A General Integral

Jasson Vindas
jvindas@cage.ugent.be

Department of Mathematics
Ghent University

Mathematics Colloquium
Serbian Academy of Sciences and Arts
Belgrade, March 18, 2011
In this lecture we present the construction of a new integral for functions of one variable $f : [a, b] \to \mathbb{R}$.

We also present a brief overview of some standard integrals.

The integration theory to be presented is a collaborative work with R. Estrada.
In this lecture we present the construction of a new integral for functions of one variable $f : [a, b] \to \mathbb{R}$.

We also present a brief overview of some standard integrals.

The integration theory to be presented is a collaborative work with R. Estrada.
Introduction

The main drawbacks of the Riemann integral are:

1. The class of Riemann integrable functions is too small.
2. Lack of convergence theorems.
3. The fundamental theorem of calculus

\[\int_a^x f(t)\,dt = F(x) \]

where \(F'(t) = f(t) \), for all \(t \), is not always valid.

Lebesgue integral solves the first and second problem. Unfortunately, it does not solve the third one.
The main drawbacks of the Riemann integral are:

1. The class of Riemann integrable functions is too small.
2. Lack of convergence theorems.
3. The fundamental theorem of calculus

\[\int_{a}^{x} f(t) \, dt = F(x) \]

where \(F'(t) = f(t) \), for all \(t \), is not always valid.

Lebesgue integral solves the first and second problem. Unfortunately, it does not solve the third one.
Introduction

The main drawbacks of the Riemann integral are:

1. The class of Riemann integrable functions is too small.
2. Lack of convergence theorems.
3. The fundamental theorem of calculus

\[\int_a^x f(t)\,dt = F(x) \]

where \(F'(t) = f(t) \), for all \(t \), is not always valid.

Lebesgue integral solves the first and second problem. Unfortunately, it does not solve the third one.
Introduction

In 1912 Denjoy constructed an integral with the properties:

- It is more general than the Lebesgue integral.
- The fundamental theorem of calculus is always valid.

For example, Denjoy integral integrates

\[\int_0^1 \frac{1}{x} \sin \left(\frac{1}{x^2} \right) \, dx \]

which is not possible with Lebesgue theory.

Other equivalent integrals appeared thereafter (Lusin, Perron, Kurzweil-Henstock).
In 1912 Denjoy constructed an integral with the properties:

- It is more general than the Lebesgue integral.
- The fundamental theorem of calculus is always valid.

For example, Denjoy integral integrates

\[\int_0^1 \frac{1}{x} \sin \left(\frac{1}{x^2} \right) \, dx \]

which is not possible with Lebesgue theory.

Other equivalent integrals appeared thereafter (Lusin, Perron, Kurzweil-Henstock).
In 1912 Denjoy constructed an integral with the properties:

- It is more general than the Lebesgue integral.
- The fundamental theorem of calculus is always valid.

For example, Denjoy integral integrates

\[
\int_0^1 \frac{1}{x} \sin \left(\frac{1}{x^2} \right) \, dx
\]

which is not possible with Lebesgue theory.

Other equivalent integrals appeared thereafter (Lusin, Perron, Kurzweil-Henstock).
The integral that we shall construct has the following properties:

1. It is **more general** than the Denjoy-Perron-Henstock integral, and in particular than the Lebesgue integral.

2. It identifies a **new class of functions** with Schwartz distributions.

3. It enjoys all useful properties of the standard integrals, including:
 - Convergence theorems.
 - Integration by parts and substitution formulas.
 - Mean value theorems.

4. If $\beta > 0$, it integrates unbounded functions such as

 $\frac{1}{|x|^\gamma} \sin \left(\frac{1}{|x|^{\beta}} \right)$

 for all $\gamma \in \mathbb{R}$

 not Denjoy-Perron-Henstock integrable if $\beta + 1 \leq \gamma$.

J.Vindas

A General Integral
The integral that we shall construct has the following properties:

1. It is more general than the Denjoy-Perron-Henstock integral, and in particular than the Lebesgue integral.
2. It identifies a new class of functions with Schwartz distributions.
3. It enjoys all useful properties of the standard integrals, including:
 - Convergence theorems.
 - Integration by parts and substitution formulas.
 - Mean value theorems.
4. If $\beta > 0$, it integrates unbounded functions such as
 \[
 \frac{1}{|x|^{\gamma}} \sin \left(\frac{1}{|x|^\beta} \right)
 \]
 for all $\gamma \in \mathbb{R}$

 not Denjoy-Perron-Henstock integrable if $\beta + 1 < \gamma$.

J.Vindas A General Integral
The integral that we shall construct has the following properties:

1. It is more general than the Denjoy-Perron-Henstock integral, and in particular than the Lebesgue integral.

2. It identifies a new class of functions with Schwartz distributions.

3. It enjoys all useful properties of the standard integrals, including:
 - Convergence theorems.
 - Integration by parts and substitution formulas.
 - Mean value theorems.

4. If $\beta > 0$, it integrates unbounded functions such as

 $$\frac{1}{|x|^{\gamma}} \sin \left(\frac{1}{|x|^{\beta}}\right)$$

 for all $\gamma \in \mathbb{R}$

 not Denjoy-Perron-Henstock integrable if $\beta + 1 \leq \gamma$.
Outline

1. The integrals of Denjoy, Perron, and Henstock
 - Denjoy integral
 - Perron integral
 - Henstock-Kurzweil integral

2. From Denjoy to Łojasiewicz
 - Integration of higher order differential coefficients
 - Łojasiewicz point values

3. The Distributional Integral
 - Construction
 - Properties
 - Examples
In the construction of his integral, Denjoy developed a complicated procedure that he called “totalization”. He made use of transfinite induction. It is very well explained in Hobson’s book:

A few months later, N. Lusin connected the new integral with the notion of generalized absolutely continuous functions in the restricted sense. See the book of Gordon:

In 1932, Romanovski eliminated the use of transfinite numbers from Denjoy’s construction.
In the construction of his integral, Denjoy developed a complicated procedure that he called “totalization”. He made use of transfinite induction. It is very well explained in Hobson’s book:

A few months later, N. Lusin connected the new integral with the notion of generalized absolutely continuous functions in the restricted sense. See the book of Gordon:

In 1932, Romanovski eliminated the use of transfinite numbers from Denjoy’s construction.
Denjoy integral

In the construction of his integral, Denjoy developed a complicated procedure that he called “totalization”. He made use of transfinite induction. It is very well explained in Hobson’s book:

A few months later, N. Lusin connected the new integral with the notion of generalized absolutely continuous functions in the restricted sense. See the book of Gordon:

In 1932, Romanovski eliminated the use of transfinite numbers from Denjoy’s construction.
In 1914, Perron developed another approach which is equivalent to the Denjoy integral.

Definition

Let $f : [a, b] \to \overline{\mathbb{R}}$.

1. U is a (continuous) major function of f if it is continuous on $[a, b]$, $U(a) = 0$, and

 $$f(x) \leq DU(x) \quad \text{and} \quad -\infty < DU(x), \ \forall x \in [a, b].$$

2. V is a (continuous) minor function of f if it is continuous on $[a, b]$, $V(a) = 0$, and

 $$DV(x) \leq f(x) \quad \text{and} \quad DV(x) < \infty, \ \forall x \in [a, b].$$
Perron integral

Definition

A function \(f : [a, b] \rightarrow \overline{\mathbb{R}} \) is said to be **Perron integrable** on \([a, b]\) if it has at least one major and one minor function and the numbers

\[
\inf \{ U(b) : U \text{ is continuous major function of } f \}
\]

\[
\sup \{ V(b) : V \text{ is continuous minor function of } f \}
\]

are equal and finite. The **common value** is said to be its **Perron integral**.
Henstock-Kurzweil integral

In the 1950’s Kurzweil introduced an integral which was motivated by his study in differential equations. His integral coincides with the Denjoy-Perron integral and it was systematically studied by Henstock during the 1960’s.

Interestingly, the definition of Henstock-Kurzweil integral does not differ much from that of Riemann integral. It is explained in detail in the monographs by Bartle and Gordon:

In the 1950’s Kurzweil introduced an integral which was motivated by his study in differential equations. His integral coincides with the Denjoy-Perron integral and it was systematically studied by Henstock during the 1960’s.

Interestingly, the definition of Henstock-Kurzweil integral does not differ much from that of Riemann integral. It is explained in detail in the monographs by Bartle and Gordon:

A function $\delta : [a, b] \to \mathbb{R}_+$ is said to be a gauge on $[a, b]$. If $P = \{l_j\}_{j=1}^n$ is a partition of $[a, b]$ such that for each l_j there is assigned a point $t_j \in l_j$, then we call t_j a tag of l_j. We say that the partition is tagged and write

$$\dot{P} = \{(l_j, t_j)\}_{j=1}^n.$$

\dot{P} is said to be δ-fine if $l_j \subset [t_j - \delta(t_j), t_j + \delta(t_j)]$.

J. Vindas

A General Integral
Definition

A function $\delta : [a, b] \rightarrow \mathbb{R}_+$ is said to be a gauge on $[a, b]$.

If $P = \{l_j\}_{j=1}^n$ is a partition of $[a, b]$ such that for each l_j there is assigned a point $t_j \in l_j$, then we call t_j a tag of l_j. We say that the partition is tagged and write

$$\dot{P} = \{(l_j, t_j)\}_{j=1}^n.$$

Definition

\dot{P} is said to be δ-fine if $l_j \subset [t_j - \delta(t_j), t_j + \delta(t_j)]$.
Gauges and Tagged Partitions

Definition

A function \(\delta : [a, b] \to \mathbb{R}_+ \) is said to be a **gauge** on \([a, b]\).

If \(P = \{l_j\}_{j=1}^n \) is a partition of \([a, b]\) such that for each \(l_j \) there is assigned a point \(t_j \in l_j \), then we call \(t_j \) a **tag** of \(l_j \). We say that the partition is **tagged** and write

\[
\dot{P} = \{(l_j, t_j)\}_{j=1}^n.
\]

Definition

\(\dot{P} \) is said to be **\(\delta \)-fine** if \(l_j \subseteq [t_j - \delta(t_j), t_j + \delta(t_j)] \).
Henstock integral

Definition

Given a tagged partition \(\dot{P} := \{(l_j, t_j)\}_{j=1}^n \), we denote the Riemann sum of \(f \) corresponding to \(\dot{P} \) as

\[
S(f; \dot{P}) = \sum_{j=1}^{n} f(t_j)\ell(l_j) \quad (\ell(l_j) \text{ is the length of } l_j).
\]

Definition

A function \(f : [a, b] \to \mathbb{R} \) is said to be Henstock integrable if \(\exists A \) such that \(\forall \varepsilon > 0 \) there exists a gauge \(\delta \) on \([a, b] \) such that if \(\dot{P} := \{(l_j, t_j)\}_{j=1}^n \) is \(\delta \)-fine, then

\[
|S(f; \dot{P}) - A| < \varepsilon \quad \text{(we say then } A \text{ is its integral).}
\]
Henstock integral

Definition

Given a tagged partition $\dot{P} := \{(l_j, t_j)\}_{j=1}^{n}$, we denote the
Riemann sum of f corresponding to \dot{P} as

$$S(f; \dot{P}) = \sum_{j=1}^{n} f(t_j) \ell(l_j) \quad (\ell(l_j) \text{ is the length of } l_j).$$

Definition

A function $f : [a, b] \to \overline{\mathbb{R}}$ is said to be Henstock integrable if $\exists A$
such that $\forall \varepsilon > 0$ there exists a gauge δ on $[a, b]$ such that if
$\dot{P} := \{(l_j, t_j)\}_{j=1}^{n}$ is δ-fine, then

$$|S(f; \dot{P}) - A| < \varepsilon \quad \text{(we say then } A \text{ is its integral).}$$
McShane gave a surprising definition of the Lebesgue integral which goes in the same lines as the previous definition:

If we do not require the tags \(t_j \) to belong to \(I_j \), but merely to \([a, b]\), then a miracle occurs! We obtain the Lebesgue integral. See for example the book by Gordon or the one by McShane:

McShane gave a surprising definition of the Lebesgue integral which goes in the same lines as the previous definition:

If we do not require the tags t_j to belong to I_j, but merely to $[a, b]$, then a miracle occurs! We obtain the Lebesgue integral. See for example the book by Gordon or the one by McShane:

In 1935 Denjoy studied the problem of integration of higher order differential coefficients.

Let F be continuous on $[a, b]$, we say that F has a Peano n^{th} derivative at $x \in (a, b)$ if there are n numbers $F_1(x), \ldots, F_n(x)$ such that

$$F(x + h) = F(x) + F_1(x)h + \cdots + F_n(x)\frac{h^n}{n!} + o(h^n), \quad \text{as } h \to 0.$$

We call each $F_j(x)$ its Peano j^{th} derivative at x.

If $n > 1$ and this holds at every point, then $F'(x)$ exists everywhere, but this does not even imply that $F \in C^1[a, b]$.
In 1935 Denjoy studied the problem of integration of higher order differential coefficients. Let F be continuous on $[a, b]$, we say that F has a Peano n^{th} derivative at $x \in (a, b)$ if there are n numbers $F_1(x), \ldots, F_n(x)$ such that

$$F(x + h) = F(x) + F_1(x)h + \cdots + F_n(x)\frac{h^n}{n!} + o(h^n), \quad \text{as } h \to 0.$$

We call each $F_j(x)$ its Peano j^{th} derivative at x.

If $n > 1$ and this holds at every point, then $F'(x)$ exists everywhere, but this does not even imply that $F \in C^1[a, b]$.
In 1935 Denjoy studied the problem of integration of higher order differential coefficients.

Let F be continuous on $[a, b]$, we say that F has a Peano n^{th} derivative at $x \in (a, b)$ if there are n numbers $F_1(x), \ldots, F_n(x)$ such that

$$F(x + h) = F(x) + F_1(x)h + \cdots + F_n(x)\frac{h^n}{n!} + o(h^n), \quad \text{as } h \to 0.$$

We call each $F_j(x)$ its Peano j^{th} derivative at x.

If $n > 1$ and this holds at every point, then $F'(x)$ exists everywhere, but this does not even imply that $F \in C^1[a, b]$.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?

2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?

2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?

2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?

2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?
2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Denjoy higher order integration problem

Suppose that F has a Peano n^{th} derivative $\forall x \in (a, b)$. Denjoy asked:

1. If $F_n(x) = 0$ for all $x \in [a, b]$, is F a polynomial of degree at most $n - 1$?
2. Is it possible to reconstruct F, in a constructive manner, from the values $F_n(x)$?

Denjoy solved these two problems with an extremely difficult “totalization procedure” (once again involving transfinite induction).

- In 1957, Łojasiewicz found, using distribution theory, a more transparent solution to the first problem.
- Our integral, to be defined, gives in particular another solution yet to the second Denjoy problem.
Distributions and functions

We denote by $\mathcal{D}(\mathbb{R})$ the Schwartz space of compactly supported smooth functions. Its dual space $\mathcal{D}'(\mathbb{R})$ is the space of Schwartz distributions.

Distributions will be denoted by f, g, \ldots, while functions by f, g, \ldots.

It is well known that if f is (Lebesgue) integrable over any compact, then it corresponds in a unique fashion to the distribution

$$\langle f(x), \psi(x) \rangle = \int_{-\infty}^{\infty} f(x)\psi(x)\,dx,$$

This also holds for the Denjoy-Perron-Henstock integral! We write $f \leftrightarrow f$ whenever there is a precise association between a function and a distribution.
Distributions and functions

We denote by $\mathcal{D}(\mathbb{R})$ the Schwartz space of compactly supported smooth functions. Its dual space $\mathcal{D}'(\mathbb{R})$ is the space of Schwartz distributions.

Distributions will be denoted by f, g, \ldots, while functions by F, G, \ldots.

It is well known that if f is (Lebesgue) integrable over any compact, then it corresponds in a unique fashion to the distribution

$$\langle f(x), \psi(x) \rangle = \int_{-\infty}^{\infty} f(x)\psi(x)dx,$$

This also holds for the Denjoy-Perron-Henstock integral! We write $f \leftrightarrow f$ whenever there is a precise association between a function and a distribution.
Distributions and functions

We denote by \(\mathcal{D}(\mathbb{R}) \) the Schwartz space of compactly supported smooth functions. Its dual space \(\mathcal{D}'(\mathbb{R}) \) is the space of Schwartz distributions.

Distributions will be denoted by \(f, g, \ldots \), while functions by \(f, g, \ldots \).

It is well known that if \(f \) is (Lebesgue) integrable over any compact, then it corresponds in a unique fashion to the distribution

\[
\langle f(x), \psi(x) \rangle = \int_{-\infty}^{\infty} f(x) \psi(x) \, dx,
\]

This also holds for the Denjoy-Perron-Henstock integral! We write \(f \leftrightarrow f \) whenever there is a precise association between a function and a distribution.
Schwartz definition of distributions does not consider pointwisely defined values. Inspired by Denjoy, Łojasiewicz defined the value of a distribution at a point.

Definition

A distribution $f \in D'(\mathbb{R})$ is said to have a value, $f(x)$, distributionally, at the point $x \in \mathbb{R}$, if there exist n and a continuous function F such that $F^{(n)} = f$ near x, $F \leftrightarrow F$, and F has Peano n^{th} derivative $F_n(x) = f(x)$ at the point.

Equivalently, $f(x)$ exists if and only if for every $\varphi \in D(\mathbb{R})$

$$\lim_{\varepsilon \to 0} \langle f(x + \varepsilon t), \varphi(t) \rangle = f(x) \int_{-\infty}^{\infty} \varphi(t) dt.$$
Łojasiewicz point values

Schwartz definition of distributions does not consider pointwisely defined values. Inspired by Denjoy, Łojasiewicz defined the value of a distribution at a point.

Definition

A distribution $f \in \mathcal{D}'(\mathbb{R})$ is said to have a value, $f(x)$, distributionally, at the point $x \in \mathbb{R}$, if there exist n and a continuous function F such that $F^{(n)} = f$ near x, $F \leftrightarrow F$, and F has Peano n^{th} derivative $F_{n}(x) = f(x)$ at the point.

Equivalently, $f(x)$ exists if and only if for every $\varphi \in \mathcal{D}(\mathbb{R})$

$$\lim_{\varepsilon \to 0} \langle f(x + \varepsilon t), \varphi(t) \rangle = f(x) \int_{-\infty}^{\infty} \varphi(t)dt.$$
Łojasiewicz uniqueness theorem

Łojasiewicz was able to show the following fundamental theorem:

Theorem

Let $f \in D'(\mathbb{R})$. If f has point values everywhere in (a, b) and if $f(x) = 0$, $\forall x \in (a, b)$, then $f = 0$ on (a, b).

Corollary (Denjoy first problem)

If a continuous function F has zero Peano n^{th} derivative everywhere on (a, b), then it is a polynomial of degree at most $n - 1$.

Proof: Define $f = F^{(n)} \in D'(\mathbb{R})$, where $F \leftrightarrow F$, then $f(x) = 0$, for all point in the interval, thus, $F^{(n)} = f = 0$ on the interval. So, F has to be a polynomial with the right degree.
Łojasiewicz uniqueness theorem

Łojasiewicz was able to show the following fundamental theorem:

Theorem

Let \(f \in D'(\mathbb{R}) \). If \(f \) has point values everywhere in \((a, b)\) and if \(f(x) = 0, \forall x \in (a, b) \), then \(f = 0 \) on \((a, b)\).

Corollary (Denjoy first problem)

If a continuous function \(F \) has zero Peano \(n^{th} \) derivative everywhere on \((a, b)\), then it is a polynomial of degree at most \(n - 1 \).

Proof: Define \(f = F^{(n)} \in D'(\mathbb{R}) \), where \(F \leftrightarrow F \), then \(f(x) = 0 \), for all point in the interval, thus, \(F^{(n)} = f = 0 \) on the interval. So, \(F \) has to be a polynomial with the right degree.
Łojasiewicz uniqueness theorem

Łojasiewicz was able to show the following fundamental theorem:

Theorem

Let $f \in \mathcal{D}'(\mathbb{R})$. If f has point values everywhere in (a, b) and if $f(x) = 0, \forall x \in (a, b)$, then $f = 0$ on (a, b).

Corollary (Denjoy first problem)

If a continuous function F has zero Peano n^{th} derivative everywhere on (a, b), then it is a polynomial of degree at most $n - 1$.

Proof: Define $f = F^{(n)} \in \mathcal{D}'(\mathbb{R})$, where $F \leftrightarrow F$, then $f(x) = 0$, for all point in the interval, thus, $F^{(n)} = f = 0$ on the interval. So, F has to be a polynomial with the right degree.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in \mathcal{D}'(\mathbb{R})$. It is said to be a Łojasiewicz distribution if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz function if there exists a Łojasiewicz distribution $f \in \mathcal{D}'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in D'(\mathbb{R})$. It is said to be a Łojasiewicz distribution if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz function if there exists a Łojasiewicz distribution $f \in D'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in \mathcal{D}'(\mathbb{R})$. It is said to be a Łojasiewicz distribution if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz function if there exists a Łojasiewicz distribution $f \in \mathcal{D}'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in \mathcal{D}'(\mathbb{R})$. It is said to be a Łojasiewicz distribution if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz function if there exists a Łojasiewicz distribution $f \in \mathcal{D}'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in D'(\mathbb{R})$. It is said to be a Łojasiewicz **distribution** if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz **function** if there exists a Łojasiewicz distribution $f \in D'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Łojasiewicz functions and distributions

Łojasiewicz theorem gives a precise meaning to $f \leftrightarrow f$.

Definition

Let $f \in \mathcal{D}'(\mathbb{R})$. It is said to be a Łojasiewicz distribution if $f(x)$ exists for all $x \in \mathbb{R}$.

Definition

Let $f : [a, b] \to \mathbb{R}$ be a function. It is said to be a Łojasiewicz function if there exists a Łojasiewicz distribution $f \in \mathcal{D}'(\mathbb{R})$ such that $f(x) = f(x)$ for all $x \in [a, b]$.

- Łojasiewicz functions are not continuous, in general.
- They are Baire class 1 functions, and thus Darboux functions.
- Not all Lebesgue (locally) integrable function is a Łojasiewicz function.
Our motivation is the construction of a new integral so that:

- It integrates every Łojasiewicz function.
- It extends the Denjoy-Perron-Henstock integral, and in particular that of Lebesgue.
- It solves Denjoy second problem on the integration of higher order differential coefficients in a constructive way (Łojasiewicz functions do not solve this problem).
- It identifies a new class of functions with distributions in a precise manner.
Our motivation is the construction of a new integral so that:

- It integrates every Łojasiewicz function.
- It extends the Denjoy-Perron-Henstock integral, and in particular that of Lebesgue.
- It solves Denjoy second problem on the integration of higher order differential coefficients in a constructive way (Łojasiewicz functions do not solve this problem).
- It identifies a new class of functions with distributions in a precise manner.
Our motivation is the construction of a new integral so that:

- It integrates every Łojasiewicz function.
- It extends the Denjoy-Perron-Henstock integral, and in particular that of Lebesgue.
- It solves Denjoy second problem on the integration of higher order differential coefficients in a constructive way (Łojasiewicz functions do not solve this problem).
- It identifies a new class of functions with distributions in a precise manner.
Our motivation is the construction of a new integral so that:

- It integrates every Łojasiewicz function.
- It extends the Denjoy-Perron-Henstock integral, and in particular that of Lebesgue.
- It solves Denjoy second problem on the integration of higher order differential coefficients in a constructive way (Łojasiewic functions do not solve this problem).
- It identifies a new class of functions with distributions in a precise manner.
\(E'(\mathbb{R}) \) denotes the space of compactly supported distributions, the dual of \(E(\mathbb{R}) = C^\infty(\mathbb{R}) \).

Given \(\phi \in E(\mathbb{R}) \), we define the \(\phi \)-transform of \(f \in E'(\mathbb{R}) \) as the smooth function of two variables:

\[
F_\phi f(x, y) = (f * \check{\phi}_y)(x), \quad (x, y) \in \mathbb{H} = \mathbb{R} \times \mathbb{R}_+,
\]

where \(\check{\phi}_y(t) := \frac{1}{y} \phi \left(-\frac{t}{y} \right) \).

We will always assume that \(\phi \) is normalized, meaning

\[
\int_{-\infty}^{\infty} \phi(x)dx = 1.
\]
\[E'(\mathbb{R}) \text{ denotes the space of compactly supported distributions, the dual of } E(\mathbb{R}) = C^\infty(\mathbb{R}). \]

Given \(\phi \in E(\mathbb{R}) \), we define the \(\phi \)-transform of \(f \in E'(\mathbb{R}) \) as the smooth function of two variables:

\[F_\phi f(x, y) = (f \ast \tilde{\phi}_y)(x), \quad (x, y) \in \mathbb{H} = \mathbb{R} \times \mathbb{R}_+, \]

where \(\tilde{\phi}_y(t) := \frac{1}{y} \phi \left(\frac{-t}{y} \right) \).

We will always assume that \(\phi \) is normalized, meaning

\[\int_{-\infty}^{\infty} \phi(x)dx = 1. \]
\(\mathcal{E}'(\mathbb{R}) \) denotes the space of compactly supported distributions, the dual of \(\mathcal{E}(\mathbb{R}) = C^\infty(\mathbb{R}) \).

Given \(\phi \in \mathcal{E}(\mathbb{R}) \), we define the \(\phi \)-transform of \(f \in \mathcal{E}'(\mathbb{R}) \) as the smooth function of two variables:

\[
F_\phi f(x, y) = (f * \check{\phi}_y)(x), \quad (x, y) \in \mathbb{H} = \mathbb{R} \times \mathbb{R}_+, \\
\]

where \(\check{\phi}_y(t) := \frac{1}{y} \phi \left(-\frac{t}{y}\right) \).

We will always assume that \(\phi \) is normalized, meaning

\[
\int_{-\infty}^{\infty} \phi(x)dx = 1.
\]
Upper and lower values of the ϕ-transform

If $x_0 \in \mathbb{R}$, denote by $C_{x_0, \theta}$ the cone in \mathbb{H} starting at x_0 of angle θ,

$$C_{x_0, \theta} = \{(x, t) \in \mathbb{H} : |x - x_0| \leq (\tan \theta)t \}.$$

If $f \in \mathcal{E}'(\mathbb{R})$, then the upper and lower angular values of its ϕ–transform at x_0 are

$$f^+_{\phi, \theta}(x_0) = \limsup_{(x, t) \to (x_0, 0)} \sup_{(x, t) \in C_{x_0, \theta}} F_{\phi}f(x, t)$$

$$f^-_{\phi, \theta}(x_0) = \liminf_{(x, t) \to (x_0, 0)} \inf_{(x, t) \in C_{x_0, \theta}} F_{\phi}f(x, t).$$

For $\theta = 0$, we obtain the upper and lower radial limits of the ϕ–transform.
Upper and lower values of the ϕ-transform

If $x_0 \in \mathbb{R}$, denote by $C_{x_0,\theta}$ the cone in \mathbb{H} starting at x_0 of angle θ,

$$C_{x_0,\theta} = \{(x, t) \in \mathbb{H} : |x - x_0| \leq (\tan \theta) t\}.$$

If $f \in \mathcal{E}'(\mathbb{R})$, then the upper and lower angular values of its $\phi-$transform at x_0 are

$$f_{\phi, \theta}^+(x_0) = \limsup_{(x,t) \to (x_0,0)} F_{\phi} f(x,t)$$
$$f_{\phi, \theta}^-(x_0) = \liminf_{(x,t) \to (x_0,0)} F_{\phi} f(x,t).$$

For $\theta = 0$, we obtain the upper and lower radial limits of the $\phi-$transform.
The class T_0 consists of all positive normalized functions $\phi \in \mathcal{E}(\mathbb{R})$ that satisfy the following condition:

$$\exists \alpha < -1 \text{ such that } \phi^{(k)}(x) = O\left(|x|^\alpha^{-k}\right) \quad \text{as } |x| \to \infty.$$

The class T_1 is the subclass of T_0 consisting of those functions that also satisfy

$$x\phi'(x) \leq 0 \quad \text{for all } x \in \mathbb{R}.$$
Classes of test functions

Definition

- The class \mathcal{T}_0 consists of all positive normalized functions $\phi \in \mathcal{E}(\mathbb{R})$ that satisfy the following condition:

 \[\exists \alpha < -1 \text{ such that } \phi^{(k)}(x) = O \left(|x|^\alpha - k \right) \quad |x| \to \infty. \]

- The class \mathcal{T}_1 is the subclass of \mathcal{T}_0 consisting of those functions that also satisfy

 \[x\phi'(x) \leq 0 \quad \text{for all} \quad x \in \mathbb{R}. \]
Definition of major distributional pairs

A pair \((u, U)\) is called a major distributional pair for the function \(f\) if:

1. \(u \in \mathcal{E}' [a, b],\ U \in \mathcal{D}' (\mathbb{R}),\ \text{and}\ U' = u.\)

2. \(U\) is a Łojasiewicz distribution, with \(U(a) = 0.\)

3. There exist a set \(E,\) with \(|E| \leq \aleph_0,\) and a set of null Lebesgue measure \(Z,\ m(Z) = 0,\) such that for all \(x \in [a, b] \setminus Z\) and all \(\phi \in \mathcal{I}_0\) we have

\[
(u)_{\phi,0}^- (x) \geq f(x) ,
\]

while for \(x \in [a, b] \setminus E\) and all \(\phi \in \mathcal{I}_1\)

\[
(u)_{\phi,0}^- (x) > -\infty .
\]
Definition of major distributional pairs

A pair \((u, U)\) is called a major distributional pair for the function \(f\) if:

1. \(u \in \mathcal{E}' [a, b] , U \in \mathcal{D}' (\mathbb{R}) , \text{ and } U' = u\).

2. \(U\) is a Łojasiewicz distribution, with \(U(a) = 0\).

3. There exist a set \(E\), with \(|E| \leq \aleph_0\), and a set of null Lebesgue measure \(Z, m(Z) = 0\), such that for all \(x \in [a, b] \setminus Z\) and all \(\phi \in \mathcal{I}_0\) we have
 \[
 (u)_{\phi,0}^- (x) \geq f(x) ,
 \]
 while for \(x \in [a, b] \setminus E\) and all \(\phi \in \mathcal{I}_1\)
 \[
 (u)_{\phi,0}^- (x) > -\infty .
 \]
Definition of major distributional pairs

A pair \((u, U)\) is called a major distributional pair for the function \(f\) if:

1. \(u \in \mathcal{E}'[a, b], U \in \mathcal{D}'(\mathbb{R})\), and
 \[U' = u. \]

2. \(U\) is a Łojasiewicz distribution, with \(U(a) = 0\).

3. There exist a set \(E\), with \(|E| \leq \aleph_0\), and a set of null Lebesgue measure \(Z, m(Z) = 0\), such that for all \(x \in [a, b] \setminus Z\) and all \(\phi \in \mathcal{T}_0\) we have
 \[(u)^-_\phi,0(x) \geq f(x), \]
 while for \(x \in [a, b] \setminus E\) and all \(\phi \in \mathcal{T}_1\)
 \[(u)^-_\phi,0(x) > -\infty. \]
Definition of minor distributional pairs

A pair \((v, V)\) is called a minor distributional pair for the function \(f\) if:

1. \(v \in \mathcal{E}' [a, b], V \in \mathcal{D}' (\mathbb{R}),\) and \(V' = v.\)

2. \(V\) is a Łojasiewicz distribution, with \(V (a) = 0.\)

3. There exist a set \(E,\) with \(|E| \leq \aleph_0,\) and a set of null Lebesgue measure \(Z, m (Z) = 0,\) such that for all \(x \in [a, b] \setminus Z\) and all \(\phi \in \mathcal{T}_0\) we have

\[
(v)_{\phi,0}^+ (x) \leq f(x),
\]

while for \(x \in [a, b] \setminus E\) and all \(\phi \in \mathcal{T}_1\)

\[
(v)_{\phi,0}^+ (x) < \infty.
\]
The distributional integral

Definition

A function $f : [a, b] \rightarrow \overline{\mathbb{R}}$ is called distributionally integrable if it has both major and minor distributional pairs and if

$$\sup_{(v,V)} V(b) = \inf_{(u,U)} U(b).$$

When this is the case this common value is the integral of f over $[a, b]$ and is denoted as

$$(\text{dist}) \int_a^b f(x) \, dx,$$

or just as $\int_a^b f(x) \, dx$ if there is no risk of confusion.
Properties

We list some properties:

- Distributionally integrable functions are measurable and finite almost everywhere.
- Any Denjoy-Perron-Henstock integrable function is distributionally integrable, and the two integrals coincide within this class of functions.
- Any Łojasiewicz function is distributionally integrable, but not conversely.
- The distributional integral integrates higher order differential coefficients, and thus solves Denjoy’s second problem in a constructive manner.
Properties

We list some properties:

- Distributionally integrable functions are measurable and finite almost everywhere.

- Any Denjoy-Perron-Henstock integrable function is distributionally integrable, and the two integrals coincide within this class of functions.

- Any Łojasiewicz function is distributionally integrable, but not conversely.

- The distributional integral integrates higher order differential coefficients, and thus solves Denjoy’s second problem in a constructive manner.
Assume f is distributionally integrable on $[a, b]$ and set

$$F(x) := \int_a^x f(t)\,dt \quad x \in [a, b].$$

Then F is a Łojasiewicz function. Moreover if $F \leftrightarrow F$, then F' has distributional point values almost everywhere, and actually,

$$f(x) = F'(x), \quad a.e.$$
The integrals of Denjoy, Perron, and Henstock
From Denjoy to Łojasiewicz
The Distributional Integral

Indefinite integrals

Theorem

Assume f is distributionally integrable on $[a, b]$ and set

$$F(x) := \int_a^x f(t) \, dt \quad x \in [a, b].$$

Then F is a Łojasiewicz function. Moreover if $F \leftrightarrow F$, then F' has distributional point values almost everywhere, and actually,

$$f(x) = F'(x), \quad a.e.$$
The association \(f \leftrightarrow f = F' \) is a natural one.

Theorem

Let \(f \) be distributionally integrable over \([a, b]\), let its indefinite integral be \(F \), with associated distribution \(F \), \(F \leftrightarrow F \), and let \(f = F' \in \mathcal{E}'(\mathbb{R}) \), so that \(f(x) = f(x) \) almost everywhere in \([a, b]\).

Then for any \(\psi \in \mathcal{E}(\mathbb{R}) \),

\[
\langle f, \psi \rangle = (\text{dist}) \int_{a}^{b} f(x) \psi(x) \, dx.
\]
The association $f \leftrightarrow f = F'$ is a natural one.

Theorem

Let f be distributionally integrable over $[a, b]$, let its indefinite integral be F, with associated distribution F, $F \leftrightarrow F$, and let $f = F' \in \mathcal{E}'(\mathbb{R})$, so that $f(x) = f(x)$ almost everywhere in $[a, b]$. Then for any $\psi \in \mathcal{E}(\mathbb{R})$,

$$\langle f, \psi \rangle = (\text{dist}) \int_{a}^{b} f(x) \psi(x) \, dx.$$
Given \(\{c_n\}_{n=1}^{\infty} \), define the function

\[
f(x) = \begin{cases}
0, & \text{if } x \leq 0 \text{ or } x \geq 1, \\
c_n, & \text{if } \frac{1}{n+1} \leq x < \frac{1}{n}.
\end{cases}
\]

(1)

Let \(a_n = c_n \left(\frac{1}{n} - \frac{1}{n+1}\right) \), so that

\[
\int_{x}^{1} f(t) dt = \sum_{n \leq x^{-1}} a_n + c_{\lfloor 1/x \rfloor} \left(\frac{1}{[1/x]} - x\right), \quad x \in (0, 1).
\]

Then \(f \) is, on the interval \([0, 1]\),

- Lebesgue integrable if and only if \(\sum_{n=1}^{\infty} |a_n| < \infty \).
- Denjoy-Perron-Henstock integrable if and only if the series is convergent.
- Distributionally integrable if and only if \(\sum_{n=1}^{\infty} a_n \) is Cesàro summable.
Given \(\{c_n\}_{n=1}^{\infty} \), define the function

\[
f(x) = \begin{cases}
0, & \text{if } x \leq 0 \text{ or } x \geq 1, \\
c_n, & \text{if } \frac{1}{n+1} \leq x < \frac{1}{n}.
\end{cases}
\]
(1)

Let \(a_n = c_n \left(\frac{1}{n} - \frac{1}{n+1} \right) \), so that

\[
\int_{x}^{1} f(t)dt = \sum_{n \leq x^{-1}} a_n + c_{[1/x]} \left(\frac{1}{[1/x]} - x \right), \quad x \in (0, 1).
\]

Then \(f \) is, on the interval \([0, 1]\),
- Lebesgue integrable if and only if \(\sum_{n=1}^{\infty} |a_n| < \infty \).
- Denjoy-Perron-Henstock integrable if and only if the series is convergent.
- Distributionally integrable if and only if \(\sum_{n=1}^{\infty} a_n \) is Cesàro summable.
Given \(\{c_n\}_{n=1}^{\infty} \), define the function

\[
f(x) = \begin{cases}
0, & \text{if } x \leq 0 \text{ or } x \geq 1, \\
c_n, & \text{if } \frac{1}{n+1} \leq x < \frac{1}{n}.
\end{cases}
\]

(1)

Let \(a_n = c_n \left(\frac{1}{n} - \frac{1}{n+1} \right) \), so that

\[
\int_x^1 f(t)dt = \sum_{n \leq x^{-1}} a_n + c_{[1/x]} \left(\frac{1}{[1/x]} - x \right), \quad x \in (0, 1).
\]

Then \(f \) is, on the interval \([0, 1]\),

- Lebesgue integrable if and only if \(\sum_{n=1}^{\infty} |a_n| < \infty \).
- Denjoy-Perron-Henstock integrable if and only if the series is convergent.
- Distributionally integrable if and only if \(\sum_{n=1}^{\infty} a_n \) is Cesàro summable.
Given \(\{c_n\}_{n=1}^\infty \), define the function

\[
 f(x) = \begin{cases}
 0, & \text{if } x \leq 0 \text{ or } x \geq 1, \\
 c_n, & \text{if } \frac{1}{n+1} \leq x < \frac{1}{n}.
 \end{cases}
\]

Let \(a_n = c_n \left(\frac{1}{n} - \frac{1}{n+1} \right) \), so that

\[
 \int_0^1 f(t)dt = \sum_{n \leq x^{-1}} a_n + c_{[1/x]} \left(\frac{1}{[1/x]} - x \right), \quad x \in (0, 1).
\]

Then \(f \) is, on the interval \([0, 1]\),

- Lebesgue integrable if and only if \(\sum_{n=1}^\infty |a_n| < \infty \).
- Denjoy-Perron-Henstock integrable if and only if the series is convergent.
- Distributionally integrable if and only if \(\sum_{n=1}^\infty a_n \) is Cesàro summable.
(Continuation of last example)

In case $\sum_{n=1}^{\infty} a_n$ is Cesàro summable, we have

$$(\text{dist}) \int_{0}^{1} f(x) \, dx = \sum_{n=1}^{\infty} a_n \quad (C).$$

For example, if $c_n = (-1)^n n(n + 1)$, so that $a_n = (-1)^n$, we obtain

$$(\text{dist}) \int_{0}^{1} f(x) \, dx = -1/2$$

and this function is not Denjoy-Perron-Henstock integrable.
In case $\sum_{n=1}^{\infty} a_n$ is Cesàro summable, we have

$$\left(\text{dist}\right) \int_0^1 f(x) \, dx = \sum_{n=1}^{\infty} a_n \quad (C).$$

For example, if $c_n = (-1)^n n(n + 1)$, so that $a_n = (-1)^n$, we obtain

$$\left(\text{dist}\right) \int_0^1 f(x) \, dx = -1/2$$

and this function is not Denjoy-Perron-Henstock integrable.
Example

Consider the functions $s_\alpha(x) := |x|^\alpha \sin(1/x)$ for $\alpha \in \mathbb{C}$. Near $x = 0$:

- If $\Re \alpha > -1$, then it is Lebesgue integrable.
- If $-1 \geq \Re \alpha > -2$, then it is not Lebesgue integrable but Denjoy-Perron-Henstock integrable.
- If $\Re \alpha \leq -2$, it is not Denjoy-Perron-Henstock integrable, but distributional integrable.

The family of distributions s_α, where $s_\alpha \leftrightarrow s_\alpha$, is analytic in α.
Consider the functions $s_\alpha(x) := |x|^\alpha \sin(1/x)$ for $\alpha \in \mathbb{C}$. Near $x = 0$:

- If $\Re\alpha > -1$, then it is Lebesgue integrable.
- If $-1 \geq \Re\alpha > -2$, then it is not Lebesgue integrable but Denjoy-Perron-Henstock integrable.
- If $\Re\alpha \leq -2$, it is not Denjoy-Perron-Henstock integrable, but distributional integrable.

The family of distributions s_α, where $s_\alpha \leftrightarrow s_\alpha$, is analytic in α.

J.Vindas
A General Integral
Example

Consider the functions $s_{\alpha}(x) := |x|^\alpha \sin(1/x)$ for $\alpha \in \mathbb{C}$. Near $x = 0$:

- If $\Re \alpha > -1$, then it is Lebesgue integrable.
- If $-1 \geq \Re \alpha > -2$, then it is not Lebesgue integrable but Denjoy-Perron-Henstock integrable.
- If $\Re \alpha \leq -2$, it is not Denjoy-Perron-Henstock integrable, but distributional integrable.

The family of distributions s_{α}, where $s_{\alpha} \leftrightarrow s_{\alpha}$, is analytic in α.
Example

Consider the functions \(s_\alpha(x) := |x|^\alpha \sin(1/x) \) for \(\alpha \in \mathbb{C} \). Near \(x = 0 \):

- If \(\Re \alpha > -1 \), then it is Lebesgue integrable.
- If \(-1 \geq \Re \alpha > -2 \), then it is not Lebesgue integrable but Denjoy-Perron-Henstock integrable.
- If \(\Re \alpha \leq -2 \), it is not Denjoy-Perron-Henstock integrable, but distributional integrable.

The family of distributions \(s_\alpha \), where \(s_\alpha \leftrightarrow s_\overline{\alpha} \), is analytic in \(\alpha \).
Consider the functions $s_\alpha(x) := |x|^\alpha \sin(1/x)$ for $\alpha \in \mathbb{C}$. Near $x = 0$:

- If $\Re \alpha > -1$, then it is Lebesgue integrable.
- If $-1 \geq \Re \alpha > -2$, then it is not Lebesgue integrable but Denjoy-Perron-Henstock integrable.
- If $\Re \alpha \leq -2$, it is not Denjoy-Perron-Henstock integrable, but distributional integrable.

The family of distributions s_α, where $s_\alpha \leftrightarrow s_\alpha$, is analytic in α.
For further details about this new integral, I refer to my joint article with R. Estrada: