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Introduction
Factorization theorems in modules over function algebras is an
important subject with a long tradition in mathematical analysis.

A moduleM over a non-unital algebra A is said to have the strong
factorization property if

M = A ·M = {a ·m |a ∈ A,m ∈M}.

It is said to have the weak factorization property if

M = span(A ·M).

We will present some new results about strong factorization:
1 A strong factorization theorem of Dixmier-Malliavin type for

ultradifferentiable vectors of representations of (Rd ,+).
2 We have established the strong factorization property for many

families of convolution modules of ultradifferentiable functions.
We will give some examples.

The talk is based on collaborative work with Andreas Debrouwere
and Bojan Prangoski.
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Factorization in classical function algebras

Factorization theorems on T go back to Salem and Zygmund.

Rudin showed (1957-1958): L1(Rd ) = L1(Rd ) ∗ L1(Rd ).

Cohen (1959) extended this result to the function algebra of a
locally compact abelian group G,

L1(G) = L1(G) ∗ L1(G).

Hewitt (1964) used Cohen technique to prove a general
factorization theorem for Banach modules.

Cohen-Hewitt type factorization theorems also hold for various
Fréchet modules.

Essential hypothesis: existence of bounded approximative units
on the algebra under consideration.

Many locally convex algebras do not have bounded
approximative units. Examples: many basic algebras of smooth
functions occurring in analysis.
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Factorization in algebras of smooth functions

Ehrenpreis’ problem (1960):

Does D(Rd ) factorize as D(Rd ) = D(Rd ) ∗ D(Rd )?

In 1978, Rubel, Squires, and Taylor, showed that D(Rd ) has the
weak factorization property, namely,

D(Rd ) = span(D(Rd ) ∗ D(Rd ))

If d ≥ 3, they also showed that D(Rd ) does not have the strong
factorization property.

Dixmier and Malliavin (1979): negative answer for d = 2.

Yulmukhametov (1999): in contrast D(R) = D(R) ∗ D(R) holds.

Several authors have independently shown (Miyazaki;
Petzeltová and P. Vrbová; Dixmier and Malliavin; Voigt; ...)

S(Rd ) = S(Rd ) ∗ S(Rd ).
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Factorization on Lie groups

Let G be a real connected Lie group.

Dixmier and Malliavin showed (1979) that

D(G) = span(D(G) ∗ D(G))

and, when additionally G is nilpotent,

S(G) = S(G) ∗ S(G).

(hereafter: convolution = left convolution)

Let E be a locally convex Hausdorff (sequentially complete)
space and denote as GL(E) its group of isomorphisms.

A group homomorphism π : G→ GL(E) such that

G × E → E , (g,e) 7→ π(g)e

is separately continuous is a representation of G on E .

We call e ∈ E a smooth vector if its orbit mapping

G→ E g 7→ π(g)e, belongs to C∞(G; E).

E∞ is the subspace of smooth vectors.J. Vindas Factorization theorems in Denjoy-Carleman classes
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The induced algebra representation Π

A representation of G on E induces a natural action on function
convolution algebras.

If f ∈ Cc(G), we can define:

(f ,e) 7→ Π(f )e, Cc(G)× E → E , where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

Note Π(f1 ∗ f2) = Π(f1) ◦ Π(f2), where ∗ is left-convolution.

If Π(g) = Lg is left-translation and E is a function space,

(Π(f )e)(x) =

∫
G

f (g)e(g−1x)dg,

so that Π(f )e = f ∗ e.

J. Vindas Factorization theorems in Denjoy-Carleman classes



The induced algebra representation Π

A representation of G on E induces a natural action on function
convolution algebras.

If f ∈ Cc(G), we can define:

(f ,e) 7→ Π(f )e, Cc(G)× E → E , where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

Note Π(f1 ∗ f2) = Π(f1) ◦ Π(f2), where ∗ is left-convolution.

If Π(g) = Lg is left-translation and E is a function space,

(Π(f )e)(x) =

∫
G

f (g)e(g−1x)dg,

so that Π(f )e = f ∗ e.

J. Vindas Factorization theorems in Denjoy-Carleman classes



The induced algebra representation Π

A representation of G on E induces a natural action on function
convolution algebras.

If f ∈ Cc(G), we can define:

(f ,e) 7→ Π(f )e, Cc(G)× E → E , where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

Note Π(f1 ∗ f2) = Π(f1) ◦ Π(f2), where ∗ is left-convolution.

If Π(g) = Lg is left-translation and E is a function space,

(Π(f )e)(x) =

∫
G

f (g)e(g−1x)dg,

so that Π(f )e = f ∗ e.

J. Vindas Factorization theorems in Denjoy-Carleman classes



The induced algebra representation Π

A representation of G on E induces a natural action on function
convolution algebras.

If f ∈ Cc(G), we can define:

(f ,e) 7→ Π(f )e, Cc(G)× E → E , where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

Note Π(f1 ∗ f2) = Π(f1) ◦ Π(f2), where ∗ is left-convolution.

If Π(g) = Lg is left-translation and E is a function space,

(Π(f )e)(x) =

∫
G

f (g)e(g−1x)dg,

so that Π(f )e = f ∗ e.

J. Vindas Factorization theorems in Denjoy-Carleman classes



Dixmier-Malliavin factorization theorems
Weak factorization of smooth vectors

A representation also induces an action of the convolution algebra
D(G) on the smooth vectors,

(f ,e) 7→ Π(f )e, D(G)× E∞ → E∞, where

Π(f )e =

∫
G

f (g)π(g)e d g ∈ E

So, E∞ is module over D(G).

Theorem
If E is a Fréchet space, E∞ has the weak factorization property w.r.t.
D(G), that is, E∞ = span(Π(D(G))E∞) .
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Dixmier-Malliavin factorization theorems
Strong factorization

Theorem

If G is a compact Lie group, one always has E∞ = (Π(C∞(G))E∞) .

Strong factorization also holds in other situations, but one needs to
take into account the growth of the representation.

Let d be the distance associated to a left-invariant Riemannian
metric and 1 ∈ G the group identify. We write |g| := d(1,g).

If E is Banach there is n such that ‖π(g)‖Lb(E) ≤ en|g|.

Thus, Π(f ) =

∫
G

f (g)π(g) d g is well defined as long as f is

exponentially rapidly decreasing on G.

Theorem
If E is a Hilbert space, the representation is unitary, and G is
nilpotent, then E∞ has the strong factorization property w.r.t. S(G).
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Analytic factorization of Lie group representations

e ∈ E is an analytic vector if g 7→ π(g)e is an analytic mapping.

Eω: subspace of analytic vectors.

A representation is called an F -representation if
E is a Fréchet space;
there is a basis of continuous seminorms (pn)n∈N such that
for each n the action G × (E ,pn)→ (E ,pn) is continuous.

For F -representations, we get an action of the algebra of
exponentially rapidly decreasing analytic functions A(G) on Eω.

Theorem (Gimperlein, Krötz, and Lienau (2012))

For F-representations, Eω has the weak factorization property w.r.t.
A(G), that is, Eω = span(Π(A(G))Eω) .

Conjecture

They have conjectured that one might even have Eω = Π(A(G))Eω .
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Analytic factorization for (Rd ,+)

The convolution algebra A(Rd ) consists of real analytic functions f
admitting holomorphic extension to Rd + i]− h,h[d for some h > 0
and satisfying

sup
| Im z|≤h

en|Re z||f (z)| <∞, for each n ∈ N.

Theorem (Debrouwere, Prangoski, and V. (2021))

For F-representations of Rd , Eω has the strong factorization property

w.r.t. A(Rd ), that is, Eω = Π(A(Rd ))Eω .

Curiously, A(Rd ) = Eω for the regular representation of Rd on

E = Cexp(Rd ) = {f ∈ C(Rd ) : |f (x)| = O(e−n|x|), ∀n > 0}
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Some remarks

Our results hold for more general representations than
F -representations:

projective generalized proto-Banach representations;
inductive generalized proto-Banach representations.

Also, they apply to more general classes than that of analytic
vectors:

In fact, for Denjoy-Carlemann classes of smooth vectors;
in particular, for Gevrey vectors.
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Projective and inductive generalized proto-Banach
representations

Let csn(E) be collection of all continuous seminorms on E .

Definition

A representation (π,E) is said to be a projective generalized
proto-Banach representation if

∀p ∈ csn(E)∃qp ∈ csn(E)∃κp > 0 ∀x ∈ Rd ∀e ∈ E :

p(π(x)e) ≤ eκp|x|qp(e)

B(E) stands for the collection of non-empty absolutely convex closed
bounded subsets of E and for B ∈ B(E) we denote EB = span(B).

Definition

(π,E) is an inductive generalized proto-Banach representation if

∀B ∈ B(E)∃AB ∈ B(E)∃κB > 0 ∀x ∈ Rd ∀e ∈ EB :

‖π(x)e‖EAB
≤ eκB |x|‖e‖EB .

We implicitly assume below that all representations are of one of
these two types.
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Denjoy-Carleman classes
Consider a log-convex sequence M = (Mp)p of positive numbers and

ωM(t) = sup
p∈N

log
(

tpM0

Mp

)
, t > 0.

We impose the assumption:

0 < lim inf
t→∞

ωM(λt)
ωM(t)

≤ lim sup
t→∞

ωM(λt)
ωM(t)

<∞, ∀λ > 0.

Prototypical example: Mp = (p!)σ, with σ > 0. Then, ωM(t) � t1/σ.

A vector e ∈ E is ultradifferentiable of class [M] if its orbit
mapping is (bornologically) ultradifferentiable of class [M].

[M] is the common notation for both the Beurling (M) and {M}
Roumieu cases of ultradifferentiability.

E [M] denotes the space of ultradifferentiable vectors of class [M]
of a representation.

Note that Eω = E{p!}.
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Factorization theorem for ultradifferentiable vectors
For h > 0, we define the Fréchet space

KM,h(Rd ) = {ϕ ∈ C∞(Rd ) | sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|en|x|

M|α|
<∞, ∀n ∈ N}.

We set

K(M)(Rd ) = lim←−
h→∞

KM,h(Rd ) and K{M}(Rd ) = lim−→
h→0+

KM,h(Rd ).

If Mp = p!, then A(Rd ) = K{M}(Rd ).

Theorem (Debrouwere, Prangoski, and V. (2021))

Let (π,E) be either a projective or an inductive generalized
proto-Banach representation of (Rd ,+) on a sequentially complete
lcHs E. Then, E [M] has the strong factorization property w.r.t.
K[M](Rd )

E [M] = Π(K[M](Rd ))E [M] .
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lcHs E. Then, E [M] has the strong factorization property w.r.t.
K[M](Rd )

E [M] = Π(K[M](Rd ))E [M] .
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Factorization of modules of ultradifferentiable functions

Our factorization theorem implies the strong factorization
property for many concrete families of modules of
ultradifferentiable functions.

Example:

Let ω : Rd → (0,∞) be a continuous weight function satisfying

sup
x∈Rd

ω(x + · )
ω(x)

∈ L∞loc(Rd ).

Consider E = Lp
ω = {f | ω · f ∈ Lp(Rd )} if 1 ≤ p <∞.

The ultradifferentiable vectors are (w.r.t. regular representation)

E (M) = D(M)
E = lim←−

h→∞
D{M},hE and E{M} = D{M}E = lim−→

h→0+

D{M},hE ,

D{M},hE = {ϕ ∈ C∞(Rd )| sup
α

h|α|‖ϕ(α)‖E/M|α| <∞}.

We have: D[M]
E = K[M](Rd ) ∗ D[M]

E
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