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Abstract. We investigate the point behavior of periodic functions and
Schwartz distributions when the Fourier series and the conjugate series
are both Abel summable at a point. In particular we show that if f is
a bounded function and its Fourier series and conjugate series are Abel
summable to values γ and β at the point θ0, respectively, then the prim-
itive of f is differentiable at θ0, with derivative equal to γ, the conjugate

function satisfies limθ→θ0(3/(θ − θ0)3)
R θ

θ0
f̃(t) (θ − t)2 dt = β, and the

Fourier series and the conjugate series are both (C, κ) summable at θ0,
for any κ > 0. We show a similar result for positive measures and L1

functions bounded from below. Since the converse of our results are
valid, we therefore provide a complete characterization of simultaneous
Abel summability of the Fourier and conjugate series in terms of “aver-
age point values”, within the classes of positive measures and functions
bounded from below. For general L1 functions, we also give a.e. dis-
tributional interpretation of −(1/2π)p.v.

R π

−π
f(t + θ0) cot(t/2)dt as the

point value of the conjugate series when viewed as a distribution.
We obtain more general results of this kind for arbitrary trigonomet-

ric series with coefficients of slow growth, i.e., periodic distributions.

1. Introduction

It is well known that there is an intrinsic relationship between the local
behavior of a function (or generalized function) at a point and the conver-
gence or summability properties of its Fourier series and conjugate series
[36]. Many classical results establish the summability of the series from the
local behavior of the function [7, 8, 17, 18, 32, 33, 35]; some others go in the
opposite direction, they obtain local information about the function itself
from certain summability properties of the series [3, 10, 11, 12, 13, 16, 26].
The first problem is of Abelian nature while the second one usually has a
Tauberian character [9]. Interestingly, sometimes, one can even go beyond
the Abel-Tauber problem and provide precise characterizations relating a
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summability method, or a family of them, with a specific type of point
behavior [3, 10, 11, 12, 13, 26].

In this article we are concerned with problems related to Abel summabil-
ity. The most basic result about Abel summability and Fourier series is due
to Fatou [7, 36]. Fatou’s theorem states that if f ∈ L1[−π, π] with Fourier
series

(1)
a0

2
+

∞∑
n=1

an cos nθ + bn sin nθ ,

and its primitive is differentiable at the point θ = θ0, i.e.,

(2) lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f(t)dt = γ ,

then the Fourier series is Abel summable [9, 36] to the value γ at θ = θ0,

(3)
a0

2
+

∞∑
n=1

an cos nθ0 + bn sin nθ0 = γ (A) .

Loomis has shown two converses to Fatou theorem in [16]. He showed, using
some results of Hardy and Littlewood [12, 9], that if f is a positive function
and (3) holds, then the symmetric derivative of the primitive of f exits and
equals γ, i.e.,

(4) lim
θ→0

1
2θ

∫ θ0+θ

θ0−θ
f(t)dt = γ .

On the other hand (4) suffices to conclude (3). It should be observed that (2)
always implies (4), but in general they are not equivalent. One may say that
this result of Loomis is a Tauberian theorem, being the positivity of f the
Tauberian assumption; however, it is perhaps more appropriate to say that
it is rather a characterization of Abel summability of Fourier series within
the class of positive functions. Loomis also gave necessary and sufficient
conditions to conclude (2) from (3) for positive functions, but this time an
extra Tauberian hypothesis must be assumed. The results of Loomis apply
to positive measures as well.

There is also a well known sort of version of Fatou theorem which gives
Abel summability of the conjugate series [36]. One can show that if (2) is
satisfied and the principal value integral,

(5) β = − 1
2π

p.v.

∫ π

−π
f(t + θ0) cot

(
t

2

)
dt ,

exists, then the conjugate series is Abel summable as well,
∞∑

n=1

an sin nθ0 − bn cos nθ0 = β (A) .
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The scope of this article is to study the converse to this result, namely, we
investigate point behavior when the Fourier series and the conjugate series
are both simultaneously Abel summable at a point. We analyze the case of
periodic functions, measures, and Schwartz distributions.

The plan of the article is as follows. Section 2 is of preliminary character,
we discuss there the notion of average point values of functions and point
values for distributions (in the sense of  Lojasiewicz [15]), which are natural
generalizations of (2). In Section 3 we study the existence of point values
under the assumption of Abel summability of Fourier and conjugate series,
our main result states that if either the distribution or the conjugate dis-
tribution (i.e., the one given by the conjugate series) is (distributionally)
bounded at the point, then the point values of both distributions exist; the
results of that section are essentially Tauberian theorems. We also give dis-
tributional interpretation of the conjugate integral (5) for L1 functions as
the a.e. distributional point value of the conjugate distribution. Section 4
deals with functions and measures, we provide characterizations of simulta-
neous Abel summability of the Fourier and conjugate series within the class
of positive measures, in particular for bounded functions, in terms of (2)
and an average point behavior of the conjugate distribution. We also obtain
characterizations of this situation for functions and distributions which are
bounded from below in a neighborhood of the analyzed point.

2. Preliminaries and Notation

2.1. Notation. We denote by D′(R) and S ′(R) the Schwartz spaces of dis-
tributions and tempered distributions. We refer to [21] for the very well
known properties of these spaces, and to [5, 20, 23, 24, 31] for the theory of
asymptotic expansions of distributions. We fix the constants in the Fourier
transform so that

φ̂(x) =
∫ ∞

−∞
e−ixtφ(t) dt , for φ ∈ S(R) .

We shall fix the complex exponential and cosines-sines Fourier expansions
of a periodic function or distribution

(6) f(θ) =
∞∑

n=−∞
cneinθ =

a0

2
+

∞∑
n=1

an cos nθ + bn sin nθ ,

and its conjugate distribution, namely, the distribution defined by

(7) f̃(θ) =
∞∑

n=−∞
c̃neinθ =

∞∑
n=1

an sin nθ − bn cos nθ .

Observe that in general f̃ is not a function but a distribution, even if f is
a function; indeed there exists f ∈ L1[−π, π] such that f̃ is not integrable
over any finite interval [36, Chap.VII, p.257].
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We will consider limits in the Cesàro sense [9, 5]. Given g, a locally
integrable function, we write

lim
x→∞

g(x) = ` (C, k) ,

if

(8) lim
x→∞

k

x

∫ x

0
g(t)

(
1− t

x

)k−1

dt = ` .

If we do not want to make reference to k, we simply write (C) for (C, k).

2.2. Average Point Values of Functions. Let f be a locally integrable
function. Except when the function is continuous, it does not make much
sense to speak about an individual point value as one does for “usual func-
tions”. Indeed, one usually regards two functions which are equal a.e. as the
same object, so changing a function in a set of measure zero, for instance a
point, does not change the object we call “function” in analysis. Therefore,
the concept of point value is rather an average notion; for example, one may
use Lebesgue points or relation (2) as the actual point values of the function
f .

It is natural to consider generalizations of (2) and take higher order av-
erages, such an idea goes back to Hardy and Littlewood [11], and also to
 Lojasiewicz [15]. Let k ∈ N. In analogy with (8), we shall say that f has a
point value in the (C, k) sense and write f(θ0) = γ (C, k) if

(9) lim
θ→θ0

k

(θ − θ0)k

∫ θ

θ0

f(t)(θ − t)k−1dt = γ .

We may also say that f has an average point value of order k at θ = θ0.
Observe that (9) also makes sense for a (regular) Borel measure µ, one simply
has to replace f(t)dt by dµ(t). In this case we also write µ(θ0) = γ (C, k).
It is easy to see that (9) implies that µ is continuous at θ = θ0, i.e., the
measure of {θ0} with respect to µ is zero, µ ({θ0}) = 0.

2.3. Distributional Point Values and Fourier Series. The notion of
point values for Schwartz distributions was introduced by  Lojasiewicz in
[15]. A distribution f ∈ D′(R) is said to have a distributional point value at
the point θ = θ0 if there exist a non-negative integer k and a function F ,
locally integrable in some neighborhood of θ0, such that F (k) = f near θ0

and the following limit exists

(10) lim
θ→θ0

k!F (θ)
(θ − θ0)k

= γ .

In such a case we say that γ is the value of f at θ = θ0 and write f(θ0) = γ,
distributionally. If (10) holds we say that the point value is of order k.
Notice that if the distribution is locally integrable near the point, then this
definition is exactly the same as (9), but in general a distribution can have
distributional point values without being locally integrable [15].
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There is an useful equivalent definition of distributional point values,
which is actually  Lojasiewicz original definition. It can be shown [15, 31]
that f(θ0) = γ, distributionally, if and only if the following limit exists in
the weak topology of D′(R),

lim
ε→0

f(θ0 + ε θ) = γ , in D′(R) ,

namely, for each test function φ ∈ D(R)

(11) lim
ε→0

1
ε

〈
f(θ), φ

(
θ − θ0

ε

)〉
= γ

∫ ∞

−∞
φ(θ)dθ .

If f ∈ S ′(R), then (11) also holds for each φ ∈ S(R) [4, 31].
When f is a 2π-periodic distribution, it is possible to characterize [3]

its point values in terms of a certain summability of the Fourier series (6).
Indeed, f(θ0) = γ, distributionally, if and only if there exists a non-negative
integer m such that

(12) e.v.
∞∑

n=−∞
cneinθ0 = γ (C,m) ,

where (12) means that all the following slightly asymmetric means converge

lim
x→∞

∑
−x<n≤ax

cneinθ0 = γ (C,m) , for each a > 0 .

Remarkably, an analog result is true for Fourier transforms [26, 30]. We also
refer to [4, 6, 24, 25, 27, 29, 32, 33] for further results in this direction.

It is important to point out that (12) is not equivalent to the Cesàro
summability of the two series

∑1
n=−∞ cneinθ0 and

∑∞
n=0 cneinθ0 , separately;

counterexamples can be found in [24, 26]. On the other hand, if these two
series are Cesàro summable for some m, then it is easy to see that the
distributional point values of f and f̃ must exist at θ = θ0, and the converse
assertion also holds. We must also emphasize a notational aspect, we will use
the symbol f̃(θ0) to denote the distributional point value of the distribution
given by (7), we will show, in Corollary 3.2 below, that when f is locally
integrable it agrees almost everywhere with the usual conjugate function
[36] given by the principal value integral (5).

We shall need two more local concepts for distributions, those of distri-
butional boundedness at a point [34] and jump behavior [6, 29]. We say
that a distribution is distributionally bounded at θ = θ0 if there exist k ∈ N
and a k-primitive F of f which is locally integrable in a neighborhood of
θ0 and F (θ) = O((θ − θ0)k), θ → θ0. We say that f has a jump behavior
if k!(θ − θ0)−kF (θ) → γ±, as θ → θ±0 ; in this case we write f(θ±0 ) = γ±,
distributionally, its distributional right and left point values; the jump of f
is then defined as the number [f ]θ=θ0 = γ+ − γ− = f(θ+

0 ) − f(θ−0 ). Distri-
butional boundedness is equivalent to the weak boundedness of f(θ0 + ε θ)
as ε → 0, i.e., for each test function 〈f(θ0 + ε θ), φ(θ)〉 = O(1).
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3. Point Behavior of Distributions and Abel Summability of
Fourier and Conjugate Series

We discuss in this section results which relate the Abel summability of
the Fourier series and conjugate series with the local point behavior of a
distribution and its conjugate distribution. Our first theorem does this
when the distribution has a jump behavior. The meaning of (C) below is
(C, k) for some k.

Theorem 3.1. Let f be a 2π-periodic distribution with Fourier series (6).
Suppose that f has jump behavior at θ = θ0. If

∞∑
n=1

(an sin nθ0 − bn cos nθ0) = β (A) ,

then f and f̃ have  Lojasiewicz point value at θ = θ0, that is, f(θ0) = f(θ±0 ),
and f̃(θ0) = β, distributionally. Moreover,

(13)
∞∑

n=0

cneinθ0 =
f(θ0) + if̃(θ0)

2
+

c0

2
(C) ,

and

(14)
1∑

n=−∞
cneinθ0 =

f(θ0)− if̃(θ0)
2

− c0

2
(C) .

Proof. The distributional version of Lukács theorem [4, 29] (see the classical
one in [17, 19, 36]) and the Abel summability of the conjugate series imply
that

β + o(1) =
∞∑

n=1

(an sin nθ0 − bn cos nθ0)rn ∼ [f ]θ=θ0

π
log(1− r) ,

as r → 1−, and so [f ]θ=θ0 = 0; therefore f(θ0) = f(θ±0 ), distributionally.
Next, the results from [26, 23] imply the existence of a continuous function
c such that the following two distributional asymptotics hold

(15)
∞∑

n=0

cneinθ0δ(λx− n) ∼
(

f(θ0)
2

+ c(λ)
)

δ(x)
λ

, as λ →∞ ,

and

(16)
1∑

n=−∞
cneinθ0δ(λx− n) ∼

(
f(θ0)

2
− c(λ)

)
δ(x)
λ

, as λ →∞ ,

where δ is the Dirac delta distribution and both (15) and (16) are interpreted
in the weak topology of S ′(R). Multiplying (15) and (16) by −i sgn n, eval-
uating (15) at e−x and (16) at ex, and adding the two results, we get, as
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λ →∞,

β + o(1) =
∞∑

n=1

(an sin nθ0 − bn cos nθ0)e−
n
λ

= i

(
f(θ0)

2
− c(λ)

)
〈δ(x), ex〉 − i

(
f(θ0)

2
+ c(λ)− c0

) 〈
δ(x), e−x

〉
= −2ic(λ) + ic0 ,

and so

(17) c(λ) =
c0 + iβ

2
+ o(1) , λ →∞ .

But (15)–(17) together give us
∞∑

n=−∞
c̃neinθ0δ(λx− n) ∼ β

δ(x)
λ

, as λ →∞ in S ′(R) ,

and, by [26, Lem.1], the last fact is equivalent to the existence of the point
value of f̃ at θ = θ0, namely, f̃(θ0) = β, distributionally. On the other hand,
inserting (17) into (15) and (16) and using [26, Cor.7], we obtain at once
(13) and (14). �

Theorem 3.1 allows us to give distributional interpretation to the con-
jugate function of an L1 function. Indeed, recall that if f ∈ L1[−π, π], at
every point θ0 where the derivative of the primitive of f exists [36, Thm.7.20,
Chap.III],
∞∑

n=1

(an sin nθ0−bn cos nθ0)rn+
1

2π

∫ π

1−r
(f(t+θ0)−f(θ0−t)) cot

(
t

2

)
dt → 0 ,

as r → 1−. So, at those points, the Abel summability of the conjugate series
is equivalent to the existence of the principal value integral. It is also very
well known that the conjugate series is Abel summable almost everywhere
[36, Chap.VII, p.252]. Since the  Lojasiewicz point value exists at any point
where the primitive has a derivative, we immediately obtain from Theorem
3.1 the following corollary.

Corollary 3.2. Let f ∈ L1[−π, π], then f̃ has  Lojasiewicz point value at
every point θ0 where the derivative of the primitive of f exists and the con-
jugate series is Abel summable. Moreover, at those points,

(18) f̃(θ0) = − 1
2π

p.v.

∫ π

−π
f(t + θ0) cot

(
t

2

)
dt , distributionally.

Furthermore, the equality (18) holds almost everywhere.

We may obtain a stronger result than Theorem 3.1, but we have to pay
the price of passing through a Tauberian theorem [28, Thm.3.2]. The next
theorem is the most important of this section.
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Theorem 3.3. Let f be a 2π-periodic distribution with Fourier series (6).
Suppose that

(19)
a0

2
+

∞∑
n=1

(an cos nθ0 + bn sin nθ0) = γ (A) ,

and

(20)
∞∑

n=1

(an sin nθ0 − bn cos nθ0) = β (A) .

If either f or f̃ is distributionally bounded at θ = θ0, then f(θ0) = γ and
f̃(θ0) = β, distributionally. Furthermore (13) and (14) hold.

Proof. By symmetry, we may assume that f is distributionally bounded at
θ = θ0. Let U and V be the standard harmonic representations [2, 33] of f

and f̃ on the upper half-plane =m z > 0, that is,

U(z) =
∞∑

n=0

cneinz +
1∑

n=−∞
cneinz̄ and V (z) =

∞∑
n=1

c̃neinz +
1∑

n=−∞
c̃neinz̄ .

Put G(z) = U(z) + iV (z) = −c0 + 2
∑∞

n=0 cneinz. Then G is analytic
in the upper half-plane =m z > 0, it has a radial limit at θ = θ0, i.e.,
limy→0+ G(θ0 + iy) = γ + iβ, and it has distributional boundary values
on the real axis, actually the boundary distribution is obviously g(θ) =
−c0 + 2

∑∞
n=0 cneinθ = f(θ) + if̃(θ).

Suppose that we were able to show that g is distributionally bounded at
θ = θ0, since G has a radial value, then the hypotheses of the Tauberian
theorem from [28, Thm.3.2] would be fully satisfied and it would lead to
the conclusion g(θ0) = γ + iβ, distributionally, which implies that f(θ0) =
γ and f̃(θ0) = β, distributionally; moreover, the latter would obviously
yield (13) and (14), since the distributional point values of the distributions∑∞

n=0 cneinθ and
∑1

n=−∞ cneinθ would be (γ +iβ+c0)/2 and (γ−iβ−c0)/2,
respectively. So the proof of the present theorem will be complete after we
establish the distributional boundedness of g at θ = θ0.

Let us show the distributional boundedness of g at θ = θ0. Observe that
the distributional boundedness of f explicitly means that f(θ0+εθ) = O(1),
ε → 0+, in the weak topology of S ′(R), so by applying the Fourier transform,
we obtain that, as λ →∞,

∞∑
n=−∞

cneinθ0δ(λx− n) = O

(
1
λ

)
, in S ′(R) .

The results from [23, 25] imply that there exists a continuous function c(λ)
such that

∞∑
n=1

cneinθ0δ(λx− n) = c(λ)
δ(x)
λ

+ O

(
1
λ

)
, in S ′(R) ,
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and
1∑

n=−∞
cneinθ0δ(λx− n) = −c(λ)

δ(x)
λ

+ O

(
1
λ

)
, in S ′(R) .

The same argument used in the proof of Theorem 3.1 and the hypothesis
(20) yield c(λ) = O(1), λ →∞, and hence

−c0δ(λx) + 2
∞∑

n=0

cneinθ0δ(λx− n) = O

(
1
λ

)
, in S ′(R) ,

taking inverse Fourier transform in the above relation, we convince ourselves
that g is distributionally bounded at θ = θ0. This completes the proof. �

Remark 3.4. Theorem 3.3 includes Theorem 3.1. Indeed, the existence
of the jump behavior gives in particular distributional boundedness at the
point, it also implies the Abel summability of the Fourier series [4, 25].

There is also another useful notion of point value which is weaker than the
one of  Lojasiewicz, that of symmetric point value [5, 24, 30]. It is related to
de la Vallée Poussin generalized symmetric derivatives [36, Chap.XI]. One
says that a distribution f has a symmetric (distributional) point value γ at
θ = θ0, if its symmetric part about θ = θ0,

χ(θ) =
f(θ + θ0) + f(θ − θ0)

2
,

has γ as point value at θ = 0, that is, χ(0) = γ, distributionally. In such
a case one writes fsym(θ0) = γ, distributionally. Naturally, the existence of
the distributional point value implies the existence of the symmetric point
value, but the converse is not true, as shown by the example δ′(θ) at θ = 0;
indeed, δ′sym(0) = 0, distributionally, because its symmetric part about the
origin vanishes, but obviously the value of δ′ does not exist at θ = 0. Observe
that (4) is a particular case of this distributional concept. The existence of
the symmetric point value at θ = θ0 implies the Abel summability of the
Fourier series at the point [5, 24, 30]. Thus, we obtain from Theorem 3.3
the following corollary.

Corollary 3.5. Let f be a 2π-periodic distribution with Fourier series (6).
Suppose that fsym(θ0) = γ, distributionally. If (20) holds and if either f

or f̃ is distributionally bounded at θ = θ0, then f(θ0) = γ and f̃(θ0) = β,
distributionally. Furthermore (13) and (14) hold.

4. Point Behavior of Periodic Functions and Measures

In this section we provide complete characterizations of Abel summabil-
ity at a point of the Fourier and conjugate series for functions and positive
measures in terms of average point values. More generally, we extend the
characterization to distribution which are bounded from below in a neigh-
borhood of the analyzed point.
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4.1. Bounded Functions. We now combine Theorem 3.3 with some results
of Hardy and Littlewood [10, 11, 12, 13] to obtain the ensuing theorem about
functions which are locally bounded at a point.

Theorem 4.1. Let f ∈ L1[−π, π] be bounded in a neighborhood of the point
θ = θ0. Let (6) be its Fourier series. Then, we have simultaneously the Abel
summability of its Fourier series and conjugate series (19) and (20) if and
only if f(θ0) = γ (C, 1) and f̃(θ0) = β (C, 3). Namely, the first order
primitive of f is differentiable at θ = θ0,

(21) lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f(t)dt = γ ;

and the conjugate distribution (which is integrable near θ = θ0) satisfies

(22) lim
θ→θ0

3
(θ − θ0)3

∫ θ

θ0

f̃(t) (θ − t)2 dt = β .

Furthermore, under these circumstances,

(23) β = − 1
2π

p.v.

∫ π

−π
f(t + θ0) cot

(
t

2

)
dt .

In addition, we have (C, κ) summability of the series for any κ > 0,

(24)
∞∑

n=0

cneinθ0 =
γ + iβ + c0

2
(C, κ) ,

and

(25)
1∑

n=−∞
cneinθ0 =

γ − iβ − c0

2
(C, κ) .

Proof. The converse is clear since the existence of the two point values im-
plies Abel summability [4, 24, 25, 33].

Observe that the local boundedness of f gives us for free the distributional
boundedness of f at θ = θ0. So, Theorem 3.3 yields at once f(θ0) = γ,
distributionally, but since f is a bounded function, then the point value
must be of order 1 [15] and then (21) follows. We have already seen that
under these circumstances, (21) and (20), the principal value integral in (23)
exists and agrees with β. A theorem of Hardy and Littlewood [10] (see also
[11, 12]) gives us that if (21) holds, then

(26)
a0

2
+

∞∑
n=1

an cos nθ0 + bn sin nθ0 = γ (C, κ) ,

for any κ > 0. Theorem 3.3 also implies f̃(θ0) = β, distributionally, but
not the assertion about the order of the point value. It should be noticed
that f̃ is integrable in a neighborhood of θ = θ0, it is implied by the local
boundedness of f . On the other hand f̃(θ0) = β, distributionally, implies
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the Cesàro summability of the conjugate series [3, 26], but another theorem
of Hardy and Littlewood [13] implies

(27)
∞∑

n=1

an sin nθ0 − bn cos nθ0 = β (C, κ) ,

for any κ > 0.
Using cn = (a|n|− i sgn nb|n|)/2, it is easy to see that (24) and (25) follow

from (26) and (27). Finally, invoking the equivalence theorem between Riesz
and Cesàro means [9, 14], (24) and (25) give

e.v.

∞∑
n=−∞

c̃neinθ0 = β (C, 1) ,

and this fact in combination with [30, Thm.5.2] yield f̃(θ0) = β (C, 3),
which in turn is equivalent to (22).

�

In particular, we obtain the characterization of simultaneous Abel summa-
bility of the Fourier and conjugate series for bounded functions.

Corollary 4.2. Let f ∈ L∞[−π, π] have Fourier series (6). Then, simulta-
neous Abel summability of its Fourier series and conjugate series (19) and
(20) is equivalent to (21) and (22).

4.2. Positive Measures and Functions Bounded from Below. Theo-
rem 4.1 does not tell all the true, it is also valid for L1 functions which are
bounded from below. A version for positive measures also holds. We need
the following lemma in order to establish those facts. In the following, we
shall write

∫ b
a for integration over the closed interval [a, b], if we write

∫ b
a+ it

means integration over (a, b], a similar meaning is assigned to the symbols∫ b−

a and
∫ b−

a+ . Given a 2π-periodic measure µ, we use the following definition
for its Fourier coefficients

an =
1
π

∫ π

−π+

cos nt dµ(t) and bn =
1
π

∫ π

−π+

sin nt dµ(t) ,

so that the Fourier expansion converges to µ in the space S ′(R). The
integral

∫ π−

−π could have also be used and we would obtain the same re-
sult. On the other hand if we use

∫ π
−π then the Fourier expansion does not

converge to µ in general, it rather converges to the periodic distribution
µ + µ({π})

∑∞
n=−∞ δ( · − (2n + 1)π). After these preliminaries, we state

the lemma.

Lemma 4.3. Let µ be a 2π-periodic positive measure with Fourier series
(6). If its Abel-Poisson means are bounded at the point θ = θ0, that is,

(28)
a0

2
+

∞∑
n=1

(an cos nθ0 + bn sin nθ0)rn = O(1) , r → 1− ,
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then µ is distributionally bounded at θ = θ0. Moreover, µ is continuous at
θ = θ0, i.e., µ({θ0}) = 0, and

1
(θ − θ0)

∫ θ

θ0

dµ(t) = O(1) , θ → θ0 .

Proof. We may assume that θ0 = 0, by translating. Observe next that (28)
says

(29)
∫ π

−π+

Pr(t) dµ(t) = O(1) , r → 1− ,

where Pr is the Poisson kernel, i.e., Pr(θ) = (1 − r2)/(1 − 2r cos θ + r2).
Define the following primitive of µ

F (θ) =


∫ θ

0
dµ(θ) θ > 0 ,∫ θ

0−
dµ(θ), θ ≤ 0 ,

Thus, F is non-decreasing, right continuous on (0,∞), and left continuous
on (−∞, 0] with F (0) = F (0−) = 0. Let us show that µ is continuous at the
origin, that is, F (0+) = 0. From (29), we have that

0 ≤
∫ 0−

−π+

Pr(t) dµ(t) +
∫ π

0+

Pr(t) dµ(t) + F (0+)
1 + r

1− r
= O(1) , r → 1− ,

but the three terms in this inequality are positive, so each of them must
be bounded, and hence F (0+) = 0. Working with the second integral,
integrating by parts, and using that −P ′

r(θ) is positive for θ > 0, we have,

O(1) =
∫ π

0
Pr(t) dµ(t) = F (π)Pr(π) +

∫ π

0
(−P ′

r(t))F (t) dt

≥
∫ π

1−r
(−P ′

r(t))F (t) dt ≥ F (1− r)
∫ π

1−r
(−P ′

r(t)) dt

=
F (1− r)

1− r

 1 + r

1 +
2r − 2r cos(1− r)

(1− r)2

− (1− r)2

1 + r


∼ F (1− r)

(1− r)
, r → 1− .

Therefore,
F (θ)

θ
= O(1) , θ → 0+ .

The integral over (−π, 0) can be handled in a similar manner to obtain the
estimate θ−1F (θ) = O(1), θ → 0−. Thus, the proof is complete. �

We then obtain from Theorem 3.3 and Lemma 4.3 the following result for
periodic positive measures.
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Theorem 4.4. Let µ be a 2π-periodic positive measure with Fourier series
(6). Then, we have simultaneously the Abel summability of its Fourier series
and conjugate series (19) and (20) if and only if µ(θ0) = γ (C, 1), namely
its first order primitive is differentiable at θ = θ0,

(30) lim
θ→θ0

1
θ − θ0

∫ θ

θ0

dµ(t) = γ ;

and the conjugate distribution µ̃ has a point value of order 3 at θ = θ0,
µ̃(θ0) = β, distributionally. In addition,

(31) β = − 1
2π

p.v.

∫ π

−π+

cot
(

t− θ0

2

)
dµ(t) .

and we have (C, κ) summability of the series for any κ > 0,

(32)
∞∑

n=0

cneinθ0 =
γ + iβ + c0

2
(C, κ) ,

and

(33)
1∑

n=−∞
cneinθ0 =

γ − iβ − c0

2
(C, κ) .

Proof. Lemma 4.3 gives the distributional boundedness of µ at θ = θ0. So,
Theorem 3.3 yields µ(θ0) = γ, distributionally. For positive measures the
existence of the distributional point value is equivalent to (30), as shown by
 Lojasiewicz in [15]. Theorem 3.3 also implies µ̃(θ0) = β, distributionally.
Now the theorem of Young-Riesz-Plessner [36, Thm.8.1, Chap.III] implies
(31), under the assumption of Abel summability of the conjugate series (one
has to integrate by parts and use [36, Thm.7.15, Chap.III]). The rest of
the proof is identically the same as the one of Theorem 4.1, but using [36,
Thm.8.1, Chap.III] instead of the results from [10, 13]. �

We now provide the announced extension of Theorem 4.1 to functions
bounded from below (or above).

Theorem 4.5. Let f ∈ L1[−π, π] be bounded from below (or above) in some
neighborhood of θ = θ0. Let (6) be its Fourier series. The simultaneous
Abel summability of the Fourier series and conjugate series (19) and (20) is
equivalent to f(θ0) = γ (C, 1), namely,

lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f(t)dt = γ ;

and the existence of the point value of order 3 at θ = θ0 for the conjugate
distribution, f̃(θ0) = β, distributionally. Furthermore,

β = − 1
2π

p.v.

∫ π

−π
f(t + θ0) cot

(
t

2

)
dt ,

and we have (C, κ) summability of the series (32) and (33) for any κ > 0.
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Proof. The statement of the present theorem is a local one, we can therefore
assume the existence of a constant K > 0 such that f > −K, globally.
Apply now Theorem 4.4 to the positive measure µ = f + K. �

Remark 4.6. It has been pointed out in Section 2 that (32) and (33) are
sufficient to establish the existence of the point values of f and f̃ . There-
fore, for positive measures and functions bounded from below (or above)
in a neighborhood of the point, they are necessary and sufficient for the
simultaneous Abel summability of the Fourier and conjugate series.

4.3. Distributions Bounded from Below (Above). The global integra-
bility of f on [−π, π] can be removed from Theorem 4.5 in order to allow
more general trigonometric series in the statement.

Given f ∈ D′(R) and a point θ0 ∈ R, we shall say that f is bounded
from below (above) in a neighborhood of θ = θ0 if there exist σ,K ≥ 0 such
that −K ≤ f on (θ0 − σ, θ0 + σ) (resp. f ≤ K), i.e., for each non-negative
φ ∈ D(θ0 − σ, θ0 + σ)

(34) −K

∫ ∞

−∞
φ(θ)dθ ≤ 〈f(θ), φ(θ)〉 (resp. K

∫ ∞

−∞
φ(θ)dθ ≥) .

It should be noticed that under this circumstances f is a signed measure in
a neighborhood of the point.

We end this article by characterizing simultaneous Abel summability of
the Fourier and conjugate series for distributions which satisfy (34) near the
point. We first show a lemma.

Lemma 4.7. Let g be a 2π-periodic distribution vanishing in a neighborhood
of the point θ = θ0. Then the conjugate distribution f̃ is a C∞-function in
a neighborhood of θ = θ0, and consequently the Fourier series and conjugate
series of g are Abel summable to the values 0 and g̃(θ0), respectively.

Proof. Let U and V be the standard harmonic representations of f and f̃
on =m z > 0, i.e., the ones used in the proof of Theorem 3.3. By applying
the reflection principle to the real and imaginary parts of U ([1, Sec.4.5],
[22, Sec.3.4]), we have that U admits a harmonic extension to a (complex)
neighborhood of θ0. Since V is harmonic conjugate to U , we conclude that
V admits a harmonic extension to a (complex) neighborhood of θ0 as well.
Therefore, f̃ is a C∞-function near θ = θ0. The Abel summability of the
two series is implied by the results from [4, 25]. �

Theorem 4.8. Let the 2π-periodic distribution f ∈ D′(R) be bounded from
below (or above) in some neighborhood of θ = θ0. Let (6) be its Fourier
series. The following properties are equivalent:

(i) The simultaneous Abel summability of the Fourier series and conju-
gate series (19) and (20).

(ii) The existence of the point values f(θ0) = γ (C, 1) and f̃(θ0) = β,
distributionally of order 3.
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(iii) The existence of the distributional point values of f and f̃ at θ = θ0,
f(θ0) = γ and f̃(θ0) = β, distributionally.

(iv) The existence of some (possibly large) κ such that

a0

2
+

∞∑
n=1

(an cos nθ0 + bn sin nθ0) = γ (C, κ) ,

and
∞∑

n=1

(an sin nθ0 − bn cos nθ0) = β (C, κ) .

(v) The existence of some (possibly large) κ such that
∞∑

n=0

cneinθ0 =
γ + iβ + c0

2
(C, κ) ,

and
1∑

n=−∞
cneinθ0 =

γ − iβ − c0

2
(C, κ) .

Proof. Observe that (iii), (iv) and (v) are equivalent in general, regardless
the assumption over f ; moreover, clearly, any of them implies (i) [4, 25].

It remains to show that (i) implies (ii) under the hypothesis f is bounded
from below in a neighborhood of θ = θ0. By adding a constant K > 0,
we can assume that f is a positive measure in a neighborhood of θ = θ0.
So, we can decompose f = g + µ, where g is a 2π-periodic distribution
which vanishes in a neighborhood of θ = θ0, and µ is a 2π-periodic positive
measure. By Lemma 4.7 and the assumption (i), we have that the Fourier
and conjugate series of µ are both Abel summable at θ = θ0, (ii) now follows
directly from Theorem 4.4 and Lemma 4.7. �
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Studia Math. 19 (1960), 27–52.
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