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Abstract. We make a complete wavelet analysis of asymptotic prop-
erties of distributions. The study is carried out via Abelian and Taube-
rian type results, connecting the boundary asymptotic behavior of the
wavelet transform with local and non-local quasiasymptotic properties of
elements in the Schwartz class of tempered distributions. Our Tauberian
theorems are full characterizations of such asymptotic properties. We
also provide precise wavelet characterizations of the asymptotic behavior
of elements in the dual of the space of highly time-frequency localized
functions over the real line. For the use of the wavelet transform in
local analysis, we study the problem of extensions of distributions ini-
tially defined on R \ {0} to R; in this extension problem, we explore the
asymptotic properties of extensions of a distribution having a prescribed
asymptotic behavior. Our results imply intrinsic properties of functions
and measures as well, for example, we give a new proof of the classical
Littlewood Tauberian theorem for power series.

1. Introduction

The aim of this paper is to provide a local analysis of distributions through
the analysis of their wavelet transforms at boundary points. This will be
done via a Tauberian approach. Our Abelian-Tauberian type results imply
intrinsic properties of functions as well, for example, we will derive from
them the nowhere differentiability of the Weierstrass function even in an
average sense, Example 3, the celebrated Littlewood Tauberian theorem
[25], Example 5, while in Examples 2 and 4 we consider Fourier series with
gaps and in Example 6 we examine the asymptotics of monotone functions
and non-negative measures via their wavelet transforms. Applications are
also indicated in Remarks 1 and 2.

The wavelet transform is a powerful tool for studying local properties of
functions. Usually, the wavelet analysis presents two main important fea-
tures [4, 6, 18, 23, 28, 41]: the wavelet transform as a time-frequency analysis
tool, and the wavelet analysis as part of approximation and function space
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theory (see also [4, 16, 17, 27] and references therein for another approach to
the time-frequency analysis). The existent applications of wavelet methods
in local analysis are very rich. In [39], the wavelet transform is effectively
applied to the analysis of differentiability properties of functions; it is deeply
involved in the analysis of regularity notions. One could mention its vital
role for the analysis of various classes of spaces, for example, Zygmund-
Hölder type spaces and 2-microlocal spaces (cf. [19], [35], [36], [21]-[23],
[28], [39]), and hence for the study of pseudodifferential operators within
such classes (see [3, 18, 20, 23, 28]).

In this article, we are mainly concerned with the Schwartz class of tem-
pered distributions. While it is totally clear what one means by the pointwise
regularity and the asymptotic properties of a function, it is not so clear for
a distribution. Schwartz definition of a distribution itself makes no allusion
to pointwise properties, and, at a first look, suggests that one could hardly
talk about them.

It is then interesting to mention that there are indeed local notions which
can be used to measure pointwise properties of distributions. One may even
talk about the value of a distribution at point, if one interprets it in the
sense of  Lojasiewicz [26]. Naturally, not all distributions have a value at a
point. The  Lojasiewicz notion admits a natural generalization, the quasi-
asymptotic behavior, which may be used to describe pointwise asymptotic
properties of distributions as well as asymptotic properties at infinity. The
quasiasymptotics were introduced by Zavialov [54] as a result of his investi-
gations in quantum field theory, and further developed by him, Vladimirov
and Drozhzhinov (see [7]–[10], [47]–[50]). Later on, the theory had its main
developments within the study of integral transforms, convolution equa-
tions, partial differential equations, multiresolution expansions and Abelian
and Tauberian theory (see [7]–[10], [13]–[15], [30]–[33], [38], [47]–[53]).

Ideas of quasiasymptotics have also important connections with problems
in Fourier analysis, especially the case of  Lojasiewicz notion for point values
which has been widely used to study various problems of summability for
Fourier series and integrals ([12], [43]–[45], [52]).

The main goal of this paper is to provide a complete study of the quasi-
asymptotic behavior of distributions through the wavelet transform which
can be thought as a sort of mathematical microscope analyzing a distribu-
tion on various length scales around any point of the real axis. Therefore,
this transform is very suitable for studying the quasiasymptotic behavior,
which actually measures scaling self-similarities of distributions at an as-
ymptotic level. We would like to point out that our results are related to
those of Drozhzhinov and Zavialov, though with a different approach. In
fact, the Tauberians from [8] make use of wavelets with finitely many vanish-
ing moments, while here we employ wavelets with infinitely many vanishing
moments.

The examples mentioned at the beginning of this introduction show that
our analysis, connecting abstract notions from distribution theory with the
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wavelet transform, gives a powerful new tool for the local analysis of func-
tions as well. Main structural theorems based on our results from previous
papers are important and formulated in Theorems 1 and 2. Tauberian re-
sults are also given in the form of theorems; Theorems 3-7 are devoted to the
behavior at a finite point while Theorems 8-11 are dedicated to the behavior
at infinity. The Tauberian results for finite points relate the quasiasymp-
totics with asymptotics of the wavelet transform over cones with vertex at
the boundary and the Tauberian estimate:

(1.1) |Wψf(x0 + ε cosϑ, ε sinϑ)| ≤ C
ρ(ε)

(sinϑ)m
,

for a suitable comparison function ρ. The unbounded term (sinϑ)−m in
(1.1) gives to the results a very general character with mild constrains.

The paper is organized as follows. We recall in Section 2 the basic
facts from distribution wavelet analysis, following Holschneider [18]; we also
briefly discuss the notion of quasiasymptotics. Section 3 connects the bound-
ary asymptotic behavior of the wavelet transform through Abelian theorems
and Tauberian characterizations of the quasiasymptotic behavior in S ′0, the
dual of the space of highly time-frequency localized functions S0 [18]. In
addition, we provide examples related to point values of distributions which
correspond to Abelian type results and have some interesting consequences
when applied to the Weierstrass function. We study in Section 4 the conse-
quences of asymptotic relations in S ′0 within the space of tempered distribu-
tions. Moreover, we shall study in Section 4 a slightly more general problem,
that is, the asymptotic properties of extensions to R of distributions initially
defined on R \ {0} and having a prescribed asymptotic behavior; here we
follow the approach from [42, 43], and complement some results. Notice
that the latter is also important from a mathematical physics perspective,
since it is of relevance for renormalization procedures in quantum field the-
ory [2]. Sections 5 and 6 are the most important ones; there we obtain the
Tauberian theorems for quasiasymptotics of tempered distributions in terms
of the wavelet transform. These Tauberian theorems are complete inverse
theorems to the Abelian ones from [32, 33]. They can also be considered as
generalizations of the results from [19] to our distributional context. Within
these sections, applications of the Tauberian results are given through ex-
amples and remarks. Finally, Appendix 7 contains the proof of a technical
lemma from Section 3 (Lemma 1).

2. Preliminaries and Notation

The set of positive real numbers is denoted by R+ and as usual its closure
is denoted by R+ = [0,∞). Similarly, we use notation R− and R−; R0 =
R \ {0}. The sets of positive and negative integers are denoted by Z+ and
Z−; N = {0, 1, 2, . . . }. The set H denotes the upper half-plane, that is,
H = R× R+.
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The Schwartz spaces of tests functions and distributions on the real line
are denoted by D(R) and D′(R), respectively; the spaces of smooth rapidly
decreasing function and its dual, the space of tempered distributions, are
denoted by S(R) and S ′(R) ([34]). The Fourier transform is defined by

F(φ)(x) = φ̂(x) =
∫ ∞

−∞
φ(t)e−ixtdt, φ ∈ S(R),

and extend to S ′(R) by duality. By a progressive distribution or function,
we mean one whose Fourier transform is supported by R+; similarly, the
term regressive refers to those whose Fourier transform is supported by R−.

We will follow [18] for the wavelet analysis of distributions. The space
of highly time-frequency localized progressive functions over the real line
S+(R) is the set of those elements of S(R) which are progressive functions;
correspondingly, S−(R) consists of those ones which are regressive. The
space S0(R) is defined then as S0(R) = S−(R) ⊕ S+(R) and it is called
the space of highly time-frequency localized functions over R. Alternatively,
φ ∈ S0(R) if φ ∈ S(R) and

(2.1)
∫ ∞

−∞
xnφ(x)dx = 0, for all n ∈ N.

We note that S0(R) is a closed subspace of S(R). The dual spaces of S+(R),
S−(R) and S0(R) (these spaces provided with the relative topology inhered
from S(R)) are S ′−(R) = (S+(R))′, S ′+(R) = (S−(R))′ and S ′0(R), respec-
tively. It should be noticed that the space S ′+(R) defined above is different
from the one used in [47], for example.

Note that there is a continuous linear projector from S ′(R) onto S ′0(R),
given by the transpose of the trivial inclusion from S0(R) to S(R). Due
to the Hahn-Banach theorem, this map is surjective; however, there is no
continuous right inverse for this projection [13]. Note also that the kernel
of this projection is the space of polynomials; hence, the space S ′0(R) can
be regarded as the quotient space of S ′(R) by the space of polynomials. If
f ∈ S ′(R), we will keep calling by f the projection of f to S ′0(R).

By a wavelet we mean an element ψ ∈ S0(R). The wavelet transform of
f ∈ S ′(R) with respect to a wavelet ψ is given by the C∞-function on H

(2.2) Wψf(b, a) =
〈
f(b+ ax), ψ̄(x)

〉
=
〈
f(t),

1
a
ψ̄

(
t− b

a

)〉
= f ∗ ˇ̄ψa(b),

where ψa(·) = 1
aψ( ·a).

The wavelet η is called a reconstruction wavelet for the wavelet ψ if the
two constants

(2.3) c±ψ,η =
∫ ∞

0
ψ̂(±x)η̂(±x)

dx
x
<∞

are non-zero and equal to each other; in such case we write

cψ,η = c+ψ,η = c−ψ,η =
1
2

∫ ∞

−∞
ψ̂(x)η̂(x)

dx
|x|
.
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If ψ admits the reconstruction wavelet η, we have the desingularization
formula for f ∈ S ′0(R) and φ ∈ S0(R)

〈f(x), φ(x)〉 =
1
cψ,η

∫ ∞

0

∫ ∞

−∞
Wψf(b, a)Wη̄φ(b, a)

dbda
a

.

Therefore, the wavelet transform is injective on S ′0(R); on the other hand,
the injectivity of this integral transform fails when it is considered over
S ′(R) because the moment vanishing condition (2.1) gives that the wavelet
transform of any polynomial vanishes. Note that any wavelet admits a
reconstruction wavelet as long as supp ψ̂ ∩ R+ 6= ∅ and supp ψ̂ ∩ R− 6= ∅.
We will mainly use wavelets admitting a reconstruction wavelet. An explicit
example of one of such wavelets is ψ given in the Fourier side by ψ̂(x) =

e
−|x|− 1

|x| , x ∈ R, which is itself its own reconstruction wavelet.
We now change our attention to the concept of quasiasymptotic behavior

of distributions [15, 30, 42, 43, 46, 47]. The idea of quasiasymptotics is
to look for asymptotic representations at either small scale or large scale.
Specifically, we look for asymptotics

(2.4) f(λx) ∼ ρ(λ)g(x), as λ→ 0+, or λ→∞,

in the distributional sense, that is, holding after evaluation at each test
function

(2.5) 〈f(λx), φ(x)〉 ∼ ρ(λ) 〈g(x), φ(x)〉 , for each φ ∈ D(R).

If one assumes that ρ is defined, positive and measurable near 0 (resp.
∞) and that g is a non-zero distribution, then relation (2.4) forces ρ to be a
regularly varying function [1] and g a homogeneous distribution having the
degree of homogeneity equal to the index of regular variation of ρ [15, 30, 47].
Since any regularly varying function ρ can be written as ρ(h) = hαL(h),
where L is a slowly varying function, we may only talk about slowly varying
functions in the rest of our discussion. Recall [1] a measurable real valued
function defined and positive on an interval of the form (0, A] (resp. [A,∞)),
A > 0, is called slowly varying at the origin (resp. at infinity) if

lim
ε→0+

L(aε)
L(ε)

= 1, resp. lim
λ→∞

L(aλ)
L(λ)

= 1.

Observe that slowly varying functions are very convenient objects to be
employed in wavelet analysis since they are asymptotically invariant under
rescaling at small scale (resp. large scale). Recall,

Definition 1. A distribution f ∈ D′(R) is said to have quasiasymptotic
behavior of degree α at x = x0 with respect to the slowly varying function L
if

(2.6) lim
ε→0+

1
εαL(ε)

〈f (x0 + εx) , φ(x)〉

exists (and is finite) for each φ ∈ D(R).
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Note that the Banach-Steinhaus theorem implies that there must be a dis-
tribution g ∈ D′(R) such that the above limit (2.6) is equal to 〈g(x), φ(x)〉,
for each φ ∈ D(R). As remarked before, if g 6= 0, then it must be a homoge-
neous distribution of degree α. We recall that all homogeneous distributions
on the real line are linear combinations of either xα+ and xα−, if α /∈ Z−, or
δ(k−1)(x) and x−k, if α = −k ∈ Z−. For these special distributions we
are following the notation from [15]; other special distributions that we will
use are H(x), the Heaviside function, sgnx, the signum function, and the
pseudo-functions Pf

(
H (±x) /xk

)
, k ∈ Z+.

Example 1. Point values of distributions. An important special case of
Definition 1 is the value of distributions at a point in the sense of  Lojasiewicz
[26, 44], which is obtained when α = 0 and L = 1. A distribution f is said
to have a (distributional) point value at x0 in the sense of  Lojasiewicz if

lim
ε→0

f(x0 + εx) = γ in D′(R).

In such a case we write f(x0) = γ, distributionally. Note ([26, 46]), when
f ∈ L1

loc(R), the existence of f(x0) = γ, distributionally, is equivalent to the
existence of m ∈ N such that

lim
x→0

m

x

∫ x

0
f(x0 + t)

(
1− t

x

)m−1

dt = γ.

Analogously to the quasiasymptotics at finite points, one defines the
quasiasymptotics at infinity.

Definition 2. A distribution f ∈ D′(R) has quasiasymptotic behavior of
degree α at infinity in D′(R) with respect to a slowly varying function L if
there exists g ∈ D′(R) such that

(2.7) lim
λ→∞

〈
f(λx)
λαL(λ)

, φ(x)
〉

= 〈g(x), φ(x)〉, ∀φ ∈ D(R).

Contrary to the case at points, the quasiasymptotic behavior at ∞ is
not a local property, since any distribution of compact support satisfies the
Estrada-Kanwal moment asymptotic expansion [15]:

f (λx) ∼
∞∑
n=0

(−1)nµn
n!λn+1

δ(n)(x) as λ→∞,

where µn = 〈f(x), xn〉 .
We may also talk about quasiasymptotics in other spaces of distributions,

say A′ the dual of a suitable space of functions A, meaning that f ∈ A′ and
the test functions in (2.6), resp. (2.7), can be taken from A. There is an
obvious dependence on the space of generalized functions to be employed, so
to denote the quasiasymptotics at infinity, we will indistinctly use the two
convenient notations

f(λx) ∼ λαL(λ)g(x) as λ→∞ in A′,
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and

f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in A′.

Likewise, an analogous notation will be used for quasiasymptotics at finite
points.

In this article we are mainly interested in tempered distributions. It is
very well known [46] that if f ∈ S ′(R) and it has quasiasymptotic behavior
at a point in D′(R), then it will have the same quasiasymptotic behavior
in S ′(R) at the point. The same assertion holds for quasiasymptotics at
infinity [42, 43, 47].

3. Characterization of Quasiasymptotics in S ′0(R)

3.1. Abelian Type Results. Recently, the asymptotic behavior of the
wavelet transform of a distribution having a quasiasymptotic behavior at a
point has been investigated in ([32, 33]). Indeed, it is fairly easy to show
that

(3.1) f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′(R),

implies

(3.2) Wψf(x0, a) ∼ L(a)Wψg(0, a) = aαL (a)Wψg (0, 1) , a→ 0+.

The above result is of Abelian nature. Let us mention that to conclude
(3.2), it is enough to assume a weaker hypothesis. Indeed, if we only assume
the quasiasymptotic behavior of a tempered distribution in the space S ′0(R),
we are still able to deduce (3.2). Actually, the angular asymptotic behavior
over cones with vertex at x0 can also be obtained.

Proposition 1. Let f ∈ S ′(R) have quasiasymptotic behavior in S ′0(R),

(3.3) f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R).

Then, given any 0 < σ ≤ π/2 and r > 0, we have

(3.4) Wψf(x0 +εr cosϑ, εr sinϑ) ∼ εαL (ε)Wψg(r cosϑ, r sinϑ), ε→ 0+,

uniformly for σ ≤ ϑ ≤ π − σ.

Proof. In view of (3.3), the Banach-Steinhaus theorem and the compactness
of the set

(3.5) Cσ =
{

1
sinϑ

ψ̄

(
· − cosϑ

sinϑ

)
∈ S0(R) : σ ≤ ϑ ≤ π − σ

}
,
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we have, as ε→ 0+,

Wψf(x0 + εr cosϑ, εr sinϑ) =
〈
f(x0 + εr cosϑ+ εr sinϑx), ψ̄(x)

〉
=
〈
f(x0 + εrx),

1
sinϑ

ψ̄

(
x− cosϑ

sinϑ

)〉
∼ (rε)αL(rε)

〈
g(x),

1
sinϑ

ψ̄

(
x− cosϑ

sinϑ

)〉
= εαL(rε)

〈
g(rx),

1
sinϑ

ψ̄

(
x− cosϑ

sinϑ

)〉
= εαL (rε)Wψg(r cosϑ, r sinϑ)

∼ εαL (ε)Wψg(r cosϑ, r sinϑ).

�

We have a similar assertion at ∞ (with a similar proof).

Proposition 2. Let f ∈ S ′(R) have quasiasymptotic behavior at infinity in
S ′0(R)

(3.6) f (λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R).

Then, given any 0 < σ ≤ π/2 and r > 0, we have

(3.7) Wψf(λr cosϑ, λr sinϑ) ∼ λαL (λ)Wψg(r cosϑ, r sinϑ), λ→∞,

uniformly for σ ≤ ϑ ≤ π − σ.

We now provide some applications of Proposition 1 to distributions given
by trigonometric series with exponential gaps. We will obtain (Example
3) a stronger conclusion than the usual nowhere differentiability for the
Weierstrass function. For this purpose, we first give Example 2 which is
interesting in itself.

Example 2. This example shows how to construct distributions with no
point values in the sense of  Lojasiewicz (cf. Example 1).

Let {λn}∞n=0 be a lacunary sequence in the sense of Hadamard, that is,
a sequence of positive numbers such that there are a n0 ∈ N and σ > 1
such that λn+1/λn > σ > 1, n > n0. Let f ∈ S ′(R) have a series rep-
resentation f(x) =

∑∞
n=0 cne

iλnx, where the series is convergent in S ′(R).
Furthermore, suppose that at a given x0 the point value f(x0) exists in the
sense of  Lojasiewicz. Then, by selecting ψ ∈ S0(R) with supp ψ̂ ⊂ [σ−

1
2 , σ

1
2 ]

and ψ̂(1) = 1, the lacunarity of {λn}n∈N0 implies that for m large enough,
ψ̂(λn/λm) = 0 if m 6= n. After a quick calculation, we get

Wψf(x0, λ
−1
m ) =

∞∑
n=0

cne
iλnx0ψ̂

(
λn
λm

)
= cme

iλmx0 ,
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So, the existence of the distributional point value f(x0) and Proposition 1
(with α = 0, L = 1,Wψ1(0, 1) = 0) imply that cmeiλmx0 = o(1), or,

(3.8) lim
m→∞

cm = 0.

Therefore, (3.8) is a necessary condition for the existence of the distribu-
tional point value of f at x0. On the other hand, we have just shown: If
(3.8) is violated, then f cannot have distributional point values anywhere.
Note that exactly the same argument applies to distributions of the form∑∞

n=0 cn cos(λnx) and
∑∞

n=0 cn sin(λnx). We refer to [44] for related results
to this example.

Example 3. A stronger conclusion than the usual nowhere differentiability
for Weierstrass’s function.

Recall the Weierstrass functions is

w(x) =
∞∑
n=0

γ−n cos(βnx), β ≥ γ > 1.

It is continuous and bounded. We look at its first derivative (understood in
the distributional sense, of course!)

w′(x) = −
∞∑
n=0

(
β

γ

)n
sin(βnx).

Since obviously (β/γ)n 6= o(1), it follows from Example 2 that w′(x0) does
not exist in the sense of  Lojasiewicz at any x0 ∈ R. In particular, w is
nowhere differentiable.

It should be emphasized that the non-existence of the  Lojasiewicz point
value of the derivative is much stronger than non-differentiability (example:
h(x) = x−1 sinx is not differentiable at 0, in the ordinary sense, but h′(0) =
0, distributionally). In fact, for the Weierstrass function it means [26, 46]
that w is nowhere differentiable even in an average sense, namely, for any
x0 and m ∈ N

lim
x→0

1
x2

∫ x

0
(w(x0 + t)− w(x0))

(
1− t

x

)m
dt does not exist.

Example 4. Quasiaymptotics and series with gaps. Let again f(x) =∑∞
n=0 cne

iλnx in S ′(R), where {λn}∞n=0 is lacunary. Suppose that

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′(R).

We will show in this example that if α /∈ N, then g = 0. Since supp f̂ ⊂
[0,∞) , there must be C+ such that ĝ(x) = C+x

−α−1
+ . If we use the same
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wavelet from Example 2 and apply Proposition 1, we conclude that

lim
m→∞

λαmcme
iλmx0

L (1/λm)
= lim

m→∞

λαmWψf(x0, λ
−1
m )

L (1/λm)
= Wψg(0, 1)

=
C+

2π

∫ ∞

0

ψ̂(x)
xα+1

dx.

However, we have some degree of freedom over the wavelet, and different
choices of ψ lead to different values of the right hand side of the above
equation; therefore, C+ = 0. In conclusion, we have shown that the only
behavior f can have is f(x0 + εx) = o(εαL(ε)) in S ′(R) and

(3.9) cm = o

(
L(1/λm)
λαm

)
as m→∞

is a necessary condition for this to hold.

3.2. Tauberian Type Results. Our next goal is to provide inverse results
for the results of Abelian type given in Propositions 1 and 2, under some
natural additional Tauberian conditions. Actually, we characterize below
quasiasymptotics in S ′0(R) in terms of the wavelet transform. Later, we will
use this characterization to study the quasiasymptotic behavior in the space
S ′(R) (Sections 5 and 6). We begin with the case at ∞.

Proposition 3. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a
reconstruction wavelet. The following two conditions:

(3.10) lim
λ→∞

1
λαL(λ)

Wψf (λb, λa) = Mb,a <∞, (b, a) ∈ H,

and the existence of constants γ, β,M > 0 such that

(3.11)
|Wψf (λb, λa)|

λαL(λ)
< M

(
a+

1
a

)γ
(1 + |b|)β, (b, a) ∈ H, λ > 1,

are necessary and sufficient for the existence of a distribution g such that

(3.12) f (λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R).

In this case we have Mb,a = Wψg(b, a), (b, a) ∈ H.

Proof. That (3.10) is necessary follows from the Abelian result, Proposition
2. The necessity of (3.11) follows from the characterization of bounded sets
in S ′0(R) (c.f. [18, Thm. 28.0.1]). We now focus in showing the converse.
Let B =

{
ψb,a := a−1ψ̄

(
a−1( · − b)

)
, (b, a) ∈ H

}
. We claim that the linear

span of B is dense in S0(R). Let h ∈ S ′0(R). If we suppose that〈
h(x),

1
a
ψ̄

(
x− b

a

)〉
= Wψh (b, a) = 0, for all (b, a) ∈ H,

then, by wavelet desingularization, we have that for every φ ∈ S0(R),

〈h(x), φ(x)〉 =
1
cψ,η

〈Wψh (b, a) ,Wη̄φ (b, a)〉 = 0;
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and hence h = 0. Thus, by the Hahn-Banach theorem, we conclude that
the linear span of B is dense in S0(R). Furthermore, let F = {fλ;λ ≥ 1}
where fλ = f(λ ·)/(λαL(λ)). The estimate (3.11) and the characterization
of bounded sets in S ′0(R) (c.f. [18, Thm. 28.0.1]) imply that F is a bounded
family in S ′0(R), which in turn implies, by the Banach-Steinhaus theorem,
that F is an equicontinuous set. It is known that for equicontinuous sets
the pointwise convergence over a complete test space and over some dense
subset coincide. But observe that (3.10) exactly gives us the convergence
over the linear span of B; so, for some g ∈ S ′0(R), we have fλ → g, λ→∞,
in the weak sense. �

We now consider the asymptotic behavior at finite points. The Tauberian
condition which we shall use may be referred as a Vladimirov-Drozhzhinov-
Zavialov type Tauberian condition. Actually, they have made extensive use
of these types of conditions in the study of Tauberian theorems for local
behavior of generalized functions in terms of several integral transforms, see
[7, 8, 47, 48].

We will use the following lemma in the proof of Proposition 4 below. It
essentially allows one to pass from a local Tauberian estimate to a global one.
Its proof is technically difficult, and we shall postpone it for the Appendix
at the end of the article.

Lemma 1. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a recon-
struction wavelet. Then

(3.13) lim sup
ε→0+

sup
a2+b2=1, a>0

am

εαL(ε)
|Wψf (x0 + εb, εa)| <∞,

for some m ∈ R, if and only if there exist γ, β,M > 0 such that

(3.14)
|Wψf (x0 + εb, εa)|

εαL(ε)
< M

(
a+

1
a

)γ
(1 + |b|)β , (b, a) ∈ H, ε < 1.

The Tauberian characterization of quasiasymptotics at finite points in
S ′0(R) is given by the following proposition.

Proposition 4. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a
reconstruction wavelet. The following two conditions:

(3.15) lim
ε→0+

1
εαL(ε)

Wψf (x0 + εb, εa) = Mb,a <∞, a2 + b2 = 1, a > 0,

exists, and the existence of m ∈ N such that the Tauberian estimate (3.13)
holds, are necessary and sufficient for the existence of a distribution g such
that

(3.16) f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R).

In this case we have Mb,a = Wψg(b, a).
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Proof. Let us first show that (3.15) is valid for all (b, a) ∈ H. Indeed, for
(b, a) ∈ H fixed, write b = r cosϑ and a = r sinϑ, with r > 0 and 0 < ϑ < π.
Then we have that

lim
ε→0+

Wψf (εb, εa)
εαL(ε)

= lim
ε→0+

Wψf (εr cosϑ, εr sinϑ)
εαL(ε)

= rα lim
ε→0+

L(ε)
L(ε/r)

Wψf (ε cosϑ, ε sinϑ)
εαL(ε)

= rαMcosϑ, sinϑ.

So, we are in the right to write Mb,a := rαMcosϑ, sinϑ. By Lemma 1, the
estimate (3.13) implies the stronger Tauberian estimate (3.14). Observe
that having now (3.14) and (3.15) valid for all (b, a) ∈ H, the arguments
given in the proof of Proposition 3 may lead us to the converse, but we
choose to present an alternative version of the proof.

Let η be a reconstruction wavelet for ψ. Notice that the function given
by J(b, a) = Mb,a, (b, a) ∈ H, is measurable and satisfies the estimate

|J(b, a)| = |Mb,a| < M

(
a+

1
a

)γ
(1 + |b|)β, (b, a) ∈ H,

hence it is in S ′(H). Moreover, because of (3.15) and (3.14), we can use
Lebesgue dominated convergence theorem and the wavelet desingularization
formula to conclude that for each φ ∈ S0(R)

lim
ε→0+

〈
f(εx)
εαL(ε)

, φ(x)
〉

=
1
cψ,η

lim
ε→0+

∫ ∞

0

∫ ∞

−∞

Wψf (εb, εa)
εαL(ε)

Wη̄φ(b, a)
dbda
a

=
1
cψ,η

∫ ∞

0

∫ ∞

−∞
Mb,aWη̄φ(b, a)

dbda
a

.

Since the last limit exists for each φ ∈ S0(R), it follows that f has quasi-
asymptotic behavior in the space S ′0(R) and that g satisfies (3.16) and
Mb,a = Wψg(b, a). �

In conclusion, we have characterized the quasiasymptotic behavior of dis-
tributions in the space S ′0(R) in terms of the asymptotic behavior of the
wavelet transform at approaching points of the boundary. Our main aim
is now to extend these results to S ′(R), that is, we want to give Tauberian
theorems for quasiasymptotics (in S ′(R)) at points and infinity of tempered
distributions in terms of the behavior of the wavelet transform. We have re-
duced this question to the following one: If f ∈ S ′(R) has quasiasymptotics
at x = x0 or x = ∞ in S ′0(R), what can we say about the existence of the
quasiasymptotics of f at x = x0 or x = ∞ in S ′(R)? A complete answer to
this question will be discussed in the next section.

4. Quasiasymptotic extension from S ′0(R) to S ′(R).

We reformulate the problem with the aid of the Fourier transform.
Let S(R+), respectively S(R−), be the closed subspace of S(R) consist-

ing of functions having support in R+, respectively R−. Note F(S+(R)) =



TAUBERIAN THEOREMS FOR THE WAVELET TRANSFORM 13

S(R+),F(S−(R)) = S(R−). The space D(R+) has different nature than
S(R+); it is defined as the set of those elements of φ ∈ D(R) such that
suppφ ⊂ R+ (not R+). Similarly for D(R−). Their dual spaces are then
S ′(R−) = (S(R−))′, S ′(R+) = (S(R+))′, D′(R−) = (D(R−))′ and D′(R+) =
(D(R+))′ . Let R0 = R \ {0}. We also consider the spaces D(R0), S(R0) :=
S(R−)⊕ S(R+) and their dual spaces D′(R0) and S ′(R0), respectively.

The problem of extending distributions from S ′0(R) to S ′(R), together
with its asymptotic properties, can be reduced to that of extending distri-
butions from S ′(R0) to S ′(R). For S ′0(R) different extensions to S ′(R) differ
by polynomials, and on S ′(R0) extensions to S ′(R) differ by distributions
concentrate at the origin, i.e., finite sums of δ, the Dirac delta distribution,
and its derivatives. Indeed, the images under Fourier transform of S ′+(R)
and S ′−(R) are F(S ′+(R)) = S ′(R+) and F(S ′−(R)) = S ′(R−), respectively;
finally the image of S ′0(R) under Fourier transform is S ′(R0).

We first analyze quasiasymptotics at finite points. Suppose f ∈ S ′(R)
and

(4.1) f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R),

then if we take Fourier transform and replace ε = λ−1, we obtain the equiv-
alent expression

(4.2) eiλx0xf̂(λx) ∼ λ−1−αL(λ−1)ĝ(x) as λ→∞ in S ′(R0).

Therefore the problem we are addressing is equivalent to the problem of
determining the quasiasymptotic behavior of a tempered distribution at
infinity upon knowledge of quasiasymptotics at infinity in S ′(R0). Since
S ′(R0) = S ′(R−)⊕ S ′(R+) is enough to work in the space S ′(R+). We will
consider a slightly more general problem. The problem is basically solved
by the results of [42, Thm. 4.1–4.3], we state them and add new information
below.

We want to make some comments about extension of distributions initially
defined in R0 to R. Observe that this problem is of vital importance for
renormalization procedures in quantum field theory ([2, 24, 49, 50]). It also
has much relevance to the study of singular integral equations on spaces
of distributions [14]. For simplicity, we discuss the problem of extending a
distribution from R+ to R.

The spaces D(R+) and S(R+) are defined as the restriction of the cor-
responding test functions to R+. Their dual spaces D′(R+) and S ′(R+)
are identifiable [47, pp.13-14] with the spaces of distributions and tempered
distributions supported by R+, respectively. Therefore, in discussing exten-
sions of distributions defined on R+ to R is enough to consider the extension
to R+. In general, it is not true that a distribution f0 ∈ D′(R+) should have
an extension to D′(R+). The necessary and sufficient conditions [15] for a
distribution f0 ∈ D′(R+) to admit extensions to D′(R+) is the existence of
β ∈ R such that

(4.3) f0(εx) = O(εβ) as ε→ 0+ in D′(R+).
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We call f0 ∈ D′(R+) extendable to R+ if (4.3) holds. In relation to the
extendable distributions, the notation D31(R+) is used in [14, p.179] for
those test functions from D(R) having support on R+. Its dual is D′

31(R+).
Notice that D(R+) is dense in D31(R+); consequently, D′

31(R+) ⊂ D′(R+).
The space D31(R+) is closed in D(R+); hence every distribution of D′

31(R+),
in view of Hahn-Banach theorem, admits an extension to D′(R+). Moreover,
D′

31(R+) coincides with the extendable distributions from D′(R+).
At extending distributions and asymptotic relations, new terms in the

asymptotics could appear. In fact, for some cases, we need to consider the
so called associate asymptotically homogeneous functions from [42, 46]. A
positive measurable function c is said to be associate asymptotically homo-
geneous of degree zero at infinity, resp. at the origin, with respect to a
slowly varying function L if it is defined in some interval of the form [A,∞)
(resp. (0, A]), A > 0, and there exists β such that

(4.4) c(ax) = c(x) + βL(x) log a+ o(L(x)), x→∞ (resp. x→ 0+),

for each a > 0. These functions are also known as de Haan functions [1].
After all these preliminaries, we can state our first theorem.

Theorem 1. Let f0 ∈ D′(R+) be an extendable distribution to R+. Let
α ∈ R and L be slowly varying at infinity. Suppose that

(4.5) f0(λx) ∼ λαL(λ)g(x) as λ→∞ in D′(R+).

Then f0 ∈ S ′(R+) and the quasiasymptotics holds in S ′(R+). Moreover, let
f ∈ S ′(R+) be any extension of f0.
(i) If α > −1, then f has the quasiasymptotic behavior (4.5) in S ′(R).
(ii) If α < −1 and α /∈ Z−, then there exist constants a0, . . . , an−1, n < −α,
such that

(4.6) f(λx) =
n−1∑
j=0

aj
δ(j)(x)
λj+1

+ λαL(λ)g(x) + o(λαL(λ))

as λ→∞ in S ′(R). The constants depend on the choice of the extension f .

(iii) If α = −k, k ∈ Z+, then g is of the form g(x) = C Pf
(
H(x)/xk

)
and there are (k− 1) constants a0, . . . , ak−2 and an associate asymptotically
homogeneous function c of degree 0 with respect to L satisfying

(4.7) c(ax) = c(x) +
(−1)k−1

(k − 1)!
CL(x) log a+ o(L(x)), x→∞,

such that
(4.8)

f(λx) = C
L(λ)
λk

Pf
(
H(x)
xk

)
+
c(λ)
λk

δ(k−1)(x) +
k−2∑
j=0

aj
δ(j)(x)
λj+1

+ o

(
L(λ)
λk

)
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as λ→∞ in S ′(R). The constants and the function c depend on the choice
of the extension f .

Proof. The statements (i), (ii), and (iii), are direct consequences of [42,
Thm.4.1-4.3], it also follows that f is a tempered distribution. Since f0 is
the restriction of f to D(R+), we infer that f0 ∈ S ′(R+); furthermore, by
the same reason, the quasiasymptotic behavior (4.5) holds in that space. �

Corollary 1. Let f ∈ S ′(R). Let α ∈ R, x0 ∈ R and L be slowly varying at
the origin. Suppose that

(4.9) f(x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R).

(i) If α < 0, then f has the quasiasymptotic behavior (4.9) in S ′(R).
(ii) If α > 0 and α /∈ Z+, then there exists a polynomial p, of degree less
than α, such that

(4.10) f(x0 + εx) = p(εx) + εαL(ε)g(x) + o(εαL(ε)) as ε→ 0+ in S ′(R).

(iii) If α = k, k ∈ N, then g is of the form g(x) = C−x
k
−+C+x

k
++βxk log |x| ,

and there are a polynomial p of degree at most (k − 1) and an associate
asymptotically homogeneous function c, satisfying (4.4), such that

(4.11) f(x0 + εx) = p(εx) + c(ε)εkxk + εkL(ε)g(x) + o(εkL(ε)).

as ε→ 0+ in S ′(R).

Proof. As in (4.2), take Fourier transform to f(x0 + · ). In S ′0(R), we
have unique decompositions eix0xf̂ = f− + f+ and ĝ = g− + g+, where
f±, g± ∈ S ′(R±). A direct application of Theorem 1 to f±, g± and L(1/λ)
yields the result on the Fourier side. �

We now extend Theorem 1 to quasiasymptotics at the origin. The proof
of the next theorem is an adaptation of the arguments from [42, Sec.4] to
our context.

Theorem 2. Let f0 ∈ D′(R+) have the quasiasymptotic behavior

(4.12) f0(εx) ∼ εαL(ε)g(x) as ε→ 0+ in D′(R+).

Then f0 is extendable to R+. Moreover, if f ∈ D′(R+) is an extension of f0

to R+, one has that:
(i) If α /∈ Z−, then there exist constants a0, a1, . . . , am−1 such that

(4.13) f(εx) = εαL(ε)g(x) +
m−1∑
j=0

aj
δ(j)(x)
εj+1

+ o(εαL(ε))

as ε→ 0+ in D′(R).
(ii) If α = −k, k ∈ Z+, then g is of the form g(x) = C Pf

(
H(x)/xk

)
and

there exist an associate asymptotically homogeneous function c satisfying

(4.14) c(ax) = c(x) +
(−1)k−1

(k − 1)!
CL(x) log a+ o(L(x)), x→ 0+,
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for each a > 0, and constants ak, ak+1, . . . , am−1 such that
(4.15)

f(εx) = C
L(ε)
εk

Pf
(
H(x)
xk

)
+
c(ε)
εk

δ(k−1)(x) +
m−1∑
j=k−1

aj
δ(j)(x)
εj+1

+ o

(
L(ε)
εk

)
as ε→ 0+ in D′(R).

Furthermore, if one assume that f0 ∈ S ′(R+), then f ∈ S ′(R+) and the
asymptotic expansions (4.13) and (4.15) hold in S ′(R).

Proof. (i) Since α is not a negative integer and the quasiasymptotic behavior
(4.12) holds on the positive part of the real line we have that

g(x) = C
xα+

Γ(α+ 1)
for some constant C.

In [46, Prop.4.1], we may replace the space D′(R) by D′(R+); as in the proof
of [46, Thm.4.2], we have that there are a positive integer m > −α, an m-
primitive Fm of f0 in D′(R+), which is continuous on the interval (0, 1), and
a polynomial p such that

(4.16) Fm(εx) = C+L(ε)
(εx)α+m

+

Γ(α+m+ 1)
+ o(εα+mL(ε))

as ε → 0+, uniformly for x ∈ [1/2, 1]. Setting x = 1 and replacing x by ε,
we obtain that

Fm(x) = C+L(x)
xα+m

+

Γ(α+m+ 1)
+ o(xα+mL(x)),

in the ordinary sense. Therefore, F is actually continuous on [0, 1) and the
asymptotic formula (4.16) holds in D′(R). Let f1 = F

(m)
m , differentiating

(4.16) m-times, we see that f1 has the quasiasymptotic behavior (4.12) in
D′(R), and f1 is an extension of f0. The rest follows from the observation
that f − f1 is a distribution concentrated at the origin, and hence it is a
sum of the Dirac delta distribution and its derivatives.
(ii) Let us observe that if we take the space D′(R+) instead of D′(R) in [46,
Prop.3.1] and [46, Prop.4.3], they still hold. Hence, the arguments given
in [46, Section 5] are still applicable to conclude the existence of m ∈ N,
m > k, and Fm, an m-primitive of f0 in D′(R+) , which is continuous on
the interval (0, 1), such that

Fm(x) = c1(x)
xm−k

(m− k)!
− CL(x)

xm−k

(m− k)!

m−k∑
j=1

1
j

+ o(xm−kL(x)), x→ 0+,

in the ordinary sense, where the function c1 satisfies (4.14). Notice that Fm
is then continuous in [0, 1). By [46, Lemm.5.1], we have

Fm(εx) = c1(ε)
(εx)m−k+

(m− k)!
+ Cεm−kL(ε)lm−k(x)H(x) + o(εm−kL(ε)),
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as ε→ 0+ in D′(R), where

lm−k(x) =
xm−k

(m− k)!
log x− xm−k

(m− k)!

m−k∑
j=1

1
j
.

Differentiating the last expression (m− k)-times, we get

(4.17) F (m−k)
m (εx) = c1(ε)H(x) + CL(ε)H(x) log x+ o(L(ε)),

as ε → 0+ in D′(R). Set now f1 = F
(m)
m , k more differentiations of (4.17)

and the formula

dk−1

dxk−1

(
Pf
(
H(x)
x

))
= (−1)k−1(k − 1)!Pf

(
H(x)
xk

)
− δ(k−1)(x)

k∑
j=1

1
j
,

imply that

f1(εx) = C
L(ε)
εk

Pf
(
H(x)
xk

)
+
c(ε)
εk

δ(k−1)(x) + o

(
L(ε)
εk

)

with c(x) = c1(x)−CL(x)
k∑
j=1

1
j
. Since f1 is an extension of f0, then f − f1

is concentrated at the origin, and hence we obtain (4.15). �

The same arguments given in the proof of Corollary 1, but now using
Theorem 2, lead to the following corollary.

Corollary 2. Let f ∈ S ′(R). Let L be slowly varying at infinity and α ∈ R.
Suppose that

(4.18) f(λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R).

(i) If α /∈ N, then there exists a polynomial p, which may be chosen to be
divisible by xmax{0, [α]+1}, such that

(4.19) f(λx) = p(λx) + λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in S ′(R).

(ii) If α = k, k ∈ N, then g is of the form g(x) = C−x
k
−+C+x

k
++βxk log |x| ,

and there are a polynomial p, which may be chosen divisible by xk+1, and an
associate asymptotically homogeneous function c, satisfying (4.4), such that

(4.20) f(x0 + λx) = p(λx) + c(λ)λkxk + λkL(λ)g(x) + o(λkL(λ)),

as λ→∞ in S ′(R).

5. Tauberian theorems for quasiasymptotics at points.

As a consequence of our analysis from Sections 3 and 4, we obtain the
Tauberian theorems for quasiasymptotics at points of tempered distribu-
tions. The proofs of the next three theorems follow at once by applying
Proposition 4 and Corollary 1.
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Theorem 3. Let f ∈ S ′(R) and α < 0. Suppose that the wavelet ψ ∈
S0(R) admits a reconstruction wavelet. Necessary and sufficient conditions
in terms of the wavelet transform for f to have quasiasymptotic behavior
at x = x0 of degree α with respect to a slowly varying function L are the
existence of the limits

(5.1) lim
ε→0+

1
εαL(ε)

Wψf (x0 + εb, εa) = Mb,a <∞, a2 + b2 = 1, a > 0,

and the existence of m such that

(5.2) lim sup
ε→0+

sup
a2+b2=1, a>0

am

εαL(ε)
|Wψf (x0 + εb, εa)| <∞.

In such a case there is a homogeneous distribution g of degree α such that
Mb,a = Wψg(b, a).

Theorem 4. Let f ∈ S ′(R) and α > 0, α /∈ N. Suppose that the wavelet
ψ ∈ S0(R) admits a reconstruction wavelet. Conditions (5.1) and (5.2) are
necessary and sufficient for the existence of a polynomial p of degree less
than α such that f −p has quasiasymptotic behavior of degree α with respect
to L at the point x = x0. In such a case there is a homogeneous distribution
g of degree α such that Mb,a = Wψg(b, a).

Theorem 5. Let f ∈ S ′(R) and k ∈ N. Suppose that the wavelet ψ ∈ S0(R)
admits a reconstruction wavelet. Conditions (5.1) and (5.2) with α = k
are necessary and sufficient for the existence of a distribution of the form
g(x) = C−x

k
−+C+x

k
+ +βxk log |x| , a polynomial p of degree at most (k−1),

and an associate asymptotically homogeneous function c, satisfying (4.4),
such that

(5.3) f (x0 + εx) = p(εx) + c(ε)εkxk + εkL(ε)g(x) + o(εkL(ε)),

as ε→ 0+ in S ′(R). Moreover, Mb,a = Wψg(b, a).

Remark 1. Theorems 3-5 have an interesting variant involving uniformity.
Let {ft}t be a family of distributions indexed by t ∈ Λ. For instance, in
the case of Theorem 4, (5.1) and (5.2) with f = ft with uniformity in t
are necessary and sufficient for the existence of polynomials {pt}t such that
ft − pt have uniform quasiasymptotics with respect to t, namely, for each
ϕ ∈ S(R) there holds

lim
ε→0+

〈
ft(x0 + εx)− pt(εx)

εαL(ε)
, ϕ(x)

〉
= Ct,ϕ, uniformly for t ∈ Λ.

In fact, straightforward modifications of our arguments lead to the desired
uniformity. Similar considerations are valid for Theorems 3 and 5. Such
results can be used to study local properties of distributions at different
points simultaneously, they will be the subject of our further investigations of
vector-valued wavelet transforms with applications within various function
spaces.



TAUBERIAN THEOREMS FOR THE WAVELET TRANSFORM 19

5.1. Applications of the Tauberian Theorems. We now give an appli-
cation of our Tauberian theorems. We provide a new proof of Littlewood’s
Tauberian theorem for the converse of Abel theorem on power series [25].

The celebrated Littlewood’s Tauberian theorem states that if

(5.4) lim
y→0+

∞∑
n=0

cne
−yn = γ

and if the Tauberian hypothesis cn = O(1/n) is satisfied, then

(5.5)
∞∑
n=0

cn = γ.

We will give a “wavelet proof” of this theorem based on Theorem 5.

Example 5. Proof. Let M > 0 be such that |cn| < M/n, n ≥ 1. Set

f(x) =
∞∑
n=0

cne
inx and F (b, a) = F (b+ ia) =

∞∑
n=0

cne
in(b+ia).

Then, F is analytic in z = b+ ia, for a > 0. Observe that (5.4) tells us that
F (ia) → γ, as a → 0+. We actually have a stronger assertion under the
Tauberian hypothesis, namely, non-tangential convergence.

Lemma 2. There is C > 0 such that

(5.6) |F (εb, εa)| < C

a
(1 + a)(1 + |b|), (b, a) ∈ H.

Furthermore, for each (b, a) ∈ H we have that

(5.7) lim
ε→0+

F (εb, εa) = γ.

Proof. Let s(x) =
∑

0≤n<x cn. First, we prove that s(x) = O(1) as x → ∞.

Indeed, by (5.4) and the condition |cn| ≤ M/n, we have that for suitable
positive constants C0 and C1

|s(x)| ≤
∣∣∣∣s(x)− F

(
i

x

)∣∣∣∣+ C0 ≤M
∑

0<n<x

1− e−
n
x

n
+M

∑
x≤n

1
n
e−

n
x + C0

≤ M

x

∑
n<x

1 +
C1

x

∫ ∞

x
e−

t
x dt+ C0 < C, for some C > 0.

We now show (5.6). We have

|F (εb, εa)| =
∣∣∣∣∫ ∞

0
e−εt(a−ib) ds(t)

∣∣∣∣
≤ ε|a− ib|C

∫ ∞

0
e−εta dt ≤ C

a
(1 + a)(1 + |b|),

where C does not depend on a, b, and ε. In particular, F is bounded over
cones with vertex at the origin. It is well known that for bounded analytic
functions the existence of radial limits is equivalent to non-tangential limits
[5]; hence (5.7) follows. �
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Our plan is to apply Theorem 5 to show the existence of c such that

(5.8) f(εx) = c(ε) + o(1) in S ′(R),

and later to use (5.4) and deduce that indeed f(0) = γ in the sense of
 Lojasiewicz (cf. Example 1). This will imply (5.5), as we shall see.

Let ψ̂1(x) = e
−|x|− 1

|x| and choose ϕ ∈ S(R) such that ϕ̂ is real-valued and
ϕ̂(x) = e−x, for x ≥ 0. Consider the wavelet ψ = ϕ ∗ ψ1. If 0 < a ≤ 1 and
ε ≤ 1, we have with a suitable constant C2

|Wψf(εb, εa)| ≤M
∞∑
n=1

1
n
ψ̂(εan) ≤ C2

∫ ∞

0

ψ̂(x)
x

,

so the Tauberian estimate (cf. (5.2)) for the wavelet transform of f has been
established. Next, a quick calculation shows that for fixed (b, a) ∈ H (here
ϕa = a−1ϕ̌( · /a))

Wψf(b, a) =
∫ ∞

−∞
ψ̄1(t)(f ∗ ϕa)(b+ at) dt =

∫ ∞

−∞
F (b+ at, a)ψ̄1(t) dt.

Therefore, Lemma 2 gives us the right to apply Lebesgue’s dominated con-
vergence theorem to conclude that

lim
ε→0+

Wψf(εb, εa) = lim
ε→0+

∫ ∞

−∞
F (εb+ εat, εa)ψ̄1(t) dt = γ

∫ ∞

−∞
ψ̄1(t) dt = 0.

So, (5.8) follows now from Theorem 5. On the other hand, if we evaluate
(5.8) at ϕ, we have

lim
ε→0+

c(ε) = lim
ε→0+

〈f(εx), ϕ(x)〉 = lim
ε→0+

∞∑
n=0

cne
−εn = γ.

Our conclusion from this wavelet analysis is that f(0) = γ, distributionally.
Here comes the final step in our argument. Let σ > 0 be an arbitrary positive
number. Choose an even test function θ ∈ S(R) such that 0 ≤ θ̂ ≤ 1,
supp θ̂ ⊂ [−1− σ, 1 + σ] and θ̂(x) = 1, for x ∈ [0, 1]. Then, since

γ = lim
ε→0+

〈f(εx), θ(x)〉 = lim
ε→0+

∞∑
n=0

cnθ̂(εn),

we obtain then

lim sup
ε→0+

|
∑
n≤ 1

ε

cn − γ| ≤M lim sup
ε→0+

∑
1<εn<1+σ

θ̂(εn)
n

= M

∫ 1+σ

1

θ̂(x)
x

dx < σM.

Since σ was arbitrary, we conclude that
∑∞

n=0 cn = γ, as required.

Remark 2. The presented Tauberian results and Remark 1 give a new
approach for the investigations of local properties of functions, for example
in the Hölder and Zygmund classes involving 2-microlocal characterizations,
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through their wavelet transforms. We will give examples which correspond
to the classical ones in our forthcoming papers.

5.2. Tauberian Conditions for α ≥ 0. We may formulate Tauberian
conditions in order to guarantee quasiasymptotic behavior in the case α ≥ 0.
We also point out that test functions can always be found satisfying the
hypothesis of the next two corollaries [11].

Corollary 3. Let the hypotheses of Theorem 4 be satisfied. Let n = [α]. Let
ϕ ∈ S(R) be such that its moments µj :=

∫∞
−∞ xjϕ(x)dx 6= 0, for 0 ≤ j ≤ n.

The condition

(5.9) 〈f(x0 + εx), ϕ(x)〉 = O (εαL(ε)) , ε→ 0+,

implies that f has quasiasymptotic behavior of degree α with respect to L at
the point x = x0.

Proof. By Theorem 4, there exist (n + 1) constants c0, c1, . . . , cn and a ho-
mogeneous distribution g of degree α such that

f(εx) =
n∑
j=0

cjε
jxj + εαL(ε)g(x) + o (εαL(ε)) as ε→ 0+ in S ′(R).

Evaluating the last asymptotic expansion at ϕ and comparing with (5.9),
one has that

n∑
j=0

εjcjµj = O (εαL(ε))

which readily implies that cj = 0, for each 0 ≤ j ≤ n. �

Corollary 4. Let the hypothesis of Theorem 5 be satisfied and α = k. Let
ϕ ∈ S(R) be such that its moments µj :=

∫∞
−∞ xjϕ(x)dx 6= 0, for 0 ≤ j ≤ k.

The condition

(5.10) 〈f(x0 + εx), ϕ(x)〉 ∼ CεkL(ε), ε→ 0+,

for some constant C, implies that f has quasiasymptotic behavior of degree
k with respect to L at the point x = x0.

Proof. Comparison between (5.10) and (5.3), evaluated at ϕ, gives that the
polynomial vanishes and the asymptotic relation

c(ε) ∼ L(ε)
µk

(C − C−

∫ ∞

0
xkϕ(−x)dx− C+

∫ ∞

0
xkϕ(x)dx

−β
∫ ∞

−∞
xkϕ(x) log |x|dx,

from where we obtain the result. �

Our next Tauberian theorems makes use of quasiasymptotic boundedness
[43] as the Tauberian condition. We call the distribution f quasiasymptotic
bounded of degree α at x = x0 with respect to a function L, slowly varying
at the origin, if f(x0 + ε ·)/(εαL(ε)) is a weak bounded set in S ′(R), for ε
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small enough. In this case we write f(x0 + εx) = O(εαL(ε)) as ε → 0+ in
S ′(R).

Theorem 6. Let f ∈ S ′(R), x0 ∈ R, α /∈ N, and L be a slowly varying
function at the origin. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction
wavelet. Suppose that the following limits exist:

(5.11) lim
ε→0+

1
εαL(ε)

Wψf (x0 + εb, εa) = Mb,a <∞, a2 + b2 = 1, a > 0.

Then, the Tauberian condition

(5.12) f(x0 + εx) = O(εαL(ε)) as ε→ 0+ in S ′(R),

implies the existence of a homogeneous distribution g of degree α such that
Mb,a = Wψg(b, a) and

(5.13) f(x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′(R).

Conversely, the quasiasymptotic behavior (5.13) implies (5.11) and (5.12).

Proof. The converse is clear; indeed, Proposition 1, implies (5.11), and,
obviously, quasiasymptotic behavior implies quasiasymptotic boundedness.
On the other hand, relation (5.12) holds in particular in S ′0(R), hence, the
characterization of bounded sets of S ′0(R) [18, Thm.28.0.1] implies that (5.2)
is satisfied. If α < 0, then Theorem 3 implies (5.13). Now, if α > 0, we can
always select a test function ϕ such that its moments µj :=

∫∞
−∞ xjϕ(x)dx 6=

0, for 0 ≤ j ≤ [α]. But if we evaluate (5.12) at ϕ, we obtain (5.9), and thus,
Corollary 3 yields the result in this case. �

Theorem 7. Let f ∈ S ′(R), x0 ∈ R, k ∈ N, and L be a slowly varying
function at the origin. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction
wavelet. Suppose that the following limits exist:

(5.14) lim
ε→0+

1
εkL(ε)

Wψf (x0 + εb, εa) = Mb,a <∞, a2 + b2 = 1, a > 0.

Then, the Tauberian condition

(5.15) f(x0 + εx) = O(εkL(ε)) as ε→ 0+ in S ′(R),

implies the existence of a distribution, having the form g(x) = C−x
k
− +

C+x
k
+ + βxk log |x|, and an associate asymptotically homogeneous function

c, satisfying (4.4), such that Mb,a = Wψg(b, a) and

(5.16) f(x0+εx) = c(ε)εkxk+εkL(ε)g(x)+o(εkL(ε)) as ε→ 0+ in S ′(R).

Moreover, c(ε) = O(L(ε)). Additionally, if there exists ϕ ∈ S ′(R) satisfying
(5.10) and having non-zero kth-moment, i.e. µk =

∫∞
−∞ xkϕ(x)dx 6= 0, then

f has quasiasymptotic behavior of degree k with respect to L.

Proof. As in the proof of Theorem 6, we obtain that (5.14) and (5.15) imply
f satisfies an asymptotic expansion of the form (5.3); furthermore, evalu-
ating the asymptotic relation (5.3) at a φ with non-zero first k moments
and using the quasiasymptotic boundedness (5.15), we obtain (5.16) and
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c(ε) = O(L(ε)). Evaluating (5.16) at ϕ, we obtain that c(ε) ∼ BL(ε), for
some constant B. This completes the proof. �

6. Tauberian theorems for quasiasymptotics at infinity.

We now state the Tauberian theorems for asymptotic behavior at infinity,
the proofs of Theorem 8 and Theorem 9 follow immediately from Proposition
3 and Corollary 2. The proofs of Corollaries 5–6 and Theorems 10–11 are
analogous to those of Corollaries 3–4 and Theorems 6–7, and then we choose
to omit them.

Theorem 8. Let f ∈ S ′(R) and α /∈ N. Suppose the wavelet ψ ∈ S0(R) ad-
mits a reconstruction wavelet. Necessary and sufficient conditions in terms
of the wavelet transform for the existence of a polynomial p such that f − p
has quasiasymptotic behavior at infinity of degree α with respect to a slowly
varying function L are the existence of the limits

(6.1) lim
λ→∞

1
λαL(λ)

Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H,

and the existence constants of γ, β,M > 0 such that

(6.2)
1

λαL(λ)
|Wψf (λb, λa)| < M

(
a+

1
a

)γ
(1 + |b|)β,

for all (b, a) ∈ H and λ ≥ 1. In such a case there is a homogeneous distri-
bution g of degree α such that Mb,a = Wψg(b, a), (b, a) ∈ H.

Theorem 9. Let f ∈ S ′(R) and k ∈ N. Suppose the wavelet ψ ∈ S0(R)
admits a reconstruction wavelet. The conditions (6.1) and (6.2) with α = k
are necessary and sufficient for the existence of a distribution of the form
g(x) = C−x

k
− + C+x

k
+ + βxk log |x| , a polynomial p, which is divisible by

xk+1, and an associate asymptotically homogeneous function c, satisfying
(4.4), such that

(6.3) f (λx) = p(λx) + c(λ)xk + λkL(λ)g(x) + o(λkL(λ)),

as λ→∞ in S ′(R). Moreover, Mb,a = Wψg(b, a), (b, a) ∈ H.

Example 6. Let f be an non-decreasing functions having tempered growth
and being supported by [0,∞). Assume also that α ≥ 0. In this case,
the conditions (6.1) and (6.2) are necessary and sufficient for f to have
asymptotic behavior

f(x) ∼ CxαL(x), for some C.

Indeed, the necessity follows at once. For the sufficiency, observe the support
condition imposed to f leads to the quasiasymptotic behavior

f(λx) ∼ CλαL(λ)xα+ as λ→∞ in S ′(R),

for some C, which implies the asymptotic behavior in the ordinary sense (cf.
[47, p. 124]). Of course, similar conclusions hold for non-negative measures
and their primitives.
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Corollary 5. Let the hypothesis of Theorem 8 be satisfied. Set n = [α]. Let
ϕ ∈ S(R) be such that its moments µj :=

∫∞
−∞ xjϕ(x)dx 6= 0, for n < j.

The condition

(6.4) 〈f(λx), ϕ(x)〉 = O(λkL(λ)), λ→∞,

implies that f has quasiasymptotic behavior of degree α with respect to L at
infinity.

Corollary 6. Let the hypothesis of Theorem 9 be satisfied. Let ϕ ∈ S(R) be
such that its moments µj :=

∫∞
−∞ xjϕ(x)dx 6= 0, for k ≤ j. The condition

(6.5) 〈f(λx), ϕ(x)〉 ∼ CλkL(λ), λ→∞,

for some constant C, implies that f has quasiasymptotic behavior of degree
k with respect to L at infinity.

Theorem 10. Let f ∈ S ′(R), α /∈ N, and L be a slowly varying function
at infinity. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction wavelet.
Suppose that the following limits exist:

(6.6) lim
λ→∞

1
λαL(λ)

Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H.

Then, the Tauberian condition

(6.7) f(λx) = O(λαL(λ)) as λ→∞ in S ′(R),

implies the existence of a homogeneous distribution g of degree α such that
Mb,a = Wψg(b, a) and

(6.8) f(λx) ∼ λαL(λ)g(x) as λ→∞ in S ′(R).

Conversely, the quasiasymptotic behavior (6.8) implies (6.6) and (6.7).

Theorem 11. Let f ∈ S ′(R), k ∈ N, and L be a slowly varying function
at infinity. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction wavelet.
Suppose that the following limits exist:

(6.9) lim
λ→∞

1
λkL(λ)

Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H.

Then, the Tauberian condition

(6.10) f(λx) = O(λαL(λ)) as λ→∞ in S ′(R),

implies the existence of a distribution having the form g(x) = C−x
k
− +

C+x
k
+ + βxk log |x| and an associate asymptotically homogeneous function

c, satisfying (4.4), such that Mb,a = Wψg(b, a) and

(6.11) f(λx) = c(λ)λkxk + λkL(λ)g(x) + o(λkL(λ)) as λ→∞ in S ′(R).

Moreover, c(λ) = O(L(λ)). Additionally, if there exists ϕ ∈ S ′(R) satisfying
(6.5) and having non-zero kth-moment, i.e. µk =

∫∞
−∞ xkϕ(x)dx 6= 0, then

f has quasiasymptotic behavior of degree k with respect to L.
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Remark 3. We give several remarks about progressive and regressive dis-
tributions. In the case of a progressive wavelet ψ we say that η is a recon-
struction wavelet for it if just the positive frequency part of (2.3) is satisfied.
Analogously for regressive ones.

Suppose first that f ∈ S ′+(R). Since only the positive frequency part of
a wavelet is relevant for the wavelet transform of f , and any non-vanishing
ψ ∈ S+(R) is its own reconstruction wavelet, it is enough to assume in
Propositions 3 and 4 that ψ is an arbitrary non-zero element of S+(R).
Likewise, if f ∈ S ′−(R), Propositions 3 and 4 hold for an arbitrary non-zero
regressive ψ ∈ S−(R).

Assume now that f ∈ S ′(R) is a progressive distribution, that is, supp f̂ ⊆
[0,∞). Then, Theorems 3–11 hold if ψ is an arbitrary non-zero element of
S+(R). Similarly, for a regressive distribution, they hold for a arbitrary
non-zero regressive ψ ∈ S−(R).

7. Appendix: Proof of Lemma 1

Before going over the proof, we need some additional wavelet concepts
[18].

The space S(H) of highly localized function over H is defined as those
smooth functions on H such that

sup
(b,a)∈H

(
a+

1
a

)m (
1 + b2

)n
2

∣∣∣∣ ∂k+lΦ∂ak∂bl
(b, a)

∣∣∣∣ <∞,

for all m,n, k, l ∈ N. It is topologized in the obvious way. We will also
consider its dual space, S ′(H). Any locally integrable function F of “slow
growth” on H, that is,

|F (b, a)| ≤ C
(
1 + b2

) l
2

(
a+

1
a

)m
, (b, a) ∈ H,

for some C > 0 and integers m, l ∈ N, can be identified with an element of
S ′(H). Our convention for identifying it with an element of S ′(H) is to keep
using the notation F ∈ S ′(H) and the evaluation of F at Φ ∈ S(H) is given
by

〈F (b, a),Φ(b, a)〉 =
∫ ∞

0

∫ ∞

−∞
F (b, a)Φ(b, a)

dbda
a

.

One defines the wavelet synthesis Mψ : S ′(H) → S ′0(R) by

〈MψF (x), φ(x)〉 =
〈
F (b, a),Wψ̄φ(b, a)

〉
.

Suppose η is a reconstruction wavelet for ψ, we will make use of the pro-
jection operator of S ′(H) onto the image of the wavelet transform [18], it is
given by the projector

1
cψ,η

WψMη.
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If the distribution F is a locally integrable distribution of slow growth on
H, it is possible to write the projection by the integral transform

(7.1)
WψMηF (b, a)

cψ,η
=

1
cψ,η

∫ ∞

0

∫ ∞

−∞
Wψη

(
b− b′

a′
,
a

a′

)
F (b′, a′)

db′da′

(a′)2
.

Proof of Lemma 1. Clearly (3.14) implies (3.13). Thus, we will prove that
(3.13) ⇒ (3.14). We assume that x0 = 0 for simplicity. Let η be a recon-
struction wavelet for ψ.

Let F = χIWψf where χI is the characteristic function of the set I =
|b| ≤ 1, 0 < a ≤ 1. Let G = Wψf − F . Consider f0 = c−1

ψ,η MηF and
h = c−1

ψ,ηMηG. Notice that Wψf = Wψh + Wψf0, and hence f = h + f0.
The plan is to show that each Wψh and Wψf0 satisfy an estimate of type
(3.14).

We will show first that Wψh(b, a) = o (a∞) uniformly for b in a neighbor-
hood of the origin as a→ 0+. Let σ be a positive real number. Find n ∈ N
and B > 0 such that

|G(b, a)| ≤ B

(
a+

1
a

)n
(1 + |b|)n

and

|Wψη(b, a)| ≤ B

(
a+

1
a

)−1−2n−σ
(1 + |b|)−2−n .

If |b| ≤ 1
2 and a < 1, then, by (7.1),

|cψ,ηWψh(b, a)| =

∣∣∣∣∣
∫ ∞

1

∫
|b′|≥1

Wψη

(
b− b′

a′
,
a

a′

)
G(b′, a′)

db′da′

(a′)2

∣∣∣∣∣
≤ 4nB2

∫ ∞

1

∫
|b′|≥1

∣∣b′∣∣n (a′)n
(

a′

|b− b′|

)2+n ( a
a′

)1+2n+σ db′da′

(a′)2

≤ a1+2n+σ4nB2

(∫
|b′|≥1

|b′|n db′(
|b′| − 1

2

)n+2

)(∫ ∞

1

da′

(a′)σ+1

)
= o (aσ) .

We use the characterization of the singular support of distributions given in
[18, Thm. 27.0.2], and conclude that h is C∞ in (−1/2, 1/2). In particular,
h(εx) = o(ε∞), and so the wavelet characterization of bounded sets in S ′0(R)
[18, Thm. 28.0.1] implies that Wψh satisfies an estimate of the form (3.14).

Let us now show that Wψf0 satisfies an estimate of the form (3.14). Ob-
serve that (3.13) implies

am

εαL(ε)
|Wψf (εb, εa)| < M1, for all a2 + b2 = 1, a > 0, 0 < ε ≤ ε0,

for some M1 > 0 and ε0. After rescaling, i.e., replacing if necessary f0(x)
by f0(ε−1

0

√
2x), we may assume ε0 =

√
2. Let a′ ∈

(
0, ε−1

)
and b′ ∈
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−ε−1, ε−1

)
. Then we have for ε < 1 that ε

√
(a′)2 + (b′)2 ≤

√
2. So, if we re-

place a, b and ε by a′/
√

(a′)2 + (b′)2, b′/
√

(a′)2 + (b′)2 and ε
√

(a′)2 + (b′)2,
we obtain that for a′ ∈

(
0, ε−1

)
, b′ ∈

(
−ε−1, ε−1

)

(7.2)
(a′)m |Wψf (εb′, εa′)|

εα
(√

(a′)2 + (b′)2
)m+α

L

(
ε
√

(a′)2 + (b′)2
) < M1, 0 < ε ≤ 1.

In addition, we can assume that α+m ≥ 1. We also need to make a technical
assumption over L which can be always made since only the values of L near
0 matter for our considerations; indeed we can assume ([46, Section 2],[1,
p.25]) that there exists a constant M2 > 0 such that

(7.3)
L(εx)
L(ε)

≤M2 max
{
x, x−1

}
≤M2

1 + x2

x
, for all ε, x > 0.

Let

(7.4) β = α+m+ 3, γ = max {m+ 2, α+ β + 1} .

Find now a constant M3 > 0 such that

(7.5) |Wψη(b, a)| ≤M3

(
a+

1
a

)−γ
(1 + |b|)−β .

In the following, we will also make repeated use of the elementary inequality

(7.6) 1 + |x+ y| ≤ (1 + |x|) (1 + |y|) .
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Then for 0 < ε ≤ 1, we have from (7.2), (7.3) and (7.6) that

|cψ,ηWψf0(εb, εa)| =
∣∣∣∣∫ ∞

0

∫ ∞

−∞
Wψη

(
εb− b′

a′
,
εa

a′

)
F (b′, a′)

db′da′

(a′)2

∣∣∣∣
=

∣∣∣∣∣
∫ ε−1

0

∫ ε−1

−ε−1

Wψη

(
b− b′

a′
,
a

a′

)
Wψf(εb′, εa′)

db′da′

(a′)2

∣∣∣∣∣
≤M1ε

α

∫ ε−1

0

∫ ε−1

−ε−1

(√
(a′)2 + (b′)2

)α+m

L
(
ε
√

(a′)2 + (b′)2
) ∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

∫ ε−1

0

∫ ε−1

−ε−1

(√
(a′)2 + (b′)2

)α+m−1

(
1 +

(
a′
)2 +

(
b′
)2) ∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

∫ ε−1

0

∫ ε−1

−ε−1

(
a′ +

∣∣b′∣∣)α+m−1 (1 + a′
)2 (1 +

∣∣b′∣∣)2∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

(
4I1 + 4I2 + 2α+m+1I3

)
,

where

I1 =
∫ 1

0

∫
|b−b′|≤1

(
1 +

∣∣b′∣∣)α+m+1
∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2
,

I2 =
∫ 1

0

∫
1≤|b−b′|

(
1 +

∣∣b′∣∣)α+m+1
∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2
,

I3 =
∫ ∞

1

∫ ∞

−∞

(
a′
)α−1 (1 +

∣∣b′∣∣)α+m+1
∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′.
To estimate the last three integrals, we make use of (7.4), (7.5) and the
elementary inequality (7.6). We have

I1 ≤M3

∫ 1

0

∫
|b′|≤1+|b|

(
1 +

∣∣b′∣∣)α+m+1
(
a′

a

)γ db′da′

(a′)m+2

≤ 2M3

(
1
a

)γ
(1 + |b|)(2 + |b|)α+m+1

∫ 1

0

(
a′
)γ−m−2 da′

< 2α+m+2M3

(
a+

1
a

)γ
(1 + |b|)β ;
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for I2,

I2 ≤M3

∫ 1

0

∫
1<|b−b′|

(
1 +

∣∣b′∣∣)α+m+1
(
a′

a

)γ ( a′

a′ + |b− b′|

)β db′da′

(a′)m+2

≤M3

(
a+

1
a

)γ (∫ 1

0

(
a′
)γ+β−m−2 da′

)(∫
1<|b−b′|

(1 + |b′|)α+m+1

|b− b′|β
db′
)

≤M3

(
a+

1
a

)γ ∫
1<|b′|

(1 + |b′|+ |b|)α+m+1

|b′|β
db′

≤ 2M3

(
a+

1
a

)γ
(1 + |b|)α+m+1

∫ ∞

1

(1 + b′)α+m+1

(b′)β
db′

≤ 2α+m+2M3

(
a+

1
a

)γ
(1 + |b|)β;

and finally I3,

I3 ≤M3a
γ

∫ ∞

1

∫ ∞

−∞

(a′)α+β−γ−1 (1 + |b′|)α+m+1

(a′ + |b− b′|)β
db′da′

≤M3

(
a+

1
a

)γ (∫ ∞

−∞

(1 + |b′|)α+m+1

(1 + |b− b′|)β
db′
)(∫ ∞

1

da′

(a′)γ+1−β−α

)
≤M3

(
a+

1
a

)γ
(1 + |b|)β

∫ ∞

−∞

db′

(1 + |b′|)2

≤ 2M3

(
a+

1
a

)γ
(1 + |b|)β .

Hence (3.14) is satisfied with M = 2α+m+6M1M2M3.
�
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[5] J. B. Conway, Functions of One Complex Variable II, Springer, New York, 1995.
[6] I. Daubechies, Ten Lectures on Wavelets, SIAM, Phyladelphia, 1992.
[7] Y. N. Drozhzhinov, B. I. Zavialov, Tauberian-type theorems for a generalized multi-

plicative convolution, Izv. Math. 64 (2000), 35–92.
[8] Y. N. Drozhzhinov, B. I. Zavialov, Tauberian theorems for generalized functions with

values in Banach spaces, Izv. Math. 66 (2002), 701–769.
[9] Y. N. Drozhzhinov, B. I. Zavialov, Asymptotically homogeneous generalized functions,

Izv. Nats. Akad. Nauk Armenii Mat. 41 (2006), 23–32.



30 J. VINDAS, S. PILIPOVIĆ, D. RAKIĆ
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[35] S. Seuret, J. L. Véhel, The local Hölder function of a continuous function, Appl,

Comput Harmonic Anal. 13 (2002), 263–276.
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