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Abstract. Complete structural theorems for quasiasymptotics of dis-
tributions are presented in this article. For this, asymptotically homo-
geneous functions and associate asymptotically homogeneous functions
at infinity with respect to a slowly varying function are employed. The
proposed analysis, based on the concept of asymptotically and asso-
ciate asymptotically homogeneous functions, allows one to obtain easier
proofs of the structural theorems for quasiasymptotics at infinity in the
so far only known case: when the degree of the quasiasymptotic is not
a negative integer. Furthermore, new structural theorems for the case
of negative integral degrees are obtained by this method.

1. Introduction and Preliminaries

The present article characterizes the quasiasymptotic behavior of Schwartz
distributions at infinity. It continues my joint work with S. Pilipović [15] in
which we have obtained complete structural theorems for the quasiasymp-
totic behavior of distributions at the origin.

We start this section by explaining the notation and concepts to be con-
sidered in this paper. The Schwartz spaces of test functions and distribu-
tions on the real line R are denoted by D and D′, respectively; the spaces
of rapidly decreasing functions and its dual, the space of tempered distri-
butions, are denoted by S and S ′. We refer the reader to [10, 16, 5] for
the properties of these spaces. Let us recall that a real-valued measurable
function defined in some interval of the form [A,∞), A > 0, is called slowly
varying function at infinity if L is positive for large arguments and

lim
x→∞

L(ax)

L(x)
= 1 ,
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for any a > 0. The standard reference for slowly varying functions is [11].
Let L be slowly varying. We say that f ∈ D′ has quasiasymptotic behavior

at infinity (has quasiasymptotic at infinity) in D′ with respect to λαL(λ),
α ∈ R, if for some g ∈ D′ and every φ ∈ D,

(1.1) lim
λ→∞

〈
f(λx)

λαL(λ)
, φ(x)

〉
= 〈g(x), φ(x)〉 .

If (1.1) holds, we also say that f has quasiasymptotic of degree α at infinity
with respect to the slowly varying function L. Because of [11, Lemma 1.2],
the function L can be assumed to be positive and defined on [0,∞). The
quasiasymptotic of distributions at the origin is defined in a similar way.
The last definition was introduced by S. Pilipović in [8] and [9] , where it
is assumed g 6= 0, but we extend the definition by allowing g to be 0. The
quasiasymptotic behavior was originally defined by B. I. Zavialov in [18] for
distributions with support bounded at the left, so due to historical reasons,
it is also usual in the literature to define the quasiasymptotic at infinity
only for tempered distributions with support bounded on one side [18, 17];
the second reason for this is, probably, that in the case when the degree
of the quasiasymptotic is not an negative integer, one has a decomposition
theorem [17, p.134] that allows one to reduce the two sided case to the
one sided case. However, the most interesting results of this article are
concerned with the negative integral degree case.

We also express (1.1), a more convenient notation for our purposes, by
saying

(1.2) f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ →∞ in D′,
which should always be interpreted in the weak topology of D′, i.e., in the
sense of (1.1).

It is easy to prove (see [5, p.161], [9] and [17]) that (1.2) forces g to be
homogeneous with the degree of homogeneity α. Since we know explicitly
all homogeneous distributions on the real line [5, p.72], then either g has
the form

g(x) = C−xα
− + C+xα

+ , if α /∈ {−1,−2,−3, . . . } ,

for some constants C− and C+, or

g(x) = γδ(k−1)(x) + βx−k, if α = −k ∈ {−1,−2,−3, . . . } ,

for some constants γ and β, where here we are following the notation from
[5, Chapter 2]. Other particular distributions used in this article are the
Heaviside function H(x) and the distributions Pf(H(x)/xk), for k ∈ N, they
are also defined in [5, Chapter 2].
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The quasiasymptotic of distributions (1.2) has been characterized when
α /∈ {−1,−2, ...}. Indeed, one has the following structural theorem [9,
Theorem 4] (see also [17, p.134]). Let f ∈ D′ have the quasiasymptotic
behavior at infinity in D′,

f(λx) = C−L(λ)
(λx)α

−

Γ(α + 1)
+ C+L(λ)

(λx)α
+

Γ(α + 1)
+ o (λαL(λ)) , λ →∞ ,

α /∈ {−1,−2, . . . } , then there exist a non-negative integer m and an m-
primitive F of f , that is F (m) = f , such that F is continuous and

lim
x→±∞

Γ(α + m + 1)F (x)

xm |x|α L (|x|)
= C± .

As a consequence of our analysis in terms of asymptotically homoge-
neous functions, we will give a new proof of this theorem in Section 2.
Furthermore, in Section 3, we will complete the characterization of quasi-
asymptotics of Schwartz distributions by obtaining the structural theorem
for negative integral degrees, it will be the main result of this paper.

Suppose f ∈ D′ has quasiasymptotic in D′, then this condition implies
that f is a tempered distribution [8, 9, 5]. If we replace the space D by S
in (1.1), then we say that f has quasiasymptotic at infinity with respect
to λαL(λ) in S ′. When the degree of the quasiasymptotic is not a negative
integer, S. Pilipović has shown in [8, Theorem 4] that the existence of the
quasiasymptotic in D′ implies the existence of the quasiasymptotic in S ′.
In Section 3, this result is extended to negative integral degrees as a direct
consequence of the structural theorem, Theorem 3.3. This fact is stated in
Remark 3.5. Further related questions are discussed in Section 4.

2. Asymptotically Homogeneous Functions

In this section two classes of functions of regular asymptotic behavior at
infinity are discussed, the class of asymptotically homogeneous functions at
infinity and the class of associate asymptotically homogeneous functions of
degree 0 at infinity. These functions are the analog to asymptotically ho-
mogeneous functions and associate asymptotically homogeneous functions
at the origin with respect to a slowly varying function [15]. We will later
derive the announced structural theorems for quasiasymptotics at infinity
from the fundamental properties of these classes of functions. The tech-
nique to be used here is based in the analysis of the parametric coefficients
resulting after performing several integrations of the quasiasymptotic. This
has been previously applied in [4, 12, 13, 14] to the study of pointwise
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Fourier inversion formulas for distributional point values and jump behav-
ior of distributions; furthermore, in [15], asymptotically homogeneous func-
tions have been effectively used to obtain a complete characterization of the
quasiasymptotic at the origin of Schwartz distributions. Let us proceed to
define asymptotically homogeneous functions at infinity.

Definition 2.1. A function b is said to be asymptotically homogeneous of
degree α at infinity with respect to the slowly varying function L, if it is
measurable and defined in some interval [A,∞), A > 0, and for each a > 0,

b(ax) = aαb(x) + o(L(x)) , x →∞ .

In the following, some of the fundamental properties of asymptotically
homogeneous functions at infinity are stated and discussed. As previously
mentioned, the author and S. Pilipović have introduced and studied the
class of asymptotically homogeneous functions at the origin in the cited
article. In fact, one has that asymptotically homogeneous functions at in-
finity are of the form b(x) = c(1/x) where c is asymptotically homogeneous
at the origin, and hence most of the properties of this class of functions can
be obtained by reducing to those of asymptotically homogeneous functions
at the origin by the change of variables x ↔ x−1 and, obviously, the same
holds in the opposite direction.

Concerning to the next following three results, Theorem 2.2, Lemma
2.3 and Theorem 2.4, the proofs have been obtained for asymptotically
homogeneous functions at the origin in [15, Section 3], and will be therefore
omitted here. Before going to the statements, the author would like to make
some comments. I learned recently from [11, Section 2.4] that the mentioned
results could be also obtained from properties of a class of functions studied
by R. Bojanić and J. Karamata in [2], but, at the time we wrote [15], we
were not aware of the existence of such results. This class of functions has
been studied in [1, 11] as well. The functions introduced by R. Bojanić and
J. Karamata are measurable functions defined in some interval of the form
[A,∞), A > 0, satisfying

(2.1) c(ax) = c(x) + τ(a)xαL(x) + o(xαL(x)) , x →∞ ;

so if b is asymptotically homogeneous at infinity of degree α with respect
to L, then c(x) = b(x)/xα satisfies (2.1) with τ(a) = 0 and α replaced by
−α. So, Theorem 2.2, Lemma 2.3 and Theorem 2.4 are consequences of the
results from [11, Section 2.4] as well.

The properties of asymptotically homogeneous functions at infinity are
summarized in the following results. The first theorem estimates the be-
havior of such functions at infinity when the degree is negative.
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Theorem 2.2. Suppose that b is asymptotically homogeneous of degree α <
0 at infinity with respect to the slowly varying function L. Then

b(x) = o(L(x)) , x →∞ .

Note that in Definition 2.1 no uniformity with respect to a is assumed;
however, we have the following lemma.

Lemma 2.3. Let b be an asymptotically homogeneous function of degree α
at infinity with respect to L. Then, the relation

b(ax) = aαb(x) + o(L(x)) , x →∞ ,

holds uniformly for a in compact subsets of (0,∞).

The next theorem explores the asymptotic behavior of asymptotically
homogeneous functions of positive degree.

Theorem 2.4. Suppose that b is asymptotically homogeneous of degree α >
0 at infinity with respect to the slowly varying function L. Then, there exists
a number γ such that,

(2.2) b(x) = γxα + o (L(x)) , x →∞ .

In particular, we have that for each σ > 0,

b(x) = γxα + o (xσ) , x →∞ .

Notice that (2.2) trivially implies that b is asymptotically homogeneous
of degree α with respect to L.

We now make the link between asymptotically homogeneous functions
and quasiasymptotic behavior of distributions. The proof of the next propo-
sition is analogous to that of [15, Proposition 3.1].

Proposition 2.5. Let f ∈ D′ have quasiasymptotic behavior at infinity

(2.3) f (λx) = L(λ)g(λx) + o (λαL(λ)) as λ →∞ in D′,
where L is a slowly varying function and g is a homogeneous distribution of
degree α ∈ R. Let n ∈ N. Suppose that g admits a primitive of order n, that

is Gn ∈ D′ and G
(n)
n = g, which is homogeneous of degree n + α . Then, for

any given Fn, an n-primitive of f in D′, there exist functions b0, . . . , bn−1,
continuous on (0,∞), such that

(2.4) Fn (λx) = L(λ)Gn(λx) +
n−1∑
j=0

λα+nbj(λ)
xn−1−j

(n− 1− j)!
+ o

(
λα+nL(λ)

)
as λ → ∞ in D′, where each bj is asymptotically homogeneous of degree
−α− j − 1.
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Proof. Relation (2.4) follows from (2.3) and the definitions of convergence in
D′ and primitives in D′ (see [15, Proposition 3.1] for a complete argument).

Thus we shall concentrate in showing the property of the bj’s. We set

Fm = F
(n−m)
n and Gm = G

(n−m)
n , m ∈ {1, . . . , n}. By differentiating relation

(2.4) (n−m)-times, it follows that

(2.5) Fm(λx) = L(λ)Gm(λx)+
m−1∑
j=0

λα+mbj(λ)
xm−1−j

(m− 1− j)!
+o
(
λα+mL(λ)

)
as λ → ∞ in D′. Choose φ ∈ D′ such that

∫∞
−∞ φ(x)xjdx = 0 for j =

1, . . . ,m − 1, and
∫∞
−∞ φ(x)dx = 1. Then evaluating (2.5) at φ, we have

that as λ →∞

(aλ)α+mbm−1(aλ) + L(aλ) 〈Gm(aλx), φ(x)〉+ o
(
λα+mL(λ)

)
= 〈Fm(aλx), φ(x)〉 =

1

a

〈
Fm(λx), φ

(x

a

)〉
= λα+mbm−1(λ) + L(λ) 〈Gm(aλx), φ(x)〉+ o

(
λα+mL(λ)

)
,

and so, with j = m− 1 ∈ {0, . . . , n− 1}, for each a > 0,

bj(aλ) = a−α−j−1bj(λ) + o (L(λ)) , λ →∞ .

�

Suppose now that f ∈ D′ is so that

f(λx) = C−L(λ)
(λx)α

−

Γ(α + 1)
+C+L(λ)

(λx)α
+

Γ(α + 1)
+o (λαL(λ)) as λ →∞ inD′,

where α /∈ {−1,−2, . . . } . Then, on combining Proposition 2.5, Theorem
2.2, and Theorem 2.4, one obtains that for each n ∈ N and Fn, an n-
primitive of f , there exist constants γ0, . . . , γn−1 such that in the sense of
convergence in D′,
(2.6)

Fn(λx) =
n−1∑
j=0

γj
(λx)j

j!
+C−

(−1)nL(λ)(λx)α+n
−

Γ(α + n + 1)
+C+

L(λ)(λx)α+n
+

Γ(α + n + 1)
+o
(
λα+nL(λ)

)
as λ → ∞. This produces a new proof of the structural theorem from [9]
mentioned at the introduction.

Theorem 2.6. Let f ∈ D′ have quasiasymptotic behavior at infinity in D′,
(2.7)

f(λx) = C−L(λ)
(λx)α

−

Γ(α + 1)
+ C+L(λ)

(λx)α
+

Γ(α + 1)
+ o (λαL(λ)) , λ →∞ .
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If α /∈ {−1,−2, . . . } , then there exist a non-negative integer m > −α − 1
and an m-primitive F of f such that F is continuous and

(2.8) lim
x→±∞

Γ(α + m + 1)F (x)

xm |x|α L (|x|)
= C± .

Conversely, if these conditions hold, then (by differentiation) (2.7) follows.

Proof. It follows from the definition of convergence in D′ that there is m ∈ N
such that any m-primitive of f is continuous and (2.6) holds (with n = m)
uniformly for x ∈ [−1, 1]. Pick a specific m-primitive of f , say Fm, then
from (2.6) there is a polynomial p of degree at most m− 1 such that

Fm(λx) = p(λx)+C−L(λ)
(−1)m(λx)α+m

−

Γ(α + m + 1)
+C+L(λ)

(λx)α+m
+

Γ(α + m + 1)
+o
(
λα+mL(λ)

)
as λ →∞, uniformly for x ∈ [−1, 1]. Then setting F = Fm − p, x = 1,−1
and replacing λ by x, relation (2.8) follows at once. �

Remark 2.7. Since pm−1(x) = o(xm+αL(x)) → 0, x → ∞, whenever α >
−1, we have that in such a case the polynomial is irrelevant in the proof
of the last Theorem. Hence in fact (2.8) holds for every m-primitive of f ,
provided that α > −1.

Remark 2.8. We obtain at once the decomposition theorem from [17, p.134].

We now give a second application of asymptotically homogeneous func-
tions, here we turn our attention to quasiasymptotics whose degrees are
negative integers.

Proposition 2.9. Let f ∈ D′ have the quasiasymptotic behavior at infinity

(2.9) f(λx) = L(λ)g(λx) + o
(
λ−kL(λ)

)
as λ →∞ in D′,

where k ∈ {2, 3, . . . } and g is a homogeneous distribution of degree −k. Let
G be a homogeneous distribution of degree −1 such that G(k−1) = g. Then
for some (k − 1)-primitive of f , Fk−1, we have that

(2.10) Fk−1(λx) = L(λ)G(λx) + o
(
λ−1L(λ)

)
as λ →∞ in D′.

Conversely, relation (2.10) implies (2.9).

Proof. It follows directly from Proposition 2.5 and Theorem 2.4. �

Proposition 2.9 reduces our study to the case of quasiasymptotics of de-
gree−1 which we shall postpone for the next section. We now set the ground
for the next section. What makes impossible the application of Proposition
2.5 to the -1 degree case is the fact that in general we cannot single out ho-
mogeneous distributions from the primitives of a homogeneous distribution
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of degree -1. In Section 3, the technique of integrating the quasiasymptotic
and studying the coefficients of integration is employed again; moreover,
the main coefficient of this integration will fit into the context of associate
asymptotically homogeneous functions, which we now define.

Definition 2.10. A function b is said to be associate asymptotically homo-
geneous of degree 0 at infinity with respect to the slowly varying function L,
if it is measurable and defined in some interval [A,∞), A > 0, and for each
a > 0,

(2.11) b(ax) = b(x) + β log aL(x) + o(L(x)) , x →∞ ,

for some constant β.

Note that the property (2.11) is exactly (2.1) with α = 0 and τ(a) =
β log a; indeed, when α = 0, it can be shown [11, Theorem 2.9] that (2.1)
forces τ to have this form. It can be also shown by using a classical argument
of H. Korevaar, T. van Aardenne Ehrenfest and N. G. de Bruijn that (2.11)
must hold uniformly for a on compact sets (for the usage of this argument
see [6], [11, Theorem 2.12] and [15, Lemma 3.5]).

Using Theorem 2.2, we can roughly estimate the behavior of associate
asymptotically homogeneous functions of degree 0 at infinity.

Proposition 2.11. Let b be associate asymptotically homogeneous of degree
0 at infinity with respect to L, then for each σ > 0,

(2.12) b(x) = o(xσ) , x →∞ .

Proof. It is known that L(x) = o(xσ), for each σ > 0 [11]. Hence b(ax) =
b(x) + o(xσ) and thus x−σb(x) is asymptotically homogeneous of degree −σ
with respect to L ≡ 1, so (2.12) follows from Theorem 2.2. �

The next theorem will be very important in the next section. Recall that
H denotes the Heaviside function, i.e., the characteristic function of (0,∞).

Theorem 2.12. Let b be a locally integrable associate asymptotically homo-
geneous function of degree zero at infinity with respect to the slowly varying
function L. Suppose that b is defined on [A,∞). Then

(2.13) b(λx)H(λx− A) = b(λ)H(x) + L(λ)β log xH(x) + o(L(λ))

as λ →∞ in S ′, where H is the Heaviside function.

Proof. Let λ0 be any positive number. The function b can be decom-
posed as b = b1 + b2, where b1 ∈ L1(R) has compact support and b2(x) =
b(x)H(x− λ0) is associate asymptotically homogeneous function of degree
zero at infinity. Since b1 satisfies the moment asymptotic expansion [5], it
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follows that b1(λx) = O(λ−1) = o(L(λ)) as λ → ∞ in S ′. Therefore, we
can always assume that A = λ0, where λ0 is selected at our convenience.

Our aim is to show that there is some λ0 > 1 such that

J(x, λ) := φ(x)
b(λx)− b(λ)− βL(λ) log x

L(λ)
H(λx− λ0)

is dominated by an integrable function, whenever φ ∈ S, for the use of the
Lebesgue dominated convergence theorem. For this goal, we can always
assume that L is positive everywhere and satisfies the following estimate
(see for example the arguments given in [15, Section 2]),

(2.14)
L(λx)

L(λ)
≤ M max

{
x−

1
4 , x

1
4

}
, x, λ ∈ (0,∞),

for some positive constant M . Because of the uniformity of (2.11) on com-
pact sets, there exists a λ0 > 1 such that

|b(λx)− b(λ)− βL(λ) log x| < L(λ) , x ∈ [1, 2], λ0 < λ .

Let n be a positive integer. We keep λ0 < λ and x ∈ [2n, 2n+1] . Then

|b(λx)− b(λ)− βL(λ) log x| ≤ |b(λx)− b(λ)|+ |β|L(λ) log x

≤ |β|L(λ) log x + |b(2(λx/2))− b(λx/2)− βL(λx/2) log 2|
+ |β|L(λx/2) log 2 + |b(λx/2)− b(λ)|

≤ |β|L(λ) log x + (1 + |β| log 2) L(λx/2) + |b(λx/2)− b(λ)|

≤ (1 + |β| log 2)
n∑

j=1

L
(
2−jλx

)
+ |β|L(λ) log 2x + L(λ)

≤

(
Mx

1
4 (1 + |β| log 2)

n∑
j=1

(1/2)
j
4 + |β| log 2x + 1

)
L(λ) ,

where the last inequality follows from (2.14). So if λ0 < λ and 1 < x, then∣∣∣∣b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣ ≤ M1x
1
4 ,
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for some M1 > 0. Now if λ0/λ < x < 1, we have that∣∣∣∣b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣ ≤(1 +
L(λx)

L(λ)

)
|β log x|

+

∣∣∣∣b(λ)− b(λx)− βL(λx) log x−1

L(λ)

∣∣∣∣
≤
(

1 + Mx−
1
4

)
|β log x|

+
L(λx)

L(λ)

∣∣∣∣b(λx(x−1))− b(λx)− βL(λx) log x−1

L(λx)

∣∣∣∣
≤
(

1 + Mx−
1
4

)
|β log x|+ MM1x

− 1
2 .

Therefore J(x, λ) is dominated by an integrable function for λ > λ0, so we
apply Lebesgue dominated convergence theorem to deduce that limλ→∞

∫∞
0

J(x, λ)dx =
0. Finally,

〈b(λx)H(λx− λ0), φ(x)〉 − b(λ)

∫ ∞

0

φ(x)dx− βL(λ)

∫ ∞

0

log x φ(x)dx

=

∫ ∞

λ0/λ

b(λx)φ(x)dx− b(λ)

∫ ∞

0

φ(x)dx− βL(λ)

∫ ∞

0

log x φ(x)dx

= L(λ)

∫ ∞

0

J(x, λ)dx + L(λ)O

(
log λ

λ

)
+ O

(
b(λ)

λ

)
= o(L(λ)) + L(λ)O

(
b(λ)

λL(λ)

)
= o(L(λ)) , λ →∞ ,

where in the last equality we have used Proposition 2.11 and the fact that
slowly varying functions are o(λσ) for any σ > 0 [11]. This completes the
proof of (2.13). �

Corollary 2.13. Let b be an associate asymptotically homogeneous function
of degree 0 at infinity with respect to L. Then, there exists an associate
asymptotically homogeneous function c ∈ C∞[0,∞) such that b(x) = c(x) +
o(L(x)) as x →∞.

Proof. We may assume that L ∈ C∞[0,∞) [11, Section 1.4]. Find B such
that b is locally bounded in [B,∞), this can be done because of Proposition
2.11. Take φ ∈ D′ such that

∫∞
0

φ(t)dt = 1 and set c(x) =
∫∞

B/x
b(xt)φ(t)dt−

βL(x)
∫∞

0
φ(t) log tdt, the corollary now follows from Theorem 2.12. �

We may also use Corollary 2.13 to obtain a representation formula for
associate asymptotically homogeneous functions, this is the analog to [11,
Theorem 1.2] for slowly varying functions.
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Theorem 2.14. The function b is associate asymptotically homogeneous of
degree 0 at ∞ satisfying (2.11) if and only if there is a positive number A
such that

(2.15) b(x) = η(x) +

∫ x

A

τ(t)

t
dt , x ≥ A ,

where η is a locally bounded measurable function on [A,∞) such that η(x) =
M + o(L(x)) as x →∞, for some number M , and τ is a C∞-function such
that τ(x) ∼ βL(x) as x →∞.

Proof. Assume first that b1 is C∞, defined on [0,∞) and satisfies that hy-
pothesis of the theorem. We can find L1 ∼ L which is C∞ and satis-
fies xL′1(x) = o(L(x)) as x → ∞ [11, p.7]. Let φ and c as in the proof
of Corollary 2.13 corresponding to b1 and L1, additionally assume that
supp φ ⊆ (0,∞). From Theorem 2.12, we have that

b′1(λx) =
b1(λ)

λ
δ(x) + β

L(λ)

λ
Pf

(
H(x)

x

)
+ o

(
L(λ)

λ

)
as λ →∞

in S ′, since distributional asymptotics can be differentiated. Then, for x
positive

xc′(x) = x

∫ ∞

0

b′1(xt)tφ(t)dt− βxL′1(x)

∫ ∞

0

φ(t) log t dt

= x

∫ ∞

0

b′1(xt)tφ(t)dt + o(L(x))

= b1(x) · 0 + βL(x)

∫ ∞

0

φ(t)dt + o(L(x))

= βL(x) + o(L(x)) as x →∞ .

Set τ(x) = xc′(x). Find A > 0 such that L is locally integrable on [A,∞),
one has that b1(x) = c(A) +

∫ x

A
(τ(t)/t)dt + o(L(x)).

In the general case, let A be a number such that b and L are locally
bounded on [A,∞) and let b1 the function from Corollary 2.13 such that
b(x) = b1(x) + o(L(x)), then we can apply the previous argument to b1 to
find τ as before, so we obtain (2.15) with η(x) = b(x) −

∫ x

A
(τ(t)/t) dt =

c(A) + o(L(x)). �

Remark 2.15. A slightly different representation formula is given in [11,
Theorem 2.13], but, except for the smoothness of τ , both are equivalent.
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3. Quasiasymptotic of Negative Integral Degree

This section will be dedicated to the quasiasymptotic with negative in-
tegral degree. Because of Proposition 2.9, we start with case of degree
-1.

We should introduce some notation that will be needed. In the following
for all n ∈ N we denote by ln the primitive of log |x| with the property that
ln(0) = 0 and l′n = ln−1. We have an explicit formula for them:

ln(x) =
xn

n!
log |x| − xn

n!

n∑
j=1

1

j
, x ∈ R ,

which can be easily verified by direct differentiation. They satisfy

(3.1) ln(ax) = anln(x) +
(ax)n

n!
log a , a > 0 .

Theorem 3.1. Let f ∈ D′ have quasiasymptotic at infinity of the form
(3.2)
f(λx) = γλ−1L(λ)δ(x) + βλ−1L(λ) x−1 + o

(
λ−1L(λ)

)
as λ →∞ in D′ .

For each n ∈ N, choose an n-primitive Fn of f such that F ′
n = Fn−1. Then,

there exists an associate asymptotically homogeneous function b satisfying

(3.3) b(ax) = b(x) + β log aL(x) + o(L(x) , x →∞ ,

such that for any n the distribution Fn+1 satisfies
(3.4)

Fn+1(λx) = b(λ)
(λx)n

n!
+ γL(λ)

(λx)n

2n!
sgn x + βL(λ)λnln(x) + o (λnL(λ))

as λ →∞, in the sense of convergence in D′. Moreover, there exists n0 ∈ N
such that for all n ≥ n0 the distribution Fn+1 is a continuous function and
(3.4) holds uniformly for x ∈ [−1, 1]. In particular, for n ≥ n0 one has that
(3.5)

Fn+1(x) = b (|x|) xn

n!
+ γ

xn

2n!
L (|x|) sgn x−βL (|x|) xn

n!

n∑
j=1

1

j
+ o (|x|n L (|x|))

as x → ±∞, in the ordinary sense. Conversely, it follows from Theorem
2.12 that relation (3.5) implies (3.4), and (by differentiation) (3.2) follows.

Proof. We shall study, as we have been doing, the coefficients of the inte-
gration of (3.2). We now proceed to integrate (3.2) once, so we obtain

(3.6) F1(λx) = b(λ) +
γ

2
L(λ) sgn x + βL(λ) log |x|+ o(L(λ)) as λ →∞
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in D′. Now, using the standard trick of evaluating at φ ∈ D with the
property

∫∞
−∞ φ(x)dx = 1, one obtains that

b(λa) +
γ

2
L(λa)

∫ ∞

−∞
sgn x φ(x)dx + βL(λa)

∫ ∞

−∞
log |x|φ(x)dx + o(L(λ))

= 〈F1(λax), φ(x)〉 =
1

a

〈
F1(λx), φ

(x

a

)〉
= b(λ) +

γ

2
L(λ)

∫ ∞

−∞
sgn xφ(x)dx + βL(λ)

∫ ∞

−∞
log |ax|φ(x)dx + o(L(λ)) ,

λ → ∞, for each a > 0. So, we see that b satisfies (3.3) for each a > 0.
Further integration of (3.6) gives,

Fn+1(λx) =b(λ)
(λx)n

n!
+

n∑
j=1

λnbj(λ)
xn−j

(n− j)!
+ γL(λ) sgn x

(λx)n

2n!

+ βL(λ)λnln(x) + o (λnL(λ)) as λ →∞ in D′.
As in the proof of Proposition 2.5, one shows that the bj’s are asymptotically
homogeneous functions of degree −j with respect to L, hence (3.4) follows
from Theorem 2.2 applied to the bj’s. The next assertion follows from the
definition of convergence in D′. Relation (3.5) is shown by making x = ±1
in (3.4) and then changing λ ↔ x. Finally, since only the behavior of b at
infinity plays a roll in (3.5), we may assume that b is locally integrable, so
the converse is obtained after application of Theorem 2.12 and [8, Theorem
3]. �

Theorem 3.1 is a structural theorem, but we shall give a version free of
b.

Theorem 3.2. Let f ∈ D′. Then f has quasiasymptotic at infinity of the
form (3.2) if and only if there exists an (m+1)-primitive F of f , continuous,
such that for each a > 0,

(3.7) lim
x→∞

m! (a−mF (ax)− (−1)mF (−x))

xmL(x)
= γ + β log a .

Proof. The limit (3.7) follows from (3.5), (3.3) and (3.1) by direct compu-
tation. For the converse, rewrite (3.7) as

a−mF (ax)− (−1)mF (−x) = (γ + β log a)
xm

m!
L(x) + o (xmL(x)) , x →∞ ,

for each a > 0. Set

b(x) = m!x−mF (x)−

(
γ

2
− β

m∑
j=1

1

j

)
L(x) , x ∈ (0,∞) .
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By setting a = 1 in (3.7), one sees that for x < 0, as x → −∞,

F (x) = b (|x|) xm

m!
+γL (|x|) xm

2m!
sgn x−βL (|x|) xm

m!

m∑
j=1

1

j
+o (|x|m L (|x|)) .

Since

a−mF (ax)− F (x) = β log a
xm

m!
L(x) + o (xmL(x)) , x →∞ ,

it is clear that for each a > 0,

b(ax) = b(x) + β log aL(x) + o(L(x)) , x →∞ .

�

It is remarkable that, initially, no uniform condition on a is assumed
in (3.7). However, the proof of Theorem 3.2 forces this relation to hold
uniformly for a in compact subsets.

We are now ready to state the general structural theorem for negative
integral degrees which now follows directly from Proposition 2.9, Theorem
3.1 and Theorem 3.2.

Theorem 3.3. Let f ∈ D′ and k be a positive integer. Then f has the
quasiasymptotic behavior in D′ at infinity,

f(λx) = γλ−kL(λ) δ(k−1)(x) + (−1)k−1(k − 1)!βL(λ)(λx)−k + o
(
λ−kL(λ)

)
if and only if there exist m ∈ N, m ≥ k, an associate asymptotically homo-
geneous function b of degree 0 at infinity with respect to L satisfying

b(ax) = b(x) + β log aL(x) + o(L(x)) , x →∞ ,

for each a > 0, and an m-primitive F of f which is continuous and satisfies

F (x) =b (|x|) xm−k

(m− k)!
+ γL (|x|) xm−k

2(m− k)!
sgn x

− βL (|x|) xm−k

(m− k)!

m−k∑
j=1

1

j
+ o

(
|x|m−k L (|x|)

)
as x → ±∞, in the ordinary sense. The last property is equivalent to

(3.8) lim
x→∞

(m− k)!
(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= γ + β log a ,

for each a > 0.

It should be noticed that in (3.8) is not absolutely necessary to assume
that the limit is of the form γ + β log a. Indeed, we have the following
corollary.
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Theorem 3.4. Let f ∈ D′. Then f has quasiasymptotic at infinity of degree
−k, k ∈ {1, 2, ...} if and only if there exists a continuous m-primitive F of
f , m ≥ k, such that the following limit exists for each a > 0,

lim
x→∞

(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= I(a) .

Proof. We show that I(a) must be of the form I(1) + β log a, for some
constant β. We easily see that I is measurable and satisfies

I(ab) = I(a) + I(b)− I(1) ,

setting h(x) = eI(x)−I(1), one has that h is positive, measurable and satisfies
h(ab) = h(a)h(b), from where it follows [11] that h(x) = xβ, for some β,
and so I has the desired form. �

We end this section with two remarks.

Remark 3.5. Theorem 3.3 and Proposition 2.11 imply that if f ∈ D′ has
quasiasymptotic of negative integral degree, then f ∈ S ′. In fact, the struc-
tural theorem, Theorem 3.3, combined with Theorem 2.12 and [8, Theorem
3] imply that f has the same quasiasymptotic in S ′.

Remark 3.6. The structural theorem for the quasiasymptotic of degree -
1 implies at once the pointwise Fourier inversion formula for distributional
point values given in [12, 13] and the formula for jump behavior of tempered
distributions [12, 13]. For instance, in the case of 2π-periodic distributions,
it states that f(x) =

∑∞
−∞ ane

inx has the jump behavior at x0

lim
ε→0+

f(x0 + εx) = γ−H(−x) + γ+H(x) in D′ ,

if and only if there exists m ∈ N such that

lim
x→∞

∑
−x≤n<ax

ane
inx0 =

γ+ + γ−
2

+
1

2πi
(γ+ − γ−) log a (C, m) ,

for each a > 0. Note that when γ+ = γ−, we fall into the case of R. Estrada’s
characterization of  Lojasiewicz point values of periodic distributions [4, 7].

4. Other Results

We end this article studying the following problem. Suppose that a dis-
tribution f ∈ D′ with support in [0,∞) has quasiasymptotic of degree α in
the space D′(0,∞), that is, for each φ ∈ D(0,∞)

(4.1) lim
λ→∞

〈
f(λx)

λαL(λ)
, φ(x)

〉
= 〈g(x), φ(x)〉 .
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What can we say about the quasiasymptotic properties of f in D′?
We can apply the techniques of Sections 2 and 3 to give a complete answer

to this question. The answer depends on α.
Let us start with the case α > −1. It is not difficult to show that g must

be of the form Cxα
+/Γ(α + 1), for some constant C. Next, Proposition 2.5

still holds replacing the space D′ by D′(0,∞) (actually this holds without
the restriction α > −1). Hence, the same argument given in Theorem
2.6 applies here, but this time we only require the uniform convergence on
[1/2, 2], and hence we can still conclude the existence of the integer such
that (2.8) holds with the limit taken only as x → ∞. Actually, because
α > −1, relation (2.8) holds for any m-primitive of f . Let F be the m-
primitive of f supported on the interval [0,∞), then we have that

F (x) ∼ Cxα+mL(x)

Γ(α + m + 1)
, x →∞ ,

so we have that F (λx) = CL(λ)(λx)α+m
+ /Γ(α + m + 1) + o(λα+mL(λ)) in

the space S ′, differentiating m-times, we obtain the following result.

Theorem 4.1. Let f ∈ D′ be supported on [0,∞). If f has quasiasymptotic
behavior of degree α > −1 in D′(0,∞), then it is a tempered distribution
and has the same quasiasymptotic behavior in the space S ′.

Suppose now that α < −1 and α is not a negative integer. This case
differs from the last case essentially in one point, we cannot conclude (2.8)
for every m-primitive of f but only for some of them. In any case, denoting
again by F the m-primitive (we keep m > −α−1) of f supported on [0,∞),
we have that there exists a polynomial of degree at most m− 1 such that

F (x)− p(x) ∼ Cxα+mL(x)

Γ(α + m + 1)
, x →∞ ;

therefore,

F (λx) =
CL(λ)(λx)α+m

+

Γ(α + m + 1)
+

m−1∑
j=0

aj(λx)j
+ + o(λα+mL(λ)) as λ →∞ ,

in the space S ′, for some constants a0, . . . , am−1. Thus, our arguments
immediately imply the next theorem.

Theorem 4.2. Let f ∈ D′ be supported on [0,∞). Suppose that

f(λx) = CL(λ)
(λx)α

+

Γ(α + 1)
+ o(λαL(λ)) as λ →∞ in D′(0,∞) .
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If α < −1 and α is not a negative integer, then f is a tempered distribution.
Moreover, there exist constants a0, a1, . . . , an (n < −α− 1) such that

f(λx) = CL(λ)
(λx)α

+

Γ(α + 1)
+

n∑
j=0

aj
δ(j)(x)

λj+1
+ o(λαL(λ)) as λ →∞ in S ′ .

When α = −k, k being a positive integer, the distribution g in (4.1) must
have the form Cx−k ∈ D′(0,∞), for some constant C; these distributions are
homogeneous as elements of D′(0,∞), but they do not have homogeneous
extensions to D. The behavior of f(λx) as λ →∞ in S ′ is described in the
next theorem.

Theorem 4.3. Let f ∈ D′ be supported on [0,∞). Suppose that

f(λx) = CL(λ)
H(x)

(λx)k
+ o

(
L(λ)

λk

)
as λ →∞ in D′(0,∞) ,

where k is a positive integer. Then f is a tempered distribution and there
exist an associate asymptotically homogeneous function b satisfying

(4.2) b(ax) = b(x) +
(−1)k−1

(k − 1)!
CL(x) log a + o(L(x)), x →∞ ,

for each a > 0, and constants a0, a1, . . . , ak−1 such that
(4.3)

f(λx) = C
L(λ)

λk
Pf

(
H(x)

xk

)
+

b(λ)

λk
δ(k−1)(x) +

k−1∑
j=0

aj
δ(j)(x)

λj+1
+ o

(
L(λ)

λk

)
as λ →∞ in S ′.

Proof. For each n ∈ N, let Fn denote the n-primitive of f with support in
[0,∞). Set C1 = (−1)k−1C/(k − 1)!. Adapting the arguments of Section
3 and reasoning as in the previous two cases, we obtain the existence of a
positive integer m > k such that Fm is continuous and

Fm(x) = b1(x)
xm−k

(m− k)!
−C1L(x)

xm−k

(m− k)!

m−k∑
j=1

1

j
+pm−1(x) + o(xm−kL(x)) ,

x → ∞, where b1 is a locally integrable associate asymptotically homoge-
neous function satisfying (4.2) and pm−1 is a polynomial of degree at most
m− 1. Throwing away the irrelevant terms of the polynomial pm−1 and us-
ing Theorem 2.12, we obtain the following asymptotic expansion as λ →∞
in the space S ′,
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Fm(λx) =b1(λ)
(λx)m−k

+

(m− k)!
+ C1λ

m−kL(λ)lm−k(x)H(x)

+
k−1∑
j=0

aj
(λx)m−j−1

+

(m− j − 1)!
+ o(λm−kL(λ)) .

Differentiating (m− k)-times this expansion, we have that
(4.4)

Fk(λx) = b1(λ)H(x) + C1L(λ)H(x) log x +
k−1∑
j=0

aj
(λx)k−j−1

+

(k − j − 1)!
+ o(L(λ)) .

The formulas [5, p.68],

d

dx
(H(x) log x) = Pf

(
H(x)

x

)
and

d

dx

(
Pf

(
H(x)

xn

))
= −n Pf

(
H(x)

xn+1

)
+

(−1)nδ(n)(x)

n!

imply that

dk−1

dxk−1

(
Pf

(
H(x)

x

))
= (−1)k−1 (k − 1)! Pf

(
H(x)

xk

)
− δ(k−1)(x)

k−1∑
j=1

1

j
.

Hence, differentiating (4.4) k-times, one has (4.3) with

b(x) = b1(x) +
(−1)kC

(k − 1)!

(
k−1∑
j=1

1

j

)
L(x) .

�
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