}=W(2 d-1, q)$, beide met d oneven of
- i is willekeurig in de andere gevallen,
dan is \mathcal{L} een Cameron-Lieblerverzameling van graad één met parameter x.
Verder onderzochten we ook voor welke waarden van de parameter x er een Cameron-Lieblerverzameling van graad één bestaat. Voor Cameron-Lieblerverzamelingen van graad één in $W(5, q)$ en $Q(6, q)$ vonden we het volgende classificatieresultaat.

Stelling B.3.10. Een Cameron-Lieblerverzameling \mathcal{L} van graad één van generatoren in $W(5, q)$ of $Q(6, q)$ met parameter $2 \leq x \leq \sqrt[3]{2 q^{2}}-\frac{\sqrt[3]{4 q}}{3}+\frac{1}{6}$ is de unie van α ingebedde hyperbolische k wadrieken $Q^{+}(5, q)$, die paarsgewijs geen enkel vlak gemeen hebben, en $x-2 \alpha$ punt-bundels waarvan de basispunten paarsgewijs niet-collineair zijn en niet bevat in de α hyperbolische kwadrieken $Q^{+}(5, q)$. Voor de polaire ruimte $Q(6, q)$ of $W(5, q)$ met q even, $\alpha \in\left\{0, \ldots,\left\lfloor\frac{x}{2}\right\rfloor\right\}$, voor de polaire ruimte $W(5, q)$ met q oneven, $\alpha=0$.

B.3.4 Nieuw voorbeeld van een Cameron-Lieblerverzameling van graad één van generatoren in $Q^{+}(5, q)$

We geven een voorbeeld van een nieuwe, niet-triviale Cameron-Lieblerverzameling van generatoren in $Q^{+}(5, q)$, q oneven. Om de constructie van het voorbeeld uit te leggen, maken we gebruik van de Klein-correspondentie tussen de rechten van $Q^{+}(3, q)$ en de punten van $Q^{+}(5, q)$.

Beschouw de hyperbolische kwadriek $Q=Q^{+}(3, q)$ in $\mathrm{PG}(3, q)$, gedefinieerd door de vergelijking $x_{0} x_{1}+x_{2} x_{3}=0$. De rechten van Q corresponderen met de puntenverzameling van twee kegels $C \cup C^{\prime}$ in $Q^{+}(5, q)$, zo dat voor de vlakken $\alpha=\langle C\rangle$ en $\alpha^{\prime}=\left\langle C^{\prime}\right\rangle$ geldt dat α^{\prime} het beeld is van α onder de polariteit van $Q^{+}(5, q)$.

Elk punt $P \in \mathrm{PG}(3, q)$ geeft aanleiding tot een Latijns vlak π_{l}^{P} en een Grieks vlak π_{g}^{P} in $Q^{+}(5, q)$: de punten van π_{l}^{P} corresponderen met alle rechten door P in $\operatorname{PG}(3, q)$, en de punten van π_{g}^{P} corresponderen met alle rechten in het vlak P^{\perp}. Hierbij is \perp de polariteit gerelateerd aan de kwadriek Q in $\operatorname{PG}(3, q)$.

Definitie B.3.11. Een punt $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \operatorname{PG}(3, q)$ is een k wadraatpunt als $x_{0} x_{1}+x_{2} x_{3}$ een kwadraat verschillend van 0 is in \mathbb{F}_{q}. Een punt $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \operatorname{PG}(3, q)$ is een nietkwadraatpunt als $x_{0} x_{1}+x_{2} x_{3}$ een niet-kwadraat is in \mathbb{F}_{q}.

Nu kunnen we de verzameling vlakken in $Q^{+}(5, q)$ verdelen in de volgende verzamelingen.

- $\mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is een kwadraatpunt $\}$
- $\mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is een kwadraatpunt $\}$
- $\mathcal{N} \mathcal{S}_{l}=\left\{\pi_{l}^{P} \mid P\right.$ is een niet-kwadraatpunt $\}$
- $\mathcal{N} \mathcal{S}_{g}=\left\{\pi_{g}^{P} \mid P\right.$ is een niet-kwadraatpunt $\}$
- $\mathcal{O}_{l}=\left\{\pi_{l}^{P} \mid P \in Q\right\}$
- $\mathcal{O}_{g}=\left\{\pi_{g}^{P} \mid P \in Q\right\}$

Voor een raaklijn ℓ aan Q zijn er twee mogelijkheden; ℓ bevat q kwadraatpunten, of ℓ bevat q nietkwadraatpunten, zie [72 Tabel 15.5(c)]. In het eerste geval is ℓ een kwadraatraaklijn. In het tweede geval is ℓ een niet-kwadraatraaklijn.

We verdelen de punten in $Q^{+}(5, q)$ op in de volgende verzamelingen.

- De verzameling $\mathcal{X}_{1 S}$ van punten in $Q^{+}(5, q)$ die overeenkomen met de kwadraatraaklijnen aan Q.
- De verzameling $\mathcal{X}_{1 N S}$ van punten in $Q^{+}(5, q)$ die overeenkomen met de niet-kwadraatraaklijnen aan Q.
- De verzameling \mathcal{X}_{2} van punten in $Q^{+}(5, q)$ die overeenkomen met de twee-secanten aan Q.
- De verzameling \mathcal{X}_{0} van punten in $Q^{+}(5, q)$ die overeenkomen met de rechten disjunct aan Q.
- De verzameling $\mathcal{X}_{\infty}=C \cup C^{\prime}$ van punten in $Q^{+}(5, q)$ die overeenkomen met de rechten in Q.

We konden aantonen dat de partities $\left\{\mathcal{X}_{1 S}, \mathcal{X}_{1 N S}, \mathcal{X}_{2}, \mathcal{X}_{0}, \mathcal{X}_{\infty}\right\}$ en $\left\{\mathcal{S}_{l}, \mathcal{S}_{g}, \mathcal{N} \mathcal{S}_{l}, \mathcal{N} \mathcal{S}_{g}, \mathcal{O}_{l}, \mathcal{O}_{g}\right\}$ een punt-tactische decompositie vormen. Door de juiste partitieklassen te groeperen, vinden we nieuwe Cameron-Lieblerverzamelingen in $Q^{+}(5, q)$.

Stelling B.3.12. Zij q een oneven priemmacht.

- De verzamelingen $\mathcal{S}_{l} \cup \mathcal{S}_{g}$ en $\mathcal{N} \mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ zijn Cameron-Lieblerverzamelingen van graad één van vlakken in $Q^{+}(5, q)$, met parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ en $q+1$ respectievelijk, voor $q \equiv 1$ mod 4.
- De verzamelingen $\mathcal{S}_{l} \cup \mathcal{N} \mathcal{S}_{g}$ en $\mathcal{S}_{g} \cup \mathcal{N} \mathcal{S}_{l}$ zijn Cameron-Lieblerverzamelingen van graad één van vlakken in $Q^{+}(5, q)$, met parameter $\frac{q(q-1)}{2}, \frac{q(q-1)}{2}$ en $q+1$ respectievelijk, voor $q \equiv 3$ mod 4 .

B. 4 Lineaire verzamelingen

In het laatste deel van deze thesis bespreken we een onderzoeksproject over translatiehyperovalen en \mathbb{F}_{2}-lineaire verzamelingen. We geven een verband tussen de affiene punten van een translatiehyperovaal in $\operatorname{PG}\left(2, q^{k}\right)$ en de puntenverzameling van een geschatterde \mathbb{F}_{2}-lineaire verzameling van het pseudoregulustype in $\mathrm{PG}(2 k-1, q)$, gezien al een verzameling van richtingen. Hiervoor gebruikten we de Barlotti-Cofman constructie, die een veralgemening is van de André/BruckBoseconstructie.

Het oorspronkelijke doel van dit onderzoeksproject was om het volgende resultaat van Barwick en Jackson te veralgemenen.

Resultaat B.4.1 ([7] Theorem 1.2]). Beschouw $\operatorname{PG}(4, q), q$ even, $q>2$, met het hypervlak op oneindig, aangeduid door Σ_{∞}. Zij C een verzameling van q^{2} affiene punten, genaamd \mathcal{C}-punten en beschouw een verzameling vlakken, genaamd \mathcal{C}-vlakken, die voldoet aan de volgende eigenschappen.
(A1) Elk \mathcal{C}-vlak snijdt \mathcal{C} in een q-boog.
(A2) Elke twee verschillende \mathcal{C}-punten liggen in een uniek \mathcal{C}-vlak.
(A3) De affiene punten, niet in \mathcal{C}, liggen op precies éé \mathcal{C}-vlak.
(A4) Elk vlak dat minstens 3 punten van \mathcal{C} bevat, bevat precies 4 punten van \mathcal{C} of is een \mathcal{C}-vlak.
Dan bestaat er een Desarguesiaanse spread \mathcal{S} in Σ_{∞} zodat dat in het André/Bruck-Bose vlak $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{2}\right)$ de \mathcal{C}-punten samen met 2 extra punten op ℓ_{∞} een translatiehyperovaal vormen in $\operatorname{PG}\left(2, q^{2}\right)$.

Bij de zoektocht naar een veralgemening onderzochten we een verzameling C van q^{k} affiene punten in $\operatorname{PG}(2 k, q), q$ even, $q>2$, met gelijkaardige combinatorische eigenschappen. De technieken die Barwick en Jackson gebruikten in het bewijs van bovenstaand resultaat waren niet veralgemeenbaar. Daardoor zijn we op zoek gegaan naar andere technieken, waaronder het gebruik van lineaire verzamelingen, in het bijzonder deze van pseudoregulustype. Tijdens dit onderzoek konden we het volgende belangrijke resultaat bewijzen.

Stelling B.4.2. Zij \mathcal{Q} een verzameling van q^{k} affiene punten in $\operatorname{PG}(2 k, q), q=2^{h}, h \geq 4, k \geq 2$, die een verzameling D van $q^{k}-1$ richtingen in het hypervlak op oneindig $H_{\infty}=P G(2 k-1, q)$ bepaalt. Stel dat elke rechte 0, 1, 3 of $q-1$ punten gemeen heeft met de puntenverzameling D. Dan geldt het volgende.
(1) D is een \mathbb{F}_{2}-lineaire verzameling van het pseudoregulustype.
(2) Er bestaat een Desarguesiaanse spread \mathcal{S} in H_{∞} zodanig dat in het André/Bruck-Bose vlak $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{k}\right)$, met H_{∞} corresponderend met de rechte l_{∞}, de punten van \mathcal{Q} samen met 2 extra punten op ℓ_{∞} een translatiehyperovaal vormen in $\mathrm{PG}\left(2, q^{k}\right)$.

Omgekeerd komt, via de André/Bruck-Boseconstructie, de verzameling affiene punten van een translatiehyperovaal in $\operatorname{PG}\left(2, q^{k}\right), q>4, k \geq 2$, overeen met een verzameling \mathcal{Q} van q^{k} affiene punten in $\mathrm{PG}(2 k, q)$ waarvan de verzameling bepaalde richtingen D een \mathbb{F}_{2}-lineaire verzameling is van het pseudoregulustype. Bijgevolg bevat elke rechte $0,1,3$ of $q-1$ punten van D.

Een onmiddelijk gevolg van deze stelling is de veralgemening van Resultaat B.4.1
Stelling B.4.3. Beschouw $\mathrm{PG}(2 k, q), q$ even, $q>2$, met het hypervlak op oneindig, aangeduid door Σ_{∞}. Zij \mathcal{C} een verzameling van q^{k} affiene punten, genaamd \mathcal{C}-punten en beschouw een verzameling vlakken, genaamd \mathcal{C}-vlakken, die voldoet aan de volgende eigenschappen.
(A1) Elk \mathcal{C}-vlak snijdt \mathcal{C} in een q-boog.
(A2) Elke twee verschillende \mathcal{C}-punten liggen in een uniek \mathcal{C}-vlak.
(A3) De affiene punten, niet in \mathcal{C}, zijn bevat in precies één \mathcal{C}-vlak.
(A4) Elke vlak dat minstens 3 punten bevat van \mathcal{C}, bevat precies 4 punten van \mathcal{C} of is een \mathcal{C}-vlak.
Dan bestaat er een Desarguesiaanse spread \mathcal{S} in Σ_{∞} zodanig dat in het André/Bruck-Bose vlak $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{k}\right)$ de \mathcal{C}-punten samen met 2 extra punten op ℓ_{∞} een translatiehyperovaal vormen in $\operatorname{PG}\left(2, q^{k}\right)$.

Dankwoord

66 On ne voit bien qu'avec le coeur. L'essentiel est invisible pour les yeux.
-Antoine de Saint-Exupéry, Le Petit Prince

De voorbije vier jaar heb ik de kans gekregen om onderzoek te doen in de wondere wereld van de wiskunde. Ik kreeg de vrijheid om mij te verdiepen in boeiende problemen in de eindige meetkunde, en heb hierbij mogen samenwerken met fantastische onderzoekers uit binnen- en buitenland. Voor sommige projecten had ik het geluk om op verplaatsing te mogen samenwerken. Tijdens deze verblijven kon ik mijn horizon (letterlijk en figuurlijk) verbreden.

Ik wil graag enkele mensen bedanken die ervoor hebben gezorgd dat dit alles mogelijk was, en dat ik, als kers op de taart van de doctoraatsopleiding wiskunde, deze thesis heb kunnen schrijven.

Eerst en vooral wil ik hierbij mijn promotoren prof. Leo Storme, dr. Maarten De Boeck en dr. Geertrui Van de Voorde bedanken. Bij vragen, problemen, opmerkingen of onzekerheden kon ik steeds bij hen terecht. Zij zorgden, elk op hun manier, voor een perfect evenwicht tussen uitdagingen en tips.

Dankjewel Leo, voor het voorstellen van goede, interessante problemen. Je kon me in de juiste richting laten denken, en ondanks je drukke werkschema was ik steeds welkom met allerlei vragen. Dankjewel voor het meermaals nalezen van al mijn teksten, en om me te introduceren bij vele internationale onderzoekers.

Dankjewel Maarten, dat ik zo vaak bij je mocht langskomen, als ik weer eens niet meer wist hoe het verder moest. Je was steeds to the point, waardoor ik precies wist waar ik aan toe was, en wat de volgende stappen waren in een onderzoeksproject. Dankjewel ook voor de stevige ochtendwandelingetjes tijdens de congressen.

Dankjewel Geertrui voor de duidelijke feedback die ik van je kreeg, en waarop ik verder kon bouwen. Hoewel je in afstand nogal ver verwijderd was, kon ik steeds op je rekenen. Vandaag een mailtje verzonden, betekende vaak dat ik's nachts al een antwoord terug kreeg.

Dankjewel alle drie om er zo vaak te zijn als ik jullie nodig had. Een beter promotorenteam had ik niet kunnen dromen.

Ik wil ook het Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) bedanken, voor de financiële steun om dit onderzoek te kunnen doen.

Daarnaast ben ik ook heel dankbaar voor alle dienstreizen die ik mocht maken. Deze hebben stuk voor stuk geleid tot nuttige inzichten en/of interessante artikels.

- Dankjewel prof. Aart Blokhuis, mijn academische overgrootvader, om me verschillende teltechnieken te leren, die heel nuttig bleken bij vele problemen in projectieve meetkunde. Wat was het ook fijn om samen met jou te werken aan de 'zonnebloemen'!
- Thank you prof. Guglielmo Lunardon and prof. Nico Durante for the productive stay in Naples. Thank you for the opportunity to work together on the correlation problem, and thank you for the delicious Italian food.
- Thank you prof. Tamás Szőnyi, for the research stays in Budapest. You showed me some interesting polynomial methods, that enriched my knowledge of techniques, used in research for finite geometries. Moreover, the research stays were great themselves, but the citytrip was the icing on the cake.
- Dankjewel dr. Geertrui Van de Voorde om me te ontvangen in Nieuw-Zeeland. Enerzijds omwille van het interessante onderzoek, en de onderdompeling in de wereld van veldreductie en linear sets. Anderzijds voor de leuke uitjes in de weekends in het betoverende NieuwZeeland.
- Thank you prof. Klaus Metsch, for the two research stays in Giessen. I enjoyed tackling the chromatic number problem with you and dr. Daniel Werner. Even in Covid times, when we had to discuss research with a mouth mask and/or at a distance of 1.5 meters, it was nice to visit you. Furthermore, thank you for the Flammenkuchen and the 'citytrip' to Magdburg!
- Thank you dr. Giovanni Longobardi and prof. Rocco Trombetti for nice research stay in Vicenza. It was interesting to discuss the geometrical Sunflower bound with you. Thank you Giovanni for being our cultural and historical guide in Vicenza and Venice!

I also want to thank my other coauthors for the fruitful collaborations. Thank you prof. Aida Abiad, prof. Bart De Bruyn, dr. Ferdinand Ihringer, prof. Jack Koolen, Jonathan Mannaert, dr. Ago Erik Riet and prof. Andrea Švob.

Moreover, I would like to express my appreciation to the jury for reading this thesis, for the time you spent on it and for the relevant comments. Thank you prof. Aart Blokhuis, prof. Jan De Beule, prof. Bart De Bruyn, prof. Klaus Metsch, prof. Valentina Pepe and prof. Marnix Van Daele.

Mijn collega's verdienen ook een woord van waardering. Dankjewel Lins, Anneleen, Magali, Jens, Paulien, Jeroen, Maarten, Frederik, Aida, de 'Brusselaars', ...voor de gezellige joint lunches en de toffe gesprekken zowel verbaal als via Whatsapp. Dankjewel Anneleen om mijn meter te zijn, en voor de goede raad. Dankjewel ook voor de gezellige babbeltjes in Madame Bakster (en later tijdens de vele wandelingen in Corona-tijden). Dankjewel Jens om me te helpen bij alle computer en Latex probleempjes. Dankjewel om me te helpen bij het ontwerpen van de kaft, en bedankt omdat ik deze mooie template mag gebruiken. Dankjewel Lisa om mijn favoriete kamergenoot te zijn tijdens de verschillende congressen en summerschools. Dankjewel Sam Perez en Geert Vernaeve, voor het beantwoorden van al mijn administratieve en computer-gerelateerde vraagjes. In het bijzonder wil ik ook mijn bureaugenoten vermelden. Dankjewel Lins en Frans! Bij jullie kon ik zo vaak mijn hart luchten. Dankjewel voor de gezellige babbel, de steun tijdens moeilijkere dagen en de vriendschap!

Naast deze wiskundigen, wil ik ook mijn familie bedanken. Dankjewel mama en papa voor de vele kansen die jullie me gaven tijdens mijn gehele schoolcarriérre. Dankjewel mama, mijn rots in de branding, en dankjewel papa voor de heerlijke en gezellige ontbijtjes op zondagochtend. Verder wil ik ook mijn dankbaarheid uiten aan mijn lieve tantes, nonkels, nichtjes, neefjes, schoonouders, zussen, broer en mémé's. Dankjewel mémé trein voor de heerlijke worteltjes, spruitjes, vogelnestjes, lasagne, ... en de vele gebedjes in de kapel en tijdens de paternosters van Scherpenheuvel en Lourdes. Dankjewel mémé Slyps voor het luisterend oor, de houvast, en de wijze raad die je me keer op keer gaf als ik het nodig had. Ik had je dit zo graag nog in het echt gezegd, maar ik hoop dat dit woord van dank je op de één of andere manier toch bereikt.

Tot slot wil ik ook mijn vrienden van de wiskunde (zowel van mijn afstudeerjaar, als de mathemachicks), de vriendinnen van de ropeskipping, de vriendengroep van Ruben en de vrienden van de muziek bedanken. Naast alle steun en toeverlaat, zorgden jullie ook voor de nodige ontspanning tijdens de voorbije jaren.

Als afsluiter van dit dankwoord, wil ik ook mijn diepste waardering uitspreken voor mijn partner Ruben. Dankjewel om te supporteren, en om me op te beuren tijdens lastigere dagen. Je slaagde er steeds in om een lach op mijn gezicht te toveren. Dankjewel om chocoladetaart te voorzien als ik daar nood aan had. Verder waren ook je luisterend oor en kalmerende woorden van onschatbare waarde, wanneer ik weer eens vastzat met 'plane-solid vlaggen in een zevendimensionale projectieve ruimte', dankjewel voor alles!

Dankjewel iedereen om me steeds te blijven steunen in dit wiskundig doctoraat-avontuur!

Bibliography

[1] J. André. Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z., 60:156-186, 1954.
[2] J. Bamberg, S. Kelly, M. Law, and T. Penttila. Tight sets and m-ovoids of finite polar spaces. 7. Combin. Theory Ser. A, 114(7):1293-1314, 2007.
[3] J. Bamberg and T. Penttila. Overgroups of cyclic Sylow subgroups of linear groups. Comm. Algebra, 36(7):2503-2543, 2008.
[4] A. Barlotti and J. Cofman. Finite Sperner spaces constructed from projective and affine spaces. Abh. Math. Sem. Univ. Hamburg, 40:231-241, 1974.
[5] D. Bartoli, M. Giulietti, G. Marino, and O. Polverino. Maximum scattered linear sets and complete caps in Galois spaces. Combinatorica, 38(2):255-278, 2018.
[6] D. Bartoli, A.-E. Riet, L. Storme, and P. Vandendriessche. Improvement to the Sunflower bound for a class of equidistant constant dimension subspace codes. 7. Geom., 112(1):12, 2021.
[7] S. G. Barwick and W. Jackson. A characterization of translation ovals in finite even order planes. Finite Fields Appl., 33:37-52, 2015.
[8] S. G. Barwick and W. Jackson. Characterising point sets in $\mathrm{PG}(4, q)$ that correspond to conics. Des. Codes Cryptogr., 80(2):317-332, 2016.
[9] A. Beutelspacher, J. Eisfeld, and J. Müller. On sets of planes in projective spaces intersecting mutually in one point. Geom. Dedicata, 78(2):143-159, 1999.
[10] R. E. Block. On the orbits of collineation groups. Math. Z., 96:33-49, 1967.
[11] A. Blokhuis and A. E. Brouwer. Cocliques in the Kneser graph on line-plane flags in $\mathrm{PG}(4, q)$. Combinatorica, 37(5):795-804, 2017.
[12] A. Blokhuis, A. E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós, and T. Szőnyi. A Hilton-Milner theorem for vector spaces. Electron. 7. Combin., 17(1):Research Paper 71, 12, 2010.
[13] A. Blokhuis, A. E. Brouwer, and T. Szőnyi. On the chromatic number of q-Kneser graphs. Des. Codes Cryptogr., 65(3):187-197, 2012.
[14] A. Blokhuis, A. E. Brouwer, and T. Szőnyi. Maximal cocliques in the Kneser graph on pointplane flags in PG(4,q). European 7. Combin., 35:95-104, 2014.
[15] A. Blokhuis, M. De Boeck, and J. D'haeseleer. On the Sunflower bound for k-spaces, pairwise intersecting in a point. Submitted. arXiv:2008.06372.
[16] A. Blokhuis, M. De Boeck, and J. D'haeseleer. Cameron-Liebler sets of k-spaces in PG($n, q)$. Des. Codes Cryptogr., 87(8):1839-1856, 2019.
[17] A. Blokhuis and M. Lavrauw. Scattered spaces with respect to a spread in PG(n,q). Geom. Dedicata, 81(1-3):231-243, 2000.
[18] R. C. Bose. Mathematical theory of the symmetrical factorial design. Sankhyā, 8:107-166, 1947.
[19] R. C. Bose. A note on Fisher's inequality for balanced incomplete block designs. Ann. Math. Statistics, 20:619-620, 1949.
[20] R. C. Bose and T. Shimamoto. Classification and analysis of partially balanced incomplete block designs with two associate classes. 7. Amer. Statist. Assoc., 47:151-184, 1952.
[21] A. Brouwer and J. Hemmeter. A new family of distance-regular graphs and the $\{0,1,2\}$ cliques in dual polar graphs. European 7. Combin., 13(2):71-79, 1992.
[22] A. E. Brouwer, S. M. Cioabă, F. Ihringer, and M. McGinnis. The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters. \mathcal{F}. Combin. Theory Ser. B, 133:88-121, 2018.
[23] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
[24] R. H. Bruck and R. C. Bose. The construction of translation planes from projective spaces. \mathcal{F}. Algebra, 1:85-102, 1964.
[25] R. H. Bruck and R. C. Bose. Linear representations of projective planes in projective spaces. 7. Algebra, 4:117-172, 1966.
[26] A. A. Bruen and K. Drudge. The construction of Cameron-Liebler line classes in PG(3,q). Finite Fields Appl., 5(1):35-45, 1999.
[27] P. J. Cameron. Four lectures on projective geometry. In Finite geometries (Winnipeg, Man., 1984), volume 103 of Lecture Notes in Pure and Appl. Math., pages 27-63. Dekker, New York, 1985.
[28] P. J. Cameron and R. A. Liebler. Tactical decompositions and orbits of projective groups. Linear Algebra Appl., 46:91-102, 1982.
[29] M. Cao, B. Lv, K. Wang, and S. Zhou. Non-trivial t-intersecting families for vector spaces. Submitted. arXiv:2007.11767.
[30] A. Cossidente and F. Pavese. New Cameron-Liebler line classes with parameter $\frac{q^{2}+1}{2} . \mathcal{F}$. Algebraic Combin., 49(2):193-208, 2019.
[31] J. De Beule, J. Demeyer, K. Metsch, and M. Rodgers. A new family of tight sets in $Q^{+}(5, q)$. Des. Codes Cryptogr., 78(3):655-678, 2016.
[32] J. De Beule, K. Metsch, and S. Mattheus. An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings. Submitted. arXiv:2007.01104.
[33] M. De Boeck. The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces. Des. Codes Cryptogr., 72(1):77-117, 2014.
[34] M. De Boeck. The second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics $\mathcal{Q}^{+}(4 n+1, q)$. Adv. Geom., 16(2):253-263, 2016.
[35] M. De Boeck and J. D'haeseleer. Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces. Discrete Math., 343(1):111642, 13, 2020.
[36] M. De Boeck, M. Rodgers, L. Storme, and A. Svob. Cameron-Liebler sets of generators in finite classical polar spaces. 7. Combin. Theory Ser. A, 167:340-388, 2019.
[37] M. De Boeck and L. Storme. Theorems of Erdős-Ko-Rado type in geometrical settings. Sci. China Math., 56(7):1333-1348, 2013.
[38] M. De Boeck, L. Storme, and F. Vanhove. Capita Selecta in de Meetkunde, chapter 2. Ghent University, 2016.
[39] M. De Boeck, L. Storme, and A. Švob. The Cameron-Liebler problem for sets. Discrete Math., 339(2):470-474, 2016.
[40] B. De Bruyn and H. Suzuki. Intriguing sets of vertices of regular graphs. Graphs Combin., 26(5):629-646, 2010.
[41] P. Delsarte. Association schemes and t-designs in regular semilattices. f. Combinatorial Theory Ser. A, 20(2):230-243, 1976.
[42] P. Dembowski. Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York, 1968.
[43] J. D'haeseleer. Hilton-Milner results in projective and affine spaces. Submitted. arXiv:2007.15851.
[44] J. D'haeseleer, F. Ihriger, J. Mannaert, and L. Storme. Cameron-Liebler k-sets in $\mathrm{AG}(n, q)$. Submitted. arXiv:2003.12429.
[45] J. D'haeseleer, G. Longobardi, A. Riet, and L. Storme. Maximal sets of k-spaces pairwise intersecting in at least a $(k-2)$-space. Submitted. arXiv:2005.05494.
[46] J. D'haeseleer, J. Mannaert, L. Storme, and A. Švob. Cameron-Liebler line classes in AG $(3, q)$. Finite Fields Appl., 67:101706, 2020.
[47] J. D'haeseleer, K. Metsch, and D. Werner. On the chromatic number of two generalized Kneser graphs. Submitted. arXiv:2005.05762.
[48] J. D'haeseleer, K. Metsch, and D. Werner. On the chromatic number of some generalized Kneser graphs. 2021.
[49] J. D'haeseleer and G. Van de Voorde. Translation hyperovals and \mathbb{F}_{2}-linear sets of pseudoregulus type. Electron. J. Combin., 27(3), 2020.
[50] G. Donati and N. Durante. Scattered linear sets generated by collineations between pencils of lines. 7. Algebraic Combin., 40(4):1121-1134, 2014.
[51] K. W. Drudge. Extremal sets in projective and polar spaces. PhD thesis, The University of Western Ontario (Canada), 1998.
[52] J. Eisfeld. The eigenspaces of the Bose-Mesner algebras of the association schemes corresponding to projective spaces and polar spaces. Des. Codes Cryptogr., 17(1-3):129-150, 1999.
[53] J. Eisfeld. On sets of n-dimensional subspaces of projective spaces intersecting mutually in an ($n-2$)-dimensional subspace. volume 255, pages 81-85. 2002. Combinatorics '98 (Palermo).
[54] D. Ellis. Nontrivial t-intersecting families of subspaces. (Unpublished manuscript).
[55] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. 7. Math. Oxford Ser. (2), 12:313-320, 1961.
[56] T. Etzion and N. Raviv. Equidistant codes in the Grassmannian. Discrete Appl. Math., 186:8797, 2015.
[57] T. Feng, K. Momihara, M. Rodgers, Q. Xiang, and H. Zou. Cameron-liebler line classes with parameter $x=\frac{(q+1)^{2}}{3}$. ArXiv:2006.14206.
[58] T. Feng, K. Momihara, and Q. Xiang. Cameron-Liebler line classes with parameter $x=\frac{q^{2}-1}{2}$. 7. Combin. Theory Ser. A, 133:307-338, 2015.
[59] Y. Filmus and F. Ihringer. Boolean degree 1 functions on some classical association schemes. 7. Combin. Theory Ser. A, 162:241-270, 2019.
[60] P. Frankl and R. M. Wilson. The Erdős-Ko-Rado theorem for vector spaces. 7. Combin. Theory Ser. $A, 43(2): 228-236,1986$.
[61] J. W. Freeman. Reguli and pseudoreguli in $\operatorname{PG}\left(3, s^{2}\right)$. Geom. Dedicata, 9(3):267-280, 1980.
[62] A. L. Gavrilyuk and I. Matkin. Cameron-Liebler line classes in $\operatorname{PG}(3,5)$. F. Combin. Des., 26(12):563-580, 2018.
[63] A. L. Gavrilyuk, I. Matkin, and T. Penttila. Derivation of Cameron-Liebler line classes. Des. Codes Cryptogr., 86(1):231-236, 2018.
[64] A. L. Gavrilyuk and K. Metsch. A modular equality for Cameron-Liebler line classes. 7. Combin. Theory Ser. A, 127:224-242, 2014.
[65] A. L. Gavrilyuk and I. Y. Mogilnykh. Cameron-Liebler line classes in PG(n, 4). Des. Codes Cryptogr., 73(3):969-982, 2014.
[66] C. Godsil and K. Meagher. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European 7. Combin., 30(2):404-414, 2009.
[67] C. Godsil and K. Meagher. Erdős-Ko-Rado theorems: algebraic approaches, volume 149 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
[68] C. Gong, B. Lv, and K. Wang. Non-trivial intersecting families for finite affine spaces. Submitted. arXiv:2007.11767.
[69] J. Guo and Q. Xu. The Erdős-Ko-Rado theorem for finite affine spaces. Linear Multilinear Algebra, 65(3):593-599, 2017.
[70] D. Hilbert. Grundlagen der Geometrie (Festschrift 1899). Klassische Texte der Wissenschaft. [Classical Texts of Science]. Springer Spektrum, Berlin, 2015. Edited and with commentary by Klaus Volkert.
[71] A. J. W. Hilton and E. C. Milner. Some intersection theorems for systems of finite sets. Quart. 7. Math. Oxford Ser. (2), 18:369-384, 1967.
[72] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications.
[73] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1998.
[74] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications.
[75] D. R. Hughes and F. C. Piper. Projective planes. Springer-Verlag, New York-Berlin, 1973. Graduate Texts in Mathematics, Vol. 6.
[76] D. R. Hughes and F. C. Piper. Design theory. Cambridge University Press, Cambridge, 1985.
[77] F. Ihringer. Finite Geometry intersecting algebraic combinatorics. PhD thesis, Justus-LiebigUniversität Gießen, 2015.
[78] F. Ihringer and K. Metsch. Large $\{0,1, \ldots, t\}$-cliques in dual polar graphs. 7. Combin. Theory Ser. A, 154:285-322, 2018.
[79] V. Jha and N. L. Johnson. On the ubiquity of Denniston-type translation ovals in generalized André planes. In Combinatorics '90 (Gaeta, 1990), volume 52 of Ann. Discrete Math., pages 279-296. North-Holland, Amsterdam, 1992.
[80] A. Klein, K. Metsch, and L. Storme. Small maximal partial spreads in classical finite polar spaces. Adv. Geom., 10(3):379-402, 2010.
[81] R. Kötter and F. R. Kschischang. Coding for errors and erasures in random network coding. IEEE Trans. Inform. Theory, 54(8):3579-3591, 2008.
[82] M. Lavrauw. Scattered spaces with respect to spreads, and eggs in finite projective spaces. ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Dr.)-Technische Universiteit Eindhoven (The Netherlands).
[83] M. Lavrauw. Scattered spaces in Galois geometry. In Contemporary developments in finite fields and applications, pages 195-216. World Sci. Publ., Hackensack, NJ, 2016.
[84] M. Lavrauw and G. Van de Voorde. On linear sets on a projective line. Des. Codes Cryptogr., 56(2-3):89-104, 2010.
[85] M. Lavrauw and G. Van de Voorde. Scattered linear sets and pseudoreguli. Electron. f. Combin., 20(1):Paper 15, 14, 2013.
[86] M. Lavrauw and G. Van de Voorde. Field reduction and linear sets in finite geometry. In Topics in finite fields, volume 632 of Contemp. Math., pages 271-293. Amer. Math. Soc., Providence, RI, 2015.
[87] G. Lunardon, G. Marino, O. Polverino, and R. Trombetti. Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n, n}$. 7 . Algebraic Combin., 39(4):807-831, 2014.
[88] J. H. Maclagan-Wedderburn. A theorem on finite algebras. Trans. Amer. Math. Soc., 6(3):349352, 1905.
[89] J. Mannaert. Cameron-Liebler sets in affine geometries, 2018-2019. Master thesis.
[90] G. Marino, O. Polverino, and R. Trombetti. On \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(3, q^{3}\right)$ and semifields. \mathcal{F}. Combin. Theory Ser. A, 114(5):769-788, 2007.
[91] K. Metsch. The non-existence of Cameron-Liebler line classes with parameter $2<x \leqslant q$. Bull. Lond. Math. Soc., 42(6):991-996, 2010.
[92] K. Metsch. An improved bound on the existence of Cameron-Liebler line classes. 7. Combin. Theory Ser. A, 121:89-93, 2014.
[93] K. Metsch. A gap result for Cameron-Liebler k-classes. Discrete Math., 340(6):1311-1318, 2017.
[94] K. Metsch and D. Werner. Maximal cocliques in the Kneser graph on plane-solid flags in PG(6, q). Innov. Incidence Geom., 18(1):39-55, 2020.
[95] I. Y. Mogilnykh. Completely regular codes in Johnson and Grassmann graphs with small covering radii. arXiv:2012.06970.
[96] F. Pavese. Groups of finite projective spaces and their geometries, 2019. Lecture notes of Summerschool "Finite Geometry and Friends".
[97] S. E. Payne. A complete determination of translation ovoids in finite Desarguesian planes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 51:328-331 (1972), 1971.
[98] T. Penttila. A characterisation of conics over fields of even, square order. (Unpublished manuscript).
[99] T. Penttila. Cameron-Liebler line classes in PG(3, q). Geom. Dedicata, 37(3):245-252, 1991.
[100] O. Polverino. Linear sets in finite projective spaces. Discrete Math., 310(22):3096-3107, 2010.
[101] B. Qvist. Some remarks concerning curves of the second degree in a finite plane. Ann. Acad. Sci. Fennicae Ser. A. I. Math.-Phys., 1952(134):27, 1952.
[102] B. M. I. Rands. An extension of the Erdős-Ko-Rado theorem to t-designs. F. Combin. Theory Ser. A, 32(3):391-395, 1982.
[103] M. Rodgers. Cameron-Liebler line classes. Des. Codes Cryptogr., 68(1-3):33-37, 2013.
[104] M. Rodgers, L. Storme, and A. Vansweevelt. Cameron-Liebler k-classes in $\mathrm{PG}(2 k+1, q)$. Combinatorica, 38(3):739-757, 2018.
[105] S. Rottey, J. Sheekey, and G. Van de Voorde. Subgeometries in the André/Bruck-Bose representation. Finite Fields Appl., 35:115-138, 2015.
[106] B. Segre. Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 17:141-142, 1954.
[107] B. Segre. Sui k-archi nei piani finiti di caratteristica due. Rev. Math. Pures Appl., 2:289-300, 1957.
[108] B. Segre. Lectures on modern geometry, with an appendix by Lucio Lombardo-Radice, volume 7 of Consiglio Nazionale delle Rierche Monografie Matematiche. Edizioni Cremonese, Rome, 1961.
[109] B. Segre. Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. (4), 64:1-76, 1964.
[110] F. Vanhove. Incidence geometry from an algebraic graph theory point of view. PhD thesis, Ghent University, 2011.
[111] O. Veblen and J. W. Young. Projective geometry. Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1965.
[112] D. Werner. Extremal combinatorics in finite geometries. PhD thesis, Justus-Liebig-Universität Gießen, 2021.
[113] R. M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4(2-3):247-257, 1984.
[114] P. Zieschang. An algebraic approach to association schemes, volume 1628 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.

Index

k-space, 12
m-cover, 129
q-Kneser graph, 99
t-pencil, 20
adjacency matrix, 22
adjacent vertices, 21
affine geometries, 14
André/Bruck-Bose construction, 173
arc, 19
association scheme, 24
automorphism, 11
Barlotti-Cofman construction, 173
block-tactical decomposition, 23
blocks, 11
Boolean degree one function, 134
Bose-Mesner algebra, 24
Cameron-Liebler sets, 123
of k-spaces in $\operatorname{AG}(n, q), 147$
of k-spaces in $\mathrm{PG}(n, q), 133$
of finite classical polar spaces, 149
of lines in $\mathrm{PG}(n, q), 125$
characteristic polynomial, 22
characteristic vector, 12
chromatic number, 23
classical polar spaces, 15
clique, 22
coclique, 22
collinear points, 11
collineation, 14
coloring, 23
concurrent lines, 11
conic, 17
connected graph, 21
degree, 21
Desarguesian plane, 13
Desarguesian spread, 19
design, 12
dimension projective, 12
vector, 12
distance-regular graph, 21
dual of incidence geometry, 11
duality, 11
edge, 21
eigenspace of association scheme, 24
eigenvalue
association scheme, 24
graph, 22
EKR, 29
EKR set of flags, 99
elation, 14
elliptic quadric, 16
Erdős-Ko-Rado set, 29
field reduction, 19
finite field, 12
finite projective space, 12
flag, 99
Gaussian binomial coefficient, 13
generator in a polar space, 16
graph, 21
Grassmann graph, 25
Grassmann identity, 13
Grassmann scheme, 25
Hermitian polar space, 16
hyperbolic quadric, 16
hyperoval, 19
hyperplane, 12
incidence geometry, 11
incidence matrix, 12
incidence relation, 12
incident subspaces, 11
incident vertices, 21
independent set, 22
intersection, 13
isomorphism, 11
Johnson graph, 25
Johnson scheme, 25

Klein correspondence, 18
Kneser graph, 99
line
incidence geometry, 11
projective space, 12
linear map, 14
linear set, 171
normal spread, 19
nucleus, 17
nucleus
oval, 20
opposite regulus, 19
order, 12
oval, 19
ovoid, 20
parabolic quadric, 16
parameter of Cameron-Liebler set, 124
partial k-spread, 19
partial ovoid, 20
perspectivity, 14
plane, 12
point
incidence geometry, 11
projective space, 12
point-line geometry, 11
point-pencil
flags, 99
projective spaces, 20
point-tactical decomposition, 23
polar space, 15
polarity, 17
projective space, 12
projectivity, 14
pseudoregulus, 173
quadric, 16
rank, 11
regular graph, 21
regular spread, 19
regulus, 19
scattered linear set, 172
scatterend linear set of pseudoregulus type, 172
SCID, 89
semi-linear map, 14
singular point in polar space, 17
singular polar space, 17
solid, 12
span, 13
spread, 19
strongly regular graph, 21
subspace, 12
sunflower, 21,89
switching set, 125
symplectic polar space, 16
tactical decomposition, 23
tangent line, 17
tight set, 22
translation hyperoval, 20
transversal spaces of pseudoregulus, 173
variety, 11
vector space, 12
vertex, 21

