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Preface

“ �e way to get started is to quit talking and begin doing. ”—Walt Disney

My engagement towards mathematics started at secondary school. I always liked to solve exer-
cises, and I loved to accept the challenges the teachers gave me. A�er my graduation in secondary
school, I really wanted to further discover the beautiful parts of mathematics. So it was clear that I
wanted to study this. During the bachelor and master years, I enjoyed seeing all the di�erent parts
of mathematics. It gave me a broad view and a chance to sample every branch in mathematics.
During my bachelor project, I got the opportunity to work on di�erent topics in �nite geometry. I
really liked the freedom to think about some new things, and due to the combination of good ideas
and excellent aid of my supervisors we discovered new characteristics about Sudoku Latin Squares.
�is was the start of my �rst publication. Together with prof. Klaus Metsch from the University of
Gießen, we generalized the �rst results and continued the research on this topic. �is was an inter-
esting chance to start exploring the research world. In the last master year, I focused on the master
thesis. During this period, I also got the opportunity to go abroad. With the Erasmus program, I
went to the Technical University of Eindhoven. Here I got the chance to work together with prof.
Aart Blokhuis on the Sun�ower bound. �anks to enriching conversations and discussions with
prof. Aart Blokhuis and other researchers in Eindhoven, I discovered the advantages of working
together with international academics. I realized for the second time that I enjoyed doing research
and discovering new things. Beside that, I was aware, by reading lots of articles, of the fact that
my knowledge at that time, only corresponds to the tip of the iceberg. �at was the reason why I
wanted to continue the research, to get a more fundamental understanding and to reach the bo�om
of the iceberg.

So, more or less 4 years ago, I got the great opportunity to start with a PhD in �nite geometry. I
got the chance to work on topics in �nite geometry that interest me, such as Cameron-Liebler sets
and intersection problems. �e result of this research is collected in this thesis.

�is thesis contains three main parts. �e �rst part handles several intersection problems.

During the �rst months of the PhD, I started with the �rst intersection problem. I investigated sets
of solids pairwise intersecting in at least a line. Later on, we could generalise this to a classi�cation
of the largest sets of k-spaces in PG(n, q), pairwise intersecting in at least a (k − 2)-space. With
the aid of dr. Giovanni Longobardi, dr. Ago Riet and prof. Leo Storme, we were able to classify the
ten largest examples, see Chapter 3. �orough this thesis, it will become clear that I like to classify
di�erent structures in �nite geometries.

A second intersection problem handles a Hilton-Milner problem in projective and a�ne spaces.
Here, I investigated large sets of k-spaces pairwise intersecting in at least a t-space in both PG(n, q)
and AG(n, q). A straightforward example of these sets is a t-pencil; the set of all k-spaces contain-
ing a �xed t-space. In this research, I classi�ed the largest examples of pairwise t-intersecting sets
in both PG(n, q) and AG(n, q), di�erent from a t-pencil. �is classi�cation result can be found in
Chapter 4.
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Recall that, in my master thesis, I started investigating the Sun�ower bound in projective spaces.
For this, I studied large sets of k-spaces in a projective space, pairwise intersecting in precisely a
point. A classical example of such a set is the sun�ower, where all subspaces pass through the same
point. �e Sun�ower bound states that a set S of k-spaces, pairwise intersecting in a point must be
a sun�ower if |S| surpasses the Sun�ower bound. Prof. Aart Blokhuis, dr. Maarten De Boeck and I
could lower this Sun�ower bound signi�cantly. How we succeeded in this, can be read in Chapter
5.

In spring 2020, I got the opportunity to visit prof. Klaus Metsch in Gießen. Together with dr. Daniel
Werner, we investigated the chromatic number of q-Kneser graphs of �ags in projective spaces. �is
problem can be translated to the following research problem: �nding a partition of �ags such that
every two �ags in a partition class intersect. We found the chromatic number of the q-Kneser graph
of line-solid �ags and of line-plane �ags in PG(4, q). Furthermore, if we assume that structural
information on the large intersecting sets of {d− 1, d}-�ags in PG(2d, q) is known, then we were
also able to generalize our results. Hence, given a Hilton-Milner type conjecture, we found the
chromatic number of {d − 1, d}-�ags in PG(2d, q). �ese results are wri�en in Chapter 6, which
concludes the �rst main part.

In the second main part of this thesis, I describe several Cameron-Liebler results in di�erent con-
texts.

In [28], Cameron and Liebler introduced speci�c line classes in PG(3, q) when investigating the
orbits of the projective groups PGL(n + 1, q). �ese line sets L have the property that every
line spread S in PG(3, q) has the same number of lines in common with L. One of the main
reasons for studying Cameron-Liebler sets is that there are several equivalent de�nitions for them,
some algebraic, some geometrical or combinatorial in nature. �e main question, independent of
the context where Cameron-Liebler sets are investigated, is always the same: for which values of
the parameter x do there exist Cameron-Liebler sets and which examples correspond to a given
parameter x?

In the �rst year of my PhD, I started de�ning and investigating Cameron-Liebler sets of k-spaces
in PG(n, q). Prof. Aart Blokhuis, dr. Maarten De Boeck and I found many equivalent de�nitions,
and we could prove a classi�cation result. �ese results are described in Chapter 8.

During this �rst Cameron-Liebler project, my interest grew, and I was curious to discover Cameron-
Liebler sets in di�erent contexts.

In a second Cameron-Liebler project, Cameron-Liebler sets of generators in �nite classical polar
spaces were investigated. Dr. Maarten De Boeck and I introduced degree one Cameron-Liebler sets in
�nite classical polar spaces. �ese sets are Cameron-Liebler sets with an extra assumption, and they
give a link between Boolean degree one functions (see [59]) and Cameron-Liebler sets of generators
in �nite classical polar spaces (see [36]). �ese results can be found in Chapter 10.

In summer 2019, prof. Morgan Rodgers found a new, non-trivial example of a Cameron-Liebler set
of generators inQ+(5, 3) by using a computer search. Dr. Maarten De Boeck and I investigated this
example, and generalized it. In this way, we found a non-trivial example of a degree one Cameron-
Liebler set of generators in Q+(5, q). �e construction for this example is described in Section
10.5.

In the second year of my PhD, I got the opportunity to mentor the master thesis of Jonathan Man-
naert. Prof. Leo Storme suggested to investigate Cameron-Liebler sets in an a�ne context. During
this research, we �rst de�ned Cameron-Liebler line sets in AG(3, q). We found many equivalent
de�nitions, and some classi�cation results. In a second step, we generalized these Cameron-Liebler
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line sets in AG(3, q) to Cameron-Liebler k-sets in AG(n, q). �ese results are described in Chapter
9.

�e last main part of this thesis discusses Linear sets of pseudoregulus type. In spring 2019, I visited
my co-supervisor dr. Geertrui Van de Voorde in Christchurch, New-Zealand, where she immersed
me in the world of linear sets. In [7], a characterisation for translation hyperovals in PG(4, q), q
even, was given. Originally our research goal was to generalize these results for PG(2k, q), q even.
While investigating this topic, we could characterise the point sets de�ned by translation hyper-
ovals in the André/Bruck-Bose representation. We showed that the a�ne point sets of translation
hyperovals in PG(2, qk) are precisely those that have a sca�ered F2-linear set of pseudoregulus
type in PG(2k − 1, q) as set of directions. �ese results are described in Chapter 11.

I hope that this introduction could engage you for reading this thesis. I already want to thank you
for the interest and I hope you enjoy reading this exciting math story. ,

Joze�en D’haeseleer
March 2021
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1 Preliminaries

“ La mathématique est l’art de donner le même nom à des choses di�érentes. ”—Henri Poincaré

In this �rst chapter, we introduce important concepts and known results that will be used through-
out the thesis. We suppose that the reader is familiar with the basic notions in �nite geometry,
combinatorics, linear algebra and graph theory.

1.1 Incidence geometries

Several geometries, such as projective geometries, a�ne geometries and �nite classical polar spaces,
are investigated in this thesis. �ese geometries all are incidence geometries, and therefore we start
with introducing the notion of a general incidence geometry.

De�nition 1.1.1. An incidence geometry S is a quadruple S = (V, ωn, t, I), with V a non-empty
set, ωn = {0, 1, . . . , n− 1}, t a surjective map from V to ωn and I a symmetric incidence relation
on V , such that (v1, v2) ∈ I , implies that t(v1) 6= t(v2), for all v1, v2 ∈ V .

�e elements of V are called the varieties of S . Varieties of type 0 and 1 are called the points and
lines respectively. �e map t is called the type map and in this thesis, this map will always be the
dimension map. �e integer n is called the rank of the geometry S . If (v1, v2) ∈ I , then these
elements v1 and v2 are called incident. Moreover, if t(v1) < t(v2), then we say that v1 is contained
in v2, that v2 contains v1 or that v2 goes through v1. A set of points, incident with a �xed line, is
said to be collinear , and a set of lines incident with a �xed point, is said to be concurrent.

If the rank of the incidence geometry is 2, then the set V of varieties consists of points and lines.
�is geometry is called a point-line geometry. For this, we use the notation S = (P,B, I), with I
the incidence relation such that I ⊆ (P×B)∪ (B×P). In this geometry, the elements of P are the
points and the elements of B are the lines. �e elements of B are sometimes also called the blocks
of S .

�e dual of an incidence geometry S = (V, ωn, t, I) is the incidence geometry S ′ = (V, ωn, t′, I)
with t′ = V → ωn : v 7→ n− t(v)− 1. Note that the dual of a point-line geometry S = (P,B, I)
can be obtained by interchanging the roles of points and lines. Hence, the dual of the point-line
geometry S is the point-line geometry S ′ = (B,P, I).

Let S1 = (V1, ωn, t1, I1) and S2 = (V2, ωn, t2, I2) be two incidence geometries of the same rank
n. A bijection α : V1 → V2 with the property that (v, v′) ∈ I1 ⇔ (α(v), α(v′)) ∈ I2, ∀v, v′ ∈ V1,
and t1(v) = t2(α(v)),∀v ∈ V1, is an isomorphism between S1 and S2. In the case that S1 = S2,
then α is called an automorphism of S1. If S1 is the dual of S2, then α is called a duality.

11



1 Preliminaries

De�nition 1.1.2. �e incidence matrix H of a point-line geometry (P,B, I), with P the set of
points {p1, p2, . . . , pm} and B the set of blocks {b1, b2, . . . , bn} is the m × n matrix over the �eld
R, in which the rows are labeled by the points and the columns are labeled by the blocks, so that
Hij = 1 if (pi, bj) ∈ I , and Hij = 0 otherwise.

In this thesis, we denote the n × n identity matrix by In, the n × n all one matrix by Jn and the
all one column vector of dimension n by jn. If the size n is clear from the context, we also use
the notations I , J , and j respectively. In general, all vectors in this thesis are regarded as column
vectors.

For a subset S of a �nite set Ω, which can consist of points or blocks, we will o�en use the corre-
sponding characteristic vector χS .

De�nition 1.1.3. Consider a set Ω = {x1, . . . , xn} of size n. �en we de�ne for every subset S of
Ω a characteristic vector χS ∈ Rn as a {0, 1}-valued column vector that has a one on position i if
and only xi ∈ S.

We end this section with a �rst example of an incidence geometry.

De�nition 1.1.4. A t − (v, k, λ) design, v > k > 1, k ≥ t ≥ 1, λ > 0, is a point-line geometry
D = (P,B, I) with incidence matrix I with the following properties:

• |P| = v,

• every element of B contains k points of P ,

• every set of t distinct points of P is contained in precisely λ di�erent lines of B,

• no two lines of B are incident with the same k points of P .

In this thesis, we will o�en investigate 2−(v, k, λ) designs, or in short, 2-designs. For these designs,
we give a classical result in design theory, which follows from the proof of Fisher’s inequality by
Bose [19].

Result 1.1.5. �e incidence matrix of a 2-design has full row rank over R.

1.2 Finite projective spaces

Consider the �nite �eld Fq of order q, with q = ph, p prime and h > 0. Let V (n+ 1, q) denote the
vector space of dimension n+ 1 over Fq : V (n+ 1, q) = Fn+1

q .

Let D(V ) be the set of non-trivial subspaces of V (n + 1, q). De�ne the incidence relation I
as follows: (U,W ) ∈ I if U ⊆ W or W ⊆ U . Let dim : D(V ) → {0, 1, . . . , n − 1} be
the map such that dim(π) is the vector dimension of π minus one. �en the incidence geom-
etry (D(V ), {0, 1, . . . , n − 1},dim, I) is by de�nition the projective space corresponding with
V (n + 1, q). �is projective space has projective dimension n and is denoted by PG(n, q). Note
that the projective dimension dim(π) of a subspace π is its vector dimension minus one. In this
thesis we will always use the projective dimension for subspaces of a projective geometry. Recall
that the subspaces of PG(n, q) of dimension 0 and 1 are the points and lines of the projective space.
�e subspaces of dimension 2, 3 and n − 1 are called the planes, solids, and hyperplanes, respec-
tively. We will consider the empty set as the subspace with dimension −1. O�en, a k-dimensional
subspace is called a k-space, and we will sometimes consider a k-space as its set of points.

12
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In this thesis, we will count many objects. For the notation of these countings, we will use Gaussian
binomial coe�cients

[
a
b

]
q

for a, b ∈ N \ {0}, a ≥ b, and prime power q ≥ 2:[
a

b

]
q

=
(qa − 1) · · · (qa−b+1 − 1)

(qb − 1) · · · (q − 1)
.

Furthermore, we de�ne
[
a
b

]
q

= 1 if b = 0, and
[
a
b

]
q

= 0 if b < 0 or b > a.

�e Gaussian binomial coe�cient
[
a
b

]
q

is equal to the number of b-spaces of the vector space Faq ,
or in the projective context, the number of (b − 1)-spaces in the projective space PG(a − 1, q).
Moreover, we will denote the number

[
n+1

1

]
q

of points in PG(n, q) by the symbol θn(q). If the �eld
size q is clear from the context, we will write

[
a
b

]
and θn instead of

[
a
b

]
q

and θn(q), respectively.

�e intersection of two subspaces U and W of PG(n, q), is the subspace of PG(n, q) containing all
points that are contained in both U andW , and is denoted by U ∩W . �e span of two subspaces U
and W of PG(n, q), is the smallest subspace of PG(n, q) containing the points of both U and W ,
and is denoted by 〈U,W 〉.

A frequently used identity in this thesis is the Grassmann identity for subspaces of a projective
space:

dim(U) + dim(V ) = dim(〈U, V 〉) + dim(U ∩ V ),

for all subspaces U and V of PG(n, q).

We started introducing projective spaces by using vector spaces. On the other side, we want to
mention that a projective space can also be de�ned by axioms. A projective space is a point-line
geometry (P,B, I) that satis�es the following three axioms.

1. �rough every two points of P , there is exactly one line of B.

2. If P,Q,R, S are distinct points of P and the lines PQ and RS intersect, then so do the lines
PR and QS.

3. �ere are at least 3 points on a line.

Veblen and Young proved in [111] that if the dimension of the projective space is at least 3, then
every �nite projective space (de�ned by the three axioms above) of dimension n ≥ 3, is derived
from a vector space, and so, it is isomorphic with PG(n, q), with q a prime power.

For �nite projective planes, the classi�cation is more complicated, as not all of them are isomorphic
to PG(2, q). We continue with the de�nition of a Desarguesian plane.

De�nition 1.2.1. A Desarguesian plane is an (axiomatic) projective plane Π such that for all two
triangles of points P1, P2, P3 and Q1, Q2, Q3 in Π, with the property that the lines P1Q1, P2Q2

and P3Q3 are concurrent, it holds that points P1P2 ∩Q1Q2, P2P3 ∩Q2Q3 and P1P3 ∩Q1Q3 are
collinear.

�e Desarguesian planes are precisely the planes coming from a three-dimensional vector space
over a division ring, see [70]. Since we know, by Wedderburn [88], that a �nite division ring is a
(�nite) �eld, it follows that a �nite Desarguesian projective plane is a projective plane PG(2, q).

Many non-Desarguesian projective planes are known, for example the Hall planes, Moulton planes
and Figueroa planes, see [75].

In this thesis we will only consider the projective spaces coming from a vector space.
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1 Preliminaries

1.3 Collineations of PG(n, q)

A linear map on a vector space V = V (n + 1, q) is a mapping fA : V → V : x 7→ Ax, with A
a non-singular (n + 1) × (n + 1)-matrix over Fq . We identify this matrix with the corresponding
linear map. �e set of all linear maps on V (n + 1, q) corresponds to the set of all non-singular
(n+1)×(n+1)-matrices over Fq and they form the general linear group, denoted by GL(n+1, q).

A semi-linear map on a vector space V = V (n + 1, q) is a mapping fA,σ : V → V : x 7→ Axσ ,
with x ∈ V again a column vector, A a non-singular (n + 1) × (n + 1)-matrix over Fq and σ an
automorphism of the �eld Fq . �e automorphisms of the �eld Fq, q = pr, p prime, are precisely the
maps φk : Fpr → Fpr : x 7→ xp

k
, 0 ≤ k < r. �e group of all semi-linear maps on V (n + 1, q) is

denoted by ΓL(n+ 1, q).

An automorphism of the projective space PG(n, q), n ≥ 2, is called a collineation. �e set of all
collineations of PG(n, q) forms the group Aut(PG(n, q)). Let V (n + 1, q) be the corresponding
vector space of the projective space PG(n, q). �e fundamental theorem of projective geometry
states that each collineation of PG(n, q), n ≥ 2, arises from an invertible semi-linear map fA,σ
of the points of PG(n, q) (and so of the 1-dimensional subspaces of V = V (n + 1, q)): fA,σ :
V → V : x 7→ Axσ . �e set of semi-linear maps on PG(n, q) forms a group and is denoted by
PΓL(n+ 1, q). Hence, it follows that PΓL(n+ 1, q) ' Aut(PG(n, q)). If we consider a linear map
on V (n+ 1, q), then the corresponding collineation of PG(n, q) is called a projectivity. �e group
of all projectivities of PG(n, q) is called the projective (general) linear group PGL(n+ 1, q).

A perspectivity of PG(n, q) with axis the hyperplane H is an element of PΓL(n + 1, q) that �xes
all points of H . Let α be a perspectivity of PG(n, q) with axis H , then a point P is called a center
if α �xes every hyperplane through P . It can be proven that every perspectivity, di�erent from the
identity map, contains precisely one axis and precisely one center.

An elation with axis a hyperplane H and center a point P of PG(n, q) is a perspectivity whose
center is contained in its axis; P ∈ H .

1.4 A�ne geometries

De�nition 1.4.1. Let H∞ be a hyperplane of an n-dimensional projective space PG(n, q), and
let ∆A be the set of subspaces of PG(n, q) that are not contained in H∞. Let IA and dimA be
the restriction of the natural incidence relation and the type map of PG(n, q) to ∆A, respectively.
�en the incidence geometry using the subspaces of ∆A, the type map dimA and the incidence
relation IA de�nes the n-dimensional a�ne space AG(n, q). We callH∞ the hyperplane at in�nity
of AG(n, q).

We introduced a�ne geometries by using projective geometries. �e a�ne spaces used in this
thesis, will always arise from a vector space. We want to note that, similar to the projective spaces,
a�ne spaces can also be de�ned by axioms, see �eorem 2.4 and �eorem 2.6 in [73] for dimension
2 and dimension n ≥ 3, respectively. Similar to the projective space, every axiomatic a�ne space
of dimension n arise from a vector space for n ≥ 3. For n = 2 this is not the case.
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1.5 Finite classical polar spaces

Finite classical polar spaces play an important role in �nite geometries. We start introducing these
structures in vector spaces, but we will translate them to projective spaces later. Let F be a �eld,
and let σ be a �eld automorphism. Let V be a vector space over F. A sesquilinear form is a map
f : V × V → F that is linear in its �rst argument and semi-linear in its second argument, hence
for all u1, u2, v1, v2 ∈ V, a ∈ F : f(au1 + u2, v1) = af(u1, v1) + f(u2, v1) and f(u1, av1 + v2) =
aσf(u1, v1) + f(u1, v2). A bilinear form is a map f : V × V → F that is linear in both arguments.
A quadratic form Q on a vector space V is a map Q : V → F that is homogeneous of degree two,
and with the property that f : V × V → F : (v, w) 7→ Q(v + w) − Q(v) − Q(w) is a bilinear
form.

A sesquilinear form f on V is re�exive if f(u, v) = 0 implies that f(v, u) = 0, ∀u, v ∈ V . It is called
symplectic if f(v, v) = 0, ∀v ∈ V , and called Hermitian if the corresponding �eld automorphism
σ is a non-trivial involution, so σ2 is the identity, and if f(v, w) = f(w, v)σ , ∀v, w ∈ V . We note
that every non-trivial re�exive sesquilinear form is a bilinear form or a non-zero scalar multiple of
a Hermitian form.

A re�exive sesquilinear form f is called degenerate if there exists a vector v ∈ V \{0}with f(v, w) =
0, ∀w ∈ V . A quadratic form is degenerate if there exists a vector v ∈ V \ {0} with Q(v) = 0 and
with f(v, w) = 0,∀w ∈ V .

A subspace is called totally isotropic with respect to a sesquilinear or quadratic form, when the form
is trivial on this subspace.

Now we are able to describe the classical polar spaces.

De�nition 1.5.1. Let ∆ be the set of subspaces in a vector space V (n + 1,F), that are totally
isotropic with respect to a quadratic, symplectic or Hermitian form on V , and let d be the maximum
of the vector dimensions of the elements of ∆. Furthermore, let IP be the restriction of the natural
incidence relation of V (n + 1,F) to ∆, and let dimP be the map such that dimP(π) is the vector
dimension of π minus one. �en, the incidence geometry P = (∆, {0, 1, . . . , d− 1},dimP , IP) is
a classical polar space.

�ese classical polar spaces can be seen as substructures in the projective geometry PG(n,F). If
F is the �nite �eld Fq , then, these polar spaces are called the �nite classical polar spaces. Note that
we will always consider the �nite classical polar spaces through their embedding in the projective
space.

In this thesis, all polar spaces we will handle are �nite classical polar spaces, so we will refer to
them as the polar spaces. Although there is a broad theory linked to these geometrical structures,
we will brie�y discuss the most important properties and de�nitions, which will be of importance
in the following chapters. For an extensive introduction to �nite classical polar spaces, we refer to
[74].

A polar space arising from a quadratic form is called a quadric. Consider a non-degenerate quadratic
form Q on the vector space V = V (n+ 1, q). If n is even, we can �nd an appropriate basis for V ,
so that Q can be wri�en as

Q(X0, . . . , Xn) = X2
0 +X1X2 + · · ·+Xn−1Xn.
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�is non-degenerate quadratic form is called parabolic. If n is odd, then we can again, by using an
appropriate basis for V , write Q as

Q(X0, . . . , Xn) = X0X1 +X2X3 + · · ·+Xn−1Xn, (1.1)
or as Q(X0, . . . , Xn) = X0X1 +X2X3 + · · ·+Xn−3Xn−2 + h(Xn−1, Xn), (1.2)

with h an irreducible homogeneous polynomial over Fq of degree 2. �e non-degenerate quadratic
form in (1.1) is called hyperbolic ; and the non-degenerate quadratic form in (1.2) is called elliptic.
�e polar spaces arising from a non-degenerate parabolic, hyperbolic or elliptic quadratic form
are called a non-degenerate parabolic, hyperbolic or elliptic quadric, respectively. Embedded in
PG(n, q), they are denoted by Q(n, q), Q+(n, q) and Q−(n, q) respectively.

A polar space arising from a symplectic form is called a symplectic polar space. A non-degenerate
symplectic form f on V (m, q) only exists if m is even. Let m = 2n, then we can �nd an appro-
priate basis {e1, . . . , en, e

′
1, . . . , e

′
n} for V (2n, q), so that f(ei, ej) = f(e′i, e

′
j) = 0 and f(ei, e

′
j) =

δi,j , ∀i, j ∈ {1, 2, . . . , n}. Embedded in PG(2n − 1, q), this symplectic polar space is denoted by
W (2n− 1, q). Note that a symplectic polar space contains all points of PG(2n− 1, q), but not all
subspaces of dimension at least one.

A polar space arising from a Hermitian form is called a Hermitian polar space. �e construction of a
Hermitian form over Fq′ requires an involutory �eld automorphism of Fq′ , which only exists for q′ a
square, q′ = q2. �e only involutory �eld automorphism of Fq2 is the map σ : Fq2 → Fq2 : x 7→ xq .
Let f be a non-degenerate Hermitian form on the vector space V (n+ 1, q2). An appropriate basis
{e0, ..., en} for V (n+ 1, q2) can be found, such that f(ei, ej) = δi,j ,∀i, j ∈ {0, 1, 2, . . . , n}.

Note that quadrics and Hermitian varieties are completely determined by their point sets, and can
be described as a set of points satisfying the corresponding quadratic or Hermitian form. �is is
not the case for the symplectic polar spaces.

We continue with the de�nition of the rank and the parameter of a polar space.

De�nition 1.5.2. A generator of a polar space is a subspace of maximal dimension and the rank
d of a polar space is the projective dimension of a generator plus 1. �e parameter e of a polar
space P of rank d over Fq is de�ned as the number so that the number of generators through a
(d− 2)-space of P equals qe + 1.

In Table 1.1, we give the parameter e of the polar spaces of rank d.

Polar space e

Q+(2d− 1, q) 0

H(2d− 1, q) 1/2

W (2d− 1, q) 1

Q(2d, q) 1

H(2d, q) 3/2

Q−(2d+ 1, q) 2

Table 1.1: �e parameter e of the polar spaces

Another important notion are the polarities associated to a polar space. Consider a non-degenerate
Hermitian form, or the bilinear form f , based on a non-degenerate quadratic form Q on the vector
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space V = V (n+ 1, q). Recall that f(v, w) = Q(v + w)−Q(v)−Q(w). For a subspace W of V ,
we can de�ne its orthogonal complement regarding f :

W⊥ = {v ∈ V | ∀w ∈W : f(v, w) = 0}.

If we see the subspaces of V as subspaces of PG(n, q), then the map β that maps the subspace
W onto the subspace W⊥, is an involutory duality. �is map β is called a polarity. For q odd,
the subspaces of a quadric or Hermitian variety in PG(n, q) are precisely the subspaces that are
contained in their image under the polarity. Geometrically, for q odd, the image of a subspace on
the polar space under the corresponding polarity, is its tangent space.

Consider now a quadric or a Hermitian variety F ⊆ PG(n, q). A tangent line in a point P to F
is a line ` through this point such that ` ∩ F is {P} or the whole line `. A point P ∈ PG(n, q) is
singular for F , if every line through P is a tangent line, or equivalently, if for every line ` through
P : ` ∩ F = {P} or ` ∩ F = `. �e polar space F is singular if it contains a singular point. For
a non-singular point P of F , we de�ne the tangent space as the union of the tangent lines of F
in P . �is tangent space forms a hyperplane, which we call the tangent hyperplane TP (F) in P .
For q odd, this tangent hyperplane is the image of the point P under the corresponding polarity, as
mentioned above.

It is known that all singular points of a singular quadric or Hermitian variety F form a subspace.
In this case, F is a cone πn−r−1F ′. �e vertex πn−r−1 of this cone is the (n − r − 1)-space of
singular points ofF , n > r, and the basis of the cone is a non-singular quadric or Hermitian variety
(depending on the type of F ), in a subspace PG(r, q) of PG(n, q) that is disjoint from πn−r−1.

A symplectic polar space can also be singular. Similar to the quadrics and Hermitian varieties, a
singular symplectic polar space in PG(n, q) is a cone. �e vertex of this cone is an s-dimensional
subspace πs, and the basis of the cone is a non-singular symplectic polar space in an (n − s − 1)-
dimensional subspace, disjoint from πs. Note that n − s − 1 must be odd, since non-singular
symplectic polar spaces only exist in a projective space with odd dimension. �e singular points
of a singular symplectic polar space are the points contained in the vertex of the cone. For more
information, we refer to [73, 74].

We continue with some important counting results and remarks on some speci�c �nite classical
polar spaces.

Lemma 1.5.3 ([23, Lemma 9.4.1]). �e number of k-spaces in a �nite classical polar space F of
rank d and with parameter e, embedded in a projective space over the �eld Fq , is given by

[
d

k + 1

] k+1∏
i=1

(qd+e−i + 1).

Hence, the number of points inF is
[
d
1

]
(qd+e−1 +1). �e number of generators inF is

∏d
i=1(qd+e−i+

1).

Example 1.5.4. �e non-singular parabolic quadricQ(2, q) is a set of q+1 points in a plane PG(2, q),
such that no three points are collinear. �is parabolic quadric is also called a conic.

Remark 1.5.5. For q even, there exists a special point N , not belonging to the parabolic quadric
Q(2k, q), k ≥ 1, such that every line through N in PG(2k, q) meets the quadric in a unique point.
Hence, every such line is a tangent line to the quadric. �is point N is called the nucleus of the
quadric.
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Example 1.5.6. Consider a hyperbolic quadric Q = Q+(2n + 1, q). �e set of generators Ω of Q
can be partitioned into two equivalence classes Ω1 and Ω2. �e corresponding equivalence relation ∼
is de�ned as follows: π1 ∼ π2 ⇔ dim(π1 ∩ π2) ≡ n (mod 2), for any two generators π1 and π2 in
Q+(2n + 1, q). �e two equivalence classes Ω1 and Ω2 are called the Latin and Greek generators. In
Section 1.6, we will see that for n = 1, the equivalence classes in Q+(3, q) are two opposite reguli.

Remark 1.5.7 ([74]). �e polar spaces Q(2d, q) and W (2d − 1, q) are isomorphic for q even. We
�nd W (2d − 1, q), for q even, by a projection of Q(2d, q) from the nucleus N of Q(2d, q) to a
hyperplane not through N in the ambient projective space PG(2d, q). In this way, there is a one-
to-one connection between the generators of W (2d− 1, q) and the generators of Q(2d, q).

We �nish this section with the Klein correspondence, which is a map from the lines of PG(3, q) to
the points of the hyperbolic quadric Q+(5, q).

De�nition 1.5.8. Let l be a line in PG(3, q), and let Y (y0, y1, y2, y3) and Z(z0, z1, z2, z3) be two
di�erent points of l. �e ordered set (p01, p02, p03, p23, p31, p12), with

pij = yizj − yjzi,

is called the set of Plücker coordinates of l. �e Klein correspondence maps a line l to the point Pl in
PG(5, q), such that the set of coordinates of Pl is (p01, p02, p03, p23, p31, p12).

Note that all points Pl in PG(5, q), with l a line in PG(3, q), are contained in the hyperbolic quadric
Q+(5, q), de�ned by the equation x0x3 + x1x4 + x2x5 = 0. We also denote this quadric by the
Klein quadric. �is correspondence has the advantage that constructions in PG(3, q) can lead to
good constructions of subspaces in PG(5, q). In Section 10.5, we use this correspondence to give a
new, non-trivial Cameron-Liebler example in Q+(5, q).

In Table 1.2, we give an overview of the most important correspondences.

PG(3, q) Q+(5, q)

Line Point
Two intersecting lines Two points, contained in a common line
�e set of lines through a �xed point P and
in a �xed plane π with P ∈ π

Line

�e set of lines in a �xed plane Greek plane
�e set of lines through a �xed point Latin plane
Lines in a regulus Points of a conic, not contained in a Latin or

Greek plane
Lines of a hyperbolic quadric Points of two conics, contained in two planes

that are each others image under the polarity
of Q+(5, q).

Table 1.2: �e image of sets of subspaces under the Klein correspondence.

1.6 Arcs, reguli, spreads and pencils

A line meeting a point setA in 0, 1 or 2 points, is called an external line, a tangent line or a bisecant
to A, respectively. In general, a line, meeting A in i points, is called an i-secant.
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De�nition 1.6.1. A set S of k-spaces in PG(n, q), AG(n, q) or in a polar space P , that pairwise
have no point in common, is called a partial k-spread in PG(n, q), AG(n, q) or P respectively. If S
cannot be extended to a larger partial k-spread, then S is called maximal. A partial k-spread S such
that every point of PG(n, q), AG(n, q) or P is contained in an element of S , is called a k-spread.
�e elements of a (d−1)-spread in a polar space P of rank d are generators of P . A (d−1)-spread
is also called a spread in P . For k = 1, a (partial) k-spread is called a (partial) line spread.

It is known that not every projective space PG(n, q) contains a k-spread.

�eorem 1.6.2 ([109]). �ere exists a k-spread in PG(n, q) if and only if k+ 1 is a divisor of n+ 1.

Since PG(n, q) contains qn+1−1
q−1 points, and a k-space contains qk+1−1

q−1 points, it follows that a k-
spread only can exist if k+1 is a divisor of n+1. It is also a su�cient condition, which follows from
the construction of a Desarguesian spread, see for example [73, �eorem 4.1]. For this construction,
�eld reduction is used to determine the spread elements. Let r = n+1

k+1 . �e points of PG(r−1, qk+1)

correspond to 1-dimensional subspaces of V (r, qk+1). By considering this vector space over Fq , we
obtain a vector space isomorphic to V (r(k + 1), q) = V (n + 1, q), such that the 1-dimensional
subspaces of V (r, qk+1) correspond to (k + 1)-dimensional subspaces of V (n + 1, q). �is is the
concept of �eld reduction. In this way, the point set of PG(r − 1, qk+1) corresponds to a set D
of k-dimensional subspaces of PG(n, q), which partitions the point set of PG(n, q). Hence, these
subspaces form a k-spread in PG(n, q). More speci�cally, this setD is called a Desarguesian spread,
and we have a one-to-one correspondence between the points of PG(r−1, qk+1) and the elements
of D.

We will also introduce regular spreads. For this, we �rst give the de�nition of a regulus.

De�nition 1.6.3. A regulus in PG(2k + 1, q) is a set S of q + 1 pairwise disjoint k-spaces, such
that every line that meets three elements of S , meets all elements of S .

It is known that every three pairwise disjoint k-spaces S1, S2, S3 in PG(2k + 1, q) are contained
in a unique regulus, see [72, Lemma 15.1.1, �eorem 15.3.12]. For k = 1, a regulus consists of q+ 1
lines in PG(3, q). For every three lines l1, l2, l3 in a regulus R, the q + 1 lines, meeting l1, l2 and
l3, also form a regulus, which we call the opposite regulus. A regulus and its opposite regulus in
PG(3, q) form a hyperbolic quadric Q+(3, q), see Section 1.5.

De�nition 1.6.4. A k-spread S in PG(2k + 1, q) is regular if for every three elements S1, S2, S3

in S , it holds that all k-spaces of the regulus, determined by these subspaces, are also contained in
S .

For q = 2, every k-spread in PG(2k + 1, 2) is regular. For q > 2, a spread S is regular if and only
if S is Desarguesian [25].

De�nition 1.6.5. A k-spread S in PG(r(k + 1)− 1, q) is normal if the subspace spanned by any
two spread elements is partitioned by elements of S .

For r ≤ 2, every k-spread in PG(r(k + 1) − 1, q) is normal. For r > 2, it can be proven that S is
normal, if and only if S is Desarguesian, see [4].

De�nition 1.6.6. A k-arc in PG(n, q) is a set of k points such that every subset of n + 1 points
spans the whole space PG(n, q). A k-arc is called complete if it is not contained in a (k + 1)-arc.

It is known that an arc in PG(2, q) has at most q+1 elements for q odd, and at most q+2 elements
for q even, see [101]. A (q + 1)-arc in PG(2, q) is called an oval and a (q + 2)-arc a hyperoval. A
hyperoval can only exist for q even. In this case, a hyperoval is a complete arc. For q odd, an oval is
a complete arc. It can be proven that, for q even, every oval is contained in a hyperoval, and hence,
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is not complete [18]. For q even, the q + 1 tangent lines to an oval are concurrent, see [18]. �e
intersection point of the tangent lines is called the nucleus of the oval. In this case, for q even, the
union of an oval and its nucleus is a hyperoval.

It is clear that a non-singular parabolic quadric in PG(2, q), so a conic Q(2, q), is an oval, see
Example 1.5.4. Moreover, Segre [106] could prove the converse for q odd.

�eorem 1.6.7 ([106]). Every oval in PG(2, q), q odd, is a conic.

For PG(2, q), q even, this result is not true. A counterexample for this can be found by considering
a hyperoval which is a conic together with its nucleus. If we delete a point, di�erent from the
nucleus, then we �nd an oval. �is set is not a conic if q ≥ 8.

In an unpublished manuscript from Pen�ila, a characterisation for ovals in PG(2, q2), q even, is
given.

Result 1.6.8 ([98]). Let O be an oval of PG(2, q2), q even. �en O is a conic if and only if every
triple of distinct points of O, together with the nucleus of O, lies in a Baer subplane that meets O in
q + 1 points.

A setS of points in PG(2, q) is called a translation set, with respect to a line `, if the group of elations
with axis `, �xing S , acts transitively on the points of S \ `. �e line ` is called the translation line.
If a hyperoval H in PG(2, q) is a translation set, then it is called a translation hyperoval. To avoid
the trivial and special cases, we suppose that q = 2h, h > 2. It is known that the translation line
must be a bisecant ofH , and that every translation hyperoval in PG(2, q) is PGL-equivalent to the
point set Hi = {(1, t, t2i)|t ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)}, for a certain i < h

2 and gcd(i, h) = 1 (see
e.g. [73, �eorem 8.5.4], [97]). For i = 1, the hyperoval Hi corresponds to a conic and its nucleus.
All hyperovals, equivalent with H1, are called regular. In this case, every bisecant of H1, through
the nucleus of the conic, is a translation line for the hyperoval, and so the translation line is not
unique.

�e hyperovals Hi, with 1 < i < h
2 , were the �rst examples of irregular hyperovals, and were

determined by Segre in [107]. �e translation line of these hyperovals is unique: ` : X = 0. In this
case, the group G of elations with axis the line `, that �xes Hi, is the translation group containing
all elements of the form

Ma =

 1 0 0
a 1 0

a2i 0 1

 ,
with a ∈ Fq . From this representation of the group, it is clear that G ∼= (Fq,+).

Ovoids can be de�ned in several incidence geometries, but in this thesis, we only use them in the
context of polar spaces.

De�nition 1.6.9. A partial ovoid in a polar space P is a set of points in P such that each generator
contains at most one point of this set. It is called an ovoid if each generator contains precisely one
point of the set.

To end this section, we also give the de�nition of a pencil and a sun�ower in PG(n, q), in AG(n, q)
and in a polar space P .

De�nition 1.6.10. �e set of all k-spaces through a �xed t-space τ , k ≥ t, is called a t-pencil of
k-spaces with vertex τ , and, in particular, a point-pencil if t = 0 and a line-pencil if t = 1.
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Note that for all k-spaces U, V in a t-pencil with vertex τ , it holds that τ ⊆ U ∩ V . In this thesis,
we will always use the notation vertex, except in Chapter 6. In this chapter, graphs are involved,
and to avoid confusion, we will denote the vertex of a point-pencil by the base point.

We use the notation Star(P ) for all lines through the point P , Lines(π) for all lines in the subspace
π, and Pencil(P, π) for all lines through the point P contained in the subspace π.

De�nition 1.6.11. A sun�ower S , with vertex τ , is a set of subspaces through τ , such that for
every two distinct subspaces U, V ∈ S it holds that U ∩ V = τ .

1.7 Graph theory

1.7.1 General graph theory

In this thesis, we will use graphs to model some incidence geometries.

De�nition 1.7.1. A graph Γ = (V (Γ), E(Γ)) consists of a set V (Γ) of vertices and a set E(Γ)
of unordered pairs of V (Γ), which are called edges. If we only use one graph Γ, then we use the
notation V and E, instead of V (Γ) and E(Γ). A vertex v and an edge e are incident if the vertex
v is contained in the edge e. Two vertices v and w are adjacent if there is an edge containing both
vertices. We denote this by v ∼ w. �e vertices adjacent to a �xed vertex v are called the neighbours
of v. Two edges are adjacent if they have a vertex in common.

De�nition 1.7.2. A path of length l, from a vertex v0 to a vertex vl in a graph Γ is a sequence
of (distinct) vertices (v0, v1, v2, . . . , vl−1, vl), such that the vertices vi−1 and vi are adjacent for all
i, 1 ≤ i ≤ l. �e distance d(x, y) between two vertices x and y is the minimal length of a path
(v0, . . . , vl) with v0 = x, vl = y. For a given vertex v ∈ V , the set of vertices in Γ at distance i
from v is denoted by Γi(v). A graph Γ is connected if there exists a path between every two vertices
of Γ. �e maximal distance that occurs between two vertices of a connected graph Γ is called the
diameter of the graph.

In this thesis, we suppose that every pair of vertices can be contained in at most one edge and
that every edge contains two di�erent vertices. We also suppose that every two vertices can be
connected by a path. In other words, we will only consider connected, simple graphs.

De�nition 1.7.3. �e degree of a vertex v in a graph Γ = (V,E) is the number of vertices in V
adjacent with v, or equivalently the number of edges in E that are incident with v. �e graph Γ is
k-regular , or regular of degree k ∈ N if every edge of E has degree k.

Let d be the diameter of Γ. If there exist integers c1, . . . , cd, a0, . . . , ad, b0, . . . , bd−1, such that for
all vertices v and w in V , we have that

• ai = |Γi(v) ∩ Γ1(w)| if i = d(v, w),

• bi = |Γi+1(v) ∩ Γ1(w)| if i = d(v, w) < d,

• ci = |Γi−1(v) ∩ Γ1(w)| if i = d(v, w) > 0,

then Γ is a distance-regular graph with intersection array {c1, . . . , cd; a0, . . . , ad; b0, . . . , bd−1}.

Note that all distance-regular graphs are regular.

De�nition 1.7.4. A graph Γ is strongly regular if Γ is k-regular and if there exist integers λ and
µ > 0 such that
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• every two adjacent vertices have λ common neighbours,

• every two non-adjacent vertices have µ common neighbours.

1.7.2 Algebraic graph theory

We continue with introducing some aspects in algebraic graph theory. �ese topics will be useful
in the context of Cameron-Liebler sets.

Let Γ = (V,E) be a graph, and let V = {v1, v2, . . . , vn}, n ≥ 1.

De�nition 1.7.5. �e adjacency matrix of Γ is the matrix A = (aij)1≤i,j≤n, with aij = 1 if the
vertices vi and vj are adjacent and aij = 0 if the vertices vi and vj are non-adjacent. �e elements
aii are zero for all i.

Note that the adjacency matrix of a graph depends on the order of the vertices.

De�nition 1.7.6. �e characteristic polynomial of a graph Γ is the characteristic polynomial of its
adjacency matrix A, i.e. the polynomial p(λ) = det(λIn − A). Likewise, the eigenvalues of Γ are
the eigenvalues of its adjacency matrix, i.e. the (complex) roots of the characteristic polynomial of
the graph Γ. If Γ is k-regular, then Aj = kj, and so, we have that k is an eigenvalue of Γ. �is
eigenvalue is o�en called the trivial eigenvalue. �e multiplicity of an eigenvalue is the algebraic
multiplicity as a root of the characteristic polynomial. As A is a real symmetric matrix, we know
that all eigenvalues of A, and so of Γ, are real.

We end with the de�nition of intriguing and tight sets, which have a strong link with Cameron-
Liebler sets.

De�nition 1.7.7. Let Γ = (V,E) be a connected k-regular graph. A set Y of vertices of Γ is an
intriguing set if there are integers y and y′ such that every vertex of Y is adjacent to y′ vertices of
Y and every vertex of V \ Y is adjacent to y vertices of Y .

Note that ∅ and V are examples of intriguing sets in Γ = (V,E). An intriguing set, di�erent from
∅ and V , is called non-trivial.

Lemma 1.7.8. Let Γ = (V,E) be a connected k-regular graph. A set Y of vertices, with Y 6= ∅, V , is
intriguing if and only if its characteristic vector lies in the span of the all-one vector and an eigenvector
vθ of Γ such that y′ − y = θ.

If θ is the largest or smallest non-trivial eigenvalue of Γ, then Y is called a tight set of type 1 or 2
respectively.

1.7.3 Graph colorings

Many problems in �nite geometry can be translated to �nding speci�c families or partitions of
vertices in a certain graph. To see this, we start with the de�nition of a clique and coclique.

De�nition 1.7.9. Let Γ = (V,E) be a graph.

• A set S of vertices in V is called a clique if every two vertices in S are adjacent.

• A set S of vertices in V is an independent set if no two vertices in S are adjacent. An inde-
pendent set is also called a coclique.
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A clique or coclique is maximal if it is not contained in a larger clique or coclique, respectively. �e
size of the largest clique or coclique in a graph Γ is called the clique number ω(Γ) and independence
number α(Γ) respectively.

We end this section on graphs with the de�nition of a coloring.

De�nition 1.7.10. A coloring of a graph Γ is an assignment of colors to the vertices of Γ, such that
every vertex has one color and such that adjacent vertices get di�erent colors. �e sets of vertices
with the same color are called the color classes.

�e chromatic number χ(Γ) of a graph Γ is the smallest number c such that there exists a coloring
of Γ with c colors.

1.8 Tactical decompositions

�e �rst exploration of Cameron-Liebler sets, by Cameron and Liebler [28], uses the theory of
tactical decompositions. Tactical decompositions were �rst introduced by Dembowski [42]. �is
section is based on the notes in [38].

De�nition 1.8.1. Let (P,B, I) be an incidence geometry with P a set of points and B a set of
blocks. Let {P1, P2, . . . , Ps}, Pi 6= ∅, be a partition of P , and let {B1, B2, . . . , Br}, Bi 6= ∅, be a
partition of B.

• If there exists an (s × r)−matrix X with |{p ∈ Pi| p I b}| = Xij , ∀b ∈ Bj , then the
decomposition is called block-tactical.

• If there exists an (s × r)−matrix Y with |{b ∈ Bi| p I b}| = Yij , ∀p ∈ Pj , then the decom-
position is called point-tactical.

�e decomposition is called tactical if it is both block- and point-tactical.

Lemma 1.8.2. Let (P,B, I) be an incidence geometry with P a set of points, B a set of blocks
and A the point-block incidence matrix. Let {P1, P2, . . . , Ps}, Pi 6= ∅, be a partition of P , and let
{B1, B2, . . . , Br}, Bi 6= ∅, be a partition of B.

• If the partition is block-tactical with corresponding matrix X , then

ATχPi =
r∑
l=1

XilχBl , ∀i ∈ {1, . . . , s}.

• If the partition is point-tactical with corresponding matrix Y , then

AχBi =

s∑
l=1

YljχPl ,∀i ∈ {1, . . . , r}.

�e action of (a subgroup of) the automorphism group of an incidence geometry gives rise to a
tactical decomposition of the point- and block-set.

Lemma 1.8.3. Let (P,B, I) be an incidence geometry, withP the set of points and B the set of blocks.
Consider a subgroup G of the automorphism group of (P,B, I), with orbits {P1, P2, . . . , Ps} on the
points and orbits {B1, B2, . . . , Br} on the blocks. �en these partitions form a tactical decomposition.
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1.9 Association schemes

In this section, we give a short introduction on association schemes. We rely on [23, Chapter 2].
For more details, we refer to [22, Section 2], [23, Chapter 2] and [20].

De�nition 1.9.1 ([22, Section 2.1]). Let X be a �nite set of size n, whose members are known
as vertices. A d-class association scheme is a pair (X,R), where R = {R0,R1, . . . ,Rd} is a set of
binary symmetric relations with the following properties:

1. {R0,R1, . . . ,Rd} is a partition of X ×X ,

2. R0 is the identity relation,

3. there are constants plij such that for all (x, y) ∈ Rl, there are exactly plij elements z ∈ X
such that (x, z) ∈ Ri and (z, y) ∈ Rj . �ese constants are called the intersection numbers of
the association scheme.

Note that the association schemes de�ned above are sometimes also called symmetrical association
schemes. Since the relationsRi are symmetric, we have that plij = plji, ∀ 0 ≤ i, j, l ≤ d.

We now investigate the (binary) adjacency matrices Ai corresponding to the relationsRi.

(Ai)xy =

{
1 if (x, y) ∈ Ri,
0 else.

Property 1.9.2. For all values 0 ≤ i, j ≤ d, it holds that:

1.
∑d

i=0Ai = J ,

2. A0 = I ,

3. Ai = ATi ,

4. AiAj =
∑d

k=0 p
k
ijAk = AjAi.

From the �rst property, it follows that the matrices Ai are linearly independent, and from the third
and fourth property we �nd that these matrices generate a (d+1)-dimensional commutative algebra
A of symmetric matrices, which is called the Bose-Mesner algebra.

Since the matrices Ai commute, they can be diagonalized simultaneously. �is gives the following
result, which was originally proven in [41].

Result 1.9.3. Consider a d-class association scheme (X,R), with adjacency matrices Ai correspond-
ing to the relations Ri, 0 ≤ i ≤ d, and with |X| = n. �en, there is an orthogonal decomposition of
Rn as a direct sum of d + 1 orthogonal eigenspaces of the matrices Ai, corresponding to the common
eigenvectors. Hence, we have that Rn = V0 ⊥ V1 ⊥ · · · ⊥ Vd, with V0, . . . , Vd the common spaces
of eigenvectors with associated eigenvalues Pji, with Pji the eigenvalue of Ai on Vj . Note that one
of the spaces of eigenvectors, w.l.o.g. V0, will be 1-dimensional since J ∈ A has eigenvalue n with
multiplicity 1.

Let (∆k,R) be an association scheme linked to a geometrical structure, such as a projective space,
an a�ne space or a �nite classical polar space. �e elements ∆k of the association scheme corre-
spond to the k-spaces in the geometrical structure. For these schemes, a classical ordering of the
eigenspaces V0, . . . , Vd is imposed; V0 is the 1-dimensional eigenspace 〈j〉 and V1 is the eigenspace
such that im(AT ) = V0 ⊥ V1, with A the point-k-space incidence matrix.
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We end this subsection with two well-known association schemes. For more information on these,
we refer to [41], [23, Section 9.1 and 9.3] and [67, Section 6 and 9].

Example 1.9.4 (�e Johnson scheme). Let X be a �nite set of size n, and let Fk, k < n, be the set
of all subsets of size k. �e Johnson graph J(n, k) is the graph whose vertices are the elements of Fk,
and two vertices are adjacent if they have k−1 elements in common. �e relations of the corresponding

association scheme areRi =

{
(Π1,Π2) ∈ Fk ×Fk

∣∣∣∣|Π1 ∩Π2| = k − i
}

, with i ∈ {0, . . . , k}.

Example 1.9.5 (�e Grassmann scheme). Consider the n-dimensional projective space PG(n, q)
over the �eld Fq , and let ∆k, k < n, be the set of all k-dimensional subspaces. �e Grassmann graph
Jq(n + 1, k + 1) is the graph whose vertices are the elements of ∆k, and two vertices are adjacent if
the corresponding subspaces intersect in a (k−1)-space. �e relations of the corresponding association
scheme areRi = {(π1, π2) ∈ ∆k×∆k|dim(π1∩π2) = k− i}, with i ∈ {0, . . . , k+1}. �is scheme
is also called the q-analogue of the Johnson scheme.

�ere are many other mathematical structures that can be linked to an association scheme, for
example polar spaces, a�ne spaces and groups, see [114, Introduction]. In Chapter 10, we will
o�en use the association schemes on the generators of �nite classical polar spaces.

1.10 Useful countings and bounds

In this thesis, we will frequently use counting arguments to �nd classi�cation results. For this, we
will o�en use the following lemma.

Lemma 1.10.1 ([108, Section 170]). �e number of j-spaces disjoint from a �xed m-space in
PG(n, q) equals q(m+1)(j+1)

[
n−m
j+1

]
.

Furthermore, we will use bounds on the Gaussian binomial coe�cients found in [77, Lemma 2.1]
and [78, Lemma 34, Lemma 37].

Lemma 1.10.2. Let n ≥ k ≥ 0.

1. Let q ≥ 3. �en
[
n
k

]
≤ 2qk(n−k).

2. Let q ≥ 4. �en
[
n
k

]
≤
(

1 + 2
q

)
qk(n−k).

3. Let q ≥ 2 and n ≥ 1. �en θn ≤ qn+1

q−1 .

4. Let n > k > 0. �en
[
n
k

]
≥
(

1 + 1
q

)
qk(n−k).

We end with another result on the Gaussian binomial coe�cients. First, we formulate the (double)
q-analogue of Pascal’s rule:

Result 1.10.3 (Pascal’s Rule).

qb
[
a− 1

b

]
+

[
a− 1

b− 1

]
=

[
a

b

]
=

[
a− 1

b

]
+ qa−b

[
a− 1

b− 1

]
. (1.3)

Lemma 1.10.4. For integers a, b, c, with 0 ≤ b, c ≤ a, we have that[
a

b

]
=

c∑
i=0

[
a− c
b− i

][
c

i

]
q(b−i)(c−i). (1.4)

25



1 Preliminaries

Proof. We use induction on c. For c = 0, the statement is trivial, so suppose that (1.4) is true for a
value c − 1. �en we will prove that it is also true for the value c. We �rst use the le� equality of
(1.3). In the second last step, we use the right equality of (1.3).[

a

b

]
=

c−1∑
i=0

[
a− c+ 1

b− i

][
c− 1

i

]
q(b−i)(c−1−i)

=

c−1∑
i=0

([
a− c
b− i

]
qb−i +

[
a− c

b− i− 1

])[
c− 1

i

]
q(b−i)(c−1−i)

=

c−1∑
i=0

[
a− c
b− i

][
c− 1

i

]
q(b−i)(c−i) +

c−1∑
i=0

[
a− c

b− i− 1

][
c− 1

i

]
q(b−i)(c−1−i)

=
c−1∑
i=0

[
a− c
b− i

][
c− 1

i

]
q(b−i)(c−i) +

c∑
j=1

[
a− c
b− j

][
c− 1

j − 1

]
q(b−j+1)(c−j)

=

[
a− c
b

]
qbc +

c−1∑
k=1

[
a− c
b− k

]
q(b−k)(c−k)

([
c− 1

k

]
+

[
c− 1

k − 1

]
q(c−k)

)
+

[
a− c
b− c

]

=

[
a− c
b

]
qbc +

c−1∑
k=1

[
a− c
b− k

][
c

k

]
q(b−k)(c−k) +

[
a− c
b− c

]

=

c∑
k=0

[
a− c
b− k

][
c

k

]
q(b−k)(c−k). �
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Intersection problems for subspaces in
projective and a�ne spaces
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2 Introduction

“ Life without geometry is pointless. ”—Unknown

One of the classical problems in extremal set theory is to determine the size of the largest sets of
pairwise non-trivially intersecting subsets. �is problem was solved in 1961 by Erdős, Ko and Rado
[55], and their result was improved by Wilson in 1984.

�eorem 2.0.1 ([113]). Let n, k and t be positive integers and suppose that k ≥ t ≥ 1 and n ≥
(t+ 1)(k− t+ 1). If S is a family of subsets of size k in a set Ω with |Ω| = n, such that the elements
of S pairwise intersect in at least t elements, then |S| ≤

(
n−t
k−t
)
.

Moreover, if n ≥ (t + 1)(k − t + 1) + 1, then |S| =
(
n−t
k−t
)

holds if and only if S is the set of all the
subsets of size k through a �xed subset of Ω of size t.

Note that if t = 1, then S is a collection of subsets of size k of an arbitrary set, which are pairwise
not disjoint. In the literature, a family of subsets that are pairwise not disjoint, is called an Erdős-
Ko-Rado set, in short EKR set and the classi�cation of the largest Erdős-Ko-Rado sets is called the
Erdős-Ko-Rado problem. Furthermore, as new families of any size can be found by deleting elements,
the research is focused on maximal families: these are families of pairwise intersecting subsets, not
extendable to a larger family with the same property.

Hilton and Milner [71] described the largest Erdős-Ko-Rado sets S with the property that there is
no element contained in all elements of S .

�eorem 2.0.2 ([71]). Let Ω be a set of size n and let S be an Erdős-Ko-Rado set of k-subsets in Ω,
k ≥ 3 and n ≥ 2k + 1. If there is no element in Ω which is contained in all subsets in S , then

|S| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Moreover, equality holds if and only if

• S is the union of {F}, for some �xed k-subset F, and the set of all k-subsets G of Ω containing
a �xed element x /∈ F , such that G ∩ F 6= ∅, or

• k = 3 and S is the set of all subsets of size 3 having an intersection of size at least 2 with a �xed
subset F of size 3.

�e classi�cation of the second largest maximal EKR set is o�en called a Hilton-Milner result.

�is set-theoretical problem can be generalized in a natural way to many other structures such
as designs [102], permutation groups [66], a�ne spaces and projective geometries [37]. In this
thesis, we work in the projective and a�ne se�ing, where this problem is known as the q-analogue
of the Erdős-Ko-Rado problem. Frankl and Wilson classi�ed the largest set of k-spaces, pairwise
intersecting in at least a t-space in PG(n, q).

�eorem 2.0.3 ([60]). Let t and k be integers, with 0 ≤ t ≤ k. Let S be a set of k-spaces in PG(n, q),
pairwise intersecting in at least a t-space.

29



2 Introduction

(i) If n ≥ 2k + 1, then |S| ≤
[
n−t
k−t
]
. Equality holds if and only if S is the set of all the k-spaces,

containing a �xed t-space of PG(n, q), or n = 2k + 1 and S is the set of all the k-spaces in a
�xed (2k − t)-space.

(ii) If 2k − t ≤ n ≤ 2k, then |S| ≤
[
2k−t+1
k−t

]
. Equality holds if and only if S is the set of all the

k-spaces in a �xed (2k − t)-space.

Corollary 2.0.4. Let S be an Erdős-Ko-Rado set of k-spaces in PG(n, q), so t = 0. If n ≥ 2k + 1,
then |S| ≤

[
n
k

]
. Equality holds if and only if S is the set of all the k-spaces, containing a �xed point of

PG(n, q), or n = 2k + 1 and S is the set of all the k-spaces in a �xed hyperplane.

Note that in �eorem 2.0.3, the conditionn ≥ 2k−t is not a restriction, since any two k-dimensional
subspaces in PG(n, q), with n ≤ 2k − t, meet in at least a t-dimensional subspace.

Related to this question, we report the q-analogue of the Hilton-Milner result on the second largest
maximal Erdős-Ko-Rado sets of subspaces in a �nite projective space, due to Blokhuis et al.

�eorem 2.0.5 ([12]). Let S be a maximal set of pairwise intersecting k-spaces in PG(n, q), with
n ≥ 2k + 2, k ≥ 2 and q ≥ 3 (or n ≥ 2k + 4, k ≥ 2 and q = 2). If S is not a point-pencil, then

|S| ≤
[
n

k

]
− qk(k+1)

[
n− k − 1

k

]
+ qk+1.

Moreover, if equality holds, then

(i) either S consists of all the k-spaces through a �xed point P, meeting a �xed (k + 1)-space τ ,
with P ∈ τ , in a j-space, j ≥ 1, and all the k-spaces in τ ; or

(ii) k = 2 and S is the set of all the planes meeting a �xed plane π in at least a line.

�e Erdős-Ko-Rado problem for k = 1 has been solved completely. Indeed, in PG(n, q) with n ≥ 3,
a maximal Erdős-Ko-Rado set of lines is either the set of all the lines through a �xed point or the set
of all the lines contained in a �xed plane. It is possible to generalize this result for a maximal family
S of k-spaces, pairwise intersecting in a (k−1)-space, in a projective space PG(n, q), n ≥ k+2.

�eorem 2.0.6 ([23, Section 9.3]). Let S be a set of projective k-spaces, pairwise intersecting in a
(k − 1)-space in PG(n, q), n ≥ k + 2. �en, all the k-spaces of S contain a �xed (k − 1)-space or
they are contained in a �xed (k + 1)-space.

All intersection problems we discuss in this part, can be linked to the Erdős-Ko-Rado problem.

In Chapter 3, we classify the largest examples of k-spaces, pairwise intersecting in at least a (k−2)-
space in PG(n, q). In Chapter 4, we investigate the second largest Erdős-Ko-Rado sets of k-spaces
in both a projective and a�ne context. �is Hilton-Milner result classi�es large sets S of k-spaces
pairwise intersecting in a t-space, such that S is not a t-pencil.

Note that in Chapters 3 and 4, we investigate subspaces pairwise intersecting in at least a subspace of
a certain dimension. However, in Chapter 5, we investigate sets S of k-spaces in PG(n, q) pairwise
intersecting in precisely a point. �e Sun�ower bound states that if the number of elements in such
a set S surpasses the Sun�ower bound, then S must be a sun�ower. We were able to lower this
bound for k ≥ 3 and q ≥ 9.

In Chapter 6, we do not investigate subspaces in PG(n, q), but �ags of subspaces. By de�nition,
two �ags are intersecting if they are not in general position. Hence, an Erdős-Ko-Rado set of �ags,
is a set of �ags that are pairwise not in general position. In this thesis, we investigate how we can
cover all �ags of a speci�c type in PG(n, q), by using as few Erdős-Ko-Rado sets as possible. We
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2 Introduction

discuss this question for line-solid �ags in PG(4, q) and for �ags containing a (d−1)- and a d-space
in PG(2d, q), d ≥ 2.
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3 Subspaces of dimension k, pairwise
intersecting in at least a (k − 2)-space

“ Not everything that counts can be counted, and not everything that can be
counted counts. ”—Albert Einstein

�e results in this chapter are joint work with dr. Giovanni Longobardi, dr. Ago-Erik Riet and prof.
Leo Storme, and will appear in [45].

3.1 Introduction and preliminaries

In this chapter, we investigate large sets of k-spaces, pairwise intersecting in at least a (k−2)-space
in PG(n, q). For k = 2, this corresponds to large sets of planes, pairwise intersecting in at least
a point. �is Erdős-Ko-Rado problem for sets of projective planes is trivial if n ≤ 4. For n = 5,
Blokhuis, Brouwer and Szőnyi classi�ed the six largest examples [13, Section 6].
De Boeck investigated the maximal Erdős-Ko-Rado sets of planes in PG(n, q) with n ≥ 5, see [33].
He characterized those sets with su�ciently large size and showed that they belong to one of the
11 known examples, explicitly described in his work.

In [53], a classi�cation of the largest examples of sets of k-spaces in PG(n, q) pairwise intersecting
in precisely a (k−2)-space is given. In [21], Brouwer and Hemmeter investigated sets of generators,
pairwise intersecting in at least a space with codimension 2, in quadrics and symplectic polar spaces.
In this chapter, we will study the projective analogue of this question. Let f(k, q) = max{3q4 +
6q3 + 5q2 + q + 1, θk+1 + q4 + 2q3 + 3q2} and so

f(k, q) =

{
3q4 + 6q3 + 5q2 + q + 1 if k = 3, q ≥ 2 or k = 4, q = 2

θk+1 + q4 + 2q3 + 3q2 if k = 4, q > 2 or k > 4.

We analyze the sets of k-spaces in PG(n, q) pairwise intersecting in at least a (k − 2)-space and
with more than f(k, q) elements. We will suppose that these sets S of subspaces are maximal, and
during this discussion, we will give bounds on the size of the largest examples.

In [54], and in Chapter 4, families of subspaces pairwise intersecting in at least a t-space were inves-
tigated. More speci�cally, the largest non-trivial examples of a set of k-spaces, pairwise intersecting
in at least a t-space in PG(n, q) were given.

�eorem 3.1.1 ([54] and �eorem 4.4.7). Let F be a set of k-spaces pairwise intersecting in at
least a t-space in PG(n, q), k > t+ 1, t > 0, n > 2k + 3 + t, q ≥ 3, of maximum size, with F not a
t-pencil, then F is one of the following examples:

i) the set of k-spaces, meeting a �xed (t+ 2)-space in at least a (t+ 1)-space,

ii) the set of k-spaces in a �xed (k+ 1)-space ξ together with the set of k-spaces through a t-space
δ ⊂ ξ, that have at least a (t+ 1)-space in common with ξ.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Note that the two examples in the previous theorem correspond to Example 3.1.2(ii) and (iii) for
t = k− 2 respectively (see below). While, in [54] and in Chapter 4, the largest non-trivial example
for all values of t is classi�ed, here, for t = k − 2 we improve on this result by classifying the ten
largest examples, see Main �eorem 3.5.1.

We end this section with some examples of maximal sets S of k-spaces in PG(n, q) pairwise inter-
secting in at least a (k − 2)-space, n ≥ k + 2 and k ≥ 3. We add a proof of maximality for the
examples for which it is not straightforward.

Example 3.1.2. Examples of maximal sets S of k-spaces in PG(n, q) pairwise intersecting in at least
a (k − 2)-space.

(i) (k − 2)-pencil: the set S is the set of all k-spaces that contain a �xed (k − 2)-space. �en
|S| =

[
n−k+2

2

]
.

(ii) Star: there is a k-space ζ such that S contains all k-spaces that have at least a (k − 1)-space in
common with ζ . �en |S| = qθkθn−k−1 + 1.

(iii) Generalized Hilton-Milner example: there is a (k+ 1)-space ν and a (k−2)-space π ⊂ ν such
that S consists of all k-spaces in ν (type 1), together with all k-spaces of PG(n, q), not in ν,
through π that intersect ν in a (k−1)-space (type 2). �en |S| = θk+1 +q2(q2 +q+1)θn−k−2.

(iv) �ere is a (k + 2)-space ρ, a k-space α ⊂ ρ and a (k − 2)-space π ⊂ α so that S contains all
k-spaces in ρ that meet α in a (k − 1)-space not through π (type 1), all k-spaces in ρ through
π (type 2), and all k-spaces in PG(n, q), not in ρ, that contain a (k − 1)-space of α through π
(type 3). �en |S| = (q + 1)θn−k + q3(q + 1)θk−2 + q4 − q.

ρ

α

π

Figure 3.1: Example (iv): the blue, red and green k-spaces correspond to the k-spaces of type 1, 2
and 3, respectively.

Lemma 3.1.3. �e set S from Example 3.1.2 (iv) is maximal.

Proof. Suppose there is a k-spaceE /∈ S , meeting all elements of S in at least a (k−2)-space.
We start with the case π 6⊂ E. If dim(E∩α) ≤ k−2, then there is a (k−1)-space µ through
π in α with dim((E ∩ α) ∩ µ) ≤ k − 3. �ere are elements of type 3 through µ that meet E
in a subspace of dimension at most k − 3, which gives a contradiction. Hence, E contains
a (k − 1)-space σE ⊂ α. Let G be an element of S of type 2 such that 〈G,α〉 = ρ, and so
G ∩ α = π. We have

dim(E ∩ ρ) ≥ dim(〈E ∩G,E ∩ α〉) ≥ dim(E ∩ α) + dim(E ∩G)− dim(E ∩G ∩ α)

≥ (k − 1) + (k − 2)− (k − 3) ≥ k.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

So, E ⊂ ρ, which implies that E ∈ S (type 1), a contradiction. Now, we suppose that π ⊂ E.
LetF1 andF2 be two elements of S of type 1, with 〈F1, F2〉 = ρ and dim(π∩F1∩F2) = k−4.
First we show that their existence is assured. Indeed, let π1 and π2 be two di�erent (k − 3)-
spaces in π and let αi be a (k − 1)-space in α through πi, i = 1, 2. Let P1 be a point in ρ \ α
and let F1 = 〈P1, α1〉. Finally, consider P2 to be a point in ρ \ 〈α, F1〉 and let F2 = 〈P2, α2〉.
Since E 6∈ S and π ⊂ E, we know that E cannot contain a (k − 1)-space of α, and so,
E ∩α = π. Hence, from F1∩F2 ⊂ α, it follows that dim(E ∩F1∩F2) = dim(π∩F1∩F2).
�en

dim(E ∩ ρ) = dim(E ∩ 〈F1, F2〉)
≥ dim(E ∩ F1) + dim(E ∩ F2)− dim(E ∩ F1 ∩ F2)

≥ (k − 2) + (k − 2)− (k − 4) ≥ k.

Hence, E ⊂ ρ which implies that E ∈ S , type 2, again a contradiction. �

(v) �ere is a (k + 2)-space ρ, and a (k − 1)-space α ⊂ ρ such that S contains all k-spaces in ρ
that meet α in at least a (k − 2)-space (type 1), and all k-spaces in PG(n, q), not in ρ, through
α (type 2). Note that all k-spaces in PG(n, q) through α are contained in S .

�en |S| = θn−k + q2(q2 + q + 1)θk−1.

ρ
α

Figure 3.2: Example(v): the blue and red k-spaces correspond to the k-spaces of type 1, 2, respec-
tively.

Lemma 3.1.4. �e set S from Example 3.1.2 (v) is maximal.

Proof. Suppose there is a k-space E /∈ S , meeting all elements of S in at least a (k − 2)-
space. �en E contains a (k − 2)-space σE in α, since E meets all elements of S of type
2. Note that E cannot contain α, since then, E would be a k-space in S . Let σ1 and σ2 be
two distinct (k − 2)-spaces in α with dim(σ1 ∩ σ2 ∩ σE) = k − 4. Consider F1 and F2, two
elements of S of type 1 through σ1 and σ2, respectively, with dim(F1 ∩ F2) = k − 2. Note
that dim(E ∩ F1 ∩ F2) = k − 4. Indeed,

k − 4 ≤ dim(E ∩ F1 ∩ F2) ≤ k − 2.

(a) If dim(E ∩ F1 ∩ F2) = k − 2, then E ∩ F1 ∩ F2 ∩ α = F1 ∩ F2 ∩ α, a contradiction.

(b) If dim(E ∩ F1 ∩ F2) = k − 3, there exists a point P ∈ F1 ∩ F2 ∩ E not in α and
dim(E ∩ ρ) ≥ k − 1. Since E 6∈ S , then E 6⊂ ρ. �e only possibility is dim(E ∩ ρ) =
k − 1, but then we can �nd a k-space F of type 1 such that E ∩ F is a (k − 3)-space,
again a contradiction.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Hence, dim(E ∩ F1 ∩ F2) = k − 4 and

dim(E ∩ ρ) = dim(E ∩ 〈F1, F2〉)
≥ dim(E ∩ F1) + dim(E ∩ F2)− dim(E ∩ F1 ∩ F2)

≥ (k − 2) + (k − 2)− (k − 4) ≥ k.

So, E ⊂ ρ, which implies that E ∈ S , a contradiction. �

(vi) �ere are two (k + 2)-spaces ρ1, ρ2 intersecting in a (k + 1)-space α = ρ1 ∩ ρ2. �ere are two
(k−1)-spaces πA, πB ⊂ αwith πA∩πB the (k−2)-spaceλ, there is a pointPAB ∈ α\〈πA, πB〉,
and let λA, λB ⊂ λ be two di�erent (k − 3)-spaces. �en S contains

type 1. all k-spaces in α,

type 2. all k-spaces of PG(n, q) through 〈PAB, λ〉, not in ρ1 and not in ρ2.

type 3. all k-spaces in ρ1, not in α, through PAB and a (k − 2)-space in πA through λA,

type 4. all k-spaces in ρ1, not in α, through PAB and a (k − 2)-space in πB through λB ,

type 5. all k-spaces in ρ2, not in α, through PAB and a (k − 2)-space in πA through λB ,

type 6. all k-spaces in ρ2, not in α, through PAB and a (k − 2)-space in πB through λA.

�en |S| = θn−k + q2θk−1 + 4q3.

ρ2ρ1

πA

PAB

πB

α

λA

λB

Figure 3.3: Example(vi): the orange k-space is of type 1, the green one of type 2, the red ones of
type 3 and 6, and the blue ones of type 4 and 5.

Lemma 3.1.5. �e set S from Example 3.1.2 (vi) is maximal.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Proof. Suppose there is a k-spaceE /∈ S , meeting all elements of S in at least a (k−2)-space.
Suppose �rst that PAB /∈ E. As E contains at least a (k− 2)-space of all elements of S , type
1 and 2, E contains a (k − 1)-space β in α such that β contains a (k − 2)-space of 〈PAB, λ〉,
not through PAB . Consider now the elements F and G of S , type 3 and 4 respectively, with
F ∩G ∩ α = 〈PAB, λA ∩ λB〉. If E 6⊂ ρ1, then dim(E ∩ F ∩G) ≤ k − 4 and

k − 1 = dim(E ∩ α) = dim(E ∩ ρ1) = dim(E ∩ 〈F,G〉)
≥ dim(E ∩ F ) + dim(E ∩G)− dim(E ∩ F ∩G)

≥ (k − 2) + (k − 2)− (k − 4) ≥ k,

a contradiction. Hence, E ⊂ ρ1. Analogously, we �nd that E ⊂ ρ2, using two elements of S
of type 5 and 6. And so, E ⊂ ρ1 ∩ ρ2 = α, which implies that E ∈ S , type 1, a contradiction.
So now we may suppose that PAB ∈ E. �en E contains a (k − 1)-space of α that meets λ
in a (k − 3)-space. �is follows since E meets the elements of S of type 1 and 2 in at least a
(k − 2)-space. Note that the dimension of E ∩ πA and E ∩ πB is k − 2 or k − 3 as E ∩ λ is
a (k− 3)-space. Moreover, the la�er spaces do not both have the same dimension. Indeed, if
dim(E ∩πA) = dim(E ∩πB) = k− 2, then E ⊂ α, type 1, a contradiction. Moreover, since
E contains PAB , and since dim(E ∩α) = k− 1, we know that dim(E ∩ 〈πA, πB〉) = k− 2.
If dim(E ∩ πA) = dim(E ∩ πB) = k − 3, then w.l.o.g. we may suppose that E ∩ λ 6= λA.
Consider now an element X of type 3 such that λ * X . �en dim(X ∩ E ∩ α) = k − 3,
and so, E ∩X * α. Hence, E and X also share points in ρ1 \ α and so, E ⊂ ρ1. Similarly,
E ⊂ ρ2 and so E ⊂ ρ1 ∩ ρ2 = α which cannot occur.
By a similar argument, we �nd that the dimension of E ∩ λA and E ∩ λB is k − 3 or k − 4,
both not the same dimension. �en E contains a (k − 2)-space of πA or πB , and E contains
λA or λB . W.l.o.g. we may suppose that E contains λA and a (k− 2)-space of πA, and meets
πB in λA.
LetH be an element of type 1 of S , and letG be an element of type 4 of S through a (k− 2)-
space σ 6= λ in πB with H ∩G = σ. �en, since dim(E ∩G ∩H) = k − 4,

dim(E ∩ ρ1) = dim(E ∩ 〈G,H〉)
≥ dim(E ∩G) + dim(E ∩H)− dim(E ∩G ∩H)

≥ (k − 2) + (k − 2)− (k − 4) ≥ k,

and so E ⊂ ρ1. Hence, E ∈ S , type 3, a contradiction. �

σ1 σ2

l

P1

P2

Figure 3.4: Example(vii): the red, blue and green planes correspond to the k-spaces of type 1, 2 and
3 in PG(n, q)/γ, respectively.

(vii) �ere is a (k − 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ,
the set of planes corresponding to the elements of S is the set of planes of example V III in
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

[33]: let Ψ be an (n − k + 2)-space, disjoint from γ, in PG(n, q). Consider two solids σ1 and
σ2 in Ψ, intersecting in a line l. Take the points P1 and P2 on l. �en S is the set containing
all k-spaces through 〈γ, l〉 (type 1), all k-spaces through 〈γ, P1〉 that contain a line in σ1 and
a line in σ2 (type 2), and all k-spaces through 〈γ, P2〉 in 〈γ, σ1〉 or in 〈γ, σ2〉 (type 3). �en
|S| = θn−k + q4 + 2q3 + 3q2.

In Lemma 3.4.2, we prove that the set S is maximal.

(viii) �ere is a (k− 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ, the
set of planes corresponding to the elements of S is the set of planes of example IX in [33]: let Ψ
be an (n− k+ 2)-space, disjoint from γ, in PG(n, q), and let l be a line and σ a solid skew to l,
both in Ψ. Denote 〈l, σ〉 by ρ. Let P1 and P2 be two points on l and letR1 andR2 be a regulus
and its opposite regulus in σ. �en S is the set containing all k-spaces through 〈γ, l〉 (type 1), all
k-spaces through 〈γ, P1〉 in the (k + 1)-space generated by γ, l and a �xed line ofR1 (type 2),
and all k-spaces through 〈γ, P2〉 in the (k + 1)-space generated by γ, l and a �xed line of R2

(type 3). �en |S| = θn−k + 2q3 + 2q2.

In Lemma 3.4.3, we prove that the set S is maximal.

σ

R2

R1

l
P1

P2

Figure 3.5: Example(viii): the red, green and blue planes correspond to the k-spaces of type 1, 2, 3
in PG(n, q)/γ, respectively.

(ix) �ere is a (k− 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ, the
set of planes corresponding to the elements of S is the set of planes of example V II in [33]: let
Ψ be an (n− k+ 2)-space, disjoint from γ in PG(n, q) and let ρ be a 5-space in Ψ. Consider a
line l and a 3-space σ disjoint from l, both in ρ. Choose three points P1, P2, P3 on l and choose
four non-coplanar points Q1, Q2, Q3, Q4 in σ. Denote l1 = Q1Q2, l̄1 = Q3Q4, l2 = Q1Q3,
l̄2 = Q2Q4, l3 = Q1Q4, and l̄3 = Q2Q3. �en S is the set containing all k-spaces through
〈γ, l〉 (type 0) and all k-spaces through 〈γ, Pi〉 in 〈γ, l, li〉 or in 〈γ, l, l̄i〉, i = 1, 2, 3 (type i).
�en |S| = θn−k + 6q2.

In Lemma 3.4.1, we prove that the set S is maximal.

(x) S is the set of all k-spaces contained in a �xed (k + 2)-space ρ. �en |S| =
[
k+3

2

]
.

From now on, let S be a maximal set of k-spaces pairwise intersecting in at least a (k − 2)-space
in the projective space PG(n, q) with n ≥ k + 2.

We will focus on the sets S such that |S| > f(k, q). In Section 3.2, we investigate the sets S of
k-spaces in PG(n, q) such that there is no point contained in all elements of S and such that S
contains a set of three k-spaces that meet in a (k − 4)-space. In Section 3.3, we assume again
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ρ

Q3

Q4

Q1

Q2

l

P1

P2

P3

Figure 3.6: Example(ix): the red, blue, green and orange planes correspond to the k-spaces of type
0, 1, 2 and 3 respectively.

that there is no point contained in all elements of S and that for any three k-spaces X,Y, Z in S ,
dim(X ∩ Y ∩ Z) ≥ k − 3. In Section 3.4, we investigate the maximal sets S of k-spaces such that
there is at least a point contained in all elements of S . We end this chapter with the Main �eorem
3.5.1 that classi�es all sets of k-spaces pairwise intersecting in at least a (k − 2)-space with size
larger than f(k, q).

3.2 �ere are three elements of S that meet in a (k − 4)-space

Note that for three k-spaces A,B,C in S , it holds that dim(A ∩ B ∩ C) ≥ k − 4. Suppose there
exist three k-spaces A,B,C in S with dim(A ∩ B ∩ C) = k − 4, and suppose that there is no
point contained in all elements of S . If all k-spaces are contained in a (k + 2)-space, then we �nd
Example 3.1.2(x), so we may assume that the elements of S span at least a (k + 3)-space. In this
subsection, we will use the following notation.

Notation 3.2.1. Let S be a maximal set of k-spaces in PG(n, q) pairwise intersecting in at least a
(k − 2)-space. Let A,B and C in S be three k-spaces with πABC = A ∩B ∩ C a (k − 4)-space. Let
πAB = A ∩B, πAC = A ∩ C and πBC = B ∩ C . Let S ′ be the set of k-spaces of S not contained in
〈A,B〉, and let α be the span of all subspaces D′ := D ∩ 〈A,B〉, D ∈ S ′.

B

C

A
πABC

πAB

πAC πBC

Figure 3.7: Notation 3.2.1
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Note, by the Grassmann dimension property, that πAB , πBC and πAC are (k − 2)-spaces and
〈A,B〉 = 〈B,C〉 = 〈A,C〉.

We �rst present a lemma that will be useful for the later classi�cation results in this section.

Lemma 3.2.2. [Using Notation 3.2.1] If there exist three k-spaces A, B and C in S , with dim(A ∩
B ∩ C) = k − 4, then a k-space of S ′ meets 〈A,B〉 in a (k − 1)-space. More speci�cally, it contains
πABC and meets πAB, πAC and πBC , each in a (k − 3)-space through πABC .

Proof. Consider a k-space E of S ′. Clearly,

k − 2 ≤ dim(E ∩ 〈A,B〉) ≤ k − 1.

If dim(E ∩〈A,B〉) = k− 2, then this (k− 2)-space has to lie inA,B and C , and so in the (k− 4)-
space πABC , a contradiction. Hence, we know that dim(E ∩ 〈A,B〉) = k− 1. By the symmetry of
the k-spacesA,B andC , it su�ces to prove thatE contains πABC and meets πAB in a (k−3)-space
through πABC . Using the Grassmann dimension property we �nd that

dim(E ∩ πAB) ≥ dim(E ∩A) + dim(E ∩B)− dim(E ∩ 〈A,B〉)
= (k − 2) + (k − 2)− (k − 1) = k − 3,

and so, dim(E ∩ πAB) is k − 2 or k − 3. If dim(E ∩ πAB) = k − 2, then

dim(E ∩ C) ≤ dim(E ∩ πABC) + dim(E ∩ 〈C, πAB〉)− dim(E ∩ πAB)

≤ (k − 4) + (k − 1)− (k − 2) = k − 3,

a contradiction since any two elements of S meet in at least a (k−2)-space. Hence, dim(E ∩πAB)
is k − 3, and so

dim(E ∩ πABC) ≥ dim(E ∩ C) + dim(E ∩ πAB)− dim(E ∩ 〈C, πAB〉)
≥ (k − 2) + (k − 3)− (k − 1) = k − 4.

�is implies that the (k − 4)-space πABC is contained in E. �

Let D be a k-space of S ′. By Lemma 3.2.2, we know that D ∩ 〈A,B〉 is a (k − 1)-space. For the
remaining part of this chapter, we will denote this (k − 1)-space by D′.

Corollary 3.2.3. [Using Notation 3.2.1] Suppose S contains three elements A,B and C , meeting
in a (k − 4)-space, and α is a (k + i)-space. Up to a suitable labelling of A,B and C , we have the
following results.

a) If i = −1, then α = D ∩ 〈A,B〉 for every D ∈ S ′.

b) If i = 0, then α = 〈ρ1, ρ2, ρ3〉, with ρ1 a (k − 3)-space in πAB , ρ2 a (k − 3)-space in πBC ,
ρ3 = πAC and πABC ⊂ ρj , j = 1, 2, 3. In this case, all elements of S ′ contain the (k−2)-space
〈ρ1, ρ2〉.

c) If i = 1, then α = 〈ρ1, ρ2, ρ3〉, with ρ1 a (k − 3)-space in πAB , ρ2 = πBC , ρ3 = πAC and
πABC ⊂ ρj , j = 1, 2, 3. In this case, all elements of S ′ contain the (k − 3)-space ρ1.

d) If i = 2, then α = 〈A,B〉.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Proof. For i = −1 and i = 2, the corollary follows immediately from Lemma 3.2.2. Hence, we start
with the case that α is a k-space. Consider two elements of S ′, say D1, D2, meeting 〈A,B〉 in two
di�erent (k−1)-spacesD′1, D′2. �ese two elements of S ′ exist, as otherwise dim(α) = k−1. Since
D′1 and D′2 span the k-space α, they meet in a (k − 2)-space. By Lemma 3.2.2, this (k − 2)-space
D′1∩D′2 contains πABC , together with a (k−3)-space ρ1 through πABC in πXY and a (k−3)-space
ρ2 through πABC in πY Z , with {X,Y, Z} = {A,B,C}. By Lemma 3.2.2, every other element of S ′
will meet 〈A,B〉 in a (k − 1)-space through this (k − 2)-space D′1 ∩D′2 = 〈ρ1, ρ2〉, which proves
the statement.

Suppose now that α is a (k + 1)-space. �en, we consider two elements D3, D4 of S ′ meeting
〈A,B〉 in two (k− 1)-spaces D′3, D′4 such that dim(D′3 ∩D′4) = k− 3. �ese elements of S ′ exist
as otherwise all elements of S ′ correspond to (k − 1)-spaces pairwise intersecting in a (k − 2)-
space. But then, since these (k − 1)-spaces span a (k + 1)-space, they form a (k − 2)-pencil (see
�eorem 2.0.6). Using Lemma 3.2.2, and the proof above of the case dim(α) = k or i = 0, it follows
that α would be a k-space. Now, again by Lemma 3.2.2, we see that D′3 ∩D′4 contains πABC and a
(k− 3)-space ρ1 through πABC in πXY , with {X,Y, Z} = {A,B,C}. Using dimension properties
and the fact thatD′3∩D′4 = ρ1, we see that every other element of S ′ will contain ρ1, which proves
the statement. �

We will now use Corollary 3.2.3 to explicitly describe the possibilities, depending on the dimension
of α = 〈D ∩ 〈A,B〉 |D ∈ S ′〉.

3.2.1 α is a (k − 1)-space

Proposition 3.2.4. [Using Notation 3.2.1] If S contains three k-spaces that meet in a (k − 4)-space
and dim(α) = k − 1, then S is Example 3.1.2(v).

Proof. From Corollary 3.2.3, we have that for all D ∈ S ′, D ∩ 〈A,B〉 = α, so all the k-spaces in S ′
meet 〈A,B〉 in α. As a k-space of S in 〈A,B〉 needs to have at least a (k − 2)-space in common
with every D ∈ S ′, we �nd that every k-space of S in 〈A,B〉 meets α in at least a (k − 2)-space.
Note that the condition that every two k-spaces of S in 〈A,B〉 meet in at least a (k − 2)-space is
ful�lled. Hence, S is Example 3.1.2(v) with ρ = 〈A,B〉. �

3.2.2 α is a k-space

Proposition 3.2.5. [Using Notation 3.2.1] If S contains three k-spaces that meet in a (k − 4)-space
and dim(α) = k, then S is Example 3.1.2(iv).

Proof. If α is a k-space, we may suppose w.l.o.g., by Corollary 3.2.3, that α = 〈πAB, PAC , PBC〉
with PAC and PBC points in πAC \πABC and πBC \πABC , respectively. We also know that all the
k-spaces D ∈ S ′ have a (k − 1)-space D′ in common with α and they contain the (k − 2)-space
π = 〈πABC , PACPBC〉. So, every pair of k-spaces in S ′ meets in a (k − 2)-space inside 〈A,B〉.
Consider a k-spaceE of S in 〈A,B〉, not having a (k−1)-space in common with α, and letD1 and
D2 be k-spaces of S ′ with D′1 ∩D′2 = π, and so 〈D′1, D′2〉 = α. If E does not contain π, then

dim(E ∩ α) ≥ dim〈E ∩D′1, E ∩D′2〉 ≥ k − 2 + k − 2− dim(E ∩ π) ≥ k − 1.

�is is a contradiction. Hence, every k-space of S \S ′ contains π or has a (k−1)-space in common
with α. From the maximality of S , it follows that S is Example 3.1.2(iv) with ρ = 〈A,B〉 and
π = 〈πABC , PACPBC〉. �

41



3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

3.2.3 α is a (k + 1)-space

To understand the structure of these sets of k-spaces, we will �rst investigate the case k = 3 and
then we will generalize our results to k ≥ 3.

k = 3 and α is a 4-space

Note that for k = 3, the spaces πAB, πBC and πAC are pairwise disjoint lines and πABC is the
empty space. By Corollary 3.2.3, we may suppose w.l.o.g. that α = 〈PAB, πAC , πBC〉, with PAB a
point in πAB \ πABC . Hence, each of the planes D′ = D ∩ 〈A,B〉, D ∈ S ′, contains PAB and the
set of all these planes D′ span the 4-space α.

From now on, let L be the set of lines D ∩ C , D ∈ S ′.

πAC πBC

πAB

A
B

C

PAB

Figure 3.8: �ere are three solids A,B,C in S , with A ∩B ∩ C = ∅ and dim(α) = 4

Proposition 3.2.6. [Using Notation 3.2.1] If S contains three solids such that there is no point
contained in the three of them, and if dim(α) = 4, then a solid of S in 〈A,B〉 either

i) is contained in α, or

ii) contains PAB and a line r of C , intersecting all lines of L.

Proof. Recall that each of the intersection planes D ∩ 〈A,B〉 contains PAB and that the set of all
these planes span the (k + 1)-space α. Hence, we can see that there exist solids D1, D2 ∈ S ′,
such that their intersection planes D′1 and D′2 with α, meet exactly in the point PAB . Indeed, by
�eorem 2.0.6, if all the planes D ∩ 〈A,B〉, D ∈ S ′, would pairwise intersect in a line, then these
planes lie in a �xed solid or contain a �xed line. Neither possibility can occur since α is a 4-space,
and PAB is the only point contained in all intersection planes.

Suppose �rst that E is a solid of S in 〈A,B〉, not containing PAB . As E needs to contain at least a
line of every plane D′ = D ∩ 〈A,B〉, D ∈ S ′, we have that E contains at least a line l1 ⊂ D′1 ⊂ α
and a line l2 ⊂ D′2 ⊂ α. Note that l1 and l2 are disjoint as they do not contain the point PAB .
Hence, E = 〈l1, l2〉 ⊂ α.

So now we may suppose that E contains the point PAB and meets α in precisely the plane γ.
�e plane γ is the span of PAB and the line r = γ ∩ C . As E ∩ D is at least a line of the plane
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

D′ = D ∩ 〈A,B〉 for every D ∈ S ′, and since every two lines in the plane γ meet each other, we
have that r has to intersect all the lines of L. Hence, we �nd the second possibility. �

In the previous proposition, we proved that there are two types of solids of S contained in 〈A,B〉.
One of them are the solids containing PAB and a line r ⊂ C , intersecting all lines of L. �e number
of these solids depends on the number of lines r meeting all lines of L.

We �rst investigate the case that there is a line l ∈ L that intersects all the lines of L. Note that
there cannot be two lines in L intersecting all the lines of L, since then all lines of L would lie in a
plane or go through a �xed point in C . �is gives a contradiction as the lines of L span C and at
least two points of both πAB and πBC are covered by the lines of L.

Proposition 3.2.7. If there is a line l ∈ L that intersects all the lines of L, then S is Example 3.1.2(vi)
for k = 3.

Proof. Let PA = l∩πAC , PB = l∩πBC , πA = 〈πAC , l〉 and πB = 〈πBC , l〉. Since every linem 6= l
of L intersects the lines πAC , πBC and l, it follows that m contains the point PA and is contained
in πB , or m contains the point PB and is contained in πA. Note that since dim(α) = 4, there is at
least one line m1 6= l in L through PA and there is at least one line m2 6= l in L through PB . As a
consequence of Proposition 3.2.6, we have that a solid of S in 〈A,B〉, not contained in α, contains
PAB and it meets C in a line r that meets all lines of L. Hence, r is a line of the plane πA through
PA or in a line of πB through PB . Consider now the set F of solids of S ′, not through 〈PAB, l〉.
We will prove that these solids lie in a 5-space that meets 〈A,B〉 in α. Let EA, EB ∈ F be two
solids through m1 3 PA and m2 3 PB respectively. Since the planes EA ∩ α and EB ∩ α meet in
precisely the point PAB , the solids EA and EB have precisely a line in common, and so, they span
a 5-space ρ2 through α. �en every other solid F ∈ F is contained in ρ2 as it meets EA ∩ α, or
EB ∩ α, precisely in one point, namely PAB , and so it must contain at least a point of EA, or EB
respectively, in ρ2 \ α. �is point, together with the plane F ∩ α, spans F and so F ⊂ ρ2. Hence,
S is Example 3.1.2(vi), with ρ1 = 〈A,B〉, πA = 〈πAC , l〉, πB = 〈πBC , l〉, λA = PA, λB = PB and
λ = l. �

Hence, in this case, we �nd that S has the following size

|S| = θn−3 + q2θ2 + 4q3 = θn−3 + q4 + 5q3 + q2. (3.1)

Suppose now that there is no line in L that intersects all the lines of L. Hence, for every line in L,
there exists another line in L disjoint from the given line. We will prove that

|S| ≤ 2q4 + 3q3 + 4q2 + q + 1. (3.2)

Since this number is smaller than f(3, q) = 3q4 + 6q3 + 5q2 + q + 1, we will not consider these
maximal sets of solids in our classi�cation result for k = 3 (Main �eorem 3.5.1).

For every intersection plane D′ in α, there are at most
[
3
1

]
−
[
2
1

]
= q2 ways to extend the plane to

a solid D ∈ S ′, as this solid also has to meet several solids of S ′ in a point Q /∈ 〈A,B〉. And since
the number of planes D′ equals the number of lines in L, there are at most q2 · |L| solids outside of
〈A,B〉. LetR be the set of lines meeting all lines ofL. For the solids inside 〈A,B〉, there are

[
5
1

]
= θ4

solids in α and |R| · q2 solids of the second type of Proposition 3.2.6, respectively. We �nd this
number by multiplying the number |R| of possibilities for the line r and the number q2 of 3-spaces
through a plane in 〈A,B〉, not contained in α. So, in total, we have that |S| ≤ q2|L|+ θ4 +Rq2 =
θ4 + q2(|L|+ R). For every possible set of lines L, we prove that |S| ≤ 2q4 + 3q3 + 4q2 + q + 1,
or equivalently, that |L|+ |R| ≤ q2 + 2q + 3.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Since every element of L meets both πAC and πBC , we know that |L| ≤ (q + 1)2. If R =
{πAC , πBC}, then we have that |L| + |R| = |L| + 2 ≤ (q + 1)2 + 2. Hence, we may assume
that {πAC , πBC} ( R, and so |R| ≥ 3.

Suppose �rst that L contains three pairwise disjoint lines l1, l2 and l3. �ese three lines are con-
tained in a unique regulus R, and the lines, meeting l1, l2 and l3, are contained in the opposite
regulus R′. Hence, R ⊆ R′, and since R contains at least three pairwise disjoint lines, we know
that L must be contained in the regulus R, opposite to R′. In this way, we �nd that |L| ≤ q + 1
and |R| ≤ q + 1, and so |L|+ |R| ≤ 2q + 2 < q2 + 2q + 3.

For the other case, so if L contains no three pairwise disjoint lines, we may suppose that L contains
at least two disjoint lines l1, l2, since the lines of L span the solid C . In this case, we prove the
following lemma.

Lemma 3.2.8. �e set L is contained in the union of two point-pencils such that their vertices are
contained either in πAC or in πBC .

Proof. Let Pi = πAC ∩ li and Qi = πBC ∩ li, for i = 1, 2. As there are no three pairwise disjoint
lines in L we see that every line l ∈ L contains at least one of the points Pi and Qi, with i = 1, 2,
and so L is contained in the union of 4 point-pencils with vertices P1, P2, Q1, Q2. If |L| ≤ 4, then
it is easy to see that L is contained in the union of two point-pencils. Suppose now that |L| ≥ 5
and that L is not contained in the union of two of these point-pencils. Due to the symmetry, we
may suppose that L \ {l1, l2, P1Q2} contains three lines l3, l4, l5, such that P1 ∈ l3, Q2 ∈ l4 and
P2 ∈ l5. Let Q3 = l3 ∩ πBC and P4 = l4 ∩ πAC . �en l5 contains the point Q3 as otherwise l3, l4
and l5 would be pairwise disjoint. So l5 = P2Q3, but then we see that l1, l4 and l5 are three pairwise
disjoint lines, a contradiction. Hence, L is contained in the union of two point-pencils. �

Hence, |L| ≤ 2q + 2. If |L| = 2, then there are at most (q + 1)2 lines meeting both l1 and l2, and
so |L|+ |R| ≤ 2 + (q + 1)2.

If 3 ≤ |L| ≤ 2q+2 then we may assume that L contains a line l0 6= l1, l2 with P1 ∈ l0. Every line r
of R must meet both lines l0, l1, and so, it contains P1 = l0 ∩ l1 or it is contained in 〈l0, l1〉. Taking
into account that r must meet l2 as well, we �nd that there are q + 1 possibilities for the line r,
containing the point P1 and a point of l2. Furthermore, if r does not contain P1, then r is contained
in the plane 〈l0, l1〉, and meets l2∩〈l0, l1〉. Since l2 * 〈l0, l1〉, we �nd that l2∩〈l0, l1〉 = Q2, and so
there are q possibilities for the line r in 〈l0, l1〉 through the point Q2, not through P1. �is implies
that |L|+ |R| ≤ (2q + 2) + (q + 1 + q) = 4q + 3 ≤ q2 + 2q + 3.

General case k > 3 and α is a (k + 1)-space

By Corollary 3.2.3, we may suppose w.l.o.g., that α is spanned by πAC , πBC and a point PAB of πAB
outside of πABC , and that all (k − 1)-spaces D′ = D ∩ 〈A,B〉, D ∈ S ′, contain 〈PAB, πABC〉.

Proposition 3.2.9. [Using Notation 3.2.1] If S contains three k-spaces that meet in a (k − 4)-space
and dim(α) = k + 1, then a k-space of S in 〈A,B〉 is contained in α or contains πABC . More
speci�cally, if |S| > f(k, q), then S is Example 3.1.2(vi).

Proof. We suppose that E is a k-space of S in 〈A,B〉, not through πABC . As E contains at least a
(k− 2)-space of all the (k− 1)-spaces D′, with D ∈ S ′, we �nd that E contains a hyperplane τ0 of
πABC , a (k− 4)-space τ1 of α∩ πAB , a (k− 3)-space τ2 of πAC and a (k− 3)-space τ3 of πBC . As
τ1 ∩ τ2 = τ1 ∩ τ3 = τ2 ∩ τ3 = τ0, and by the Grassmann dimension property, we see that E ⊂ α.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

For the k-spaces through πABC , we can investigate the solids E/πABC , E ∈ S , in the quotient
space PG(n, q)/πABC , and use the results for k = 3 in the �rst part of Section 3.2.3. �ese results
imply that a k-space in 〈A,B〉 through πABC is contained in α or contains 〈PAB, πABC〉 and a line
in C \ πABC that meets all the (k − 2)-spaces D ∩ C,D ∈ S ′. �en there are two cases:

- Case 1. If there is a line l ∈ C \ πABC meeting the subspaces D ∩ C for all D ∈ S ′, then
we can use (3.1) in the quotient space PG(n, q)/πABC ∼= PG(n− k+ 3, q). Hence, there are
θn−k + q4 + 5q3 + q2 k-spaces of S that contain πABC .

- Case 2. If there is no line l ∈ C \πABC meeting the subspacesD∩C for allD ∈ S ′, then we
use (3.2). Hence, there are at most 2q4 + 3q3 + 4q2 + q+ 1 k-spaces of S that contain πABC .

It is clear that two elements of S in α meet in at least a (k−1)-space. From the investigation of the
quotient space PG(n, q)/πABC , it follows that two elements of S through πABC , not in α, meet in
at least a (k− 2)-space. A k-space E1 of S in α and a k-space E2 of S not in α, but through πABC ,
will also meet in a (k−2)-space. �is follows sinceE2 contains the (k−3)-space 〈PAB, πABC〉 ⊂ α
and a line in C \ πABC ⊂ α. Hence, E2 meets α in a (k − 1)-space. Since E1 is contained in α, it
follows that E1 and E2 meet in at least a (k − 2)-space.

Now, as every element of S , not through πABC , is contained in α, there are θk+1−θ4 elements of S
not through πABC . Hence, in Case 1, S is Example 3.1.2(vi) and |S| = θn−k + θk+1 + 4q3− q− 1.
In Case 2, |S| ≤ θk+1 + q4 + 2q3 + 3q2, which proves the proposition. �

3.2.4 α is a (k + 2)-space

Here again, we �rst consider the case k = 3.

k = 3 and α is a 5-space

We start with a lemma that will o�en be used in this subsection.

Lemma 3.2.10. [Using Notation 3.2.1] If S contains three solids A,B,C , withA∩B ∩C = ∅, then
every two intersection planes D′1 and D′2, with D′i = Di ∩ 〈A,B〉, Di ∈ S ′, i = 1, 2, share a point on
πAB , πAC or πBC .

Proof. Consider two solids D1 and D2 in S ′, with corresponding intersection planes D′1 and D′2
in 〈A,B〉. Since D1 and D2 meet in at least a line, D′1 and D′2 have to meet in at least a point.
If D′1 and D′2 do not meet in a point of πAB , πAC or πBC , then these planes de�ne 6 di�erent
intersection points P1, . . . , P6 on the lines πAB , πAC and πBC . As 〈D′1, D′2〉 = 〈P1, . . . , P6〉 =
〈πAB, πAC , πBC〉, we �nd that D′1 and D′2 span a 5-space, so these planes are disjoint, a contradic-
tion. �

If α is a 5-space, we distinguish two cases, depending on the planes D′ = D ∩ 〈A,B〉, D ∈ S ′.

Lemma 3.2.11. [Using Notation 3.2.1] If S contains three solidsA,B,C , withA∩B∩C = ∅, and if
dim(α) = 5, then we have one of the following possibilities for the planes D′ = D ∩ 〈A,B〉, D ∈ S ′:

i) �ere are four possibilities for the planes D′: 〈P1, P3, P6〉, 〈P1, P4, P5〉, 〈P2, P4, P6〉 and
〈P2, P3, P5〉, where P1P2 = πAB, P3P4 = πBC and P5P6 = πAC . Each of them appears as an
intersection plane D′ for a solid D.
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ii) �ere are three points P ∈ πAB, Q ∈ πBC and R ∈ πAC so that every plane D′ contains at
least two of the three points of {P,Q,R}. For every two di�erent points in {P,Q,R}, there
exists a plane D′ containing these two points, but not the remaining point.

Proof. We prove the Lemma by construction and we start with a plane, we say D′1, intersecting
πAB, πBC and πAC in the points P,Q and R′ respectively.
Case (a): there exists a plane D′2 such that D′1 ∩ D′2 is a point (w.l.o.g. P , see Lemma 3.2.10) and
let D′2 ∩ πBC be Q′ and D′2 ∩ πAC be R. In this case we know that there exists a third plane D′3
intersecting πAB in a point P ′ di�erent from P (as dim(α) = 5). �en D′3 needs to have at least
a point of D′2 and D′1. �is implies that D′3 contains Q and R or Q′ and R′ (w.l.o.g. Q and R) by
Lemma 3.2.10. Now there are two possibilities:

i) �ere exists a plane D′4 = 〈P ′, Q′, R′〉, and then, by construction, we cannot add another
plane D′i. (In the formulation of the lemma P = P1, P

′ = P2, Q = P3, Q
′ = P4, R =

P5, R
′ = P6.)

ii) �ere does not exist a plane D′4 = 〈P ′, Q′, R′〉, then, by construction, we see that all the
planes need to contain at least two of the three points P,Q,R by Lemma 3.2.10.

Case (b): all the planes D′i intersect pairwise in a line. �en all these planes have to lie in a solid
(contradiction since they span a 5-space) or they go through a �xed line l. In the la�er, l cannot be
one of the lines πAB, πAC , πBC and also, l cannot intersect one of these lines, as otherwise all the
planes D′i would contain the intersection point of this line and l (which gives a contradiction since
dim(α) = 5). Consider now the disjoint lines l and πAB . �en all the planes D′i would contain l
and a point of πAB , but this implies that dim(α) = 3 which also gives a contradiction. We conclude
that this case does not occur. �

We start with the case that there are four intersection planes D′.

In this situation, using the notation from Lemma 3.2.11, there are four possibilities for the planes
D′ = D∩〈A,B〉,D ∈ S ′: 〈P1, P3, P6〉, 〈P1, P4, P5〉, 〈P2, P4, P6〉 and 〈P2, P3, P5〉, where P1, P2 ∈
πAB, P3, P4 ∈ πBC and P5, P6 ∈ πAC . We show that the only solids of S in 〈A,B〉 are A,B and
C .

A
B

C

P1

P3
P6 P4

P5

P2

πAC πBC

πAB

Figure 3.9: �ere are three elements A,B,C in S with A ∩B ∩ C = ∅ and dim(α) = 5
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Proposition 3.2.12. [Using Notation 3.2.1] If S contains three solids A,B,C , with A∩B ∩C = ∅,
dim(α) = 5, and so that there are exactly four intersection planes D′, see Lemma 3.2.11(i), then the
only solids of S in 〈A,B〉 are A,B and C .

Proof. LetP1, . . . , P6 be the intersection points ofD∩〈A,B〉,D ∈ S ′, with the linesπAB, πAC , πBC ,
and let E be a solid in 〈A,B〉 di�erent from A,B,C . �e solid E cannot contain all the points
P1, . . . , P6, by its dimension so we may suppose that P1 /∈ E. We will �rst show that E contains
the point P2. As E has a line in common with every plane intersection D′ = D ∩ 〈A,B〉, with
D ∈ S ′,E has at least a point in common with every line of these planesD′. �is implies thatE has
at least a point in common with P1P3, P1P4, P1P5, and P1P6 or equivalently, a line lA in common
with 〈P1, πAC〉 and a line lB in common with 〈P1, πBC〉. Hence, E = 〈lA, lB〉 and soE ⊂ 〈P1, C〉.
If P2 /∈ E then we �nd by symmetry that E ⊂ 〈P2, C〉, and so that E ⊆ 〈P1, C〉 ∩ 〈P2, C〉 and
E = C , a contradiction. �en P2 ∈ E; furthermore E cannot contain P2, . . . , P6, by the dimen-
sion, and so we may suppose that P6 /∈ E. �en, by the previous arguments and symmetry, we
know that P5 lies in E. In A, the solid E needs an extra point P of P1P6 since E shares a line with
〈P1, P3, P6〉. �is gives that E contains the plane γ = 〈P, P2, P5〉 of A. As E also needs to have
at least a point of each line P1P3, P1P4, E needs at least one extra line, disjoint from γ. �is gives
the contradiction, again by the dimension, and so E cannot be di�erent from A,B,C . �

�ere are at most 4 ·
([

3
1

]
−
[
2
1

])
solids in S ′. �e �rst factor of this number follows since every solid

in S ′ meets 〈A,B〉 in one of the four intersection planes. �e second factor follows as each of these
intersection planes is contained in at most

[
3
1

]
−
[
2
1

]
solids of S ′: any two solids, intersecting 〈A,B〉

in di�erent intersection planes, have to intersect in at least a point Q outside of 〈A,B〉. �ere are
only 3 solids, A,B,C , in 〈A,B〉. Hence |S| ≤ 4q2 + 3.

�e second possibility is that every intersection planeD′ contains at least two of the pointsP,Q,R,
and for every two di�erent points in {P,Q,R}, there exists a planeD′ containing these two points,
but not the remaining point. Note that in this situation we have at least the red, green and blue plane
(see Figure 3.10) as intersection planes D′ = D ∩ 〈A,B〉, D ∈ S ′. In the following proposition, we
prove how the solids in 〈A,B〉 lie with respect to the points P,Q,R.

πAC πBC

πAB

A

B

C

R

P

Q
R′

P ′

Q′

Figure 3.10: �ere are three elements A,B,C in S with A ∩B ∩ C = ∅ and dim(α) = 5

Proposition 3.2.13. [Using Notation 3.2.1] Suppose that S contains three solids A,B,C , with A ∩
B ∩ C = ∅, dim(α) = 5, and so that every intersection plane D′ contains at least two of the points
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P,Q,R, such that for every two di�erent points in {P,Q,R}, there exists a plane D′ containing these
two points, but not the remaining point (see Lemma 3.2.11(ii)). �en all the solids of S in 〈A,B〉, also
contain at least two of the points P,Q,R.

Proof. Let E be a solid of S in 〈A,B〉, di�erent from A,B and C . Suppose P /∈ E, then we have to
prove that E contains the points R and Q. We �nd that E ∩A and E ∩B are subspaces that meet
the lines PR, PR′, P ′R and PQ,PQ′, P ′Q, respectively, as E meets every intersection plane D′
in at least a line. Hence, E meets A in a line lAE through R and a point of PR′, or E has a plane
γAE in common with A. By symmetry, E meets B in a line lBE through Q and a point of PQ′, or
E has a plane γBE in common with B.

a) If dim(A ∩ E) = dim(B ∩ E) = 2, then the planes γAE and γBE meet in a point of πAB as
they cannot contain the line πAB since P /∈ E. Hence, E contains two planes meeting in a
point, which gives a contradiction since dim(E) = 3.

b) If dim(A ∩ E) = 2 and dim(B ∩ E) = 1, then γAE ∩ πAB = lBE ∩ πAB . First note that
lBE ∩ πAB is not empty by the dimension of E. Now, if γAE ∩ πAB 6= lBE ∩ πAB , then
πAB ⊂ E, which gives a contradiction as P /∈ E. Since lBE can only meet πAB in the point
P , we �nd a contradiction, again as P /∈ E. Clearly, by symmetry, an analogous argument
holds also if dim(A ∩ E) = 1 and dim(B ∩ E) = 2.

Hence, we know that E contains a line lAE ⊂ A through R and a line lBE ⊂ B through Q, which
proves the proposition. �

�ere are at most
(
3 ·
[
2
1

]
− 2
)([

3
1

]
−
[
2
1

])
solids not in 〈A,B〉. �is follows as two solids D1, D2,

intersecting 〈A,B〉 in the intersection planes D′1 and D′2 meeting in a point, then D1 and D2

have to intersect in at least a point not in 〈A,B〉. And there are at most 3 ·
[
2
1

]
− 2 intersection

planes D′. �ere are at most
[
3
1

]
+ 3q

[
3
1

]
solids in 〈A,B〉, namely all the solids through the plane

〈P,Q,R〉 and all solids through precisely two of the three points P,Q,R in 〈A,B〉. Hence, |S| ≤
6q3 + 5q2 + 4q + 1.

Remark 3.2.14. Note that if S contains three elements A,B,C, with A ∩ B ∩ C = ∅, and if
dim(α) = 5, then the number of elements of S is at most f(3, q) = 3q4 + 6q3 + 5q2 + q + 1, and
so we will not consider these maximal sets of solids in our classi�cation.

General case k > 3 and α is a (k + 2)-space

In this case, we prove that all the k-spaces of S contain πABC . �is implies that we will be able
to investigate this case by considering the quotient space of πABC and use the previous results for
k = 3.

Proposition 3.2.15. [Using Notation 3.2.1] If S contains three k-spacesA,B,C , with dim(A∩B∩
C) = k − 4, and dim(α) = k + 2, then every k-space in S contains πABC .

Proof. By Lemma 3.2.2, we know that all the k-spaces of S outside of 〈A,B〉 contain πABC . It is
also clear that A,B and C contain πABC .
Suppose that there is a k-space E in 〈A,B〉, not through πABC . As E has to meet all the (k − 1)-
spaces D′i in at least a (k − 2)-space, E has to meet πABC in a (k − 5)-space γ and πAB , πBC ,
πAC in three distinct (k − 3)-spaces such that they meet pairwise in γ. �is would imply that
dim(E) = k + 1, which gives a contradiction. �
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3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

Clearly, the previous proposition implies that in order to have an estimate of the number of k-
spaces in and outside of 〈A,B〉, we can use the results for k = 3 in the �rst part of Section
3.2.4: |S| ≤ 4 ·

([
3
1

]
−
[
2
1

])
+ 3 or |S| ≤

(
3 ·
[
2
1

]
− 2
)([

3
1

]
−
[
2
1

])
+
[
3
1

](
3q2 + 1

)
. In both cases,

|S| < θk+1 + q4 + 2q3 + 3q2 = f(k, q).

To conclude this section, we give a theorem which summarizes Proposition 3.2.4, Proposition 3.2.5,
Proposition 3.2.9 and Proposition 3.2.15, and so, it gives an overview of the di�erent cases studied
in this section.

Proposition 3.2.16. [Using Notation 3.2.1] In the projective space PG(n, q), with n ≥ k + 2 and
k ≥ 3, let S be a maximal set of k-spaces pairwise intersecting in at least a (k− 2)-space such that S
contains three k-spaces A,B,C , with dim(A ∩ B ∩ C) = k − 4, and such that |S| ≥ f(k, q). �en
we have one of the following possibilities:

i) there are no k-spaces of S outside of 〈A,B〉 and S is Example 3.1.2(x),

ii) dim(α) = k − 1 and S is Example 3.1.2(v),

iii) dim(α) = k and S is Example 3.1.2(iv),

iv) dim(α) = k + 1 and S is Example 3.1.2(vi).

3.3 Every three elements of S meet in at least a (k − 3)-space

�roughout this section, we suppose that every three elements of S meet in at least a (k−3)-space.
Moreover, to avoid trivial cases, we may suppose that there exist two k-spaces in S intersecting in
precisely a (k−2)-space. We can �nd those two k-spaces as otherwise all subspaces would pairwise
intersect in a (k−1)-space and the classi�cation in this case is known: all the k-spaces go through a
�xed (k−1)-space or all the k-spaces lie in a (k+1)-dimensional space, see �eorem 2.0.6. We also
suppose that S is not a (k−2)- or a (k−3)-pencil as in this case either S is Example 3.1.2(i) or we
can investigate the quotient space and use the known Erdős-Ko-Rado results on planes intersecting
in at least a point [33]. We begin this section with a useful lemma.

Lemma 3.3.1. Let S be a maximal set of k-spaces in PG(n, q) pairwise intersecting in at least a
(k − 2)-space such that for every X,Y, Z ∈ S , dim(X ∩ Y ∩ Z) ≥ k − 3, and such that there is no
point contained in all elements of S . �en there exist three elements A,B,C of S such that

a) π = A ∩B ∩ C is a (k − 3)-space,

b) at least two of the three subspaces πAB = A∩B, πBC = B∩C, πAC = A∩C have dimension
k − 2, and at most one of them has dimension k − 1.

c) ζ = 〈πAB, πBC , πAC〉 has dimension k or k + 1.

Every k-space in S not through π meets the space ζ = 〈πAB, πBC , πAC〉 in at least a (k − 1)-space.

Proof. If every three k-spaces in S meet (at least) in a (k−2)-space, then S is a (k−2)-pencil, and so
there is a point contained in all the k-spaces of S . �erefore, there exist three elementsA,B,C ∈ S
such that π = A ∩B ∩C is a (k − 3)-space. Let πAB = A ∩B, πBC = B ∩C and πAC = A ∩C ,
and let ζ = 〈πAB, πBC , πAC〉. Note that at least two of the three subspaces πAB, πBC , πAC have
dimension k − 2. Otherwise, if, for example, dim(πAB) = dim(πAC) = k − 1, then the k-space
A contains two (k − 1)-spaces, πAB and πAC , meeting in at most a (k − 3)-space, a contradiction.
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W.l.o.g. we may suppose that dim(πAB) = dim(πAC) = k − 2 and dim(πBC) ∈ {k − 1, k − 2}.
�is also implies that the dimension of ζ is at most k+1. On the other hand, note that ζ has at least
dimension k. Otherwise, if ζ = 〈πAB, πBC , πAC〉 is a (k − 1)-space, then ζ = 〈πAB, πAC〉 and so
ζ ⊂ A. By the same argument, ζ ⊂ B, and ζ ⊂ C . Hence, ζ ⊂ A ∩B ∩ C = π, a contradiction.

Case 1. Suppose that πAB, πAC and πBC are (k− 2)-spaces. �en, ζ is a k-space. Since there is no
point contained in all elements of S , we know that not all elements of S contain π. Let G be such
a k-space G in S not through π. Since any three elements of S meet in at least a (k− 3)-space and
π * G, we have that G meets π in a (k − 4)-space πG and it contains at least a (k − 3)-space of
πAB, πBC and πAC . Since the three subspaces G∩ πAB, G∩ πBC and G∩ πAC have dimension at
least k − 3, since they pairwise meet in the (k − 4)-space πG, and since πAB, πAC and πBC span
at least a k-space, G contains the subspace 〈G∩ πAB, G∩ πBC , G∩ πAC〉, with at least dimension
k − 1, in ζ .

Case 2. Suppose that dim(πAB) = dim(πAC) = k − 2 and dim(πBC) = k − 1. �ey meet in the
(k − 3)-space π. Now, ζ is a (k + 1)-space and consider a k-space G not through π. As before G
meets π in a (k− 4)-space; the spaces G∩ πAB and G∩ πAC are (k− 3)-spaces otherwise G goes
through π and �nally dim(G ∩ πBC) ∈ {k − 3, k − 2}.

Case 2a. dim(G∩πBC) = k−3. �enG∩πAC andG∩πBC cannot be contained in πAB otherwise
dim(G ∩ π) = k − 3. Hence, G ∩ πAC , G ∩ πBC and G ∩ πAB are linearly independent (k − 3)-
spaces (i.e. the span of two of them does not meet the other space) pairwise intersecting in G ∩ π.
�erefore,

dim〈πAB ∩G, πAC ∩G, πBC ∩G〉 = k − 1.

Case 2b. dim(G∩πBC) = k−2. Note thatG∩πBC cannot meet πAB in a (k−3) space, otherwise
G goes through π. �en, again, G ∩ πXY , with {X,Y } ⊂ {A,B,C}, are linearly independent
(k − 3)-spaces pairwise intersecting in G ∩ π and

dim〈πAB ∩G, πAC ∩G, πBC ∩G〉 = k.

Hence, the k-space G is inside of ζ .
So, in any case, we get that a k-space not through π meets ζ in at least a (k − 1)-space. �

�eorem 3.3.2. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k − 2)-space
in PG(n, q). If for every three elements X,Y, Z of S : dim(X ∩ Y ∩ Z) ≥ k − 3, and if there is no
point contained in all elements of S , then S is one of the following examples:

(i) Example 3.1.2(ii): Star.

(ii) Example 3.1.2(iii): Generalized Hilton-Milner example.

Proof. From Lemma 3.3.1, it follows that we may suppose that there are three k-spaces A,B,C
with dim(A∩B ∩C) = k− 3, dim(πAB) = dim(πAC) = k− 2 and dim(πBC) ∈ {k− 1, k− 2}.

Case 1. dim(πBC) = k−2. In this case we know, again from Lemma 3.3.1, that ζ = 〈πAB, πAC , πBC〉
has dimension k and that any element of S , not through π = A∩B∩C , meets ζ in at least a (k−1)-
space.

Case 1.1. Suppose that there exists a k-spaceD, not containing π, with dim(D∩A) = dim(D∩B) =
dim(D ∩ C) = k − 2.
Let πAD, πBD and πCD be these (k− 2)-spaces. Note that each of them contains the (k− 4)-space
πD = D ∩ π and that they are contained in ζ . We prove that all elements of S meet ζ in at least
a (k − 1)-space. From Lemma 3.3.1, it follows that we only have to check that all elements of S
through π have this property. Let E be a k-space in S through π. �en E contains a (k− 3)-space
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of πAD, πBD and πCD . At least two of these (k − 3)-spaces are di�erent, since π is not contained
in D, and span together with π at least a (k − 1)-space contained in the k-space ζ . Hence, every
k-space of S meets ζ in at least a (k − 1)-space. �en S is Example 3.1.2(ii).

Case 1.2. For every k-spaceD ∈ S , it holds that π ⊂ D or at least one of the dimensions dim(D ∩A),
dim(D ∩B), dim(D ∩ C) is larger than k − 2.
In this case, we will prove that if not every k-space of S meets ζ in a (k − 1)-space, then S is the
second example described in the theorem. Let D be a k-space of S not containing π and meeting
A,B or C in a (k − 1)-space. W.l.o.g. we may suppose that C ∩D is the (k − 1)-space πCD and
that A ∩D and B ∩D are (k − 2)-spaces (πAD and πBD respectively). Note that these subspaces
πAD, πBD, πCD contain the (k − 4)-space πD = D ∩ π and that πAD, πBD ⊂ ζ . �is follows
since D meets πAB, πAC , πBC in a (k− 3)-space, and D ∩ πAB and D ∩ πAC span πAD . �e same
argument holds for the space B. Suppose that S is not a Star, then there does not exist a k-space γ
such that each element of S meets γ in at least a (k− 1)-space. In particular, there exists a k-space
F ∈ S that meets ζ in (at most) a (k − 2)-space. As every k-space in S , not containing π, meets
ζ in a (k − 1)-space (Lemma 3.3.1), we see that F contains π. Now, since every three elements of
S meet in a (k − 3)-space, F also contains a (k − 3)-space of the two (k − 2)-spaces πAD and
πBD in ζ (πADF , πBDF respectively). As F has no (k − 1)-space in common with ζ , and since
πAD, πBD ⊂ ζ , πCD * ζ , we �nd that πADF = πBDF = πAB ∩ D and that πCDF * ζ . Hence,
F ∩ ζ = πAB and C ∩ F = 〈πCDF , π〉. Let ν = 〈ζ, C〉. �en we prove that every k-space in S is
contained in ν or contains πAB and meets ν in a (k−1)-space. Every k-space in S containing πAB
must contain at least a (k − 2)-space of C . Hence, this k-space meets ν in at least a (k − 1)-space.
Consider now a k-space E ∈ S not through πAB . From the arguments above, it follows that, if
π ⊂ E, thenE ⊂ ν. Moreover, if π 6⊆ E, then, by Lemma 3.3.1, E contains a (k−1)-space in ζ and
a point in C \ ζ as otherwise we have Case 1.1, and so S would be a Star, a contradiction. Hence,
E ⊂ ν.

Case 2. For every three k-spaces X,Y, Z ∈ S , we have that dim(X ∩Y ∩Z) ≥ k− 2 or two of these
spaces meet in a (k− 1)-space. Since we suppose that there is no point contained in all elements of
S , we see that not every three elements meet in a �xed (k − 2)-space. Recall that A ∩B = πAB is
a (k− 2)-space. Hence, every other element of S contains πAB or meets A orB in a (k− 1)-space.
Note that the elements of S , not through πAB , are contained in 〈A,B〉. By Example 3.1.2(x), we
may suppose that not all elements of S are contained in 〈A,B〉. Hence, let D ∈ S be a k-space not
contained in 〈A,B〉.
IfD∩A = D∩B = πAB , then, by symmetry, it follows that every element of S , not through πAB ,
meets two of the three elements A,B,D in a (k− 1)-space. �is is a contradiction since a k-space
cannot contain two (k − 1)-spaces, meeting in a (k − 3)-space.
Hence, every k-space in S , not in 〈A,B〉, meets A or B in a (k − 1)-space through πAB . W.l.o.g.
we suppose that B ∩ D = πBD is a (k − 1)-space, and so A ∩ D = πAD = πAB . Consider now
an element E ∈ S not through πAB . �en, E ⊂ 〈A,B〉, and since both A,B and A,D meet in a
(k−2)-space,E contains a (k−1)-space inA orE contains a (k−1)-space in bothD andB. Note
that E cannot contain a (k − 1)-space of D, since E ⊂ 〈A,B〉, but D ∩ 〈A,B〉 is a (k − 1)-space
through πAB + E. Hence, E must contain a (k− 1)-space of A and a (k− 2)-space of B ∩D and
so every element of S , not through πAB , is contained in ν = 〈A, πBD〉.
To conclude this proof, we show that every element of S , through πAB , meets ν = 〈A, πBD〉 in at
least a (k − 1)-space, which proves that S is the Generalized Hilton-Milner example. So, consider
a k-space F ∈ S , πAB ⊂ F . �en F must contain a (k − 2)-space πEF of E. Hence, F contains
the (k − 1)-space 〈πEF , πAB〉 ⊂ 〈A, πBD〉. �
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3.4 �ere is at least a point contained in all k-spaces of S

To classify all maximal sets of k-spaces pairwise intersecting in at least a (k−2)-space, we also have
to investigate the families of k-spaces such that there is a subspace contained in all its elements.
More precisely, in this section, we will consider a set S of k-spaces of PG(n, q) such that there is
at least a point contained in all elements of S . So, let g, with 0 ≤ g ≤ k − 3, be the dimension
of the maximal subspace γ contained in all elements of S , and let k′ = k − g − 1. In the quotient
space of PG(n, q) with respect to γ, the set S of k-spaces corresponds to a set T of k′-spaces in
PG(n − g − 1, q) that pairwise intersect in at least a (k′ − 2)-space, and so that there is no point
contained in all elements of T . Since we are interested in sets S of k-spaces with |S| > f(k, q),
this corresponds with sets T of k′-spaces with |T | > f(k, q).

Since f(k, q) ≥ f(k′, q) = f(k − g − 1, q), we can use �eorem 3.2.16 and �eorem 3.3.2 for the
sets T in PG(n− g − 1, q), in the case that k − g − 1 > 2. For each example, we show that it can
be extended to one of the examples discussed in the previous sections.

1. T is the set of k′-spaces of �eorem 3.2.16(i), so that T is Example 3.1.2(x) : there exists
a (k′ + 2)-space ρ′ such that T is the set of all k′-spaces in ρ. �en S can be extended to
Example 3.1.2(x) in PG(n, q), with ρ = 〈ρ′, γ〉.

2. T is the set of k′-spaces of �eorem 3.2.16(ii), so that T is Example 3.1.2(v) : there are a
(k′ + 2)-space ρ′, and a (k′ − 1)-space α′ ⊂ ρ′ so that T contains all k′-spaces in ρ′ that
meets α′ in at least a (k′ − 2)-space, and all k′-spaces in PG(n− g − 1, q) through α′. �en
S can be extended to Example 3.1.2(v) in PG(n, q), with ρ = 〈ρ′, γ〉 and α = 〈α′, γ〉.

3. T is the set of k′-spaces of �eorem 3.2.16(iii), so that T is Example 3.1.2(iv) : there are a
(k′ + 2)-space ρ′, a k′-space α′ ⊂ ρ′ and a (k′ − 2)-space π′ ⊂ α′ so that T contains all
k′-spaces in ρ′ that meet α′ in at least a (k′ − 1)-space, all k′-spaces in ρ′ through π′, and all
k′-spaces in PG(n− g − 1, q) that contain a (k′ − 1)-space of α′ through π′. �en S can be
extended to Example 3.1.2(iv) in PG(n, q), with π = 〈π′, γ〉, ρ = 〈ρ′, γ〉 and α = 〈α′, γ〉.

4. T is the set of k′-spaces of �eorem 3.2.16(iv). Since we suppose that |S| = |T | > f(k, q),
we know that T is Example 3.1.2(vi): there are two (k′ + 2)-spaces ρ′1, ρ′2 intersecting in a
(k′ + 1)-space α′ = ρ′1 ∩ ρ′2. �ere are two (k′ − 1)-spaces π′A, π′B ⊂ α′, with π′A ∩ π′B the
(k′ − 2)-space l′, there is a point P ′ ∈ α′ \ 〈π′A, π′B〉, and let P ′A, P ′B ⊂ l′ be two di�erent
(k′ − 3)-spaces. �en T contains

◦ all k′-spaces in α′,

◦ all k′-spaces through 〈P ′, l′〉,

◦ all k′-spaces in ρ′1 through P ′ and a (k′ − 2)-space in π′A through P ′A,

◦ all k′-spaces in ρ′1 through P ′ and a (k′ − 2)-space in π′B through P ′B ,

◦ all k′-spaces in ρ′2 through P ′ and a (k′ − 2)-space in π′A through P ′B ,

◦ all k′-spaces in ρ′2 through P ′ and a (k′ − 2)-space in π′B through P ′A.

�en S can be extended to Example 3.1.2(vi) in PG(n, q), with PA = 〈P ′A, γ〉, PB = 〈P ′B, γ〉,
πA = 〈π′A, γ〉, πB = 〈π′B, γ〉, l = 〈l′, γ〉, α = 〈α′, γ〉, ρ1 = 〈ρ′1, γ〉, ρ2 = 〈ρ′2, γ〉 and
PAB = P ′.

52



3 Subspaces of dimension k, pairwise intersecting in at least a (k − 2)-space

5. T is the set of k′-spaces of �eorem 3.3.2(i): there exists a k′-space ζ ′ such that T is the set
of all k′-spaces that have a (k′ − 1)-space in common with ζ ′. �en S can be extended to
example (i) in �eorem 3.3.2, and so to Example 3.1.2(ii), with ζ = 〈ζ ′, γ〉.

6. T is the set of k′-spaces of �eorem 3.3.2(ii): there exists a (k′ + 1)-space ν ′ and a (k′ − 2)-
space π′ ⊂ ν such that T consists of all k′-spaces in ν ′, together with all k′-spaces through
π′ that intersect ν ′ in at least a (k′ − 1)-space. �en S can be extended to example (ii) in
�eorem 3.3.2, and so to Example 3.1.2(iii), with ν = 〈ν ′, γ〉, π = 〈π′, γ〉.

We note that if T is one of the set of k′-spaces described in Section 3.2.4, then S can be extended
to a set S ′ of k-spaces pairwise intersecting in a (k− 2)-space such that S ′ contains three k-spaces
that meet in a (k − 4)-space with dim(α) = k + 2. Hence, |S ′| < f(k, q) and so these sets T do
not lead to large examples of S .

If k − g − 1 = 2, the set T is a set of planes in PG(n− k + 2, q) pairwise intersecting in at least a
point, i.e. an Erdős-Ko-Rado set of planes. In [13, Section 6], Blokhuis et al. classi�ed the maximal
Erdős-Ko-Rado sets T of planes in PG(5, q) with |T | ≥ 3q4 + 3q3 + 2q2 + q+ 1. In [33], De Boeck
generalized these results and classi�ed the largest examples of sets of planes pairwise intersecting
in at least a point in PG(n, q), n ≥ 5. Below we retrace the examples in [13] and [33] with size at
least f(k, q) and such that there is no point contained in all their elements. For each example, we
show that it can be extended to one of the examples discussed in the previous sections, or that it
gives rise to a new maximal example.

1. T is the set of planes of Example II in [33]: consider a 3-space σ and a point P0 ∈ σ. Let T
be the set of all planes that either are contained in σ or else intersect σ in a line through P0.
�en S can be extended to Example 3.1.2(iii), with ζ the (k + 1)-space spanned by σ and γ,
and πAB = 〈γ, P0〉.

2. T is the set of planes of Example III in [33]: consider a plane π, then T is the set of planes
meeting π in at least a line. �en S can be extended to Example 3.1.2(ii), with ζ the k-space
spanned by π and γ.

3. T is the set of planes of Example IV in [33]: consider a 4-space τ , a plane δ ⊂ τ and a
point P0 ∈ δ. �en T is the set containing the planes in τ intersecting δ in a line, the planes
intersecting δ in a line through P0 and the planes in τ through P0. �en we can refer to
Subsection 3.2.2 and so S can be extended to Example 3.1.2(iv), with ρ = 〈γ, τ〉, α = 〈γ, δ〉
and π = 〈γ, P0〉.

4. T is the set of planes of Example V in [33]: consider a 4-space τ , and a line l ⊂ τ . �en T is
the set containing the planes through l and all planes in τ containing a point of l. �en we
can refer to Subsection 3.2.1 and S can be extended to Example 3.1.2(v), with ρ = 〈γ, τ〉 and
α = 〈γ, l〉.

5. T is the set of planes of Example V I in [33]: let τ1 and τ2 be two 4-spaces such that σ = τ1∩τ2

is a 3-space. Let π1 and π2 be two planes in σ with intersection line l0 and let P1 and P2 be
two di�erent points on l0. �en T is the set of planes through l0, the planes in σ, the planes
in τ1 containing a line through P1 in π1 or a line through P2 in π2, and the planes in τ2

containing a line through P1 in π2 or a line through P2 in π1. �en by using Section 3.2.3,
Case 1, S can be extended to Example 3.1.2(vi) with ρi = 〈γ, τi〉, α = 〈γ, σ〉, πA = 〈γ, π1〉,
πB = 〈γ, π2〉, λ = 〈γ, l0〉, λA = 〈γ, P1〉, λB = 〈γ, P2〉 and PAB a point in γ.
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6. T is the set of planes of Example V II in [33]: let ρ be a 5-space. Consider a line l ⊂ ρ
and a 3-space σ ⊂ ρ disjoint from l. Choose three points P1, P2, P3 on l and choose four
non-coplanar points Q1, Q2, Q3, Q4 in σ. Denote l1 = Q1Q2, l̄1 = Q3Q4, l2 = Q1Q3,
l̄2 = Q2Q4, l3 = Q1Q4, and l̄3 = Q2Q3. �en T is the set containing all planes through
l and all planes through Pi in 〈l, li〉 or in 〈l, l̄i〉, i = 1, 2, 3. Note that this set S is the set
described in Example 3.1.2(ix). We can prove the following lemma.

Lemma 3.4.1. �e set S of k-spaces described in Example 3.1.2(ix) is a maximal set of k-spaces
pairwise intersecting in at least a (k − 2)-space.

Proof. We have to prove that there does not exist a k-spaceE in PG(n, q), with γ * E and so
thatE meets all elements of S in at least a (k−2)-space. Suppose there exists such a k-space
E. As S contains all k-spaces through the (k − 1)-space 〈γ, l〉, E contains a (k − 2)-space
π0 of 〈γ, l〉, not through γ. Hence, dim(E ∩ γ) = g − 1 = k − 4. As S contains all k-spaces
through 〈γ, Pi〉 in the (k+ 1)-space 〈γ, l, li〉 (or 〈γ, l, l̄i〉), E contains a (k− 1)-space of each
of those (k+1)-spaces. Consider now the quotient space PG(n, q)/γ, and letE′ = 〈γ,E〉/γ,
Q′i = 〈Qi, γ〉/γ, P ′i = 〈Pi, γ〉/γ, and l′ = 〈l, γ〉/γ. �en E′ is a solid in PG(n, q)/γ through
l′ that contains a point of each of the linesQ′iQ′j , 1 ≤ i < j ≤ 4, but this gives a contradiction
as dim(E′) = 3. �

7. T is the set of planes of Example V III in PG(n − k + 2, q) in [33]: consider two solids σ1

and σ2, intersecting in a line l. Take the points P1 and P2 on l. �en T is the set containing
all planes through l, all planes through P1 that contain a line in σ1 and a line in σ2, and all
planes through P2 in σ1 of σ2. Note that this set S is the set described in Example3.1.2(vii).
We can prove that the set S of k-spaces is not extendable.

Lemma 3.4.2. �e setS of k-spaces described in Example 3.1.2(vii) is a maximal set of k-spaces
pairwise intersecting in at least a (k − 2)-space.

Proof. We have to prove that there does not exist a k-space E in PG(n, q), with γ * E and
so that E meets all elements of S in at least a (k − 2)-space. Suppose there exists such a
k-space E. As S contains all k-spaces through the (k− 1)-space 〈γ, l〉, E contains a (k− 2)-
space π0 of 〈γ, l〉, not through γ. Hence, dim(γ ∩ E) = k − 4. As S contains all k-spaces
through 〈γ, P2〉 in the (k+1)-space 〈γ, σ1〉 (or 〈γ, σ2〉),E contains a (k−1)-space of each of
those (k+1)-spaces. �ese two (k−1)-spaces, α1 and α2 respectively, spanE and meet in a
(k−2)-space π0. �en we show that there exists a k-spaceA ∈ S , containing γ, that meetsE
in precisely a (k−3)-space. Consider the quotient space PG(n, q)/γ, and letE′ = 〈γ,E〉/γ,
σ′i = 〈σi, γ〉/γ, P ′i = 〈Pi, γ〉/γ, A′ = 〈A, γ〉/γ and l′ = 〈l, γ〉/γ = 〈π0, γ〉/γ. �en E′ is a
solid in PG(n, q)/γ through l′ that contains planesα′1, α′2 in σ′1 and σ′2 respectively. Note that
α′1∩α′2 = l′. Let l1 ∈ σ′1 and l2 ∈ σ′2 be two lines containingP ′1 so that l1∩α′1 = l2∩α′2 = P ′1,
and let A′ be the plane spanned by l1 and l2. �en E′ ∩ A′ is a point in PG(n, q)/γ. Since
γ ⊆ A and γ * E, we �nd that E ∩A is a (k− 3)-space of 〈γ, P1〉 in PG(n, q), and so these
elements of S meet in a (k − 3)-space, a contradiction. �

8. T is the set of planes of Example IX in PG(n − k + 2, q) in [33]: let l be a line and σ a
solid skew to l. Denote 〈l, σ〉 by ρ. Let P1 and P2 be two points on l and let R1 and R2 be
a regulus and its opposite regulus in σ. �en T is the set containing all planes through l, all
planes through P1 in the solid generated by l and a line of R1, and all planes through P2 in
the solid generated by l and a line ofR2. Note that this set S is the set described in Example
3.1.2(viii). We can prove the following lemma.

Lemma 3.4.3. �e set S of k-spaces described in Example 3.1.2(viii) is a maximal set of k-
spaces pairwise intersecting in at least a (k − 2)-space.
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Proof. We have to prove that there does not exist a k-space E in PG(n, q), with γ * E, and
so that E meets all elements of S in at least a (k − 2)-space. Suppose there exists such a k-
space E. LetR1 = {l1, l2, . . . , lq+1} andR2 = {l̄1, l̄2, . . . , l̄q+1}. As S contains all k-spaces
through the (k−1)-space 〈γ, l〉,E contains a (k−2)-space π0 of 〈γ, l〉, not through γ. Hence,
dim(γ∩E) = k−4. As S contains all k-spaces through 〈γ, Pi〉 in the (k+1)-spaces 〈γ, l, l′〉
(or 〈γ, l, l̄′〉), with l′ ∈ Ri,E contains a (k−1)-space of each of those (k+1)-spaces. Consider
now the quotient space PG(n, q)/γ, and let E′ = 〈γ,E〉/γ, l′i = 〈li, γ〉/γ, l̄′i = 〈l̄i, γ〉/γ,
P ′i = 〈Pi, γ〉/γ, and l′ = 〈l, γ〉/γ = 〈π0, γ〉/γ. �en E′ is a solid in PG(n, q)/γ through l′
that contains a point of each of the lines l′i and l̄′i, 1 ≤ i ≤ q+1, but this gives a contradiction
as dim(E′) = 3. �

We see that example (f), (g) and (h) give rise to maximal examples of sets S of k-spaces pairwise
intersecting in at least a (k − 2)-space, described in Example 3.1.2(ix), (vii), (viii) respectively.
From [33], it follows that the number of elements in S equals θn−k + 6q2, θn−k + q4 + 2q3 + 3q2

and θn−k + 2q3 + 2q2 respectively.

Finally, if k − g − 1 = 1, then g = k − 2 and so, there is a (k − 2)-space contained in all solids of
S . �is case gives rise to Example 3.1.2(i).

3.5 Main �eorem

By collecting the results from Propositions 3.2.16, �eorem 3.3.2 and Section 3.4, we �nd the fol-
lowing result.

Main �eorem 3.5.1. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k− 2)-
space in PG(n, q), n ≥ 2k, k ≥ 3. Let

f(k, q) =

{
3q4 + 6q3 + 5q2 + q + 1 if k = 3, q ≥ 2 or k = 4, q = 2

θk+1 + q4 + 2q3 + 3q2 else.

If |S| > f(k, q), then S is one of the families described in Example 3.1.2. Note that for n > 2k + 1,
the examples (i)− (ix) are stated in decreasing order of the sizes.

Proof. - If there is no point contained in all elements ofS andS contains three k-spacesA,B,C
with dim(A ∩ B ∩ C) = k − 4, then we distinguished the possibilities for S depending on
the dimension of α = 〈D ∩ 〈A,B〉 |D ∈ S ′〉, where S ′ = {D ∈ S |D 6⊂ 〈A,B〉}, see
Section 3.2. By Proposition 3.2.16, it follows that S is one of the examples (iv), (v), (vi), (x)
in Example 3.1.2.

- If there is no point contained in all elements of S and if for every three elements A,B,C in
S , we have that dim(A ∩ B ∩ C) ≥ k − 3, then the only possibilities for S are described in
Example 3.1.2 (ii) and (iii), see �eorem 3.3.2.

- If there is at least a point contained in all k-spaces of S , then we refer to Section 3.4. Let
γ be the maximal subspace contained in all k-spaces of S , with dim(γ) = g. �en T =
{D/γ |D ∈ S} is a set of (k − g − 1)-spaces of PG(n − g − 1, q) ' PG(n, q)/γ pairwise
intersecting in at least a (k − g − 3)-space. �e only examples of sets T that give rise to
maximal examples of sets of k-spaces are described in Section 3.4 in the examples (f), (g), (h).
In these examples, g = k − 3. �ey correspond to Example 3.1.2(i), (ix), (vii), (viii).

�
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4 Hilton–Milner problems in PG(n, q) and AG(n, q)

“ Equations are just the boring part of mathematics. I a�empt to see things in
terms of geometry. ”—Stephen Hawking

�e results in this chapter will appear in [43].

4.1 Introduction

Before we start with the introduction, we would like to indicate how this chapter came about. We started
investigating the Hilton-Milner problem in the a�ne context: we studied the second largest examples
of sets of a�ne k-spaces pairwise intersecting in at least a t-space in AG(n, q). �anks to prof. Tamás
Szőnyi, we received notes of David Ellis about the projective analogue of this problem [54]. In these
notes, he studied the second largest families of projective k-spaces, pairwise intersecting in at least a
t-space in PG(n, q). �ese notes helped me to shorten my, a�ne, arguments. Since these notes are not
published, we integrate them in this chapter. �e results that are mostly in�uenced by the ideas in the
notes of David Ellis are Lemmas 4.4.3, 4.4.4, 4.4.5 and 4.4.6. In his notes, David Ellis used the kernel
method [67, Section 15.1].
While �nishing the last details of this project, the paper [29] appeared on Arxiv. In that paper, the
authors deduce similar results as ours in the vector space se�ing. It is worth noting that our results
were obtained independently, and our paper deals with both the a�ne and projective case at once. A
comparison between the results of this chapter and the results in [29] is given in Remark 4.4.8.

In [69], Guo and Xu investigated the Erdős-Ko-Rado problem in a�ne spaces. �ey proved that
the largest t-intersecting family of k-spaces in AG(n, q), n ≥ 2k + t+ 2, is the set of all k-spaces
through a �xed t-space. In Section 4.4.2, we give a shorter proof for their result and improve their
bound on n to n ≥ 2k + 1. For t = 0, the second largest t-intersecting set of k-spaces in PG(n, q)
and AG(n, q) were already described in [12] (see �eorem 2.0.5) and [68] respectively. We describe
the result from [68] in �eorem 4.4.10. �e main goal in this chapter is to describe the second largest
Erdős-Ko-Rado sets for t ≥ 1, for both PG(n, q) and AG(n, q).

In Section 4.2 and in Section 4.3, we give two examples of maximal sets of k-spaces in PG(n, q)
and AG(n, q), respectively, pairwise intersecting in at least a t-space, which are not t-pencils. In
Section 4.4, we prove the Hilton-Milner results.

4.2 Two examples in PG(n, q)

We start by giving two examples of maximal sets of k-spaces in PG(n, q), pairwise meeting in at
least a t-space. Note that forn ≤ 2k−t, all projective k-spaces in PG(n, q) are pairwise intersecting
in at least a t-space. Hence, we may suppose that n ≥ 2k − t+ 1.
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Example 4.2.1. Let δ be a t-space, t ≤ k−1, in PG(n, q), n ≥ 2k−t+1, and let ξ be a (k+1)-space
in PG(n, q) with δ ⊂ ξ. Let S1 be the set of all k-spaces in ξ. Let S2 be the set of all k-spaces through
δ and meeting ξ in at least a (t+ 1)-space. Let S be the union of the sets S1 and S2.

Lemma 4.2.2. �e set S , described in Example 4.2.1, is a maximal set of k-spaces in PG(n, q),
n ≥ 2k − t+ 1, pairwise intersecting in at least a t-space, of size

|S| = θk+1 − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
.

Proof. We start with determining the size of S . First note that the number of elements of S1 \ S2

is equal to the number of k-spaces in the (k + 1)-space ξ, not containing δ. Hence, |S1 \ S2| =
θk+1 − θk−t.

All elements of S2 contain δ. To determine |S2|, we consider the quotient space PG(n, q)/δ, which
is isomorphic to PG(n−t−1, q). Letσ0 be the projective (k−t)-space in PG(n, q)/δ, corresponding
to ξ. A (k − t − 1)-space, corresponding to an element of S2 in PG(n, q)/δ has at least a point
in common with σ0. Hence, |S2| is the number of (k − t − 1)-spaces in PG(n − t − 1), minus
the number of (k − t − 1)-spaces, disjoint from σ0. From Lemma 1.10.1, we have that |S2| =[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]
. Hence,

|S| = θk+1 − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
. (4.1)

It is clear that all elements of S2 pairwise meet in at least the t-space δ. Every two elements of S1

meet in a (k− 1)-space, since they are contained in a (k+ 1)-space. Note that k− 1 ≥ t. Consider
now a k-space π1 in S1 and a k-space π2 in S2. Note that π1 ⊂ ξ, and π2 meets ξ in at least a
(t+ 1)-space. Again, from the Grassmann dimension property, it follows that they meet in at least
a t-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
a t-space. Suppose that α /∈ S is a k-space that meets every element of S in at least a t-space.
If δ ⊂ α, then, since α /∈ S , α meets ξ only in δ. Hence, there is an element π of S1 such that
dim(π∩δ) = t−1, and so, dim(π∩α) < t. �is gives a contradiction with the fact that αmeets all
elements of S in at least a t-space. Hence, we may suppose that δ * α. So, α meets δ in a d-space
with d ≤ t− 1. Note that dim(α∩ ξ) ≥ t+ 1 since α meets all elements of S1 in at least a t-space.
Let π0 ⊂ ξ be a (k − t− 1)−space disjoint from δ. For every point P ∈ π0, consider the set SP of
elements of S that meet ξ in 〈δ, P 〉. If dim(α ∩ 〈δ, P 〉) < t, then α must meet all elements of SP
in a subspace outside of ξ. We now prove that this gives a contradiction since n ≥ 2k − t+ 1. Let
α ∩ 〈P, δ〉 = ν and suppose that dim(ν) = r < t. We investigate the quotient space PG(n, q)/ν,
and let α′ be the subspace in this quotient space corresponding to α. Let β be a k-space through
〈P, δ〉 with β′ be the corresponding subspace in PG(n, q)/ν, such that dim(〈α′, β′〉) is maximal.
Hence, dim(〈α′, β′〉) = min{n − r − 1, 2k − 2r − 1}. From the Grassmann dimension property,
and since α and β have at least a (t− r− 1)-space in common in the quotient space, we then have
that

dim(α′ ∩ β′) = dim(α′) + dim(β′)− dim(〈α′, β′〉)
⇒ t− r − 1 ≤ 2k − 2r − 2−min{n− r − 1, 2k − 2r − 1}.

�is gives a contradiction since r < t and n ≥ 2k − t + 1. Hence, dim(α ∩ 〈δ, P 〉) = t for all
points P ∈ π0. �is implies that dim(α ∩ δ) = t− 1, and α must have a t-space in common with
all (t+ 1)-spaces 〈δ, P 〉 with P ∈ π0. Hence, α ⊆ ξ, and so α ∈ S1, a contradiction. �
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Example 4.2.3. Suppose k ≥ t+ 1 and let ω be a (t+ 2)-space in PG(n, q), n ≥ 2k − t+ 1. Let S
be the set of all k-spaces in PG(n, q), meeting ω in at least a (t+ 1)-space.

Lemma 4.2.4. �e set S , described in Example 4.2.3, is a maximal set of k-spaces in PG(n, q),
pairwise intersecting in at least a t-space, of size

|S| =
[
n− t− 2

k − t− 2

]
+ θt+2 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
.

Proof. �e number of elements in S is the number of k-spaces through ω, together with the number
of k-spaces, meeting ω in a (t+ 1)-space:

|S| =
[
n− t− 2

k − t− 2

]
+ θt+2 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
.

Consider two elements π1, π2 ∈ S . �en π1 ∩ ω and π2 ∩ ω are two subspaces with dimension at
least t+ 1 in a (t+ 2)-space, and so, they meet in at least a t-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
a t-space. Suppose that α /∈ S is a k-space that meets every element of S in at least a t-space. Since
α /∈ S , we know that dim(α∩ω) ≤ t. Let γ be a (t+1)-space in ω such that dim(α∩ω∩γ) ≤ t−1.
�en α must meet all elements of S through γ in a subspace outside of ω. Since n ≥ 2k − t + 1,
this is not possible. Hence, S cannot be extended. �

Remark 4.2.5. Note that for k = t+ 1, Example 4.2.1 and Example 4.2.3 coincide. In that case, S is
the set of all (t+ 1)-spaces in a �xed (t+ 2)-space in PG(n, q), see �eorem 2.0.6.

Remark 4.2.6. In the previous chapter, k-spaces pairwise intersecting in at least a (k − 2)-space in
PG(n, q) were investigated. For t = k − 2, Example 4.2.1 coincides with Example 3.1.2(iii), and
Example 4.2.3 coincides with Example 3.1.2(ii).

4.3 Two examples in AG(n, q)

We also give two examples of maximal sets of k-spaces in AG(n, q), pairwise meeting in at least a
t-space. For the remainder of this chapter, we suppose that n ≥ 2k − t + 1 and t ≥ 1. In Section
4.4, we prove that the largest non-trivial sets of k-spaces, pairwise meeting in at least a t-space,
in AG(n, q) are given by Examples 4.3.1 and 4.3.3. If k ≥ 2t + 2, Example 4.3.1 is the largest set,
whereas if k ≤ 2t+ 1, Example 4.3.3 is the largest one.

For an a�ne subspace α, we denote the projective extension of α by α̃, and let H∞ = PG(n, q) \
AG(n, q) be the hyperplane at in�nity. Similarly, if S = {π1, π2, . . . , πm} is a set of a�ne spaces,
then we denote the corresponding set of projective spaces by S̃ = {π̃1, π̃2, . . . , π̃m}.

Example 4.3.1. Let δ be a t-space, t ≤ k− 1, in AG(n, q), and let ξ be a (k+ 1)-space in AG(n, q)
with δ ⊂ ξ. Let S1 be a maximal set of a�ne k-spaces in ξ, such that for any two elements π1, π2 of
S1, π̃1 ∩ H∞ 6= π̃2 ∩ H∞, and such that for every π1 ∈ S1: δ̃ ∩ H∞ * π̃1. Let S2 be the set of all
k-spaces through δ and meeting ξ in at least a (t+ 1)-space. Let S be the union of the sets S1 and S2.

Note that this example corresponds to the a�ne case of Example 4.2.1.
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Lemma 4.3.2. �e set S , described in Example 4.3.1, is a maximal set of k-spaces in AG(n, q),
n ≥ 2k − t+ 1, pairwise intersecting in at least a t-space, of size

|S| = θk − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
. (4.2)

Proof. We start with determining the size of S . Note �rst that the number of elements of S1 is equal
to the number of (k − 1)-spaces in H∞ ∩ ξ, not containing δ ∩H∞. Hence, |S1| = θk − θk−t.

Let σ̃0 be the projective (k − t)-space, corresponding to ξ̃ in the quotient space PG(n, q)/δ̃. An
extended element of S2 to PG(n, q), corresponds to a (k − t − 1)-space in PG(n, q)/δ̃, that has
at least a point in common with σ̃0. Hence, |S2| is the number of projective (k − t − 1)-spaces in
PG(n, q)/δ̃ ∼= PG(n − t − 1, q), minus the number of (k − t − 1)-spaces, disjoint from σ̃0. By
Lemma 1.10.1, we have that |S2| =

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]
. Hence,

|S| = θk − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
. (4.3)

It is clear that all elements of S2 pairwise meet in at least a t-space (δ). Consider now two elements
π1, π2 ∈ S1. It follows, from the Grassmann dimension property, that π̃1 ∩ π̃2 is a (k− 1)-space in
the (k + 1)-space ξ̃. �is (k − 1)-space is not contained in H∞ by the de�nition of S1. Let π1 be
a k-space in S1 and let π3 be a k-space in S2. Since π1 ⊂ ξ, and dim(π3 ∩ ξ) ≥ t + 1, we know,
again by the Grassmann dimension property, that π̃1∩ π̃3 meet in at least a projective t-space. Now,
π̃1 ∩ π̃3 is not contained in H∞, since there is an a�ne (t− 1)-space contained in both π1 and π3.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
an a�ne t-space. Suppose that α /∈ S is an a�ne k-space that meets every element of S in at least
an a�ne t-space. If α contains δ, then, since α /∈ S , we know that α ∩ ξ = δ. Let π ∈ S1 with
δ * π. �en αmeets π only in a (t−1)-space, and so, there is an element of S that meets α not in a
t-space, which contradicts the statement. Hence, we may suppose that δ * α, and this implies that
dim(α ∩ δ) ≤ t − 1. Note that there is no a�ne t-space contained in all elements of S1, as t ≥ 1.
Hence, we have that dim(α ∩ ξ) ≥ t+ 1 as α meets all elements of S1 in at least a t-space. Let π0

be a projective (k− t)-space in ξ̃ \ δ̃. For every point P ∈ π0, consider the set SP of elements of S̃
that meet ξ̃ in 〈δ̃, P 〉. If dim(α̃ ∩ 〈δ̃, P 〉) < t, then α̃ must meet all elements of SP in a subspace
outside of ξ̃. �is gives a contradiction since n ≥ 2k − t + 1. Hence, dim(α̃ ∩ 〈δ̃, P 〉) = t for all
points P ∈ π0. �is implies that dim(α ∩ δ) = t− 1, and α̃ must have a t-space in common with
all (t + 1)-spaces 〈δ̃, P 〉, with P ∈ π0. Hence, α ⊆ ξ, and so α ∈ S1, a contradiction, since we
supposed that α /∈ S . �

Example 4.3.3. Suppose k ≥ t+ 1. Let ω be an a�ne (t+ 2)-space in AG(n, q), and letR be a set
of θt+1 a�ne (t+ 1)-spaces in ω such thatR contains precisely one element through every t-space in
H∞ ∩ ω̃. Note that every two di�erent elements of R meet in an a�ne t-space. Let S be the set of all
k-spaces in AG(n, q), containing ω or meeting ω in an element ofR.

Note that this example corresponds to the a�ne case of Example 4.2.3.

Lemma 4.3.4. �e set S , described in Example 4.3.3, is a maximal set of k-spaces in AG(n, q),
n ≥ 2k − t+ 1, pairwise intersecting in at least a t-space, of size

|S| =
[
n− t− 2

k − t− 2

]
+ θt+1 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
.

60



4 Hilton–Milner problems in PG(n, q) and AG(n, q)

Proof. SinceR is a maximal set, we have that |R| is the number of all t-spaces in ω̃ ∩H∞. Hence,
|R| = θt+1. �e number of elements in S is the number of k-spaces through ω, together with the
number of k-spaces, meeting ω in an element ofR:

|S| =
[
n− t− 2

k − t− 2

]
+ θt+1 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
.

Consider two elements π1, π2 ∈ S . If π1 or π2 contains ω, then π1 and π2 intersect in at least a
(t+ 1)-dimensional space. Hence, we suppose that π1 ∩ ω and π2 ∩ ω are two (t+ 1)-spaces ofR
in a (t + 2)-space. Since every two elements of R meet in an a�ne space with dimension at least
t, we have that π1 and π2 meet in at least an a�ne t-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at
least a t-space. Suppose that α /∈ S is an a�ne k-space that meets every element of S in at least a
t-space. Consider an element σ ∈ R. Since α must meet all a�ne k-spaces through σ in at least a
t-space, we �nd that α contains a t-space of σ, as n ≥ 2k − t + 1. As σ is an arbitrary element of
R, we see that α must meet every element ofR in at least an a�ne t-space. As t ≥ 1, there cannot
be an a�ne t-space contained in all elements of R. �is implies that α meets ω in a (t + 1)-space
αω . Now, αω must meet every element of R in an a�ne t-space. From the maximality of R, we
have that αω ∈ R, and so that α ∈ S , a contradiction. �

4.4 Classi�cation results

We start with a classi�cation result on maximal sets of k-spaces pairwise intersecting in a (k− 1)-
space. In the projective case, we know that a set of k-spaces, pairwise intersecting in a (k−1)-space
in PG(n, q), n ≥ k + 2, is a set of k-spaces through a �xed (k − 1)-space or a set of k-spaces such
that each element is contained in a �xed (k + 1)-space, see �eorem 2.0.6.

We use this classi�cation to deduce the classi�cation of maximal sets of k-spaces pairwise inter-
secting in a (k − 1)-space in AG(n, q).

�eorem 4.4.1. Let S be a set of k-spaces in AG(n, q), n ≥ k+1, pairwise intersecting in a (k−1)-
space such that S is not a (k−1)-pencil, then |S| ≤ θk, and equality occurs if and only if S is Example
4.3.3 for t = k − 1. Hence, all elements of S are contained in a (k + 1)-space.

Proof. As before, let S̃ be the set of projective extensions of the elements in S . So, S̃ is a set of
projective k-spaces pairwise intersecting in a (k−1)-space, and such that there is no (k−1)-space
contained in all these elements. Hence, S̃ is contained in a (k + 1)-space Π, by �eorem 2.0.6.
Now, every two elements of S must meet in AG(n, q). So, for every two elements π1, π2 ∈ S ,
π̃1 ∩ π̃2 * H∞. �is implies that every k-space in Π ∩H∞ is contained in precisely one element
of S̃ . �is is Example 4.3.3, for k = t+ 1, which proves the theorem. �

Remark 4.4.2. Note that for t = k− 1, the set of all examples described in Example 4.3.1 is a subset
of the set of examples in Example 4.3.3. �is follows since for t = k−1, the k-spaces of a set S from
Example 4.3.1, are contained in a �xed (t+ 2)- or, (k+ 1)-space (ξ). Moreover, the set of examples
in Example 4.3.1 and 4.3.3 are not equal, since in Example 4.3.1, an extra condition is imposed. For
these sets, all k-spaces π ∈ S̃ through δ̃ ∩H∞ contain δ.

For t = k − 1, the number of elements of Example 4.3.3 (and so of Example 4.3.1), is θk, while, the
number of a�ne subspaces in AG(n, q) through a �xed a�ne (k − 1)-space is θn−k. Hence, for
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n < 2k, Example 4.3.3, is the largest example of a set of a�ne k-spaces, pairwise intersecting in at
least a (k − 1)-space.

From now on, we suppose that k ≥ t+ 2. In Section 4.4.1 and Section 4.4.3, we classify the largest
non-trivial t-intersecting sets of k-spaces in PG(n, q) and AG(n, q), respectively. In Section 4.4.2,
we give a shorter proof of the classi�cation result for the largest t-intersecting sets of k-spaces in
AG(n, q), which was �rst proven in [69]. We will also improve the bound on n in their result to
n ≥ 2k + 1. As mentioned in the introduction, several ideas in the following subsection are based
on the notes of David Ellis [54].

4.4.1 Classi�cation result in PG(n, q)

Let Sp be a maximal set of k-spaces in PG(n, q), n ≥ 2k − t + 1, k ≥ t + 2, and t ≥ 1, pairwise
meeting in at least a t-space. Let

ψ(Sp) = min{ dim(T ) | T ⊂ PG(n, q), dim(T ∩ α) ≥ t, ∀α ∈ Sp}.

Note that ψ(Sp) is well-de�ned. Every element β ∈ Sp is an example of a subspace such that
dim(β ∩ α) ≥ t,∀α ∈ Sp. Let T be the collection of all ψ(Sp)-dimensional spaces in PG(n, q),
that meet every element of Sp in at least a t-space.

Lemma 4.4.3. We have the following properties for ψ(Sp) and T .

1. We have that t ≤ ψ(Sp) ≤ k, and if ψ(Sp) = t, then Sp is a t-pencil.

2. If T ∈ T , then all k-spaces through T are contained in Sp.

3. �e elements of T are t-intersecting in PG(n, q).

Proof. 1. Let π1 ∈ Sp. Since every element of Sp meets π1 in at least a t-space, we have that
ψ(Sp) ≤ k. Let T ∈ T . Since all elements of Sp meet T in at least a t-space, we have that
ψ(Sp) ≥ t. If ψ(Sp) = t, then all elements of Sp contain the t-space T , and, hence, Sp is a
t-pencil.

2. �is property follows from the maximality of Sp.

3. Suppose that there are two elements T1, T2 ∈ T , with dim(T1 ∩ T2) = l < t. Since n ≥
2k − t + 1, there are two k-spaces π1 and π2 through T1 and T2, respectively, such that
dim(π1 ∩ π2) < t. From the second item, we have that π1, π2 ∈ Sp, a contradiction since
they have no t-space in common. �

Lemma 4.4.4. Let ψ(Sp) = t + x, x ≥ 1, k ≥ t + 2, t ≥ 1 and n ≥ 2k − t + 1. �en the
number of elements of Sp through a projective (t+ x− j)-space, with j ∈ {0, 1, 2, . . . , x}, is at most
(θk−t)

j
[
n−t−x
k−t−x

]
.

Proof. Let ψ(Sp) = t+ x, x ≥ 2. We prove, by induction on j ∈ {0, 1, 2, . . . , x}, that the number
of k-spaces of Sp through a (t+ x− j)-space is at most

[
n−t−x
k−t−x

]
(θk−t)

j . Note that the statement is
true for j = 0. Let j ∈ {1, 2, 3, . . . , x} and suppose now that the number of k-spaces of Sp through
a projective (t+ x− j0)-space, is at most (θk−t)

j0
[
n−t−x
k−t−x

]
, for all j0 < j. �en we prove that this

also holds for j. Consider a projective (t + x − j)-space γj . Since ψ(Sp) = t + x, we know that
there exists a k-space πj of Sp, meeting γj in at most a (t − 1)-space. Let max{dim(γj ∩ π)|π ∈
Sp,dim(γj ∩ π) < t} = t − l, then l ≥ 1, and suppose that πj ∈ Sp is an element such that
dim(πj ∩ γj) = t− l. Let πjγ be a projective (k − t+ l − 1)-space in πj \ γj . �en every element
of Sp through γj contains at least an (l − 1)-space of πjγ . Since there are

[
k−t+l
l

]
subspaces of
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dimension l − 1 in πjγ , and since the number of projective k-spaces through a (t + x − j + l)-
space is at most (θk−t)

j−l[n−t−x
k−t−x

]
, we �nd that the number of elements of Sp through γj is at most[

k−t+l
l

]
(θk−t)

j−l[n−t−x
k−t−x

]
. Note that

[
k − t+ l

l

]
(θk−t)

j−l =
(qk−t+l − 1) . . . (qk−t+1 − 1)

(ql − 1) . . . (q − 1)
(θk−t)

j−l

≤
(

(qk−t+1 − 1)

(q − 1)

)l
(θk−t)

j−l = (θk−t)
j .

Hence, we �nd that the number of elements of Sp through γj is at most (θk−t)
j
[
n−t−x
k−t−x

]
. �

Lemma 4.4.5. Let Sp be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n, q). If ψ(Sp) = t + x, x ≥ 2, k ≥ t + 2, t ≥ 1, and n ≥ 2k − t + 1, then |Sp| ≤
(θk−t)

x
[
n−t−x
k−t−x

][
t+x+1
t+1

]
.

Proof. Suppose that ψ(Sp) = t+x, x ≥ 2. By Lemma 4.4.4, we know, for j ∈ {0, 1, 2, . . . , x}, that
the number of k-spaces of Sp through a (t+ x− j)-space is at most

[
n−t−x
k−t−x

]
(θk−t)

j .

Consider now an element T ∈ T . �en every element ofSp meets T in at least a t-space. Since there
are
[
t+x+1
t+1

]
projective t-spaces in T and since every t-space is contained in at most (θk−t)

x
[
n−t−x
k−t−x

]
elements of Sp, we �nd that Sp has at most (θk−t)

x
[
n−t−x
k−t−x

][
t+x+1
t+1

]
elements. �

Lemma 4.4.6. Let Sp be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n, q), n ≥ 2k − t+ 1, k ≥ t+ 1 and t ≥ 1. If ψ(Sp) = t+ 1 and |T | ≤ 2, then

|Sp| ≤ 2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
.

Proof. Let T be a (t+1)-space of T . SinceSp is a maximal set, we know that all
[
n−t−1
k−t−1

]
subspaces of

dimension k, through T , are contained in Sp. Now we determine the size of the set Sp0 of k-spaces
of Sp not through T . For every π ∈ Sp0, dim(π ∩ T ) = t. Let E be a t-space in T , then there exists
an element α ∈ Sp0 not through E, and so dim(α ∩ E) = t − 1. Hence, every element π of Sp0
through E must contain a (t+ 1)-space τ , di�erent from T , such that E ⊂ τ and τ ∩ (α \E) 6= ∅.
Note that there are θk−t − 1 possibilities for τ . Fix such a (t+ 1)-space τ .

• If T = {T}, we know that τ /∈ T , and hence there exists an element σ of Sp, meeting τ in at
most a (t− 1)-space. Hence, every element of Sp0 through τ meets σ \ τ , and so the number
of elements of Sp0 through τ is at most θk−t

[
n−t−2
k−t−2

]
. Since there are θt+1 possibilities for E,

and at most θk−t − 1 for τ , we have that

|Sp| ≤
[
n− t− 1

k − t− 1

]
+ θt+1(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
.

• Suppose |T | = 2, and let T = {T,Ψ}. If τ = Ψ, then Sp contains all
[
n−t−1
k−t−1

]
k-spaces

through τ . If τ 6= Ψ, then we can follow the argument in the previous item, and we �nd
that the number of elements of Sp0 through τ is at most θk−t

[
n−t−2
k−t−2

]
. Note that there are

θt+1−1 possibilities forE 6= T ∩Ψ. IfE 6= T ∩Ψ, there are at most θk−t−1 possibilities for
τ /∈ {Ψ, T}, through E. Furthermore, if E = T ∩Ψ, there are at most θk−t − 2 possibilities
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for τ /∈ {Ψ, T} through E = T ∩Ψ. Hence, we have that

|Sp| ≤
[
n− t− 1

k − t− 1

]
+
∑
E⊂T

∑
τ⊇E
|{π ∈ Sp0|τ ⊂ π}|

≤
[
n− t− 1

k − t− 1

]
+

∑
E 6=T∩Ψ

∑
τ⊇E

θk−t

[
n− t− 2

k − t− 2

]
+

∑
τ⊃T∩Ψ

|{π ∈ Sp0|τ ⊂ π}|

≤
[
n− t− 1

k − t− 1

]
+ (θt+1 − 1)(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
+
∑
τ 6=Ψ,T

θk−t

[
n− t− 2

k − t− 2

]
+

[
n− t− 1

k − t− 1

]

≤ 2

[
n− t− 1

k − t− 1

]
+ (θt+1 − 1)(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
+ (θk−t − 2)θk−t

[
n− t− 2

k − t− 2

]
= 2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
.

�e lemma follows since

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 1

k − t− 1

]
+ θt+1(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
for n ≥ 2k − t+ 1, k ≥ t+ 1, q ≥ 2 (see Lemma 4.5.3). �

From now on, we de�ne fp(q, n, k, t) as the maximum of the number of elements in the sets de-
scribed in Example 4.2.1 and Example 4.2.3.

fp(q, n, k, t) = max

{
θk+1 − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
,

θt+2 ·
([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
+

[
n− t− 2

k − t− 2

]}
.

From Lemma 4.5.5, 4.5.6 and 4.5.7, we �nd, for n ≥ 2k − t+ 1, k ≥ t+ 2, q ≥ 3, that

fp(q, n, k, t) =

{
θk+1 − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

if k ≥ 2t+ 3

θt+2 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
if k ≤ 2t+ 2.

�eorem 4.4.7. Let Sp be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n, q), k ≥ t+ 2, t ≥ 1, with q ≥ 3, and n ≥ 2k + t+ 3,. If Sp is not a t-pencil, then

|Sp| ≤ fp(q, n, k, t).

Equality occurs if and only if Sp is Example 4.2.1 for k ≥ 2t+ 3 or Example 4.2.3 for k ≤ 2t+ 2.

Proof. Let Sp be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in PG(n, q),
with Sp not a t-pencil, and suppose that |Sp| ≥ fp(q, n, k, t). From Lemma 4.4.5 and Lemma 4.5.13,
it follows that ψ(Sp) < t + 2. Since Sp is not a t-pencil, ψ(Sp) > t, and so ψ(Sp) = t + 1. From
Lemma 4.4.6, it follows that if |T | ≤ 2, then |Sp| ≤ 2

[
n−t−1
k−t−1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n−t−2
k−t−2

]
,
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a contradiction, by Lemma 4.5.16. Hence, |T | > 2. From Lemma 4.4.3(3), it follows that T is a
t-intersecting set of (t + 1)-spaces. Hence, T is contained in a t-pencil or all elements of T are
contained in a (t+ 2)-space (see �eorem 2.0.6).

We �rst suppose that there is no t-space contained in all elements of T . Hence, we know that all
elements of T are contained in a (t+2)-space ω. �is implies that every element of Sp must meet ω
in at least a (t+1)-space. SinceSp is maximal, we know thatSp contains all k-spaces meetingω in at
least a (t+ 1)-space, which is Example 4.2.3. Hence, |Sp| = θt+2 ·

([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
,

if there is no t-space contained in all elements of T . �is number is larger than θk+1 − θk−t +[
n−t
k−t
]
− q(k−t−1)(k−t)[n−k−1

k−t
]
, if and only if k ≤ 2t+ 2. So, for k ≥ 2t+ 3, we �nd a contradiction.

It follows that we may suppose that the elements of T are contained in a t-pencil with vertex the
t-space δ. Let Z be the span of all elements of T and let dim(Z) = t + x, x ≥ 2. Since Sp is not
a t-pencil, we know that there are k-spaces in Sp that do not contain δ. �ese elements of Sp, not
through δ, meet δ in a (t− 1)-space, since they have a t-space in common with every (t+ 1)-space
of T . We can also check that each such element meets Z in a (t + x − 1)-space: suppose to the
contrary that there is an element α of Sp, not through δ, that meets Z in the subspace Z0 = α∩Z ,
with dimension at most t+ x− 2. Since α meets all (t+ 1)-spaces of T in a t-space di�erent from
δ, it follows that the span of all elements of T is equal to 〈Z0, δ〉, which has dimension at most
t+ x− 1. �is contradicts the assumption that the span of all elements of T has dimension t+ x.

�e dimension of the span Z of all the (t+ 1)-spaces in T is at most k+ 1: if dim(Z) > k+ 1, then
every k-space of Sp, not through δ, would meet Z in a subspace with dimension dim(Z)− 1 > k,
a contradiction.

Let π ∈ Sp be an element that does not contain δ, and let ξ = 〈δ, π〉. Note that every element of Sp
through δ has at least a (t+ 1)-space in common with ξ. Now we claim that all elements of Sp, not
through δ, are contained in ξ. Suppose that this is not the case, then there exists an element π1 ∈ Sp
with δ * π1 and π1 * ξ. �en every element of Sp through δ meets both π\δ and π1\δ. Hence, the
number of elements of Sp, through δ, is at most θ2

k−t
[
n−t−2
k−t−2

]
+ θk−t−1

[
n−t−1
k−t−1

]
. Here, the �rst term

is an upper bound on the number of elements meeting both π \π1 and π1 \π. �e second term is an
upper bound on the number of elements meeting (π∩π1)\δ. Since every element of Sp not through
δ meetsZ in a (t+x−1)-space, we �nd that |Sp| ≤ θt+x

[
n−t−x+1
k−t−x+1

]
+θ2

k−t
[
n−t−2
k−t−2

]
+θk−t−1

[
n−t−1
k−t−1

]
.

For 2 ≤ x ≤ k − t+ 1, k ≥ 2t+ 3, n ≥ 2k + t+ 3, t ≥ 1 and q ≥ 3; this gives a contradiction by
Lemma 4.5.20, since |S| ≥ fp(q, n, k, t). Hence, we �nd that Sp is contained in Example 4.2.1. �e
theorem follows from the maximality of Sp. �

Remark 4.4.8. As already mentioned in the introduction of this chapter, a similar result was found
independently by Cao, Lv, Wang and Zhou in [29]. �ey could prove the same result as in �eorem
4.4.7 for all values of q and n ≥ 2k + t + 6. Hence, the di�erence between the results is that they
also covered the case for q = 2, but we found a be�er bound on the possible values of the dimension
n: n ≥ 2k + t+ 3.

4.4.2 Classi�cation of the largest t-intersecting sets in AG(n, q)

In [69], the authors prove that the largest t-intersecting set of k-spaces in AG(n, q), with n ≥
2k + t + 2, is the set of all k-spaces through a �xed a�ne t-space. �ey use geometrical and
combinatorial techniques, but they do not use the connection between AG(n, q) and PG(n, q).
Below we give a shorter proof for this result, for n ≥ 2k + 1, by using �eorem 2.0.3.
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�eorem 4.4.9. Let S be a set of k-spaces in AG(n, q), n ≥ 2k+ 1, k ≥ t ≥ 0, pairwise intersecting
in at least a t-space. �en |S| ≤

[
n−t
k−t
]
, and equality occurs if and only if S is a t-pencil.

Proof. Let S be a set of k-spaces in AG(n, q), pairwise intersecting in at least a t-space. Every a�ne
element α in S can be extended to the corresponding projective k-space α̃ in PG(n, q). Let S̃ be
the set of these extended k-spaces. Note that then, S̃ is a t-intersecting set of k-spaces in PG(n, q).
If there would exist such a set S with |S| >

[
n−t
k−t
]
, then |S̃| >

[
n−t
k−t
]
, which contradicts �eorem

2.0.3. Hence, |S| ≤
[
n−t
k−t
]

for all t-intersecting sets S in AG(n, q).

Note that the set of all a�ne k-spaces through a �xed a�ne t-space is a t-intersecting set of k-
spaces in AG(n, q) with size

[
n−t
k−t
]
. Suppose now that there exists a t-intersecting set S of k-spaces

in AG(n, q) with
[
n−t
k−t
]

elements, which is not a t-pencil. �en S̃ is a t-intersecting set of k-spaces
in PG(n, q) with |S̃| =

[
n−t
k−t
]
. It follows from �eorem 2.0.3 that n = 2k + 1 and that all elements

of S̃ are contained in a projective (2k−t)-space. Since the number of a�ne k-spaces in a projective
(2k − t)-space is

[
2k−t+1
k+1

]
−
[
2k−t
k+1

]
, we see that in this case |S| <

[
n−t
k−t
]
. Hence, an a�ne t-pencil

is the only example of a set of pairwise t-intersecting k-spaces in AG(n, q) with size
[
n−t
k−t
]
. �

4.4.3 Classi�cation of the largest non-trivial t-intersecting sets in AG(n, q)

In this subsection, we investigate the largest non-trivial sets of k-spaces in AG(n, q) pairwise in-
tersecting in at least a t-space. For t = 0, the largest non-trivial example was found in [68].

�eorem 4.4.10 ([68]). Suppose k ≥ 3, n ≥ 2k+ 4 and (n, q) 6= (2k+ 4, 2). Let S be a non-trivial
intersecting family in AG(n, q), then |S| ≤

[
n−1
k−1

]
− qk(k−1)

[
n−k−1
k−1

]
+ qk. Equality holds if and only

if

1. S is Example 4.3.1 for t = 0, or

2. S is Example 4.3.3 for t = 0.

Many results and proofs in this a�ne se�ing are similar to the results and proofs in the projective
se�ing, but because of some structural di�erences, we decided to discuss the Hilton-Milner problem,
in the projective and a�ne context, in di�erent subsections.

We again suppose that k ≥ t + 2 and t ≥ 1. Let Sa be a maximal set of k-spaces in AG(n, q),
n ≥ 2k − t+ 1, pairwise meeting in at least a t-space. Let

ψ(Sa) = min{ dim(T ) | T ⊂ AG(n, q), dim(T ∩ α) ≥ t, ∀α ∈ Sa}.

Let T be the set of all ψ(Sa)-dimensional spaces in AG(n, q) that meet every element of Sa in at
least a t-space.

Lemma 4.4.11. We have the following properties for ψ(Sa) and T .

1. t ≤ ψ(Sa) ≤ k, and if ψ(Sa) = t, then Sa is a t-pencil.

2. Let T ∈ T , then all k-spaces through T are contained in Sa.

3. �e elements of T are t-intersecting in AG(n, q).

Proof. Analogous to the proof of Lemma 4.4.3. �

Lemma 4.4.12. Let ψ(Sa) = t + x, x ≥ 1, k ≥ t + 2, t ≥ 1, and n ≥ 2k − t + 1. �en the
number of elements of Sa through an a�ne (t + x − j)-space, with j ∈ {0, 1, 2, . . . , x}, is at most
(θk−t)

j
[
n−t−x
k−t−x

]
.
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Proof. Suppose that ψ(Sa) = t + x, x ≥ 2. We prove, by induction on j ∈ {0, 1, 2, . . . , x}, that
the number of k-spaces of Sa through an a�ne (t+ x− j)-space is at most

[
n−t−x
k−t−x

]
(θk−t)

j . Note
that the statement is true for j = 0, by counting the total number of k-spaces through an a�ne
(t+ x)-space.

Let j ∈ {1, 2, 3, . . . , x} and suppose now that the number of k-spaces of Sa through an a�ne
(t + x − j0)-space, is at most (θk−t)

j0
[
n−t−x
k−t−x

]
, for all j0 < j. �en we prove that this also holds

for j. Consider an a�ne (t + x − j)-space γj . Since ψ(Sa) = t + x, we know that there exists a
k-space πj of Sa, meeting γj in at most an a�ne (t− 1)-space.

Let max{dim(γj ∩π)|π ∈ Sa, dim(γj ∩π) < t} = t− l, then l ≥ 1, and suppose that πj ∈ Sa is an
element such that dim(πj ∩γj) = t− l. Let πjγ be a projective (k− t+ l−1)-space in π̃j \ γ̃j . �en
every element of S̃a through γ̃j contains at least an (l − 1)-space of πjγ . Since there are

[
k−t+l
l

]
(l − 1)-spaces in πjγ , and since the number of a�ne k-spaces in Sa through a (t + x − j + l)-
space is at most (θk−t)

j−l[n−t−x
k−t−x

]
, we �nd that the number of elements of S̃a through γ̃j is at most[

k−t+l
l

]
(θk−t)

j−l[n−t−x
k−t−x

]
. Note that[

k − t+ l

l

]
(θk−t)

j−l =
(qk−t+l − 1) . . . (qk−t+1 − 1)

(ql − 1) . . . (q − 1)
(θk−t)

j−l

≤
(
qk−t+1 − 1

q − 1

)l
(θk−t)

j−l = (θk−t)
j

Hence, also in this case, we �nd that the number of elements of S̃a through γ̃j , and so, the number
of elements of Sa through γj is at most (θk−t)

j
[
n−t−x
k−t−x

]
. �

Lemma 4.4.13. Let Sa be a set of k-spaces, pairwise intersecting in at least a t-space in AG(n, q). If
ψ(Sa) = t+ x, x ≥ 2, k ≥ t+ 2, t ≥ 1, and n ≥ 2k − t+ 1, then |Sa| ≤ qx

[
t+x
x

]
(θk−t)

x
[
n−t−x
k−t−x

]
.

Proof. Suppose that ψ(Sa) = t + x, x ≥ 2. By Lemma 4.4.12, we know, for j ∈ {0, 1, 2, . . . , x},
that the number of k-spaces of Sa through an a�ne (t+ x− j)-space is at most

[
n−t−x
k−t−x

]
(θk−t)

j .

Consider now an element T ∈ T . �en every element of Sa meets T in at least a t-space. Since
there are qx

[
t+x
x

]
a�ne t-spaces in T and since every t-space is contained in at most (θk−t)

x
[
n−t−x
k−t−x

]
elements of Sa, we �nd that Sa has at most qx

[
t+x
x

]
(θk−t)

x
[
n−t−x
k−t−x

]
elements. �

Lemma 4.4.14. Let Sa be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n, q), n ≥ 2k − t+ 1, k ≥ t+ 1 and t ≥ 1. If ψ(Sa) = t+ 1 and |T | ≤ 2, then

|Sa| ≤ 2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
.

Proof. Let T be an element of T . Since Sa is a maximal set, we know that all
[
n−t−1
k−t−1

]
k-spaces

through T are contained in Sa. Now we count the size of the set Sa0 of k-spaces of Sa not through
T . For every π ∈ Sa0, dim(π ∩ T ) = t, and let E be an a�ne t-space in T . �en there exists an
element α ∈ Sa0 not through E, and so dim(α ∩ E) = t − 1. Hence, every element π of Sa0,
through E must contain a (t+ 1)-space τ , di�erent from T , such that E ⊂ τ and τ ∩ (α \E) 6= ∅.
Note that there are θk−t − 1 possibilities for τ . Fix such a (t+ 1)-space τ .

• If T = {T}, we know that τ /∈ T , and hence there exists an element σ of Sa, meeting τ in at
most a (t− 1)-space. Hence, every element of Sa0 through τ meets σ \ τ , and so the number
of elements of Sa0 through τ is at most θk−t

[
n−t−2
k−t−2

]
. Since there are qθt possibilities for E,

and at most θk−t − 1 for τ , we have that

|Sa| ≤
[
n− t− 1

k − t− 1

]
+ qθt(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
.
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• Suppose |T | = 2, and let T = {T,Ψ}. If τ = Ψ, then Sa contains all
[
n−t−1
k−t−1

]
k-spaces

through τ . If τ 6= Ψ, then we can follow the argument in the previous item, and we �nd
that the number of elements of Sa0 through τ is at most θk−t

[
n−t−2
k−t−2

]
. Note that there are

qθt− 1 possibilities for E 6= T ∩Ψ, and at most θk−t− 1 for τ 6= Ψ, T , through E 6= T ∩Ψ.
Moreover, there are at most θk−t − 2 possibilities for τ 6= Ψ, T through E = T ∩Ψ. Hence,
we have that

|Sa| ≤
[
n− t− 1

k − t− 1

]
+
∑
E⊂T

∑
τ⊇E
|{π ∈ Sa0|τ ⊂ π}|

≤
[
n− t− 1

k − t− 1

]
+

∑
E 6=T∩Ψ

∑
τ⊇E

θk−t

[
n− t− 2

k − t− 2

]
+

∑
τ⊃T∩Ψ

|{π ∈ Sa0|τ ⊂ π}|

≤
[
n− t− 1

k − t− 1

]
+ (qθt − 1)(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
+
∑
τ 6=Ψ,T

θk−t

[
n− t− 2

k − t− 2

]
+

[
n− t− 1

k − t− 1

]

≤2

[
n− t− 1

k − t− 1

]
+ (qθt − 1)(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
+ (θk−t − 2)θk−t

[
n− t− 2

k − t− 2

]
=2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
.

�e lemma follows since

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 1

k − t− 1

]
+ qθt(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
for k ≥ t+ 1, n ≥ 2k − t, q ≥ 2 (see Lemma 4.5.4). �

From now on, we de�ne fa(q, n, k, t) as the maximum of the number of elements in the sets de-
scribed in Example 4.3.1 and Example 4.3.3 for n ≥ 2k − t+ 1.

fa(q, n, k, t) = max

{
θk − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
,

θt+1 ·
([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
+

[
n− t− 2

k − t− 2

]}
.

From Lemma 4.5.8, 4.5.9 and 4.5.10, we �nd for n ≥ 2k − t+ 1, k ≥ t+ 2, q ≥ 3 that

fa(q, n, k, t) =

{
θk − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

if k ≥ 2t+ 2

θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
if k ≤ 2t+ 1.

�eorem 4.4.15. Let Sa be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n, q), k ≥ t+ 2, t ≥ 1, with q ≥ 3, and n ≥ 2k + t+ 3. If Sa is not a t-pencil, then

|Sa| ≤ fa(q, n, k, t).

Equality occurs if and only if Sa is Example 4.3.1 for k ≥ 2t+ 2 or Example 4.3.3 for k ≤ 2t+ 1.

68



4 Hilton–Milner problems in PG(n, q) and AG(n, q)

Proof. Let Sa be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in AG(n, q),
with Sa not a t-pencil, and suppose that |Sa| ≥ fa(q, n, k, t). From Lemma 4.4.13 and Lemma
4.5.15, it follows that ψ(Sa) < t + 2. Since Sa is not a t-pencil, we �nd that ψ(Sa) > t, and so
ψ(Sa) = t+ 1.

From Lemma 4.4.14, it follows that if |T | ≤ 2, then |Sa| ≤ 2
[
n−t−1
k−t−1

]
+ (θt+1θk−t − θt+1 −

θk−t)θk−t
[
n−t−2
k−t−2

]
, a contradiction by Lemma 4.5.17. Hence, |T | > 2. From Lemma 4.4.11(3), it

follows that T is a t-intersecting set of (t + 1)-spaces. Hence, T , is contained in a t-pencil or all
elements of T are contained in a (t+ 2)-space (see �eorem 4.4.1).

We �rst suppose that there is no t-space contained in all elements of T . Hence, we know that
all elements of T are contained in a (t + 2)-space ω. We also know that the elements of T are t-
intersecting in the a�ne space, and so, every t-space in ω̃∩H∞ is contained in at most one element
of T . Moreover, we also �nd that every element π1 of Sa must meet ω in at least a (t + 1)-space.
�is follows since π1 must meet all elements of T , that are contained in a (t+ 2)-space, in at least
a t-space, and that there is no t-space contained in all elements of T .

In this case, we claim the following.
Claim (∗) �e number of elements of Sa is at most θt+1 ·

([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
, and

equality holds if and only if Sa is Example 4.3.3 .

Proof of claim: We �rst of all note that all k-spaces through ω are contained in Sa. Consider a
projective t-space αt ⊂ ω̃ ∩ H∞. �en we count the number of elements of S̃a through αt, not
through ω. �ere are two possibilities.

• All these elements meet ω̃ in the same a�ne (t+1)-spaceα+
t throughαt. �en the number of

elements of S̃a through αt and not through ω is at most
[
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

]
. If this is the case

for all t-spaces αt ⊂ ω̃ ∩H∞, then |Sa| ≤ θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
. Note that

two elements through the same t-space αt meet in at least an a�ne (t + 1)-space; α+
t . Two

k-spaces through di�erent t-spaces αt1 and αt2 will also have a t-space in common, since
they both contain the a�ne t-space α+

t1 ∩ α
+
t2. Since Sa is a maximal set of t-intersecting

k-spaces, we �nd that |Sa| = θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
, and that Sa has the

form described in Example 4.3.3.

• �ere is a t-space αt ⊂ ω̃∩H∞, such that there are two elements π1, π2 ∈ Sa, not contained
in ω, with αt ⊂ π̃1 ∩ π̃2, but π1 ∩ ω 6= π2 ∩ ω. �en every element π of S̃a through αt,
not through π1 ∩ ω, meets π1 in an a�ne point outside of ω. For the elements of S̃a through
π1 ∩ ω, but not through ω̃, we can use the same argument by using π2.

Note that π̃ meets ω̃ in one of the q a�ne (t+ 1)-spaces in ω̃ through αt.

– If π̃ ∩ ω̃ 6= π̃1 ∩ ω̃, then there are qk−t−1 − 1 ways to extend this (t + 1)-space π ∩ ω
to a (t + 2)-space, meeting π1 in an a�ne (t + 1)-space, not in ω. By investigating π̃1

in the quotient space PG(n, q)/αt, we �nd that there are qk−t−1 ways to extend π̃ ∩ ω̃
to a (t + 2)-space meeting π1 in an a�ne (t + 1)-space, and one of these extended
(t+ 2)-spaces is equal to ω.

– If π̃ ∩ ω̃ = π̃1 ∩ ω̃, then π̃ ∩ ω̃ 6= π̃2 ∩ ω̃. Hence, we can use the same argument from
the previous point to see that there are qk−t−1 − 1 ways to extend this (t+ 1)-space to
a (t+ 2)-space, meeting π2 in an a�ne (t+ 1)-space, not in ω.
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Hence, there are at most q(qk−t−1− 1) ·
[
n−t−2
k−t−2

]
elements of S̃a through αt and not through

ω, and as there are θt+1 possibilities for αt, and
[
n−t−2
k−t−2

]
elements through ω, we �nd that

|Sa| = |S̃a| ≤ θt+1q(q
k−t−1 − 1) ·

[
n−t−2
k−t−2

]
+
[
n−t−2
k−t−2

]
. We can check that this upper bound

is smaller than θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
, since

θt+1(qk−t − q)
[
n− t− 2

k − t− 2

]
< θt+1

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
⇔ (qk−t − q)

[
n− t− 2

k − t− 2

]
<

[
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

]
⇔ qk−t − q < qn−t−1 − qk−t−1

qk−t−1 − 1

⇔ q2k−2t−1 − 2qk−t + q < qn−t−1 − qk−t−1

⇔ 0 < q2k−2t−1
(
qn−2k+t − 1

)
+ qk−t−1(q − 1) + q

(
qk−t−1 − 1

)
,

is valid for n ≥ 2k − t + 1, k ≥ t + 2, q ≥ 3. �is proves that if there exists a t-space
αt ∈ H∞ ∩ ω̃, such that not all elements of S̃a through αt meet ω in the same (t+ 1)-space,
then the number of elements in Sa is smaller than the number of elements in Example 4.3.3.

�is proves Claim (∗).

So |Sa| = θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
if there is no t-space contained in all elements of

T . �is number is larger than θk − θk−t +
[
n−t
k−t
]
− q(k−t−1)(k−t)[n−k−1

k−t
]
, if and only if k ≤ 2t+ 1.

So, for k ≥ 2t+ 2, we �nd a contradiction.

Now we continue with the case that all elements of T are contained in a t-pencil with vertex the
a�ne t-space δ. Let Z be the span of all elements of T and let dim(Z) = t + x, x ≥ 2. Since
Sa is not a t-pencil, we know that there are k-spaces in Sa that do not contain δ. �ese elements
of Sa, not through δ, meet δ in a (t − 1)-space, since they have an a�ne t-space in common with
every (t + 1)-space of T . We can also check that each such element meets Z in a (t + x − 1)-
space: suppose to the contrary that there is an element α of Sa, not through δ, that meets Z in the
subspace Z0 = α∩Z , with dimension at most t+ x− 2. Since α meets all (t+ 1)-spaces of T in a
t-space di�erent from δ, it follows that the span of all elements of T is equal to 〈Z0, δ〉, which has
dimension at most t+x− 1. �is contradicts the assumption that the span of all elements of T has
dimension t+ x.

�e dimension of the span Z of all the (t+ 1)-spaces in T is at most k+ 1: if dim(Z) > k+ 1, then
every k-space of Sa, not through δ, would meet Z in a subspace with dimension dim(Z)− 1 > k,
a contradiction.

Let π ∈ Sa be an element that does not contain δ, and let ξ = 〈δ, π〉. Note that every element of Sa
through δ has at least a (t+ 1)-space in common with ξ. Now we claim that all elements of Sa, not
through δ, are contained in ξ. Suppose that this is not the case, then there exists an element π2 ∈ Sa
with δ * π2 and π2 * ξ. �en every element of Sa through δ meets both π\δ and π2\δ. Hence, the
number of elements of Sa, through δ, is at most θ2

k−t
[
n−t−2
k−t−2

]
+ θk−t−1

[
n−t−1
k−t−1

]
. Here, the �rst term

is an upper bound on the number of elements meeting both π \π2 and π2 \π. �e second term is an
upper bound on the number of elements meeting (π ∩ π2) \ δ, since dim((π ∩ π2) \ δ) ≤ k− t− 1.
Every element of Sa not through δ meets Z in a (t + x − 1)-space. �is implies that |Sa| ≤
θt+x

[
n−t−x+1
k−t−x+1

]
+θ2

k−t
[
n−t−2
k−t−2

]
+θk−t−1

[
n−t−1
k−t−1

]
. For n ≥ 2k+t+3, k ≥ 2t+2, t ≥ 1, x ≥ 3, q ≥ 3;

this gives a contradiction by Lemma 4.5.21, since |Sa| ≥ fa(q, n, k, t). Now, in a last step, we also
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have to �nd a contradiction for x = 2, and so Z a (t + 2)-space. In this situation, all k-spaces
not through δ must meet Z in a (t + 1)-space, not through δ. Now, every two elements of S , not
through δ, must meet in at least a t-space. �e same argument, used to deduce Claim (∗), can
be used to show the following. For every t-space αt ⊂ Z̃ ∩ H∞, δ̃ ∩ H∞ * αt, we have that all
elements of S̃a throughαt must meetZ in the same (t+1)-space. Hence, there are at most θt+1−θ1

possibilities for the intersection π ∩Z , with π ∈ Sa, δ * π, and there are at most
[
n−t−1
k−t−1

]
k-spaces

through a �xed (t+ 1)-space. Hence, we �nd that the number of elements of Sa, not through δ, is
at most q2θt−1

[
n−t−1
k−t−1

]
, and so |Sa| ≤ q2θt−1

[
n−t−1
k−t−1

]
+ θ2

k−t
[
n−t−2
k−t−2

]
+ θk−t−1

[
n−t−1
k−t−1

]
. �is gives a

contradiction for n ≥ 2k+ t+ 3, k ≥ 2t+ 2 and q ≥ 3 by Lemma 4.5.22 since |Sa| ≥ fa(q, n, k, t).
Hence, we �nd that every element of Sa, not through δ, is contained in ξ, and so Sa is contained in
Example 4.3.1. �e theorem follows from the maximality of Sa. �

4.5 Appendix

In this appendix, we will o�en use the bounds on the binomial Gaussian coe�cient, see Lemma
1.10.2.

We start with two lemmas that give two formulas for the number of elements in each of the Exam-
ples 4.2.1, 4.2.3, 4.3.1 and 4.3.3. We will use these di�erent expressions of the number of elements
of a set, depending on which formula simpli�es the counting argument.

Lemma 4.5.1. Let S2.1 be the set of elements described in Example 4.2.1 and let S2.3 be the set of
elements described in Example 4.2.3, then we have that

|S2.1| = θk+1 − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
(4.4)

= θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
, (4.5)

< qk−t+1θt + θk−t

[
n− t− 1

k − t− 1

]
(4.6)

|S2.3| =
[
n− t− 2

k − t− 2

]
+ θt+2 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
(4.7)

=

[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
. (4.8)

Proof. We will use the notation from Examples 4.2.1 and 4.2.3. �e �rst equality for |S2.1| follows
from Lemma 4.2.2. For the second equality, we count the number of elements of S2.1 in a di�erent
way. We have that |S2.1| = θk+1 +

∑k−t−2
j=0 |Qj(n, k, t)|, with Qj(n, k, t) = {β ∈ S2.1|β *

ξ,dim(β ∩ ξ) = j + t+ 1}, j ∈ {0, 1, . . . , k− t− 2}. Let σ0 be the (k− t)-space corresponding to
ξ in the quotient space PG(n, q)/δ. Note that the �rst term in the sum is the number of k-spaces
in ξ. Since an element in Qj corresponds to a (k − t − 1)-space in PG(n, q)/δ, meeting σ0 in a
j-space, and since there are

[
k−t+1
j+1

]
j-spaces in σ0, we �nd, by using Lemma 1.10.1, that

|S2.1| = θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
.

Inequality (4.6) follows since qk−t+1θt is the number of elements of S2.1 contained in ξ but not
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containing δ. �e second term θk−t
[
n−t−1
k−t−1

]
is the total number of k-spaces through a (t+ 1)-space

in ξ through δ. Note that in this term, the k-spaces meeting ξ in a subspace with dimension more
than t+ 1 are counted multiple times.
�e �rst equality for |S2.3| follows from Lemma 4.2.4, and the second from the de�nition of the
Gaussian coe�cients. �

Lemma 4.5.2. Let R3.1 be the set of elements described in Example 4.3.1 and let R3.3 be the set of
elements described in Example 4.3.3, then we have that

|R3.1| = θk − θk−t +

[
n− t
k − t

]
− q(k−t+1)(k−t)

[
n− k − 1

k − t

]
(4.9)

= θk +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
, (4.10)

< qk−t+1θt + θk−t

[
n− t− 1

k − t− 1

]
(4.11)

|R3.3| =
[
n− t− 2

k − t− 2

]
+ θt+1 ·

([
n− t− 1

k − t− 1

]
−
[
n− t− 2

k − t− 2

])
(4.12)

=

[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
. (4.13)

Proof. �e �rst equality for |R3.1| follows from Lemma 4.2.2. For the second equality, we use the
equality between the two formulas for |S2.1| in Lemma 4.5.1, since the formulas for |S2.1| and
|R3.1| only di�er in the �rst term. Inequality (4.11) follows from inequality (4.6) and the fact that
|R3.1| < |S2.1|. �e �rst equality for |S2.3| follows from Lemma 4.2.4, and the second from the
de�nition of the Gaussian coe�cients. �

Lemma 4.5.3. For n ≥ 2k − t+ 1, k ≥ t+ 1 and q ≥ 2, we have that

2

[
n− t− 1

k − t− 1

]
+(θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 1

k − t− 1

]
+ θt+1(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
.

Proof. �e inequality is equivalent to[
n− t− 1

k − t− 1

]
≥ θk−t

[
n− t− 2

k − t− 2

]
⇔ qn−t−1 − 1

qk−t−1 − 1
≥ qk−t+1 − 1

q − 1

⇔ qn−t − qn−t−1 − q + 1 ≥ q2k−2t − qk−t+1 − qk−t−1 + 1

⇔ q2k−2t
(
qn−2k+t − qn−2k+t−1 − 1

)
+ q

(
qk−t − 1

)
+ qk−t−1 ≥ 0

�e last inequality is valid since all terms in the le� hand side of the last inequality are non-negative
for n ≥ 2k − t+ 1, k ≥ t+ 1 and q ≥ 2. �

Lemma 4.5.4. For n ≥ 2k − t, k ≥ t+ 1 and q ≥ 2, we have that

2

[
n− t− 1

k − t− 1

]
+(θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 1

k − t− 1

]
+ qθt(θk−t − 1)θk−t

[
n− t− 2

k − t− 2

]
.
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Proof. �e inequality follows by subtracting (θk−t − 1)θk−t
[
n−t−2
k−t−2

]
on both sides of the inequality

from Lemma 4.5.3. �

Lemma 4.5.5. Let n ≥ 2k− t+ 1, q ≥ 3 and consider Example 4.2.1 and Example 4.2.3 in PG(n, q).
�e number of elements in Example 4.2.1 is larger than the number of elements in Example 4.2.3 if
k ≥ 2t+ 3.

Proof. Suppose to the contrary that the number of elements in Example 4.2.3 is larger than the
number of elements in Example 4.2.1 for k ≥ 2t+ 3. By using (4.5) and (4.8), we have

[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
≥ θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
j=0
==⇒

[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
> θk−tq

(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
L.1.10.2
=====⇒ 2q(k−t−2)(n−k)

(
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
>

(
1 +

1

q

)2

qk−t+(k−t)(k−t−1)+(k−t−1)(n−2k+t)

⇒ 2 + 2θt+2q
k−t−1 qn−k − 1

qk−t−1 − 1
>

(
1 +

1

q

)2

qn−t

⇒ 2(q − 1)(qk−t−1 − 1) + 2(qt+3 − 1)qk−t−1(qn−k − 1)

>

(
1 +

1

q

)2

(q − 1)(qk−t−1 − 1)qn−t

⇒ 2qk−t − 2qk−t−1 − 2q + 2 + 2qn+2 − 2qn−t−1 − 2qk+2 + 2qk−t−1

>

(
1 +

1

q

)2

(qn+k−2t − qn+k−2t−1 − qn−t+1 + qn−t)

= qn+k−2t + qn+k−2t−1 − qn+k−2t−2 − qn+k−2t−3 − qn−t+1 − qn−t

+ qn−t−1 + qn−t−2

⇒ qn−t+1
(
−qk−t−1 + 2qt+1 + 1

)
+ qn−t

(
−qk−t−1 + qk−t−2 + qk−t−3 + 1

)
+
(
−2qk+2 + 2qk−t + 2

)
+ (−2q − 3qn−t−1 − qn−t−2) > 0.

In the le� hand side of the last inequality, all terms are at most zero for k ≥ 2t + 3 and q ≥ 3.
Hence, we �nd a contradiction which proves the statement. �

Lemma 4.5.6. Let n ≥ 2k− t+1, k ≥ t+2, q ≥ 3, and consider Example 4.2.1 and Example 4.2.3 in
PG(n, q). �e number of elements in Example 4.2.3 is larger than the number of elements in Example
4.2.1 if k ≤ 2t+ 1.

Proof. Let k ≤ 2t+ 1 and suppose to the contrary that the number of elements in Example 4.2.3 is
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at most the number of elements in Example 4.2.3. �en we have, by using (4.6) and (4.8) that[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
< qk−t+1θt + θk−t

[
n− t− 1

k − t− 1

]
L.1.10.2
=====⇒

(
1 +

1

q

)
q(n−k)(k−t−2)

(
θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
< qk−t+1θt + 2θk−tq

(n−k)(k−t−1)

⇒
(

1 +
1

q

)
(qt+3 − 1)(qn−k − 1)qk−t−1

<
(qt+1 − 1)(qk−t−1 − 1)

q(n−k)(k−t−2)−k+t−1
+ 2(qk−t+1 − 1)(qk−t−1 − 1)qn−k

⇒ qn+2 + qk−t−1 + qn+1 + qk−t−2 − qn−t−1 − qk+2 − qn−t−2 − qk+1

< 2qn+k−2t + 2qn−k − 2qn−t−1 − 2qn−t+1

+ qk−t+1−(n−k)(k−t−2)(qt+1 − 1)(qk−t−1 − 1)

⇒
(
qn+2 − 2qn+k−2t − qk−t+1−(n−k)(k−t−2)(qt+1 − 1)(qk−t−1 − 1)

)
+ qn−t−2(q − 1)

+ qk+1(qn−k − q − 1) + qk−t−1(2qn−k+2 + 1− 2qn−2k+t+1) + qk−t−2 < 0

Now, the contradiction follows since all terms in the le� hand side of the last inequality are positive.
For the last four terms, this follows immediately since n ≥ 2k− t+ 1, k < 2t+ 2, k ≥ t+ 2, q ≥ 3.
We end this proof by proving that the �rst term is also positive. Since k ≥ t+2 and n ≥ 2k−t+1 =
k + (k − t) + 1 ≥ k + 2, we have that

1 ≤ (n− k − 1)(k − t− 1)

⇔ n+ 1 ≥ 2k − t+ 1− (n− k)(k − t− 2)

⇒ qn+2 ≥ 2qn+1 + qn+1 ≥ 2qn+k−2t + q2k−t+1−(n−k)(k−t−2)

> 2qn+k−2t + qk−t+1−(n−k)(k−t−2)(qt+1 − 1)(qk−t−1 − 1). �

Lemma 4.5.7. Let n ≥ 2k− t+1, q ≥ 3, and consider Example 4.2.1 and Example 4.2.3 in PG(n, q).
�e number of elements in Example 4.2.3 is larger than the number of elements in Example 4.2.1 if
k = 2t+ 2.

Proof. Let S2.1 and S2.3 be the set of elements in Example 4.2.1 and in Example 4.2.3 respectively.
Suppose that k = 2t + 2, then we have to prove that |S2.3| > |S2.1|. From (4.7) and Lemma 1.10.4
for
[
a
b

]
equal to

[
n−t−1
t+1

]
and

[
n−t−2

t

]
, and with for both c = t+ 1, we �nd that

|S2.3| =
[
n− t− 2

t

]
+

t+1∑
j=0

θt+2

[
t+ 1

j

](
q(t−j+1)2

[
n− 2t− 2

t− j + 1

]
− q(t−j)(t−j+1)

[
n− 2t− 3

t− j

])

=

[
n− t− 2

t

]
+

t∑
j=0

θt+2

[
t+ 1

j

]
q(t−j+1)(t−j)

[
n− 2t− 3

t− j

]
qn−t−j−1 − 2qt−j+1 + 1

qt−j+1 − 1
+ θt+2.

(4.14)

On the other hand, by (4.5), we have that

|S2.1| = θ2t+3 +
t∑

j=0

[
t+ 3

j + 1

]
q(t+2−j)(t+1−j)

[
n− 2t− 3

t+ 1− j

]
. (4.15)
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From (4.14) and (4.15), it follows that |S2.3| − |S2.1| is equal to

[
n− t− 2

t

]
+ θt+2 − θ2t+3︸ ︷︷ ︸

=w1

+
t∑

j=0

q(t+1−j)(t−j)
[
n− 2t− 3

t− j

][
t+ 1

j

]
qt+3 − 1

qt−j+1 − 1
w2,

with

w2 =
qn−t−j−1 − 2qt−j+1 + 1

q − 1
− q2(t+1−j) (qn−3t−3+j − 1)(qt+2 − 1)

(qj+1 − 1)(qt+2−j − 1)

We will prove that w1 ≥ 0 and w2 ≥ 0, which proves that |S2.3| ≥ |S2.1| for k = 2t+ 2.

w1 =

[
n− t− 2

t

]
+ θt+2 − θ2t+3

L.1.10.2
≥

(
1 +

1

q

)
q(n−2t−2)t + θt+2 −

q2t+4

q − 1

≥ 1

q(q − 1)

(
q(n−2t−2)t+2 − q(n−2t−2)t − q2t+5

)
+ θt+2

As

q(n−2t−2)t+2 − q(n−2t−2)t − q2t+5 ≥ 3q(n−2t−2)t+1 − q(n−2t−2)t − q2t+5 > q(n−2t−2)t+1 − q2t+5,

it is su�cient to prove that q(n−2t−2)t+1 ≥ q2t+5. �is inequality is valid for n ≥ 2t + 4 + 4
t . For

t > 1, this assumption holds since n ≥ 2k − t+ 1 = 3t+ 5. If t = 1 and n ≥ 10, we also �nd that
q(n−2t−2)t+1 ≥ q2t+5. For n = 9 and t = 1, we �nd that w1 = θ3 > 0. In the last remaining case;
n = 8, t = 1, we have that w1 < 0. For this case, we used a computer algebra package to calculate
both numbers |S2.3|, |S2.1| to see that |S2.3| ≥ |S2.1|.

w2 =
qn−t−j−1 − 2qt−j+1 + 1

q − 1
− q2(t+1−j) (qn−3t−3+j − 1)(qt+2 − 1)

(qj+1 − 1)(qt+2−j − 1)

=
qn−t−j

(
qt+1 + 1− qj − qt−j+1

)
+ q2t−j+4

(
qt−j+1 − qt−j − 2

)
(q − 1)(qj+1 − 1)(qt+2−j − 1)

+
2qt−j+1

(
qj+1 − 1

)
+
(
qt+3 − qj+1 − qt−j+2

)
+ q2t−2j+2 + q2t−2j+3 + 1

(q − 1)(qj+1 − 1)(qt+2−j − 1)

For 0 ≤ j ≤ t, we �nd that both the nominator and denominator are positive, since we have that
q ≥ 3. So w2 ≥ 0. Hence, we have that |S2.3| > |S2.1|. �

Lemma 4.5.8. Let n ≥ 2k− t+1, q ≥ 3, and consider Example 4.3.1 and Example 4.3.3 in AG(n, q).
�e number of elements in Example 4.3.1 is larger than the number of elements in Example 4.3.3 if
k ≥ 2t+ 2.

Proof. Let k ≥ 2t+ 2 and suppose to the contrary that the number of elements in Example 4.3.1 is
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at most the number of elements in Example 4.3.3. �en by using (4.10) and (4.13), we have that[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
≥ θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
j=0
==⇒

[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
> θk−tq

(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
L.1.10.2
=====⇒ 2q(k−t−2)(n−k)

(
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
>

(
1 +

1

q

)2

qk−t+(k−t)(k−t−1)+(k−t−1)(n−2k+t)

⇒ 2 + 2θt+1q
k−t−1 qn−k − 1

qk−t−1 − 1
>

(
1 +

1

q

)2

qn−t

⇒ 2(q − 1)(qk−t−1 − 1) + 2(qt+2 − 1)qk−t−1(qn−k − 1)

>

(
1 +

1

q

)2

(q − 1)(qk−t−1 − 1)qn−t

⇒ 2qk−t − 2qk−t−1 − 2q + 2 + 2qn+1 − 2qn−t−1 − 2qk+1 + 2qk−t−1

>

(
1 +

1

q

)2

(qn+k−2t − qn+k−2t−1 − qn−t+1 + qn−t)

= qn+k−2t + qn+k−2t−1 − qn+k−2t−2 − qn+k−2t−3 − qn−t+1 − qn−t

+ qn−t−1 + qn−t−2

⇒ qn−t+1
(
−qk−t−1 + 2qt + 1

)
+ qn−t

(
−qk−t−1 + qk−t−2 + qk−t−3 + 1

)
+ 2

(
−qk+1 + qk−t + 1

)
− (2q + 3qn−t−1 + qn−t−2) > 0.

In the le� hand side of the last inequality, all terms are at most zero for k ≥ 2t + 2 and q ≥ 3.
Hence, we �nd a contradiction which proves the statement. �

Lemma 4.5.9. Let n ≥ 2k− t+1, k ≥ t+2, q ≥ 3, and consider Example 4.3.1 and Example 4.3.3 in
AG(n, q). �e number of elements in Example 4.3.3 is larger than the number of elements in Example
4.3.1 if k ≤ 2t.

Proof. Let k ≤ 2t and suppose to the contrary that the number of elements in Example 4.3.1 is at
least the number of elements in Example 4.3.3. �en we have, by using (4.11) and (4.13), that[

n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
< qk−t+1θt + θk−t

[
n− t− 1

k − t− 1

]
L.1.10.2
=====⇒

(
1 +

1

q

)
q(n−k)(k−t−2)

(
θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
< qk−t+1θt + 2θk−tq

(n−k)(k−t−1)

⇒
(

1 +
1

q

)
(qt+2 − 1)(qn−k − 1)qk−t−1

<
(qt+1 − 1)(qk−t−1 − 1)

q(n−k)(k−t−2)−k+t−1
+ 2(qk−t+1 − 1)(qk−t−1 − 1)qn−k
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⇒ qn+1 + qk−t−1 + qn + qk−t−2 − qn−t−1 − qk+1 − qn−t−2 − qk

< 2qn+k−2t + 2qn−k − 2qn−t−1 − 2qn−t+1 +
qk−t+1(qt+1 − 1)(qk−t−1 − 1)

q(n−k)(k−t−2)

⇒
(
qn+1 − 2qn+k−2t − qk−t+1−(n−k)(k−t−2)(qt+1 − 1)(qk−t−1 − 1)

)
+ qn−t−2 (q − 1)

+ qk
(
qn−k − qn−2k − q − 1

)
+ qk−t−2

(
2qn−k+3 + q + 1− qn−2k+t+2

)
< 0

Now, the contradiction follows since all terms in the le� hand side of the last inequality are positive.
For the last three terms, this follows immediately since n ≥ 2k− t+1, k < 2t+1, k ≥ t+2, q ≥ 3.
We end this proof by proving that the �rst term is also positive. Since k ≥ t+2 and n ≥ 2k−t+1 =
k + (k − t) + 1 ≥ k + 3, we have that

2 ≤ (n− k − 1)(k − t− 1)

⇔ n ≥ 2k − t+ 1− (n− k)(k − t− 2)

⇒ qn+1 ≥ 2qn + qn ≥ 2qn+k−2t + q2k−t+1−(n−k)(k−t−2)

> 2qn+k−2t + qk−t+1−(n−k)(k−t−2)(qt+1 − 1)(qk−t−1 − 1). �

Lemma 4.5.10. Let n ≥ 2k − t + 1, q ≥ 3, and consider Example 4.3.1 and Example 4.3.3 in
AG(n, q). �e number of elements in Example 4.3.3 is at least the number of elements in Example 4.3.1
if k = 2t+ 1.

Proof. Let R3.1 and R3.3 be the set of elements in Example 4.3.1 and in Example 4.3.3 respectively.
Suppose that k = 2t + 1, then we have to prove that |R3.3| ≥ |R3.1|. By (4.12) and Lemma 1.10.4
for
[
a
b

]
equal to

[
n−t−1

t

]
and

[
n−t−2
t−1

]
, and with for both c = t, we �nd that

|R3.3| =
[
n− t− 2

t− 1

]
+

t∑
j=0

θt+1

[
t

j

](
q(t−j)2

[
n− 2t− 1

t− j

]
− q(t−j−1)(t−j)

[
n− 2t− 2

t− j − 1

])

=

[
n− t− 2

t− 1

]
+

t−1∑
j=0

θt+1

[
t

j

]
q(t−j)(t−j−1)

[
n− 2t− 2

t− j − 1

]
qn−t−j−1 − 2qt−j + 1

qt−j − 1
+ θt+1.

(4.16)

On the other hand, by (4.10), we have that

|R3.1| = θ2t+1 +
t−1∑
j=0

[
t+ 2

j + 1

]
q(t+1−j)(t−j)

[
n− 2t− 2

t− j

]
. (4.17)

Hence, it follows that

|R3.3| − |R3.1| =
[
n− t− 2

t− 1

]
+ θt+1 − θ2t+1︸ ︷︷ ︸

=w1

+

t−1∑
j=0

q(t−j)(t−j−1)

[
n− 2t− 2

t− j

][
t

j

]
(qt+2 − 1)w2,

with

w2 =
qn−t−j−1 − 2qt−j + 1

(q − 1)(qn−3t+j−1 − 1)
− qt+1 − 1

(qj+1 − 1)(qt−j+1 − 1)
q2(t−j).
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We will prove that w1 ≥ 0 and w2 ≥ 0, which proves that |R3.3| ≥ |R3.1| for k = 2t+ 1.

w1 =

[
n− t− 2

t− 1

]
+ θt+1 − θ2t+1

≥
(

1 +
1

q

)
q(n−2t−1)(t−1) + θt+1 −

q2t+2

q − 1

=
1

q(q − 1)

(
q(n−2t−1)(t−1)+2 − q(n−2t−1)(t−1) − q2t+3

)
+ θt+1.

Note that we used Lemma 1.10.2 for the inequality on the second line. Since

q(n−2t−1)(t−1)+2 − q(n−2t−1)(t−1) − q2t+3 ≥ 3q(n−2t−1)(t−1)+1 − q(n−2t−1)(t−1) − q2t+3

> q(n−2t−1)(t−1)+1 − q2t+3,

it is su�cient to prove that q(n−2t−1)(t−1)+1 ≥ q2t+3. �is inequality is valid for n ≥ 2t+ 3 + 4
t−1 .

For t ≥ 3, this assumption holds since n ≥ 2k − t + 1 = 3t + 3. For t = 2, the assumption holds
for n ≥ 11. For t = 2, n = 10, we have that w1 = θ3 > 0. Since n ≥ 2k− t+ 1 = 3t+ 3, the only
remaining cases are t = 2 and n = 9, and t = 1 and n ≥ 6. In these cases, we immediately calculate
|R3.3| − |R3.1|. For t = 2, n = 9, we have that |R3.3| − |R3.1| = q9 + 2q8 + 3q7 + 2q6 + q5 > 0.
For t = 1, n > 5, we have that |R3.3| = |R3.1| = 1 + qθ2θn−4.

Now we investigate w2:

w2 =
qn−t−j−1 − 2qt−j + 1

(q − 1)(qn−3t+j−1 − 1)
− qt+1 − 1

(qj+1 − 1)(qt−j+1 − 1)
q2(t−j)

=
(qj+1 − 1)(qt−j+1 − 1)(qn−t−j−1 − 2qt−j + 1)− (q − 1)(qn−3t+j−1 − 1)(qt+1 − 1)q2(t−j)

(q − 1)(qn−3t+j−1 − 1)(qj+1 − 1)(qt−j+1 − 1)

=
qn−2j−t (qj+t − q2j − qt

)
+ q2t−j+2

(
qt−j − qt−j−1 − 2

)
(q − 1)(qn−3t+j−1 − 1)(qj+1 − 1)(qt−j+1 − 1)

+

(
qt+2 + 2qt+1 − qt−j+1 − 2qt−j − qj+1

)
+ q2t−2j+1 + q2t−2j + 1 + qn−j−t

(q − 1)(qn−3t+j−1 − 1)(qj+1 − 1)(qt−j+1 − 1)
.

As 0 ≤ j ≤ t − 1 and q ≥ 3, we �nd that all terms in the nominator are at least 0, which proves
that w2 ≥ 0. Hence, we �nd that |R3.3| ≥ |R3.1|. �

Lemma 4.5.11. Suppose n ≥ 2k + t+ 3, q ≥ 2, k ≥ t+ 2, t ≥ 1, then

(θk−t)
x

[
n− t− x
k − t− x

][
t+ x+ 1

t+ 1

]
< (θk−t)

2

[
n− t− 2

k − t− 2

][
t+ 3

t+ 1

]
for all 2 < x ≤ k − t.

Proof. It is su�cient to prove that

(θk−t)
x+1

[
n− t− x− 1

k − t− x− 1

][
t+ x+ 2

t+ 1

]
< (θk−t)

x

[
n− t− x
k − t− x

][
t+ x+ 1

t+ 1

]
, (4.18)
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for all x ≥ 2.

(θk−t)
x+1

[
n− t− x− 1

k − t− x− 1

][
t+ x+ 2

t+ 1

]
< (θk−t)

x

[
n− t− x
k − t− x

][
t+ x+ 1

t+ 1

]
⇔ qk−t+1 − 1

q − 1
(qt+x+2 − 1) <

qn−t−x − 1

qk−t−x − 1
(qx+1 − 1)

⇔ (qk−t+1 − 1)(qk−t−x − 1)
(
qt+x+2 − 1

)
< (q − 1)

(
qn−t−x − 1

) (
qx+1 − 1

)
⇔ (qn−t+2 − qn−t+1 − qn−t−x+1 − q2k−t+3) + qk−t−x(qn−k − 1) + qt+x+2(qk−t+1 − 1)

+ (qk+2 − qx+2 − qk−t+1) + q(q2k−2t−x + qx + 1) > 0.

�e last four terms are positive for q ≥ 2 since k > x ≥ 2. For the �rst term, we have that

qn−t+2 − qn−t+1 ≥ qn−t+1 ≥ 2qn−t > qn−t−x+1 + q2k−t+3,

which is true since x ≥ 2 and n ≥ 2k + t+ 3. �

Lemma 4.5.12. Suppose k ≥ 2t+ 2, t ≥ 1, q ≥ 3 and n ≥ 2k + t+ 3, then

(θk−t)
2

[
t+ 3

t+ 1

][
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]
<

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
,

for all j ∈ {0, . . . , k − t− 2}.

Proof.

(θk−t)
2

[
t+ 3

t+ 1

][
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]
<

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
⇔ (qk−t+1 − 1)2

(q − 1)2

(qt+3 − 1)(qt+2 − 1)

(q2 − 1)(q − 1)

[
n− k

k − t− j − 2

]
·
(

(qj+1 − 1)(qk−t−j − 1)(qk−t−j−1 − 1)

(qk−t+1 − 1)(qk−t − 1)(qk−t−1 − 1)

[
k − t+ 1

j + 1

])
<

[
k − t+ 1

j + 1

](
(qn−2k+t+j+2 − 1)(qn−2k+t+j+1 − 1)

(qn−k − 1)(qk−t−j−1 − 1)

[
n− k

k − t− j − 2

])
q3k−3t−3j−4

⇔ (qk−t+1 − 1)

(q − 1)2

(qt+3 − 1)(qt+2 − 1)

(q2 − 1)(q − 1)

(qj+1 − 1)(qk−t−j − 1)(qk−t−j−1 − 1)

(qk−t − 1)(qk−t−1 − 1)

<
(qn−2k+t+j+2 − 1)(qn−2k+t+j+1 − 1)

(qn−k − 1)(qk−t−j−1 − 1)
q3k−3t−3j−4

⇔ (qn−k − 1)(qk−t−j−1 − 1)(qk−t+1 − 1)
(qk−t−j − 1)(qk−t−j−1 − 1)

(qk−t − 1)(qk−t−1 − 1)

< (q − 1)3(q2 − 1)
qn−2k+t+j+1 − 1

qj+1 − 1

qn−2k+t+j+2 − 1

(qt+3 − 1)(qt+2 − 1)
q3k−3t−3j−4

It is true that q
a−1
qb−1

≤ qa−b if and only if b ≥ a. We use this bound twice in the last fraction on the
le� side of the inequality. Moreover, since qn−2k+t+j+2−1

(qt+3−1)(qt+2−1)
≥ qn−2k−t+j−3 ≥ 1 it is su�cient to
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prove that

qn+k−2t−3j < (q − 1)3(q2 − 1)
qn−2k+t+j+1 − 1

qj+1 − 1
qn+k−4t−2j−7

⇔ q2t−j+7

qn−2k+t+j+1 − 1
<

(q − 1)3(q2 − 1)

qj+1 − 1

⇐ q2t−j+7

q2t+j+4 − 1
(qj+1 − 1) < (q − 1)3(q2 − 1)

⇐ q7−j

qj+4 − 1
(qj+1 − 1) < (q − 1)3(q2 − 1)

⇐ q7

q4 − 1
(q − 1) < (q − 1)3(q2 − 1)

�e third inequality follows since f(n) = q2t−j+7

qn−2k+t+j+1−1
is decreasing and n ≥ 2k + t + 3. �e

fourth inequality follows since h(t) = q2t−j+7

q2t+j+4−1
is decreasing and t ≥ 0 while the last inequality

follows as g(j) = q7−j

qj+4−1
(qj+1 − 1) is decreasing and j ≥ 0. �e last inequality is true for all

q ≥ 3. �

Lemma 4.5.13. Suppose k ≥ t+ 2, t ≥ 1, q ≥ 3 and n ≥ 2k + t+ 3, then

(θk−t)
x

[
n− t− x
k − t− x

][
t+ x+ 1

t+ 1

]
< fp(q, n, k, t)

for all 2 ≤ x ≤ k − t.

Proof. From Lemma 4.5.11, it follows that it is su�cient to prove the lemma for x = 2. Hence, we
have to prove the following inequalities, for which we use (4.8) and (4.5):

(θk−t)
2

[
n− t− 2

k − t− 2

][
t+ 3

t+ 1

]
<

[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
for k ≤ 2t+ 2;

(4.19)

(θk−t)
2

[
n− t− 2

k − t− 2

][
t+ 3

t+ 1

]
< θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
for k ≥ 2t+ 3.

(4.20)

We start by proving inequality (4.19). Suppose to the contrary that this inequality does not hold.
�en we have that

(θk−t)
2

[
t+ 3

t+ 1

]
≥ 1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

L.1.10.2
=====⇒ q2k−2t+2

(q − 1)2
2q2t+2 >

qt+3 − 1

q − 1
qk−t−1 qn−k − 1

qk−t−1 − 1
n≥2k+t+3
=======⇒ 2qk+t+5(qk−t−1 − 1) > (q − 1)(qt+3 − 1)(qn−k − 1)

≥ (q − 1)(qt+3 − 1)(qk+t+3 − 1)

⇒ 0 > q2k+4(q2t−k+3 − q2t−k+2 − 2) + qt+4(2qk+1 − qk − 1)

+ (q − 1) + qt+3 + qk+t+3.
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All terms in the right hand side of the last inequality are non-negative since k ≤ 2t+ 2 and q ≥ 3.
Hence, we have a contradiction which proves (4.19).

Now we prove inequality (4.20). We use Lemma 1.10.4 for the factor
[
n−t−2
k−t−2

]
with c = k − t − 2,

and so, we have to prove the following inequality

(θk−t)
2

[
t+ 3

t+ 1

] k−t−2∑
j=0

[
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]

< θk+1 +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
.

Hence, it is su�cient to prove that

(θk−t)
2

[
t+ 3

t+ 1

][
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]
<

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
,

for all j ∈ {0, 1, . . . , k − t− 2}. �is follows from Lemma 4.5.12. �

Lemma 4.5.14. Suppose n ≥ 2k + t+ 3, q ≥ 2, k ≥ t+ 2, t ≥ 1, then

(θk−t)
x

[
n− t− x
k − t− x

]
qx
[
t+ x

x

]
< (θk−t)

2

[
n− t− 2

k − t− 2

]
q2

[
t+ 2

2

]
for all 2 < x ≤ k − t.

Proof. It is su�cient to prove that

(θk−t)
x+1

[
n− t− x− 1

k − t− x− 1

]
qx+1

[
t+ x+ 1

x+ 1

]
< (θk−t)

x

[
n− t− x
k − t− x

]
qx
[
t+ x

x

]
.

Since n ≥ 2k + t+ 3, q ≥ 2, k ≥ t+ 2, t ≥ 1, 2 ≤ x < k, we have from (4.18) that(
(θk−t)

x

[
n− t− x
k − t− x

])
qx
[
t+ x

x

]
>

(
(θk−t)

x+1

[
n− t− x− 1

k − t− x− 1

][t+x+2
t+1

][
t+x+1
t+1

]) qx[t+ x

x

]
> (θk−t)

x+1

[
n− t− x− 1

k − t− x− 1

]
qx
qt+x+2 − 1

qt+x+1 − 1

[
t+ x+ 1

x+ 1

]
> (θk−t)

x+1

[
n− t− x− 1

k − t− x− 1

]
qx+1

[
t+ x+ 1

x+ 1

]
.

�is proves the lemma. �

Lemma 4.5.15. Suppose k ≥ t+ 2, t ≥ 1, q ≥ 3, and n ≥ 2k + t+ 3, then

(θk−t)
x

[
n− t− x
k − t− x

]
qx
[
t+ x

x

]
< fa(q, n, k, t)

for all 2 ≤ x ≤ k − t.
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Proof. From Lemma 4.5.14 it follows that it is su�cient to prove the lemma for x = 2. Hence we
have to prove the following inequalities, for which we use (4.13) and (4.10):

(θk−t)
2

[
n− t− 2

k − t− 2

]
q2

[
t+ 2

2

]
<

[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
for k ≤ 2t+ 1;

(4.21)

(θk−t)
2

[
n− t− 2

k − t− 2

]
q2

[
t+ 2

2

]
< θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
for k ≥ 2t+ 2.

(4.22)

We start by proving inequality (4.21). Suppose to the contrary that this inequality doesn’t hold.
�en we have that

(θk−t)
2

[
t+ 2

2

]
q2 ≥ 1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

L.1.10.2
=====⇒ q2k−2t+2

(q − 1)2
2q2t+2 >

qt+2 − 1

q − 1
qk−t−1 qn−k − 1

qk−t−1 − 1
n≥2k+t+3
=======⇒ 2qk+t+5(qk−t−1 − 1) > (q − 1)(qt+2 − 1)(qn−k − 1)

> (q − 1)(qt+2 − 1)(qk+t+3 − 1)

⇒ 0 > q2k+4(q2t−k+2 − q2t−k+1 − 2) + qt+3(2qk+2 − qk+1 − 1)

+ qt+2 + qk+t+3 + (q − 1).

All terms in the right hand side of the last inequality are non-negative since k ≤ 2t+ 1 and q ≥ 3.
Hence we have a contradiction which proves (4.21).

Now we prove inequality (4.22). We use Lemma 1.10.4 for the factor
[
n−t−2
k−t−2

]
with c = k − t − 2,

and so, we have to prove the following inequality.

(θk−t)
2q2

[
t+ 2

2

] k−t−2∑
j=0

[
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]

< θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
Note that it is su�cient to prove the inequality below for all j ∈ {0, . . . , k − t− 2}.

(θk−t)
2q2

[
t+ 2

2

][
k − t− 2

j

]
q(k−t−j−2)2

[
n− k

k − t− j − 2

]
<

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
,

�is inequality follows from Lemma 4.5.12, since q2
[
t+2

2

]
<
[
t+3

2

]
. �

Lemma 4.5.16. Suppose n ≥ 2k + t+ 3, q ≥ 3, k ≥ t+ 2, t ≥ 1, then

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
< fp(q, n, k, t).
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Proof. We have to prove the following inequalities:

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
<

[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
for k ≤ 2t+ 2;

(4.23)

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
< θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
for k ≥ 2t+ 3.

(4.24)

We start by proving inequality (4.23). Suppose to the contrary that this inequality doesn’t hold.
�en we have that

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 2

k − t− 2

](
1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

)
⇔ 2

qn−t−1 − 1

qk−t−1 − 1
+ (θt+1θk−t − θt+1 − 1)θk−t ≥ 1 + θt+2q

k−t−1 qn−k − 1

qk−t−1 − 1

⇒ 2(qn−t−1 − 1) + (qk−t−1 − 1)(θt+1θk−t − θt+1 − 1)θk−t ≥ θt+2q
k−t−1(qn−k − 1)

L.1.10.2
=====⇒ 2(qn−t−1 − 1)(q − 1) + (qk−t−1 − 1)(qk−t+1 − 1)

qk+3

(q − 1)2

> (qt+3 − 1)qk−t−1(qn−k − 1)

⇒ 2qn−t − 2qn−t−1 − 2q + 2 +
q3k−2t+3

(q − 1)2
> qn+2 − qn−t−1 − qk+2 + qk−t−1

⇒ 0 >

(
qn+2 − q3k−2t+3

(q − 1)2
− 2qn−t

)
+
(
qn−t−1 − qk+2 − 2

)
+ qk−t−1 + 2q

⇒ 0 >

(
q2k+3(qt+2 − 2)− q2k+5

(q − 1)2

)
+
(
q2k+2 − qk+2 − 2

)
+ qk−t−1 + 2q.

�e last implication follows since n ≥ 2k+ t+ 3 and k ≤ 2t+ 2. For q ≥ 3, we have that all terms
on the right hand side of the last inequality are non-negative. Hence we �nd a contradiction, which
proves (4.23).

Now we prove inequality (4.24) for k ≥ 2t + 3. Suppose again to the contrary that this inequality
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doesn’t hold. �en we have that

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
≥ θk+1 +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
j=0
==⇒ 2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − 1)θk−t

[
n− t− 2

k − t− 2

]
≥ θk−tq(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
L.1.10.2
=====⇒ 4q(n−k)(k−t−1) +

q2k−t+4

(q − 1)3
2q(n−k)(k−t−2)

≥ θk−t
(

1 +
1

q

)
q(k−t)(k−t−1)+(n−2k+t)(k−t−1)

⇒ 4 +
2

qn−3k+t−4(q − 1)3
≥ θk−t

(
1 +

1

q

)
> θk−t + 4

n≥2k+t+3
=======⇒ 2qk−2t+1

(q − 1)2
> qk−t+1 − 1

q≥3
==⇒ qk−2t+1 > qk−t+1 − 1.

�e last inequality gives a contradiction for q ≥ 3, t ≥ 1. �

Lemma 4.5.17. Suppose n ≥ 2k + t+ 3, q ≥ 3, k ≥ t+ 2, t ≥ 1, then

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
< fa(q, n, k, t).

Proof. We have to prove the following inequalities:

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
<

[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
for k ≤ 2t+ 1; (4.25)

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
< θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
for k ≥ 2t+ 2. (4.26)

We start by proving inequality (4.25). Suppose to the contrary that this inequality doesn’t hold.
�en we have that

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
≥
[
n− t− 2

k − t− 2

](
1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

)
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⇔ 2
qn−t−1 − 1

qk−t−1 − 1
+ (θt+1θk−t − θt+1 − θk−t)θk−t ≥ 1 + θt+1q

k−t−1 qn−k − 1

qk−t−1 − 1

⇒ 2(qn−t−1 − 1) + (qk−t−1 − 1)(θt+1θk−t − θt+1 − θk−t)θk−t
> θt+1q

k−t−1(qn−k − 1)

L.1.10.2
=====⇒ 2(qn−t−1 − 1)(q − 1) + (qk−t−1 − 1)(qk−t+1 − 1)

qk+3

(q − 1)2

> (qt+2 − 1)qk−t−1(qn−k − 1)

⇒ 2qn−t − 2qn−t−1 − 2q + 2 +
q3k−2t+3

(q − 1)2
> qn+1 − qn−t−1 − qk+1 + qk−t−1

⇒ 0 >

(
qn+1 − q3k−2t+3

(q − 1)2
− 2qn−t

)
+
(
qn−t−1 − qk+1 − 2

)
+ qk−t−1 + 2q

n≥2k+t+3
=======⇒
k≤2t+1

0 >

(
q2k+3(qt+1 − 2)− q2k+4

(q − 1)2

)
+
(
q2k+2 − qk+1 − 2

)
+ qk−t−1 + 2q.

For q ≥ 3, we have that all terms on the right hand side of the last inequality are non-negative.
Hence we �nd a contradiction, which proves (4.25).

Now we prove inequality (4.26). Suppose again to the contrary that this inequality doesn’t hold.
�en we have that

2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
≥ θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]
j=0
==⇒ 2

[
n− t− 1

k − t− 1

]
+ (θt+1θk−t − θt+1 − θk−t)θk−t

[
n− t− 2

k − t− 2

]
≥ θk−tq(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
L.1.10.2
=====⇒ 4q(n−k)(k−t−1) +

q2k−t+4

(q − 1)3
2q(n−k)(k−t−2)

≥ θk−tq(k−t)(k−t−1)

(
1 +

1

q

)
q(n−2k+t)(k−t−1)

⇒ 4 +
2

qn−3k+t−4(q − 1)3
≥ θk−t

(
1 +

1

q

)
> θk−t + 4

n≥2k+t+3
=======⇒ 2qk−2t+1

(q − 1)2
> qk−t+1 − 1

q≥3
==⇒ qk−2t+1 > qk−t+1 − 1.

�e last inequality gives a contradiction for q ≥ 3, since t ≥ 1. �

Lemma 4.5.18. For 2 ≤ x < k − t+ 1, q ≥ 3 and n ≥ k + 2, we have that

θt+x+1

[
n− t− x
k − t− x

]
< θt+x

[
n− t− x+ 1

k − t− x+ 1

]
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Proof.

θt+x+1

[
n− t− x
k − t− x

]
< θt+x

[
n− t− x+ 1

k − t− x+ 1

]
⇔ qt+x+2 − 1 < (qt+x+1 − 1)

qn−t−x+1 − 1

qk−t−x+1 − 1

⇔ qk+3 − qt+x+2 − qk−t−x+1 < qn+2 − qn−t−x+1 − qt+x+1

⇔ − qk−t−x+1 <
(
qn+2 − qn−t−x+1 − qk+3

)
+ qt+x+1 (q − 1) .

Note that the right hand side of the last inequality is positive for q ≥ 3, which proves the inequality.
�

Corollary 4.5.19. For x < k − t+ 1, q ≥ 3 and n ≥ k + 2, we have that

θt+x

[
n− t− x+ 1

k − t− x+ 1

]
≤ θt+2

[
n− t− 1

k − t− 1

]
if x ≥ 2

θt+x

[
n− t− x+ 1

k − t− x+ 1

]
≤ θt+3

[
n− t− 2

k − t− 2

]
if x ≥ 3

Lemma 4.5.20. Suppose that n ≥ 2k + t+ 3, k ≥ 2t+ 3, 2 ≤ x ≤ k − t+ 1, t ≥ 1. �en we have
that

θk+1 +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

> θt+x

[
n− t− x+ 1

k − t− x+ 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
.

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. �en
we have that

θk+1 +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

≤ θt+x
[
n− t− x+ 1

k − t− x+ 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
x≥2,j=0
=====⇒
C.4.5.19

θk−tq
(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
< θt+2

[
n− t− 1

k − t− 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
L.1.10.2
=====⇒ qk−t+1 − 1

q − 1
q(k−t)(k−t−1)

(
1 +

1

q

)
q(n−2k+t)(k−t−1)

<
qt+3 − 1

q − 1
2q(n−k)(k−t−1) +

(qk−t+1 − 1)2

(q − 1)2
2q(n−k)(k−t−2)

+
qk−t − 1

q − 1
2q(n−k)(k−t−1)
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⇒ (qk−t+1 − 1)

(
1 +

1

q

)
< 2(qt+3 − 1) + 2

(qk−t+1 − 1)2

qn−k(q − 1)
+ 2(qk−t − 1)

⇒ qt+3
(
qk−2t−2 − 2qk−2t−3 − 2

)
+

(
3− 1

q

)
+

(
qn−t(q − 1)− 2(qk−t+1 − 1)2

qn−k(q − 1)

)
< 0

For k ≥ 2t + 4, q ≥ 3 and n ≥ 2k + t + 3 all terms in the le� hand side of the last inequality are
non-negative, which gives a contradiction. For k = 2t+ 3 we have

(
qt+4 − 3qt+3

)
+

(
3− 1

q
− 2

(qt+4 − 1)2

qn−2t−3(q − 1)

)
< 0

n≥5t+9
=====⇒

(
qt+4 − 3qt+3

)
+

(
3− 1

q
− 2

(qt+4 − 1)2

q3t+7(q − 1)

)
< 0

t≥1
==⇒

(
qt+4 − 3qt+3

)
+

(
1− 1

q

)
< 0,

which also gives a contradiction for q ≥ 3 and t ≥ 1. �

Lemma 4.5.21. Suppose that n ≥ 2k + t + 3, k ≥ 2t + 2, 3 ≤ x ≤ k − t + 1, t ≥ 1, q ≥ 3. �en
we have that

θk +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

> θt+x

[
n− t− x+ 1

k − t− x+ 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
.

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. �en
we have that

θk +

k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

≤ θt+x
[
n− t− x+ 1

k − t− x+ 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
x≥3,j=0
=====⇒
C.4.5.19

θk−tq
(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
< θt+3

[
n− t− 2

k − t− 2

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
L.1.10.2
=====⇒ qk−t+1 − 1

q − 1
q(k−t)(k−t−1)

(
1 +

1

q

)
q(n−2k+t)(k−t−1)

<
qt+4 − 1

q − 1
2q(n−k)(k−t−2) +

(qk−t+1 − 1)2

(q − 1)2
2q(n−k)(k−t−2) +

qk−t − 1

q − 1
2q(n−k)(k−t−1)

⇒ (qk−t+1 − 1)

(
1 +

1

q

)
< 2

qt+4 − 1

qn−k
+ 2

(qk−t+1 − 1)2

qn−k(q − 1)
+ 2(qk−t − 1)

⇒
(
qk−t+1 − 2qk−t − 2

qt+4 − 1

qn−k

)
+

(
1− 1

q

)
+

(
qk−t − 2

(qk−t+1 − 1)2

qn−k(q − 1)

)
< 0

q≥3
==⇒

(
qk−t − 2

qt+4 − 1

qn−k

)
+

(
1− 1

q

)
+ 2

(
qn−t − (qk−t+1 − 1)2

qn−k(q − 1)

)
< 0.
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For n ≥ 2k + t + 3, q ≥ 3 the terms in the le� hand side of the last inequality are non-negative,
which gives a contradiction. �

Lemma 4.5.22. Suppose that n ≥ 2k + t+ 3, k ≥ 2t+ 2 and q ≥ 3. �en we have that

θk +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

> q2θt−1

[
n− t− 1

k − t− 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. �en
we have that

θk +
k−t−2∑
j=0

[
k − t+ 1

j + 1

]
q(k−t−j)(k−t−j−1)

[
n− k − 1

k − t− j − 1

]

≤ q2θt−1

[
n− t− 1

k − t− 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
j=0
==⇒ θk + θk−tq

(k−t)(k−t−1)

[
n− k − 1

k − t− 1

]
< q2θt−1

[
n− t− 1

k − t− 1

]
+ θ2

k−t

[
n− t− 2

k − t− 2

]
+ θk−t−1

[
n− t− 1

k − t− 1

]
L.1.10.2
=====⇒ qk−t+1 − 1

q − 1
q(k−t)(k−t−1)

(
1 +

1

q

)
q(n−2k+t)(k−t−1)

<
qt − 1

q − 1
2q(n−k)(k−t−1)+2 +

(qk−t+1 − 1)2

(q − 1)2
2q(n−k)(k−t−2)

+
qk−t − 1

q − 1
2q(n−k)(k−t−1)

=⇒ (qk−t+1 − 1)

(
1 +

1

q

)
< 2(qt+2 − q2) + 2

(qk−t+1 − 1)2

qn−k(q − 1)
+ 2(qk−t − 1)

⇒
(
qk−t+1 − 2qk−t − 2qt+2

)
+

(
1− 1

q

)
+

(
qk−t + 2q2 − 2

(qk−t+1 − 1)2

qn−k(q − 1)

)
< 0

(4.27)
q≥3
==⇒ qt+2

(
qk−2t−2 − 2

)
+

(
1− 1

q

)
+ 2

(
qn−t + 2qn−k+2 − (qk−t+1 − 1)2

qn−k(q − 1)

)
< 0

⇒ qt+2
(
qk−2t−2 − 2

)
+

(
1− 1

q

)
+ 2q2k−2t+2

(
qn−2k+t−2 + 2qn−3k+2t − 1

qn−k(q − 1)

)
< 0.

For k ≥ 2t + 3, q ≥ 3 and n ≥ 2k + t + 3 all terms in the le� hand side of the last inequality are
non-negative, which gives a contradiction. For k = 2t+ 2 we have that n > 2k + t+ 2 = 5t+ 6,
and by using (4.27) we have that(

qt+3 − 3qt+2
)

+

(
2q2 + 1− 1

q
− 2

(qt+3 − 1)2

qn−2t−2(q − 1)

)
< 0

n≥5t+7
=====⇒

(
qt+3 − 3qt+2

)
+

(
2q2 + 1− 1

q
− 2

(qt+3 − 1)2

q3t+5(q − 1)

)
< 0

t≥1
==⇒

(
qt+3 − 3qt+2

)
+

(
2q2 − 1− 1

q

)
< 0

which also gives a contradiction for q ≥ 3. �

88



5 �e Sun�ower bound

“ It never hurts to keep looking for sunshine. ”—Eeyore

�e results in this chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and
will appear in [15].

5.1 Introduction

A (k + 1, t + 1)-SCID is a set of k-dimensional subspaces in PG(n, q), that pairwise intersect in
precisely a t-dimensional space (SCID stands for: Subspaces with Constant Intersection Dimension).
Note that this set corresponds to a set of (k + 1)-dimensional vector spaces, pairwise intersecting
in a (t+ 1)-dimensional vector space. �is indicates why we use the (k + 1, t+ 1)-notation.
A (k+1, t+1)-SCID is also called a t-intersecting constant dimension subspace code, where the code
words have projective dimension k. Note that (k + 1, 0)-SCIDs correspond with partial k-spreads
in PG(n, q).

Investigating SCIDs is interesting for the link with coding theory. Network coding is a segment
of information theory dealing with data transmission over lossy and noisy networks. In such
networks, information travels from a set of sources to a set of receivers through several inter-
mediate nodes. An optimal information rate can be achieved by performing linear combinations
during transmissions in the intermediate nodes. �is approach is called random network coding,
and utilizes subspace codes [81]. In a subspace code, the code words are subspaces in a projective
space, and the subspace distance d(U, V ) between two code words U and V is de�ned as follows:
d(U, V ) = dim(U) + dim(V ) − dim(U ∩ V ). Constant dimension subspace codes are subspace
codes whose elements all have the same dimension. �ey are the q-analogues of the classical codes.
SCIDs are equidistant constant dimension subspace codes since the pairwise distances between the
code words are equal.

An example of a (k + 1, t + 1)-SCID is a sun�ower , which is a set of k-spaces, passing through
the same t-space and having no points in common outside of this t-space. It can be shown that a
t-intersecting constant dimension subspace code is a sun�ower if the code has many code words.

�eorem 5.1.1 ([56, �eorem 1]). A (k + 1, t+ 1)-SCID C is a sun�ower if

|C| >
(
qk+1 − qt+1

q − 1

)2

+

(
qk+1 − qt+1

q − 1

)
+ 1.

It is believed that the Sun�ower bound is in general not tight. In [6], the Sun�ower bound for
(k + 1, 1)-SCIDs was studied.
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�eorem 5.1.2 ([6, �eorem 2.1]). Let C be a (k + 1, 1)-SCID, with k ≥ 4. If

|C| ≥
(
qk+1 − q
q − 1

)2

+

(
qk+1 − q
q − 1

)
− qk,

then C is a sun�ower.

In this chapter, we will give a be�er result for (k + 1, 1)-SCIDs, see �eorem 5.3.6. In this result,
we improve the Sun�ower bound with a factor 2

6
√
q + 4

3
√
q −

5√
q , while in [6], the authors improve

the bound with a lower order term qk.

We suppose that k ≥ 3 as for (2, 1)-SCIDs we, more generally, known that every (k + 1, k)-SCID
is a sun�ower or consists of k-spaces in a �xed (k + 1)-space, see �eorem 2.0.6. For (3, 1)-SCIDs,
an almost complete classi�cation is known, see [9].

Result 5.1.3 ([9]). Let C be a set of planes in PG(n, q), q ≥ 3, pairwise intersecting in exactly a
point. If |C| ≥ 3(q2 +q+1), thenC is contained in a Klein quadric in PG(5, q), orC is a dual partial
spread in PG(4, q), or all elements of C pass through a common point.

In Section 5.2, we give some de�nitions and general lemmas. In Section 5.3, we start with the Main
Lemma that gives an important inequality. Using this inequality, we continue with �eorem 5.3.6
that gives an improvement on the Sun�ower bound if k ≥ 3 and q ≥ 9 (and if q ≥ 7 and k ≥ 5).

5.2 Preliminaries

From now on, we consider a �xed (k+ 1, 1)-SCID S that is not a sun�ower, of size |S| = (1− s)θ2
k,

0 < s < 1. Note that the size of |S| is smaller than the Sun�ower bound for s > 1
θk
− 1

θ2k
. We will

derive, for a �xed value of k and �eld size q, an upper bound on 1− s.

De�nition 5.2.1. Consider the SCID S . �e sets of points and lines that are contained in an
element of S are denoted by PS and LS respectively.

Lemma 5.2.2. Suppose P ∈ PS , then P lies in at most θk elements of S and on at most θk · θk−1

lines of LS .

Proof. �ere exists an element S0 ∈ S not through P , since S is not a sun�ower. Every k-space of
S through P contains a point Q of S0 and every line PQ with Q ∈ S0 is contained in at most one
k-space. In this way we �nd at most θk elements of S that contain P . �e lemma follows since the
number of lines through a point in a k-space is θk−1. �

From now on, we distinguish ‘rich’ and ‘poor’ points and lines in PS and LS . First we give the
de�nition, then we continue with some counting arguments.

De�nition 5.2.3. Suppose c, d are constants between s and 1. A point P ∈ PS is c-rich if it is
included in more than (1− c)θk elements of S . A point is c-poor if it is not c-rich. A line l ∈ LS is
(c, d)-rich if it contains more than (1− d)(q + 1) c-rich points.

We will call c-rich and c-poor points, and (c, d)-rich lines rich and poor points, and rich lines re-
spectively, if the constants c and d are clear from the context.

Lemma 5.2.4. For the number r of c-rich points in an element of S , we �nd:

r ≥ r0 =
(

1− s

c

)
θk,
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Proof. Fix S0 ∈ S , and count the number of elements in S that intersect S0 in a point. By Lemma
5.2.2, we have that through every rich point P of S0, there are at most θk−1 elements of S di�erent
from S0. �rough every line spanned by P and a point of such a k-space, there is at most one
element of S .
Every poor point of S0 lies in at most (1− c)θk − 1 other elements of S by de�nition. We double-
count pairs (P,Z), with P ∈ Z, Z ∈ S where P ∈ S0 and Z 6= S0, to obtain the following
inequality:

r(θk − 1) + (θk − r) ((1− c)θk − 1) ≥ |S| − 1
⇔ r(θk − 1− (1− c)θk + 1) ≥ (1− s)θ2

k − 1− (1− c)θ2
k + θk

⇒ rcθk ≥ (c− s)θ2
k

⇔ r ≥ (1− s
c )θk.

�

Lemma 5.2.5. An element of S contains at least

α =
θkθk−1

q + 1
·
(

1− s

cd

)
(c, d)-rich lines and the total number of (c, d)-rich lines is at least α(1− s)θ2

k.

Proof. Consider a k-space S0 ∈ S and let β denote the number of poor lines in S0. By counting
pairs (P , l), with P a rich point in S0, l a line in S0 and P ∈ l, we �nd:([

k + 1

2

]
− β

)
(q + 1) + β(1− d)(q + 1) ≥ r0θk−1 =

(
1− s

c

)
θkθk−1,

which gives

β ≤ sθkθk−1

cd(q + 1)
.

Hence, an element of S contains at least
[
k+1

2

]
− β =

θkθk−1

q+1 −
sθkθk−1

cd(q+1) (c, d)-rich lines. �

Remark 5.2.6. In order to get a useful bound in the previous lemma, we need values of s, c and d
such that 1 − s

cd ≥ 0 or s ≤ cd. Later we will see that the values that we use for c and d satisfy
these inequalities.

We continue with a lemma that will be useful to prove the Main Lemma and the theorems in the
following section.

Lemma 5.2.7. Let ρ(s) be the average number of (c, d)-rich lines meeting two distinct elementsS1, S2

of S in a c-rich point di�erent from S1 ∩ S2 (in the case the la�er is c-rich). �en ρ(s) is at least

f(s) = θkθk−1q
1− d
1− s

(
1− s

cd

)(
1− c− 1

θk

)2(
1− d− d

q

)
.

Proof. We count triples (S1, S2, r) where r is a rich line connecting a rich point in S1 \ S2 with
a rich point in S2 \ S1. Let ρ{S1,S2}, S1, S2 ∈ S , S1 6= S2, be the number of rich lines meeting
both S1 \ S2 and S2 \ S1 in a rich point. We de�ne ρ(s) as the average of the values ρ{S1,S2} with
S1, S2 ∈ S and S1 6= S2. On the one hand, the number of triples equals

(1− s)θ2
k

(
(1− s)θ2

k − 1
)
ρ(s) ≤ (1− s)2θ4

kρ(s).
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On the other hand, the number of triples is at least

(1− s)θ2
k

θkθk−1

q + 1

(
1− s

cd

)
· (1− d)(q + 1)((1− d)q − d) · ((1− c)θk − 1)2,

as by Lemma 5.2.5, there are at least (1−s)θ2
k
θkθk−1

q+1

(
1− s

cd

)
rich lines, and on a rich line there are

at least (1−d)(q+1)((1−d)q−d) possibilities for an ordered pair of two distinct rich pointsP1, P2.
�rough those points, we �nd at least ((1 − c)θk − 1)2 possibilities for the k-spaces S1, S2 ∈ S
(not containing the line P1P2). �is gives that the average ρ(s) is at least f(s). �

5.3 Main Lemma and results

Using the combinatorial lemmas in the previous section, the main goal in this section is to �nd a
an upper bound on (1 − s), as a function of the �eld size q. We start with the Main Lemma, that
will be the basis of the theorems at the end of this section.

Main Lemma 5.3.1. Let S be a (k + 1, 1)-SCID in PG(n, q), with |S| = (1− s)θ2
k, k ≥ 3, that is

not a sun�ower. For all values 0 < s < c, d < 1, we have the following inequality:

(
1− s

cd

)
(1− d)(1− c)

(
1− c− 1

q3

)2(
1− d− d

q

)(
1− d− 1 + d

q

)
q

≤ (1− s)2 +
1− s
q

. (5.1)

Proof. Consider a pair of di�erent k-spaces S1, S2 ∈ S having at least f(s) connecting rich lines,
then the 2k-space T = 〈S1, S2〉 contains at least

f(s) · (1− d)(q + 1)− 2

q
=

(
1− d− 1 + d

q

)
f(s)

rich points: every rich line contains at least (1−d)(q+1)−2 rich points, not contained in S1∪S2.
Furthermore, every point P in the 2k-space T , not in the union S1 ∪ S2, lies on at most q such
connecting lines. �at there are indeed at most q such lines, follows since 〈P, S1〉 meets S2 in a
line ` through S1 ∩S2. Hence, the lines through P , meeting both S1 and S2, are precisely the lines
through P in the plane 〈P, `〉. In this plane there are q lines through P that do not contain S1∩S2.
Hence, each such point P is counted at most q times.

Since the dual of a (k+1, 1)-SCID in a 2k-space is a partial (k−1)-spread in this 2k-space, we have
that a 2k-space contains at most bθ2k/θk−1c = qk+1 + q elements of S . On the other hand, this 2k-
space contains at most θk−1 points from each element of S not contained in T . Hence, the number
of pairs (P, S0), withP ∈ 〈S1, S2〉 a rich point in the k-space S0, is at least

(
1− d− 1+d

q

)
f(s)(1−

c)θk and at most (qk+1 + q)θk +
(
(1− s)θ2

k − (qk+1 + q)
)
θk−1. Hence,(

1− d− 1 + d

q

)
(1− c)f(s)θk ≤ (qk+1 + q)θk +

(
(1− s)θ2

k − (qk+1 + q)
)
θk−1

⇒
(

1− d− 1 + d

q

)
(1− c) f(s)

θkθk−1
≤ 1− s+

qk+1 + q

θ2
kθk−1

qk ≤ 1− s+
1

qk−2
.
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5 �e Sun�ower bound

�e last inequality follows since qk(qk+1 + q) ≤ q2−kθ2
kθk−1. �is implies that

(
1− s

cd

)
(1− d)(1− c)

(
1− c− 1

θk

)2(
1− d− d

q

)(
1− d− 1 + d

q

)
q

≤ (1− s)2 +
1− s
qk−2

, (5.2)

which proves the lemma since k ≥ 3. �

Corollary 5.3.2. Let S be a (k + 1, 1)-SCID in PG(n, q), with |S| = (1− s)θ2
k, k ≥ 3, that is not a

sun�ower. Suppose that (
1

q
− B(q, c, d)

cd

)2

− 4B(q, c, d)

(
1

cd
− 1

)
≥ 0.

�en we have, for all values 0 < s < c, d < 1, that

(1− s) ≤ F (q, c, d) =
1

2

B(q, c, d)

cd
− 1

q
−

√(
1

q
− B(q, c, d)

cd

)2

− 4B(q, c, d)

(
1

cd
− 1

)
or (1− s) ≥ G(q, c, d) =

1

2

B(q, c, d)

cd
− 1

q
+

√(
1

q
− B(q, c, d)

cd

)2

− 4B(q, c, d)

(
1

cd
− 1

)
with B(q, c, d) = (1− d)(1− c)

(
1− c− 1

q3

)2 (
1− d− d

q

)(
1− d− 1+d

q

)
q.

Proof. Using inequality (5.1) from the Main Lemma, we immediately �nd the following quadratic
inequality

(1− s)2 +

(
1

q
− B(q, c, d)

cd

)
· (1− s) +B(q, c, d)

(
1

cd
− 1

)
≥ 0,

which proves the corollary. �

From now on, we put c(q) = d(q) = 1 − 1
6
√
q −

1
2 3
√
q . Since c and d must be non-negative by

de�nition, we have to assume that q ≥ 7. We denote c(q), F (q, c(q), c(q)), G(q, c(q), c(q)) and
B(q, c(q), c(q)) by cq, Fq, Gq and Bq respectively. We �rst give a lower bound on Bq .

Lemma 5.3.3. Let t = 6
√
q, q ≥ 7, then

Bq >

(
1 +

1

2t

)2(
1 +

1

2t
− 1

t4

)2(
1 +

1

2t
− 1

t5

)(
1 +

1

2t
− 2

t5

)
, and (5.3)

Bq >

(
1 +

1

2t

)2(
1 +

1

3t

)2

. (5.4)

Proof. By using the equality cq = ct6 = 1− 1
t −

1
2t2

and t = 6
√
q ≥ 6
√

7, we have

Bq = (1− cq)2

(
1− cq −

1

q3

)2(
1− cq −

cq
q

)(
1− cq −

1 + cq
q

)
q

=

(
1

t
+

1

2t2

)2(1

t
+

1

2t2
− 1

t18

)2(1

t
+

1

2t2
− 1

t6
+

1

t7
+

1

2t8

)
·
(

1

t
+

1

2t2
− 2

t6
+

1

t7
+

1

2t8

)
t6

=

(
1 +

1

2t

)2(
1 +

1

2t
− 1

t17

)2(
1 +

1

2t
− 1

t5
+

1

t6
+

1

2t7

)(
1 +

1

2t
− 2

t5
+

1

t6
+

1

2t7

)

93



5 �e Sun�ower bound

Using this expression for Bq , we can check that the following two inequalities are true for all
t ≥ 6
√

7, and so, for all q ≥ 7.

Bq >

(
1 +

1

2t

)2(
1 +

1

2t
− 1

t4

)2(
1 +

1

2t
− 1

t5

)(
1 +

1

2t
− 2

t5

)
, and

Bq >

(
1 +

1

2t

)2(
1 +

1

3t

)2

. �

We continue by investigating for which values of q ≥ 7 the condition
(

1
q −

Bq
c2q

)2
−4Bq

(
1
c2q
− 1
)
≥

0, in Corollary 5.3.2, is true. Or equivalently, for which values of q, the argument of the square root
in Fq and Gq is non-negative.

Lemma 5.3.4. For q ≥ 7, it is true that
(

1
q −

Bq
c2q

)2
− 4Bq

(
1
c2q
− 1
)
≥ 0, with

Bq = (1− cq)2
(

1− cq − 1
q3

)2 (
1− cq − cq

q

)(
1− cq − 1+cq

q

)
q and cq = 1− 1

6
√
q −

1
2 3
√
q .

Proof. Note that it follows from Lemma 5.3.3 that Bq > 0 if q ≥ 7. Suppose that the inequality in
the statement of the lemma does not hold. �en we have

B2
q

c4
q

− 2Bq
qc2
q

+
1

q2
< 4Bq

(
1

c2
q

− 1

)
⇒

B2
q

c4
q

< 2Bq

(
2

c2
q

− 2 +
1

qc2
q

)
Bq>0⇐==⇒ Bq < 2c2

q

(
2(1− c2

q) +
1

q

)
t= 6
√
q

⇐===⇒ Bt6 < 2

(
1− 1

t
− 1

2t2

)2(4

t
− 2

t3
− 1

2t4
+

1

t6

)
(5.4)
===⇒

(
1 +

1

2t

)2(
1 +

1

3t

)2

< 2

(
1− 1

t

)2(4

t
− 1

t3

)
⇔

(
t+

1

2

)2(
t+

1

3

)2

< 2 (t− 1)2

(
4t− 1

t

)
⇔ t4 +

5

3
t3 +

37

36
t2 +

5

18
t+

1

36
< 8t3 − 16t2 + 6t+ 4− 2

t

⇔ t4 − 19

3
t3 +

613

36
t2 − 103

18
t− 143

36
+

2

t
< 0 .

�e last inequality gives a contradiction for all values of t ≥ 6
√

7, and so for all q ≥ 7, which proves
the lemma. �

Now we prove that Gq > 1. �is implies that the �rst bound in Corollary 5.3.2 holds, since 0 <
s < 1.

Lemma 5.3.5. For q ≥ 7, it is true that

Gq =
1

2

(
Bq
c2
q

− 1

q
+

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

))
> 1
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with

Bq = (1− cq)2

(
1− cq −

1

q3

)2(
1− cq −

cq
q

)(
1− cq −

1 + cq
q

)
q,

cq = 1− 1
6
√
q
− 1

2 3
√
q
.

Proof. We have to prove that

Bq
c2
q

− 1

q
+

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

)
> 2.

For all values of q ≥ 7 such that 2− Bq
c2q

+ 1
q < 0, the previous inequality is true. If 2− Bq

c2q
+ 1

q ≥ 0,
then it is equivalent to proving that(

1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

)
> 4 + 4

(
1

q
− Bq
c2
q

)
+

(
1

q
− Bq
c2
q

)2

⇔ − Bq
c2
q

+Bq > 1 +
1

q
− Bq
c2
q

⇔ Bq > 1 +
1

q
.

Set t = 6
√
q. From Lemma 5.3.3(5.4), we know that it is su�cient to prove the following inequality.(

1 +
1

2t

)2(
1 +

1

3t

)2

> 1 +
1

t6

⇔ t4 +
5

3
t3 +

37

36
t2 +

5

18
t+

1

36
> t4 +

1

t2

⇔ 5

3
t3 +

37

36
t2 +

5

18
t+

1

36
− 1

t2
> 0.

�is last inequality is true for t = 6
√
q ≥ 6
√

7, and so for q ≥ 7, which proves the lemma. �

�eorem 5.3.6. A (k + 1, 1)-SCID in PG(n, q), k ≥ 3, q ≥ 7, that has more than Fqθ2
k elements, is

a sun�ower. Here, we use

Fq =
1

2

(
Bq
c2
q

− 1

q
−

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

))

and

Bq = (1− cq)2

(
1− cq −

1

q3

)2(
1− cq −

cq
q

)(
1− cq −

1 + cq
q

)
q,

cq = 1− 1
6
√
q
− 1

2 3
√
q
.

In particular, we have that a (k + 1, 1)-SCID in PG(n, q), with more than
(

2
6
√
q + 4

3
√
q −

5√
q

)
θ2
k

elements is a sun�ower.
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Proof. From Corollary 5.3.2, Lemma 5.3.4 and Lemma 5.3.5, we know that Fqθ2
k gives an upper

bound on the size |S| = (1− s)θ2
k of a (k+ 1, 1)-SCID, with S not a sun�ower. Hence, a (k+ 1, 1)-

SCID with more than Fqθ2
k elements is a sun�ower.

We have to prove that

Fq ≤
2
6
√
q

+
4
3
√
q
− 5
√
q

⇔ Bq
c2
q

− 1

q
−

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

)
≤ 4

6
√
q

+
8
3
√
q
− 10
√
q
.

If Bq
c2q
− 1
q−

4
6
√
q−

8
3
√
q+ 10√

q ≤ 0, then this is true for all values of q ≥ 7. If Bq
c2q
− 1
q−

4
6
√
q−

8
3
√
q+ 10√

q > 0,
then it is equivalent to proving that

(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

)
≥
(

4
6
√
q

+
8
3
√
q
− 10
√
q

)2

+ 2

(
4
6
√
q

+
8
3
√
q
− 10
√
q

)(
1

q
− Bq
c2
q

)
+

(
1

q
− Bq
c2
q

)2

⇔ Bq

(
− 1

c2
q

+ 1 +
1

c2
q

(
2
6
√
q

+
4
3
√
q
− 5
√
q

))
≥
(

2
6
√
q

+
4
3
√
q
− 5
√
q

)2

+
1

q

(
2
6
√
q

+
4
3
√
q
− 5
√
q

)
⇔ Bq

(
c2
q − 1 +

2
6
√
q

+
4
3
√
q
− 5
√
q

)
≥ c2

q

((
2
6
√
q

+
4
3
√
q
− 5
√
q

)2

+
1

q

(
2
6
√
q

+
4
3
√
q
− 5
√
q

))
t= 6
√
q

⇐===⇒ Bt6

(
1

4t4
+

4

t2
− 4

t3

)
≥
(

1− 1

t
− 1

2t2

)2
((

2

t
+

4

t2
− 5

t3

)2

+
1

t6

(
2

t
+

4

t2
− 5

t3

))
.

In view of equation (5.3) in Lemma 5.3.3, it is su�cient to prove that(
1 +

1

2t

)2(
1 +

1

2t
− 1

t4

)2(
1 +

1

2t
− 1

t5

)(
1 +

1

2t
− 2

t5

)(
1

4t4
+

4

t2
− 4

t3

)
≥
(

1− 1

t
− 1

2t2

)2
((

2

t
+

4

t2
− 5

t3

)2

+
1

t6

(
2

t
+

4

t2
− 5

t3

))
,

⇔ 157

4t4
+

95

4t5
− 2165

16t6
+

173

8t7
+

1411

64t8
+

383

64t9
+

1313

256t10
+

69

2t11
+

1177

32t12
− 37

8t13

− 3315

128t14
− 219

8t15
− 1631

64t16
+

3

32t17
+

557

32t18
+

151

16t19
+

293

32t20
− 1

8t21

− 11

2t22
− 3

2t23
+

1

8t24
≥ 0.

�is inequality is true for all t = 6
√
q ≥ 6
√

7, and so for q ≥ 7. So, a (k + 1, 1)-SCID in PG(n, q),
with at least

(
2
6
√
q + 4

3
√
q −

5√
q

)
θ2
k elements, has more than Fqθ2

k elements. �is implies that this
SCID is a sun�ower, which proves the theorem. �
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Note that the bound 1− s ≤ 2
6
√
q + 4

3
√
q −

5√
q only gives an improvement for the Sun�ower bound

for large values of q. It is possible to show that for q ≥ 473, this bound is an improvement on the
bound in �eorem 5.1.2. For �xed, smaller values of q, an improved Sun�ower bound can be found
by investigating the bound 1− s ≤ Fq . �is bound gives an improvement on the Sun�ower bound
if Fq < 1 − 1

θk
+ 1

θ2k
. For k = 3 and k = 4, this is the case for q ≥ 9 and q ≥ 8 respectively. For

k > 4, we have that Fq < 1− 1
θk

+ 1
θ2k

, if Fq < 1− 1
θ5

, which is the case for q ≥ 7. For these values
of q and k, we also found that the bound 1− s ≤ Fq improves the bound in �eorem 5.1.2.

q Fq
2
6
√
q + 4

3
√
q −

5√
q Bound �eorem 5.1.2

24 0.97698136 1.59732210 0.99975770
26 0.89046942 1.37500000 0.99999619
28 0.78319928 1.11116105 0.99999999
210 0.67282525 0.87056078 0.99999999
212 0.56493296 0.67187500 1.00000000
214 0.46301281 0.51527789 1.00000000
216 0.37118406 0.39466158 1.00000000
218 0.29280283 0.30273438 1.00000000
220 0.22886576 0.23291485 1.00000000

Table 5.1: Upper bound Fq and 2
6
√
q + 4

3
√
q −

5√
q on 1 − s = |S|

θ2k
in column 1 and 2. Upper bound

from �eorem 5.1.2, for k = 3 on |S|
θ2k

in column 3.

In Table 5.1, we give the values of the upper bound Fq and 2
6
√
q + 4

3
√
q −

5√
q on 1 − s = |S|

θ2k
, for

some speci�c values of q. �e values in this table con�rm that the bound 2
6
√
q + 4

3
√
q −

5√
q is a good

approximation for Fq for large values of q. In the third column, the upper bound from �eorem
5.1.2, for k = 3 on |S|

θ2k
is given.

Note that for �xed values of k and q, there is a possibility to �nd a slightly be�er bound than the
bound Fq , by using our techniques. Given the �xed values for k and q in inequality (5.2), we can
choose the values of c and d such that we get the best bound for (1−s). We describe this technique
in the example below.

Example 5.3.7. Suppose that q = 28 = 256 and k = 5, then we �nd from (5.2), that

(
1− s

cd

)
(1− d)(1− c)

(
1− c− 1

θ5(28)

)2(
1− d− d

28

)(
1− d− 1 + d

28

)
28

≤ (1− s)2 +
1− s
224

⇔
(

1− s

cd

)
B(c, d) ≤ (1− s)2 +

1− s
224

⇔ (1− s)2 + (1− s)
(

1

224
− B(c, d)

cd

)
−
(

1− 1

cd

)
B(c, d) ≥ 0

⇔ 1− s ≤ 1

2

B(c, d)

cd
− 1

224
−

√(
1

224
− B(c, d)

cd

)2

− 4

(
1

cd
− 1

)
B(c, d)

 ,

withB(c, d) = (1−d)(1−c)
(

1− c− 1
θ5(28)

)2 (
1− d− d

28

) (
1− d− 1+d

28

)
28. By using a computer

algebra package, we �nd a very good bound on 1− s for c = 0.53152285 and d = 0.5294. For these
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values, we �nd the bound 1 − s ≤ 0.7825095. Hence, this gives a small improvement on the bound
1 − s ≤ Fq = 0.78319928, for which we used c(28) = d(28) = 0.5244047. Note that the bound,
given by the Sun�ower �eorem 5.1.1, and the bound given in [6] are both larger than 0.99999999θ2

k

for q = 28 = 256 and k = 5. �is indicates that our new bound is a clear improvement.
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6 �e chromatic number of some Kneser graphs

“ All colors are the friends of their neighbors and the lovers of their opposites. ”—Marc Chagall

�e results in this chapter have been obtained in a collaboration with prof. Klaus Metsch and dr.
Daniel Werner, and will appear in [48] and [47].

6.1 Introduction

A �ag in PG(n, q) is a set F of non-trivial subspaces of PG(n, q) (that is, di�erent from ∅ and
PG(n, q)) such that for all α, β ∈ F one has α ⊂ β or β ⊂ α. �e subset {dim(α) + 1 | α ∈ F},
in which we use the projective dimension, is called the type of F and it is a subset of {1, 2, . . . , n}.
Note that the number of elements in a �ag is equal to the size of its type, since every two elements
in a �ag have a di�erent dimension. Two �ags F and G are in general position if α ∩ β = ∅ or
〈α, β〉 = PG(n, q) for all α ∈ F and β ∈ G.

Notation 6.1.1. Although a �ag is a set, we will write �ags {α, β} of cardinality two of projective
spaces as ordered pairs (α, β) where dim(α) < dim(β).

For Ω ⊆ {1, 2, . . . , n}, we de�ne the q-Kneser graph qKn+1;Ω to be the graph whose vertices are
all the �ags of type Ω of PG(n, q) with two vertices adjacent when the corresponding �ags are in
general position. For k ∈ {1, . . . , n}, we put qKn+1;k = qKn+1;{k}, and this q-Kneser graph is the
graph in the Grassmann scheme corresponding to the relationRk, see Example 1.9.5.

We are interested in the chromatic number of these graphs and hence in their independence number
α. An independent set of the Kneser graph is a set of �ags that are mutually not in general position.
An independent set of �ags in this graph, will also be called an Erdős-Ko-Rado set of �ags, in short,
EKR set. �us, the chromatic number of a Kneser graph is the smallest number of EKR sets whose
union comprises all �ags.

An example of an EKR set of �ags of type Ω ⊆ {2, 3, . . . , n} is a point-pencil FΩ(P ) with base point
P ∈ PG(n, q). �is is the set of all �ags F of type Ω and for which F ∪ {P} is a �ag. We use the
notation F(P ) if the type of the �ags is clear from the context. Note that a point-pencil FΩ(P ) for
|Ω| = 1, is equal to a point-pencil of subspaces in a projective space, which is de�ned in Section
1.6.

We now describe a strategy that — in some cases — is su�cient to determine the independence
number and that we will apply in this chapter. Recall that χ and α are the chromatic and inde-
pendence number of a graph, and let V be its vertex set. Let Γ = qKn+1;Ω be the q-Kneser graph
with Ω ⊆ {1, 2, . . . , n}. We assume that we have constructed a coloring of Γ of size χ, and we
suppose that C is a coloring with |C| ≤ χ. Furthermore, we assume that α′(Γ) is an integer,
smaller than α(Γ), such that one has structural information on all cocliques with more than α′(Γ)
vertices. Hence, this last assumption asks for a Hilton-Milner type theorem on the �ags. Now, if
α′(Γ) · |C| < |V |, then at least (|V | −α′(Γ)|C|)/(α(Γ)−α′(Γ)) color classes of g have cardinality
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6 �e chromatic number of some Kneser graphs

larger than α′(Γ) and hence one has structural information on these color classes. �is structural
information is sometimes enough to provide a lower bound on |C| and sometimes even su�ces to
show that |C| = χ.

�is approach was successfully applied for many Kneser graphs qKn,Ω with |Ω| = 1 in [12, 13].
One of the most important results for |Ω| = 1 is the following one.

�eorem 6.1.2 ([12, �eorem 1.5]). If k ≥ 2, and either q ≥ 3 and n ≥ 2k + 2, or q = 2
and n ≥ 2k + 3, then the chromatic number of the q-Kneser graph is χ(qKn+1;k+1) =

[
n−k+1

1

]
.

Moreover, each color class of a minimum coloring is contained in a point-pencil and the base points of
these point-pencils are the points of a �xed subspace of dimension n+ 1− k.

For |Ω| ≥ 2, much less is known. Even the independence number of these graphs is only known in
a few cases. One recent result is the following.

�eorem 6.1.3 ([32, �eorem 3.1]). If S is an independent set of the q-Kneser graph qKn+1,Ω, with
Ω = {1, 2, . . . , n}, then

|S| ≤ θnθn−1θn−2 . . . θ2θ1

q(n+1)/2 + 1
.

�e proof of this result uses algebraic arguments and thus does not produce structural information
on cocliques that have fewer than this number of vertices. So this result only gives a lower bound
for the chromatic number. In contrast to this, the independence number as well as structural infor-
mation on large cocliques of qK5;{2,4} has been given in [14]. For qK2d+1,{d,d+1}, it has been given
for d = 2 in [11] and for d = 3 in [94].

�is chapter is organized as follows. In Section 6.2, we determine the optimal colorings of the
Kneser graph qK5;{2,4}. In Section 6.3, we investigate the Kneser graph qK5;{2,3}. In Section 6.3.1,
we provide several examples for optimal colorings of this graph. In Section 6.3.2, we consider
three points P1, P2, P3 and a set M of points in PG(4, q), q large, with M ∩ 〈P1, P2, P3〉 = ∅ and
|M | = cq3 for some positive constant c < 1. We prove that, if for each of the three points Pi, the
number of lines through this point meeting M is small, then there exists a solid S that contains at
least mq2 points of M , where m is a constant. �is will be a crucial tool in Section 6.3.3, where
we determine the chromatic number of the Kneser graph qK5;{2,3} for large values of q. Recently,
also the chromatic number of the Kneser graph qK2d+1;{d,d+1}, for d ≥ 3, was investigated [48].
In Section 6.4, we give an overview of the main results.

6.2 �e chromatic number of the Kneser graph qK5;{2,4} of
line-solid �ags in PG(4, q)

Recall that a point-pencil F(P ) = F{2,4}(P ) is the set of all line-solid �ags in PG(4, q), whose line
(and so solid) contains the point P . Note that |F(P )| = θ3θ2.

Example 6.2.1. If S is a solid of PG(4, q), then {F(P ) | P ∈ S} is a covering of qK5;{2,4} with θ3

independent sets.

�is example shows that there exists a coloring of qK5;{2,4} with θ3 color classes where each color
class is a subset of a point-pencil. �eorem 6.2.3 below implies that every coloring with at most θ3

color classes has the same structure as Example 6.2.1. For the proof of �eorem 6.2.3, we use the
following result.
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6 �e chromatic number of some Kneser graphs

�eorem 6.2.2 ([14, �eorem 1]). �e independence number of qK5;{2,4} is a0 = θ3θ2 and every
independent set of qK5;{2,4} that is not contained in a point-pencil has at most a1 = 2q4 + 3q3 +
4q2 + 2q + 1 elements.

�eorem 6.2.3. Let q ≥ 3. Suppose that C is a covering of the vertices of qK5;{2,4} consisting
of q3 + q2 + q + 1 maximal independent sets. �en C consists of all point-pencils with base point
contained in a given solid.

Proof. From �eorem 6.2.2, and using its notation, we have |F | = a0 or |F | ≤ a1 for each F ∈ C.
Moreover, |F | = a0 implies F = F(P ) for some point P . Let M be the set of points P with
F(P ) ∈ C. Let L be the set of lines that contain at least one point of M . For L ∈ L, we denote by
cL the number of points in M that are contained in L. By double counting the pairs (P,L), with
P ∈M and L ∈ L, we �nd ∑

L∈L
cL = |M |θ3,

since every point is contained in θ3 lines. Next, we double count all triples (P, P ′, L) ∈M×M×L
with L = 〈P, P ′〉. Since any two distinct points of M span a line, we �nd∑

L∈L
cL(cL − 1) = |M |(|M | − 1).

For L ∈ L, we have 1 ≤ cL ≤ q + 1, and cL = q + 1 if all points of L belong to M . It follows that

(q + 1)
∑
L∈L

(cL − 1) ≥ |M |(|M | − 1),

and so

|L| =
∑
L∈L

cL −
∑
L∈L

(cL − 1) ≤ |M |θ3 −
|M |(|M | − 1)

q + 1
(6.1)

with equality if and only if cL ∈ {1, q + 1} for all L ∈ L. Since the number of solids through a
line is θ2, the union of all sets F(P ), with P ∈ M , contains |L|θ2 �ags of type {2, 4}. If we put
x = θ3 − |M |, then C contains x independent sets of cardinality at most a1 and, hence, we have∣∣∣∣∣ ⋃

F∈C
F

∣∣∣∣∣ ≤
(
|M |θ3 −

|M |(|M | − 1)

q + 1

)
θ2 + xa1. (6.2)

Since the union of all independent sets in C is the set of all �ags of type {2, 4} and thus has cardi-
nality

[
5
2

]
θ2, it follows that (use |M | = θ3 − x and a1 = (2q2 + q + 1)θ2)

θ4θ3

q + 1
θ2 −

(θ3 − x)θ3(q + 1)− (θ3 − x)(θ3 − x− 1)

q + 1
θ2 ≤ xa1

⇔ θ4θ3 − (θ3 − x)(θ4 + x)

q + 1
θ2 ≤ x(2q2 + q + 1)θ2

⇔ x2 + xq4

q + 1
≤ x(2q2 + q + 1)

q+1>0⇐===⇒ x
(
x+ q4 −

(
2q2 + q + 1

)
(q + 1)

)
≤ 0

⇔ x
(
x+ q4 − 2q3 − 3q2 − 2q − 1

)
≤ 0. (6.3)
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First, consider the case q ≥ 4. �en q4 − 2q3 − 3q2 − 2q − 1 > 0, and so (6.3) implies x = 0 and
we have equality in (6.2), and so as well in (6.1). Hence, cL ∈ {1, q+ 1} for all L ∈ L. �at is, each
L ∈ L has the property that either one or all of its points belong to M . �is implies that the union
of all points of M is itself a subspace. Since it contains |M | = q3 + q2 + q+ 1 points, this subspace
has dimension 3 and we are done.

Now, suppose that q = 3. �en (6.3) gives x(x − 7) ≤ 0, which shows that x ≤ 7 and thus
|M | ≥ 33. If cL ≤ q holds for all L ∈ L, then we could improve the bound (6.2) by replacing q + 1
in the denominator by q: [

5

2

]
q

θ2 ≤
(
|M |θ3 −

|M |(|M | − 1)

q

)
θ2 + xa1

q=3⇐=⇒ −13

3
x2 +

325

3
x− 1690 ≥ 0,

which gives a contradiction for x ≥ 0. Hence, there exists some L ∈ L with cL = q + 1 = 4.
Each of the remaining |M |− 4 ≥ 29 points of M spans a plane with L. Since the number of planes
through L is 13, it follows that there exists a plane π (through L) that contains at least 4 + 3 = 7
elements of M . Similarly, since |M | ≥ 33 = 26 + 7, one of the four solids through π contains at
least 7 +

⌈
26
4

⌉
= 14 elements of M . Let τ be a solid through π which contains at least t ≥ 14

elements of M . �en the number of lines, that contain one of these t points is at most 130 + 27t.
�e �rst term is the total number of lines in τ , and the second term is the product of the number t
of points of M in τ and the number of lines through such a point not in τ . We have equality only
if all 130 lines of τ belong to L. If P ∈M , with P /∈ τ , then t of the 40 lines through P contain an
element of M that is contained in τ . It follows that

|L| ≤ 130 + 27t+ (|M | − t)(40− t).

�e union of the independent sets F(P ), with P ∈ M , has size |L|θ2. Since the remaining x
independent sets of C each contain at most a1 �ags, and since the total number of {2, 4}-�ags is[
5
2

]
3
θ2, it follows that[

5

2

]
3

θ2(3) ≤ |L|θ2(3) + xa1 ≤ (130 + 27t+ (40− x− t)(40− t))θ2(3) + xa1.

Since a1 = 22 · θ2(3), we can divide by θ2(3) and �nd

0 ≤ (t− 14)(t+ x− 39)− 4x− 26. (6.4)

Since 14 ≤ t ≤ |M | = 40− x, it follows �rst that t > 39− x, that is t = 40− x = |M |. �en (6.4)
gives 0 ≤ −5x and, hence, x = 0, t = 40 and |M | = 40. �is implies that C consists of the sets
F(P ) for the 40 points P of τ . �

Remark 6.2.4. From �eorem 6.2.3 and duality, it follows that the chromatic number of the Kneser
graph qK5;{1,3} is θ3. Moreover, for every color class C of a minimum coloring, it holds that all
planes of the �ags in C are contained in a solid SC , and all these solids SC contain the same �xed
point P .

6.3 �e chromatic number of the Kneser graph qK5;{2,3} of
line-plane �ags in PG(4, q)

In this section, we will prove that, for large q, the chromatic number of the Kneser Graph qK5,{2,3}
is θ3 − q. More speci�cally, we will prove the following result.
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6 �e chromatic number of some Kneser graphs

�eorem 6.3.1. For q > 160 ·365, the chromatic number of the Kneser graph qK5;{2,3} is q3 +q2 +1.
Up to duality, for each color class C of a minimum coloring there is a unique point-pencil F such that
F ∪ C is independent, and the base points of these point-pencils are q3 + q2 + 1 distinct points of a
solid.

6.3.1 Colorings of the Kneser graph qK5;{2,3}

Recall that a �ag of type {2, 3} corresponds to a line-plane �ag of PG(4, q). Hence, it is a set {`, π}
of a line ` and a plane π, with ` contained in π. Two �ags (`, π) and (`′, π′) are adjacent in qK5;{2,3}
if and only if the �ags are in general position in PG(4, q). �is means l ∩ π′ = ∅ = l′ ∩ π and also
implies that π ∩ π′ is a point. Recall that an independent set of the Kneser graph is a set of line-
plane �ags pairwise not in general position, or in short, an EKR set of line-plane �ags. �us, the
chromatic number of the Kneser graph qK5;{2,3} is the smallest number of EKR sets whose union
comprises all line-plane �ags.

Point-pencils of line-plane �ags are EKR sets. However, these are not maximal and are contained
in more than one maximal EKR set, as we shall see below. Note that the �ags of type {d, d + 1}
in PG(2d, q) are self-dual, and that the dual of two �ags in general position are �ags that are in
general position too. Hence, there are maximal EKR sets that arise as the dual of the maximal EKR
sets that contain a point-pencil.

Example 6.3.2 (EKR sets). LetM be the set of all line-plane �ags of PG(4, q). For point-line �ags
(P, `), point-solid �ags (P, S), and plane-solid �ags (τ, S), we de�ne the EKR sets

F(P, `) = {(h, π) ∈M | P ∈ h or ` ⊂ π},
F(P, S) = {(h, π) ∈M | P ∈ h or P ∈ π ⊂ S},
F(S, P ) = {(h, π) ∈M | π ⊂ S or P ∈ h ⊂ S},
F(S, τ) = {(h, π) ∈M | π ⊂ S or h ⊂ τ}.

Let F be one of the examples above. In the �rst two cases we call F(P ) = {(h, π) ∈ M | P ∈ h}
the generic part and F \ F(P ) the special part of F . In the remaining two cases, we call F(S) =
{(h, π) ∈M | π ⊂ S} the generic part and F \ F(S) the special part of F .

Note that examples 1 and 4 as well as 2 and 3 are each other’s dual. Also, all four examples have
cardinality

e0 = θ2(θ3 + q2),

and their special parts have cardinality q2θ2. It was shown in [11] that these examples are the
largest EKR sets of line-plane �ags in PG(4, q). We reformulate their result as follows.

�eorem 6.3.3 ([11, Proposition 2.1]). Let F be an EKR set of line-plane �ags of PG(4, q). �en
|F| ≤ e0 and equality occurs if and only if F is one of the sets de�ned in Example 6.3.2.

We will explain in the appendix (Section 6.3.4) how the following stability result can be derived
from [11].

Result 6.3.4. Every EKR set of line-plane �ags of PG(4, q), which is not a subset of one of the sets
de�ned in Example 6.3.2, has cardinality at most

e1 = 4q4 + 9q3 + 4q2 + q + 1.

Example 6.3.5 (Coverings of qK5;{2,3}). Let S be a solid of PG(4, q).
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1) Consider a set W of q points of S and suppose that there is a map ν from the set of points in
S \W to the set of lines of S such that P ∈ ν(P ) for all P ∈ S \W and such that every line
of S that meets W lies in the image of ν. �en F = {F(P, ν(P )) | P ∈ S \W} is a set of EKR
sets whose union is the set of all line-plane �ags of PG(4, q).

Proof. We show that every line-plane �ag (l, π) in PG(4, q) is covered by the set F. If (l, π)
is a �ag such that l ∩ S contains a point P of S \W , then (l, π) ∈ F(P, ν(P )). If (l, π) is a
�ag such that l ∩ S contains no point of S \W , then l ∩ S is a point Q contained in W . �e
line l0 = π ∩ S contains the point Q ∈ W , and so this line is the image of ν of a point P ′.
Hence, ν(P ′) = l0, and so (l, π) is contained in the �ag F(P ′, ν(P ′)). �is proves that every
line-plane �ag is contained in an element of F. �

We provide examples of a set W and a map ν satisfying these conditions:

(a) Suppose thatW is a set of q points P1, . . . , Pq which are contained in a common line ` and
let P0 be the last remaining point of `. For each plane π of S through `, �x a numbering
`1(π), . . . , `q(π) of the lines of π through P0, di�erent from `. De�ne the map ν from the
set S \W to the line-set of S by ν(P0) = ` and ν(P ) = PPi, if P /∈ ` and P ∈ `i(〈P, `〉).

(b) Suppose that W is a set of q points P1, . . . , Pq in a plane π. Furthermore, suppose that
there is a map ν from π \ W to the set of lines in π, such that every line in π through
a point of W is contained in the image of ν. �en one can extend this map to S \W as
follows: the q points in W meet at most q(q + 1) lines of π and thus there is at least one
line g ⊆ π which does not meet the set W . Let π1, . . . , πq be the planes through g in S
di�erent from π and, for all i ∈ {1, . . . , q} and all P ∈ πi \ π, set ν(P ) = PPi.

Obviously, one can de�ne such a map ν on a plane π \W if W only spans a line therein,
because then the construction in (a) can be used. However, one can also �nd such a map ν
if W spans the plane π and we give a simple construction in the case where q − 1 points
P1, . . . , Pq−1 of W are contained in a common line `0 and the last point Pq of W satis�es
π = 〈Pq, `0〉. We letQ0 andQ1 be the two remaining points of `0 and we �x a numbering
`1, . . . , `q of the lines di�erent from `0 of π through Q0, such that `q = Q0Pq . �en, for
all i ∈ {1, . . . , q − 1} and all P ∈ `i \ {Q0}, we set ν(P ) = PPi. Furthermore, we set
ν(Q0) = `0, ν(Q1) = Q1Pq and for all P ∈ `q \ {Q0, Pq}, we set ν(P ) = `q .

2) Finally, we give an example which uses both EKR sets with special part coming from a solid
and EKR sets with special part coming from a line, that is, EKR sets F(P,Z) and F(Q, l) for a
point-solid �ag (P,Z) and a point-line �ag (Q, l), respectively.

Here, let W be again a set of q points P1, . . . , Pq of S, and suppose that these points only span
a line ` of S. Let P0 be the last remaining point of `. For any plane π with ` ⊆ π ⊆ S, �x a
numbering `1(π), . . . , `q(π) of the lines of π through P0 di�erent from ` as well as a numbering
S1(π), . . . , Sq(π) of the solids containing π, and di�erent from S. Put

F1(π) =

q⋃
i=1

{F(P, PPi) | P0 6= P ∈ `i(π)},

F2(π) =

q⋃
i=1

{F(P, Si(π)) | P0 6= P ∈ `i(π)}.

Now, let Π be the set consisting of all planes of S that contain ` and for every subset R of Π, put

F(R) = {F(P0, `)} ∪
⋃
π∈R

F1(π) ∪
⋃

π∈Π\R

F2(π).
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�en, for all R ⊆ Π, the set F(R) consists of θ3 − q EKR sets whose union is the set of all line-
plane �ags. Note that forR = Π, this example F(Π) coincides with the example described above
in 1(a).

Proof. We show that every line-plane �ag (l, α) in PG(4, q) is covered by the set F(R). If
(l, α) is a �ag such that l ∩ S contains a point P of S \W , then (l, α) is contained in the
point-pencil F(P ). �is point-pencil is contained in F(P0, `) if P = P0. If P 6= P0, then
F(P ) is contained in an element of F1(〈P, `〉) or in F2(〈P, `〉) depending on whether 〈P, `〉
is contained in R or not. If (l, α) is a �ag such that l ∩ S contains no point of S \W , then
l ∩ S is a point Pi contained in W , and the line l0 = α ∩ S contains this point. Now there
are two cases, depending on whether π = 〈`, l0〉 is contained in R or not. If π ∈ R, then
(l, α) ∈ F(l0 ∩ `i, ν(l0 ∩ `i)), which is contained in F1(π). Suppose now that π /∈ R, and
let Sj(π) be the solid through π spanned by π and α. �en (l, α) ∈ F(l0 ∩ `j , Sj(π)), which
is contained in F2(π). �is proves that every line-plane �ag is contained in an element of
F. �

�is list of examples is not a complete list of all colorings with θ3 − q colors. For example, one can
also �nd colorings by replacing all EKR sets in a coloring described above by their dual structure.
However, since there are examples of colorings with θ3 − q colors, we know that the chromatic
number of Γ is at most θ3− q and the list above provides several examples of colorings of this size.
We will prove in Section 6.3.3 that the chromatic number is in fact equal to θ3 − q, provided q is
large enough.

6.3.2 A lemma on point sets

Lemma 6.3.6. Suppose that M is a set of points in PG(4, q), and that P1, P2, P3 are three non-
collinear points such that the plane π = 〈P1, P2, P3〉 has no points in M . Let m, n and d be positive
real numbers such that the following hold:

• Each of the points P1, P2, P3 lies on at most nq2 lines that meet M ,

• |M | = dq3,

• q > 32n
5m
d5

.

�en there exists a solid S through π with |S ∩M | ≥ mq2.

Proof. Let πj , 1 ≤ j ≤ q2 + q, be the planes through the line P1P2 di�erent from π, and, for
i ∈ {1, 2} and j ∈ {1, . . . , q2 + q}, let aij be the number of lines of πj through Pi that meet M .
�en xj = |πj ∩M | ≤ a1ja2j . �is implies that√xj ≤ 1

2(a1j + a2j). Since each of P1 and P2 lies
on at most nq2 lines that meet M , it follows that

nq2 ≥ 1

2

∑
j

(a1j + a2j) ≥
∑
j

√
xj .

Put R = {j | xj ≥ cq2} with c = d2

4n2 . �en

nq2 ≥
∑
j /∈R

√
xj ≥

1√
cq

∑
j /∈R

xj ≥
1√
cq

(|M | − |R|q2),
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since the sum of xj over all j is |M | and since each plane πj , with j ∈ R, meets M in at most q2

points. It follows that

|R|q2 ≥ |M | − nq2√cq.

Assume to the contrary that every solid through π meets M in at most mq2 points. �en every
solid through π contains at most mq

2

cq2
planes πj , with j ∈ R. Hence, the number of solids through

π that contain a plane πj , with j ∈ R, is at least |R|cm . �is implies that P3 lies on at least

|R|c
m
· cq2

lines that meet M . Hence,
|R|
m
c2q2 ≤ nq2.

Comparing this to the lower bound for |R|, we �nd

(|M | − nq2√cq)c
2

m
≤ nq2 ⇒ |M | ≤

√
cnq3 +

mnq2

c2

⇒ dq3 ≤ d

2
q3 + 16

mn5q2

d4

⇒ q ≤ 32
mn5

d5
,

in which the second implication follows since c = d2

4n2 . �is contradicts the hypothesis in the
statement of the lemma. �

Remark 6.3.7. �e restriction on q, imposed by this lemma, is the main reason why we can prove
�eorem 6.3.1 only for very large values of q. �e remaining arguments in the next section are valid
for smaller values of q.

6.3.3 �e chromatic number of qK5;{2,3}

In this section we prove, for large values of q, that the chromatic number of qK5;{2,3} is θ3 − q.
Note that from Example 6.3.5, we already know a coloring with this many colors, so we only have
to show that one cannot do be�er.

�eorem 6.3.8. Let F = {F1, . . . , Fθ3−q} be a multiset (so we allow Fi = Fj for i 6= j) of θ3 − q
EKR sets of line-plane �ags of PG(4, q), q > 160 · 365, whose union consists of all line-plane �ags of
PG(4, q). We put J = {1 ≤ j ≤ θ3 − q : |Fj | > e1} and I ⊆ J is the set of indices i such that the
generic part of Fi is based on a point Pi. We suppose the following:

1. For j ∈ J , the setFj is one of the EKR sets de�ned in Example 6.3.2, which implies that |Fj | = e0.

2. For distinct i, j ∈ J , the EKR sets Fi and Fj have distinct generic parts.

3. For at least 1
2 |J | indices j ∈ J , the generic part of Fj is based on a point. Hence, |I| ≥ 1

2 |J |.

�en each F ∈ F has e0 elements and is based on a point PF and the points PF , F ∈ F, are θ3 − q
mutually distinct points of a solid.
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Note that in this theorem, we suppose that the sets Fj , with j ∈ J , are maximal EKR sets. �e
proof of this theorem is carried out in Lemmas 6.3.9-6.3.20. In all these lemmas, we suppose that F
is as in the theorem and that q > 160 · 365. We note that Lemma 6.3.9 is valid for all q and Lemma
6.3.10 requires only q ≥ 41.

Lemma 6.3.9. �e number of all line-plane �ags of PG(4, q) is equal to[
5

3

]
·
[
3

2

]
= |F|e0 − q2θ2(2q3 + q2 + q + 1).

Lemma 6.3.10. Let S be a solid and let q ≥ 41. Denote by c1 the number of indices i ∈ I with Pi /∈ S
and by c3 the number of EKR sets F ∈ F with |F | ≤ e1. �en (|I| − c1) + c3 < 5q2 or c1 + c3 ≤ 4q2.

Proof. We have |I| ≥ 1
2 |J | = 1

2(θ3 − q − c3). We know that for all i ∈ I the set Fi is based on a
point Pi and we set A = {a ∈ I | Pa ∈ S}. For a ∈ A, the set Fa contains θ2

2 �ags (`, π) with
P ∈ ` ⊆ S. Since there are (q2 + 1)θ2 lines in S, there are at most (q2 + 1)θ2

2 �ags (`, π) with
` ⊆ S. It follows that ∣∣∣∣∣⋃

a∈A
Fa

∣∣∣∣∣ ≤ |A|(e0 − θ2
2) + (q2 + 1)θ2

2. (6.5)

If i ∈ I \A, then for each a ∈ A, the sets Fi and Fa share the θ2 line-plane �ags (PiPa, π). Di�erent
values of a in A correspond to disjoint sets of θ2 �ags, and, hence, Fi contains at least |A|θ2 �ags
that are contained in ∪a∈AFa. It follows that∣∣∣∣∣⋃

i∈I
Fi \

⋃
a∈A

Fa

∣∣∣∣∣ ≤ |I \A|e0 − |A||I \A|θ2. (6.6)

�erefore, we have that

[
5

3

][
3

2

]
≤

∣∣∣∣∣⋃
a∈A

Fa

∣∣∣∣∣+

∣∣∣∣∣⋃
i∈I

Fi \
⋃
a∈A

Fa

∣∣∣∣∣+

∣∣∣∣∣∣
⋃
i∈J\I

Fi

∣∣∣∣∣∣+

∣∣∣∣∣⋃
i/∈J

Fi

∣∣∣∣∣
⇒ |F|e0 − q2θ2(2q3 + q2 + q + 1)

≤ |A|(e0 − θ2
2) + (q2 + 1)θ2

2 + |I \A|e0 − |A||I \A|θ2 + |J \ I|e0 + c3e1

⇒ |A|θ2
2 − (q2 + 1)θ2

2 + |A|(|I| − |A|)θ2 + c3(e0 − e1)

≤ q2θ2(2q3 + q2 + q + 1).

�e �rst implication follows by Lemma 6.3.9, and the inequalities (6.5) and (6.6). �e second impli-
cation follows since |F| = θ3 − q = |A|+ |I \A|+ |J \ I|+ c3.

We use that |A| = |I| − c1, and e0 − e1 ≥ θ2(q3 − 2q2 − 4q + 5) for q ≥ 3. If we divide both sides
by θ2, then we have that

(|I| − c1)θ2 + c1(|I| − c1) + c3(q3 − 2q2 − 4q + 5) ≤ 2q5 + (2q2 + 1)θ2. (6.7)

Assume the statement of the lemma is not true. �en

0 ≤ (c1 + c3 − 4q2)(|I| − c1 + c3 − 5q2). (6.8)

107
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If we add the right hand side of (6.8) to the right hand side of (6.7), we �nd the following inequality.

(|I| − c1)θ2 + c1(|I| − c1) + c3(q3 − 2q2 − 4q + 5)

≤ 2q5 + (2q2 + 1)θ2 + (c1 + c3 − 4q2)(|I| − c1 + c3 − 5q2).

If we replace in this inequality |I| by 1
2(θ3−q−c3)+z with z = |I|− 1

2(θ3−q−c3), and multiply
both sides with 2, we �nd that

(θ3 − q − c3 + 2z)θ2 − 2c1θ2 + c1(θ3 − q − c3 + 2z)− 2c2
1 + 2c3(q3 − 2q2 − 4q + 5)

≤ 4q5 + 2(2q2 + 1)θ2 + (c1 + c3 − 4q2)(θ3 − q + c3 + 2z − 2c1 − 10q2)

⇔ 2(5q2 + q + 1− c3)z + (q3 + 8q2 − 9q + 8− c3)c3 + q5

≤ 38q4 + 2q3 + q + 1 + (2q + 2)c1. (6.9)

Since |I| ≥ 1
2 (θ3 − q − c3), we have that z ≥ 0. Furthermore, from (6.7), we have that

c3(q3 − 2q2 − 4q + 5) ≤ 2q5 + (2q2 + 1)θ2,

which implies that c3 ≤ 3q2 for q ≥ 10. Hence, (q3 + 8q2 − 9q + 8 − c3)c3 ≥ 0 as well as
2(5q2 + q + 1− c3)z ≥ 0, so, for q ≥ 10, (6.9) implies that

q5 ≤ 38q4 + 2q3 + q + 1 + (2q + 2)c1.

As c1 ≤ |I| ≤ |F| = θ3 − q, this is a contradiction for q ≥ 41. �

Lemma 6.3.11. �ere exists a solid S such that

|{F ∈ F : |F | ≤ e1}|+ |{i ∈ I : Pi /∈ S}| ≤ 4q2.

Proof. Let c3 be the number of F ∈ F with |F | 6= e0 and thus |F | ≤ e1. �en F contains |I| ≥
1
2(θ3− q− c3) EKR sets that are maximal EKR sets based on a point. Let these beGi, i = 1, . . . , |I|,
let Ri be the base point of Gi and put

gi =

∣∣∣∣∣∣Gi ∩
i−1⋃
j=1

Gj

∣∣∣∣∣∣ .
�en we have that ∣∣∣∣∣⋃

i∈I
Gi

∣∣∣∣∣ = |I|e0 −
∑
i∈I

gi. (6.10)

We may assume that the sequence g1, . . . , g|I| is monotone increasing. We want to show that gj
for j = 1

4q
3 + q2 + 2q+ 1 is less than 9q2θ2. Suppose that this is not the case, then we would have

that
∑|I|

i=j gi ≥ (|I| − j + 1)9q2θ2. We know that[
5

3

][
3

2

]
≤

∣∣∣∣∣⋃
i∈I

Gi

∣∣∣∣∣+

∣∣∣∣∣∣
⋃
i∈J\I

Fi

∣∣∣∣∣∣+

∣∣∣∣∣⋃
i/∈J

Fi

∣∣∣∣∣
⇒ |F|e0 − q2θ2(2q3 + q2 + q + 1)

≤ |I|e0 −
∑
i∈I

gi + |J \ I|e0 + c3e1

⇒
∑
i∈I

gi + c3(e0 − e1) ≤ q2θ2(2q3 + q2 + q + 1)

⇒ (|I| − j + 1)9q2θ2 + c3(e0 − e1) ≤ q2θ2(2q3 + q2 + q + 1).
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�e �rst implication follows again by Lemma 6.3.9 and (6.10). �e second implication follows since
|F| = θ3 − q = |I| + |J \ I| + c3, and the third implication follows by the assumption that∑|I|

i=j gi ≥ (|I| − j + 1)9q2θ2.

Using the lower bound for |I| ≥ 1
2 (θ3 − q − c3), as well as e0 − e1 ≥ θ2

(
q3 − 2q2 − 4q + 5

)
for

q ≥ 3, and j = 1
4q

3 + q2 + 2q + 1, we �nd that(
1

4
q3 − 1

2
q2 − 2q +

1

2
− 1

2
c3

)
9q2θ2 + c3θ2

(
q3 − 2q2 − 4q + 5

)
≤ q2θ2(2q3 + q2 + q + 1)

⇔ c3

(
2q3 − 13q2 − 8q + 10

)
≤ −1

2
q5 + 11q4 + 38q3 − 7q2

⇒ c3 < 0.

�e last implication is true for q ≥ 26. Since c3 ≥ 0, we �nd a contradiction, and so our assumption
was false. Hence, we have that gj < 9q2θ2 and, therefore, gi < 9q2θ2 for all i ≤ j. Now, let Q1,
Q2 and Q3 be three non-collinear points in {Ri : i ∈ {j − q − 1, . . . , j}} and let P be the set
of all points Ri, with i ≤ j − q − 2, that do not lie in the plane π = 〈Q1, Q2, Q3〉. Recall that
j = 1

4q
3 + q2 + 2q + 1. �en |P| ≥ j − q − 2 − (θ2 − 3) > 1

4q
3. Also, each of the points Qi is

contained in less than 9q2 lines that meet P , since every such line lies in θ2 �ags that are contained
in the union of the Gi, with i ≤ j − q − 2. �en we use Lemma 6.3.6 with M = P, n = 9, d = 1

4

and m = 5. Hence, since q ≥ 32n
5m
d5

= 160 · 365, we �nd a solid that contains at least 5q2 points
of P . �e statement follows now from Lemma 6.3.10. �

Remark 6.3.12. Note that there is precisely one solid that contains all but at most 4q2 points Pi, i ∈
I : if there would be two such solids S1, S2, then the number of points Pi, i ∈ I , in S1 ∪ S2 would
be at least 2(θ3 − q − 4q2) − θ2. For q ≥ 9, this number of points is larger than the total number
θ3 − q of EKR sets Fi in F, which gives a contradiction.

Notation 6.3.13. From now on, we denote by S the unique solid that contains all but at most 4q2 of
the points Pi, with i ∈ I , and we use the following notation:

• C0 = {Fi | i ∈ I, Pi ∈ S}.

• C1 = {Fi | i ∈ I, Pi /∈ S}.

• C2 = {Fi | i ∈ J \ I}.

• C3 = {Fi | i ∈ {1, . . . , θ3 − q} \ J}.

• ci = |Ci| for i ∈ {0, . . . , 3}.

• W = {P ∈ S | P 6= Pi, ∀i ∈ I}.

• Let M be the set of all line-plane �ags (l, π) for which l ∩ S is a point which lies in W .

Lemma 6.3.14. We have

(a) C0 ∪ C1 ∪ C2 ∪ C3 is a partition of F.

(b) c1 + c3 ≤ 4q2.

(c) |W | = θ3 − c0.

(d) Every point of W lies in the plane of exactly q3θ2 �ags of M .

(e) |M | = |W |q3θ2.

(f) c3 ≤ 2q2 + 6q for q ≥ 22.
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Proof. Statement (a) is obvious from the notation introduced above. �e choice of S implies state-
ment (b). Since no two members ofF of size e0 have the same generic part, we have |W | = |S\C0| =
|S|−|C0| = θ3−c0 and thus statement (c). Furthermore, each point P ∈W is contained in q3 lines
that meet S only in P and each such line lies in θ2 planes. Hence, for every point P ∈ W , exactly
q3θ2 �ags (`, π) of M satisfy `∩ S = P , which proves statements (d) and (e). Finally, statement (f)
follows from Lemma 6.3.9 and q ≥ 22:

|F|e0 − q2θ2(2q3 + q2 + q + 1) ≤ |J |e0 + c3e1

⇔ c3(e0 − e1) ≤ q2θ2(2q3 + q2 + q + 1)

⇒ c3 ≤ 2q2 + 6q. �

Lemma 6.3.15.

(a) Suppose that F ∈ C0. �en the generic part of F does not contain a �ag of M .

(b) Suppose that F ∈ C1. �en |F ∩M | ≤ |W |θ2 + q2θ2.

(c) Suppose that F ∈ C2, with base solid H . If H = S, then we have that |F ∩M | ≤ q2θ2. If
H 6= S, then |F ∩M | ≤ |H ∩W |q2(q + 1) + q2θ2.

Proof. (a) �e �ags of the generic part of F either have a line that is contained in S or that meets
S in the base point of F , which is not in W . �erefore these �ags do not belong to M .

(b) We know that F is based on a point P . �e generic part of F consists of all �ags whose line
contains P . As P /∈ S, we see that the generic part of F has exactly |W |θ2 �ags in M . �e special
part of F has q2θ2 �ags and thus at most this many �ags of M .

(c) We know that F is based on a solid H . �e generic part of H consists of all �ags whose plane
lies inH . Hence, ifH = S, the generic part contains no �ag ofM , and ifH 6= S, it contains exactly
|H ∩W |q2(q+ 1) �ags of M . �e special part of F has q2θ2 �ags and thus at most this many �ags
of M . �

Lemma 6.3.16. Suppose that z is an integer such that all except at most one plane of S have at most
z points in W . �en

|W |q3θ2 ≤ c1 (|W |+ q2)θ2 + c2(zq2(q + 1) + q2θ2) + c3e1 + s+ q3(q + 1)θ2,

where s is the number of �ags of M that are contained in the special part of F for some EKR set F of
C0. If every plane of S has at most z points in W , then

|W |q3θ2 ≤c1(|W |+ q2)θ2 + c2(zq2(q + 1) + q2θ2) + c3e1 + s.

Proof. Each of the |M | = |W |q3θ2 �ags ofM is contained in some member ofF = C0∪C1∪C2∪C3.
Hence, |W |q3θ2 ≤

∑3
i=0 |(∪F∈CiF ) ∩M |. If there exists a plane of S with more than z points in

W , then denote by z′ its number of points in W . Otherwise put z′ = z. Since a plane of S lies in q
solids other than S, the preceding lemma shows that ∪F∈C2F and M share at most

(c2 − q)(zq2(q + 1) + q2θ2) + q(z′q2(q + 1) + q2θ2)

= c2(zq2(q + 1) + q2θ2) + (z′ − z)q3(q + 1)
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�ags. Using this, together with the previous lemma and the fact that |F | ≤ e1 for F ∈ C3, we �nd
that

|W |q3θ2 ≤

∣∣∣∣∣∣
 ⋃
F∈C0

F

 ∩M
∣∣∣∣∣∣+

∣∣∣∣∣∣
 ⋃
F∈C1

F

 ∩M
∣∣∣∣∣∣+

∣∣∣∣∣∣
 ⋃
F∈C2

F

 ∩M
∣∣∣∣∣∣+

∣∣∣∣∣∣
 ⋃
F∈C3

F

 ∩M
∣∣∣∣∣∣

≤
∑
F∈C0

|F ∩M |+
∑
F∈C1

|F ∩M |+
∑
F∈C3

|F ∩M |

+ c2(zq2(q + 1) + q2θ2) + (z′ − z)q3(q + 1)

≤ s+ c1(|W |+ q2)θ2 + c2(zq2(q + 1) + q2θ2) + (z′ − z)q3(q + 1) + c3e1.

Now we use z′ − z ≤ θ2 to �nd the �rst assertion and z′ − z = 0 to �nd the second assertion in
the statement of the lemma. �

Lemma 6.3.17. Let π1 and π2 be distinct planes of S. �en

|(π1 ∪ π2) ∩W | q2(q + 1) ≤ 6q3(q + 4) + 3q(|W | − q)(q + 1). (6.11)

Proof. PutW ′ = (π1∪π2)∩W , and letM ′ be the subset ofM that consists of all �ags ofM whose
line meets S in a point of W ′. Lemma 6.3.14 (d) shows that |M ′| = |W ′|q3θ2. Each �ag of M ′ lies
in at least one of the EKR sets of F = C0 ∪C1 ∪C2 ∪C3. Hence, |M ′| ≤ d0 + d1 + d2 + d3, where
di is the number of elements of M ′ that lie in some member of Ci.

For F ∈ C3, we have |F ∩M ′| ≤ |F | ≤ e1. Hence, d3 ≤ c3e1.

If F ∈ C1, then |F | = e0 and F is based on a point P /∈ S, so the �ags of M ′ that lie in the generic
part of F are precisely the |W ′|θ2 �ags whose line contains P and a point of W ′. Since the special
part of F has q2θ2 �ags, it follows that d1 ≤ c1(|W ′|+ q2)θ2.

Consider F ∈ C2. �en |F | = e0 and F is based on a solid H . If H = S, then the lines of all
�ags of the generic part of F are contained in S and hence F ∩M ′ = ∅. Now we consider the case
when H 6= S. �en the number of �ags of M ′ in the generic part of F is |H ∩W ′|q2(q + 1). �is
number is at most (2q + 1)q2(q + 1), if the plane H ∩ S is di�erent from π1 and from π2, and it is
|W ∩ πi|q2(q + 1), if H ∩ S = πi. Since there are exactly q solids that meet S in π1 and as many
that meet S in π2, it follows that the number of �ags of M ′ that lie in the generic part of at least
one EKR set of C2 is at most

q(|W ∩ π1|+ |W ∩ π2|)q2(q + 1) + (c2 − 2q)(2q + 1)q2(q + 1)

≤ q(|W ∩ π1|+ |W ∩ π2|)q2(q + 1) + c2(2q + 1)q2(q + 1).

�e special part of each EKR set of C2 has q2θ2 �ags and thus at most this many �ags of M ′. Using
|W ∩ π1|+ |W ∩ π2| ≤ |W ′|+ q + 1, it follows that

d2 ≤ q(|W ′|+ q + 1)q2(q + 1) + c2(2q + 1)q2(q + 1) + c2q
2θ2.

Finally, we consider an EKR set F of C0. �en |F | = e0 and F is based on a point P . We know
from Lemma 6.3.15 (a) that only the special part T of F can contribute to M ′. For T , there are the
following possibilities:

• �ere exists a line ` with P ∈ ` and T consists of all �ags whose plane contains ` and whose
line does not contain P . If ` meets S only in P , then |T ∩M ′| = |W ′|q. If ` is contained
in S, then |T ∩M ′| = |` ∩W ′|q3 which is at most 2q3 if P /∈ π1 ∪ π2, and at most q4 if
P ∈ π1 ∪ π2. Since |W ′| ≤ 2q2 + q + 1, it follows that |T ∩M ′| ≤ q4 if P ∈ π1 ∪ π2, and
|T ∩M ′| ≤ q(2q2 + q + 1) otherwise.
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• �ere exists a solid H with P ∈ H and T consists of all line-plane �ags (h, τ) with P ∈
τ ⊆ H and P /∈ h. �en T ∩M ′ = ∅ if H = S, and |T ∩M ′| = |H ∩W ′|q2 if H 6= S.
In the second case, this number is |W ′ ∩ πi|q2 if H ∩ S = πi for some i ∈ {1, 2}, and it
is at most (2q + 1)q2 if H ∩ S /∈ {π1, π2}. Note that H ∩ S = πi implies P ∈ πi, so that
|W ′ ∩ πi| ≤ q2 + q and hence |W ′ ∩ πi|q2 ≤ q3(q + 1).

Summarizing, we see that |T ∩M ′| ≤ q(2q2 + q + 1) if P /∈ π1 ∪ π2, and |T ∩M ′| ≤ q3(q + 1) if
P ∈ π1 ∪ π2, which proves

d0 ≤ (c0 − 2q2 − q − 1 + |W ′|)q(2q2 + q + 1) + (2q2 + q + 1− |W ′|)q3(q + 1)

= c0q(2q
2 + q + 1) + 2q6 − q5 − 2q4 − 4q3 − 2q2 − q − |W ′|(q4 − q3 − q2 − q)

≤ c0q(2q
2 + q + 1) + 2q6 − q5 − |W ′|(q4 − q3 − q2 − q).

It follows that

|W ′|q3θ2 = |M ′| ≤ d0 + d1 + d2 + d3

≤ c0q(2q
2 + q + 1) + 2q6 − q5 − |W ′|(q4 − q3 − q2 − q)

+ c1(|W ′|+ q2)θ2 + q(|W ′|+ q + 1)q2(q + 1)

+ c2(2q + 1)q2(q + 1) + c2q
2θ2 + c3e1

and simpli�cations show that

|W ′|q4θ1 ≤ |W ′|qθ2 + q3(2q3 + 2q + 1) + c0q(q
2 + θ2)

+ c1(|W ′|+ q2)θ2 + c2q
2(θ2 + 2q2 + 3q + 1) + c3e1︸ ︷︷ ︸

=ξ

. (6.12)

We put δ = c1 + c2 + c3, which also implies that c0 = θ3 − q − δ. Since |W ′| ≤ 2q2 + q + 1, we
have that

ξ ≤ c1(3q2 + q + 1)θ2 + c2q
2(θ2 + 2q2 + 3q + 1) + c3e1

= δ(3q2 + q + 1)θ2 − c2(3q2 + 2q + 1) + c3(e1 − (3q2 + q + 1)θ2)

≤ δ(3q2 + q + 1)θ2 + (2q2 + 6q)(q4 + 5q3 − q2 − q).

�e last inequality follows from Lemma 6.3.14 (f).
Using this bound on ξ, as well as |W ′| ≤ q2 + θ2 and c0 = θ3 − q − δ on the right hand side of
inequality (6.12), we �nd that

|W ′|q4θ1 ≤ 6q6 + 21q5 + 35q4 − 3q2 + 2q + δ(3q4 + 2q3 + 4q2 + q + 1)

≤ 6q6 + 24q5 + δ(3q4 + 3q3)

= 6q5(q + 4) + 3q3δ(q + 1).

Substituting δ = |W | − q in the last expression implies the statement. �

Lemma 6.3.18. We have c0 ≥ q3 − 18q + 1 and thus |W | ≤ q2 + 19q.

Proof. Let π1 and π2 be planes of S such that |π1 ∩W | ≥ |π2 ∩W | ≥ |π ∩W | for every plane π
of S other than π1 and π2. Put z = |π2 ∩W |. �e number s occurring in the assertion of Lemma
6.3.16 is at most c0q

2θ2, since the special part of each EKR set of C0 has cardinality q2θ2. �erefore,
Lemma 6.3.16 shows that

|W |(q3 − c1)θ2 ≤ c0q
2θ2 + c1q

2θ2 + c2(zq2(q + 1) + q2θ2) + c3e1 + q3(q + 1)θ2.
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Since c0 + c1 + c2 + c3 = θ3 − q, the right hand side is equal to

(θ3 − q)q2θ2 + c2zq
2(q + 1) + c3(e1 − q2θ2) + q3(q + 1)θ2.

Using c3 ≤ 2q2 + 6q from Lemma 6.3.14 (f) and the de�nition of e1 implies

|W |(q3 − c1)θ2 ≤ q7 + 9q6 + 38q5 + 58q4 + 22q3 + 9q2 + 6q + c2zq
2(q + 1)

≤ q7 + 10q6 + c2zq
2(q + 1).

�e last inequality follows since q ≥ 40. We put δ = c1 + c2 + c3, such that |W | = θ3− c0 = δ+ q
and thus

(δ + q)(q3 − c1)θ2 ≤ q7 + 10q6 + δzq2(q + 1). (6.13)

Now, Lemma 6.3.17 states

|(π1 ∪ π2) ∩W |q2(q + 1) ≤ 6q4 + 24q3 + 3δ(q2 + q)

and, since |(π1 ∪ π2) ∩W | ≥ |π1 ∩W |+ |π2 ∩W | − (q + 1) ≥ 2z − q − 1, this implies

2zq2(q + 1) ≤ 7q4 + 26q3 + q2 + 3δ(q2 + q) ≤ 8q4 + 3δ(q2 + q). (6.14)

�e last inequality uses q ≥ 27. Combining (6.13) with (6.14) and using c1 ≤ 4q2 results in

(δ + q)(q3 − 4q2)θ2 ≤ q7 + 10q6 + δ

(
4q4 +

3

2
δ(q2 + q)

)
⇔ δ2 3

2
(q + 1) + δ(4q3 − qθ2(q − 4)) + q6 + 10q5 − q2θ2(q − 4) ≥ 0. (6.15)

It is easy to verify that this inequality is not satis�ed for δ = q2 + 18q nor for δ = 2
3q

3− 7q2. Since
(6.15) is a quadratic inequality in δ, it follows that δ does not lie in the interval [q2 +18q, 2

3q
3−7q2].

However, we have δ = θ3 − q − c0 as well as c0 + c1 = |I| ≥ 1
2(θ3 − q − c3). Furthermore, since

c1 + c3 ≤ 4q2 by Lemma 6.3.14(b), this implies δ < 2
3q

3 − 7q2 for q ≥ 70. We conclude that
δ ≤ q2 + 18q, and hence |W | ≤ q2 + 19q. �

Lemma 6.3.19. Every plane of S has at most 10q points in W .

Proof. From Lemma 6.3.17 and Lemma 6.3.18, it follows, for q ≥ 72, that

|(π1 ∪ π2) ∩W | q2(q + 1) ≤ 6q3(q + 4) + 3q(q2 + 18q)(q + 1)

⇒ |(π1 ∪ π2) ∩W | ≤ 9q + 72 ≤ 10q

⇒ |π1 ∩W | ≤ 10q,

for all planes π1 (and π2 6= π1) in S . �

Lemma 6.3.20. We have F = C0.

Proof. As in the previous proofs, we put δ = c1 + c2 + c3, which again implies |W | = q+ δ as well
as δ = θ3 − q − c0. From Lemmas 6.3.18 and 6.3.19, we have |W | ≤ q2 + 19q and |π ∩W | ≤ 10q
for all planes π of S. �erefore, Lemma 6.3.15 shows that |F ∩M | ≤ (2q2 + 19q)θ2 for F ∈ C1,
and |F ∩M | ≤ 11q4 + 11q3 + q2 for F ∈ C2. Hence, each of the EKR sets F ∈ C1 ∪ C2 satis�es
|F ∩M | ≤ 12q4 for q ≥ 12. Since e1 < 12q4, the same holds for F ∈ C3. �erefore, the total
contribution of all EKR sets in C1 ∪C2 ∪C3 to M is at most 12δq4 = 12(|W | − q)q4. Furthermore,
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the generic part of every EKR set inC0 is disjoint fromM and thus it remains to consider the special
parts T (F ) of the EKR sets F ∈ C0. In view of that we de�ne

α = |{F ∈ C0 : T (F ) is based on a line ` ⊂ S}|,
β = |{F ∈ C0 : T (F ) is based on a solid H}|,
γ = |{F ∈ C0 : T (F ) is based on a line ` * S}|.

Moreover, we letA be the set of lines ` of S such thatF(P, `) ∈ C0 for some point P of ` and we let
B be the set of all point-solid pairs (P,H) with F(P,H) ∈ C0 and H 6= S. �en α+ β + γ = c0,
|A| ≤ α and |B| ≤ β. Recall that if F ∈ C0 is such that T (F ) is solid based with solid S, then
T (F ) does not contribute toM . �erefore, we �nd an upper bound on the number |M | = |W |q3θ2

of �ags of M :

|W |q3θ2 ≤ 12(|W | − q)q4 +
∑
`∈A
|` ∩W |q3 +

∑
(P,H)∈B

|H ∩W |q2 + γ|W |q. (6.16)

Furthermore, since the product of two consecutive integers is non-negative we have

0 ≤
∑
`∈A

(|` ∩W | − 1)(|` ∩W | − 2)

=
∑
`∈A
|` ∩W |(|` ∩W | − 1)− 2

∑
`∈A
|` ∩W |+ 2|A|

≤ |W |(|W | − 1)− 2
∑
`∈A
|` ∩W |+ 2|A|.

�e last inequality follows from counting the triples (P1, P2, l), with P1, P2 ∈W ∩ l, P1 6= P2 and
l ∈ A, in two ways. Since α + β + γ = θ3 − |W | and |A| ≤ α, we have |A| ≤ θ3 − |W | − β − γ
and thus this equation implies∑

`∈A
|` ∩W | ≤ 1

2
|W |(|W | − 3) + θ3 − β − γ.

Using this and |B| ≤ β in (6.16), we �nd

L = |W |q3

(
θ2 −

1

2
(|W | − 3)

)
≤ 12(|W | − q)q4 + (θ3 − γ)q3

+ γ|W |q +
∑

(P,H)∈B

(|H ∩W | − q)q2. (6.17)

Now, we �rst show that the coe�cient of γ in this inequality is negative, so that we may omit the
term in γ therein. Since |W | ≤ q2 + 19q, we have L ≥ 1

3 |W |q
5 for q ≥ 52. Furthermore, Lemma

6.3.19 shows |H ∩W | ≤ 10q for all (P,H) ∈ B and, since |B|+ γ ≤ β + γ ≤ θ3 − |W |, we �nd
that

γ|W |q +
∑

(P,H)∈B

(|H ∩W | − q)q2 ≤ γ(q3 + 19q2) + 9q3|B| ≤ (θ3 − |W |)9q3.

Using this as well as |W | ≤ q2 + 19q and L ≥ 1
3 |W |q

5 in Equation (6.17), we have that

1

3
|W |q5 ≤ 12(q2 + 18q)q4 + θ3q

3 + (θ3 − |W |)9q3

⇔ |W |
(
q2

3
+ 9

)
≤ 12(q2 + 18q)q + 10 θ3

⇒ |W | ≤ 66q + 678.
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Hence, the coe�cient |W |q − q3 of γ in (6.17) is negative for q ≥ 76 and therefore the term in γ
can be omi�ed in the inequality. Doing that, replacing |W | by q + δ and simplifying we �nd that

(q + δ)q

(
q2 +

1

2
(q − δ + 5)

)
≤ 12δq2 + θ3q +

∑
(P,H)∈B

(|H ∩W | − q). (6.18)

If π is a plane of S, then the number of (P,H) ∈ B, withH ∩S = π, is at most θ2−|π∩W |. Also,
if π1 and π2 are distinct planes of S, then

|π1 ∩W |+ |π2 ∩W | ≤ |W |+ |π1 ∩ π2 ∩W | ≤ 2q + 1 + δ. (6.19)

We claim that ∑
(P,H)∈B

(|H ∩W | − q) ≤ 1

2
(θ3 − q − δ)(δ + 1). (6.20)

Since |B| ≤ θ3 − q − δ, this is clear if |H ∩ W | − q ≤ 1
2(δ + 1) for all H ∈ B. Hence, we

may assume that there exists a �ag (P0, H0) ∈ B with x = |H0 ∩ W | − q ≥ 1
2(δ + 1). From

q + x = |H0 ∩W | ≤ |W | = q + δ, we �nd x ≤ δ. If (P,H) ∈ B, with H ∩ S = H0 ∩ S, then
P ∈ H0 ∩ S and P /∈ W and hence there are at most θ2 − q − x = q2 + 1 − x such points. If
(P,H) ∈ B, with H ∩ S 6= H0 ∩ S, then (6.19) implies |H ∩W | − q ≤ δ + 1− x.
Now, if |B| ≥ 2(q2+1−x), then for at most half of the elements ofB, it holds that |H∩W |−q = x,
while for the other elements ofB, we have that |H ∩W |− q ≤ δ+ 1−x. Hence, the average value
of |H ∩W | − q taken over all (P,H) ∈ B is less than 1

2(x + (δ + 1 − x)) = 1
2(δ + 1) and then

(6.20) follows from |B| ≤ θ3 − q − δ.
If, on the other hand, |B| ≤ 2(q2 + 1 − x), then |B| ≤ 2q2 and since |H ∩W | − q ≤ x for all
(P,H) ∈ B we �nd, using q > 160 · 365 and δ = |W | − q ≤ q2 + 18q from Lemma 6.3.18, that∑

(P,H)∈B

(|H ∩W | − q) ≤ 2q2x ≤ 2q2δ ≤ 1

2
(θ3 − q − δ)δ ≤

1

2
(θ3 − q − δ)(δ + 1).

We have handled all cases and thus (6.20) is veri�ed. Now, we may use the bound (6.20) in Equation
(6.18) to �nd

(q + δ)q

(
q2 +

1

2
(q − δ + 5)

)
≤ 12δq2 + θ3q +

1

2
(θ3 − q − δ)(δ + 1),

which is equivalent to

1

2
δq(q2 − 25q − δ + 5) +

1

2
δ2 ≤ (q2 − q + 1)q +

1

2
⇔ δ2(q − 1)− δq(q2 − 25q + 5) + 2q(q2 − q + 1) + 1 ≥ 0. (6.21)

For q ≥ 73, this inequality is false for δ = 3 and δ = 1
2q

2. Hence, this inequality is false for all
values of δ between 3 and 1

2q
2. Using δ = |W | − q < 1

2q
2, this implies δ < 3 and thus δ ≤ 2, that

is, it remains to show δ /∈ {1, 2}.

First consider δ = 2. �en Equation (6.18) shows that

1

2
(3q3 − 45q2 + 4q) ≤

∑
(P,H)∈B

(|H ∩W | − q).
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Since |B| ≤ c0 = θ3 − q − δ and since |H ∩W | ≤ |W | = q + 2 for all (P,H) ∈ B, this implies
|H ∩W | > q + 1 and thus |H ∩W | = q + 2 = |W | for at least 1

2(q3 − 47q2 + 4q + 2) elements
(P,H) ∈ B. Note that |H ∩W | = q+ 2 implies W ⊆ H , that is, W ⊆ H ∩S. �erefore, W spans
a plane σ of S. However, (P,H) ∈ B with W ⊆ H implies P ∈ H ∩ S = σ and this may happen
at most θ2 − |W | = q2 − 1 times, a contradiction for q ≥ 49.

Now, suppose that δ = 1. �en Equation (6.18) shows that

1

2
(q3 − 21q2 + 2q) ≤

∑
(P,H)∈B

(|H ∩W | − q)

and, since |H ∩W | ≤ |W | = q+1 for all (P,H) ∈ B, this implies that there are 1
2(q3−21q2 +2q)

elements (P,H) ∈ B with |H ∩W | > q and thus |H ∩W | = |W | = q + 1. Now, if W spans a
plane σ, then we have seen above that there are at most θ2 − |W | = q2 elements (P,H) ∈ B with
W ≤ H , a contradiction for q ≥ 24. �erefore, we may assume that W spans a line `, only. Hence,
�nally, there exists only one EKR set F in F \ C0. Now, the special parts of the EKR sets of C0 do
not contain any �ag (h, π) with π∩S = ` and therefore these q2θ2 �ags must lie in F . �is implies
that F may not be a subset of a solid-based EKR set, nor may it be a subset of a point based EKR
set with point outside of S. Hence, we have |F | ≤ e1.

Now, reconsider the set M of all |W |q3θ2 = (q + 1)q3θ2 �ags (h, τ) such that h ∩ S is a point of
W . Each point P ∈ S \W is the base point of exactly one EKR set of C0 and we let S(P ) be its
special part. �enM is a subset of the union of F and the sets S(P ) with P ∈ S \W . �e q2(q+1)
points of S \W are distributed in the q + 1 planes of S through `. Consider such a plane π and let

• γπ be the number of points P ∈ π \ ` for which S(P ) is based on a line that meets S only in
P ,

• let απ be the number of points P ∈ π \ ` for which S(P ) is based on a line that is contained
in S, and

• let βπ be the number of pairs (P,H) ∈ B with P ∈ π.

�en there are at most γπ(q + 1)q + απq
3 �ags in M that lie in S(P ) for some point P ∈ π \ `

such that S(P ) is based on a line. Now, consider the βπ pairs (P,H) ∈ B with P ∈ π. �e special
part S(P ) of every such pair contains |H ∩ `|q2 pairs of M . If ` 6⊆ H , then this is q2 and otherwise
it is q2(q + 1). For distinct (P1, H1), (P2, H2) ∈ B with P1, P2 ∈ π and π ⊆ H1 = H2, the q2

�ags (g, τ) ∈M for which τ ∩ S = P1P2 (and hence g ∩ S = P1P2 ∩ g) lie in both S(P1, H1) and
S(P2, H2), so that the number of �ags of M that lie in S(P2) but not in S(P1) is at most q3. Since
there are q solids through π di�erent from S, these arguments show that the union of the special
parts S(P ) for the βπ points is at most q · (q + 1)q2 + (βπ − q)q3 = (βπ + 1)q3. �erefore, since
απ + βπ + γπ equals the number q2 of points of π \ `, we have that the union of the special parts
S(P ) for all points P ∈ π \ ` contains at most

γπ(q + 1)q + απq
3 + (βπ + 1)q3 ≤ (γπ + απ + βπ)q3 + q3 = (q2 + 1)q3.

Since there are q + 1 planes of S through `, it follows that

(q + 1)q3θ2 ≤ |F |+ (q + 1)(q2 + 1)q3

which shows that |F | ≥ (q + 1)q4. �is is a contradiction to |F | ≤ e1 for q ≥ 5. �
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�e previous lemma concludes the proof of �eorem 6.3.8.

Proof of �eorem 6.3.1: Consider a coloring of the Kneser graph qK5;{2,3}, q > 160 · 365, with
t ≤ θ3 − q color classes C1, . . . , Ct. De�ne Ci = ∅ for t < i ≤ θ3 − q. Each set Ci is an EKR
set of line-plane �ags of PG(4, q). If |Ci| > e1, then let C̄i be a maximal EKR set containing Ci;
it follows from �eorem 6.3.3 and the appendix below that |C̄i| = e0 and C̄i is one of the sets
de�ned in Example 6.3.2. For each i, we now de�ne a set Fi. For each i, with |Ci| ≤ e1, de�ne
Fi = Ci. Now consider an index i with |Ci| > e1. If there exists an index j < i with |Cj | > e1 and
such that C̄i and C̄j have the same generic part, then let Fi be the special part of C̄i (this implies
|Fi| = q2θ2 < e1), and otherwise put Fi = C̄i. Let J be the set of indices iwith |Fi| = e0. Consider
the multiset F = {Fi | 1 ≤ i ≤ θ3 − q}. �en each Fi is an EKR set and the union of the Fi is the
set of all line-plane �ags.

Case 1. For at least 1
2 |J | indices i ∈ J , the generic part of Fi is based on a point. �en F satis�es the

hypotheses of �eorem 6.3.8. �e conclusion of this theorem implies that J = {1, 2, . . . , θ3 − q},
that the generic part of all Fi is based on a point, and that the base points are θ3− q distinct points
of a solid. �is implies that t = θ3 − q, that |Ci| > e1 and Fi = C̄i for all i. Note that Fi = C̄i
might not be uniquely determined by Ci, however its base point is. �is follows from the fact that
two maximal EKR sets based on distinct points (are easily seen to) have less than e1 elements in
common and, hence, Ci can not be contained in both. �is proves �eorem 6.3.1 in this case.

Case 2. For less than 1
2 |J |, indices i ∈ J the generic part of Fi is based on a point. �en for more

than 1
2 |J | indices i, the generic part is based on a solid and we can apply the �rst case in the dual

space. �is proves �eorem 6.3.1 in this case.

6.3.4 Appendix

In [11], the authors investigate EKR sets of line-plane �ags in PG(4, q). We adapt their notation in
this appendix and suppose that q ≥ 3. In the proof of their classi�cation result, they consider EKR
sets C of line-plane �ags in PG(4, q) which are not contained in one of the sets given in Example
6.3.2. For this, the authors distinguish several cases for the structure of such a set C, depending on
the number of red lines.

1. If there are θ3 red lines, then the EKR set C must be one of the sets in Example 6.3.2, see Case
F in [11, Section 4.1].

2. If there are θ2 red lines through a point in a solid, then |C| ≤ θ2
2+q2(q2−1)+2q2(q+1)2 < e1,

see Case E in [11, Section 4.1].

3. If there are θ2 red lines in a plane A0, then there the authors do not provide an upper bound,
but only show that in this case, the sets cannot be contained in a set of Example 6.3.2, see
Case D in [11, Section 4.1]. In order to derive Result 6.3.4, we �rst have to provide an upper
bound for that case, too, and we shall do so below.

We are in the situation that there is one red planeA0 and all of its lines are red as well. If there
are more than q + 1 red planes, then the arguments in the second paragraph of [11, Section
D] show that the number of elements in the EKR set is at most θ2

2 + q2(q + 1)2 + q4 + q3,
which is smaller than e1. So here we consider the case that there are at most q red planes
apart from A0.

Note �rst that if A is a yellow plane, then A ∩A0 is a line (so 〈A0, A〉 is a solid) and A has a
unique point p(A) which lies inA0 and such that a �ag (L,A) is in C if and only if p(A) ∈ L.
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�e following holds and will be used several times below: if A1 and A2 are yellow planes,
then

p(A1) ∈ A2 or p(A2) ∈ A1 or 〈A0, A1〉 = 〈A0, A2〉. (6.22)

Now there are two possibilities.

• Suppose that for any two yellow planes A1 and A2 with p(A1) = p(A2) we have A0 ∩
A1 = A0 ∩ A2. �en each point P = p(B), with B a yellow plane, corresponds to
a unique line lB = B ∩ A0. If there is a line lB ⊂ A0 such that lB is contained in
more than q yellow planes, di�erent fromA0, then for every other yellow plane C with
p(C) 6= p(B), it holds that p(C) ∈ lB or p(B) ∈ lC , see (6.22). Hence, there are at
most (2q + 1)(q2 + q) yellow planes. If there is no line l ⊂ A0 contained in more than
q yellow planes, then there are at most qθ2 yellow planes.

• Suppose that there is a point P and two yellow planes A1 and A2 with A0 ∩ A1 6=
A0 ∩ A2 and p(A1) = p(A2) = P . �en each yellow plane A must satisfy P ∈ A or
A ⊆ 〈A0, A1〉 or A ⊆ 〈A0, A2〉. �e number of yellow planes is thus at most 2(q3 +
q2 + q) + (q + 1)(q2 − q). Note that equality can occur only when the solids 〈A0, A1〉
and 〈A0, A2〉 are distinct.

In any case, the number of yellow planes is at most y = 3q3 + 2q2 + q. If A0 is the only red
plane, it follows that |C| ≤ θ2

2 + yq ≤ 4q4 + 4q3 + 4q2 + 2q + 1. If A0 is not the only red
plane and there are q other red planes A, then we treat these as the yellow planes above by
choosing for p(A) any point ofA∩A0. �en the bound for |C| is almost the same except that
we have to add q · q2, namely q2 more �ags for each of the q red planes. Hence, |C| ≤ e1.

4. If there are at most q+ 1 red lines, then we use the proofs of Lemmas 4.1, 4.2 and 4.3 in [11]
to �nd that |C| < 4q4 + 9q3 + 4q2 + q + 1.

Hence, we �nd that the weakest of these upper bounds is the number e1 = 4q4 + 9q3 + 4q2 + q+ 1
and it is given in the general case of the proof of [11, Lemma 4.3].

6.4 �e chromatic number of the Kneser graph qK2d+1;{d,d+1}, d ≥ 3

In this section, we give an overview of the methods and results proven in [48]. �e details and
proofs appeared in the PhD thesis of dr. Daniel Werner [112]. �e results in this part are joint work
with prof. Klaus Metsch and dr. Daniel Werner.

In this section, we investigate the Kneser graph whose vertices are �ags in PG(2d, q), such that
each �ag contains a projective (d− 1)-space π and a projective d-space τ , with π ⊆ τ .

For this generalized chromatic number problem, we again used the strategy mentioned in Section
6.1. For this, we assume that we have constructed a coloring of size the chromatic number χ and we
used a stability result (and conjecture) on the cocliques. �e coclique number as well as structural
information on large cocliques of qK2d+1,{d,d+1} has been given for d = 2 in [11] and for d = 3 in
[94]. We used the results in [11] in the previous section, to show that χ(qK5,{2,3}) = q3 + q2 + 1
for q > 160 · 365. �e �rst aim in this project was to determine the chromatic number of qK7,{3,4}
for large q using the results of [94]. However, our approach in this project was able to deal with the
general case of the graphs qK2d+1,{d,d+1}, for all d ≥ 3.
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Recall that the set F(P ) is a point-pencil of �ags of PG(2d, q) of type {d, d + 1}. Dually, for
every hyperplane H in PG(2d, q), we denote by F (H) the set of all �ags of type {d, d+ 1} whose
d-space is contained in H and call this set a dual point-pencil. Note that point-pencils and dual
point-pencils are cocliques of cardinality≈ qd2−d−1 but they are not maximal cocliques. For d = 2,
every maximal coclique containing a point-pencil or a dual point-pencil has cardinality θ2(θ3 +q2).
For d ≥ 3 there are di�erent maximal cocliques, and they do not all have the same size. However,
the structure of the large maximal cocliques can still be described quite precisely.

Example 6.4.1 (EKR sets).

1. For a point P and a set U of d-dimensional subspaces through P , such that for all τ, τ ′ ∈ U we
have dim(τ ∩ τ ′) ≥ 1, we de�ne

F(P,U) = {(π, τ) ∈ V (Γ) | P ∈ π or τ ∈ U}.

We again call {(π, τ) ∈ F(P,U) | P ∈ π} the generic part and {(π, τ) ∈ F(P,U) | P /∈ π}
the special part of F(P,U). We also say that F(P,U) is based on the point P and call P the
base point of F(P,U).

2. Dually, for a hyperplane H and a set E of subspaces of dimension d − 1 in H with pairwise
non-empty intersection, we de�ne

F(H, E) = {(π, τ) ∈ V (Γ) | τ ⊆ H or π ∈ E}.

We call {(π, τ) ∈ F(H, E) | τ ⊆ H} the generic part and {(π, τ) ∈ F(H, E) | τ 6⊆ H} the
special part of F(P,U). We also say that F(H, E) is based on the hyperplane H .

We continue with some examples of colorings.

Example 6.4.2 (coloring of qK2d+1,{d,d+1}). Let U ⊆ PG(2d, q) be a subspace of dimension d+1,
consider a set W of q points of U and let L be the set of lines of U that meet W . Furthermore, suppose
there exists an injective map ν from L to the point set {P ∈ U |P /∈ W}, such that ν(l) ∈ l for all
l ∈ L. Let Sl be the set of all d-spaces through the line l. �en

{F(ν(l), Sl) | l ∈ L} ∪ {F(P, ∅) | P ∈ U \ (ν(L) ∪W )}

is a set of cocliques of qK2d+1,{d,d+1} whose union contains all vertices of qK2d+1,{d,d+1}.

Remark 6.4.3. (a) Since there are θd+1 − q cocliques in the given coverings, we �nd

χ(qK2d+1,{d,d+1}) ≤ θd+1 − q.

(b) �ere are di�erent possibilities for (W, ν) satisfying the required condition in Example 6.4.2.
We describe an explicit example. Let P0, . . . , Pq be the points of a line ` ⊆ U and set W =
{P1, . . . , Pq}. For each plane π of U through `, �x a numbering hP (π), P ∈ W , of the lines
di�erent from ` of π, containing P0. De�ne ν by ν(`) = P0 and ν(l) = l ∩ hl∩`(〈`, l〉) for
l ∈ L \ {`}. �is map ν has the property that U = ν(L) ∪W .

It is also possible to construct maps ν satisfying U 6= ν(L) ∪W , for example for odd q ≥ 5,
when W consists of q points of a conic in a plane of U , but we omit the details.

(c) We can �nd di�erent coverings in cocliques by replacing all cocliques of the coverings de-
scribed in Example 6.4.2 by their dual structure.

Recall that our strategy uses a stability result on the cocliques in the Kneser graph. Hence, we make
the following conjecture.
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Conjecture 6.4.4. For every integer d ≥ 2, there is an integer ρ(d) such that every maximal coclique
of the Kneser graph qK2d+1,{d,d+1} contains a point-pencil, a dual point-pencil, or has at most ρ(d) ·
qd

2+d−2 elements.

�is conjecture is true for d = 2, which was implicitly proven in [11], see Section 6.3.4, and it is
true for d = 3, as is shown in [94].

Our main result is the following.

�eorem 6.4.5. If Conjecture 6.4.4 is true for some integer d ≥ 3, then

χ(qK2d+1,{d,d+1}) =
qd+2 − 1

q − 1
− q

for su�ciently large q, depending on d and ρ(d). Moreover, if F is a family of this many maximal
cocliques that cover the vertex set, then — up to duality — there exists a (d+ 1)-dimensional subspace
U in PG(2d, q) and an injective map µ from F to the set of points of U such that F(µ(C)) ⊆ C for
all C ∈ F.

Since the conjecture is true for d = 3, we �nd the following corollary.

Corollary 6.4.6. For q > 3 · 715 · 256, we have χ(qK7,{3,4}) = q4 + q3 + q2 + 1.
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Cameron-Liebler sets

121





7 Introduction

“ �e main application of Pure Mathematics is to make you happy. ”—Hendrik Lenstra

In the �rst part of the thesis, we investigated intersection problems. In this part, we continue with
the research on Cameron-Liebler sets in di�erent contexts. It will become clear that results on
intersection problems can be applied.

7.1 De�nition

In [28], Cameron and Liebler introduced speci�c line classes in PG(3, q) when investigating the
orbits of the subgroups of the collineation group of PG(3, q). It is well known, by Block’s Lemma
[76, Section 1.6], that a collineation group of a �nite projective space PG(n, q) has at least as many
orbits on lines as on points. Cameron and Liebler tried to determine which collineation groups have
equally many point and line orbits. From Lemma 1.8.3, we know that these point and line orbits
form a tactical decomposition. More speci�cally, a symmetrical tactical decomposition, since the
number of point and line classes is the same.

We continue with some trivial examples of subgroups of G = PΓL(4, q), with equally many orbits
on the lines and points of PG(3, q).

Example 7.1.1. Consider a point P and a plane π in PG(3, q), with P /∈ π.

1. StabG(P ) has two orbits on the points; namely P and PG(3, q) \ P , and has two orbits on the
lines, namely the lines containing P and the lines not containing P .

2. StabG(π) has two orbits on the points; namely the points in π and the points not in π, and has
two orbits on the lines, namely the lines contained in π and the lines not contained in π.

3. StabG({P, π}), with P /∈ π, has three orbits on the points; the point P , the points in π, the
points in PG(3, q) \ ({P} ∪ π), and has three orbits on the lines; the lines through P , the lines
in π, the lines not in π and not through P .

Cameron and Liebler found that the line orbits of the subgroups with equally many orbits on lines
and points, ful�ll the following (equivalent) combinatorial and algebraic properties.

Result 7.1.2 ([28, Proposition 3.1]). LetL be a set of lines in PG(3, q), with characteristic vector χ
and let A be the point-line incidence matrix of PG(3, q). �en the following properties are equivalent.

1. χ ∈ im(AT ),

2. χ ∈ ker(A)⊥,

3. for every regulusR, we have that |L ∩ R| = |L ∩ R′|, withR′ the opposite regulus ofR,

4. there is a number x such that |L ∩ S| = x for every spread S,
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5. there is a number x such that |L ∩ S| = x for every Desarguesian spread S.

A set of lines which satis�es one of these properties (and so all of them) was �rst called a special line
class by Cameron and Liebler, and was later called a Cameron-Liebler set of lines by other researchers.
�e number x in the result above, is called the parameter of the Cameron-Liebler line set.

Hence, the line orbits of a collineation group of PG(3, q) which has the property that it has the
same number of orbits on the points as on the lines, are Cameron-Liebler line sets, see [28].

We will see later that the converse is not true, see Example 8.3.2.4, and Remark 8.3.3. �e origi-
nal aim was to classify the Cameron-Liebler sets, in order to �nd information on the collineation
groups with the ‘orbit’-property. Up to now, the Cameron-Liebler line sets in PG(3, q) are not yet
fully classi�ed. On the other hand, the original group theoretic question, in PG(n, q), is solved by
Cameron, Bamberg and Pen�ila [27, 3].

�eorem 7.1.3. A subgroup G of PΓL(n, q), having equally many orbits on points and lines

1. stabilizes a hyperplane π and acts line-transitively on it, or (dually)

2. �xes a point P and acts line-transitively on the quotient space, or

3. is line-transitive. In this case, there are three possibilities.

• G contains PSL(n+ 1, q),

• G = A7 ≤ PGL(4, 2),

• G is the normalizer in PGL(5, 2) of a Singer cyclic group of PG(4, 2).

�e link between the group theoretical question and Cameron-Liebler sets, can be generalized to
other contexts. �e lemma below follows from the ideas in Block’s Lemma [10], and was given in
[110, Lemma 3.3.11].

Lemma 7.1.4. LetG be a group acting on two �nite setsX andX ′ with orbitsO1, O2, . . . , Om inX
and orbitsO′1, O

′
2, . . . , O

′
m′ inX ′. SupposeR ⊆ X×X ′ is aG-invariant relation with corresponding

(|X| × |X ′|)-matrix A, de�ned over R.

1. �e images ATχOi are linear combinations of the vectors χO′j .

2. If A has full row rank, then m ≤ m′, and if m = m′, then all characteristic vectors χO′j are

linear combinations of the vectors ATχOi , and so, χO′j ∈ im(AT ).

Remark 7.1.5. �e set of points and lines in PG(3, q) forms a 2-design, and hence, its incidence
matrix A has full row rank, see Result 1.1.5. So, the above lemma states that if the number of orbits
on the lines equals the number of orbits on the points, then for each line orbit χO′ it follows that
χO′ ∈ im(AT ). From �eorem 7.1.2(1), we know that this last property, χ ∈ im(AT ), de�nes
Cameron-Liebler line sets in PG(3, q).

Note that Lemma 7.1.4 gives a way to de�ne and investigate Cameron-Liebler sets in other se�ings.

Pen�ila further investigated the Cameron-Liebler line sets in PG(3, q), and found more equivalent
de�nitions for them [99]. A�er a large number of results regarding these Cameron-Liebler sets of
lines in the projective space PG(3, q), Cameron-Liebler sets of k-spaces in PG(2k + 1, q) [104],
and Cameron-Liebler line sets in PG(n, q) [51] were de�ned. Drudge generalized the concept of
Cameron-Liebler line sets in PG(3, q) to Cameron-Liebler line sets in PG(n, q). �ese line sets can
also be de�ned by many equivalent de�nitions, see De�nition 7.1.8.

124



7 Introduction

De�nition 7.1.6. A switching k-set in PG(n, q) is a partial k-spread R for which there exists a
partial k-spreadR′ such thatR∩R′ = ∅, and ∪P∈RP = ∪P∈R′P , in other words,R andR′ have
no common members and cover the same set of points in PG(n, q). We say that R and R′ form a
pair of conjugate switching k-sets.

�eorem 7.1.7 ([51, �eorem 3.2]). Let A be the point-line incidence matrix of PG(n, q). Let L
be a set of lines in PG(n, q), n ≥ 3, with characteristic vector χ, and x so that |L| = xθn−1. �en the
following properties are equivalent.

1. χ ∈ im(AT ),

2. χ ∈ ker(A)⊥,

3. for every pair of conjugate switching 1-setsR andR′, we have that |L ∩ R| = |L ∩ R′|,

4. for every line `, the number of lines of L disjoint from ` is (x− χ(`))q2θn−3,

5. for every line `, the number of lines of L, di�erent from `, that intersect ` is x(q + 1) +
χ(`)(q2θn−3 − 1),

6. for every point P and k-space π, with P ∈ π, it holds that

|star(P ) ∩ L|+ θn−2

θk−1θk−2
|line(π) ∩ L| = x+

θn−2

θk−2
|pencil(P, π) ∩ L|.

In addition, if n is odd, then the following conditions are also equivalent.

7. |L ∩ S| = x for every line spread S in PG(n, q),

8. |L ∩ S| = x for every Desarguesian line spread S in PG(n, q).

If n = 3, then the above conditions are also equivalent to:

9. for every pair of disjoint lines `1 and `2, there are x+ q(χ(`1) + χ(`2)) lines meeting both.

De�nition 7.1.8. A set L of lines in PG(n, q) that ful�lls one of the statements in �eorem 7.1.7
(and consequently all of them) is called a Cameron-Liebler set of lines in PG(n, q) with parameter
x.

Remark 7.1.9. Cameron-Liebler line sets in PG(n, q) correspond to tight sets of type 1, in the
Grassmann graph Jq(n+1, 2), see De�nition 1.7.7. Recall that in this graph, the vertices are the lines
in PG(n, q) and two vertices are adjacent if the corresponding lines meet in a point. From statement
5. in �eorem 7.1.7, it follows that a Cameron-Liebler line set L in PG(n, q) is an intriguing set
with values y = x(q + 1) and y′ = x(q + 1) + q2θn−3 − 1. By investigating the eigenvalues of the
Grassmann graph, it follows that y′ − y = λ, with λ the largest eigenvalue of the graph. Hence, L
is also a tight set of type 1.

�e examination of Cameron-Liebler sets in projective spaces started the motivation for de�ning
and investigating Cameron-Liebler sets of generators in polar spaces [36], Cameron-Liebler classes
in �nite sets [39] and Cameron-Liebler sets of k-spaces in PG(n, q) and in AG(n, q). Furthermore,
Cameron-Liebler sets can be introduced for any distance-regular graph. �is has been done in the
past under various names: Boolean degree 1 functions [59], completely regular codes of strength 0
and covering radius 1 [95], … We refer to the introduction of [59] for an overview. Note that the
de�nitions do not always coincide, e.g. for polar spaces, see Chapter 10 and [35, 36].

We have seen some algebraic, combinatorial and geometrical de�nitions for Cameron-Liebler sets.
�e main question, independent of the context where Cameron-Liebler sets are investigated, is
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always the same: for which values of the parameter x do there exist Cameron-Liebler sets and which
examples correspond to a given parameter x? We will partially solve this question for Cameron-
Liebler sets of k-spaces in PG(n, q), see Chapter 8, and for Cameron-Liebler sets of generators
in polar spaces, see Chapter 10. In Chapter 9, we mention the de�nition and several results of
Cameron-Liebler sets in AG(n, q).
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

“ La géométrie est l’art du raisonnement correct à partir de �gures mal
dessinées. ”—Henri Poincaré

In this chapter, we investigate Cameron-Liebler sets of k-spaces in PG(n, q). �e results in this
chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and appeared in [16].
In Section 8.1, we list several equivalent de�nitions for these Cameron-Liebler sets, by generalizing
the known results about Cameron-Liebler line sets in PG(n, q), see [51], and Cameron-Liebler sets
of k-spaces in PG(2k + 1, q), see [104]. In Section 8.2, we make the link between these Cameron-
Liebler sets and Boolean degree one functions. Several properties of Cameron-Liebler sets are given
in Section 8.3. In the last section, we use these properties to prove the following classi�cation result:
there is no Cameron-Liebler set of k-spaces in PG(n, q), n > 3k + 1, with parameter x such that
2 ≤ x ≤ 1

8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1, (see �eorem 8.4.13).

8.1 �e characterization theorem

Let ∆k be the collection of k-spaces in PG(n, q), for 0 ≤ k ≤ n, and let A be the incidence matrix
of the points and the k-spaces of PG(n, q): the rows ofA are indexed by the points and the columns
by the k-spaces.

In this chapter, we will use the Grassmann scheme Jq(n + 1, k + 1), see Example 1.9.5. Recall
that there is an orthogonal decomposition V0 ⊥ V1 ⊥ · · · ⊥ Vk+1 of R∆k in maximal common
eigenspaces of A0, A1, . . . , Ak+1, see Result 1.9.3. Consider the distance one relation R1 and let
Vj be the eigenspace corresponding to the eigenvalue Pj1 from Lemma 8.1.2. Using this (classical)
ordering, we �nd the following lemma.

Lemma 8.1.1. For the Grassmann scheme Jq(n + 1, k + 1), we have that im(AT ) = V0 ⊥ V1 and
V0 = 〈j〉.

Hence, this is well de�ned, with respect to the assumption on V0 and V1 in Section 1.9. In the fol-
lowing lemmas and theorems, we denote the disjointness matrix Ak+1 by K since the correspond-
ing graph is the q-Kneser graph qKn+1:k+1. Kneser graphs also appeared in Chapter 6, where we
investigated the chromatic number of some generalized Kneser graphs.

Before we start with proving some equivalent de�nitions for a Cameron-Liebler set of k-spaces, we
give some lemmas and de�nitions that we will need in the characterization �eorem 8.1.6.

Lemma 8.1.2 ([52]). Consider the Grassmann scheme Jq(n + 1, k + 1). �e eigenvalue Pji of the
distance-i relation for Vj is given by:

Pji =

min{j,k+1−i}∑
s=max{0,j−i}

(−1)j+s
[
j

s

] [
n− k + s− j
n− k − i

] [
k + 1− s

i

]
qi(i+s−j)+(j−s2 ).
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

Lemma 8.1.3. If P1i, i ≥ 1, is the eigenvalue of Ai corresponding to Vj , then j = 1.

Proof. We need to prove that P1i 6= Pji for q a prime power and j > 1. We will �rst introduce
φi(j) = max {a | qa|Pji}, which is the exponent of q in the factorization of Pji. Note that

[
a
b

]
equals 1 modulo q and note that it is su�cient to show that φi(j), j > 1, is di�erent from φi(1) for
all i. By Lemma 8.1.2, we see that

φi(j) = min

{
i(i+ s− j) +

(
j − s

2

)
| max{0, j − i} ≤ s ≤ min{j, k + 1− i}

}
unless there are two or more terms with a power of q with minimal exponent as factor and that
have zero as their sum. If s is the integer in {max{0, j − i}, . . . ,min{j, k + 1 − i}} closest to
j − i− 1

2 , then fij(s) = i(i+ s− j) +
(
j−s

2

)
is minimal.

• If j ≤ i, we see that fij(s) is minimal for s = 0. �en we �nd φi(j) = 1
2j

2 − (i+ 1
2)j + i2.

We see that for a �xed i, φi(k − 1) > φi(k), k ≤ i. Note that the minimal value for fij(s) is
reached for only one s.

• If j ≥ i, we see that fij(s) is minimal for s = j − i. �en we �nd φi(j) =
(
i
2

)
. Again we

note that the minimal value for fij(s) is reached for only one s.

We can conclude the following inequality for a given i ≥ 1:

φi(1) > φi(2) > · · · > φi(i) = φi(i+ 1) = · · · = φi(k + 1) .

�is implies the statement for i 6= 1.

For i = 1, we have that

P11 = Pj1

⇔ −
[
k + 1

1

]
+

[
n− k

1

][
k

1

]
q = −

[
j

1

][
k − j + 2

1

]
+

[
n− k

1

][
k + 1− j

1

]
q

⇔ −(qk+1 − 1)(q − 1) + (qn−k − 1)(qk − 1)q

= −(qj − 1)(qk−j+2 − 1) + (qn−k − 1)(qk−j+1 − 1)q

⇔ qn+1 + q = qn−j+2 + qj

⇔ j = 1 ∨ j = n+ 1.

So, we can see that they are di�erent if j 6= n+ 1. �is is always true since j ∈ {1, . . . , k+ 1} and
k < n. �

Note that for j ≥ 1, it was already known that |Pji| ≤ |P1i|. �is result was shown in [22, Propo-
sition 5.4(ii)].

Lemma 8.1.4. Let π be a k-dimensional subspace in PG(n, q) with χπ the characteristic vector of
the set {π}. If Z is the set of all k-spaces in PG(n, q) disjoint from π with characteristic vector χZ ,
then

χZ − qk
2+k

[
n− k − 1

k

]([
n
k

]−1

j − χπ

)
∈ ker(A).

Proof. Let vπ be the incidence vector of πwith its positions corresponding to the points of PG(n, q).
Note that Aχπ = vπ . We have that AχZ = qk

2+k
[
n−k−1

k

]
(j − vπ) since Z is the set of all k-spaces
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disjoint from π and every point not in π is contained in qk
2+k
[
n−k−1

k

]
k-spaces skew to π (see

Lemma 1.10.1). �e lemma now follows from

χZ − qk
2+k

[
n− k − 1

k

]([
n
k

]−1

j − χπ

)
∈ ker(A)

⇔ AχZ = qk
2+k

[
n− k − 1

k

]([
n
k

]−1

Aj −Aχπ

)
. �

De�nition 8.1.5. An m-cover Sm of k-spaces in PG(n, q) is a (multi-)set of k-spaces such that
every point in PG(n, q) is contained in precisely m elements of Sm.

Note that the 1-covers of k-spaces in PG(n, q) are the k-spreads in PG(n, q). Hence, 1-covers
only exist for (k + 1)|(n + 1). For m > 1, there are some examples of m-covers known with
(k + 1) - (n+ 1). A trivial example is the set of all lines in PG(4, q). It is easy to see that this is a
θ3-cover of lines, with k + 1 = 2 - 5 = n+ 1.

We want to make a combination of a generalization of �eorem 3.2 in [51] and �eorem 3.7 in
[104] to give several equivalent de�nitions for a Cameron-Liebler set of k-spaces in PG(n, q).

�eorem 8.1.6. Let L be a non-empty set of k-spaces in PG(n, q), n ≥ 2k + 1, with characteristic

vector χ, and x so that |L| = x

[
n
k

]
. �en the following properties are equivalent.

1. χ ∈ im(AT ).

2. χ ∈ ker(A)⊥.

3. For every k-space π, the number of elements of L disjoint from π is (x− χ(π))
[
n−k−1

k

]
qk

2+k.

4. �e vector χ− x q
k+1−1
qn+1−1

j is a vector in V1.

5. χ ∈ V0 ⊥ V1.

6. For a given i ∈ {1, . . . , k+ 1} and any k-space π, the number of elements of L, meeting π in a
(k − i)-space is given by:

(
(x− 1) qk+1−1

qk−i+1−1
+ qi q

n−k−1
qi−1

)
qi(i−1)

[
n− k − 1

i− 1

][
k

i

]
if π ∈ L

x

[
n− k − 1

i− 1

][
k + 1

i

]
qi(i−1) if π /∈ L

.

7. for every pair of conjugate switching k-setsR andR′, we have that |L ∩ R| = |L ∩ R′|.

If PG(n, q) admits a k-spread, then the following properties are equivalent to the previous ones.

8. |L ∩ S| = x for every k-spread S in PG(n, q).

9. |L ∩ S| = x for every Desarguesian k-spread S in PG(n, q).

10. For every m ∈ N, it holds that |L ∩ Sm| = mx for every m-cover of k-spaces Sm in PG(n, q).

Proof. We �rst prove that properties 1, 2, 3, 4, 5, 6 are equivalent by proving the following implica-
tions:

• 1⇔ 2: �is follows since im(BT ) = ker(B)⊥ for every matrix B.

129
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• 2⇒ 3: We assume that χ ∈ ker(A)⊥. Let π ∈ ∆k and Z the set of k-spaces disjoint from π.
By Lemma 8.1.4, we know that

χZ − qk
2+k

[
n− k − 1

k

]([
n
k

]−1

j − χπ

)
∈ ker(A).

Since χ ∈ ker(A)⊥, this implies

χZ · χ− qk
2+k

[
n− k − 1

k

]([
n
k

]−1

j · χ− χπ · χ

)
= 0

⇔ |Z ∩ L| − qk2+k

[
n− k − 1

k

]([
n
k

]−1

|L| − χ(π)

)
= 0

⇔ |Z ∩ L| = (x− χ(π))qk
2+k

[
n− k − 1

k

]
.

Hence, this last equality proves that the number of elements of L, disjoint from π is (x −
χ(π))qk

2+k
[
n−k−1

k

]
.

• 3⇒ 4: By expressing property 3 in vector notation, we �nd thatKχ = (xj−χ)
[
n−k−1

k

]
qk

2+k

and, since by Lemma 1.10.1, we have Kj = q(k+1)2
[
n−k
k+1

]
, we see that v = χ − x q

k+1−1
qn+1−1

j is
an eigenvector of K :

Kv = K

(
χ− xq

k+1 − 1

qn+1 − 1
j

)
= (xj − χ)

[
n− k − 1

k

]
qk

2+k − xq
k+1 − 1

qn+1 − 1
q(k+1)2

[
n− k
k + 1

]
j

=

[
n− k − 1

k

]
qk

2+k

(
xj − χ− xq

n+1 − qk+1

qn+1 − 1
j

)
= −

[
n− k − 1

k

]
qk

2+k

(
χ− xq

k+1 − 1

qn+1 − 1
j

)
= P1,k+1v .

By Lemma 8.1.3, for i = k + 1, we know that v ∈ V1.

• 4⇒ 5: �is follows since V0 = 〈j〉, see Lemma 8.1.1.

• 5⇒ 1: �is follows again from Lemma 8.1.1.

• 4⇒ 6: Denote χ−x q
k+1−1
qn+1−1

j by v. �e matrixAi corresponds to the relationRi. �is implies
that (Aiχ)π gives the number of k-spaces in L that intersect π in a (k − i)-space.

Aiχ = Aiv + x
qk+1 − 1

qn+1 − 1
Aij = P1iv + x

qk+1 − 1

qn+1 − 1
P0ij

=

(
−
[
n− k − 1
i− 1

] [
k + 1
i

]
qi(i−1) +

[
n− k
i

] [
k
i

]
qi

2

)(
χ− xq

k+1 − 1

qn+1 − 1
j

)
+ x

qk+1 − 1

qn+1 − 1

[
n− k
i

] [
k + 1
i

]
qi

2
j

=

([
n− k
i

] [
k
i

]
qi

2 −
[
k + 1
i

] [
n− k − 1
i− 1

]
qi(i−1)

)
χ

+ x
qk+1 − 1

qn+1 − 1
qi(i−1)

([
n− k − 1

i− 1

][
k + 1

i

]
−
[
n− k
i

][
k

i

]
qi +

[
n− k
i

][
k + 1

i

]
qi
)
j
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=

([
n− k
i

] [
k
i

]
qi

2 −
[
k + 1
i

] [
n− k − 1
i− 1

]
qi(i−1)

)
χ

+ x
qk+1 − 1

qn+1 − 1
qi(i−1)

[
n− k − 1

i− 1

][
k

i

](
qk+1 − 1

qk−i+1 − 1
− qn−k − 1

qi − 1
qi
(

1− qk+1 − 1

qk−i+1 − 1

))
j

=

([
n− k
i

] [
k
i

]
qi

2 −
[
k + 1
i

] [
n− k − 1
i− 1

]
qi(i−1)

)
χ+ x

[
n− k − 1
i− 1

] [
k + 1
i

]
qi(i−1)j

�is proves the implication for every i ∈ {1, . . . , k + 1}.

• 6 ⇒ 4: We follow the approach of [104, Lemma 3.5] where we look for an eigenvalue of Ai
and we de�ne βi = x

[
k+1
i

][
n−k−1
i−1

]
qi(i−1).

From property 6, we know that

Aiχ = x

[
k + 1
i

] [
n− k − 1
i− 1

]
qi(i−1)(j − χ)

+

(
(x− 1)

qk+1 − 1

qk−i+1 − 1
+ qi

qn−k − 1

qi − 1

)
qi(i−1)

[
n− k − 1
i− 1

] [
k
i

]
χ

=

([
n− k
i

] [
k
i

]
qi

2 −
[
k + 1
i

] [
n− k − 1
i− 1

]
qi(i−1)

)
χ+ x

[
n− k − 1
i− 1

] [
k + 1
i

]
qi(i−1)j

= P1iχ+ βij .

�en we can see that vi = χ+ βi
P1i−P0i

j is an eigenvector for Ai with eigenvalue P1i:

Ai

(
χ+

βi
P1i − P0i

j

)
=P1iχ+ βij +

βi
P1i − P0i

P0ij

=P1i

(
χ+

βi
P1i − P0i

j

)
.

By Lemma 8.1.3, we know that χ+ βi
P1i−P0i

j = χ− x q
k+1−1
qn+1−1

j ∈ V1.

We show that properties 8, 9 and 10 are equivalent with the previous properties if PG(n, q) admits
a k-spread.

• 2⇒ 10: Let Sm be anm-cover of k-spaces in PG(n, q) and let χm be its characteristic vector.
Note that χm(i) = j if the i’th element is contained j times in Sm. Hence, χm doesn’t have
to be a {0, 1}−vector. �en we know that χm−m

[
n
k

]−1
j ∈ ker(A). Since χ ∈ ker(A)⊥, we

have that

0 = χ ·

(
χm −m

[
n

k

]−1

j

)
= |L ∩ Sm| −m|L|

[
n

k

]−1

,

so |L ∩ Sm| = m|L|
[
n
k

]−1
= mx.

• 10⇒ 8: A k-spread in PG(n, q) is an m-cover for m = 1.

• 8⇒ 9: Trivial.

• 9 ⇒ 3: Suppose that PG(n, q) contains k-spreads, hence also Desarguesian k-spreads. We
know that the group PGL(n+1, q) acts transitively on the pairs of pairwise disjoint k-spaces.
Let ni, for i = 1, 2, be the number of Desarguesian k-spreads that contain i �xed pairwise
disjoint k-spaces. �is number only depends on i, and not on the chosen k-spaces, by the
above transitivity property.
Let π be a �xed k-space. �e number of pairs (π′,S), with S a Desarguesian k-spread that
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contains π and π′ is equal to q(k+1)2
[
n−k
k+1

]
·n2 = n1 ·

(
qn+1−1
qk+1−1

− 1
)

, so n1
n2

= qk(k+1)
[
n−k−1

k

]
.

By counting the number of pairs (π′,S), with π′ ∈ L and S a Desarguesian k-spread that
contains π and π′, we �nd that the number of k-spaces in L, disjoint from a �xed k-space π,
is given by (x− χ(π))n1

n2
= (x− χ(π))qk(k+1)

[
n−k−1

k

]
.

To end this proof, we show that property 7 is equivalent with the other properties.

• 2⇒ 7: Let χR and χR′ be the characteristic vectors of the pair of conjugate switching k-sets
R andR′ respectively. AsR andR′ cover the same set of points, we �nd: χR−χR′ ∈ ker(A).
�is implies 0 = χ·(χR−χR′) = χ·χR−χ·χR′ , so thatχ·χR = |L∩R| = |L∩R′| = χ·χR′ .

• 7⇒ 1: We �rst show that property 7 implies the other properties if n = 2k+ 1. For any two
k-spreads S1,S2, the sets S1 \ S2 and S2 \ S1 form a pair of conjugate switching k-sets. So
|L ∩ (S1 \ S2)| = |L ∩ (S2 \ S1)|, which implies that |L ∩ S1| = |L ∩ S2| = c.

Now we prove that this constant c equals x = |L|
[
2k+1
k

]−1. Let ni, for i = 0, 1, be the number
of k-spreads containing i �xed pairwise disjoint k-spaces. �is number only depends on i,
and not on the chosen k-spaces. �e number of pairs (π,S), with S a k-spread that contains
π, is equal to

[
2k+2
k+1

]
· n1 = n0 · q

2k+2−1
qk+1−1

, which implies that n0
n1

=
[
2k+1
k

]
.

By counting the number of pairs (π,S), with S a k-spread that contains π, and where π ∈ L,
we �nd, that the number of k-spaces in L∩S equals |L|n1

n0
= |L|

[
2k+1
k

]−1
= x. �is implies

property 8, and hence, property 1.

Now we prove that implication 7 ⇒ 1 also holds if n > 2k + 1. Given a subspace τ in
PG(n, q), we will use the notation A|τ for the submatrix of A, where we only have the rows,
corresponding with the points of τ , and the columns corresponding with the k-spaces in τ .
We know that the matrix A|τ has full rank by Result 1.1.5.
Let Π be a (2k+1)-dimensional subspace in PG(n, q). By property 7, we know that for every
two k-spreadsR,R′ in Π, we have |L∩R| = |L∩R′| sinceR\R′ andR′ \R are conjugate
switching k-sets. �is implies that χL|Π ∈ im

(
AT|Π

)
by the arguments above applied for

the (2k + 1)-space Π. So, there is a linear combination of the rows of A|Π equal to χL|Π.
�is linear combination is unique since A|Π has full row rank. Now we will show that the
linear combination of χL is uniquely de�ned by the vectors χL|Π, with Π varying over all
(2k + 1)-spaces in PG(n, q).

We show, for every two (2k+ 1)-spaces Π,Π′, that the coe�cients of the row corresponding
to a point in Π∩Π′ in the linear combination of χL|Π and in the linear combination of χL|Π′
are equal.

Suppose χL|Π = a1r1 + a2r2 + · · ·+ alrl + al+1rl+1 + · · ·+ amrm and χL|Π′ = bl+1rl+1 +
· · ·+ bmrm + bm+1rm+1 + · · ·+ bsrs, where r1, . . . , rl, . . . , rm and rl+1, . . . , rm, . . . , rs are
the rows corresponding with the points of Π and Π′, respectively. Note that we only look at
the columns corresponding with the k-spaces in Π and Π′, respectively.

We now look at the space Π∩Π′, and at the corresponding columns inA. Recall thatA|Π∩Π′

also has full row rank, so the linear combination that gives χL|(Π∩Π′) is unique, and equal
to the ones corresponding with Π and Π′, restricted to Π ∩ Π′. �is proves that ai = bi for
l + 1 ≤ i ≤ m. Here we also used the fact that the entry in A corresponding with a point of
Π \Π′ or Π′ \Π and a k-space in Π ∩Π′ is zero.
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By using all (2k+1)-spaces, we see that χL is uniquely de�ned, and by construction we have
χL ∈ im(AT ). Note that we only used that property 7 holds for conjugate switching k-sets
inside a (2k + 1)-dimensional subspace. �

De�nition 8.1.7. A set L of k-spaces in PG(n, q) that ful�lls one of the statements in �eorem
8.1.6 (and consequently all of them) is called a Cameron-Liebler set of k-spaces in PG(n, q) with
parameter x = |L|

[
n
k

]−1.

Similar to Remark 7.1.9, and by using statement 6. in �eorem 8.1.6, it can be seen that the Cameron-
Liebler sets of k-spaces in PG(n, q) correspond to the tight sets of type 1 in the Grassmann graph
Jq(n+ 1, k + 1).

From �eorem 8.1.6.8, we know that the parameter of a Cameron-Liebler set of k-spaces in PG(n, q)
is always an integer if PG(n, q) admits a k-spread, and so, if k + 1 is a divisor of n + 1. For
k+1 - n+1, this is not always the case, while the parameter of Cameron-Liebler line sets in PG(3, q)
and the parameter of Cameron-Liebler sets of generators in polar spaces are always integers (see
[36, �eorem 4.8]).

Remark 8.1.8. �e link between Cameron-Liebler sets of k-spaces in PG(n, q), and the original
group theoretical question of Cameron and Liebler follows from Lemma 7.1.4. For this, we also use
that the set of points and k-spaces in PG(n, q) forms a 2-design, and so, the incidence matrix A
has full row rank, see Result 1.1.5. So, we �nd that the orbits of a collineation group, with the same
number of orbits on the points and k-spaces, are Cameron-Liebler sets. �e reverse statement is
not true: not every Cameron-Liebler set is an orbit of a collineation group with the ‘orbit’-property.
An example of such a Cameron-Liebler set is the union of the set of all k-spaces through a point P
and the set of all k-spaces in a hyperplane H , with P /∈ H .

We end this section with showing an extra property of Cameron-Liebler sets of k-spaces in PG(n, q).

Proposition 8.1.9. LetL be a Cameron-Liebler set of k-spaces in PG(n, q), then we �nd the following
equality for every j-dimensional subspace α and every i-dimensional subspace τ , with α ⊂ τ and
j < k < i:

|[k]α ∩ L|+
[
n−j−1
k−j

]
(qk−j − 1)[

i
k

]
(qi−k − 1)

|[k]τ ∩ L| =
[
n−j−1
k−j

][
i−j−1
k−j

] |[k]τα ∩ L|+
[
n−j−1
k−j−1

][
n
k

] |L| .

Here [k]α, [k]τ and [k]τα denote the set of all k-spaces through α, the set of all k-spaces in τ and the set
of all k-spaces in τ through α, respectively.

Proof. Let χ[α], χ[τ ] and χ[α,τ ] be the characteristic vectors of [k]α, [k]τ and [k]τα, respectively, and
de�ne

v = χ[α] +

[
n−j−1
k−j

]
(qk−j − 1)[

i
k

]
(qi−k − 1)

χ[τ ] −
[
n−j−1
k−j

][
i−j−1
k−j

] χ[α,τ ] −
[
n−j−1
k−j−1

][
n
k

] j .

Since

(
Aχ[α]

)
P

=

{[
n−j−1
k−j−1

]
for P /∈ α[

n−j
k−j
]

for P ∈ α,
(
Aχ[τ ]

)
P

=

{
0 for P /∈ τ[
i
k

]
for P ∈ τ,

(
Aχ[α,τ ]

)
P

=


0 for P /∈ τ[
i−j−1
k−j−1

]
for P ∈ τ \ α[

i−j
k−j
]

for P ∈ α,
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we can calculate (Av)P ′ for every point P ′, and see that Av = 0. �is implies that v ∈ ker(A). Let
χ be the characteristic vector of L. By De�nition 2 in �eorem 8.1.6, we know that χ ∈ ker(A)⊥,
so, by calculating χ · v, the lemma follows. �

For k = 1, K. Drudge showed in [51] that the property in Proposition 8.1.9 is not only a necessary,
but also a su�cient property for a Cameron-Liebler line set in PG(n, q). For k > 1 we pose it as
an open problem to show that this property is also su�cient.

8.2 Boolean degree one functions

Another way to approach Cameron-Liebler sets of k-spaces in PG(n, q) is by the theory of Boolean
degree one functions. Boolean functions are {0, 1}-valued functions on a �nite domain Ω. Each
Boolean function f on Ω = {ω1, ω2, . . . , ωn} corresponds to an n-dimensional {0, 1}-vector v,
such that the i’th element of v is equal to f(ωi). Furthermore, f also corresponds to a set Lf , such
that Lf = {ω ∈ Ω|f(ω) = 1}.

Boolean functions can be described for several classical association schemes, including the Johnson
scheme, Grassmann scheme, and graphs from polar spaces, as well as for some other domains such
as permutation groups. In this section, we give the link between these functions and Cameron-
Liebler sets. For more information, we refer to [59].

In all se�ings, we have some form of coordinates: an element in {1, 2, . . . , n} in the Johnson graph
J(n, k); a point in the Grassmann graph Jq(n+1, k+1), or for most graphs related to polar spaces;
and, a transposition (ij) for the graphs derived from permutation groups. For a coordinate x, we
denote the characteristic function of x by x+: x+(π) = 1 if the element x is contained in the object
π, and x+(π) = 0 otherwise. �en, a Boolean degree one function is a {0, 1}-valued function on
the vertices that can be wri�en as f = c+

∑
i cix

+
i .

We will go into more detail for the projective se�ing. Let ∆k be the set of all k-spaces in PG(n, q).
A point P ∈ PG(n, q) induces a characteristic function P+ on ∆k:

∀π ∈ ∆k : P+(π) =

{
1 if P ∈ π
0 if P /∈ π.

Note that this function corresponds with the vectorATχP , with χP the characteristic vector of the
point P , and A the point-k-space incidence matrix.

De�nition 8.2.1. A Boolean degree one function on the set of k-spaces in PG(n, q) is a {0, 1}-
valued function of the form:

f : ∆k → R : π 7→ c+

θn∑
i=1

aiP
+
i (π),

with ai, c ∈ R and {Pi | 1 ≤ i ≤ θn} the set of points in PG(n, q).

Let Lf = {π ∈ ∆k|f(π) = 1} be the set, corresponding to the Boolean degree one function f on
∆k. It is clear that the Boolean function f = P+, with P a point in PG(n, q), is a Boolean degree
one function. Note that the set Lf , with f = P+, is precisely the point-pencil with vertex P . In
general, the sets Lf , with f a Boolean degree one function on the set of k-spaces in PG(n, q), are
precisely Cameron-Liebler sets of k-spaces in PG(n, q). For the proof of this theorem, we refer to
[89, �eorem 2.3.2].
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�eorem 8.2.2. Consider the projective space PG(n, q), then a set L is a Cameron-Liebler set of k-
spaces in PG(n, q) if and only if L = Lf for some Boolean degree one function f on the set of k-spaces
in PG(n, q).

8.3 Properties of Cameron-Liebler sets of k-spaces in PG(n, q)

We start with some properties of Cameron-Liebler sets of k-spaces in PG(n, q) that can easily be
proved.

Lemma 8.3.1. Let L and L′ be two Cameron-Liebler sets of k-spaces in PG(n, q) with parameters x
and x′ respectively, then the following statements are valid.

1. 0 ≤ x ≤ qn+1−1
qk+1−1

.

2. �e set of all k-spaces in PG(n, q) not in L is a Cameron-Liebler set of k-spaces with parameter
qn+1−1
qk+1−1

− x.

3. If L ∩ L′ = ∅, then L ∪ L′ is a Cameron-Liebler set of k-spaces with parameter x+ x′.

4. If L′ ⊆ L, then L \ L′ is a Cameron-Liebler set of k-spaces with parameter x− x′.

We continue with some examples of Cameron-Liebler sets of k-spaces in PG(n, q). We refer to
these examples as the trivial examples.

Example 8.3.2. Trivial examples of Cameron-Liebler sets of k-spaces in PG(n, q).

1. �e empty set (parameter 0).

2. �e set of all k-spaces through a point P , so the point-pencil with vertex P (parameter 1). �is
follows immediately from the theory of Boolean degree one functions.

3. �e set of all k-spaces in a �xed hyperplane (parameter q
n−k−1
qk+1−1

). Note that this parameter is not
an integer if k + 1 - n+ 1, or equivalently, if PG(n, q) does not contain a k-spread.

4. �e union of all k-spaces through a point P , together with the set of k-spaces in a �xed hyper-
plane H , with P /∈ H (parameter x = 1 + qn−k−1

qk+1−1
).

5. �e complement of these four examples: these are Cameron-Liebler sets with parameter x =
qn+1−1
qk+1−1

, x = qn+1−1
qk+1−1

− 1, x = qn−k and x = qn−k − 1 respectively.

Remark 8.3.3. Example 4. is a Cameron-Liebler set L in PG(n, q), but is not an orbit of k-spaces
of a symmetrical tactical decomposition in the collineation group. �is was proven in [27, 96], and
follows from the following observation. IfLwould arise from a symmetrical tactical decomposition
T , then, since P is the unique point of PG(n, q), such that through P there pass

[
n
k

]
k-spaces of L,

we have that {P}must be a point class of T . But, a k-space π ∈ L contains either one or no points
of {P}, depending on whether P ∈ π or not. Hence, L cannot be a class of k-spaces of T .

In [93], several properties of Cameron-Liebler sets of k-spaces in PG(2k + 1, q) were given. We
will �rst generalize some of these results to use them in Section 8.4.
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Lemma 8.3.4. Let π and π′ be two disjoint k-spaces in PG(n, q) with Σ = 〈π, π′〉, let P be a point
in Σ \ (π ∪ π′) and let P ′ be a point not in Σ. �en the number of k-spaces disjoint from π and π′

equals W (q, n, k), the number of k-spaces disjoint from π and π′ through P equals WΣ(q, n, k) and
the number of k-spaces disjoint from π and π′ through P ′ equals WΣ̄(q, n, k).

Here, W (q, n, k),WΣ(q, n, k),WΣ̄(q, n, k) are given by:

W (q, n, k) =
k∑

i=−1

Wi(q, n, k)

WΣ(q, n, k) =
1

(qk+1 − 1)2

k∑
i=0

Wi(q, n, k)(qi+1 − 1)

WΣ̄(q, n, k) =
1

qn+1 − q2k+2

k−1∑
i=−1

Wi(q, n, k)(qk+1 − qi+1)

Wi(q, n, k) =

{
q2k2+k+ 3i2

2
− i

2
−3ik

[
n−2k−1
k−i

][
k+1
i+1

]∏i
j=0(qk−j+1 − 1) if i ≥ 0

q2(k+1)2
[
n−2k−1
k+1

]
if i = −1

.

Proof. To count the number of k-spaces π′′, that are disjoint from π and π′, we �rst count the
number of possible intersections π′′ ∩ Σ.

We count the number of i-spaces in Σ, disjoint from π and π′, by counting ((P0, P1, . . . , Pi), σi) in
two ways. Here σi is an i-space in Σ, disjoint from π and π′, and the points P0, P1, . . . , Pi form a
basis of σi. For the ordered basis (P0, P1, . . . , Pi) we have

∏i
j=0

q2j(qk−j+1−1)2

q−1 possibilities since
there are

[
2k+2

1

]
− 2
[
k+j+1

1

]
+
[
2j
1

]
= q2j(qk−j+1−1)2

q−1 possibilities for Pj if P0, P1, . . . , Pj−1 are
given. By a similar argument, we �nd that the number of ordered bases (P0, P1, . . . , Pi) for a given
σi is

∏i
j=0

qj(qi−j+1−1)
q−1 . In this way we �nd that the number of i-spaces in Σ, disjoint from π and

π′, is given by:

∏i
j=0

q2j(qk−j+1−1)2

q−1∏i
j=0

qj(qi−j+1−1)
q−1

=
i∏

j=0

qj(qk−j+1 − 1)2

qi−j+1 − 1
= q(

i+1
2 )
[
k + 1

i+ 1

] i∏
j=0

(qk−j+1 − 1).

Now we count, for a given i-space σi in Σ, the number of k-spaces π′′ through σi such that π′′∩Σ =
σi. �is equals the number of (k− i−1)-spaces in PG(n− i−1, q), disjoint from a (2k− i)-space,
and is equal to q(k−i)(2k−i+1)

[
n−2k−1
k−i

]
by Lemma 1.10.1. By this lemma, we also see that the number

of k-spaces disjoint from Σ is given by q(k+1)(2k+2)
[
n−2k−1
k+1

]
. �is implies that Wi(q, n, k),−1 ≤

i ≤ k, is the number of k-spaces disjoint from π and π′, and intersecting Σ in an i-space.

Now we have enough information to count the number of k-spaces disjoint from π and π′:

W (q, n, k) =

k∑
i=−1

Wi(q, n, k) .

We use the same arguments to calculate WΣ(q, n, k) and WΣ̄(q, n, k). By double counting (P, π′′),
with π′′ a k-space through P ∈ Σ disjoint from π and π′, and double counting (P ′, π′′), with π′′ a
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k-space through P ′ /∈ Σ disjoint from π and π′, we �nd:

([
2k + 2

1

]
− 2

[
k + 1

1

])
·WΣ(q, n, k) =

k∑
i=0

Wi(q, n, k) ·
[
i+ 1

1

]
and

([
n+ 1

1

]
−
[
2k + 2

1

])
·WΣ̄(q, n, k) =

k−1∑
i=−1

Wi(q, n, k) ·
([
k + 1

1

]
−
[
i+ 1

1

])
.

�is implies:

WΣ(q, n, k) =
1

(qk+1 − 1)2

k∑
i=0

Wi(q, n, k)(qi+1 − 1)

WΣ̄(q, n, k) =
1

qn+1 − q2k+2

k−1∑
i=−1

Wi(q, n, k)(qk+1 − qi+1) . �

From now on, we denote Wi(q, n, k),WΣ(q, n, k) and WΣ̄(q, n, k) by Wi,WΣ and WΣ̄ if the di-
mensions n, k and the �eld size q are clear from the context.

Lemma 8.3.5. Let L be a Cameron-Liebler set of k-spaces in PG(n, q) with parameter x.

1. For every π ∈ L, there are s1 elements of L meeting π.

2. For skew π, π′ ∈ L and a k-spread S0 in Σ = 〈π, π′〉, there exist exactly d2 subspaces in L that
are skew to both π and π′ and there exist s2 subspaces in L that meet both π and π′.

Here, d2, s1 and s2 are given by:

d2(q, n, k, x,S0) = (WΣ −WΣ̄)|S0 ∩ L| − 2WΣ + xWΣ̄

s1(q, n, k, x) = x

[
n

k

]
− (x− 1)

[
n− k − 1

k

]
qk

2+k

s2(q, n, k, x,S0) = x

[
n

k

]
− 2(x− 1)

[
n− k − 1

k

]
qk

2+k + d2(q, n, k, x,S0) ,

where WΣ and WΣ̄ are given by Lemma 8.3.4.

3. De�ne d′2(q, n, k, x) = (x − 2)WΣ and s′2(q, n, k, x) = x
[
n
k

]
− 2(x − 1)

[
n−k−1

k

]
qk

2+k +
d′2(q, n, k, x). If n > 3k + 1, then |S0 ∩ L| ≤ x for every k-spread S0 in Σ. Moreover we have
that d2(q, n, k, x,S0) ≤ d′2(q, n, k, x) and s2(q, n, k, x,S0) ≤ s′2(q, n, k, x).

Proof. 1. �is follows directly from �eorem 8.1.6(3) and |L| = x
[
n
k

]
.

2. Let χπ and χπ′ be the characteristic vectors of {π} and {π′}, respectively, and let Z be the
set of all k-spaces in PG(n, q) disjoint from π and π′, and let χZ be its characteristic vector.
Furthermore, let vπ and vπ′ be the incidence vectors of π and π′, respectively, with their
positions corresponding to the points of PG(n, q). Note that Aχπ = vπ and Aχπ′ = vπ′ . By
Lemma 8.3.4, we know the numbers WΣ and WΣ̄ of k-spaces disjoint from π and π′, through
a point P , if P ∈ Σ and P /∈ Σ respectively. Let S0 be a k-spread in Σ and let vΣ be the
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incidence vector of Σ (as a point set). We �nd:

AχZ = WΣ(vΣ − vπ − vπ′) +WΣ̄(j − vΣ)

= WΣ(AχS0 −Aχπ −Aχπ′) +WΣ̄

([
n

k

]−1

Aj −AχS0

)

⇔ χZ −WΣ(χS0 − χπ − χπ′)−WΣ̄

([
n

k

]−1

j − χS0

)
∈ ker(A).

We know that the characteristic vector χ of L is included in ker(A)⊥. �is implies:

χZ · χ = WΣ(χS0 · χ− χ(π)− χ(π′)) +WΣ̄(x− χS0 · χ)

⇔ |Z ∩ L| = WΣ(|S0 ∩ L| − 2) +WΣ̄(x− |S0 ∩ L|)
⇔ |Z ∩ L| = (WΣ −WΣ̄)|S0 ∩ L| − 2WΣ + xWΣ̄ ,

which gives the formula for d2(q, n, k, x,S0). �e formula for s2(q, n, k, x,S0) follows from
the inclusion-exclusion principle.

3. Suppose Σ is a (2k + 1)-space in PG(n, q), and suppose S0 is a k-spread in Σ such that
|S0 ∩ L| > x. By property 1 in �eorem 8.1.6, we know that the characteristic vector χ of L
can be wri�en as

∑
P∈PG(n,q) xP r

T
P for some xP ∈ Rwhere rP is the row ofA corresponding

to the point P . Let χπ be the characteristic vector of the set {π} with π a k-space, then
χπ · χ =

∑
P∈π xP equals 1 if π ∈ L and 0 if π /∈ L. As χ · j = |L| = x

[
n
k

]
, we �nd that∑

P∈PG(n,q) xP = x.
If |S0 ∩ L| > x, then χ · χS0 =

∑
P∈Σ xP > x. From these observations, it follows that∑

P∈PG(n,q)\Σ xP =
∑

P∈PG(n,q) xP −
∑

P∈Σ xP is negative. As n > 3k + 1, there exists
a k-space τ in PG(n, q), disjoint from Σ, with χτ · χ =

∑
P∈τ xP negative, which gives the

contradiction.

It follows that |S0 ∩ L| ≤ x. Since this is true for every k-spread S0 in every (2k + 1)-space
in PG(n, q), the statement holds. �

In the remainder of this chapter, we will use the upper bound d′2(q, n, k, x) and s′2(q, n, k, x) instead
of d2(q, n, k, x,S0) and s2(q, n, k, x,S0) respectively, since they are independent of the chosen k-
spread S0.

�e following lemma is a generalization of Lemma 2.4 in [93].

Lemma 8.3.6. Let c, n, k be non-negative integers with n > 3k + 1 and

(c+ 1)s1 −
(
c+ 1

2

)
s′2 > x

[
n

k

]
,

then no Cameron-Liebler set of k-spaces in PG(n, q) with parameter x contains c+ 1 mutually skew
k-spaces.

Proof. Assume that PG(n, q) has a Cameron-Liebler set L of k-spaces with parameter x that con-
tains c + 1 mutually disjoint k-spaces π0, π1, . . . , πc. Lemma 8.3.5 shows that πi meets at least
s1(q, n, k, x) − is2(q, n, k, x) elements of L that are skew to π0, π1, . . . , πi−1. �is implies that
x
[
n
k

]
= |L| ≥ (c+1)s1−

∑c
i=0 is2 ≥ (c+1)s1−

∑c
i=0 is

′
2 which contradicts the assumption. �
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

8.4 Classi�cation results

In this section, we will list some classi�cation results for Cameron-Liebler sets of k-spaces in
PG(n, q). We start with some known classi�cation results for k = 1. For n = 3, Cameron and
Liebler proved that the sets in Example 8.3.2 are the only examples of Cameron-Liebler line sets
with parameter equal to 0, 1, 2, q2 − 1, q2 and q2 + 1 [28]. �ey also conjectured that the only
Cameron-Liebler line sets in PG(3, q) are the trivial ones. �is conjecture was disproven, and sev-
eral non-trivial examples of Cameron-Liebler sets are known now. In [26, 30, 31, 51, 57, 58, 63],
constructions of non-trivial Cameron-Liebler line sets with parameter x = q2+1

2 , x = q2−1
2 and

x = (q+1)2

3 , were given, and other classi�cation results were discussed in [28, 62, 64, 65, 91, 92, 103].

�e strongest classi�cation results are given in [64, 92], the la�er of which proves the following
result.

�eorem 8.4.1 ([92, �eorem 1.1]). �ere are no Cameron-Liebler line sets in PG(3, q) with pa-
rameter

2 < x ≤ q 3

√
q

2
− 2

3
q.

In [64], Metsch and Gavrilyuk found a strong classi�cation result, using a modular equality. �is
result rules out roughly at least one half of all possible parameters x.

�eorem 8.4.2 ([64, �eorem 1.1]). Let L be a Cameron-Liebler line set with parameter x in
PG(3, q). �en for every plane π and every point P of PG(3, q) it holds that(

x

2

)
+ n(n− x) ≡ 0 mod (q + 1).

Here, n is the number of lines of L in the plane π, and through the point P respectively.

Regarding the Cameron-Liebler sets of k-spaces in PG(2k+1, q), the most important classi�cation
result is described in [93].

�eorem 8.4.3 ([93]). �ere does not exist a Cameron-Liebler set of planes in PG(5, q) with pa-
rameter x satisfying 2 < x < q

3 . For k ≥ 3, there exists a positive integer q0 with the following
properties. If q is a prime power satisfying q ≥ q0 and k < q log q − q − 1, then PG(2k + 1, q) has
no Cameron-Liebler sets of k-spaces with parameter x for 2 < x < q

5 .

Moreover, for q ∈ {2, 3, 4, 5}, a complete classi�cation is known for Cameron-Liebler sets of k-
spaces in PG(n, q), see [59]. �ere, the authors show that the only Cameron-Liebler sets in this
context are the trivial Cameron-Liebler sets, independent of the values of k and n.

Now we continue with several new classi�cation results for Cameron-Liebler sets of k-spaces
in PG(n, q). In the following lemma, we start with the classi�cation for the parameters x ∈
]0, 1[ ∪ ]1, 2[.

Lemma 8.4.4. �ere are no Cameron-Liebler sets of k-spaces in PG(n, q) with parameter x ∈ ]0, 1[
and if n ≥ 3k + 2, then there are no Cameron-Liebler sets of k-spaces with parameter x ∈ ]1, 2[.

Proof. Suppose there is a Cameron-Liebler set L of k-spaces with parameter x ∈ ]0, 1[. �en L is
not the empty set, so suppose π ∈ L. By property 3 in �eorem 8.1.6, we �nd that the number of
k-spaces in L disjoint from π is negative, which gives the contradiction.

Suppose there is a Cameron-Liebler set L of k-spaces with parameter x ∈ ]1, 2[ in PG(n, q), n ≥
3k + 2. By property 3 in �eorem 8.1.6, we know that there are at least two disjoint k-spaces
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

π, π′ ∈ L. By Lemma 8.3.5(2, 3), we know that there are d2 ≤ d′2 elements of L disjoint from π and
π′. Since d′2 is negative for x ∈]1, 2[, we �nd a contradiction. �

We continue with a classi�cation result for Cameron-Liebler sets of k-spaces with parameter x = 1,
where we will use the Erdős-Ko-Rado result from �eorem 2.0.3, for t = 0.

�eorem 8.4.5. Let L be a Cameron-Liebler set of k-spaces with parameter x = 1 in PG(n, q),
n ≥ 2k+ 1. �en L is a point-pencil or n = 2k+ 1 and L is the set of all k-spaces in a hyperplane of
PG(2k + 1, q).

Proof. �e theorem follows immediately from �eorem 2.0.3 since, by �eorem 8.1.6(3), we know
that L is a family of pairwise intersecting k-spaces of size

[
n
k

]
. �

We continue this section by showing that there are no Cameron-Liebler sets of k-spaces in PG(n, q),
n ≥ 3k + 2, with parameter 2 ≤ x ≤ 1

8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1. For this

classi�cation result, we will use the Hilton-Milner theorem for projective spaces, see �eorem 2.0.5.

To simplify the notations, we denote q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1 by f(q, n, k).

Recall that the set of all k-spaces in a hyperplane in PG(n, q) is a Cameron-Liebler set of k-spaces
with parameter x = qn−k−1

qk+1−1
(see Example 8.3.2.3) and note that f(q, n, k) ∈ O(

√
qn−2k) while

qn−k−1
qk+1−1

∈ O(qn−2k−1).

Lemma 8.4.6. For n ≥ 2k + 2, we have[
n

k

]
>

[
n− k − 1

k

]
qk

2+k > WΣ .

If also k ≥ 2, then [
n− k − 1

k

]
qk

2+k > qnk−k
2

+ qnk−k
2−1 + qnk−k

2−2 .

Proof. �e �rst inequality follows since
[
n
k

]
is the number of k-spaces through a �xed point in

PG(n, q),
[
n−k−1

k

]
qk

2+k is the number of k-spaces through a �xed point disjoint from a given k-
space not through that point (see Lemma 1.10.1), andWΣ is the number of k-spaces through a �xed
point and disjoint from two given k-spaces not through that point.

�e second inequality, for k ≥ 2, n ≥ 2k + 2, follows from the calculations below, in which we
de�ne

∏k−3
i=0 g(i) = 1, for k = 2.[
n− k − 1

k

]
qk

2+k =

(
k−3∏
i=0

(
qn−k−1−i − 1

qk−i − 1

))(
qn−2k+1 − 1

q − 1
· q

n−2k − 1

q2 − 1

)
qk

2+k

> q(n−2k−1)(k−2)(qn−2k + qn−2k−1 + qn−2k−2)qn−2k−2qk
2+k

= qnk−k
2

+ qnk−k
2−1 + qnk−k

2−2 . �

Notation 8.4.7. We denote ∆(q, n, k) =
[
n−k−1

k

]
qk

2+k and C(q, n, k) =
[
n
k

]
−
[
n−k−1

k

]
qk

2+k.
�en, according to Lemma 8.3.5, we can write

s1(q, n, k, x) = xC(q, n, k) + ∆(q, n, k) and

s′2(q, n, k, x) = xC(q, n, k) + (2− x)∆(q, n, k) + (x− 2)WΣ.

We denote ∆(q, n, k) and C(q, n, k) by ∆ and C if q, n and k are clear from the context.
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Lemma 8.4.8. If n ≥ 2k + 1 and q ≥ 3, then

WΣ ≤ ∆− C

2
.

Proof. First, using the de�nition of WΣ as given in Lemma 8.3.4, we �nd

WΣ =
1

(qk+1 − 1)2

k∑
i=0

(qi+1 − 1)q2k2+k+ 3i2

2
− i

2
−3ik

[
n− 2k − 1

k − i

][
k + 1

i+ 1

] i∏
j=0

(qk−j+1 − 1)

= q2k2+k
k∑
i=0

q
3i2

2
− i

2
−3ik

[
n− 2k − 1

k − i

][
k

i

] i∏
j=1

(qk−j+1 − 1) .

Here, the �nal product is considered 1 if i = 0 (the ‘empty’ product). Now, using the de�nitions of
∆ and C as in Notation 8.4.7, the inequality stated above can be wri�en as:

q2k2+k
k∑
i=0

q
3i2

2
− i

2
−3ik

[
n− 2k − 1

k − i

][
k

i

] i∏
j=1

(qk−j+1 − 1) ≤ 3

2

[
n− k − 1

k

]
qk

2+k − 1

2

[
n

k

]
. (8.1)

For k = 1, this reduces to

q3

[
n− 3

1

]
+ q(q − 1) ≤ 3

2

[
n− 2

1

]
q2 − 1

2

[
n

1

]
⇔ q − 1

2
≥ 0 ,

which is true for all q ≥ 2. So, we will from now on assume that k ≥ 2.

Repeatedly applying the le� equality in (1.3) from Result 1.10.3, we �nd that
[
n
k

]
= qk

2+k
[
n−k−1

k

]
+∑k

i=0 q
ik
[
n−i−1
k−1

]
, so inequality (8.1) can be rewri�en as

q2k2+k
k∑
i=0

q
3i2

2
− i

2
−3ik

[
n− 2k − 1

k − i

][
k

i

] i∏
j=1

(qk−j+1 − 1) +
1

2

k∑
i=0

qik
[
n− i− 1

k − 1

]

≤
[
n− k − 1

k

]
qk

2+k .

We now apply Lemma 1.10.4 on the right hand side of this inequality and we see that it is equivalent
with

q2k2+k
k∑
i=1

q
3i2

2
− i

2
−3ik

[
n− 2k − 1

k − i

][
k

i

] i∏
j=1

(qk−j+1 − 1) +
1

2

k∑
i=0

qik
[
n− i− 1

k − 1

]

≤ qk2+k
k∑
i=1

q(k−i)2
[
n− 2k − 1

k − i

][
k

i

]
. (8.2)

Now, we note that
∏i
j=1(qk−j+1 − 1) ≤ q(i−1)(k+1)− i(i−1)

2 (qk−i+1 − 1) for i ≥ 1. So, in order to
prove (8.2), it is su�cient to show that the following inequality is valid:

1

2

k∑
i=0

qik
[
n− i− 1

k − 1

]
≤ qk2+k

k∑
i=1

(
q(k−i)2 − q(k−i)(k−i−1)−1(qk−i+1 − 1)

)[n− 2k − 1

k − i

][
k

i

]

= qk
2+k

k∑
i=1

q(k−i)(k−i−1)−1

[
n− 2k − 1

k − i

][
k

i

]

= q2k2−2k+1

[
n− 2k − 1

k − 1

][
k

1

]
+ qk

2+k
k∑
i=2

q(k−i)(k−i−1)−1

[
n− 2k − 1

k − i

][
k

i

]
.

(8.3)
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Applying Lemma 1.10.2.1 on the le� hand side in (8.3), we �nd that

1

2

k∑
i=0

qik
[
n− i− 1

k − 1

]
≤ q(k−1)(n−k)

k∑
i=0

qi = q(k−1)(n−k) q
k+1 − 1

q − 1
. (8.4)

Now applying Lemma 1.10.2.4 on the �rst term of the right hand side in (8.3), we �nd that

q2k2−2k+1

[
n− 2k − 1

k − 1

][
k

1

]
≥
(

1 +
1

q

)
q(k−1)(n−k)+1 q

k − 1

q − 1
= (q + 1)q(k−1)(n−k) q

k − 1

q − 1
.

(8.5)

From (8.4) and (8.5), it follows that in order to prove (8.3), it is su�cient to show that the following
inequality is valid:

qk+1 − 1 ≤ (q + 1)
(
qk − 1

)
⇔ qk ≥ q ,

�is statement is clearly true. �

Lemma 8.4.9. If x ≤ 1
8√2
f(q, n, k) and n ≥ 2k + 2, then ∆

C > 4
√

2x2.

Proof. We want to prove that[
n− k − 1

k

]
qk

2+k >
4
√

2x2

([
n

k

]
−
[
n− k − 1

k

]
qk

2+k

)
.

We �rst look at the case k ≥ 2. Given a k-space π in PG(n − 1, q), the number of (k − 1)-spaces
meeting π equals

[
n
k

]
−
[
n−k−1

k

]
qk

2+k by Lemma 1.10.1. We know that this number is smaller than
the product of the number of points Q ∈ π and the number of (k − 1)-spaces through Q. �is
implies that [

n

k

]
−
[
n− k − 1

k

]
qk

2+k ≤
[
k + 1

1

][
n− 1

k − 1

]
=
qk+1 − 1

q − 1
· (qn−1 − 1) · · · (qn−k+1 − 1)

(qk−1 − 1) · · · (q − 1)

<
qnk−

k2

2
−n+ 3k

2
+1

(q − 1)
k2

2
− k

2
+1

.

From this computation and the assumption on x, it follows that

4
√

2x2

([
n

k

]
−
[
n− k − 1

k

]
qk

2+k

)
< (f(q, n, k))2 q

nk− k
2

2
−n+ 3k

2
+1

(q − 1)
k2

2
− k

2
+1

= qnk−k
2−2(q2 + q + 1)

≤
[
n− k − 1

k

]
qk

2+k ,

where the �nal inequality is given by Lemma 8.4.6 (which we can apply since k ≥ 2).

Now we look at the case k = 1. We have to prove that[
n− 2

1

]
q2 >

4
√

2x2

([
n

1

]
−
[
n− 2

1

]
q2

)
⇔ qn−2 − 1

q2 − 1
q2 >

4
√

2x2 .

By the assumption on x, it is su�cient to prove that

qn−2 − 1

q2 − 1
q2 > f(q, n, 1)2 = qn−5(q3 − 1) ⇔ qn−2 + qn−3 − qn−5 − q2 > 0 ,

which is clearly true since n ≥ 4. �
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Lemma 8.4.10. Let L be a Cameron-Liebler set of k-spaces in PG(n, q), n ≥ 3k+2, with parameter
2 ≤ x ≤ 1

8√2
f(q, n, k), then L cannot contain

⌊
3
2x
⌋

mutually disjoint k-spaces.

Proof. We apply Lemma 8.3.6, with c+ 1 =
⌊

3
2x
⌋

and have to show that⌊
3

2
x

⌋
s1 −

(⌊3
2x
⌋

2

)
s′2 > x

[
n

k

]
.

Using Notation 8.4.7 and Lemma 8.4.8, we see that it is su�cient to prove that⌊
3

2
x

⌋
(xC + ∆)− x(∆ + C)

− 1

2

⌊
3

2
x

⌋(⌊
3

2
x

⌋
− 1

)(
xC − (x− 2)∆ + (x− 2)

(
∆− C

2

))
> 0

⇔ ∆

(⌊
3

2
x

⌋
− x
)
> C

(
x−

⌊
3

2
x

⌋
x+

1

2

⌊
3

2
x

⌋(⌊
3

2
x

⌋
− 1

)(x
2

+ 1
))

.

From Lemma 8.4.9, we know that ∆
C > 4

√
2x2. Hence, it is su�cient to prove that(⌊

3

2
x

⌋
− x
)

4
√

2x2 > x−
⌊

3

2
x

⌋
x+

1

2

⌊
3

2
x

⌋(⌊
3

2
x

⌋
− 1

)(x
2

+ 1
)

(8.6)

for all admissible x. We denote 3
2x−

⌊
3
2x
⌋

by ε. �en, 0 ≤ ε < 1. We rewrite (8.6) as(
3

2
x− ε− x

)
4
√

2x2 > x−
(

3

2
x− ε

)
x+

1

2

(
3

2
x− ε

)(
3

2
x− ε− 1

)(x
2

+ 1
)

⇔ −
(
x+ 2

4

)
ε2 +

(
(3− 4 4

√
2)x2 + x− 2

4

)
ε+

(8 4
√

2− 9)x3 + 12x2 − 4x

16
> 0 . (8.7)

�e nontrivial zero of the quadratic function f(ε) = −
(
x+2

4

)
ε2 +

(
(3−4 4√2)x2+x−2

4

)
ε is smaller

than 1 for any x, so f(ε) > f(1) for any ε ∈ [0, 1[ regardless of x. So, to prove (8.7), it is su�cient
to prove (

1

2
4
√

2− 9

16

)
x3 +

(
3

2
− 4
√

2

)
x2 − 1

4
x− 1 ≥ 0

⇔ (x− 2)
(

(8
4
√

2− 9)x2 + 6x+ 8
)
≥ 0 ,

which is clearly true for x ≥ 2. �

Lemma 8.4.11. If 2 ≤ x ≤ 1
8√2
f(q, n, k) and n ≥ 2k + 2 and q ≥ 3, then

x− 1
3
2x− 2

[
n− k − 1

k

]
qk

2+k −
(

3

2
x− 3

)
s′2 > x

[
n

k

]
− x
[
n− k − 1

k

]
qk

2+k and

x− 1
3
2x− 2

[
n− k − 1

k

]
qk

2+k −
(

3

2
x− 3

)
s′2 >

[
n

k

]
−
[
n− k − 1

k

]
qk

2+k + qk+1 .

Proof. To prove the �rst inequality, we rewrite it using Notation 8.4.7.

x− 1
3
2x− 2

∆−
(

3

2
x− 3

)
(xC + (2− x)∆ + (x− 2)WΣ) > xC .
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Using Lemma 8.4.8, we see that it is su�cient to prove

x− 1
3
2x− 2

∆ > C

(
3

4
x2 + x− 3

)
.

From Lemma 8.4.9, we know that ∆
C > 4

√
2x2. Hence, it is su�cient to prove that

x− 1
3
2x− 2

4
√

2x2 >

(
3

4
x2 + x− 3

)
⇔

(
4
√

2− 9

8

)
x3 − 4

√
2x2 +

13

2
x− 6 > 0 .

Using a computer algebra package, we �nd that the last inequality is valid for all x ≥ 2.

To prove the second inequality for k ≥ 2, it is su�cient to prove that

x

[
n

k

]
− x
[
n− k − 1

k

]
qk

2+k >

[
n

k

]
−
[
n− k − 1

k

]
qk

2+k + qk+1

⇔ qk+1 < (x− 1)

([
n

k

]
−
[
n− k − 1

k

]
qk

2+k

)
= (x− 1)

k∑
i=0

qik
[
n− i− 1

k − 1

]
,

whereby we applied repeatedly the le� equality in (1.3) from Result 1.10.3. We immediately see that

(x− 1)
k∑
i=0

qik
[
n− i− 1

k − 1

]
> qk

2

[
n− k − 1

k − 1

]
> q(n−k)(k−1)+k > q2k+2 > qk+1 .

For k = 1, we prove the second inequality directly. Note that s′2 = x+ 2q. �e inequality reduces
to

x− 1
3
2x− 2

· q
n−2 − 1

q − 1
q2 −

(
3

2
x− 3

)
(x+ 2q) > q2 + q + 1

⇔ x− 1
3
2x− 2

· q
n−2 − 1

q − 1
q2 >

3

2
x2 + 3(q − 1)x+ q2 − 5q + 1 . (8.8)

Recall that 2 ≤ x ≤ 1
8√2
f(q, n, 1) = 1

8√2
q
n−5
2

√
q3 − 1 < q

n−2
2 . We look at the le� hand side of

(8.8) and �nd

x− 1
3
2x− 2

· q
n−2 − 1

q − 1
q2 =

(
2

3
+

2

3(3x− 4)

)
qn−2 − 1

q − 1
q2

>

(
2

3
+

2

9(x− 1)

)
qn−2 − 1

q − 1
q2

>
2

3

qn−2 − 1

q − 1
q2 +

2

9
(
q
n−2
2 − 1

) qn−2 − 1

q − 1
(q2 − 1)

=
2

3

qn−2 − 1

q − 1
q2 +

2

9

(
q
n−2
2 + 1

)
(q + 1) .

For the right hand side of (8.8), we �nd that

3

2
x2 + 3(q − 1)x+ q2 − 5q + 1 <

3

2 4
√

2
qn−5

(
q3 − 1

)
+ 3(q − 1)q

n−2
2 + q2 − 5q + 1

<
3

2
qn−5

(
q3 − 1

)
+ 3(q − 1)q

n−2
2 + q2 − 5q + 1 .
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

So, to prove (8.8), it is su�cient to prove that

2

3

qn−2 − 1

q − 1
q2 +

2

9

(
q
n−2
2 + 1

)
(q + 1) ≥ 3

2
qn−5

(
q3 − 1

)
+ 3(q − 1)q

n−2
2 + q2 − 5q + 1

⇔ 2

3
qn−1 − 5

6
qn−2 +

2

3

qn−4 − 1

q − 1
q2 +

3

2
qn−5 − q

n−2
2

(
25

9
q − 29

9

)
− q2 +

47

9
q − 7

9
≥ 0 .

(8.9)

For n = 4, 5, we can check this to be true for all q ≥ 3 using computer algebra so�ware. For n ≥ 6,
we rewrite (8.9) as follows:

5

18
(q − 3)qn−2 +

q
n
2

18

(
7q

n−2
2 − 50

)
+

2

3

qn−4 − 1

q − 1
q2

+

(
29

9
q
n−2
2 − q2

)
+

47

9
q +

(
3

2
qn−5 − 7

9

)
≥ 0 .

Here each of the terms in the le� hand side is positive for q ≥ 3 since n ≥ 6, which proves the
second inequality in the statement for k = 1. �

Lemma 8.4.12. If L is a Cameron-Liebler set of k-spaces in PG(n, q), n ≥ 3k + 2 and q ≥ 3, with
parameter 2 ≤ x ≤ 1

8√2
f(q, n, k), then L contains a point-pencil.

Proof. Let π be a k-space in L and let c be the maximal number of elements of L that are pairwise
disjoint. By �eorem 8.1.6(3), there are (x− 1)

[
n−k−1

k

]
qk

2+k k-spaces in L disjoint from π. Within
this collection of k-spaces, we �nd at most c− 1 spaces σ1, σ2, . . . , σc−1 that are pairwise disjoint.
By Lemma 8.4.10, c−1 ≤

⌊
3
2x
⌋
−2. By the pigeonhole principle, we �nd an index i so that σi meets

at least x−1
c−1

[
n−k−1

k

]
qk

2+k ≥ x−1

b 32xc−2

[
n−k−1

k

]
qk

2+k elements of L that are skew to π. We denote
this collection of k-spaces disjoint from π and meeting σi in at least a point by Fi.

Now we want to show thatFi contains a family of pairwise intersecting subspaces. For any σj with
j 6= i, we �nd at most s′2 elements that meet σi and σj . In this way, we �nd that there are at least
x−1

b 32xc−2

[
n−k−1

k

]
qk

2+k− (c− 2)s′2 ≥ x−1
3
2
x−2

[
n−k−1

k

]
qk

2+k−
(

3
2x− 3

)
s′2 elements of L that meet σi,

are disjoint from π and that are disjoint from σj for all j 6= i. We denote this subset of Fi ⊆ L by
F ′i . �is collection F ′i of k-spaces is a set of pairwise intersecting k-spaces: if two elements α, β in
F ′i would be disjoint, then ({σ1, . . . , σc−1}\{σi})∪{α, β, π}would be a collection of c+1 pairwise
disjoint elements of L, which is impossible since we supposed that c is the size of a maximal set
of pairwise disjoint k-spaces in L. By Lemma 8.4.11, we have x−1

3
2
x−2

[
n−k−1

k

]
qk

2+k −
(

3
2x− 3

)
s′2 >[

n
k

]
−
[
n−k−1

k

]
qk

2+k + qk+1 since 2 ≤ x ≤ 1
8√2
f(q, n, k). �is implies that ∩F∈F ′iF is not empty

by �eorem 2.0.5; let P be a point contained in ∩F∈F ′iF . We conclude that F ′i is a part of the
point-pencil through P .

We conclude by showing that L contains the whole point-pencil through P . If γ /∈ L is a k-space
through P , then γ meets at least x−1

3
2
x−2

[
n−k−1

k

]
qk

2+k −
(

3
2x− 3

)
s′2 > x

[
n
k

]
− x

[
n−k−1

k

]
qk

2+k

elements of F ′i ⊆ L, where the inequality follows from Lemma 8.4.11. �is contradicts �eorem
8.1.6.3. �

�eorem 8.4.13. �ere are no Cameron-Liebler sets of k-spaces in PG(n, q), n ≥ 3k+ 2 and q ≥ 3,

with parameter 2 ≤ x ≤ 1
8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

Proof. We prove this result using induction on x. By Lemma 8.4.12, we know that L contains the
point-pencil [P ]k through a point P . By Lemma 8.3.1(4), L \ [P ]k is a Cameron-Liebler set of
k-spaces with parameter (x − 1), which by the induction hypothesis (in case x − 1 ≥ 2) or by
Lemma 8.4.4 (in case 1 < x−1 < 2) does not exist, or which is a point-pencil (in case x−1 = 1) by
�eorem 8.4.5. In the former case, there is an immediate contradiction; in the la�er case, L contains
two disjoint point-pencils of k-spaces, a contradiction. �

Remark 8.4.14. We cannot compare this classi�cation result with classi�cation results already
known, for Cameron-Liebler sets of k-spaces in PG(2k + 1, q), k ≥ 1, since the parameters n and
k of these spaces do not ful�ll the condition “n ≥ 3k + 2” in �eorem 8.4.13. For q ∈ {2, 3, 4, 5}, a
complete classi�cation is known for Cameron-Liebler sets of k-spaces in PG(n, q), see [59]. �ere,
the authors show that the only Cameron-Liebler sets in this context are the trivial Cameron-Liebler
sets, independent of the values of k and n. Hence, for small values of q this result is stronger than
the classi�cation result in the previous theorem.
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9 Cameron-Liebler sets of k-spaces in AG(n, q)

“ You know, people think mathematics is complicated.
Mathematics is the simple bit. It’s the stu� we can understand.
It’s cats that are complicated. I mean, what is it in those li�le molecules and
stu� that make one cat behave di�erently than another, or that make a cat?
And how do you de�ne a cat?
I have no idea. ”—John Conway

In this section, we give a short overview of the results proven in [46] and [44]. �e results in this
part are joint work with dr. Ferdinand Ihringer, Jonathan Mannaert, prof. Leo Storme and prof.
Andrea Švob.

Similar to the de�nition of Cameron-Liebler sets of k-spaces in PG(n, q), we have the following
de�nition in the a�ne context.

De�nition 9.0.1. A setL of k-spaces in AG(n, q) is a Cameron-Liebler set of k-spaces of parameter
x in AG(n, q) if and only if every k-spread in AG(n, q) has x elements in common with L.

In contrast to k-spreads in PG(n, q), we note that there exist k-spreads in AG(n, q), for every
k ≤ n, which implies that the de�nition above is well de�ned. An example of an a�ne k-spread
in AG(n, q) is the following. Embed AG(n, q) in the projective space PG(n, q), and let H be the
hyperplane at in�nity. Consider a (k−1)-space π inH and let Sp be the set of all k-spaces through
π. �e set of all a�ne k-spaces corresponding to the elements of Sp, restricted to AG(n, q), is a
k-spread in this a�ne space.

�ere is a strong link between Cameron-Liebler sets of k-spaces in PG(n, q) and AG(n, q).

�eorem 9.0.2. Let L be a Cameron-Liebler set of k-spaces with parameter x in PG(n, q) which
does not contain k-spaces in some hyperplane H . �en L is a Cameron-Liebler set of k-spaces with
parameter x of AG(n, q) ∼= PG(n, q) \H .
If L is a Cameron-Liebler set of k-spaces of AG(n, q) with parameter x, then L is a Cameron-Liebler
set of k-spaces of PG(n, q) with parameter x in the projective closure PG(n, q) of AG(n, q).

Using the link between PG(n, q) and AG(n, q), it was possible to give several equivalent de�nitions
for Cameron-Liebler sets of k-spaces in AG(n, q). A second consequence of this link, is that the
classi�cation result for Cameron-Liebler sets of k-spaces in PG(n, q) (�eorem 8.4.13) implies the
following result.

�eorem 9.0.3. �ere are no Cameron-Liebler sets of k-spaces in AG(n, q), n ≥ 3k + 2 and q ≥ 3,

with parameter 2 ≤ x ≤ 1
8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.

For k = 1, n = 3, we also �nd a classi�cation result, using a modular equality in the a�ne context,
similar to �eorem 8.4.2.

147



9 Cameron-Liebler sets of k-spaces in AG(n, q)

�eorem 9.0.4. LetL be a Cameron-Liebler line set in AG(3, q) with parameter x, then the following
equation holds:

x(x− 1) ≡ 0 mod 2(q + 1).

We also found a non-trivial Cameron-Liebler line exampleLa in AG(3, q) with parameterx = q2−1
2 .

�is example could be derived from a non-trivial Cameron-Liebler line example Lp in PG(3, q)
[31, 58], since in this example, there is a (hyper)plane that contains no elements of Lp.
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10 Cameron-Liebler sets of generators in �nite
classical polar spaces

“ Isaac Newton zag een appel, en dacht ‘zie ik dat goed?’
Het is niet wat het is, het is wat je d’r mee doet. ”—Bart Peeters, Het is niet wat het is

�e results in this chapter are joint work with dr. Maarten De Boeck and appeared in [35].

10.1 Introduction

We investigate Cameron-Liebler sets in �nite classical polar spaces. �e �nite classical polar spaces
are the hyperbolic quadrics Q+(2d − 1, q), the parabolic quadrics Q(2d, q), the elliptic quadrics
Q−(2d+ 1, q), the Hermitian polar spaces H(2d− 1, q2) and H(2d, q2), and the symplectic polar
spaces W (2d − 1, q), with q a prime power. For more information on these polar spaces, we refer
to Section 1.5.

Here we study the sets of generators de�ned by the following de�nition, with A the incidence
matrix of points and generators. We call these sets degree one Cameron-Liebler sets.

De�nition 10.1.1. A degree one Cameron-Liebler set of generators in a �nite classical polar space
P is a set of generators in P , with characteristic vector χ such that χ ∈ im(AT ).

�is de�nition corresponds with the de�nition of Boolean degree one functions for generators in
polar spaces. In Section 8.2, we introduced Boolean degree one functions in projective spaces. Anal-
ogously, they can be de�ned in polar spaces, by replacing the set ∆k of k-spaces in PG(n, q), by
the set of generators in a polar space P . Similarly, for generators, their de�nition corresponds to
the fact that the corresponding characteristic vector lies in V0 ⊥ V1, which are eigenspaces of the
related association scheme. In [36], M. De Boeck, M. Rodgers, L. Storme and A. Švob introduced
Cameron-Liebler sets of generators in the �nite classical polar spaces. In this article, Cameron-
Liebler sets of generators in the polar spaces are de�ned by the disjointness-de�nition and the au-
thors give several equivalent de�nitions for these Cameron-Liebler sets. Note that this de�nition
is the polar-space-equivalent for the disjointness-de�nition in the projective context, see �eorem
8.1.6.3. Furthermore, this de�nition for polar spaces does not require that the parameter x is an
integer, but it is proved in [36, �eorem 4.8] that x ∈ N.

De�nition 10.1.2 ([36]). Let P be a �nite classical polar space with parameter e and rank d. A
set L of generators in P is a Cameron-Liebler set of generators in P , with parameter x, if and
only if for every generator π in P , the number of elements of L, disjoint from π, equals (x −
χ(π))q(

d−1
2 )+e(d−1).

Using association scheme notation we can interpret the previous de�nition as follows. �e char-
acteristic vector of a Cameron-Liebler set is contained in V0 ⊥ W , with W the eigenspace of the
disjointness matrixAd corresponding to a speci�c eigenvalue. It can be seen thatW always contains
V1, but it does not necessarily coincide with V1. Hence, for some polar spaces, Cameron-Liebler sets
and degree one Cameron-Liebler sets will coincide, but for others not.
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10 Cameron-Liebler sets of generators in �nite classical polar spaces

Type I Type II Type III
Q−(2d+ 1, q) Q+(2d− 1, q), d even Q(4n+ 2, q)
Q(2d, q), d even W (4n+ 1, q)

Q+(2d− 1, q), d odd
W (2d− 1, q), d even
H(2d− 1, q), q square
H(2d, q), q square

Table 10.1: �ree types of polar spaces

In this chapter, we consider three di�erent types of polar spaces, see Table 10.1. Type I and II
correspond with type I and II respectively, de�ned in [36], while type III corresponds with the
union of type III and IV in [36], as we handle the symplectic polar spaces W (4n+ 1, q), for both
q odd and q even, in the same way. De�nition 10.1.2 and De�nition 10.1.1 are equivalent for the
polar spaces of type I by [36, �eorem 3.7, �eorem 3.15]. For the polar spaces of type II , we can
consider the (degree one) Cameron-Liebler sets of one class of generators; we see that Cameron-
Liebler sets and degree one Cameron-Liebler sets coincide when we only consider one class (see
[36, �eorem 3.16]). For the polar spaces of type III , this equivalence no longer applies and for
these polar spaces, any degree one Cameron-Liebler set is also a regular Cameron-Liebler set, but
not vice versa.

In Table 10.2, we give an overview of properties that we will prove throughout this chapter. For this,
we distinguish between su�cient properties, necessary properties and characteristic properties or
de�nitions, for Cameron-Liebler sets and for degree one Cameron-Liebler sets for polar spaces of
type III . Note that a characteristic property is both necessary and su�cient. In the last column,
also the reference to the corresponding result is given.

Suppose in this table thatL is a set of generators in the polar spaceP of type III , with characteristic
vector χ. Suppose also that π is a generator in P , not necessarily in L.

Property CL degree one CL
χ ∈ V0 ⊥ V1. S C (�eorem 10.1.5)
∀π ∈ P, |{τ ∈ L|dim(τ ∩ π) = d− i− 1}| = (10.1), for 0 ≤ i < d S C (�eorem 10.2.1)
∀π ∈ P : |{τ ∈ L|τ ∩ π = ∅}| = (x− χ(π))q(

d
2). C N (�eorem 10.2.1)

χ− x
qd+1

j is an eigenvector of Ad with eigenvalue −q(
d
2). C N (Lemma 10.2.3.2)

If P admits a spread, then |L ∩ S| = x, ∀ spread S of P . C N (Lemma 10.2.3.3)

Table 10.2: Overview of the su�cient (S), necessary (N ) and characterising (C) properties.

Recall that Cameron-Liebler sets were originally introduced by a group-theoretical argument, see
Section 7.1. Note that for a polar space P , we cannot use Lemma 7.1.4 to �nd a group-theoretical
de�nition for degree one Cameron-Liebler sets of generators in P . �is follows from the fact that
the incidence matrix A does not have full row rank, see [23, �eorem 9.4.3].

In Section 10.1.1, we discuss several properties of the eigenvalues of the association scheme for
generators of �nite classical polar spaces. In Section 10.2, we give an overview of the equivalent
de�nitions and several properties of degree one Cameron-Liebler sets in polar spaces. In Section
10.3, we give an equivalent de�nition for Cameron-Liebler sets in the hyperbolic quadricsQ+(2d−
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10 Cameron-Liebler sets of generators in �nite classical polar spaces

1, q), d even. In Section 10.4, we prove some classi�cation results for degree one Cameron-Liebler
sets, in particular in the polar spaces W (5, q) and Q(6, q). We end this chapter with a new, non-
trivial example of a Cameron-Liebler set of planes in Q+(5, q), described in Section 10.5.

10.1.1 �e association scheme for generators in polar spaces

Let P be a �nite classical polar space of rank d and let Ω be its set of generators. �e relations Ri
on Ω are de�ned as follows: (π, π′) ∈ Ri if and only if dim(π ∩ π′) = d − i − 1, for generators
π, π′ ∈ Ω, with i = 0, ..., d. We de�ne Ai as the adjacency matrix of the relationRi. By the theory
of association schemes, we know that there is an orthogonal decomposition V0 ⊥ V1 ⊥ · · · ⊥ Vd of
RΩ in common eigenspaces of A0, A1, ..., Ad. Consider the distance one relation R1 and let Vj be
the eigenspace corresponding to the eigenvalue Pj1 from Lemma 10.1.3. Although there are several
association schemes linked to a polar space, in this chapter, we will refer to the association scheme
de�ned above as the association scheme of a polar space.

Lemma 10.1.3 ([110, �eorem 4.3.6]). In the association scheme of a polar space over Fq of rank
d and parameter e, the eigenvalue Pji of the relationRi corresponding to the subspace Vj is given by:

Pji =

min{j,d−i}∑
s=max{0,j−i}

(−1)j+s
[
j
s

] [
d− j

d− i− s

]
qe(i+s−j)+(j−s2 )+(i+s−j2 ).

.

Before we start with investigating the Cameron-Liebler sets of generators in �nite classical polar
spaces, we give an important lemma about the eigenvalues Pji.

Lemma 10.1.4. In the association scheme of polar spaces, the eigenvalue P1i of Ai corresponds only
with the eigenspace V1 for i 6= 0, that is, P1i 6= Pji,∀j 6= 1, except in the following cases.

1. �e hyperbolic quadrics Q+(2d − 1, q). Here P1i = Pd−1,i for i even, so P1i also corresponds
with Vd−1, for every relationRi, i even.

2. �e parabolic quadrics Q(4n+ 2, q) and the symplectic spaces W (4n+ 1, q). Here P1d = Pdd,
so P1d also corresponds with Vd for the disjointness relationRd.

Proof. We need to prove, given a �xed i 6= 0 and j 6= 1, that P1i 6= Pji, except for the two cases
described in the statement of the lemma. For j = 0 and for all i 6= 0, it is easy to calculate that
P1i 6= P0i, so we may suppose that j > 1.

For i = 1, we can directly compare the eigenvalues P11 and Pj1.

P11 = Pj1 ⇔
[
d− 1

1

]
qe − 1 =

[
d− j

1

]
qe −

[
j
1

]
⇔ −q + 1 + (qd−1 − 1)qe

q − 1
=
−qj + 1 + (qd−j − 1)qe

q − 1

⇔ (qd−j+e−1 + 1)(qj−1 − 1) = 0.

Since j > 1, the last equation gives a contradiction for any q.
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For i ≥ 2, we introduce φi(j) = max{k || qk|Pji}, the exponent of q in Pji. If Pji = 0, we put
φi(j) = ∞. We will show that φi(j) is di�erent from φi(1) for most values of i and j. For j = 1,
we �nd that

P1i = −
[
d− 1
d− i

]
q(
i−1
2 )+e(i−1) +

[
d− 1
i

]
q(

i
2)+ei = q(

i−1
2 )+e(i−1)

([
d− 1

i

]
qi−1+e −

[
d− 1

i− 1

])
.

We can see that φi(1) =
(
i−1

2

)
+e(i−1), since i−1+e ≥ 1 and

[
a
b

]
= 1 (mod q) for all 0 ≤ b ≤ a.

In Lemma 10.1.3, we see that φi(j) depends on the last factor of every term in the sum. To �nd
φi(j), we �rst need to �nd all integer values z such that qe(i+z−j)+(j−z2 )+(i+z−j2 ) is a factor of every
term in the sum, or equivalently, such that fji : Z → Z : s 7→ e(i + s − j) +

(
j−s

2

)
+
(
i+s−j

2

)
reaches its minimum for such a value z. So for most cases, we have that φi(j) = fij(z), but in some
cases it occurs that two values of z correspond with opposite terms with factor qφi(j). �ese cases,
we have to investigate separately.
We can check that z is the unique integer or one of two integers in [max{0, j−i}, . . . ,min{j, d−i}]
closest to j − i

2 −
e
2 . Since i ≥ 2, we have three possibilities for the value of z, as we always have

j − i ≤ j − i
2 −

e
2 < j:

• z = 0 if j − i
2 −

e
2 < 0,

• z ∈ {j − i
2 −

e
2 , j −

i
2 −

e
2 ±

1
2} if 0 ≤ j − i

2 −
e
2 ≤ d− i,

• z = d− i if j − i
2 −

e
2 > d− i.

Now we handle these three cases.

• If j − i
2 −

e
2 < 0, we see that fji is minimal for the integer z = 0.

We note that in this case there is only 1 value of s, namely 0, for which the corresponding
term is divisible by qφi(j) but not by qφi(j)+1. �is is important to exclude the case where 2
terms with factor qφi(j) would be each others opposite.

We �nd that φi(j) = fji(0) =
(
i
2

)
+ (j − i)(j − e), and since φi(1) =

(
i−1

2

)
+ e(i− 1), the

values φi(j) and φi(1) are equal if and only if j = 1 ∨ j = i+ e− 1. We only have to check
the la�er case, and recall that j − i

2 −
e
2 < 0. It follows that i+ e < 2, a contradiction since

we supposed i ≥ 2.

• If 0 ≤ j − i
2 −

e
2 ≤ d− i, we see that fji is minimal for the integer z closest to j − i

2 −
e
2 .

In Table 10.3, we list the di�erent cases depending on e and the parity of i. Note that we have
to check, for e = 0, i odd, for e = 1, i even, and for e = 2, i odd, that the two values of z
do not correspond with two opposite terms with factor qφi(j). By calculating and taking into
account the conditions 0 ≤ j− i

2 −
e
2 ≤ d− i, we �nd out that those cases do not correspond

with two opposite terms, except in the following cases:

– e = 0, j = d
2 and i odd,

– e = 1, j = d
2 + 1, i = d

2 and i even,

– e = 2, j = d
2 + 2, i = d

2 and i odd.

In these cases, Pij = 0, so φi(j) =∞ 6= φi(1).

Moreover, for every e, i and j > 1, φi(j) = fij(z) is independent of j, see the ��h column
in Table 10.3. In the last column, we give the values of i for which φi(j) = φi(1). As we
supposed i ≥ 2, we see that we have to check the eigenvalues for i = 2 if e ∈ {0, 1

2 , 1} and
for i = 3 if e = 0 in detail.



e i z φi(j) = fji(z) φi(1) S

Q+(2d− 1, q)

0
even j − i

2
i(i−2)

4
(i−1)(i−2)

2 {2}

odd j − i
2 ±

1
2

{
(i−1)2

4 if j 6= d
2

∞ if j = d
2

(i−1)(i−2)
2 {3}

H(2d− 1, q), with q square

1
2

even j − i
2

i(i−1)
4

(i−1)2

2 {2}

odd j − i
2 −

1
2

i(i−1)
4

(i−1)2

2 ∅

Q(2d, q), W (2d− 1, q), with d 6≡ 0 mod 4

1
even j − i

2 −
1
2 ±

1
2

i2

4
i(i−1)

2 {2}

odd j − i
2 −

1
2

i2−1
4

i(i−1)
2 ∅

Q(2d, q), W (2d− 1, q), with d ≡ 0 mod 4

1

even, i 6= d
2 j − i

2 −
1
2 ±

1
2

i2

4
i(i−1)

2 {2}

i = d
2 j − i

2 −
1
2 ±

1
2

{
∞ if j = d

2 + 1
i2

4 else
i(i−1)

2 {2}

odd j − i
2 −

1
2

i2−1
4

i(i−1)
2 ∅

H(2d, q), with q square

3
2

even j − i
2 − 1 (i−1)(i+2)

4
i2−1

2 ∅

odd j − i
2 −

1
2

(i−1)(i+2)
4

i2−1
2 ∅

Q−(2d+ 1, q), with d 6≡ 2 mod 4

2
even j − i

2 − 1 i2

4 + i
2 − 1 (i−1)(i+2)

2 ∅

odd j − i
2 − 1± 1

2
(i−1)(i+3)

4
(i−1)(i+2)

2 ∅

Q−(2d+ 1, q), with d ≡ 2 mod 4

2

even j − i
2 − 1 i2

4 + i
2 − 1 (i−1)(i+2)

2 ∅

odd, i 6= d
2 j − i

2 − 1± 1
2

(i−1)(i+3)
4

(i−1)(i+2)
2 ∅

i = d
2 j − i

2 − 1± 1
2

{
∞ if j = d

2 + 2
(i−1)(i+3)

4 else
(i−1)(i+2)

2 ∅

Table 10.3: For 0 ≤ j − i
2 −

e
2 ≤ d− i, with S = {i ≥ 2 | φi(j) = φi(1)}.
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– Case i = 2 and e ∈ {0, 1
2 , 1}:

P12 = Pj2

⇔ −
[
d− 1

1

]
qe +

[
d− 1

2

]
q1+2e =

[
j
2

]
q −

[
d− j

1

] [
j
1

]
qe +

[
d− j

2

]
q1+2e

⇔
([
d− 1

2

]
−
[
d− j

2

])
q2e +

[
d− j − 1

1

][
j − 1

1

]
qe =

[
j
2

]
.

For e = 1
2 and e = 1, we see that the right and le� hand side of the last equation are di�erent

modulo q, since j > 1. So we can assume e = 0.

P12 = Pj2

⇔ (qd−1 − 1)(qd−2 − 1)

(q2 − 1)(q − 1)
− (qd−j − 1)(qd−j−1 − 1)

(q2 − 1)(q − 1)
+

(qd−j−1 − 1)(qj−1 − 1)

(q − 1)(q − 1)

=
(qj − 1)(qj−1 − 1)

(q2 − 1)(q − 1)

⇔ q2d−3 − q2d−2j−1 + q − q2j−1 = 0

⇔ q(q2j−2 − 1)(q2(d−j−1) − 1) = 0.

Since j > 1, we see that P12 = Pj2 if and only if j = d − 1. �is corresponds with the �rst
exception in the lemma with i = 2.

– Case i = 3 and e = 0.

P13 = Pj3

⇔ −
[
d− 1

2

]
q +

[
d− 1

3

]
q3 = −

[
j
3

]
q3 +

[
j
2

] [
d− j

1

]
q −

[
j
1

] [
d− j

2

]
q +

[
d− j

3

]
q3

⇔ −
[
d− 1

2

]
+

[
d− 1

3

]
q2 = −

[
j
3

]
q2 +

[
j
2

] [
d− j

1

]
−
[
j
1

] [
d− j

2

]
+

[
d− j

3

]
q2.

Since the right and le� hand side of the last equation are di�erent modulo q, we see that P13 6=
Pj3 for j > 1. Recall that

[
a
b

]
= 1 (mod q).

• If j − i
2 −

e
2 > d − i, we see that fji is minimal for the integer z = d − i. Remark again

that there is only one value of s for which the corresponding term is divisible by qφi(j) but
not by qφi(j)+1. �is excludes the case where 2 terms with factor qφi(j) would be each others
opposite.

We �nd that φi(j) = fji(d− i) = (j − e− d+ 1)(j − d+ i− 1) +
(
i−1

2

)
+ e(i− 1), and we

know that φi(1) =
(
i−1

2

)
+ e(i− 1). �ese two values φi(j) and φi(1) are equal if and only

if j = e+ d− 1 or j = d− i+ 1.

– Suppose j = d+ e− 1. As j, d ∈ Z, we know that e ∈ Z. If e = 2, then j = d+ 1 > d,
a contradiction. For e = 1, we �nd that P1i = Pdi if and only if i = d and d odd. �is
corresponds to the polar spacesQ(4n+2, q) andW (4n+1, q). For e = 0 and j = d−1,
we �nd that P1i = Pd−1,i for i even. �is corresponds to the exception for the polar
spaces Q+(2d− 1, q) and i even.

– Suppose j = d− i+ 1. Since j − i
2 −

e
2 > d− i, we know that i+ e < 2, which gives

a contradiction as we supposed i ≥ 2. �

We continue with well-known theorems, linked to the Bose-Mesner algebra of the association
scheme, that will be useful in the following sections (see Result 1.9.3). �e �rst theorem follows
from [36, �eorem 2.14].
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�eorem 10.1.5. Let P be a �nite classical polar space of rank d and parameter e, and let Ω be the
set of all generators of P . Consider the eigenspace decomposition RΩ = V0 ⊥ V1 ⊥ · · · ⊥ Vd related
to the association scheme, and using the classical order. Let A be the point-generator incidence matrix
of P , then im(AT ) = V0 ⊥ V1 and V0 = 〈j〉.

�e following theorem was already proved in [40, Proposition 3.7] from a di�erent point of view.
�e ideas are already present in [2, Lemma 2] and [110, Lemma 2.1.3]. For the sake of completeness,
we add a proof below.

�eorem 10.1.6. Let Ri be a relation of an association scheme on the set Ω with adjacency matrix
Ai and let L ⊆ Ω be a set, with characteristic vector χ, such that for any π ∈ Ω, we have that

|{x ∈ L|(x, π) ∈ Ri}| =

{
αi if π ∈ L
βi if π /∈ L.

�en αi − βi = P is an eigenvalue of Ai and vi = χ+ βi
P−P0i

j ∈ V with V the eigenspace of Ai for
the eigenvalue P .

�e eigenspace V in the previous theorem can be seen as the direct sum of several eigenspaces of
the association scheme. Note that an association scheme is not necessary in this theorem, a regular
relation su�ces. Furthermore, the set L, described in this theorem, is an intriguing set in the graph
Γ = (Ω,Ri), see De�nition 1.7.7.

Proof. We show that vi = χ+ βi
P−P0i

j, with P = αi − βi is an eigenvector for the matrix Ai with
eigenvalue P :

Ai

(
χ+

βi
P − P0i

j
)

= αiχ+ βi(j− χ) +
βi

P − P0i
P0ij

= P

(
χ+

βi
P − P0i

j
)
.

So we �nd that χ+ βi
P−P0i

j ∈ V . �

10.2 Degree one Cameron-Liebler sets

In this section, we investigate the degree one Cameron-Liebler sets and give an equivalent de�ni-
tion. Every degree one Cameron-Liebler set L has a parameter x, which can be de�ned as

x =
|L|∏d−2

i=0 (qe+i + 1)
.

For now it is clear that x ∈ Q, but, in Lemma 10.4.1 we will prove that x ∈ N.

Using Lemma 10.1.4 and �eorem 10.1.6, we can give a new equivalent de�nition for these degree
one Cameron-Liebler sets of generators in polar spaces. �e following theorem is an extension of
Lemma 4.9 in [36].

�eorem 10.2.1. Let P be a �nite classical polar space, of rank d with parameter e, let L be a set
of generators of P and i be an integer with 1 ≤ i ≤ d. If L is a degree one Cameron-Liebler set
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of generators in P , with parameter x, then the number of elements of L meeting a generator π in a
(d− i− 1)-space equals

(
(x− 1)

[
d− 1
i− 1

]
+ qi+e−1

[
d− 1
i

])
q(
i−1
2 )+(i−1)e if π ∈ L

x

[
d− 1
i− 1

]
q(
i−1
2 )+(i−1)e if π /∈ L.

(10.1)

Moreover, if this property holds for a polar space P and an integer i such that

• i is odd for P = Q+(2d− 1, q),

• i 6= d for P = Q(2d, q) or P = W (2d− 1, q) both with d odd or

• i is arbitrary otherwise,

then L is a degree one Cameron-Liebler set with parameter x.

Proof. Consider �rst a degree one Cameron-Liebler set L of generators in the polar space P with
characteristic vector χ. As χ ∈ V0 ⊥ V1, we have χ = v + aj for some v ∈ V1 and some a ∈ R.
Since |L| = 〈j, χ〉 = x

∏d−2
i=0 (qi+e + 1), we �nd that a = x

qd+e−1+1
, hence χ = x

qd+e−1+1
j + v.

Recall that the matrix Ai is the incidence matrix of the relation Ri, which describes whether the
dimension of the intersection of two generators equals d− i−1 or not. �is implies that the vector
Aiχ, on the position corresponding to a generator π, gives the number of generators in L, meeting
π in a (d− i− 1)-space. We have

Aiχ = Aiv +
x

qd+e−1 + 1
Aij = P1iv +

x

qd+e−1 + 1
P0ij

=

([
d− 1
i

]
q(

i
2)+ei −

[
d− 1
i− 1

]
q(
i−1
2 )+e(i−1)

)
v +

x

qd+e−1 + 1

[
d
i

]
q(

i
2)+eij

=

([
d− 1
i

]
q(

i
2)+ei −

[
d− 1
i− 1

]
q(
i−1
2 )+e(i−1)

)(
χ− x

qd+e−1 + 1
j
)

+
x

qd+e−1 + 1

[
d
i

]
q(

i
2)+eij

=
xq(

i−1
2 )+e(i−1)

qd+e−1 + 1

([
d− 1
i− 1

]
−
[
d− 1
i

]
qi+e−1 +

[
d
i

]
qi+e−1

)
j

+ q(
i−1
2 )+e(i−1)

([
d− 1
i

]
qi+e−1 −

[
d− 1
i− 1

])
χ

= q(
i−1
2 )+e(i−1)

(
x

[
d− 1
i− 1

]
j +

([
d− 1
i

]
qi+e−1 −

[
d− 1
i− 1

])
χ

)
,

which proves the �rst implication.
For the proof of the other implication, suppose that L is a set of generators in P with the property
described in the statement of the theorem. We apply �eorem 10.1.6 with Ω the set of all generators
in P ,Ri the relation {(π, π′)| dim(π ∩ π′) = d− i− 1}, and

αi =

(
(x− 1)

[
d− 1
i− 1

]
+ qi+e−1

[
d− 1
i

])
q(
i−1
2 )+(i−1)e,

βi = x

[
d− 1
i− 1

]
q(
i−1
2 )+(i−1)e.

As αi − βi = P1i, we �nd that vi = χ + βi
P1i−P0i

j ∈ V1, for the admissible values of i, by Lemma
10.1.4. Hence, by De�nition 10.1.1, L is a degree one Cameron-Liebler set in P . �
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Remark 10.2.2. �is de�nition is also a new equivalent de�nition for Cameron-Liebler sets of gen-
erators in polar spaces of type I , as for these polar spaces, degree one Cameron-Liebler sets and
Cameron-Liebler sets coincide.

In the following lemma, we give some properties of degree one Cameron-Liebler sets in a polar
space.

Lemma 10.2.3. Let L be a degree one Cameron-Liebler set of generators in a polar space P and let χ
be the characteristic vector of L. Denote |L|∏d−2

i=0 (qe+i+1)
again by x. �en L has the following properties:

1. χ = x
qd+e−1+1

j + v with v ∈ V1,

2. χ − x
qd+e−1+1

j is an eigenvector with eigenvalue P1i for all adjacency matrices Ai in the asso-
ciation scheme,

3. if P admits a spread, then |L ∩ S| = x for every spread S of P .

Proof. �e �rst property follows from the �rst part of the proof of �eorem 10.2.1. �e second
property follows from the �rst property since χ− x

qd+e−1+1
j ∈ V1.

Consider now a spread S in P with characteristic vector χS and let A be the point-generator inci-
dence matrix of P . Since χ ∈ im(AT ) = ker(A)⊥ and by [36, Lemma 3.6(i), m = 1], which gives
that u = χS − 1∏d−2

i=0 (qe+i+1)
j ∈ ker(A), we �nd, by taking the inner product of u and χ, that

|L ∩ S| = 〈χS , χ〉 =
1∏d−2

i=0 (qe+i + 1)
〈j, χ〉 =

1∏d−2
i=0 (qe+i + 1)

|L| = x.

�

We also give some properties of degree one Cameron-Liebler sets of generators in polar spaces that
can easily be proved. �ey are similar to the properties for Cameron-Liebler sets of k-spaces in
PG(n, q), see Lemma 8.3.1.

Lemma 10.2.4. Let L and L′ be two degree one Cameron-Liebler sets of generators in a polar space
P with parameters x and x′ respectively, then the following statements are valid.

1. 0 ≤ x, x′ ≤ qd−1+e + 1.

2. |L| = x
∏d−2
i=0 (qi+e + 1).

3. �e set of all generators in the polar space P not in L is a degree one Cameron-Liebler set of
generators in P with parameter qd−1+e + 1− x.

4. IfL∩L′ = ∅, thenL∪L′ is a degree one Cameron-Liebler set of generators inP with parameter
x+ x′.

5. If L ⊆ L′, then L \ L′ is a degree one Cameron-Liebler set of generators in P with parameter
x− x′.

Lemma 10.2.5 ([59, Lemma 2.3]). Let P be a polar space of rank d and let P ′ be a polar space,
embedded inP with the same rank d. IfL is a degree one Cameron-Liebler set inP , then the restriction
of L to P ′ is again a degree one Cameron-Liebler set.
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Note that �eorem 10.2.1 does not hold for some values of i, dependent on the polar space P ,
since for these cases, we cannot apply Lemma 10.1.4. We will now show that there are examples of
generator sets that admit the property of �eorem 10.2.1 for the non-admi�ed values of i, but that
are not degree one Cameron-Liebler sets. �ese are however Cameron-Liebler sets in the sense of
[36].

Example 10.2.6. By investigating [36, Example 4.6], we �nd an example of a Cameron-Liebler set
in a polar space of type III with d = 3, that is not a degree one Cameron-Liebler set: a base-plane. A
base-plane in a polar space P of rank 3 with base the plane π is the set of all planes in P , intersecting
π in at least a line.

Let P be a polar space of type III of rank 3, so P = W (5, q) or P = Q(6, q). Let π be a plane and
let L be the base-plane with base π. �is set L is a Cameron-Liebler set in P , but not a degree one
Cameron-Liebler set. �is follows from �eorem 10.2.1 with i = 1: �e number of generators of L,
meeting a plane α of L in a line, depends on whether α equals π or not. As those two numbers, for
α = π and α 6= π are di�erent, the property in �eorem 10.2.1 does not hold. �is implies that the set
L is not a degree one Cameron-Liebler set. By similar arguments, we can also use �eorem 10.2.1 with
i = 2, to show that a base-plane is not a degree one Cameron-Liebler set. However, the equalities for
i = 3 in �eorem 10.2.1 hold.

Example 10.2.7. A hyperbolic class is the set of all generators of one class of a hyperbolic quadric
Q+(4n + 1, q) embedded in a polar space P with P = Q(4n + 2, q) or P = W (4n + 1, q), q even.
We know that this set is a Cameron-Liebler set, see [36, Remark 3.25], but we can prove that this set
is not a degree one Cameron-Liebler set, by considering im(BT ), where B is the incidence matrix of
hyperbolic classes and generators. Every hyperbolic class corresponds to a row in the matrix B. If the
characteristic vectors of all hyperbolic classes would lie in V0 ⊥ V1, then im(BT ) ⊆ V0 ⊥ V1. �is
gives a contradiction since im(BT ) = V0 ⊥ V1 ⊥ Vd by [36, Lemma 3.26].
Note that for the polar spaces W (4n + 1, q), q odd, we do not have Example 10.2.7, as there is no
hyperbolic quadric Q+(4n+ 1, q) embedded in these symplectic polar spaces.

In the previous remark, we found that one class of a hyperbolic quadric Q+(4n + 1, q) embedded
in a Q(4n + 2, q) or W (4n + 1, q), q even, is not a degree one Cameron-Liebler set. In the next
example, we show that an embedded hyperbolic quadric, that is, taking both hyperbolic classes, is
a degree one Cameron-Liebler set in the polar spaces Q(4n+ 2, q) and W (4n+ 1, q), q even.

Example 10.2.8 ([36, Example 4.4]). Consider a polar space P , with P = Q(4n + 2, q) or P =
W (4n+1, q), q even. By Lemma 10.2.5, we know that the set of generators in an embedded hyperbolic
quadric Q+(4n+ 1, q) is a degree one Cameron-Liebler set, and hence, also a Cameron-Liebler set.

Example CL degree one CL
All generators of P . × ×
Point-pencil. × ×
Base-plane for d = 3 (de�ned in Example 10.2.6). ×
Hyperbolic class (de�ned in Example 10.2.7). ×
Embedded hyperbolic quadric (de�ned in Example 10.2.8). × ×

Table 10.4: Examples of Cameron-Liebler and degree one Cameron-Liebler sets.
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10.3 Polar spaces Q+(2d− 1, q), d even

In the previous section, we introduced degree one Cameron-Liebler sets while in this section we
consider Cameron-Liebler sets de�ned with the ‘disjointness-de�nition’ (De�nition 10.1.2). We fo-
cus on Cameron-Liebler sets contained in one class of generators in the polar spacesQ+(2d−1, q),
d even. �ese Cameron-Liebler sets were introduced in [36, Section 3] and are de�ned in only one
class of generators, in contrast to the (degree one) Cameron-Liebler sets in other polar spaces.

Recall, from Example 1.5.6, that the generators of a hyperbolic quadricQ+(2d−1, q) can be divided
in two classes such that for any two generators π and π′ we have dim(π ∩ π′) ≡ 1 (mod 2) if and
only if π and π′ belong to the same class. By restricting the classical association scheme of the
hyperbolic quadric Q+(2d − 1, q) to the even relations, we de�ne an association scheme for one
class of generators. For more information, see [36, Remark 2.18 and Lemma 3.12]. Let R′i and A′i
beR2i andA2i respectively, restricted to the rows and columns corresponding to the generators of
this class. Let V ′j be Vj ⊥ Vd−j , also restricted to the subspace corresponding to these generators.

For the polar spaces Q+(2d − 1, q), d even, we thus have the relations R′i, i = 0, . . . , d2 , and the
eigenspaces V ′j , j = 0, . . . , d2 . For this association scheme on one class of generators, we give the
analogue of Lemma 10.1.4.

Lemma 10.3.1. �e eigenvalue P1,2i of A′i = A2i corresponds only with the eigenspace V ′1 = V1 ⊥
Vd−1 for the classical polar spaces Q+(2d− 1, q), d even.

Proof. �is lemma follows from Lemma 10.1.4 as for the hyperbolic quadrics Q+(2d − 1, q) we
found that P1k = Pd−1,k for k even. �is implies that the eigenvalue P1,2i corresponds with V1 ⊥
Vd−1. �

Here again, we �nd a new equivalent de�nition.

�eorem 10.3.2. Let G be a class of generators of the hyperbolic quadric Q+(2d− 1, q) of even rank
d and let L be a set of generators of G. �e set L is a Cameron-Liebler set of generators in G if and
only if for every generator π in G, the number of elements ofLmeeting π in a (d−2i−1)-space equals


(

(x− 1)

[
d− 1
2i− 1

]
+ q2i−1

[
d− 1

2i

])
q(2i−1)(i−1) if π ∈ L

x

[
d− 1
2i− 1

]
q(2i−1)(i−1) if π /∈ L.

Proof. Let L be a set of generators in G with the property described in the theorem, then the �rst
implication is a direct application of �eorem 10.1.6 with Ω the set of all generators in G, Ri the
relation R′i = {(π, π′)|dim(π ∩ π′) = d− 2i− 1}, and

αi =

(
(x− 1)

[
d− 1
2i− 1

]
+ q2i−1

[
d− 1

2i

])
q(2i−1)(i−1),

βi = x

[
d− 1
2i− 1

]
q(2i−1)(i−1).

As αi−βi = P1,2i, we �nd that vi = χ+ βi
P1,2i−P0,2i

j ∈ V ′1 , hence χ ∈ V ′0 ⊥ V ′1 and, by [36, Lemma
3.15], we know that χ ∈ im(AT ). Now it follows from [36, De�nition 3.16(iv)] that L is a (degree
one) Cameron-Liebler set of G. �e other implication is [36, Lemma 4.10]. �
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10.4 Classi�cation results

We try to use the ideas from the classi�cation results for Cameron-Liebler sets of polar spaces of
type I and the polar spaces Q+(2d − 1, q), d even, in [36, Section 6], to �nd classi�cation results
for degree one Cameron-Liebler sets in polar spaces.
We start with a lemma that proves that the parameter x is always an integer.

Recall from the �rst part of this thesis that an Erdős-Ko-Rado (EKR) set of k-spaces is a set of
k-spaces which are pairwise not disjoint (see Chapter 2).

Lemma 10.4.1. If L is a degree one Cameron-Liebler set in a polar space P with parameter x, then
x ∈ N.

Proof. For all polar spaces, except the hyperbolic quadrics Q+(2d − 1, q), d even, we refer to [36,
Lemma 4.8].

Suppose that L is a degree one Cameron-Liebler set in P = Q+(2d− 1, q), d even, with parameter
x. �en L is also a Cameron-Liebler set in P with parameter x. If Ω1 and Ω2 are the two classes of
generators in P , then L∩Ω1 and L∩Ω2 are Cameron-Liebler sets of Ω1 and Ω2 with parameter x,
by [36, �eorem 3.20]. Hence, x is the parameter of a Cameron-Liebler set in one class of generators
of Q+(2d− 1, q), d even. �is implies, by [36, Lemma 4.8], that x ∈ N. �

Now we continue with a classi�cation result for degree one Cameron-Liebler sets with parameter
1 in all polar spaces.

�eorem 10.4.2. A degree one Cameron-Liebler set in a polar space P of rank d with parameter 1 is
a point-pencil.

Proof. For the polar spaces of type I and III , the theorem follows from [36, �eorem 6.4] as any
degree one Cameron-Liebler set is a Cameron-Liebler set and since a base-plane and a hyperbolic
class, are no degree one Cameron-Liebler sets (see Remark 10.2.6 and Remark 10.2.7).

Let L be a degree one Cameron-Liebler set with parameter 1 in a polar space P of type II . �en,
P is the hyperbolic quadric Q+(4n − 1, q) with Ω1 and Ω2 the two classes of generators. By [36,
�eorem 3.20], we know that L ∩ Ω1 and L ∩ Ω2 are Cameron-Liebler sets in Ω1,Ω2 respectively,
with parameter 1. Using [36, �eorem 6.4], we see that L ∩ Ωi is a point-pencil or a base-solid if
n = 2 for i = 1, 2. A base-solid is the set of all 3-spaces intersecting a �xed 3-space (the base) in
precisely a plane. Note that all elements of the base-solid belong to a di�erent class of the hyperbolic
quadric than the base itself.

If n = 2, so d = 4, and L ∩ Ω1 or L ∩ Ω2 is a base-solid with base π, then there are at least
(q+1)(q2 +1) elements of Lmeeting π in a plane. �is contradicts �eorem 10.2.1, whether π ∈ L
or not. So we �nd, for all n ≥ 1, that L∩Ω1 and L∩Ω2 are both point-pencils with vertex v1 and
v2 respectively. Now we show that v1 = v2. Suppose v1 6= v2. Consider a generator α ∈ Ω2 \ L
through v1. �en α intersects θd−2 generators of L∩Ω1 in a (d−2)-space through v1. �is gives a
contradiction with �eorem 10.2.1, which proves that v1 = v2. Hence, L is a point-pencil through
v1 = v2. �

�e classi�cation result in [36, �eorem 6.7] for polar spaces of type I is also valid for degree one
Cameron-Liebler sets in all polar spaces.
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�eorem 10.4.3. Let P be a �nite classical polar space of rank d and parameter e, and let L be a
degree one Cameron-Liebler set of P with parameter x. If x ≤ qe−1 + 1, then L is the union of x
point-pencils whose vertices are pairwise non-collinear or x = qe−1 + 1 and L is the set of generators
in an embedded polar space of rank d and with parameter e− 1.

Proof. In Lemma 6.5, �eorem 6.6 and �eorem 6.7 of [36], the authors use [36, Lemma 4.9] to
prove the classi�cation result. We can use the same proof since we can apply �eorem 10.2.1 instead
of [36, Lemma 4.9]. �

Note that the last possibility corresponds to an embedded hyperbolic quadric Q+(2d − 1, q) if
P = Q(2d, q) or P = W (2d − 1, q) with q even. For P = H(2d, q), the Hermitian variety
H(2d − 1, q) can be embedded, and for P = Q−(2d + 1, q), the parabolic quadric Q(2d, q) and,
for q even W (2d − 1, q), can be embedded. If P = W (4n + 1, q) with q odd, then P admits no
embedded polar space with rank n and parameter e− 1 = 0.

For the symplectic polar space W (5, q) and the parabolic quadric Q(6, q), we give a stronger clas-
si�cation result. Recall that the polar spaces W (5, q) and Q(6, q) are isomorphic for q even, see
Remark 1.5.7. We start with some lemmas.

Lemma 10.4.4. LetL be a degree one Cameron-Liebler set of generators (planes) inW (5, q) orQ(6, q)
with parameter x.

1. For every π ∈ L, there are s1 elements of L meeting π (including π).

2. For skew π, π′ ∈ L, there exist exactly d2 subspaces in L that are skew to both π and π′ and
there exist s2 subspaces in L that meet both π and π′.

Here, d2, s1 and s2 are given by:

d2(q, x) = (x− 2)q2(q − 1)

s1(q, x) = x(q2 + 1)(q + 1)− (x− 1)q3 = q3 + x(q2 + q + 1)

s2(q, x) = x(q2 + 1)(q + 1)− 2(x− 1)q3 + d2(q, x).

Proof. Let P be the polar space W (5, q) or Q(6, q), hence d = 3 and e = 1.

1. �is follows directly from �eorem 10.2.1, for i = d and |L| = x(q2 + 1)(q + 1).

2. Let χπ and χπ′ be the characteristic vectors of {π} and {π′}, respectively. Let Z be the set
of all planes in P disjoint from π and π′, and let χZ be its characteristic vector. Furthermore,
let vπ and vπ′ be the incidence vectors of π and π′, respectively, with their positions corre-
sponding to the points of P . Note that Aχπ = vπ and Aχπ′ = vπ′ .
�e number of planes through a point P /∈ π ∪ π′ and disjoint from π and π′ is the number
of lines in P⊥, disjoint from the lines corresponding to π and π′. By [80, Corollary 19], this
number equals q2(q − 1), and we �nd:

AχZ = q2(q − 1)(j− vπ − vπ′)

= q2(q − 1)

(
A

j
(q2 + 1)(q + 1)

−Aχπ −Aχπ′
)

⇔ χZ − q2(q − 1)

(
j

(q2 + 1)(q + 1)
− χπ − χπ′

)
∈ ker(A).
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We know that the characteristic vector χ of L is included in ker(A)⊥. �is implies:

χZ · χ = q2(q − 1)

(
j · χ

(q2 + 1)(q + 1)
− χ(π)− χ(π′)

)
⇔ |Z ∩ L| = (x− 2)q2(q − 1)

which gives the formula for d2(q, x). �e formula for s2(q, x) follows from the inclusion-
exclusion principle. �

In the following lemma, corollary and theorem, we will use s1, s2, d2 to denote the values s1(q, x),
s2(q, x), d2(q, x) if the �eld size q and the parameter x are clear from the context. For the de�nition
of these values, we refer to the previous lemma.

�e following lemma is a generalization of Lemma 2.4 in [93]. Note that we used a similar lemma
to �nd classi�cation results in the projective context, see Lemma 8.3.6.

Lemma 10.4.5. If c is a non-negative integer such that

(c+ 1)s1 −
(
c+ 1

2

)
s2 > x(q2 + 1)(q + 1) ,

then no degree one Cameron-Liebler set of generators inW (5, q) orQ(6, q) with parameter x contains
c+ 1 mutually skew generators.

Proof. Let P be the polar space W (5, q) or Q(6, q) and assume that P has a degree one Cameron-
Liebler set L of generators with parameter x that contains c + 1 mutually disjoint subspaces
π0, π1, . . . , πc. Lemma 10.4.4 shows that πi, meets at least s1(q, x) − i · s2(q, x) elements of L
that are skew to π0, π1, . . . , πi−1. Hence, x(q2 + 1)(q + 1) = |L| ≥ (c + 1)s1 −

∑c
i=0 is2 which

contradicts the assumption. �

Corollary 10.4.6. A degree one Cameron-Liebler set of generators in W (5, q) or Q(6, q) with pa-
rameter 2 ≤ x ≤ 3

√
2q2 −

3√4q
3 + 1

6 contains at most x pairwise disjoint generators.

Proof. Let L be a degree one Cameron-Liebler set of generators inW (5, q) orQ(6, q) with parame-
ter x. Using Lemma 10.4.5 for e = 1, d = 3, c = x, we �nd that if q3−q2x+ q+1

2 x2− q+1
2 x3 > 0, then

L contains at most x pairwise disjoint generators. Since fq(x) = q3−q2x− q+1
2 x2(x−1) is decreas-

ing on [1,+∞[, we �nd that it is su�cient that fq
(

3
√

2q2 −
3√4q
3 + 1

6

)
> 0, as we only consider

the values of x in
[
2, . . . , 3

√
2q2 −

3√4q
3 + 1

6

]
. It can be checked that fq

(
3
√

2q2 −
3√4q
3 + 1

6

)
> 0

for all q ≥ 2. �

�eorem 10.4.7. A degree one Cameron-Liebler set L of generators in W (5, q) or Q(6, q) with
parameter 2 ≤ x ≤ 3

√
2q2−

3√4q
3 + 1

6 is the union of α embedded hyperbolic quadrics Q+(5, q), that
pairwise have no plane in common, and x−2α point-pencils whose vertices are pairwise non-collinear
and not contained in the α hyperbolic quadrics Q+(5, q). For the polar space Q(6, q) or W (5, q) with
q even, α ∈ {0, ..., bx2 c}, for the polar space W (5, q) with q odd, α = 0.

Proof. LetP be the polar spaceW (5, q) orQ(6, q) andL be a degree one Cameron-Liebler set inP .
Note that the generators in these polar spaces are planes. By Corollary 10.4.6, there are c pairwise
disjoint planes π1, π2, . . . , πc, with c ≤ x, in L. Let Si be the set of planes in L intersecting πi and
not intersecting πj for all j 6= i. By Lemma 10.4.4, there are, for a �xed i, at least s1 − (c− 1)s2 ≥
s1− (x− 1)s2 = q3− (x− 2)q2− (x2− 2x)(q+ 1) planes in Si. As Si is an EKR set by Corollary
10.4.6, Si has to be a part of a point-pencil (PP), a base plane (BP) or one class of an embedded
hyperbolic quadric Q+(5, q) (CEHQ). Note that if P is W (5, q), with q odd, then P cannot contain
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a CEHQ, so for this polar space, the only possibilities are a PP or BP, by [33, �eorem 4.9 and 4.17].
Using �eorem 10.2.1, we can prove that if the set Si is a part of a PP, BP or CEHQ, then L has to
contain all planes of this PP, BP or CEHQ. We show this for the case where the set of planes forms
a part of a PP. So assume Si is a subset of the point-pencil with vertex P , and there is a plane γ /∈ L
through P . �is would imply that γ meets at least q3 − (x− 2)q2 − (x2 − 2x)(q + 1) planes in L
non-trivially. �is gives a contradiction by �eorem 10.2.1 for i = 1 and i = 2, as γ /∈ L intersects
precisely x(q2 + q + 1) < q3 − (x− 2)q2 − (x2 − 2x)(q + 1) planes of L in a point or in a line.
�is argument also works for the BP and CEHQ, so we can conclude that if L contains an Si which
is a part of a PP, BP or CEHQ, then L has to contain the whole PP, BP or CEHQ respectively, which
we will call Li.

Remark �rst that L cannot contain a BP with base π as then π ∈ L intersects q3 + q2 + q >
q2 + q + x− 1 planes of L in a line, which gives a contradiction with �eorem 10.2.1. �is implies
that all sets Li are PP’s or CEHQ’s. Now we show that every two sets of planes Li and Lj are
disjoint. Suppose �rst that Li and Lj are two PP’s with vertices Pi and Pj respectively, that have
at least a plane in common. �en there are at most q + 1 planes in Li ∩ Lj and let β be one of
them. Now we see that β meets at least 2(q3 + q2 + q + 1)− (q + 1) elements of L non-trivially,
contradicting �eorem 10.2.1. If Li and Lj are two CEHQ’s or a CEHQ and a PP that have at least
a plane in common, then we can use the same arguments as above: In both cases, there are at most
q+1 planes inLi∩Lj , which implies that a plane β ∈ Li∩Lj meets at least 2(q3+q2+q+1)−(q+1)
elements of L non-trivially, contradicting �eorem 10.2.1.

Now we know that L contains the disjoint union of c ≤ x sets Li of planes, where every set is a PP
or CEHQ. As the number of planes in a PP or CEHQ equals (q2 + 1)(q + 1), and the total number
of planes in L equals x(q2 + 1)(q + 1) (see Lemma 10.2.4(2)), we see that L equals the union of x
sets Li such that any two sets have no plane in common.
To �nish this proof, we want to show that the only possible composition of L consists of PP’s and
embedded hyperbolic quadrics. If L contains one class of an embedded hyperbolic quadric, then
L also contains the other class of this hyperbolic quadric. �is also follows from �eorem 10.2.1:
suppose L contains only one class of an embedded hyperbolic quadric and let π be a plane of the
other class of this embedded hyperbolic quadric. �en we can show that π is also a plane of L: we
know that π meets q2 + q+ 1 planes of the hyperbolic quadric in a line, so at least so many planes
of L, in a line. But if π /∈ L, then, by �eorem 10.2.1, π can only meet x < 3

√
2q2 planes of L in a

line, a contradiction.

�is implies that L has to be the union of point-pencils and embedded hyperbolic quadrics that
pairwise have no plane in common. Note that two point-pencils have no plane in common if the
corresponding vertices are non-collinear. As there exists a partial ovoid of size q + 1 in P , we
can �nd x pairwise disjoint point-pencils. Note that for q odd and P = W (5, q), there are no
embedded hyperbolic quadrics, so in this case L is the union of x point-pencils with non-collinear
vertices. We end the proof by showing that, forP = Q(6, q) orP = W (5, q) and q even, there exist
embedded hyperbolic quadrics in P that have no plane in common. It su�ces to show this only for
P = Q(6, q), by the connection between Q(6, q) and W (5, q) for q even. Consider two embedded
hyperbolic quadrics Q+(5, q) in Q(6, q), that intersect in a parabolic quadric Q(4, q). �ese two
hyperbolic quadrics have no planes in common as the generators of Q(4, q) are lines. Note that
the union of embedded hyperbolic quadrics that pairwise have no plane in common, together with
the union of point-pencils with non-collinear vertices not contained in the embedded hyperbolic
quadrics, is a degree one Cameron-Liebler set by Lemma 10.2.4(4), as a point-pencil is a degree one
Cameron-Liebler set and for P 6= W (5, q) or q even, an embedded hyperbolic quadric of the same
rank is also a degree one Cameron-Liebler set. �
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�is theorem agrees with Conjecture 5.1.3 in [59], as this conjecture says that every degree one
Cameron-Liebler set in a �nite classical polar space, with rank d su�ciently large, is the union of
non-degenerate hyperplane sections and point-pencils that pairwise have no generator in common.

Remark 10.4.8. Recall that the union of point-pencils and embedded hyperbolic quadrics, that pair-
wise have no plane in common, is also an example of a degree one Cameron-Liebler set of generators
in the other polar spaces of type III (see Lemma 10.2.4 and Example 10.2.8).

We also note that we could not generalize this classi�cation result to other classical polar spaces, as
for these polar spaces, there is not enough information known about large EKR sets in these polar
spaces. For the polar spaces Q+(4n + 1, q), there are some EKR results in [34]. Since in this case,
the large examples of EKR sets have much more elements than the largest known Cameron-Liebler
sets, we cannot use these results.

10.5 New example of a degree one Cameron-Liebler set in Q+(5, q)

In this section, we give an example of a degree one Cameron-Liebler set of generators in Q+(5, q),
q = ph odd, found by dr. Maarten De Boeck, prof. Morgan Rodgers and myself. To explain the
construction of the example, we use the Klein correspondence between the lines of PG(3, q) and
the points of Q+(5, q), see Section 1.5. Recall that the generators of Q+(5, q) are planes which can
be divided into two classes (see Remark 1.5.6), the Latin planes and the Greek planes. More precisely,
by the Klein correspondence, the points of a Latin plane in Q+(5, q) correspond to the set of lines
through a �xed point in PG(3, q), and the points of a Greek plane in Q+(5, q) correspond to the
set of lines in a �xed plane in PG(3, q).

Consider the hyperbolic quadricQ = Q+(3, q) in PG(3, q), de�ned by the equation x0x1 +x2x3 =
0. �e lines of Q correspond to the set of points of two conics C ∪C ′ in Q+(5, q), such that for the
planes α = 〈C〉 and α′ = 〈C ′〉, it holds that α′ is the image of α under the polarity of Q+(5, q).

Every point P ∈ PG(3, q) gives rise to a Latin plane πPl and a Greek plane πPg in Q+(5, q): the
points of πPl correspond to all the lines through P in PG(3, q), and the points of πPg correspond
to the all lines in the plane P⊥. Here, ⊥ is the polarity related to the quadric Q in PG(3, q), with
corresponding matrix:

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

De�nition 10.5.1. A pointP (x0, x1, x2, x3) ∈ PG(3, q) is a square point if x0x1+x2x3 is a square
di�erent from 0 in Fq . A point P (x0, x1, x2, x3) ∈ PG(3, q) is a non-square point if x0x1 + x2x3 is
a non-square in Fq .

Now we can partition the set of planes in Q+(5, q) into the following sets.

• Sl =
{
πPl |P is a square point

}
• NS l =

{
πPl |P is a non-square point

}
• Ol =

{
πPl |P ∈ Q

}
• Sg =

{
πPg |P is a square point

}
• NSg =

{
πPg |P is a non-square point

}
• Og =

{
πPg |P ∈ Q

}
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It is known that a 2-secant toQ in PG(3, q), q odd, contains q−1
2 square points and q−1

2 non-square
points. A line disjoint from Q in PG(3, q) contains q+1

2 square points and q+1
2 non-square points.

For a tangent line ` to Q, there are two possibilities; ` contains q square points, or ` contains q
non-square points, see [72, Table 15.5(c)]. In the �rst case, ` is a square tangent line. In the la�er
case, ` is a non-square tangent line.

We partition the set of points in Q+(5, q) into the following sets.

• �e set X1S of points in Q+(5, q) corresponding to the square tangent lines to Q.

• �e set X1NS of points in Q+(5, q) corresponding to the non-square tangent lines to Q.

• �e set X2 of points in Q+(5, q) corresponding to the 2-secants to Q.

• �e set X0 of points in Q+(5, q) corresponding to the lines disjoint from Q.

• �e set X∞ = C ∪ C ′ of points in Q+(5, q) corresponding to the lines of Q.

We present two lemmas that will be useful in the remainder of the construction.

Lemma 10.5.2. If l is a square tangent line toQ in PG(3, q), then l⊥ is a square tangent line if q ≡ 1
mod 4, and l⊥ is a non-square tangent line if q ≡ 3 mod 4. If l is a non-square tangent line to Q
in PG(3, q), then l⊥ is a non-square tangent line if q ≡ 1 mod 4, and l⊥ is a square tangent line if
q ≡ 3 mod 4.

Proof. Consider a tangent line l to Q in PG(3, q). Since the orthogonal group PGO+(4, q) of
Q+(3, q) acts transitively on the points of Q = Q+(3, q) (see [74, �eorem 22.6.4]), we may
suppose that l contains the point (1, 0, 0, 0) of Q, and so l = 〈(1, 0, 0, 0), (0, 0, 1, t)〉, for a �xed
t ∈ Fq \ {0}. Note that l is a square tangent line if and only if t is a square in Fq . By using
the matrix A of the polarity ⊥, we �nd that T(1,0,0,0)(Q) is the plane de�ned by x1 = 0, while
T(0,0,1,t)(Q) is the plane de�ned by tx2 + x3 = 0. �e intersection of these two planes gives that
l⊥ = 〈(1, 0, 0, 0), (0, 0, 1,−t)〉. �e lemma follows since l⊥ is a square line if and only if −t is a
square in Fq , and −1 is a square Fq if and only if q ≡ 1 mod 4. �

Lemma 10.5.3. If l is a bisecant to Q in PG(3, q), then l⊥ is also a bisecant to Q. Furthermore, if l
is a line skew to Q in PG(3, q), then l⊥ is also skew to Q.

Proof. Note that for a bisecant l to Q, we have that l ∩ Q is a hyperbolic quadric Q+(1, q). For a
line l skew to Q, we have that l ∩ Q is empty and is equal to Q−(1, q). �e lemma follows now
from [74, �eorem 22.7.2]. �

In the following proposition, we prove that the partitions {X1S ,X1NS ,X2,X0,X∞} and
{Sl,Sg,NS l,NSg,Ol,Og} form a point-tactical decomposition.

Proposition 10.5.4. �e partition of the points {X1S ,X1NS ,X2,X0,X∞} and the partition of the
planes {Sl,Sg,NS l,NSg,Ol,Og} of Q+(5, q) give a point-tactical decomposition with matrix B1

if q ≡ 1 mod 4 and the matrix B3 if q ≡ 3 mod 4.

B1 =

Sl Sg NSl NSg Ol Og


q q 0 0 1 1 X1S

0 0 q q 1 1 X1NS

q−1
2

q−1
2

q−1
2

q−1
2 2 2 X2

q+1
2

q+1
2

q+1
2

q+1
2 0 0 X0

0 0 0 0 q + 1 q + 1 X∞
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B3 =

Sl Sg NSl NSg Ol Og


q 0 0 q 1 1 X1S

0 q q 0 1 1 X1NS

q−1
2

q−1
2

q−1
2

q−1
2 2 2 X2

q+1
2

q+1
2

q+1
2

q+1
2 0 0 X0

0 0 0 0 q + 1 q + 1 X∞

Proof. We �nd these matrices by using the Klein correspondence and so, we will prove the lemma
using the lines of PG(3, q) instead of the points of Q+(5, q). �is includes that we will use point-
pencils of lines and the lines in �xed planes of PG(3, q), instead of the planes in Q+(5, q).

We start with the case q ≡ 1 mod 4.

�e �rst row ofB1 follows by investigating a square tangent line l toQ in PG(3, q). Since l contains
q square points, and no non-square points, l is contained in q point-pencils with vertex a square
point, and l is contained in no point-pencils with vertex a non-square point. �is explains the �rst
and third element in the �rst row. For the second and fourth element, q and 0, in the �rst row,
we have that l ⊂ R⊥ ⇐⇒ R ∈ l⊥, with R ∈ PG(3, q). From Lemma 10.5.2, we �nd that l⊥
is a square tangent line, and so that there are q possibilities for R if R is a square point, and no
possibilities for R if R is a non-square point. �e line l contains one point P ∈ Q and so it is
contained in one point-pencil with vertex in Q and l is contained in one plane P⊥. �is gives the
last two elements of the �rst row. �e second row of B1 follows from analogous arguments.

For the third row inB1, we consider a bisecant l toQ in PG(3, q). �e �rst and third element of this
row follow since l contains q−1

2 square points and q−1
2 non-square points. Hence, l is contained in

q−1
2 point-pencils with vertex a square point, and q−1

2 point-pencils with vertex a non-square point.
For the second and the fourth element of the third row, we use the fact that l ∈ R⊥ ⇐⇒ R ∈ l⊥,
and that l⊥ is also a bisecant, see Lemma 10.5.3. Hence, l⊥ contains q−1

2 square points and q−1
2

non-square points. �e last two elements of the row follow since l contains two points P1, P2 ∈ Q.
Hence, l is contained in the point-pencils through P1 and P2, and l is contained in the planes P⊥3
and P⊥4 , with P3 and P4 the two points of Q on l⊥.

For the fourth row in B1, we consider a line l skew to Q in PG(3, q). �e �rst and third element of
this row follow since l contains q+1

2 square points and q+1
2 non-square points. Hence, l is contained

in q+1
2 point-pencils with vertex a square point, and q+1

2 point-pencils with vertex a non-square
point. For the second and the fourth element, we again use the fact that l ∈ R⊥ ⇐⇒ R ∈ l⊥,
and that l⊥ is also skew to Q, see Lemma 10.5.3. Hence, l⊥ contains q+1

2 square points and q+1
2

non-square points. �e last two elements of the row follow since l contains no points in Q.

�e last row of B1 follows since a line l of Q is contained in q + 1 tangent planes and in q + 1
point-pencils with vertex a point of l.

�e proof for q ≡ 3 mod 4 is analogous. �

�eorem 10.5.5. Let q be an odd prime power.

• �e sets Sl ∪ Sg , NS l ∪ NSg and Ol ∪ Og are degree one Cameron-Liebler sets of planes in
Q+(5, q), with parameter q(q−1)

2 , q(q−1)
2 and q + 1 respectively, for q ≡ 1 mod 4.

• �e sets Sl ∪ NSg , Sg ∪ NS l and Ol ∪ Og are degree one Cameron-Liebler sets of planes in
Q+(5, q), with parameter q(q−1)

2 , q(q−1)
2 and q + 1 respectively, for q ≡ 3 mod 4.
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Proof. We prove this theorem for q ≡ 3 mod 4. �e proof for q ≡ 1 mod 4 is analogous.

From the previous proposition, and from Lemma 1.8.2, we �nd the following equations. Here, A is
the point-plane incidence matrix of Q+(5, q).

ATχ1S = qχSl + qχNSg + χOl + χOg

ATχ1NS = qχSg + qχNSl + χOl + χOg

ATχ2 =
q − 1

2
(χSl + χSg + χNSl + χNSg) + 2(χOl + χOg)

ATχ∞ = (q + 1)(χOl + χOg).

A�er some calculations, we �nd:

χSl + χNSg = AT
(

3q + 1

2q(q + 1)
χ1S +

q − 1

2q(q + 1)
χ1NS −

1

q + 1
χ2

)
χSg + χNSl = AT

(
q − 1

2q(q + 1)
χ1S +

3q + 1

2q(q + 1)
χ1NS −

1

q + 1
χ2

)
χOl + χOg =

1

q + 1
ATχ∞.

�e sets Sl ∪ NSg , Sg ∪ NS l and Ol ∪ Og are contained in the image of AT , and so they are
degree one Cameron-Liebler sets of planes in Q+(5, q), for q ≡ 3 mod 4. �e parameters of the
Cameron-Liebler sets follow immediately from their size, see Lemma 10.2.4.

Analogously, we �nd that the sets Sl∪Sg ,NS l∪NSg andOl∪Og are degree one Cameron-Liebler
sets of planes in Q+(5, q), for q ≡ 1 mod 4. �

Remark 10.5.6. Note that the Cameron-Liebler sets Ol ∪ Og are the union of q + 1 point-pencils,
whose points are the elements of the conic C . Moreover, this set is also the set of point-pencils
whose points are the elements of the conic C ′. Hence, this example is a well known Cameron-
Liebler set. �e other determined Cameron-Liebler sets in �eorem 10.5.5 are new examples, in the
sense that they are not a union of point-pencils.

Proposition 10.5.7. �e sets Sl∪Sg , andNS l∪NSg , for q ≡ 1 mod 4, and the sets Sl∪NSg and
Sg∪NS l, for q ≡ 3 mod 4 are not the union of point-pencils whose points are pairwise non-collinear.

Proof. We prove this proposition for the set L = Sl ∪ Sg , if q ≡ 1 mod 4. �e proofs for the
other cases are analogous. Suppose from the contrary that L consists of point-pencils. Since the
parameter of L is q(q−1)

2 , L must consist of this many point-pencils. Let P be the base point of
one of these point-pencils. By investigating the sum of the �rst two columns of the matrix B1 in
Proposition 10.5.4, we �nd that P contains 2q, 0, q − 1, q + 1 or 0 elements of L for P contained
in X1S ,X1NS ,X2,X0, or X∞, respectively. Hence, we �nd in any case that L cannot contain all
planes of Q+(5, q) through P , which gives the contradiction. �
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11 Translation hyperovals and F2−linear sets of pseudoregulus
type

“ I don’t believe that life is linear. I think of it as circles - concentric circles that
connect. ”—Michelle Williams

In this last part, we discuss a research project on linear sets. dr. Geertrui Van de Voorde and I
investigated point sets de�ned by translation hyperovals in the André/Bruck-Bose representation.
�e results in this chapter are based on [49].

We show that the a�ne point sets of translation hyperovals in the André/Bruck-Bose plane rep-
resentation of PG(2, qk) are precisely those that have a sca�ered F2-linear set of pseudoregulus
type in PG(2k − 1, q) as set of directions. �is correspondence is used to generalise the results of
Barwick and Jackson who provided a characterisation of translation hyperovals in PG(2, q2), see
[7].

11.1 Introduction

Recall, from Section 1.6, that a translation hyperoval in PG(2, q) is a hyperoval H such that there
exists a bisecant ` of H with the property that the group of elations with axis ` acts transitively on
the points of H not on `.

In [7], Barwick and Jackson provided a characterisation of translation hyperovals in PG(2, q2): they
considered a set C of points in PG(4, q), q even, with certain combinatorial properties with respect
to the planes of PG(4, q) (see Section 11.3 for details). �ey proved that the set C′ of directions
determined by the points of C has the property that every line intersects C′ in 0, 1, 3 or q − 1
points. �ey then used this to construct a Desarguesian line spread S in PG(3, q), such that in the
corresponding André/Bruck-Bose plane P(S) ∼= PG(2, q2), the points corresponding to C form a
translation hyperoval. �is extended the work done in [8], where the same authors gave a similar
characterisation of André/Bruck-Bose representation of conics for q odd.

We will generalise the combinatorial characterisation provided by Barwick and Jackson for trans-
lation hyperovals in PG(2, qk), ∀k ≥ 2. In order to do this, we elaborate on the correspondence
between translation hyperovals and linear sets (see e.g. [79, 82]).

11.1.1 Linear sets

Linear sets are a central object in �nite geometry and have been studied intensively, mainly due to
the connection with other objects such as semi�eld planes, blocking sets, and more recently, MRD
codes (see e.g. [83, 86, 100]).
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11 Translation hyperovals and F2−linear sets of pseudoregulus type

Let V be an r-dimensional vector space over Fqn , let Ω be the projective space PG(V ) = PG(r −
1, qn). A set T is said to be an Fq-linear set of Ω of rank t if it is de�ned by the non-zero vectors of
an Fq-vector subspace U of V of vector dimension t, i.e.

T = LU =
{
〈u〉Fqn |u ∈ U \ {0}

}
.

By �eld reduction, the point set of PG(r − 1, qn) corresponds to a set D of (n − 1)-dimensional
subspaces of PG(rn− 1, q), which partitions the point set of PG(rn− 1, q). �ese subspaces form
a Desarguesian (n − 1)-spread in PG(rn − 1, q). Using coordinates, we see that a point P =
(x0, x1, . . . , xr−1)qn ∈ PG(r − 1, qn) corresponds to the set {(αx0, αx1, . . . , αxr−1)q|α ∈ Fqn}
in PG(rn− 1, q). Note that we have used r coordinates from Fqn , de�ned up to Fq-scalar multiple,
to de�ne points of PG(rn− 1, q), and the set {(αx0, αx1, . . . , αxr−1)q|α ∈ Fqn} consists of q

n−1
q−1

di�erent points forming an (n − 1)-dimensional space over Fq . Hence, we �nd that D is given by
the set of (n− 1)-spaces

{(αx0, αx1, . . . , αxr−1)q|α ∈ Fqn} for all (x0, x1, . . . , xr−1) ∈ V (r, qn).

Note that these coordinates for points in PG(rn − 1, q) can be transformed into the usual coor-
dinates consisting of rn elements of Fq by representing the elements of Fqn as the n coordinates
with respect to a �xed basis of Fqn over Fq .

We also have a more geometric perspective on the notion of a linear set; namely, an Fq-linear set
of rank t is a set T of points of PG(r − 1, qn) for which there exists a subspace π of (projective)
dimension t − 1 in PG(rn − 1, q) such that the points of T correspond to the elements of D that
have a non-empty intersection with π. For more on this approach to linear sets, we refer to [86].
If the subspace π intersects each spread element in at most a point, then π is called sca�ered with
respect to D and the associated linear set is called a sca�ered linear set.

Note that if π is (n−1)-dimensional and sca�ered, then the associated Fq-linear set has rank n and
has exactly qn−1

q−1 points, and conversely. We will make use of the following bound on the rank of a
sca�ered linear set.

Result 11.1.1 ([17, �eorem 4.3]). �e rank of a sca�ered Fq-linear set in PG(r−1, qn) is at most
rn/2.

A maximum sca�ered linear set is a sca�ered Fq-linear set in PG(r − 1, qn) with rank rn/2. In
this project we work with maximum sca�ered linear sets to which a geometric structure, called
pseudoregulus, can be associated. �ese linear sets were introduced by G. Marino, O. Polverino and
R. Trombe�i in [90] and were generalized by M. Lavrauw and G. Van de Voorde in [85]. �e name
pseudoregulus originates from the geometrical construction of Freeman [61]. For more information,
we refer to [50, 87].

De�nition 11.1.2. Let S be a sca�ered Fq-linear set of PG(2k−1, qn) of rank kn, where n, k ≥ 2.
We say that S is of pseudoregulus type if

1. there existm = qnk−1
qn−1 pairwise disjoint lines of PG(2k−1, qn), say s1, s2, . . . , sm, such that

|S ∩ si| =
qn − 1

q − 1
∀i = 1, . . . ,m,

2. there exist exactly two (k − 1)-dimensional subspaces T1 and T2 of PG(2k − 1, qn) disjoint
from S such that Tj ∩ si 6= ∅ for each i = 1, . . . ,m and j = 1, 2.
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11 Translation hyperovals and F2−linear sets of pseudoregulus type

�e set of lines si, i = 1, . . . ,m, is called the pseudoregulus of PG(2k − 1, qn) associated with the
linear set S and we refer to T1 and T2 as transversal spaces to this pseudoregulus. Since a maximum
sca�ered linear set spans the whole space, we see that the transversal spaces are disjoint.

For n = 3, it is known that every maximum sca�ered linear set of Π = PG(2k−1, q3), k ≥ 2, is of
pseudoregulus type, and they are all equivalent under the collineation group of Π, see [84, 85, 90].

More in general, we need the following result of [87]. Applied to F2-linear sets, this gives us the
following result.

Result 11.1.3 ([87, �eorem 3.12]). Each F2-linear set of PG(2k − 1, q), q even, of pseudoregulus
type, is of the form Lρ,f with

Lρ,f =
{

(u, ρf(u))q |u ∈ U0

}
,

with ρ ∈ F∗q , U0, U∞ the k-dimensional vector spaces corresponding to the transversal spaces T0, T∞
and with f : U0 → U∞ an invertible semi-linear map with companion automorphism σ ∈ Aut(Fq),
Fix(σ) = {0, 1}.

Note that in the previous result, PG(2k − 1, q) is identi�ed with PG(V ), V = U0 ⊕ U∞ and a
point, corresponding to a vector v = v0 + v∞ ∈ U0 ⊕ U∞, has coordinates (v0, v∞)q .

11.1.2 �e Barlotti-Cofman and André/Bruck-Bose constructions

We start with introducing the André/Bruck-Bose construction (see [1, 24]). LetH∞ be a hyperplane
in PG(2k, q) and let S be a (k − 1)-spread in H∞. Let P be the set of a�ne points, together with
the qk + 1 spread elements of S . Let L be the set of k-spaces in PG(2k, q) meeting H∞ in an
element of S , together with the hyperplane at in�nity H∞. �e incidence structure (P,L, I),
with I the natural incidence relation, is isomorphic to a projective plane of order qk, which is
called the André/Bruck-Bose plane, corresponding with the spread S . �e André/Bruck-Bose plane
corresponding to a spread S is Desarguesian if and only if the spread S is Desarguesian.

H∞ = PG(2k − 1, q)

PG(2k, q)

s1 s2 s3

P

ABB

PG(2, qk)

s′1 s′2 s′3

P ′

s1, s2, s3 ∈ S,
S is (k − 1)-spread in H∞

In this chapter, we will switch between the three di�erent representations of a projective plane
PG(2, qk), q = 2h. Using the André/Bruck-Bose correspondence, we can, on the one hand, model
this plane as a subset of points and k-spaces in PG(2k, q), determined by a (k − 1)-spread in a
speci�c hyperplane H∞ of PG(2k, q), which we de�ne as the hyperplane at in�nity of PG(2k, q).
On the other hand, we can see it as a subset of points and hk-spaces of PG(2hk, 2) determined
by a (hk − 1)-spread in a speci�c hyperplane H̃∞ of PG(2kh, 2), which we call the hyperplane at
in�nity of PG(2kh, 2). We can switch between the PG(2k, q)-se�ing and the PG(2hk, 2)-se�ing
by the Barlo�i-Cofman correspondence, which is a natural generalization of the André/Bruck-Bose
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11 Translation hyperovals and F2−linear sets of pseudoregulus type

correspondence. Note that in this chapter, we use the ˜-symbol for the subspaces in PG(2hk, 2).
�is is in contrast with the ˜-symbol in Chapters 4 and 9, used for the projective extension of an
a�ne space.

�e Barlo�i-Cofman representation of the projective space PG(2k, 2h) in PG(2hk, 2) is de�ned as
follows (see [4]). Let S ′ be a Desarguesian (h − 1)-spread in PG(2hk − 1, 2). Embed PG(2hk −
1, 2) as the hyperplane H̃∞ at in�nity in PG(2hk, 2). Consider the following incidence structure
P(S) = (P,L, I), where incidence is natural:

• �e set P of points consists of the 22hk a�ne points Pi in PG(2hk, 2) (i.e. the points not in
H̃∞) together with elements of the (h− 1)-spread S ′ in H̃∞.

• �e set L of lines consists of the following two sets of subspaces in PG(2hk, 2).

– �e set of h-spaces spanned by an element of S ′ and an a�ne point of PG(2hk, 2).

– �e set of (2h− 1)-spaces in H̃∞ spanned by two di�erent elements of S ′.

�is incidence structure (P,L, I) is isomorphic to PG(2k, 2h), and let H∞ be the hyperplane
containing all points corresponding with the (h − 1)-spread S ′. We use the notation P for the
a�ne point of PG(2k, 2h) (i.e. a point not contained in H∞) which corresponds to the a�ne point
P̃ ∈ PG(2hk, 2). A point, say R in H∞, corresponds to the element S ′(R) of the (h − 1)-spread
S ′ in H̃∞.

H̃∞ = PG(2kh− 1, 2)

PG(2kh, 2)

s̃1 s̃2 s̃3

P̃

BC

H∞ = PG(2k − 1, 2h)

PG(2k, 2h)

s1 s2

s3

P

s̃1, s̃2, s̃3 ∈ X ,
S ′ is a (h− 1)-spread in H̃∞

As already mentioned above, we will work in the following three projective spaces:

• �e 2k-dimensional projective space Ψq = PG(2k, q), q = 2h, h > 2, with the (2k−1)-space
at in�nity called H∞.

• �e projective plane Πqk = PG(2, qk), q = 2h, with line at in�nity called `∞. Given a
Desarguesian (k− 1)-spread S in H∞ in Ψq , the plane Πqk is obtained by the André-Bruck-
Bose construction using S .

• �e 2hk-dimensional projective space Λ2 = PG(2hk, 2), with the (2hk − 1)-space H̃∞ at
in�nity. Note that a Desarguesian (h− 1)-spread S ′ in H̃∞ gives rise to the Barlo�i-Cofman
representation of Ψq . Also vice versa, the Barlo�i-Cofman representation of Ψq de�nes a
Desarguesian (h − 1)-spread S ′ in H̃∞. Moreover, if S is the (k − 1)-spread in H∞ in Ψq

such that Πqk is the corresponding projective plane, the André-Bruck-Bose representation of
Πqk in Λ2 gives rise to a Desarguesian (hk− 1)-spread S̃ in H̃∞, such that S ′ is a subspread
of S̃ .
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11 Translation hyperovals and F2−linear sets of pseudoregulus type

11.1.3 Main theorem

In this chapter, we prove the following Main �eorem. A consequence of this result is the general-
ization of the characterization of translation hyperovals in PG(2, q2) in [7].

Consider Ψq = PG(2k, q) and the hyperplane H∞ of PG(2k, q). Recall that a point of PG(2k, q)
is called a�ne if it is not contained in H∞. Likewise, a line is called a�ne if it is not contained in
H∞. Let P1, P2 be a�ne points, then the point P1P2 ∩H∞ is the direction determined by the line
P1P2. If Q is a set of a�ne points, then the directions determined by Q are all points of H∞ that
appear as the direction of a line PiPj , for some Pi, Pj ∈ Q.

�eorem 11.1.4. LetQ be a set of qk a�ne points in PG(2k, q), q = 2h, h ≥ 4, k ≥ 2, determining
a set D of qk − 1 directions in the hyperplane at in�nity H∞ = PG(2k − 1, q). Suppose that every
line has 0, 1, 3 or q − 1 points in common with the point set D. �en

(1) D is an F2-linear set of pseudoregulus type.

(2) �ere exists a Desarguesian spread S in H∞ such that, in the André/Bruck-Bose plane P(S) ∼=
PG(2, qk), with H∞ corresponding to the line l∞, the points of Q together with 2 extra points
on `∞, form a translation hyperoval in PG(2, qk).

Vice versa, via the André/Bruck-Bose construction, the set of a�ne points of a translation hyperoval
in PG(2, qk), q > 4, k ≥ 2, corresponds to a set Q of qk a�ne points in PG(2k, q) whose set of
determined directions D is an F2-linear set of pseudoregulus type. Consequently, every line meets D
in 0, 1, 3 or q − 1 points.

Note that we work with a set of a�ne points in PG(2k, q) whose set of directions is a sca�ered
linear set with speci�c properties. Using this, we can make the link with translation hyperovals in
the André/Bruck-Bose-plane PG(2, qk). For this, we used the ideas found by V. Jha, N.L. Johnson
and M. Lavrauw in [79, 82], in which a sca�ered (k−1)-space πH , with respect to a (k−1)-spread
S in the hyperplane at in�nity H∞ = PG(2k − 1, 2) ⊂ PG(2k, 2) was used. Since πH contains
2k − 1 points and since |S| = 2k + 1, it follows that there are two spread elements s1, s2 disjoint
from πH . Let Π be a k-space in PG(2k, 2), with Π ∩ H∞ = πH , then it can be proven that the
a�ne points of Π, together with s1 and s2, correspond to the points of a translation hyperoval in
the André/Bruck-Bose-plane, using the spread S.

�is idea is also used in several other papers. For example, in [5], the authors gave an explicit
construction of in�nite families of maximal sca�ered linear sets in PG(n− 1, qt), t ≥ 4 even. For
q = 2, they used a similar technique to �nd complete caps in AG(n, 2t) of size 2

nt
2 . We will use a

similar idea in this chapter to generalize the results in [7].

11.2 �e proof of the main theorem

From now on, we consider a set Q satisfying the conditions of �eorem 11.1.4:

• Q is a set of qk a�ne points in PG(2k, q), q = 2h, h ≥ 4, k ≥ 2;

• D, the set of directions determined by Q at the hyperplane at in�nity H∞, has size qk − 1;

• Every line has 0, 1, 3 or q − 1 points in common with the point set D.
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11.2.1 �e (q − 1)-secants to D are disjoint

De�nition 11.2.1. A 0-point in H∞ is a point P /∈ D such that P is contained in at least one
(q − 1)-secant to D.

From Proposition 11.2.5, it will follow that a 0-point is contained in precisely one (q− 1)-secant to
D. We �rst start with two lemmas.

Lemma 11.2.2. No three points of Q are collinear.

Proof. Let l be an a�ne line in PG(2k, q) containing 3 ≤ t ≤ q points of Q, and let P ′ = l ∩H∞.
A point Pi ∈ Q \ l determines a plane αi = 〈Pi, l〉 such that the line li = αi ∩H∞ is a (q − 1)-
secant: the lines through Pi and a point of l ∩ Q determine t ≥ 3 directions of D on the line li,
di�erent from the point P ′ ∈ D. So l contains more than three points of D, showing that li is a
(q− 1)-secant. Furthermore, the plane αi contains at most q a�ne points ofQ, as every a�ne line
in α through a 0-point of li contains at most one element of Q.

�is implies that each of the qk − t points ofQ\ l de�ne a plane α, with α∩H∞ a (q− 1)-secant,
and so that α contains at most q − t points of Q \ l. �is shows that the number of such planes
αi through l, and hence the number of (q − 1)-secants through P ′, is at least q

k−t
q−t . �is gives that

there are at least 1 + qk−t
q−t (q − 2) > qk − 1 points of D, a contradiction since t ≥ 2. �

Lemma 11.2.3. Let γ be a plane in PG(2k, q) containing 4 points P1, P2, P3 and P4 ofQ, such that
P1P2 ∩ P3P4 /∈ Q ∪D. �en γ meets H∞ in a (q − 1)-secant to D.

Proof. By Lemma 11.2.2, no three points of P1, P2, P3, P4 are collinear. Since P1P2 ∩ P3P4 /∈ D,
we see that P1P2 and P3P4 de�ne two di�erent directions in H∞. �e lines containing two of the
four points P1, P2, P3 and P4 determine at least 4 directions on the line γ ∩ H∞. �e statement
follows since a line contains 0, 1, 3 or q − 1 points of D. �

Corollary 11.2.4. Let P0 be a point in Q. �en, all directions in D are determined by the lines P0Pi
with Pi ∈ Q \ {P0}.

Proof. From Lemma 11.2.2, it follows that two lines P0Pi and P0Pj , Pi 6= Pj , are di�erent, and so,
determine di�erent points at in�nity. �e corollary follows since |D| = qk − 1, which is equal to
the number of points Pi ∈ Q, di�erent from P0. �

Proposition 11.2.5. Every two (q − 1)-secants to D are disjoint.

Proof. Consider a point P0 ∈ Q. �en, by Corollary 11.2.4, all directions in D are determined by
the lines P0Pi with Pi ∈ Q \ {P0}. Let P ′i denote the direction of the line P0Pi, that is, the point
P0Pi ∩H∞. We see that a line through a point P ′i ∈ D contains 0 or 2 points of Q.

Let lα and lβ be two lines, both containing q − 1 points of D, with P ′ = lα ∩ lβ . Let α = 〈P0, lα〉
and β = 〈P0, lβ〉 and let {P1α, P2α} and {P1β, P2β} be the 0-points in lα and lβ . Note that P ′ may
be amongst these points. It follows from the argument above that there are precisely q points in
α∩Q and that the a�ne points ofQ in α together with the two points P1α, P2α form a hyperoval
Hα. Similarly, we �nd a hyperoval Hβ in β.

We �rst suppose that P ′ ∈ D. �is implies that there is a point P 6= P0 of Q on the line P0P
′.

Note that P0 and P are contained in Hα ∩Hβ .

Consider a point R ∈ lα, di�erent from P ′, P1α, P2α. �en R ∈ D and through R, there are q
2

bisecants toHα 6= lα. One of these bisecants contains P and another one contains P0. Since q > 8,
there exists a bisecant to Hα through R which intersects the line P0P in a point R0 /∈ {P0, P, P

′}.
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�rough R0, there are q
2 − 2 bisecants ri to Hβ , di�erent from the lines R0P , R0P1β and R0P2β .

Let ri ∩ lβ = Ri, i = 1, . . . , q2 − 2. A plane 〈R, ri〉 contains two lines, ri and m = RR0, both
containing two points ofQ and ri∩m = R0 /∈ Q. Hence, by Lemma 11.2.3, we �nd that every line
RRi is a (q − 1)-secant to D.

So the number of (q − 1)-secants of the form RRi is q
2 − 2, and the total number of 0-points on

these lines is 2( q2 − 2) = q− 4. Let Ω be the set of these 0-points. We call a (≤ 3)-secant in 〈lα, lβ〉
a line with at most 3 points of D. A line through P ′ in 〈lα, lβ〉 intersects all lines RRi. �e q − 4
points of Ω lie on the q−1 lines through P ′ di�erent from lα and lβ . Since every lineRRi contains
precisely two 0-points, we �nd that for q > 8 there are at most 3 (≤ 3)-secants through P ′: if there
are at least four (≤ 3)-secants through P ′ in 〈lα, lβ〉, then the number of 0-points of Ω on each of
these lines is at least q

2 − 2 − 2, as we supposed that P ′ ∈ D. �is implies that there would be at
least 4( q2 − 4) > q − 4 0-points in Ω, which gives a contradiction for q ≥ 16.

Now we distinguish di�erent cases depending on the number of (≤ 3)-secants through P ′. In each
of the cases we will show that there exist at least two (≤ 3)-secants l1, l2 in 〈lα, lβ〉, and a point
X /∈ D not on these lines. �is leads to a contradiction since there are at least q + 1 − 7 lines
through X , both intersecting l1 and l2 in a point not in D, and not through l1 ∩ l2. �ese lines
contain at least 3 points not in D so they have to be (≤ 3)-secants. But this implies that there are
at least 1 + (q − 6)(q − 3) = q2 − 9q + 19 points in 〈lα, lβ〉, not contained in D. On the other
hand, there are at most three (≤ 3)-secants through P ′ and the other lines through P ′ contain two
0-points. �is implies that there are at most 3q + 2(q − 2) = 5q − 4 < q2 − 9q + 19 points in
〈lα, lβ〉, not contained in D. �is gives a contradiction for q ≥ 16.

It remains to show that in every case there exist at least two (≤ 3)-secants and a point X /∈ D, not
on these lines.

• Suppose �rst that there are two or three (≤ 3)-secants through P ′. �ese lines are di�erent
from lα, so they do not contain the point P1α. �en X = P1α /∈ D is a point not on the
(≤ 3)-secants.

• Suppose there is a unique (≤ 3)-secant l through P ′. �en every other line through P ′

contains two 0-points. Suppose �rst that there exists a 0-point P1 so that P1αP1 ∩ l /∈ D.
�en l′ = P1αP1 contains 3 points not in D, so l′ is a (≤ 3)-secant. Note that P1 6= P2α as
otherwise P1αP1 ∩ l = lα ∩ l = P ′ ∈ D. Hence, X = P2α /∈ D is not contained in l ∪ l′.

If there is no point P1 so that P1αP1 ∩ l /∈ D, then all 2q− 4 0-points on the (q− 1)-secants
through P ′, di�erent from lα, lβ , lie on at most 2 lines P1αP1 and P1αP2, with P1, P2 ∈
D∩ l\{P ′}. But then P1αP1 and P1αP2 are (≤ 3)-secants. Note that these lines are di�erent
from lα, and so, they do not contain P2α. Hence, we may take X = P2α.

• Suppose all lines through P ′ are (q − 1)-secants with Γ the corresponding set of 2q + 2 0-
points. Let G ∈ Γ and consider the q+ 1 lines through G in 〈lα, lβ〉. �e 2q+ 1 other points
of Γ lie on these lines and since every line contains 2 or at least q − 2 points not in D, we
�nd that through G there is at least one (≤ 3)-secant l1. Consider now a point G′ ∈ Γ \ l1.
�rough this point there is also a (≤ 3)-secant l2. �e lines l1 ∪ l2 contain at most 2q + 1
points of Γ, so there is at least one 0-point X not contained in these two lines.

�is shows that two (q− 1)-secants cannot meet in a point P ′ of D. Suppose now that P ′ /∈ D. As
above, we �nd for a given point R ∈ D ∩ lα, at least q2 − 2 (q − 1)-secants RRi, di�erent from lα.
But by the previous part, we know that there are no two (q − 1)-secants through a point R ∈ D.
As q

2 − 2 ≥ 2, we �nd a contradiction. �

We now deduce a corollary that will be useful later.
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Corollary 11.2.6. A (q − 1)-secant and a 3-secant to D in H∞ cannot have a 0-point in common.

Proof. Let lα be a 3-secant to D, lβ be a (q − 1)-secant to D, and P ′ = lα ∩ lβ be a 0-point. Pick
P0 ∈ Q and let α = 〈P0, lα〉 and β = 〈P0, lβ〉. �e points of Q ∪ D in α form a Fano plane: let
P ′i , i = 1, 2, 3, be the three points of D on the line lα and let Pi, i = 1, 2, 3, be the corresponding
a�ne points of Q so that P0Pi ∩ lα = P ′i . Since there are only three directions P ′1, P ′2, P ′3 of D
in α, we �nd that {P1, P3, P

′
2},{P1, P2, P

′
3} and {P2, P3, P

′
1} are triples of collinear points. Since

also {P ′1, P ′2, P ′3} and {P0, Pi, P
′
i}, i = 1, 2, 3, are triples of collinear points, we �nd that the points

{P0, P1, P2, P3, P
′
1, P

′
2, P

′
3} de�ne a Fano plane PG(2, 2). Let R0 be the point P ′1P2 ∩ P ′P0. Note

that R0 /∈ Q. As the points of Q in β form a q-arc, we know that there are at least two lines R0R1

and R0R2 in β, with R1, R2 ∈ lβ ∩D, such that both lines contain 2 points ofQ. By Lemma 11.2.3
we see that the lines P ′1R1 and P ′1R2 are both (q−1)-secants through P ′1. �is gives a contradiction
by Proposition 11.2.5. �

11.2.2 �e set D of directions in H∞ is a linear set

Recall that we use the notation P̃ for the a�ne point in Λ2, corresponding to the a�ne point
P ∈ Ψq . Let S ′ be the (h − 1)-spread in the hyperplane H̃∞ of PG(2hk, 2) corresponding to the
points of the hyperplaneH∞ of Ψq . We use the notation S ′(P ′) for the element of S ′ corresponding
to the point P ′ ∈ H∞. We will now show that D is an F2-linear set in H∞ by showing that its
points correspond to spread elements in H̃∞ intersecting some �xed (hk − 1)-subspace of H̃∞.

Let Q = Q∪D, Q̃ = Q̃ ∪ D̃, with Q̃ the union of the points P̃ , with P ∈ Q, and D̃ the directions
in H̃∞ determined by the points of Q̃.

Lemma 11.2.7. Let P0, P1, P2 ∈ Q and P ′i = P0Pi ∩H∞, i = 1, 2. If P ′1P
′
2 is a 3-secant to D, then

the plane in PG(2hk, 2) spanned by P̃0, P̃1 and P̃2 is contained in Q̃.

Proof. Since P ′1P ′2 is not a (q − 1)-secant, we know that there is a unique point P ′3 6= P ′1, P
′
2 in

P ′1P
′
2 ∩ D, and a point P3 ∈ Q such that P ′3 ∈ P0P3. Let α be the plane spanned by the points

P0, P1 and P2. As α ∩D = {P ′1, P ′2, P ′3}, we �nd that {P1, P3, P
′
2},{P1, P2, P

′
3} and {P2, P3, P

′
1}

are triples of collinear points. As in the proof of Corollary 11.2.6, we �nd that these points de�ne
a Fano plane PG(2, 2). We claim that the corresponding points P̃0, P̃1, P̃2 and P̃3 lie in a plane
in PG(2hk, 2). Suppose these points are not contained in a plane in PG(2hk, 2), then they span
a 3-space β. Since P ′1 = P0P1 ∩ P2P3, P̃0P̃1 meets S ′(P ′1) in a point, say A1. Similarly, P̃2P̃3

meets S ′(P ′1) in a point, say B1. Since P̃0, P̃1, P̃2, P̃3 span a 3-space, A1 6= B1. Similarly, the
points A2 = P̃0P̃2 ∩ S ′(P ′2) and B2 = P̃1P̃3 ∩ S ′(P ′2) are di�erent and span the line A2B2. But
now A1B1 ∈ S ′(P̃ ′1) and A2B2 ∈ S ′(P̃ ′2) are two lines in the plane β ∩ H̃∞, so they intersect, a
contradiction since the spread elements S ′(P ′1) and S ′(P ′2) are disjoint. �

�eorem 11.2.8. �e set D is an F2-linear set.

Proof. We prove, by induction on t ∈ {2, . . . , hk}, that there exists a t-space β contained in Q̃

such that the points in H∞ corresponding to the spread elements intersecting β ∩ H̃∞ are not all
contained in a single (q − 1)-secant.

For the induction basis t = 2, we use Lemma 11.2.7, and so, we have the following property: if P̃0,
P̃1 and P̃2 are three points in Q̃ such that the line at in�nity of the plane spanned by these points
corresponds to a 3-secant in Ψq , then we know that all points of 〈P̃0, P̃1, P̃2〉 are included in Q̃.

178



11 Translation hyperovals and F2−linear sets of pseudoregulus type

Now we suppose that there is a t-space β, with β ⊂ Q̃. By the induction hypothesis, we may
assume that the points in H∞, corresponding to the spread elements intersecting β ∩ H̃∞, are not
all contained in a single (q − 1)-secant.

If t = hk, then our proof is �nished, so assume that t < hk. �is implies that there exists a point
G̃ ∈ Q̃ \ β. Let G be the corresponding point inQ in PG(2k, q), and let γ = 〈β, G̃〉. We show that
every point X̃ in γ \ β is a point of Q̃. Suppose �rst that X̃ is a point at in�nity of γ \ β, then the
line X̃G̃ contains an a�ne point Ỹ of β, as β is a hyperplane of γ. But since G̃ and Ỹ are points of
Q̃, we �nd that X̃ ∈ D̃ ⊂ Q̃.

Suppose now that X̃ is an a�ne point in γ \β, and let X be the corresponding point in PG(2k, q).
As the �eld size in PG(2hk, 2) is 2, the line X̃G̃ contains 1 extra point Ỹ . �is point has to lie in β
and in the hyperplane at in�nity, so Ỹ ∈ β∩H̃∞. Let l1 be a line through Ỹ in β corresponding to a
3-secant, which exists since we have seen that not all points corresponding to points of β∩H∞ are
contained in one single (q−1)-secant. �e plane spanned by G̃ and l1 is contained in Q̃ by Lemma
11.2.7, and hence, sinceX lies on the line Ỹ G̃which is contained in this plane,X ∈ Q̃. �is implies
that γ ⊆ Q. We can repeat this argument until we �nd that Q̃ is a hk-space in PG(2hk, 2). �

Note that D is a sca�ered linear set since |D| = qk − 1 = 2hk − 1 = |PG(hk − 1, 2)|. As D has
rank hk, we �nd that D is maximum sca�ered.

Remark 11.2.9. In Lemma 11.2.5, we showed that the (q−1)-secants toD were disjoint. In �eorem
11.2.8, we have used this to show thatD is a maximum sca�ered F2-linear set. �e fact that (q−1)-
secants to a maximum sca�ered F2-linear set are disjoint, is well-known (see e.g. [87, Proposition
3.2]).

11.2.3 �e set D is an F2-linear set of pseudoregulus type

�e proof that D is of pseudoregulus type, is based on some ideas of [85, Lemma 5 and Lemma 7].

Lemma 11.2.10. �ere are qk−1
q−1 pairwise disjoint (q − 1)-secants to D in PG(2k − 1, q), q > 4.

Proof. Let K be the (hk − 1)-dimensional subspace in PG(2hk − 1, 2) de�ning the F2-linear set
D and let S ′ be the (h − 1)-spread that corresponds to the point set of PG(2k − 1, q). For every
hk-space Y through K in PG(2hk − 1, 2), we �nd at least one element of S ′ that intersects Y
in a line since D is maximum sca�ered. Every line l, through a point of K , such that l lies in an
element of S ′, de�nes a hk-space through K , and the number of hk-spaces through K is 2hk − 1.
�is implies that there are on average 2h−1− 1 > 2 lines contained in di�erent spread elements of
S ′ in a hk-space through K in PG(2hk − 1, 2).

Take a hk-space Y through K with at least two lines contained in spread elements, and let S1 and
S2 be two elements of S ′ that intersect Y in the lines y1 and y2 respectively. �e (2h − 1)-space
〈S1, S2〉 intersects K in at least a plane, as y1 and y2 span a 3-space. But this implies that the line
l in PG(2k − 1, q), corresponding with 〈S1, S2〉 contains at least 7 points of D. �is implies that
l is a (q − 1)-secant of D, and that 〈S1, S2〉 intersects K in a (h − 1)-space α as a (h − 1)-space
contains 2h − 1 = q − 1 points. Consider now the h-space β = Y ∩ 〈S1, S2〉 through α. Since
all of the 2h + 1 (h− 1)-spaces of S ′ in 〈S1, S2〉 intersect β in a point or a line, we �nd that there
are precisely 2h−1 − 1 elements of S ′, meeting β, and so Y , in a line. Hence, this proves that a
hk-space Y through K , containing at least 2 lines y1, y2 in S1, S2 respectively, contains at least
2h−1−1 lines yi in di�erent spread elements of S ′. Now we prove, by contradiction, that Y cannot
contain more lines yi contained in a spread element. Suppose Y contains another line y0 ⊂ S0 with
S0 ∈ S ′, then y0 /∈ 〈S1, S2〉. Repeating the previous argument for y1 and y2 shows that there are
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two (2h−1)-spaces 〈S1, S2〉 and 〈S0, S1〉, both meetingK in a (h−1)-space and so, there are two
(q − 1)-secants through P1 ∈ H∞, the point corresponding to the spread element S1. �is gives a
contradiction by Proposition 11.2.5.

Since the average number of lines contained in a spread element in a hk-space throughK is 2h−1−
1 > 2, we �nd that every hk-space throughK contains exactly 2h−1−1 lines contained in a spread
element. In particular, every line yi ⊂ Si, with Si ∈ S ′ and yi through a point of K , de�nes a hk-
space through K , and so a (q − 1)-secant. So we �nd that every point in D is contained in at least
one (q− 1)-secant. As we already proved that two (q− 1)-secants are disjoint (see Lemma 11.2.5),
we �nd qk−1

q−1 pairwise disjoint (q − 1)-secants in PG(2k − 1, q). �

We will �rst show that the linear set is of pseudoregulus type when k = 2. To prove this, we begin
with a lemma.

Lemma 11.2.11. Assume that k = 2. Let l be a line in H∞ through two 0-points, not on the same
(q − 1)-secant, then l contains no points of D.

Proof. Let l1 and l2 be two (q−1)-secants inH∞. Let l be a line through a 0-point of l1 and through
a 0-point of l2. Recall that l1 and l2 are disjoint by Proposition 11.2.5. Every two pointsA,B,A ∈ l1,
B ∈ l2, de�ne a third point in D on the line AB. Hence we �nd, since |D| = q2 − 1, that every
point P ∈ D \ {l1, l2} is uniquely de�ned as a third point on a line, de�ned by two points A and
B of D in l1 and l2 respectively.

Now suppose that l contains a point X ∈ D. �en X lies on a unique line l′, intersecting l1 and l2
in precisely one point. But then l1 and l2 lie in a plane spanned by l and l′, a contradiction since l1
and l2 are disjoint by Proposition 11.2.5. �

Proposition 11.2.12. Assume that k = 2. �e (q−1)-secants toD in PG(3, q) form a pseudoregulus.

Proof. By Lemma 11.2.10, it is su�cient to prove that there exist 2 lines in PG(3, q) that have a
point in common with all (q − 1)-secants to D. Consider three (q − 1)-secants l1, l2 and l3 and let
Pi, Qi ∈ li, i = 1, 2, 3, be the corresponding 0-points. Let l0 be the unique line through P1 that
intersects l2 and l3 both in a point, say R2 = l0 ∩ l2 and R3 = l0 ∩ l3 respectively. By Proposition
11.2.5 and Corollary 11.2.6, R2 and R3 cannot both belong to Q, so suppose R2 is a 0-point of l2
(w.l.o.g. R2 = P2). We see that l0 = P1P2 is a line through two 0-points, so R3 is also a 0-point
by Corollary 11.2.11, w.l.o.g. R3 = P3. By the same argument, we see that Q1, Q2 and Q3 are
contained in a line, say l∞.

Now we want to show that every other (q−1)-secant has a 0-point in common with both l0 and l∞.
Consider a (q− 1)-secant l4, di�erent from l1, l2, l3, with 0-points P4 and Q4. Consider now again
the unique linem through P4 that intersects l1 and l2 in a point. By the previous arguments,m has
to contain a 0-point of l1 and a 0-point of l2, so m = l0, m = l∞, m = P1Q2 or m = Q1P2. We
will show that only the �rst two possibilities can occur, which then proves that every other 0-point
lies on l0 or l∞. Suppose to the contrary that m = P1Q2P4 (the case m = Q1P2P4 is completely
analogous). �en the unique line through Q4, meeting l1 and l2, is the line Q1P2. Consider now
the unique line m′ through P4 meeting l2 and l3 in a point. As we supposed that m 6= l0 and
m 6= l∞, we see that P4 cannot lie on these lines, so m′ contains the points P4, P2, Q3 or the
points P4, Q2, P3. In the former case, both lines l0 and l∞ are contained in the plane spanned by
m′ = P4Q3P2 and m = P1Q2P4. �is implies that the disjoint lines l1 and l2 are contained in this
plane, a contradiction. If m′ = P4P3Q2, then m and m′ both contain P4 and Q2 but intersect l0 in
di�erent points, a contradiction. We conclude that P4, and analogously P ′4, is contained in the line
l0 or l∞. �

180
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Using the previous proposition, we will prove that for all k, the F2-linear set D in PG(2k− 1, q) is
of pseudoregulus type.

�eorem 11.2.13. �e (q − 1)-secants to D in PG(2k − 1, q) form a pseudoregulus.

Proof. By Lemma 11.2.10 it is su�cient to prove that there exist two (k−1)-spaces in PG(2k−1, q)
that both have a point in common with all (q − 1)-secants to D.

Consider a (q − 1)-secant l0, and let P0 and P ′0 be the 0-points on l0. Let li be a (q − 1)-secant,
di�erent from l0. �e lines l0 and li span a 3-space γ and since D is a sca�ered F2-linear set, γ ∩D
is also a sca�ered F2-linear set. Since γ contains 2(q−1) points ofD on the lines li, l0 and (q−1)2

points of D de�ned in a unique way as a third point on the line A1A2, with A1 ∈ l0, A2 ∈ li, we
have that |D ∩ γ| = q2 − 1, and hence it is a maximum sca�ered linear set. By �eorem 11.2.12,
we �nd that γ ∩ D is of pseudoregulus type. �is means that it has transversal lines, say mi and
m′i, where P0 lies on mi and P ′0 lies on m′i. �is holds for every (q − 1)-secant li. �e number of
(q − 1)-secants to D, which are mutually disjoint, is exactly qk−1

q−1 , see Lemma 11.2.10, and so, the
number of 0-points is exactly 2 q

k−1
q−1 . �ere are qk−1

q−1 − 1 = qk−q
q−1 lines li di�erent from l0, and each

such line li de�nes a line mi full of 0-points. Since this line mi contains q points di�erent from P0,
we have proven that a 0-point P0 lies on qk−1−1

q−1 lines full of 0-points (call such lines 0-lines). Every
(q − 1)-secant li also contains a 0-point P ′i on a line m′i, hence every 0-point P0 is contained in
qk−1
q−1 lines containing precisely one other 0-point.

Let A and A′ be the set of all points on the lines mi and m′i respectively. �en we will show that
A ∪A′ is the union of two disjoint (k − 1)-spaces.

Consider a line containing two 0-points P1, P2, with l1 and l2 the (q − 1)-secants through P1, P2.
�en, as seen before, the intersection of the 3-space spanned by l1 and l2 with D is a linear set of
pseudoregulus type, and hence the line P1P2 contains 2 or q + 1 0-points. �is shows that every
line in PG(2k−1, q) intersectsA∪A′ in 0, 1, 2 or q+1 points. �is in turn implies that a plane with
three 0-lines only contains 0-points. Consider now a point P3 on a 0-line through P0, and consider
a 0-line m 6= P0P3 through P3. If m contains a point P4 6= P3 such that P4P0 is a 0-line through
P0, then we see that the plane 〈P0,m〉 only contains 0-points. In the other case,m contains at least
two 0-points on 0-lines through P ′0. In this case, all the points in the plane 〈P ′0,m〉 are 0-points,
and hence the line P3P

′
0 is a 0-line, a contradiction. So we �nd that every 0-line through a 0-point

ofA is contained inA. Since every point ofA lies on qk−1−1
q−1 0-lines, andA contains qk−1

q−1 0-points,
we �nd that every 2 points ofA are contained in a 0-line ofA. �e same argument works for the set
A′. �is shows thatA forms a subspace and likewiseA′ forms a subspace. Since |A| = |A′| = qk−1

q−1 ,
these subspaces are (k − 1)-dimensional. �

11.2.4 �ere exists a suitable Desarguesian (k − 1)-spread S in PG(2k − 1, q)

Consider the sca�ered linear setD ⊂ H∞ of pseudoregulus type. Let T0 and T∞ be the transversal
(k−1)-spaces to the pseudoregulus de�ned byD found in �eorem 11.2.13. Now we want to show
that there exists a Desarguesian (k− 1)-spread S in PG(2k− 1, q) such that T0, T∞ ∈ S and such
that every other (k − 1)-space of S has precisely one point in common with D.

Lemma 11.2.14. �ere exists a Desarguesian (k−1)-spreadS in PG(2k−1, q), such thatT0, T∞ ∈ S
and such that every other element of S has precisely one point in common with D.
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Proof. We prove this lemma using the representation of Result 11.1.3, in which we consider U0, U∞
as Fqk . By [87, �eorem 3.7] we �nd that the linear sets Lρ,f and Lρ′,g are equivalent if and only
if σf = σ±1

g , where σf and σg are the �eld automorphisms associated with f and g respectively.
Hence, up to equivalence, we may suppose that ρ = 1 and f : Fqk → Fqk : t→ t2

i , gcd(i, hk) = 1.

It follows that D is equivalent to the set of points Pu with

Pu :=
(
u, u2i

)
q
, u ∈ F∗qk .

�e transversal spaces T0 and T∞ are the point sets T0 = {(u, 0)|u ∈ F∗
qk
} and T∞ = {(0, u)|u ∈

F∗
qk
}.

Consider now the set S0 of (k − 1)-spaces Tu, u ∈ F∗
qk

, with

Tu :=

{(
αu, αu2i

)
q
| α ∈ F∗qk

}
. (11.1)

We will show that the set S = S0 ∪ {T0, T∞} is a (k − 1)-spread of PG(2k − 1, q). Suppose that
P = Tu1 ∩ Tu2 , for some u1, u2 /∈ {0,∞}, then there exist elements α1, α2 ∈ F∗

qk
, µ ∈ F∗q , such

that {
α1u1 = µα2u2

α1u
2i
1 = µα2u

2i
2

(11.2)

with µ ∈ F∗q . �is implies that u2i−1
1 = u2i−1

2 or
(
u1
u2

)2i

= u1
u2

. Hence, u1u2 ∈ F2i ∩ F2hk which is
F2 since gcd(i, hk) = 1. Since u1, u2 ∈ F∗

qk
, this implies that u1 = u2, and that Tu1 = Tu2 . In

particular, we see that Tu 6= Tu′ for u 6= u′ ∈ F∗
qk

. Since T0 and T∞ are distinct from Tu for all
u ∈ F∗

qk
, we obtain that |S| = qk + 1.

We will now show that Tu ∩ T0 = ∅ for all u ∈ F∗
qk

. If P = Tu ∩ T0, u /∈ {0,∞} for some u ∈ F∗
qk

,
then P = (u′, 0)q with u′ ∈ F∗

qk
and {

αu = µu′

αu2i = 0

for some µ ∈ F∗q and α ∈ F∗
qk

. �e second equality gives a contradiction since u 6= 0 6= α. Hence,
Tu ∩ T0 = ∅. It follows from a similar argument that Tu ∩ T∞ = ∅. �is shows that S is a spread
which is Desarguesian as seen in Subsection 11.1.1. �

Remark 11.2.15. In [87, �eorem 3.11(i)], a geometric construction of the Desarguesian spread,
found in Lemma 11.2.14, using indicator sets, is given.

11.2.5 �e point set Q de�nes a translation hyperoval in the André/Bruck-Bose
plane P(S)

�e Desarguesian spread S found in Lemma 11.2.14 de�nes the projective plane P(S) = Πqk
∼=

PG(2, qk) by the André/Bruck-Bose construction. �e transversal (k−1)-spaces T0, T∞ ∈ S to the
pseudoregulus associated with D correspond to points P0, P∞ contained in the line `∞ at in�nity
of PG(2, qk).

182



11 Translation hyperovals and F2−linear sets of pseudoregulus type

�eorem 11.2.16. �e set Q, together with T0 and T∞, de�nes a translation hyperoval in Πqk
∼=

PG(2, qk).

Proof. Let A be the set of points in Πqk corresponding to the point set Q of Ψq . Recall that T0

corresponds to a point P0 and T∞ to a point P∞, contained in the line `∞ of Πqk . We �rst show
that every line in PG(2, qk) contains at most 2 points of the setH = A ∪ P0 ∪ P∞.

• �e line `∞ at in�nity only contains the points P0 and P∞.

• Consider a line l 6= `∞ through P0 in PG(2, qk). �is line corresponds to a k-space through
T0 in PG(2k, q). As P0 ∈ l ∩ H, we have to show that this k-space contains at most one
a�ne point ofQ. If this space would contain 2 (or more) a�ne pointsX1, X2 ∈ Q, then they
would de�ne a direction of D at in�nity in T0. But this is impossible as T0 has no points of
D. �is argument also works for the lines through P∞, di�erent from `∞.

• Consider a line l through a point Pi, i /∈ {0,∞}, at in�nity. �is point Pi corresponds
to an element Ti ∈ S that intersects the pseudoregulus D in a unique point Xi. �e line l
corresponds to a k-space γ in PG(2k, q) through Ti. Suppose that γ contains at least 3 points
from Q, say X,Y, Z . By Lemma 11.2.2, these points are not collinear, hence they determine
at least two di�erent points of D which are contained in Ti, a contradiction by the choice of
S , see Lemma 11.2.14. �is proves that γ contains at most two points of Q, which implies
that the line l contains at most two points of A.

SinceH has size qk + 2, it follows thatH is a hyperoval.

Finally consider the group G of elations in PG(2hk, 2) with axis the hyperplane at in�nity H̃∞.
Since the points of Q̃ form a subspace, we see that G acts transitively on the points of Q̃. Every
element of G induces an element of the group G′ of elations in PG(2, qk) with axis the line P0P∞.
Hence, G′ acts transitively on the points of A in PG(2, qk). �is shows that H is a translation
hyperoval. �

11.2.6 Every translation hyperoval de�nes a linear set of pseudoregulus type

In this section, we show that the vice versa part of �eorem 11.1.4 holds.

Proposition 11.2.17. Via the André/Bruck-Bose construction, the set of a�ne points of a translation
hyperoval in PG(2, qk), q = 2h, where h, k ≥ 2 corresponds to a setQ of qk a�ne points in PG(2k, q)
whose set of determined directions D is an F2-linear set of pseudoregulus type.

Proof. Consider a translation hyperoval H of PG(2, qk). Without loss of generality we may sup-
pose that H = {(1, t, t2i)qk |t ∈ Fqk} ∪ {(0, 1, 0)qk , (0, 0, 1)qk} with gcd(i, hk) = 1. Let l∞ =
〈(0, 1, 0)qk , (0, 0, 1)qk〉 be the line at in�nity. �e set of a�ne points of H corresponds to the set
of points H ′ = {(1, t, t2i)q ∈ Fq ⊕ Fqk ⊕ Fqk |t ∈ Fqk} in PG(2k, q) (for more information about
the use of these coordinates for H and H ′, see [105]). �e determined directions in the hyperplane
at in�nity H∞ : X0 = 0 have coordinates (0, t1 − t2, t2

i

1 − t2
i

2 )q where t1, t2 ∈ Fqk . So the set
D = {(0, u, u2i)q|u ∈ Fqk} is precisely the set of directions determined by the points of H . By
Result 11.1.3, we �nd that this set of directions D is an F2-linear set of pseudoregulus type in the
hyperplane H∞. �

We will now show that every line in PG(2k−1, q) intersects the points of the linear setD in 0, 1, 3
or q − 1 points.

183



11 Translation hyperovals and F2−linear sets of pseudoregulus type

Proposition 11.2.18. LetD be the set of points of an F2-linear set of pseudoregulus type in PG(2k−
1, q), q = 2h, h > 2, k ≥ 2. �en every line of PG(2k − 1, q) meets D in 0, 1, 3 or q − 1 points.

Proof. We use the representation of Result 11.1.3 for the points of D. Let R1 = (u1, f(u1))q and
R2 = (u2, f(u2))q , u1, u2 ∈ U0, be two points of D not on the same line of the pseudoregulus, so
the vectors 〈u1〉 and 〈u2〉 in V (k, q) are not an Fq-multiple (in short 〈u1〉q 6= 〈u2〉q). Recall that f
is an invertible semi-linear map with automorphism σ ∈ Aut(Fq), Fix(σ) = {0, 1}. A third point
R3 = (u3, f(u3))q ∈ D is contained in R1R2 if and only if there are µ, λ ∈ Fq such that{

u1 + λu2 = µu3

f(u1) + λf(u2) = µf(u3)

⇔
{
f(u1)+λσf(u2) = µσf(u3)
f(u1) + λf(u2) = µf(u3)

⇔
{
f(u1)+λσf(u2) = µσf(u3)
(λσ − λ)f(u2) = (µσ − µ)f(u3)

⇔
{
f(u1 + λu2) = f(µu3)

f((λ−λσ−1
)u2) = f((µ− µσ−1

)u3)

⇔
{
u1 + λu2 = µu3

(λσ − λ)σ
−1
u2 = (µ− µσ−1

)u3

As R2 and R3 lie on di�erent (q − 1)-secants to D, we have that R2 6= R3 and so, 〈u2〉q 6= 〈u3〉q .
It follows that λσ − λ = µ − µσ−1

= 0, so λ, µ ∈ Fix(σ) = {0, 1}. We �nd that there is only
one solution of this system, such that R1 6= R3 (i.e. 〈u1〉q 6= 〈u3〉q), namely when λ = µ = 1.
Hence, given two points R1, R2 in D, there is a unique point R3 ∈ D ∩ R1R2, di�erent from R1

and R2. �

11.3 �e generalisation of a characterisation of Barwick and
Jackson

Using �eorem 11.1.4, we are now able to generalise the following result of Barwick-Jackson which
concerns translation hyperovals in PG(2, q2) ([7]).

Result 11.3.1 ([7, �eorem 1.2]). Consider PG(4, q), q even, q > 2, with the hyperplane at in�nity
denoted by Σ∞. Let C be a set of q2 a�ne points, called C-points and consider a set of planes called
C-planes which satis�es the following:

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) �e a�ne points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

�en there exists a Desarguesian spread S in Σ∞ such that in the Bruck-Bose planeP(S) ∼= PG(2, q2),
the C-points, together with 2 extra points on `∞, form a translation hyperoval in PG(2, q2).
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Remark 11.3.2. At two di�erent points, the proofs of [7] are inherently linked to the fact that they
are dealing with hyperovals in PG(2, q2). In [7, Lemma 4.1] the authors show the existence of a
design which is isomorphic to an a�ne plane, of which they later need to use the parallel classes.
In [7, �eorem 4.11], they use the Klein correspondence to represent lines in PG(3, q) in PG(5, q).
Both techniques cannot be extended in a straightforward way to qk, k > 2.

�e following Proposition shows that a set of C-planes as de�ned by Barwick and Jackson in [7]
(using PG(2k, q) instead of PG(4, q)) satis�es the conditions of �eorem 11.1.4.

Proposition 11.3.3. Consider PG(2k, q), q even, q > 2, with the hyperplane at in�nity denoted
by H∞. Let C be a set of qk a�ne points, called C-points and consider a set of planes called C-planes
which satis�es the following:

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) �e a�ne points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

�en C determines a set of qk − 1 directions D in H∞ such that every line of H∞ meets D in 0, 1, 3
or q − 1 points.

Proof. Note that all C-points are a�ne. Since every two C-points lie on a C-plane which meets C in
a q-arc, we have that no three C-points are collinear.

Let P0 be a C-point and let D0 be the set of points of the form P0Pi ∩ H∞, where Pi 6= P0 is a
point of C. We �rst show that every line meets D0 in 0, 1, 3 or q − 1 points. Let M be a line of
H∞ containing 2 points of D0, say R′1 = P0R1 ∩ H∞, R′2 = P0R2 ∩ H∞, where R1, R2 ∈ C.
�en 〈M,P0〉 contains at least 3 points of C, and hence, by (A4), either it is a C-plane or it contains
exactly 4 points of C. If 〈M,P0〉 is a C-plane, it contains q points of C forming a q-arc, and hence,
M contains q − 1 points of D0. Now suppose that 〈M,P0〉 contains exactly 4 C-points, then M
contains 3 points of D0.

Now let P1 6= P0 be a point of C and let D1 be the set of points of the form P1Pi ∩ H∞, where
Pi 6= P1 is a point of C. We claim that D0 = D1. Let P ′1 = P0P1 ∩H∞. We see that P ′1 ∈ D0 ∩D1.
Consider a point P ′2 6= P ′1 in D0, then P0P2 ∩ H∞ = P ′2 for some P2 ∈ C. Consider the plane
π = 〈P0, P1, P2〉.

Suppose �rst that π is not a C-plane, then, by (A4), π contains exactly one extra point, say P3 of
C. �e lines P0P1 and P2P3 lie in π and hence, meet in a point Q. By (A2), there is a C-plane µ
through P0P1, and likewise, there is a C-plane µ′ through P2P3. Since π is not a C-plane, µ and
µ′ are two distinct C-planes through Q. By (A3) this implies that Q is a point of H∞. Likewise,
P0P2 ∩ P1P3 and P0P3 ∩ P1P2 are points of H∞. It follows that D0 ∩ π = D1 ∩ π. �is argument
shows that for all pointsR 6= P ′1 ∈ D0 such that 〈P0, P1, R〉 is not a C-plane, we have thatR ∈ D1.
Now P0P1 lies on a unique C-plane, say ν. Let ν ∩H∞ = L, then we have shown that 〈P0, P1, R〉
is not a C-plane as long as R ∈ H∞ is not on L. We conclude that D0 \ L = D1 \ L.

Now assume that D0 6= D1 and let X be a point in D1 which is not contained in D0. �en X ∈ L
and P1X contains a point Y 6= P1 ∈ C. Consider a point P ′4 ∈ D1, not on L, then P1P

′
4 contains a

point P4 6= P1 of C. Since P ′4 ∈ D1 \ L, P ′4 ∈ D0 so the line P ′4P0 contains a point P5 6= P1 of C.

�e plane 〈P1, P
′
4, X〉 is not a C-plane since otherwise, the points P1 and Y of C would lie in two

di�erent C-planes. �is implies that 〈P1, P4, X〉, which contains the C-points P1, P4, Y , contains
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exactly one extra point of C, say P6. Denote P1P6 ∩ H∞ by P ′6. We see that there are exactly 3
points of D1 on the line P ′4X , namely P ′4, X and P ′6.

Now P ′6 is a point of D1, not on L, so P ′6 ∈ D0. Hence, there is a point S 6= P0 ∈ C on the line
P0P

′
6.

If 〈P ′4, P ′6, P0〉 is not a C-plane, then, since it contains P0, P5, S of C, it contains precisely 3 points
ofD0 at in�nity. �ese are the points P ′4, P ′6 and one other point, say T , which needs to be di�erent
from X by our assumption that X /∈ D0. �at implies that T is not on L, and hence, T ∈ D1. �is
is a contradiction since we have seen that the only points of D1 on P ′4X are P ′4, X and P ′6. Now
if 〈P ′4, P6, P0〉 is a C-plane, we �nd q − 1 points of D0 on P ′4X , all of them are not on L. Hence,
we �nd q− 1 points of D1 on P ′4X , not on L. �is is again a contradiction since P ′4X has only the
points P ′4 and P ′6 of D1 not on L.

�is proves our claim that D0 = D1. Since P1 was chosen arbitrarily, di�erent from P0, and
D0 = D1, we �nd that the setD of directions determined by C is precisely the setD0. �e statement
now follows from the fact that a line meets D0 in 0, 1, 3 or q − 1 points. �

Proposition 11.3.3 shows that the set C satis�es the criteria of �eorem 11.1.4. Hence, we �nd the
following generalisation of Result 11.3.1.

�eorem 11.3.4. Consider PG(2k, q), q even, q > 2, with the hyperplane at in�nity denoted byH∞.
Let C be a set of qk a�ne points, called C-points, and consider a set of planes, called C-planes, which
satis�es the following:

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) �e a�ne points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

�en there exists a Desarguesian spreadS inH∞ such that in the Bruck-Bose planeP(S) ∼= PG(2, qk),
the C-points, together with 2 extra points on `∞, form a translation hyperoval in PG(2, qk).
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A English summary

“ I guess ice cream is one of those things that are beyond imagination. ”—Lucy Maud Montgomery

In this chapter, we give a short summary on the most important concepts and results in this thesis.
For more details, and for the proofs of the results, we refer to the chapters above.

�is thesis consist of three large parts. �e �rst part handles several intersection problems in projec-
tive and a�ne geometries. In the second part, we discuss Cameron-Liebler sets in a�ne, projective
and polar spaces. �e last part concerns translation hyperovals in PG(4, q), q even, for which we
use linear sets.

A.1 Introduction

Before we start with the �rst main part, we give a short introduction. In Chapter 1.1 several inci-
dence geometries are de�ned. �e most commonly used incidence geometry in this thesis is the
projective space PG(n, q) of dimension n over the �eld Fq with q elements, q a prime power. �is is
the geometry of subspaces of an (n+ 1)-dimensional vector space over the same �eld. �e projec-
tive dimension of a subspace in PG(n, q) is the vector dimension of the corresponding vector space,
minus one. In this thesis, we only work with projective dimensions. Subspaces of dimension k are
also called k-spaces. �e number of points in an n-dimensional projective space is θn = qn+1−1

q−1 ,
while the number of k-spaces in an n-dimensional projective space is given by the Gaussian bino-
mial coe�cient

[
n+1
k+1

]
q
.

An a�ne space AG(n, q) is the incidence geometry obtained from a projective space PG(n, q), by
removing an (n−1)−dimensional space, or hyperplaneH , together with all its incident subspaces.
�is hyperplane is also called the hyperplane at in�nity.

�e �nite classical polar spaces are incidence geometries embedded in a projective space PG(n, q).
�ey consist of the totally isotropic subspaces of a vector space V (n + 1; q), with respect to a
quadratic, symplectic or Hermitian form, and are equipped with the natural incidence relation.

A.2 Intersection problems

�e �rst main part of this thesis handles intersection problems. In this part, we discuss the classi�ca-
tion of several (large) families of subspaces in projective and a�ne spaces, that meet pre-established
conditions.
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A.2.1 Sets of k-spaces pairwise intersecting in at least a (k − 2)-space

In this �rst research project, large families of k-spaces, pairwise intersecting in at least a (k −
2)-space in PG(n, q), are studied. �e largest set is a (k − 2)-pencil. �is is the set of k-spaces
containing a �xed (k−2)-space. �is was proven for general t-spaces by P. Frankl and R.M. Wilson.

�eorem A.2.1. [60, Theorem 1] Let t and k be integers, with 0 ≤ t ≤ k. Let S be a set of k-spaces
in PG(n, q), pairwise intersecting in at least a t-space.

(i) If n ≥ 2k + 1, then |S| ≤
[
n−t
k−t
]
. Equality holds if and only if S is the set of all the k-spaces,

containing a �xed t-space of PG(n, q), or n = 2k + 1 and S is the set of all the k-spaces in a
�xed (2k − t)-space.

(ii) If 2k − t ≤ n ≤ 2k, then |S| ≤
[
2k−t+1
k−t

]
. Equality holds if and only if S is the set of all the

k-spaces in a �xed (2k − t)-space.

In this thesis, the case t = k − 2 is studied. We classify the ten largest maximal examples of sets
of k-spaces pairwise intersecting in at least a (k − 2)-space. For �gures of the examples below, we
refer to Chapter 3.

Example A.2.2. Examples of maximal sets S of k-spaces in PG(n, q) pairwise intersecting in at least
a (k − 2)-space.

(i) (k − 2)-pencil: the set S is the set of all k-spaces that contain a �xed (k − 2)-space. �en
|S| =

[
n−k+2

2

]
.

(ii) Star: there exists a k-space ζ such that S contains all k-spaces that have at least a (k−1)-space
in common with ζ . �en |S| = qθkθn−k−1 + 1.

(iii) Generalized Hilton-Milner example: there exists a (k + 1)-space ν and a (k − 2)-space π ⊂ ν
such that S consists of all k-spaces in ν, together with all k-spaces of PG(n, q), not in ν, through
π that intersect ν in a (k − 1)-space. �en |S| = θk+1 + q2(q2 + q + 1)θn−k−2.

(iv) �ere exists a (k + 2)-space ρ, a k-space α ⊂ ρ and a (k − 2)-space π ⊂ α so that S contains
all k-spaces in ρ that meet α in a (k − 1)-space not through π, all k-spaces in ρ through π,
and all k-spaces in PG(n, q), not in ρ, that contain a (k − 1)-space of α through π. �en
|S| = (q + 1)θn−k + q3(q + 1)θk−2 + q4 − q.

(v) �ere is a (k+ 2)-space ρ, and a (k−1)-space α ⊂ ρ such that S contains all k-spaces in ρ that
meet α in at least a (k − 2)-space, and all k-spaces in PG(n, q), not in ρ, through α. Note that
all k-spaces in PG(n, q) through α are contained in S . �en |S| = θn−k + q2(q2 + q+ 1)θk−1.

(vi) �ere are two (k + 2)-spaces ρ1, ρ2 intersecting in a (k + 1)-space α = ρ1 ∩ ρ2. �ere are two
(k−1)-spaces πA, πB ⊂ αwith πA∩πB the (k−2)-spaceλ, there is a pointPAB ∈ α\〈πA, πB〉,
and let λA, λB ⊂ λ be two di�erent (k − 3)-spaces. �en S contains

– all k-spaces in α,

– all k-spaces of PG(n, q) through 〈PAB, λ〉, not in ρ1 and not in ρ2.

– all k-spaces in ρ1, not in α, through PAB and a (k − 2)-space in πA through λA,

– all k-spaces in ρ1, not in α, through PAB and a (k − 2)-space in πB through λB ,

– all k-spaces in ρ2, not in α, through PAB and a (k − 2)-space in πA through λB ,

– all k-spaces in ρ2, not in α, through PAB and a (k − 2)-space in πB through λA.
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�en |S| = θn−k + q2θk−1 + 4q3.

(vii) �ere is a (k− 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ, the
set of planes corresponding to the elements of S is the set of planes of example V III in [33]: Let
Ψ be an (n − k + 2)-space, disjoint from γ, in PG(n, q). Consider two solids σ1 and σ2 in Ψ,
intersecting in a line l. Take the points P1 and P2 on l. �en S is the set containing all k-spaces
through 〈γ, l〉, all k-spaces through 〈γ, P1〉 that contain a line in σ1 and a line in σ2 skew to γ,
and all k-spaces through 〈γ, P2〉 in 〈γ, σ1〉 or in 〈γ, σ2〉. �en |S| = θn−k + q4 + 2q3 + 3q2.

(viii) �ere is a (k− 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ, the
set of planes corresponding to the elements of S is the set of planes of example IX in [33]: Let
Ψ be an (n− k + 2)-space, disjoint from γ, in PG(n, q), and let l be a line and σ a solid skew
to l, both in Ψ. Denote 〈l, σ〉 by ρ. Let P1 and P2 be two points on l and let R1 and R2 be a
regulus and its opposite regulus in σ. �en S is the set containing all k-spaces through 〈γ, l〉,
all k-spaces through 〈γ, P1〉 in the (k + 1)-space generated by γ, l and a �xed line of R1, and
all k-spaces through 〈γ, P2〉 in the (k + 1)-space generated by γ, l and a �xed line ofR2. �en
|S| = θn−k + 2q3 + 2q2.

(ix) �ere is a (k− 3)-space γ contained in all k-spaces of S . In the quotient space PG(n, q)/γ, the
set of planes corresponding to the elements of S is the set of planes of example V II in [33]: Let
Ψ be an (n− k+ 2)-space, disjoint from γ in PG(n, q) and let ρ be a 5-space in Ψ. Consider a
line l and a 3-space σ disjoint from l. Choose three points P1, P2, P3 on l and choose four non-
coplanar points Q1, Q2, Q3, Q4 in σ. Denote l1 = Q1Q2, l̄1 = Q3Q4, l2 = Q1Q3, l̄2 = Q2Q4,
l3 = Q1Q4, and l̄3 = Q2Q3. �en S is the set containing all k-spaces through 〈γ, l〉 and all
k-spaces through 〈γ, Pi〉 in 〈γ, l, li〉 or in 〈γ, l, l̄i〉, i = 1, 2, 3. �en |S| = θn−k + 6q2.

(x) S is the set of all k-spaces contained in a �xed (k + 2)-space ρ. �en |S| =
[
k+3

2

]
.

Main �eorem A.2.3. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k− 2)-
space in PG(n, q), n ≥ 2k, k ≥ 3 . Let

f(k, q) =

{
3q4 + 6q3 + 5q2 + q + 1 if k = 3, q ≥ 2 or k = 4, q = 2

θk+1 + q4 + 2q3 + 3q2 else.

If |S| > f(k, q), then S is one of the families described in Example A.2.2. Note that for n > 2k + 1,
the examples (i)− (ix) are stated in decreasing order of the sizes.

A.2.2 Hilton-Milner problems in PG(n, q) and AG(n, q)

As already mentioned above, we know that the largest set of k-spaces, pairwise intersecting in a
t-space in PG(n, q), n ≥ 2k + 1 is a t-pencil. �is example is o�en called the trivial example.
Guo and Xu proved that the largest set of k-spaces pairwise intersecting in a t-space in AG(n, q),
n ≥ 2k + t + 2 is t-pencil as well, see [69]. In Chapter 4 the two largest non-trivial examples of
k-spaces pairwise intersecting in at least a t-space, in both PG(n, q) and AG(n, q) are classi�ed
for n ≥ 2k + t+ 3 and q ≥ 3. For this, we suppose that k ≥ t+ 1.

We start with examples of t-intersecting sets in the projective se�ing.

Example A.2.4. Suppose k ≥ t+ 1 and let γ be a (t+ 2)-space in PG(n, q), n ≥ 2k− t+ 1. Let S
be the set of all k-spaces in PG(n, q), meeting γ in at least a (t+ 1)-space.
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Example A.2.5. Let δ be a t-space, t ≤ k−1, in PG(n, q), n ≥ 2k−t+1, and let ξ be a (k+1)-space
in PG(n, q) with δ ⊂ ξ. Let S1 be the set of all k-spaces in ξ. Let S2 be the set of all k-spaces through
δ and meeting ξ in at least a (t+ 1)-space. Let S be the union of the sets S1 and S2.

Note that these examples correspond to Examples A.2.2(ii) and (iii) respectively for t = k − 2.
�ese are the largest non-trivial examples of t-intersecting sets of k-spaces in PG(n, q).

�eorem A.2.6. Let Sp be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n, q), k ≥ t+ 2, t ≥ 1, with q ≥ 3, and n ≥ 2k + t+ 3. If Sp is not a t-pencil, then

|Sp| ≤

{
θk+1 − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

if k > 2t+ 2

θt+2 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
if k ≤ 2t+ 2.

.

Equality occurs if and only if Sp is Example A.2.4 for k ≤ 2t+ 2 or Example A.2.5 for k ≥ 2t+ 3 .

Now we give two examples of large t-intersecting sets of k-spaces in AG(n, q). For an a�ne spaceα
we denote the projective extension of α by α̃, and letH∞ = PG(n, q)\AG(n, q) be the hyperplane
at in�nity.

Example A.2.7. Suppose k ≥ t + 1. Let γ be an a�ne (t + 2)-space in AG(n, q), and let R
be a set of θt+1 a�ne (t + 1)-spaces in γ such that for every two distinct elements σ1, σ2 ∈ R,
σ̃1 ∩H∞ 6= σ̃2 ∩H∞. Note that every two di�erent elements of R meet in an a�ne t-space. Let S be
the set of all k-spaces in AG(n, q), containing γ or meeting γ in an element ofR.

Example A.2.8. Let δ be a t-space, k ≥ t+ 1, in AG(n, q), and let ξ be a (k+ 1)-space in AG(n, q)
with δ ⊂ ξ. Let S1 be a maximal set of a�ne k-spaces in ξ, such that for any two elements π1, π2 of
S1, π̃1 ∩ H∞ 6= π̃2 ∩ H∞, and such that for every π1 ∈ S1: δ̃ ∩ H∞ * π̃1. Let S2 be the set of all
k-spaces through δ and meeting ξ in at least a (t+ 1)-space. Let S be the union of the sets S1 and S2.

We �nd that the largest non-trivial t-intersecting sets in AG(n, q) arise from one of these two
examples; which one depends on whether k ≥ 2t+ 2 or not.

�eorem A.2.9. Let Sa be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n, q), k ≥ t+ 2, t ≥ 1, with q ≥ 3, and n ≥ 2k + t+ 3. If Sa is not a t-pencil, then

|Sa| ≤

{
θk − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

if k > 2t+ 1

θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
if k ≤ 2t+ 1.

Equality occurs if and only if Sa is Example A.2.7 for k ≤ 2t+ 1 or Example A.2.8 for k ≥ 2t+ 2.

A.2.3 �e Sun�ower bound

In the previous sections, we investigate subspaces pairwise intersecting in at least a subspace of a
certain dimension. In Chapter 5 we investigate sets of k-spaces in PG(n, q) pairwise intersecting
in precisely a point. More generally, a (k+ 1, t+ 1)-SCID is a set of k-spaces, pairwise intersecting
in exactly a t-space. An example of such a SCID is the set S of k-spaces, such that for each π, τ ∈ S
it holds that π ∩ τ = γ, for a t-space γ. �is example is a sun�ower with vertex γ. �e Sun�ower
bound states that if the number of elements in a (k + 1, t + 1)-SCID S surpasses the Sun�ower
bound, then S must be a sun�ower.

�eorem A.2.10. [56, �eorem 1] A (k + 1, t+ 1)-SCID S in PG(n, q), is a sun�ower if

|S| >
(
qk+1 − qt+1

q − 1

)2

+

(
qk+1 − qt+1

q − 1

)
+ 1.
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In Chapter 5 we improve this bound for k ≥ 3 and q ≥ 7. For k = 1 and k = 2, a complete
classi�cation is known: every (k + 1, k)-SCID is a sun�ower or consists of all k-spaces in a �xed
(k + 1)-space. For the classi�cation of (3, 1)-SCIDs, we refer to [9].

�eorem A.2.11. A (k + 1, 1)-SCID in PG(n, q), k ≥ 3, q ≥ 7, with more than Fqθ2
k elements is a

sun�ower. Here we use

Fq =
1

2

(
Bq
c2
q

− 1

q
−

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

))

with

Bq = (1− cq)2

(
1− cq −

1

q3

)2(
1− cq −

cq
q

)(
1− cq −

1 + cq
q

)
q,

cq = 1− 1
6
√
q
− 1

2 3
√
q
.

In particular, we have that a (k + 1, 1)-SCID in PG(n, q), with more than
(

2
6
√
q + 4

3
√
q −

5√
q

)
θ2
k

elements is a sun�ower.

A.2.4 �e chromatic number of some q-Kneser graphs

A �ag in PG(n, q) is a set F of non-trivial subspaces of PG(n, q) (that is, di�erent from ∅ and
PG(n, q)) such that for all α, β ∈ F one has α ⊂ β or β ⊂ α. �e subset {dim(α) + 1 | α ∈ F},
where we use the projective dimension, is called the type of F and it is a subset of {1, 2, . . . , n}.
Two �ags F and G are in general position if α ∩ β = ∅ or 〈α, β〉 = PG(n, q) for all α ∈ F and
β ∈ G.

For Ω ⊆ {1, 2, . . . , n} the q-Kneser graph qKn+1;Ω is the graph whose vertices are all �ags of type
Ω of PG(n, q) with two vertices adjacent when the corresponding �ags are in general position. We
are interested in the chromatic number of these graphs.

For any point P ∈ PG(n, q), we de�ne the set FΩ(P ) as the set of all �ags F of type Ω ⊆
{2, 3, . . . , n} for which F ∪ {P} is a �ag. We call FΩ(P ) the point-pencil (of �ags of type Ω)
with base point P .

We determine the chromatic number of the graphs qK5;Ω for Ω = {2, 4} and q 6= 2, and for
qK2d+1;{d,d+1}, with d ≥ 2 and q very large.

We used the independence number as well as structural information on large cocliques of qK5;{2,4}
(see [14]), and of qK2d+1,{d,d+1} (see [11] for d = 2 and [94] for d = 3). For d ≥ 4, no structural
information on large cocliques is known yet, and so, in this case, we need an extra assumption, see
Conjecture A.2.15. We could prove the following results.

�eorem A.2.12. For q ≥ 3 the chromatic number of the Kneser graph qK5;{2,4} is θ3. Moreover,
each color class of a minimum coloring is contained in a unique point-pencil and the base points of the
obtained points-pencil are the points in a �xed solid.

�eorem A.2.13. For q > 160·365, the chromatic number of the Kneser graph qK5;{2,3} is q3+q2+1.
Up to duality, for each color class C of a minimum coloring there is a unique point-pencil F such that
F ∪ C is independent, and the base points of these point-pencils are q3 + q2 + 1 distinct points of a
solid.
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�eorem A.2.14. For q > 3 · 715 · 256, the chromatic number of the Kneser graph qK7;{3,4} is
q4 + q3 + q2 + 1. Up to duality, for each color class C of a minimum coloring there is a unique point-
pencil F such that F ∪C is independent, and the base points of these point-pencils are q4 +q3 +q2 +1
distinct points of a solid.

Conjecture A.2.15. For every integer d ≥ 4 there is an integer ρ(d) such that every maximal coclique
of the Kneser graph qK2d+1,{d,d+1} contains a point-pencil, the dual of a point-pencil, or has at most
ρ(d) · qd2+d−2 elements.

�eorem A.2.16. If Conjecture A.2.15 is true for some integer d ≥ 4, then

χ(qK2d+1,{d,d+1}) = θd+1 − q,

for su�ciently large q, depending on d and ρ(d). Moreover, if F is a family of this many maximal
cocliques that cover the vertex set, then — up to duality — there exists a (d+ 1)-dimensional subspace
U in PG(2d, q) and an injective map µ from F to set of points ofU such that the point-pencilF(µ(C))
is contained in C for all C ∈ F.

A.3 Cameron-Liebler sets

In the second part of the thesis, Cameron-Liebler sets in di�erent contexts are investigated. �e cen-
tral thread in this part can be summarized into two questions: What are the equivalent de�nitions
for these sets, and for which parameters x do there exists Cameron-Liebler sets? We investigate
both questions in projective, a�ne and polar spaces.

A.3.1 Cameron-Liebler sets of k-spaces in PG(n, q)

We investigate Cameron-Liebler sets of k-spaces in PG(n, q). For this, we list several equivalent
de�nitions for these Cameron-Liebler sets, by generalizing the known results about Cameron-
Liebler line sets in PG(n, q), see [51], and Cameron-Liebler sets of k-spaces in PG(2k + 1, q),
see [104].

LetA be the incidence matrix of the points and the k-spaces of PG(n, q): the rows ofA are indexed
by the points and the columns by the k-spaces. Let Vi, 0 ≤ i ≤ k, be the eigenspaces of the related
Grassmann scheme, using the classical ordering (see Subsection 10.1.1).

�eorem A.3.1. Let L be a non-empty set of k-spaces in PG(n, q), n ≥ 2k + 1, with characteristic

vector χ, and x so that |L| = x

[
n
k

]
. �en the following properties are equivalent.

1. χ ∈ im(AT ).

2. χ ∈ ker(A)⊥.

3. For every k-space π, the number of elements of L disjoint from π is (x− χ(π))
[
n−k−1

k

]
qk

2+k.

4. �e vector χ− x q
k+1−1
qn+1−1

j is a vector in V1.

5. χ ∈ V0 ⊥ V1.
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6. For a given i ∈ {1, . . . , k+ 1} and any k-space π, the number of elements of L, meeting π in a
(k − i)-space is given by:

(
(x− 1) qk+1−1

qk−i+1−1
+ qi q

n−k−1
qi−1

)
qi(i−1)

[
n− k − 1

i− 1

][
k

i

]
if π ∈ L

x

[
n− k − 1

i− 1

][
k + 1

i

]
qi(i−1) if π /∈ L

.

7. for every pair of conjugate switching k-setsR andR′, we have that |L ∩ R| = |L ∩ R′|.

If PG(n, q) admits a k-spread, then the following properties are equivalent to the previous ones.

8. |L ∩ S| = x for every k-spread S in PG(n, q).

9. |L ∩ S| = x for every Desarguesian k-spread S in PG(n, q).

De�nition A.3.2. A set L of k-spaces in PG(n, q) that ful�lls one of the statements in �eorem
A.3.1 (and consequently all of them) is called a Cameron-Liebler set of k-spaces in PG(n, q) with
parameter x = |L|

[
n
k

]−1.

Using the information we get from the equivalent de�nitions, together with some more properties
that we derived, we found classi�cation results for Cameron-Liebler sets of k-spaces in PG(n, q).
First note that a Cameron-Liebler set of k-spaces with parameter 0 is the empty set.
In the following lemma we start with the classi�cation for the parameters x ∈ ]0, 2[.

Lemma A.3.3. �ere are no Cameron-Liebler sets of k-spaces in PG(n, q) with parameter x ∈ ]0, 1[,
and if n ≥ 3k + 2, then there are no Cameron-Liebler sets of k-spaces with parameter x ∈ ]1, 2[. Let
L be a Cameron-Liebler set of k-spaces with parameter x = 1 in PG(n, q), n ≥ 2k + 1. �en L is a
point-pencil or n = 2k + 1 and L is the set of all k-spaces in a hyperplane of PG(2k + 1, q).

We end with the main classi�cation result of this project.

�eorem A.3.4. �ere are no Cameron-Liebler sets of k-spaces in PG(n, q), n ≥ 3k + 2 and q ≥ 3,

with parameter 2 ≤ x ≤ 1
8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.

A.3.2 Cameron-Liebler sets of k-spaces in AG(n, q)

In Section 4.4.3, we give an overview of the most important (equivalent) de�nition and classi�cation
results for Cameron-Liebler sets in a�ne spaces, proven in [46] and [44]. Similar to the de�nition
of Cameron-Liebler sets of k-spaces in PG(n, q), we have the following de�nition in the a�ne
context.

De�nition A.3.5. A set L of k-spaces in AG(n, q) is a Cameron-Liebler set of k-spaces of param-
eter x in AG(n, q) if every k-spread in AG(n, q) has x elements in common with L.

In contrast to k-spreads in PG(n, q), we note that there exist k-spreads in AG(n, q), for every
n ≥ k, which implies that the de�nition above is well de�ned.

Due to the immediate link between PG(n, q) and AG(n, q), it is possible to classify Cameron-
Liebler sets in AG(n, q), by using the ideas for the same research project in projective spaces.

�eorem A.3.6. �ere are no Cameron-Liebler sets of k-spaces in AG(n, q), n ≥ 3k + 2 and q ≥ 3,

with parameter 2 ≤ x ≤ 1
8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.
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A.3.3 Degree one Cameron-Liebler sets in �nite classical polar spaces

We study the sets of generators de�ned by the following de�nition, whereA is the incidence matrix
of points and generators.

De�nition A.3.7. A degree one Cameron-Liebler set of generators in a �nite classical polar space
P is a set of generators in P , with characteristic vector χ, such that χ ∈ im(AT ). �e parameter x
of a Cameron-Liebler set L in the polar space P of rank d and parameter e is equal to |L|∏d−2

i=0 (qe+i+1)
.

�is de�nition coincides with the de�nition of Boolean degree one functions for generators in po-
lar spaces, given in [59] by Y. Filmus and F. Ihringer. �eir de�nition corresponds to the fact that
the corresponding characteristic vector lies in V0 ⊥ V1, which are eigenspaces of the related asso-
ciation scheme (see Subsection 10.1.1). In [36], M. De Boeck, M. Rodgers, L. Storme and A. Švob
introduced Cameron-Liebler sets of generators in the �nite classical polar spaces. In this article,
Cameron-Liebler sets of generators in the polar spaces are de�ned by the disjointness-de�nition and
the authors give several equivalent de�nitions for these Cameron-Liebler sets. Note that this def-
inition is the polar-space-equivalent for the disjointness-de�nition in the projective context, see
�eorem A.3.1.3.

De�nition A.3.8 ([36]). Let P be a �nite classical polar space with parameter e and rank d. A set
L of generators inP is a Cameron-Liebler set of generators inP , with parameter x, if and only if for
every generatorπ inP , the number of elements ofL, disjoint fromπ equals (x−χ(π))q(

d−1
2 )+e(d−1).

Using association scheme notation we can interpret the previous de�nition as follows. �e char-
acteristic vector of a Cameron-Liebler set is contained in V0 ⊥ W , with W the eigenspace of the
disjointness matrix Ad corresponding to a speci�c eigenvalue. It can be seen that W always con-
tains V1, but it does not necessarily coincide with V1. Hence, every degree one Cameron-Liebler set
is a Cameron-Liebler set, and for some polar spaces Cameron-Liebler sets and degree one Cameron-
Liebler sets will coincide, but for others this will not be the case.

Note that we de�ned degree one Cameron-Liebler sets in an algebraic way. In general, Cameron-
Liebler sets in di�erent contexts can o�en be de�ned by using both algebraic and combinatorial
de�nitions. For these degree one Cameron-Liebler sets, we also found that this is possible, and we
could give an equivalent combinatorial de�nition.

�eorem A.3.9. Let P be a �nite classical polar space, of rank d with parameter e, let L be a set
of generators of P and i be an integer with 1 ≤ i ≤ d. If L is a degree one Cameron-Liebler set
of generators in P , with parameter x, then the number of elements of L meeting a generator π in a
(d− i− 1)-space equals

(
(x− 1)

[
d− 1
i− 1

]
+ qi+e−1

[
d− 1
i

])
q(
i−1
2 )+(i−1)e If π ∈ L

x

[
d− 1
i− 1

]
q(
i−1
2 )+(i−1)e If π /∈ L.

(A.1)

Moreover, if this property holds for a polar space P and an integer i such that

• i is odd for P = Q+(2d− 1, q), or

• i 6= d for P = Q(2d, q) or P = W (2d− 1, q) both with d odd, or

• i is arbitrary otherwise,

then L is a degree one Cameron-Liebler set with parameter x.
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Apart from these de�nitions, we also investigated for which values of the parameter x there exists
degree one Cameron-Liebler sets. For degree one Cameron-Liebler sets in W (5, q) and Q(6, q) we
found the following classi�cation result.

�eorem A.3.10. A degree one Cameron-Liebler set L of generators in W (5, q) or Q(6, q) with
parameter 2 ≤ x ≤ 3

√
2q2−

3√4q
3 + 1

6 is the union of α embedded hyperbolic quadrics Q+(5, q), that
pairwise have no plane in common, and x−2α point-pencils whose vertices are pairwise non-collinear
and not contained in the α hyperbolic quadrics Q+(5, q). For the polar space Q(6, q) or W (5, q) with
q even, α ∈ {0, ..., bx2 c}, for the polar space W (5, q) with q odd, α = 0.

A.3.4 New example of a degree one Cameron-Liebler set of generators in Q+(5, q)

We give an example of a new, non-trivial Cameron-Liebler set of generators in Q+(5, q), q odd.
To explain the construction of the example, we use the Klein correspondence between the lines of
PG(3, q) and the points of Q+(5, q).

Consider the hyperbolic quadricQ = Q+(3, q) in PG(3, q), de�ned by the equation x0x1 +x2x3 =
0. �e lines of Q correspond to the set of points of two conics C ∪C ′ in Q+(5, q), such that for the
planes α = 〈C〉 and α′ = 〈C ′〉, it holds that α′ is the image of α under the polarity of Q+(5, q).

Every point P ∈ PG(3, q) gives rise to a Latin plane πPl and a Greek plane πPg in Q+(5, q): the
points of πPl corresponds to all lines through P in PG(3, q), and the points of πPg corresponds to
all lines in the plane P⊥. Here, ⊥ is the polarity related to the quadric Q in PG(3, q).

De�nition A.3.11. A pointP (x0, x1, x2, x3) ∈ PG(3, q) is a square point if x0x1+x2x3 is a square
di�erent from 0 in Fq . A point P (x0, x1, x2, x3) ∈ PG(3, q) is a non-square point if x0x1 + x2x3 is
a non-square in Fq .

Now we can partition the set of planes in Q+(5, q) into the following sets.

• Sl =
{
πPl |P is a square point

}
• NS l =

{
πPl |P is a non-square point

}
• Ol =

{
πPl |P ∈ Q

}
• Sg =

{
πPg |P is a square point

}
• NSg =

{
πPg |P is a non-square point

}
• Og =

{
πPg |P ∈ Q

}
For a tangent line ` to Q, there are two possibilities; ` contains q square points, or ` contains q
non-square points, see [72, Table 15.5(c)]. In the �rst case ` is a square tangent line. In the later case,
` is a non-square tangent line.

We partition the set of points in Q+(5, q) into the following sets.

• �e set X1S of points in Q+(5, q) corresponding to the square tangent lines to Q.

• �e set X1NS of points in Q+(5, q) corresponding to the non-square tangent lines to Q.

• �e set X2 of points in Q+(5, q) corresponding to the 2-secants to Q.

• �e set X0 of points in Q+(5, q) corresponding to the lines disjoint from Q.

• �e set X∞ = C ∪ C ′ of points in Q+(5, q) corresponding to the lines of Q.

We could prove that the partitions {X1S ,X1NS ,X2,X0,X∞} and
{Sl,Sg,NS l,NSg,Ol,Og} form a point-tactical decomposition. By grouping the right partition
classes together, we found new Cameron-Liebler sets in Q+(5, q).
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�eorem A.3.12. Let q be an odd prime power.

• �e sets Sl ∪ Sg and NS l ∪ NSg are degree one Cameron-Liebler sets of planes in Q+(5, q),
with parameter q(q−1)

2 , q(q−1)
2 and q + 1 respectively, for q ≡ 1 mod 4.

• �e sets Sl ∪ NSg and Sg ∪ NS l are degree one Cameron-Liebler sets of planes in Q+(5, q),
with parameter q(q−1)

2 , q(q−1)
2 and q + 1 respectively, for q ≡ 3 mod 4.

A.4 Linear sets

In the last part of this thesis, we discuss a research project about translation hyperovals and F2-
linear sets. We give a link between the a�ne points of a translation hyperoval in PG(2, qk) and
the set of points of a sca�ered F2-linear set of pseudoregulus type in PG(2k − 1, q), seen as a set
of directions. For this, we used the Barlo�i-Cofman construction, which is a generalization of the
André/Bruck-Bose construction.

�e original aim of this research project was to generalize the following result of Barwick and
Jackson.

Result A.4.1 ([7, �eorem 1.2]). Consider PG(4, q), q even, q > 2, with the hyperplane at in�nity
denoted by Σ∞. Let C be a set of q2 a�ne points, called C-points and consider a set of planes called
C-planes which satis�es the following properties.

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) �e a�ne points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

�en there exists a Desarguesian spread S in Σ∞ such that in the André/Bruck-Bose plane P(S) ∼=
PG(2, q2), the C-points, together with 2 extra points on `∞ form a translation hyperoval in PG(2, q2).

In the search for a generalisation, we examined a collection C of qk a�ne points in PG(2k, q), q
even, q > 2, with similar combinatorial properties. �e techniques used by Barwick and Jackson
in the proof of the above result were not generalizable. Hence, we had to look for new techniques,
including the use of linear sets, more speci�cally, those of pseudoregulus type. We were able to
prove the following result.

�eorem A.4.2. Let Q be a set of qk a�ne points in PG(2k, q), q = 2h, h ≥ 4, k ≥ 2, determining
a set D of qk − 1 directions in the hyperplane at in�nity H∞ = PG(2k − 1, q). Suppose that every
line has 0, 1, 3 or q − 1 points in common with the point set D. �en

(1) D is an F2-linear set of pseudoregulus type.

(2) �ere exists a Desarguesian spread S in H∞ such that, in the André/Bruck-Bose plane P(S) ∼=
PG(2, qk), with H∞ corresponding to the line l∞, the points of Q together with 2 extra points
on `∞, form a translation hyperoval in PG(2, qk).

Vice versa, via the André/Bruck-Bose construction, the set of a�ne points of a translation hyperoval
in PG(2, qk), q > 4, k ≥ 2, corresponds to a set Q of qk a�ne points in PG(2k, q) whose set of
determined directions D is an F2-linear set of pseudoregulus type. Consequently, every line meets D
in 0, 1, 3 or q − 1 points.
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An immediate corollary of this theorem is the generalization of Result A.4.1.

�eorem A.4.3. Consider PG(2k, q), q even, q > 2, with the hyperplane at in�nity denoted by Σ∞.
Let C be a set of qk a�ne points, called C-points and consider a set of planes called C-planes which
satis�es the following properties.

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) �e a�ne points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

�en there exists a Desarguesian spread S in Σ∞ such that in the André/Bruck-Bose plane P(S) ∼=
PG(2, qk), the C-points, together with 2 extra points on `∞ form a translation hyperoval in PG(2, qk).
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B Nederlandstalige samenvatting

“ Wiskunde is als zuurstof, als het er is, merk je het niet.
Als het er niet zou zijn, merk je dat je niet zonder kunt. ”—Lex Schrijver

In deze Nederlandstalige samenva�ing geven we een kort overzicht van de belangrijkste begrippen
en resulaten uit deze thesis. Voor meer details en de bewijzen van de resultaten, verwijzen we naar
bovenstaande Engelstalige hoofdstukken.

Deze thesis bestaat uit drie delen. In het eerste deel bespreken we verschillende intersectieproble-
men in projectieve en a�ene ruimten. In het tweede deel worden Cameron-Lieblerverzamelingen
in a�ene, projectieve en polaire ruimten besproken. Het laatste deel van deze thesis gaat over
translatiehyperovalen in PG(4, q), q even, waarbij we gebruik maken van lineaire verzamelingen.

B.1 Inleiding

Voordat we starten met het eerste grote deel, geven we een korte inleiding. In Hoofdstuk 1.1 worden
incidentiemeetkundes gede�nieerd. De meest gebruikte incidentiemeetkunde in deze thesis is de
projectieve ruimte PG(n, q) van dimensie n over het veld Fq met q elementen, q een priemmacht.
Dit is de meetkunde van de deelruimten van een (n+ 1)-dimensionale vectorruimte over hetzelfde
veld. De projectieve dimensie van een deelruimte in PG(n, q) is de vectoriële dimensie van de
overeenkomstige vectorruimte min één. In deze thesis werken we steeds met projectieve dimensies
en deelruimten van dimensie k worden ook k-ruimten genoemd. Het aantal punten in een n-ruimte
is gelijk aan θn = qn+1−1

q−1 en het aantal k-ruimten in eenn-ruimte wordt gegeven door de Gaussische
binomiaalcoë�cient

[
n+1
k+1

]
q
.

Een a�ene ruimte AG(n, q) is de incidentiemeetkunde die men verkrijgt door in een projectieve
ruimte PG(n, q) een (n − 1)−ruimte, of hypervlak H , samen met alle incidente deelruimten te
verwijderen. Dit hypervlak wordt ook het hypervlak op oneindig genoemd.

De eindige klassieke polaire ruimten zijn incidentiemeetkundes, ingebed in een projectieve ruimte
PG(n, q). Ze bestaan uit de totaal isotrope deelruimten van een vectorruimte V (n + 1; q), met
betrekking tot een kwadratische, symplectische of Hermitische vorm, en zijn voorzien van de
natuurlijke incidentierelatie.

B.2 Intersectie problemen

Het eerste deel van deze thesis gaat over intersectie problemen. In dit gedeelte bespreken we de clas-
si�catie van verschillende (grote) verzamelingen van deelruimten in projectieve en a�ene ruimten,
die voldoen aan voorop opgestelde voorwaarden betre�ende hun paarsgewijze doorsnede.
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B.2.1 Verzamelingen van k-ruimten die paarsgewijs snijden in een (k− 2)-ruimte

In dit eerste onderzoeksproject werden grote verzamelingen van k-ruimten, die paarsgewijs snijden
in minstens een (k − 2)-ruimte in PG(n, q) bestudeerd. Het grootste voorbeeld hiervan is een
(k − 2)-bundel, of de verzameling van k-ruimten die een vaste (k − 2)-ruimte beva�en. Dit werd
bewezen, voor algemene t-ruimten door P. Frankl en R.M. Wilson.

Stelling B.2.1 ([60, �eorem 1]). Zij k en t gehele getallen, met 0 ≤ t ≤ k, en zij S een verzameling
van k-ruimten in PG(n, q), paarsgewijs snijdend in minstens een t-ruimte.

(i) Als n ≥ 2k + 1, dan geldt er dat |S| ≤
[
n−t
k−t
]
. Gelijkheid geldt enkel en alleen in het geval dat

S de verzameling is van alle k-ruimten die een vaste t-ruimte beva�en, of n = 2k + 1, en S is
de verzameling van alle k-ruimten in een vaste (2k − t)-ruimte.

(ii) Als 2k − t ≤ n ≤ 2k, dan geldt er dat |S| ≤
[
2k−t+1
k−t

]
. Gelijkheid geldt enkel en alleen in het

geval dat S de verzameling is van alle k-ruimten in een vaste (2k − t)-ruimte.

In deze thesis wordt het geval t = k − 2 behandeld. Hierin worden de tien grootste maximale
voorbeelden, van k-ruimten paarsgewijs snijdend in minstens een (k− 2)-ruimte besproken. Voor
�guren van onderstaande voorbeelden verwijzen we naar Hoofdstuk 3.

Voorbeeld B.2.2. Voorbeelden van maximale verzamelingen S van k-ruimten in PG(n, q) paars-
gewijs snijdend in een (k − 2)-ruimte.

(i) (k − 2)-bundel: de verzameling S van alle k-ruimten die een vaste (k − 2)-ruimte beva�en.
Dan is |S| =

[
n−k+2

2

]
.

(ii) Ster: er bestaat een k-ruimte ζ zodat S alle k-ruimten bevat die minstens een (k − 1)-ruimte
gemeen hebben met ζ . Dan is |S| = qθkθn−k−1 + 1.

(iii) Veralgemeend Hilton-Milner voorbeeld: er bestaat een (k+ 1)-ruimte ν en een (k−2)-ruimte
π ⊂ ν zodat S bestaat uit alle k-ruimten in ν, samen met alle k-ruimten door π die ν snijden
in minstens een (k − 1)-ruimte. Dan is |S| = θk+1 + q2(q2 + q + 1)θn−k−2.

(iv) Er bestaat een (k+ 2)-ruimte ρ, een k-ruimte α ⊂ ρ en een (k− 2)-ruimte π ⊂ α, zodat S alle
k-ruimten in ρ bevat die α snijden in een (k − 1)-ruimten niet door π, alle k-ruimten in ρ door
π, en alle k-ruimten in PG(n, q), niet in ρ, die een (k − 1)-ruimte van α door π beva�en. Dan
is |S| = (q + 1)θn−k + q3(q + 1)θk−2 + q4 − q.

(v) Er bestaat een (k + 2)-ruimte ρ, en een (k − 1)-ruimte α ⊂ ρ zodat S alle k-ruimten van
ρ bevat die α snijden in minstens een (k − 2)-ruimte, en alle k-ruimten in PG(n, q), door α
en niet in ρ. Merk op dat alle k-ruimten in PG(n, q) door α bevat zijn in S . Dan is |S| =
θn−k + q2(q2 + q + 1)θk−1.

(vi) Er bestaan twee (k+ 2)-ruimten ρ1, ρ2, snijdend in een (k+ 1)-ruimte α = ρ1∩ρ2. Daarnaast
zijn er twee (k − 1)-ruimten πA, πB ⊂ α met πA ∩ πB gelijk aan de (k − 2)-ruimte λ, en een
punt PAB ∈ α \ 〈πA, πB〉. Stel λA, λB ⊂ λ gelijk aan twee verschillende (k− 3)-ruimten. Dan
bevat S de volgende elementen

– alle k-ruimten in α,

– alle k-ruimten van PG(n, q) door 〈PAB, λ〉, maar niet bevat in ρ1 of ρ2.

– alle k-ruimten in ρ1, niet in α, door het punt PAB en een (k − 2)-ruimte in πA door λA,

– alle k-ruimten in ρ1, niet in α, door het punt PAB en een (k − 2)-ruimte in πB door λB ,
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– alle k-ruimten in ρ2, niet in α, door het punt PAB en een (k − 2)-ruimte in πA door λB ,

– alle k-ruimten in ρ2, niet in α, door het punt PAB een een (k − 2)-ruimte in πB door λA.

Dan is |S| = θn−k + q2θk−1 + 4q3.

(vii) Er bestaat een (k−3)-ruimte γ bevat in alle k-ruimten van S . In de quotiëntruimte PG(n, q)/γ,
is de verzameling van vlakken, komende van de elementen van S , de verzameling van de vlakken
van voorbeeld V III in [33]: beschouw een (n − k + 2)-ruimte Ψ, scheef aan γ, in PG(n, q).
Beschouw twee drie-ruimten σ1 en σ2 in Ψ, sijdend in een rechte l. Neem twee punten P1 en P2

op l. Dan is S de verzameling van alle k-ruimten door 〈γ, l〉, alle k-ruimten door 〈γ, P1〉 die een
rechte in σ1 en een rechte in σ2 scheef aan γ beva�en, en alle k-ruimten door 〈γ, P2〉 in 〈γ, σ1〉
of in 〈γ, σ2〉. Dan is |S| = θn−k + q4 + 2q3 + 3q2.

(viii) Er bestaat een (k−3)-ruimte γ bevat in alle k-ruimten van S . In de quotiëntruimte PG(n, q)/γ,
is de verzameling van vlakken, komende van de elementen van S , de verzameling van de vlakken
van voorbeeld IX in [33]: Beschouw een (n − k + 2)-ruimte Ψ, scheef aan γ, in PG(n, q), en
beschouw een rechte l en een drie-ruimte σ scheef aan l, en beide bevat in Ψ. Stel ρ = 〈l, σ〉.
Beschouw twee punten P1 en P2 op l, en beschouw een regulus R1 en zijn tegenovergestelde
regulus R2 in σ. Dan is S de verzameling van alle k-ruimten door 〈γ, l〉, alle k-ruimten door
〈γ, P1〉 in de (k+1)-ruimte opgespannen door γ, l en een vaste rechte vanR1, en alle k-ruimten
door 〈γ, P2〉 in de (k + 1)-ruimte opgespannen door γ, l en een vaste rechte van R2. Dan is
|S| = θn−k + 2q3 + 2q2.

(ix) Er bestaat een (k−3)-ruimte γ bevat in alle k-ruimten van S . In de quotiëntruimte PG(n, q)/γ,
is de verzameling van vlakken, komende van de elementen van S , de verzameling van de vlakken
van voorbeeld V II in [33]: Zij Ψ een (n − k + 2)-ruimte, disjunct aan γ in PG(n, q) en zij ρ
een 5-ruimte in Ψ. Beschouw een rechte l en een 3-ruimte σ, disjunct aan l. Kies drie punten
P1, P2, P3 op l en kies vier niet-coplanaire punten Q1, Q2, Q3, Q4 in σ. Stel l1 = Q1Q2,
l̄1 = Q3Q4, l2 = Q1Q3, l̄2 = Q2Q4, l3 = Q1Q4, en l̄3 = Q2Q3. Dan is S de verzameling van
alle k-ruimten door 〈γ, l〉 en alle k-ruimten door 〈γ, Pi〉 in 〈γ, l, li〉 of in 〈γ, l, l̄i〉, i = 1, 2, 3.
Dan is |S| = θn−k + 6q2.

(x) S is de verzameling van alle k-ruimten in een vaste (k + 2)-ruimte ρ. Dan is |S| =
[
k+3

2

]
.

Hoofdstelling B.2.3. Zij S een maximale verzameling van k-ruimten, paarsgewijs snijdend in
minstens een (k − 2)-ruimte in PG(n, q), n ≥ 2k, k ≥ 3 . Zij

f(k, q) =

{
3q4 + 6q3 + 5q2 + q + 1 als k = 3, q ≥ 2 of k = 4, q = 2,

θk+1 + q4 + 2q3 + 3q2 anders.

Als |S| > f(k, q), dan is S één van de verzamelingen beschreven in Voorbeeld B.2.2. Merk op dat voor
n > 2k + 1, de voorbeelden (i)− (ix) vermeld staan in dalende volgorde van groo�e.

B.2.2 Hilton-Milner problemen in PG(n, q) en AG(n, q)

Zoals hierboven reeds vermeld, is het geweten dat het grootste voorbeeld van k-ruimten, paars-
gewijs snijden in een t-ruimte in PG(n, q), n ≥ 2k + 1 een t-bundel is. Dit voorbeeld wordt soms
ook het triviale voorbeeld genoemd. Guo en Xu bewezen dat het grootste voorbeeld voor k-ruimten
paarsgewijs snijdend in een t-ruimte in AG(n, q), n ≥ 2k + t+ 2 ook een t-bundel is, zie [69]. In
hoofstuk 4 worden de twee grootste niet-triviale voorbeelden van k-ruimten, paarsgewijs snijdend
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in een t-ruimte, in zowel PG(n, q) als AG(n, q) geclassi�ceerd voor n > 2k + t + 2 en q ≥ 3.
Hierbij veronderstellen we dat k > t.

We starten met t-snijdende verzamelingen in een projectieve se�ing.

Voorbeeld B.2.4. Zij Γ een (t + 2)-ruimte in PG(n, q), n ≥ 2k − t + 1. Stel S gelijk aan de
verzameling van alle k-ruimten in PG(n, q), die Γ snijden in minstens een (t+ 1)-ruimte.

Voorbeeld B.2.5. Zij δ een t-ruimte in PG(n, q), n ≥ 2k − t + 1, en zij ξ een (k + 1)-ruimte in
PG(n, q) met δ ⊂ ξ. Zij S1 de verzameling van alle k-ruimten in ξ. Zij S2 de verzameling van alle
k-ruimten door δ die ξ snijden in minstens een (t + 1)-ruimte. De verzameling S is de unie van de
verzamelingen S1 en S2.

Merk op dat bovenstaande voorbeelden, voor t = k − 2 overeenkomen met Voorbeeld B.2.2(ii) en
(iii) respectievelijk. Deze voorbeelden zijn de grootste niet-triviale voorbeelden van t-snijdende
veramelingen van k-ruimten in PG(n, q).

Stelling B.2.6. Zij Sp een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens
een t-ruimte in PG(n, q), k ≥ t+ 2, t ≥ 1, met q ≥ 3, en n ≥ 2k + t+ 3. Als Sp verschillend is van
een t-bundel, dan is

|Sp| ≤

{
θk+1 − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

als k > 2t+ 2

θt+2 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
als k ≤ 2t+ 2.

.

Gelijkheid geldt als en slechts als Sp gelijk is aan Voorbeeld B.2.4 voor k ≤ 2t + 2 of Voorbeeld B.2.5
voor k ≥ 2t+ 3.

Nu geven we twee voorbeelden van grote t-snijdende verzamelingen van k-ruimten in AG(n, q).
Voor een a�ene ruimte α noteren we de projectieve uitbreiding van α als α̃, en stel vervolgens
H∞ = PG(n, q) \AG(n, q) gelijk aan het hypervlak op oneindig.

Voorbeeld B.2.7. Zij Γ een a�ene (t + 2)-ruimte in AG(n, q), en zij R een verzameling van θt+1

a�ene (t + 1)-ruimten in Γ zodat voor elke twee verschillende elementen σ1, σ2 ∈ R, σ̃1 ∩ H∞ 6=
σ̃2 ∩H∞. Merk op dat elke twee verschillende elementen vanR snijden in een a�ene t-ruimte. Dan is
S de verzameling van alle k-ruimten in AG(n, q), die Γ beva�en of Γ snijden in een element vanR.

Voorbeeld B.2.8. Zij δ een t-ruimte in AG(n, q), en zij ξ een (k+ 1)-ruimte in AG(n, q) met δ ⊂ ξ.
Stel S1 een maximale verzameling van a�ene k-ruimten in ξ, zodat voor elke twee elementen π1, π2

van S1, π̃1 ∩ H∞ 6= π̃2 ∩ H∞, en zodat voor elke π1 ∈ S1: δ̃ ∩ H∞ * π̃1. Stel S2 de verzameling
van alle k-ruimten door δ die ξ snijden in minstens een a�ene (t + 1)-ruimte. Dan is S de unie van
de twee verzamelingen S1 en S2.

We vinden dat de grootste niet triviale voorbeelden van t-snijdende verzamelingen in AG(n, q)
komen van bovenstaande voorbeelden.

Stelling B.2.9. Zij Sa een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens
een t-ruimte in AG(n, q), k ≥ t+ 2, t ≥ 1, met q ≥ 3, en n ≥ 2k + t+ 3. Als Sa verschillend is van
een t-bundel, dan is

|Sa| ≤

{
θk − θk−t +

[
n−t
k−t
]
− q(k−t+1)(k−t)[n−k−1

k−t
]

als k > 2t+ 1

θt+1 ·
([
n−t−1
k−t−1

]
−
[
n−t−2
k−t−2

])
+
[
n−t−2
k−t−2

]
als k ≤ 2t+ 1.

Gelijkheid geldt als en slechts als Sa gelijk is aan Voorbeeld B.2.7 voor k ≤ 2t + 1 of Voorbeeld B.2.8
voor k ≥ 2t+ 2.
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B.2.3 De Zonnebloemgrens

In de vorige hoofdstukken bestudeerden we deelruimten paarsgewijs snijdend in minstens een deel-
ruimte van een zeker dimensie. In Hoofdstuk 5 worden verzamelingenS van k-ruimten in PG(n, q)
onderzocht, met de eigenschap dat de elementen van S paarsgewijs snijden in precies een punt.
Meer algemeen is een (k + 1, t + 1)-SCID een verzameling van k-ruimten, paargeswijs snijdend
in precies een t-ruimte in PG(n, q). Een voorbeeld van zo een SCID is de verzameling S van
k-ruimten, zodat voor elke π, τ ∈ S er geldt dat π ∩ τ = γ voor een vaste t-ruimte γ. Dit voor-
beeld is een zonnebloem met centrum γ. De Zonnebloemgrens stelt dat, als het aantal elementen van
(k + 1, t+ 1)-SCID S, deze grens overschrijdt, dan moet S een zonnebloem zijn.

Stelling B.2.10 ([56, �eorem 1]). Een (k + 1, t+ 1)-SCID S in PG(n, q), is een zonnebloem als

|S| >
(
qk+1 − qt+1

q − 1

)2

+

(
qk+1 − qt+1

q − 1

)
+ 1.

In Hoofdstuk 5 wordt bewezen dat deze grens, voor t = 0, kan verbeterd worden voor k ≥ 3 en
q ≥ 7. Voor k = 1 en k = 2, is er een complete classi�catie gekend: Elke (k + 1, k)-SCID is
een zonnebloem of bestaat uit alle k-ruimten in een vaste (k + 1)-ruimte. Voor de classi�catie van
(3, 1)-SCID’s, verwijzen we naar [9].

Stelling B.2.11. Een verzameling an k-ruimten in PG(n, q), k ≥ 3, q ≥ 7, die paarsgewijs snijden
in precies een punt, met meer dan Fqθ2

k elementen is een zonnebloem. Hierbij gebruiken we

Fq =
1

2

(
Bq
c2
q

− 1

q
−

√(
1

q
− Bq
c2
q

)2

− 4Bq

(
1

c2
q

− 1

))

met

Bq = (1− cq)2

(
1− cq −

1

q3

)2(
1− cq −

cq
q

)(
1− cq −

1 + cq
q

)
q,

cq = 1− 1
6
√
q
− 1

2 3
√
q
.

In het bijzonder vinden we dat een dergelijke verzameling met meer dan
(

2
6
√
q + 4

3
√
q −

5√
q

)
θ2
k ele-

menten een zonnebloem is.

B.2.4 Het chromatisch getal van enkele q-Kneser grafen

Een vlag in PG(n, q) is een verzameling F van niet-triviale deelruimten van PG(n, q) (dus, deel-
ruimten verschillend van ∅ en PG(n, q)) zodat voor alle α, β ∈ F er geldt dat α ⊂ β of β ⊂ α. De
deelverzameling {dim(α) + 1 | α ∈ F}, waarbij we gebruik maken van de projectieve dimensie,
wordt het type van F genoemd, en is bevat in {1, 2, . . . , n}. Twee vlaggen F en G zijn in algemene
positie als α ∩ β = ∅ of 〈α, β〉 = PG(n, q) voor alle α ∈ F en β ∈ G.

Voor Ω ⊆ {1, 2, . . . , n} is de q-Knesergraaf qKn+1;Ω de graaf waarin de toppen overeenkomen met
de vlaggen van type Ω in PG(n, q), en waarin twee toppen zijn adjacent, als de overeenkomstige
vlaggen in algemene positie zijn. Wij zijn geı̈nteresseerd in het chromatisch getal van deze grafen.

205



B Nederlandstalige samenva�ing

Voor een punt P ∈ PG(n, q), de�niëren we de verzameling FΩ(P ) als de verzameling van alle
vlaggen F van type Ω ⊆ {2, 3, . . . , n} waarvoor F ∪ {P} ook een vlag is. We noemen deze
verzameling FΩ(P ) de punt-bundel (van vlaggen van type Ω) met basispunt P .

We bepaalden het chromatisch getal van de grafen qK5;Ω voor Ω = {2, 4} en q 6= 2, en voor
qK2d+1;{d,d+1}, met d ≥ 2 en q heel groot.

We gebruikten het cokliekgetal, samen met structurele informatie over grote coklieken van qK5;{2,4}
en qK2d+1,{d,d+1}, q ≥ 2. Deze structurele informatie is te vinden in de Hilton-Milner type resul-
taten in [14] voor qK5;{2,4}, in [11] voor qK2d+1,{d,d+1}, met d = 2 en in [94] voor qK2d+1,{d,d+1},
met d = 3. Voor d ≥ 4 is er geen structurele informatie gekend over grote coklieken in qK2d+1,{d,d+1}.
Daarom nemen we, in dit geval, een extra assumptie aan, zie Vermoeden B.2.15. We vonden de vol-
gende resultaten.

Stelling B.2.12. Voor q ≥ 3 is het chromatisch getal van de Knesergraaf qK5;{2,4} gelijk aan θ3.
Daarnaast is elke kleurklasse van een minimale kleuring bevat in een punt-bundel. De basispunten
van deze punt-bundels zijn de punten van een drie-ruimte.

Stelling B.2.13. Voor q > 160 ·365, is het chromatisch getal van de Knesergraaf qK5;{2,3} gelijk aan
θ3 − q. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke punt-bundel
F , zodat F ∪C een cokliek is. De basispunten van deze punt-bundels zijn θ3− q verschillende punten
van een drie-ruimte.

Stelling B.2.14. Voor q > 3 · 715 · 256, is het chromatisch getal van de Knesergraaf qK7;{3,4} gelijk
aan θ4 − q. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke punt-
bundel F , zodat F ∪C een cokliek is. De basispunten van deze punt-bundels zijn θ4− q verschillende
punten van een vier-ruimte.

Vermoeden B.2.15. Voor elk natuurlijk getal d ≥ 4 bestaat er een ρ(d) ∈ N, zodat elke maxi-
male cokliek van de Knesergraaf qK2d+1,{d,d+1} een punt-bundel, het duale van een punt-bundel, of
hoogstns ρ(d) · qd2+d−2 elementen bevat.

Stelling B.2.16. Als Vermoeden B.2.15 waar is voor een zeker natuurlijk getal d ≥ 4, dan is

χ(qK2d+1,{d,d+1}) = θd+1 − q,

voor q voldoende groot, afhankelijk van d en ρ(d). Bijkomend, als F een familie is van dit aantal
maximale coklieken die de volledige toppenverzameling bedekt, dan bestaat er – op dualiteit na – een
(d+ 1)-ruimte U in PG(2d, q) en een injectieve afbeelding µ van F naar een verzameling van punten
van U , zodat de punt-bundel F(µ(C)) bevat is in C voor alle C ∈ F.

B.3 Cameron-Lieblerverzamelingen

In het tweede deel van deze thesis worden Cameron-Lieblerveramelingen, in verschillende con-
texten onderzocht. De rode draad in dit deel kan samengevat worden met twee centrale vragen;
wat zijn de equivalent de�nities voor deze verzamelingen, en voor welke parameters x bestaan er
Cameron-Lieblerverzamelingen? We onderzoeken beide vragen in projectieve, a�ene en polaire
ruimten.
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B.3.1 Cameron-Liebler k-ruimten in PG(n, q)

We onderzoeken Cameron-Lieblerverzamelingen van k-ruimten in PG(n, q). Hiervoor lijsten we
verschillende equivalente de�nities op voor deze verzamelingen, door de gekende resultaten voor
Cameron-Liebler rechte verzamelingen in PG(n, q), zie [51], en Cameron-Lieblerverzamelingen
van k-ruimten PG(2k + 1, q), zie [104], te veralgemenen.

Zij A de incidentiematrix van de punten en k-ruimten van PG(n, q): de rijen van A zijn gelabeld
door de punten, en de kolommen door de k-ruimten. Zij Vi, 0 ≤ i ≤ k, de eigenruimten van het
bijhorende Grassmannschema, in de klassieke ordening, zie Hoofdstuk 10.1.1.

Stelling B.3.1. Zij L een niet-ledige verzameling van k-ruimten in PG(n, q), n ≥ 2k + 1, met

karakteristieke vector χ, en x zodat |L| = x

[
n
k

]
. Dan zijn de volgende eigenschappen equivalent.

1. χ ∈ im(AT ).

2. χ ∈ ker(A)⊥.

3. Voor elke k-ruimteπ is het aantal elementen vanL scheef aanπ gelijk aan (x−χ(π))
[
n−k−1

k

]
qk

2+k.

4. De vector χ− x q
k+1−1
qn+1−1

j is een vector in V1.

5. χ ∈ V0 ⊥ V1.

6. Voor een gegeven i ∈ {1, . . . , k + 1} en een k-ruimte π, is het aantal elementen van L, die π
snijden in een (k − i)-ruimte, gegeven door:

(
(x− 1) qk+1−1

qk−i+1−1
+ qi q

n−k−1
qi−1

)
qi(i−1)

[
n− k − 1

i− 1

][
k

i

]
als π ∈ L

x

[
n− k − 1

i− 1

][
k + 1

i

]
qi(i−1) als π /∈ L

.

7. Voor elk paar van toegevoegde omwisselende k-verzamelingenR enR′, geldt er dat |L ∩R| =
|L ∩ R′|.

Als er k-spreads bestaan in PG(n, q), dan zijn de volgende eigenschappen equivalent aan de vorige.

8. |L ∩ S| = x voor elke k-spread S in PG(n, q).

9. |L ∩ S| = x voor elke Desarguesiaanse k-spread S in PG(n, q).

De�nitie B.3.2. Een verzameling L van k-ruimten in PG(n, q) die voldoet aan één van de eigen-
schappen in Stelling A.3.1 (en dus aan ze allemaal) wordt een Cameron-Lieblerverzameling van k-
ruimten in PG(n, q) genoemd, met parameter x = |L|

[
n
k

]−1.

Gebruik makend van de informatie uit de equivalente de�nities, samen met enkele extra eigen-
schappen, vonden we verschillende classi�catieresultaten voor Cameron-Lieblerverzamelingen van
k-ruimten in PG(n, q). Merk op dat een Cameron-Lieblerverzameling van k-ruimten met param-
eter 0 gelijk is aan de ledige verzameling.

In het volgende lemma geven we de classi�catie van de parameters x ∈ ]0, 2[.

207



B Nederlandstalige samenva�ing

Lemma B.3.3. Er bestaat geen Cameron-Lieblerverzameling van k-ruimten in PG(n, q) met param-
eter x ∈ ]0, 1[, en voor n ≥ 3k+2, bestaan er ook geen Cameron-Lieblerverzamelingen van k-ruimten
met parameter x ∈ ]1, 2[. Zij L een Cameron-Lieblerverzameling van k-ruimten met parameter x = 1
in PG(n, q), n ≥ 2k + 1. Dan is L een punt-bundel, of n = 2k + 1 en L is de verzameling van alle
k-ruimten in een hypervlak van PG(2k + 1, q).

We eindigen met het belangrijkste classi�catieresultaat uit dit project.

Stelling B.3.4. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in PG(n, q), n ≥
3k + 2 en q ≥ 3, met parameter 2 ≤ x ≤ 1

8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.

B.3.2 Cameron-Liebler k-ruimten in AG(n, q)

In Hoofdstuk 4.4.3, geven we een overzicht van de belangrijkste (equivalente) de�nities en classi-
�catieresultaten voor Cameron-Lieblerverzamelingen in a�ene ruimten. De resultaten in dit hoofd-
stuk werden bewezen in [46] en [44]. Vergelijkbaar met de de�nitie van Cameron-Lieblerverzamelingen
van k-ruimten in PG(n, q), kunnen we Cameron-Lieblerverzamelingen in AG(n, q) als volgt de�niëren.

De�nitie B.3.5. Een verzamelingL van k-ruimten in AG(n, q) is een Cameron-Lieblerverzameling
van k-ruimten in AG(n, q) met parameter x als en slechts als elke k-spread in AG(n, q) x elementen
gemeen hee� met L.

In tegenstelling tot k-spreads in PG(n, q) zien we dat er k-spreads bestaan in AG(n, q), voor elke
n ≥ k, wat impliceert dat de bovenstaande de�nitie goed gede�nieerd is.

Door het onmiddellijke verband tussen PG(n, q) en AG(n, q) is het mogelijk om Cameron-Lieblerverzamelingen
in AG(n, q) te classi�ceren, door gebruik te maken van de ideeën voor hetzelfde onderzoeksproject
in projectieve ruimten.

Stelling B.3.6. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in AG(n, q), n ≥
3k + 2 en q ≥ 3, met parameter 2 ≤ x ≤ 1

8√2
q
n
2
− k

2

4
− 3k

4
− 3

2 (q − 1)
k2

4
− k

4
+ 1

2

√
q2 + q + 1.

B.3.3 Cameron-Lieblerverzamelingen van graad één in eindige klassieke polaire
ruimten

In dit hoofdstuk bestuderen we Cameron-Lieblerverzamelingen van graad één, van generatoren in
eindige klassieke polaire ruimten. De matrix A is de incidentiematrix van punten en generatoren.

De�nitie B.3.7. Een Cameron-Lieblerverzameling van graad één van generatoren in een eindige
klassieke polaire ruimte P is een verzameling van generatoren in P , met karakteristieke vector χ
zodat χ ∈ im(AT ).

Deze de�nitie kan gelinkt worden aan de de�nitie van een Boolean degree one functie voor gen-
eratoren in polaire ruimten, zie [59]. De de�nitie in dit artikel komt overeen met het feit dat de
karakteristieke vector van de verzameling gelegen is in V0 ⊥ V1. Dit zijn de eigenruimten van
het bijhorende associatie schema (zie Sectie 1.9). In [36], M. De Boeck, M. Rodgers, L. Storme en
A. Švob introduceerden Cameron-Lieblerverzamelingen van generatoren in eindige klassieke po-
laire ruimten. In dit artikel, worden Cameron-Lieblerverzamelingen van generatoren in een polaire
ruimte gede�nieerd door de disjunctheidsde�nitie. Daarbij geven de auteurs verschillende equiv-
alente de�nities voor deze verzamelingen. Merk op dat deze de�nitie de polaire-ruimte-versie is
voor de disjunctheidsde�nitie in de projectieve context, zie Stelling B.3.1.3.
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De�nitie B.3.8 ([36]). Zij P een eindige klassieke polaire ruimte met parameter e en rang d. Een
verzameling L van generatoren in P is een Cameron-Lieblerverzameling van generatoren in P ,
met parameter x, als en slechts als voor elke generator π in P , het aantal elementen van L, disjunct
aan π is gelijk aan (x− χ(π))q(

d−1
2 )+e(d−1).

We kunnen deze de�nitie, gebruik makend van de notatie van associatie schema’s, als volgt in-
terpreteren. De karakteristieke vector van een Cameron-Lieblerverzameling is bevat in V0 ⊥ W ,
met W de eigenruimte van de disjunctie matrix Ad, horende bij een speci�eke eigenwaarde. Men
kan inzien dat V1 steeds bevat is in W , maar het is er niet steeds aan gelijk. Hieruit volgt dat elke
Cameron-Lieblerverzameling van graad één ook een Cameron-Lieblerverzameling is.

Elke Cameron-Lieblerverzameling van graad één is dus een Cameron-Lieblerverzameling, en voor
sommige polaire ruimten vallen Cameron-Lieblerverzamelingen en Cameron-Lieblerverzamelingen
van graad één samen, maar voor andere zal dit niet het geval zijn.

Merk op dat we Cameron-Lieblerverzamelingen van graad één op een algebraı̈sche manier gede�ni-
eerd hebben. Over het algemeen kunnen Cameron-Lieblerverzamelingen, in verschillende contex-
ten, gede�nieerd worden door zowel algebraı̈sche als combinatorische de�nities te gebruiken. Voor
deze Cameron-Lieblerverzamelingen van graad één vonden we ook dat dit mogelijk is, en vonden
we een equivalente combinatorische de�nitie.

Stelling B.3.9. Zij P een eindige klassieke polaire ruimte, van rang d met parameter e, zij L een
verzameling van generatoren van P en i een natuurlijk getal met 1 ≤ i ≤ d. Als L een Cameron-
Lieblerverzameling van graad één, van generatoren in P is, met parameter x, dan is het aantal ele-
menten van L dat een generator π snijdt in een (d− i− 1)-ruimte gelijk aan

(
(x− 1)

[
d− 1
i− 1

]
+ qi+e−1

[
d− 1
i

])
q(
i−1
2 )+(i−1)e als π ∈ L

x

[
d− 1
i− 1

]
q(
i−1
2 )+(i−1)e als π /∈ L.

Bovendien, als deze eigenschap geldt voor een polaire ruimte P en een geheel getal i zo dat

• i is oneven voor P = Q+(2d− 1, q),

• i 6= d voor P = Q(2d, q) of P = W (2d− 1, q), beide met d oneven of

• i is willekeurig in de andere gevallen,

dan is L een Cameron-Lieblerverzameling van graad één met parameter x.

Verder onderzochten we ook voor welke waarden van de parameterx er een Cameron-Lieblerverzameling
van graad één bestaat. Voor Cameron-Lieblerverzamelingen van graad één in W (5, q) en Q(6, q)
vonden we het volgende classi�catieresultaat.

Stelling B.3.10. Een Cameron-Lieblerverzameling L van graad één van generatoren in W (5, q) of
Q(6, q) met parameter 2 ≤ x ≤ 3

√
2q2−

3√4q
3 + 1

6 is de unie vanα ingebedde hyperbolische kwadrieken
Q+(5, q), die paarsgewijs geen enkel vlak gemeen hebben, en x− 2α punt-bundels waarvan de basis-
punten paarsgewijs niet-collineair zijn en niet bevat in de α hyperbolische kwadrieken Q+(5, q). Voor
de polaire ruimte Q(6, q) of W (5, q) met q even, α ∈ {0, ..., bx2 c}, voor de polaire ruimte W (5, q)
met q oneven, α = 0.
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B.3.4 Nieuw voorbeeld van een Cameron-Lieblerverzameling van graad één van
generatoren in Q+(5, q)

We geven een voorbeeld van een nieuwe, niet-triviale Cameron-Lieblerverzameling van genera-
toren in Q+(5, q), q oneven. Om de constructie van het voorbeeld uit te leggen, maken we gebruik
van de Klein-correspondentie tussen de rechten van Q+(3, q) en de punten van Q+(5, q).

Beschouw de hyperbolische kwadriekQ = Q+(3, q) in PG(3, q), gede�nieerd door de vergelijking
x0x1 + x2x3 = 0. De rechten van Q corresponderen met de puntenverzameling van twee kegels
C ∪ C ′ in Q+(5, q), zo dat voor de vlakken α = 〈C〉 en α′ = 〈C ′〉 geldt dat α′ het beeld is van α
onder de polariteit van Q+(5, q).

Elk punt P ∈ PG(3, q) gee� aanleiding tot een Latijns vlak πPl en een Grieks vlak πPg in Q+(5, q):
de punten van πPl corresponderen met alle rechten door P in PG(3, q), en de punten van πPg cor-
responderen met alle rechten in het vlak P⊥. Hierbij is⊥ de polariteit gerelateerd aan de kwadriek
Q in PG(3, q).

De�nitie B.3.11. Een punt P (x0, x1, x2, x3) ∈ PG(3, q) is een kwadraatpunt als x0x1 + x2x3

een kwadraat verschillend van 0 is in Fq . Een punt P (x0, x1, x2, x3) ∈ PG(3, q) is een niet-
kwadraatpunt als x0x1 + x2x3 een niet-kwadraat is in Fq .

Nu kunnen we de verzameling vlakken in Q+(5, q) verdelen in de volgende verzamelingen.

• Sl =
{
πPl |P is een kwadraatpunt

}
• NS l =

{
πPl |P is een niet-kwadraatpunt

}
• Ol =

{
πPl |P ∈ Q

}
• Sg =

{
πPg |P is een kwadraatpunt

}
• NSg =

{
πPg |P is een niet-kwadraatpunt

}
• Og =

{
πPg |P ∈ Q

}
Voor een raaklijn ` aan Q zijn er twee mogelijkheden; ` bevat q kwadraatpunten, of ` bevat q niet-
kwadraatpunten, zie [72, Tabel 15.5(c)]. In het eerste geval is ` een kwadraatraaklijn. In het tweede
geval is ` een niet-kwadraatraaklijn.

We verdelen de punten in Q+(5, q) op in de volgende verzamelingen.

• De verzameling X1S van punten in Q+(5, q) die overeenkomen met de kwadraatraaklijnen
aan Q.

• De verzamelingX1NS van punten inQ+(5, q) die overeenkomen met de niet-kwadraatraaklijnen
aan Q.

• De verzameling X2 van punten in Q+(5, q) die overeenkomen met de twee-secanten aan Q.

• De verzameling X0 van punten in Q+(5, q) die overeenkomen met de rechten disjunct aan
Q.

• De verzameling X∞ = C ∪ C ′ van punten in Q+(5, q) die overeenkomen met de rechten in
Q.

We konden aantonen dat de partities {X1S ,X1NS ,X2,X0,X∞} en {Sl,Sg,NS l,NSg,Ol,Og} een
punt-tactische decompositie vormen. Door de juiste partitieklassen te groeperen, vinden we nieuwe
Cameron-Lieblerverzamelingen in Q+(5, q).

Stelling B.3.12. Zij q een oneven priemmacht.
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• De verzamelingen Sl ∪ Sg en NS l ∪ NSg zijn Cameron-Lieblerverzamelingen van graad één
van vlakken in Q+(5, q), met parameter q(q−1)

2 , q(q−1)
2 en q + 1 respectievelijk, voor q ≡ 1

mod 4.

• De verzamelingen Sl ∪ NSg en Sg ∪ NS l zijn Cameron-Lieblerverzamelingen van graad één
van vlakken in Q+(5, q), met parameter q(q−1)

2 , q(q−1)
2 en q + 1 respectievelijk, voor q ≡ 3

mod 4.

B.4 Lineaire verzamelingen

In het laatste deel van deze thesis bespreken we een onderzoeksproject over translatiehyperovalen
en F2-lineaire verzamelingen. We geven een verband tussen de a�ene punten van een trans-
latiehyperovaal in PG(2, qk) en de puntenverzameling van een gescha�erde F2-lineaire verzamel-
ing van het pseudoregulustype in PG(2k − 1, q), gezien al een verzameling van richtingen. Hier-
voor gebruikten we de Barlo�i-Cofman constructie, die een veralgemening is van de André/Bruck-
Boseconstructie.

Het oorspronkelijke doel van dit onderzoeksproject was om het volgende resultaat van Barwick en
Jackson te veralgemenen.

Resultaat B.4.1 ([7, �eorem 1.2]). Beschouw PG(4, q), q even, q > 2, met het hypervlak op
oneindig, aangeduid door Σ∞. Zij C een verzameling van q2 a�ene punten, genaamd C-punten en
beschouw een verzameling vlakken, genaamd C-vlakken, die voldoet aan de volgende eigenschappen.

(A1) Elk C-vlak snijdt C in een q-boog.

(A2) Elke twee verschillende C-punten liggen in een uniek C-vlak.

(A3) De a�ene punten, niet in C, liggen op precies één C-vlak.

(A4) Elk vlak dat minstens 3 punten van C bevat, bevat precies 4 punten van C of is een C-vlak.

Dan bestaat er een Desarguesiaanse spread S in Σ∞ zodat dat in het André/Bruck-Bose vlak P(S) ∼=
PG(2, q2) de C-punten samen met 2 extra punten op `∞ een translatiehyperovaal vormen in PG(2, q2).

Bij de zoektocht naar een veralgemening onderzochten we een verzamelingC van qk a�ene punten
in PG(2k, q), q even, q > 2, met gelijkaardige combinatorische eigenschappen. De technieken die
Barwick en Jackson gebruikten in het bewijs van bovenstaand resultaat waren niet veralgemeen-
baar. Daardoor zijn we op zoek gegaan naar andere technieken, waaronder het gebruik van lineaire
verzamelingen, in het bijzonder deze van pseudoregulustype. Tijdens dit onderzoek konden we het
volgende belangrijke resultaat bewijzen.

Stelling B.4.2. ZijQ een verzameling van qk a�ene punten in PG(2k, q), q = 2h, h ≥ 4, k ≥ 2, die
een verzamelingD van qk−1 richtingen in het hypervlak op oneindigH∞ = PG(2k−1, q) bepaalt.
Stel dat elke rechte 0, 1, 3 of q − 1 punten gemeen hee� met de puntenverzameling D. Dan geldt het
volgende.

(1) D is een F2-lineaire verzameling van het pseudoregulustype.

(2) Er bestaat een Desarguesiaanse spread S in H∞ zodanig dat in het André/Bruck-Bose vlak
P(S) ∼= PG(2, qk), met H∞ corresponderend met de rechte l∞, de punten van Q samen met 2
extra punten op `∞ een translatiehyperovaal vormen in PG(2, qk).
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Omgekeerd komt, via de André/Bruck-Boseconstructie, de verzameling a�ene punten van een trans-
latiehyperovaal in PG(2, qk), q > 4, k ≥ 2, overeen met een verzameling Q van qk a�ene punten
in PG(2k, q) waarvan de verzameling bepaalde richtingen D een F2-lineaire verzameling is van het
pseudoregulustype. Bijgevolg bevat elke rechte 0, 1, 3 of q − 1 punten van D.

Een onmiddelijk gevolg van deze stelling is de veralgemening van Resultaat B.4.1.

Stelling B.4.3. Beschouw PG(2k, q), q even, q > 2, met het hypervlak op oneindig, aangeduid door
Σ∞. Zij C een verzameling van qk a�ene punten, genaamd C-punten en beschouw een verzameling
vlakken, genaamd C-vlakken, die voldoet aan de volgende eigenschappen.

(A1) Elk C-vlak snijdt C in een q-boog.

(A2) Elke twee verschillende C-punten liggen in een uniek C-vlak.

(A3) De a�ene punten, niet in C, zijn bevat in precies één C-vlak.

(A4) Elke vlak dat minstens 3 punten bevat van C, bevat precies 4 punten van C of is een C-vlak.

Dan bestaat er een Desarguesiaanse spread S in Σ∞ zodanig dat in het André/Bruck-Bose vlakP(S) ∼=
PG(2, qk) de C-punten samen met 2 extra punten op `∞ een translatiehyperovaal vormen in PG(2, qk).
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steun om dit onderzoek te kunnen doen.

Daarnaast ben ik ook heel dankbaar voor alle dienstreizen die ik mocht maken. Deze hebben stuk
voor stuk geleid tot nu�ige inzichten en/of interessante artikels.

• Dankjewel prof. Aart Blokhuis, mijn academische overgrootvader, om me verschillende tel-
technieken te leren, die heel nu�ig bleken bij vele problemen in projectieve meetkunde. Wat
was het ook �jn om samen met jou te werken aan de ‘zonnebloemen’!

• �ank you prof. Guglielmo Lunardon and prof. Nico Durante for the productive stay in
Naples. �ank you for the opportunity to work together on the correlation problem, and
thank you for the delicious Italian food.

213



B Nederlandstalige samenva�ing
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[34] M. De Boeck. �e second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics
Q+(4n+ 1, q). Adv. Geom., 16(2):253–263, 2016.

218



B Bibliography

[35] M. De Boeck and J. D’haeseleer. Equivalent de�nitions for (degree one) Cameron-Liebler
classes of generators in �nite classical polar spaces. Discrete Math., 343(1):111642, 13, 2020.

[36] M. De Boeck, M. Rodgers, L. Storme, and A. Švob. Cameron-Liebler sets of generators in
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