The Prime Number Theorem for Generalized Integers. New Cases

Jasson Vindas
jvindas@cage.UGent.be

Department of Pure Mathematics and Computer Algebra
Ghent University

Logic and Analysis Seminar
April 29, 2010
The prime number theorem (PNT) states that

$$\pi(x) \sim \frac{x}{\log x}, \quad x \to \infty,$$

where

$$\pi(x) = \sum_{\text{prime } p, \ p < x} 1.$$

We will consider in this talk generalizations of the PNT for Beurling’s generalized integers.
Outline

1. Abstract prime number theorems
 - Landau’s PNT
 - Beurling’s problem

2. The main theorem: Extension of Beurling’s theorem

3. A Tauberian approach
 - Ikehara’s Tauberian theorem
 - A Tauberian theorem for local pseudo-function boundary behavior

4. Other related results
In 1903, Landau essentially showed the following theorem.

- Let $1 < p_1 \leq p_2, \ldots$ be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the p_j in a non-decreasing sequence $1 < n_1 \leq n_2, \ldots$, where every n_k is repeated as many times as represented by $p_{\nu_1}^{\alpha_1} p_{\nu_2}^{\alpha_2} \ldots p_{\nu_m}^{\alpha_m}$ with $\nu_j < \nu_{j+1}$.
- Denote $N(x) = \sum_{n_k < x} 1$ and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^\theta)$, $x \to \infty$, where $a > 0$ and $\theta < 1$, then

$$\pi(x) \sim \frac{x}{\log x}, \quad x \to \infty.$$
In 1903, Landau essentially showed the following theorem.

- Let $1 < p_1 \leq p_2, \ldots$ be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the p_j in a non-decreasing sequence $1 < n_1 \leq n_2, \ldots$, where every n_k is repeated as many times as represented by $p_1^{\nu_1} p_2^{\nu_2} \ldots p_m^{\nu_m}$ with $\nu_j < \nu_{j+1}$.
- Denote $N(x) = \sum_{n_k < x} 1$ and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^\theta)$, $x \to \infty$, where $a > 0$ and $\theta < 1$, then

$$\pi(x) \sim \frac{x}{\log x}, \quad x \to \infty.$$
Landau’s theorem

In 1903, Landau essentially showed the following theorem.

- Let $1 < p_1 \leq p_2, \ldots$ be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the p_j in a non-decreasing sequence $1 < n_1 \leq n_2, \ldots$, where every n_k is repeated as many times as represented by $p_{\nu_1}^{\alpha_1} p_{\nu_2}^{\alpha_2} \ldots p_{\nu_m}^{\alpha_m}$ with $\nu_j < \nu_{j+1}$.
- Denote $N(x) = \sum_{n_k < x} 1$ and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^\theta)$, $x \to \infty$, where $a > 0$ and $\theta < 1$, then

$$\pi(x) \sim \frac{x}{\log x}, \quad x \to \infty.$$
Landau’s theorem: Examples

- **Gaussian integers** \(\mathbb{Z}[i] := \{ a + bi \in \mathbb{C} : a, b \in \mathbb{Z} \} \), with Gaussian norm \(|a + ib| := a^2 + b^2 \). If we define \(\{ p_k \}_{k=1}^\infty \) as the sequence of norms of Gaussian primes, then the sequence \(\{ n_k \}_{k=1}^\infty \) corresponds to the sequence of norms of gaussian numbers such that \(|a + ib| > 1 \). One can show that

\[
N(x) = \sum_{a,b \in \mathbb{Z}, \ a^2+b^2 < x} 1 = \pi x + O(\sqrt{x})
\]

Consequently, the PNT holds for Gaussian primes.

- Landau actually showed that if the \(\{ p_k \}_{k=1}^\infty \) corresponds to the norms of the distinct primes ideal of the ring of integers in an algebraic number field, then \(\pi(x) \sim x / \log x \).
Landau’s theorem: Examples

- **Gaussian integers** \(\mathbb{Z}[i] := \{ a + b i \in \mathbb{C} : a, b \in \mathbb{Z} \} \), with Gaussian norm \(|a + ib| := a^2 + b^2 \). If we define \(\{ p_k \}_{k=1}^{\infty} \) as the sequence of norms of Gaussian primes, then the sequence \(\{ n_k \}_{k=1}^{\infty} \) corresponds to the sequence of norms of gaussian numbers such that \(|a + ib| > 1 \). One can show that

\[
N(x) = \sum_{a,b \in \mathbb{Z}, a^2 + b^2 < x} 1 = \pi x + O(\sqrt{x})
\]

Consequently, the PNT holds for Gaussian primes.

- Landau actually showed that if the \(\{ p_k \}_{k=1}^{\infty} \) corresponds to the norms of the distinct primes ideal of the ring of integers in an algebraic number field, then \(\pi(x) \sim x / \log x \).
Landau’s theorem: Examples

- **Gaussian integers** $\mathbb{Z}[i] := \{a + b \, i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of Gaussian numbers such that $|a + ib| > 1$. One can show that

$$N(x) = \sum_{a,b \in \mathbb{Z}, \; a^2+b^2 < x} 1 = \pi x + O(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

- Landau actually showed that if the $\{p_k\}_{k=1}^{\infty}$ corresponds to the norms of the distinct primes ideal of the ring of integers in an algebraic number field, then $\pi(x) \sim x / \log x$.

Jasson Vindas

The PNT for Generalized Integers. New Cases
Landau’s theorem: Examples

- **Gaussian integers** \(\mathbb{Z}[i] := \{ a + b i \in \mathbb{C} : a, b \in \mathbb{Z} \} \), with Gaussian norm \(|a + ib| := a^2 + b^2 \). If we define \(\{ p_k \}_{k=1}^{\infty} \) as the sequence of norms of Gaussian primes, then the sequence \(\{ n_k \}_{k=1}^{\infty} \) corresponds to the sequence of norms of gaussian numbers such that \(|a + ib| > 1 \). One can show that

\[
N(x) = \sum_{a,b\in\mathbb{Z}, \ a^2+b^2<x} 1 = \pi x + O(\sqrt{x})
\]

Consequently, the PNT holds for Gaussian primes.

- Landau actually showed that if the \(\{ p_k \}_{k=1}^{\infty} \) corresponds to the norms of the distinct primes ideal of the ring of integers in an algebraic number field, then \(\pi(x) \sim x / \log x \).
Landau’s theorem: Examples

- **Gaussian integers** \(\mathbb{Z}[i] := \{ a + b \, i \in \mathbb{C} : a, b \in \mathbb{Z} \} \), with Gaussian norm \(|a + ib| := a^2 + b^2 \). If we define \(\{ p_k \}_{k=1}^\infty \) as the sequence of norms of Gaussian primes, then the sequence \(\{ n_k \}_{k=1}^\infty \) corresponds to the sequence of norms of Gaussian numbers such that \(|a + ib| > 1 \). One can show that

\[
N(x) = \sum_{a,b \in \mathbb{Z}, \, a^2+b^2<x} 1 = \pi x + O(\sqrt{x})
\]

Consequently, the PNT holds for Gaussian primes.

- Landau actually showed that if the \(\{ p_k \}_{k=1}^\infty \) corresponds to the norms of the distinct primes ideal of the ring of integers in an algebraic number field, then \(\pi(x) \sim x / \log x \).
Beurling’s problem

In 1937, Beurling raised the question: Find conditions over N which ensure the validity of the PNT, i.e., $\pi(x) \sim x / \log x$.

Theorem (Beurling, 1937)

If

$$N(x) = ax + O \left(\frac{x}{\log \gamma x} \right),$$

where $a > 0$ and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling’s condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.
Beurling’s problem

In 1937, Beurling raised the question: Find conditions over N which ensure the validity of the PNT, i.e., $\pi(x) \sim x / \log x$.

Theorem (Beurling, 1937)

If

$$N(x) = ax + O\left(\frac{x}{\log^\gamma x}\right),$$

where $a > 0$ and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling’s condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.
In 1937, Beurling raised the question: Find conditions over N which ensure the validity of the PNT, i.e., $\pi(x) \sim x / \log x$.

Theorem (Beurling, 1937)

If

$$N(x) = ax + O \left(\frac{x}{\log \gamma x} \right),$$

where $a > 0$ and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling’s condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.
We were able to relax the hypothesis of Beurling’s theorem.

Theorem (2010, extending Beurling, 1937)

Suppose there exist constants \(a > 0 \) *and* \(\gamma > 3/2 \) *such that*

\[
N(x) = ax + O\left(\frac{x}{\log^\gamma x}\right) \quad (C), \quad x \to \infty,
\]

Then the prime number theorem still holds.

The hypothesis means that there exists some \(m \in \mathbb{N} \) such that:

\[
\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \, dt = O\left(\frac{x}{\log^\gamma x}\right), \quad x \to \infty.
\]
Extension of Beurling theorem

We were able to relax the hypothesis of Beurling’s theorem.

Theorem (2010, extending Beurling, 1937)

Suppose there exist constants $a > 0$ and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C), \quad x \to \infty ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m dt = O\left(\frac{x}{\log^{\gamma} x}\right), \quad x \to \infty .$$
We say a function $f(x) = O(x^\beta / \log^\alpha x)$ \((C, m)\), $\beta > -1$, if

$$\frac{1}{x} \int_0^x f(t) \left(1 - \frac{t}{x}\right)^{m-1} \, dt = O\left(\frac{x^\beta}{\log^\alpha x}\right).$$

- The above expression is the m-times iterated primitive of f divided by x^m.
- Cesàro means have been widely used in Fourier analysis, they allow a high degree of divergence, often cancelled by oscillation.

Examples: \((0 < \alpha < 1)\)

- $e^x \sin e^x = O(x^{-\alpha})$ \((C, 1)\).
- $\sum_{0 \leq k \leq x} (-1)^k = 1/2 + O(x^{-\alpha})$ \((C, 1)\).
Few words about Cesàro asymptotics

We say a function $f(x) = O(x^\beta / \log^\alpha x)$ (C, m), $\beta > -1$, if

$$
\frac{1}{x} \int_0^x f(t) \left(1 - \frac{t}{x}\right)^{m-1} dt = O \left(\frac{x^\beta}{\log^\alpha x} \right).
$$

- The above expression is the m-times iterated primitive of f divided by x^m.
- Cesàro means have been widely used in Fourier analysis, they allow a high degree of divergence, often cancelled by oscillation.

Examples: $(0 < \alpha < 1)$

- $e^x \sin e^x = O(x^{-\alpha})$ $(C, 1)$.
- $\sum_{0 \leq k \leq x} (-1)^k = 1/2 + O(x^{-\alpha})$ $(C, 1)$.

Jasson Vindas The PNT for Generalized Integers. New Cases
Few words about Cesàro asymptotics

We say a function $f(x) = O(x^\beta / \log^\alpha x)$ (C, m), $\beta > -1$, if

$$\frac{1}{x} \int_0^x f(t) \left(1 - \frac{t}{x}\right)^{m-1} dt = O\left(\frac{x^\beta}{\log^\alpha x}\right).$$

- The above expression is the m-times iterated primitive of f divided by x^m.
- Cesàro means have been widely used in Fourier analysis, they allow a high degree of divergence, often cancelled by oscillation.

Examples: $(0 < \alpha < 1)$

- $e^x \sin e^x = O(x^{-\alpha})$ (C, 1).
- $\sum_{0 \leq k \leq x} (-1)^k = 1/2 + O(x^{-\alpha})$ (C, 1).
For

$$N(x) = ax + O\left(\frac{x}{\log^\gamma x}\right) \quad (C, m)$$

however, one can show that

$$N(x) \sim ax = ax + o(x)$$
The zeta function is the analytic function (under our hypothesis)

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{\eta_k^s}, \quad \Re s > 1.$$

For ordinary integers it reduces to the Riemann zeta function. One has an Euler product representation

$$\zeta(s) = \prod_{k=1}^{\infty} \frac{1}{1 - \left(\frac{1}{p_k}\right)^s}, \quad \Re s > 1.$$
Functions related to generalized primes

The zeta function is the analytic function (under our hypothesis)

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{\eta_k^s}, \quad \Re s > 1.$$

For ordinary integers it reduces to the Riemann zeta function. One has an Euler product representation

$$\zeta(s) = \prod_{k=1}^{\infty} \frac{1}{1 - \left(\frac{1}{p_k}\right)^s}, \quad \Re s > 1.$$
Define the **von Mangoldt function**

\[\Lambda(n_k) = \begin{cases} \log p_j , & \text{if } n_k = p_j^m , \\ 0 , & \text{otherwise} . \end{cases} \]

The **Chebyshev function** is

\[\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k) . \]

One can show the PNT is equivalent to \(\psi(x) \sim x \). We also have the identity

\[\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)} , \quad \Re s > 1 . \]
Functions related to generalized primes

Define the von Mangoldt function

\[\Lambda(n_k) = \begin{cases}
\log p_j, & \text{if } n_k = p_j^m, \\
0, & \text{otherwise}.
\end{cases} \]

The Chebyshev function is

\[\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k). \]

One can show the PNT is equivalent to \(\psi(x) \sim x \). We also have the identity

\[\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)}, \quad \Re s > 1. \]
Functions related to generalized primes

Define the von Mangoldt function

$$\Lambda(n_k) = \begin{cases} \log p_j, & \text{if } n_k = p_j^m, \\ 0, & \text{otherwise}. \end{cases}$$

The Chebyshev function is

$$\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k).$$

One can show the PNT is equivalent to $$\psi(x) \sim x$$. We also have the identity

$$\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)}, \quad \Re s > 1.$$
Ikehara’s Tauberian theorem

One of quickest ways to the PNT (for ordinary primes) is via the following Tauberian theorem:

Theorem (Ikehara, 1931, extending Landau, 1908)

Let $F(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s}$ be convergent for $\Re e \ s > 1$. Assume additionally that $c_n \geq 0$. If there exists a constant β such that

$$G(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s} - \frac{\beta}{s-1} = F(s) - \frac{\beta}{s-1}, \quad \Re e \ s > 1, \quad (1)$$

has a continuous extension to $\Re e \ s = 1$, then

$$\sum_{1 \leq n < x} c_n \sim \beta x, \quad x \to \infty. \quad (2)$$
Ikehara’s Tauberian theorem

One of quickest ways to the PNT (for ordinary primes) is via the following Tauberian theorem:

Theorem (Ikehara, 1931, extending Landau, 1908)

Let $F(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s}$ be convergent for $\Re s > 1$. Assume additionally that $c_n \geq 0$. If there exists a constant β such that

$$G(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s} - \frac{\beta}{s-1} = F(s) - \frac{\beta}{s-1}, \quad \Re s > 1,$$

has a continuous extension to $\Re s = 1$, then

$$\sum_{1 \leq n \leq x} c_n \sim \beta x, \quad x \to \infty.$$
The PNT (for ordinary prime numbers)

Consider the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, $\Re s > 1$.

- $\zeta(s) - \frac{1}{s-1}$ admits an analytic continuation to a neighborhood of $\Re s = 1$
- $\zeta(1 + it), t \neq 1$, is free of zeros

It follows that

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} - \frac{1}{s-1} = -\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}$$

admits a (analytic) continuous extension to $\Re s = 1$.

Consequently,

$$\sum_{1 \leq n < x} \Lambda(n) = \psi(x) \sim x$$
The PNT (for ordinary prime numbers)

Consider the Riemann zeta function \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} , \Re s > 1. \)

- \(\zeta(s) - \frac{1}{s-1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
- \(\zeta(1 + it), t \neq 1, \) is free of zeros

It follows that

\[
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} - \frac{1}{s-1} = - \frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}
\]

admits a (analytic) continuous extension to \(\Re s = 1. \)

Consequently,

\[
\sum_{1 \leq n < x} \Lambda(n) = \psi(x) \sim x.
\]
Consider the Riemann zeta function \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \), \(\Re s > 1 \).

- \(\zeta(s) - \frac{1}{s-1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
- \(\zeta(1 + it), t \neq 1 \), is free of zeros

It follows that

\[
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} - \frac{1}{s-1} = -\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}
\]

admits a (analytic) continuous extension to \(\Re s = 1 \).

Consequently,

\[
\sum_{1 \leq n < x} \Lambda(n) = \psi(x) \sim x.
\]
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: $N(x) = ax + O(x^\theta)$

 1. The function $\zeta(s) - \frac{a}{s - 1}$ admits an analytic continuation to a neighborhood of $\Re s = 1$
 2. $\zeta(1 + it), \ t \neq 1$, is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: $N(x) = ax + O(x/\log^{\gamma} x)$

 1’. If $\gamma > 2$, the function $\zeta(s) - \frac{a}{s - 1}$ admits a continuously differentiable extension to $\Re s = 1$ (not true for $3/2 < \gamma \leq 2$)
 2. $\zeta(1 + it), \ t \neq 1$, is free of zeros (whenever $\gamma > 3/2$)
 3’. A variant of Ikehara theorem only works when $\gamma > 2$
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: \(N(x) = ax + O(x^\theta) \)

 1. The function \(\zeta(s) - \frac{a}{s-1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
 2. \(\zeta(1 + it), \ t \neq 1 \), is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: \(N(x) = ax + O(x/\log^\gamma x) \)

 1'. If \(\gamma > 2 \), the function \(\zeta(s) - \frac{a}{s-1} \) admits a continuously differentiable extension to \(\Re s = 1 \) (not true for \(3/2 < \gamma \leq 2 \))
 2. \(\zeta(1 + it), \ t \neq 1 \), is free of zeros (whenever \(\gamma > 3/2 \))
 3'. A variant of Ikehara theorem only works when \(\gamma > 2 \)
Comments on Landau and Beurling PNTs

In the case of Landau’s hypothesis: $N(x) = ax + O(x^\theta)$

1. The function $\zeta(s) - \frac{a}{s-1}$ admits an analytic continuation to a neighborhood of $\Re s = 1$
2. $\zeta(1 + it), \; t \neq 1$, is free of zeros
3. So, a variant of Ikehara theorem yields, as before, the PNT

For Beurling’s hypothesis: $N(x) = ax + O(x / \log^\gamma x)$

1’. If $\gamma > 2$, the function $\zeta(s) - \frac{a}{s-1}$ admits a continuously differentiable extension to $\Re s = 1$ (not true for $3/2 < \gamma \leq 2$)
2. $\zeta(1 + it), \; t \neq 1$, is free of zeros (whenever $\gamma > 3/2$)
3’. A variant of Ikehara theorem only works when $\gamma > 2$
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: $N(x) = ax + O(x^\theta)$

 1. The function $\zeta(s) - \frac{a}{s-1}$ admits an analytic continuation to a neighborhood of $\Re s = 1$
 2. $\zeta(1 + it)$, $t \neq 1$, is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: $N(x) = ax + O(x/\log^{\gamma} x)$

 1’. If $\gamma > 2$, the function $\zeta(s) - \frac{a}{s-1}$ admits a continuously differentiable extension to $\Re s = 1$ (not true for $3/2 < \gamma \leq 2$)
 2. $\zeta(1 + it)$, $t \neq 1$, is free of zeros (whenever $\gamma > 3/2$)
 3’. A variant of Ikehara theorem only works when $\gamma > 2$
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: \(N(x) = ax + O(x^\theta) \)
 1. The function \(\zeta(s) - \frac{a}{s-1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
 2. \(\zeta(1 + it), \ t \neq 1 \), is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: \(N(x) = ax + O(x \log \gamma x) \)
 1’. If \(\gamma > 2 \), the function \(\zeta(s) - \frac{a}{s-1} \) admits a continuously differentiable extension to \(\Re s = 1 \) (not true for \(3/2 < \gamma \leq 2 \))
 2. \(\zeta(1 + it), \ t \neq 1 \), is free of zeros (whenever \(\gamma > 3/2 \))
 3’. A variant of Ikehara theorem only works when \(\gamma > 2 \)
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: \(N(x) = ax + O(x^\theta) \)
 1. The function \(\zeta(s) - \frac{a}{s - 1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
 2. \(\zeta(1 + it), \ t \neq 1, \) is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: \(N(x) = ax + O(x / \log^\gamma x) \)
 1’. If \(\gamma > 2 \), the function \(\zeta(s) - \frac{a}{s - 1} \) admits a continuously differentiable extension to \(\Re s = 1 \) (not true for \(3/2 < \gamma \leq 2 \))
 2. \(\zeta(1 + it), \ t \neq 1, \) is free of zeros (whenever \(\gamma > 3/2 \))
 3’. A variant of Ikehara theorem only works when \(\gamma > 2 \)
Comments on Landau and Beurling PNTs

- In the case of Landau’s hypothesis: \(N(x) = ax + O(x^\theta) \)
 1. The function \(\zeta(s) - \frac{a}{s-1} \) admits an analytic continuation to a neighborhood of \(\Re s = 1 \)
 2. \(\zeta(1 + it), \ t \neq 1, \) is free of zeros
 3. So, a variant of Ikehara theorem yields, as before, the PNT

- For Beurling’s hypothesis: \(N(x) = ax + O(x/\log^{\gamma} x) \)
 1’. If \(\gamma > 2, \) the function \(\zeta(s) - \frac{a}{s-1} \) admits a continuously differentiable extension to \(\Re s = 1 \) (not true for \(3/2 < \gamma \leq 2 \))
 2. \(\zeta(1 + it), \ t \neq 1, \) is free of zeros (whenever \(\gamma > 3/2 \))
 3’. A variant of Ikehara theorem only works when \(\gamma > 2 \)
Tempered distributions

- $S(\mathbb{R})$ denotes the space of rapidly decreasing test functions, i.e.,

\[\| \phi \|_j := \sup_{x \in \mathbb{R}, k \leq j} (1 + |x|)^j \left| \phi^{(k)}(x) \right| < \infty, \text{ for each } j \in \mathbb{N}, \]

with the Fréchet space topology defined by the above seminorms.

- Fourier transform, $\hat{\phi}(t) = \int_{-\infty}^{\infty} e^{-itx} \phi(x) \, dx$, is an isomorphism.

- The space $S'(\mathbb{R})$ is its dual, the Fourier transform is defined by

\[\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle. \]
Tempered distributions

- \(S(\mathbb{R}) \) denotes the space of rapidly decreasing test functions, i.e.,
 \[
 \|\phi\|_j := \sup_{x \in \mathbb{R}, k \leq j} (1 + |x|)^j |\phi^{(k)}(x)| < \infty, \text{ for each } j \in \mathbb{N},
 \]
 with the Fréchet space topology defined by the above seminorms.
- Fourier transform, \(\hat{\phi}(t) = \int_{-\infty}^{\infty} e^{-itx} \phi(x) \, dx \), is an isomorphism.
- The space \(S'(\mathbb{R}) \) is its dual, the Fourier transform is defined by
 \[
 \langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle.
 \]
Tempered distributions

- \(S(\mathbb{R}) \) denotes the space of rapidly decreasing test functions, i.e.,

\[
\| \phi \|_j := \sup_{x \in \mathbb{R}, k \leq j} (1 + |x|)^j \left| \phi^{(k)}(x) \right| < \infty, \text{ for each } j \in \mathbb{N},
\]

with the Fréchet space topology defined by the above seminorms.

- Fourier transform, \(\hat{\phi}(t) = \int_{-\infty}^{\infty} e^{-itx} \phi(x) \, dx \), is an isomorphism.

- The space \(S'(\mathbb{R}) \) is its dual, the Fourier transform is defined by

\[
\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle.
\]
Tempered distributions

- $S(\mathbb{R})$ denotes the space of rapidly decreasing test functions, i.e.,

$$\|\phi\|_j := \sup_{x \in \mathbb{R}, k \leq j} (1 + |x|)^j \left| \phi^{(k)}(x) \right| < \infty, \text{ for each } j \in \mathbb{N},$$

with the Fréchet space topology defined by the above seminorms.

- Fourier transform, $\hat{\phi}(t) = \int_{-\infty}^{\infty} e^{-itx} \phi(x) \, dx$, is an isomorphism.

- The space $S'(\mathbb{R})$ is its dual, the Fourier transform is defined by

$$\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle.$$
A distribution \(f \in S'(\mathbb{R}) \) is called a **pseudo-function** if \(\hat{f} \in C_0(\mathbb{R}) \).

It is called a **local** pseudofunction if for each \(\phi \in S(\mathbb{R}) \) with compact support, the distribution \(\phi f \) is a pseudo-function. \(f \) is locally a pseudo-function if and only if the following ‘Riemann-Lebesgue lemma’ holds: for each \(\phi \) with compact support

\[
\lim_{|h| \to \infty} \left\langle f(t), e^{-iht} \phi(t) \right\rangle = 0
\]

Corollary

If \(f \) belongs to \(C(\mathbb{R}) \), or more generally \(L^1_{\text{loc}}(\mathbb{R}) \), then \(f \) is locally a pseudo-function.
Pseudo-functions

A distribution $f \in S'(\mathbb{R})$ is called a pseudo-function if $\hat{f} \in C_0(\mathbb{R})$. It is called a local pseudofunction if for each $\phi \in S(\mathbb{R})$ with compact support, the distribution ϕf is a pseudo-function. f is locally a pseudo-function if and only if the following ‘Riemann-Lebesgue lemma’ holds: for each ϕ with compact support

$$\lim_{|h| \to \infty} \langle f(t), e^{-iht} \phi(t) \rangle = 0$$

Corollary

If f belongs to $C(\mathbb{R})$, or more generally $L^1_{\text{loc}}(\mathbb{R})$, then f is locally a pseudo-function.
Pseudo-functions

A distribution \(f \in S'(\mathbb{R}) \) is called a **pseudo-function** if \(\hat{f} \in C_0(\mathbb{R}) \). It is called a **local pseudo-function** if for each \(\phi \in S(\mathbb{R}) \) with compact support, the distribution \(\phi f \) is a pseudo-function. \(f \) is locally a pseudo-function if and only if the following ‘Riemann-Lebesgue lemma’ holds: for each \(\phi \) with compact support

\[
\lim_{|h| \to \infty} \left\langle f(t), e^{-ith} \phi(t) \right\rangle = 0
\]

Corollary

If \(f \) belongs to \(C(\mathbb{R}) \), or more generally \(L^1_{\text{loc}}(\mathbb{R}) \), then \(f \) is locally a pseudo-function.
Local pseudo-function boundary behavior

Let $G(s)$ be analytic on $\Re s > \alpha$. We say that G has local pseudo-function boundary behavior on the line $\Re s = \alpha$ if it has distributional boundary values in such a line, namely

$$\lim_{\sigma \to \alpha^+} \int_{-\infty}^{\infty} G(\sigma + it) \phi(t) dt = \langle f, \phi \rangle, \quad \phi \in S(\mathbb{R}) \text{ with compact support},$$

and the boundary distribution $f \in S'(\mathbb{R})$ is locally a pseudo-function.
A Tauberian theorem for local pseudo-function boundary behavior

Theorem

Let \(\{\lambda_k\}_{k=1}^{\infty} \) be such that \(0 < \lambda_k \nearrow \infty \).

Assume \(\{c_k\}_{k=1}^{\infty} \) satisfies: \(c_k \geq 0 \) and \(\sum_{\lambda_k < x} c_k = O(x) \).

If there exists \(\beta \) such that

\[
G(s) = \sum_{k=1}^{\infty} \frac{c_k}{\lambda_k^s} - \frac{\beta}{s - 1}, \quad \Re s > 1,
\]

has local pseudo-function boundary behavior on \(\Re s = 1 \), then

\[
\sum_{\lambda_k < x} c_k \sim \beta x, \quad x \to \infty.
\]
Under $N(x) = ax + O(x/\log^\gamma x)$ (C)

Using ‘generalized distributional asymptotics’, we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) - \frac{a}{s-1}$ has continuous extension to $\Re s = 1$.
- For $\gamma > 3/2$
 - $(s-1)\zeta(s)$ is free of zeros on $\Re s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re s = 1$.
 - A Chebyshev upper estimate: $\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the last Tauberian theorem implies the PNT ($\gamma > 3/2$)
Under \(N(x) = ax + O(x / \log^\gamma x) \) (C)

Using ‘generalized distributional asymptotics’, we translated the Cesàro estimate into:

- For \(\gamma > 1 \), \(\zeta(s) - \frac{a}{s-1} \) has continuous extension to \(\Re s = 1 \).
- For \(\gamma > 3/2 \)
 - \((s-1)\zeta(s) \) is free of zeros on \(\Re s = 1 \).
 - \(-\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1} \) has local pseudo-function boundary behavior on the line \(\Re s = 1 \).
 - A Chebyshev upper estimate: \(\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x) \)
 - So, the last Tauberian theorem implies the PNT \(\gamma > 3/2 \)
Under $N(x) = ax + O(x/\log^\gamma x)$ (C)

Using ‘generalized distributional asymptotics’, we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) - \frac{a}{s-1}$ has continuous extension to $\Re s = 1$.
- For $\gamma > 3/2$
 - $(s-1)\zeta(s)$ is free of zeros on $\Re s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re s = 1$.
 - A Chebyshev upper estimate: $\sum_{n_k<x} \Lambda(n) = \psi(x) = O(x)$.
 - So, the last Tauberian theorem implies the PNT ($\gamma > 3/2$).
Under \(N(x) = ax + O(x/\log^\gamma x) \) (C)

Using ‘generalized distributional asymptotics’, we translated the Cesàro estimate into:

- For \(\gamma > 1 \), \(\zeta(s) - \frac{a}{s-1} \) has continuous extension to \(\Re s = 1 \).
- For \(\gamma > 3/2 \)
 - \((s-1)\zeta(s) \) is free of zeros on \(\Re s = 1 \).
 - \(\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1} \) has local pseudo-function boundary behavior on the line \(\Re s = 1 \).
 - A Chebyshev upper estimate: \(\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x) \)
 - So, the last Tauberian theorem implies the PNT \((\gamma > 3/2)\)
Under $N(x) = ax + O(x/\log^\gamma x)$ (C)

Using ‘generalized distributional asymptotics’, we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) - \frac{a}{s-1}$ has continuous extension to $\Re s = 1$.
- For $\gamma > 3/2$
 - $(s - 1)\zeta(s)$ is free of zeros on $\Re s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re s = 1$.
 - A Chebyshev upper estimate: $\sum_{n_k<x} \Lambda(n) = \psi(x) = O(x)$
 - So, the last Tauberian theorem implies the PNT ($\gamma > 3/2$)
Other related results ($\gamma > 3/2$)

Theorem

Our theorem is a proper extension of Beurling's PNT, namely, there is a set of generalized numbers satisfying the Cesàro estimate but not Beurling's one.

Theorem

Let μ be the Möbius function. Then,

\[
\sum_{k=1}^{\infty} \frac{\mu(n_k)}{n_k} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x} \sum_{n_k < x} \mu(n_k) = 0 .
\]
Other related results ($\gamma > 3/2$)

Theorem

Our theorem is a proper extension of Beurling’s PNT, namely, there is a set of generalized numbers satisfying the Cesàro estimate but not Beurling’s one.

Theorem

Let μ be the Möbius function. Then,

$$\sum_{k=1}^{\infty} \frac{\mu(n_k)}{n_k} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x} \sum_{n_k < x} \mu(n_k) = 0.$$