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Pointwise regularity of fractional integral of modular forms

Recently (2019), Pastor has found the pointwise Hölder
exponent (at every point!) of fractional integrals of modular
forms. This covers certain Fourier series

ga(x) =
∞∑
n=1

cn
na

e
2πix
m , m ∈ N.

His arguments are based on approximative functional
equations and Tauberian/Abelian theorems for wavelet
transforms.

Our goal: To sketch an alternative method for the analysis of
irrational points, using basic complex analysis instead of wavelet
analysis. (Collaborative work with Frederik Broucke.)
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Riemann’s function
According to an account of Weierstrass, Riemann would have suggested

R(x) =
∞∑
n=1

e in
2πx

n2

as an example of a nowhere differentiable function.

In 1916 Hardy was able to show that R is not differentiable at:

irrationals, rationals of the forms
2r + 1

2s
, and

2r

4s + 1
.

Gerver showed in 1970-1971 that R is in turn only differentiable at
every rational that is the quotient of two odd integers.

Smith (1972) and Itatsu (1981) gave simpler treatments of rational
points, which (essentially) yielded the pointwise Hölder exponents.

This left open the determination of the pointwise Hölder exponents
at irrational points.

Duistermaat (1991): upper bounds for pointwise Hölder exponents.

Jaffard settled the problem in 1996.
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The Jacobi theta function

Any analysis of Riemann’s function passes through the Jacobi
theta function:

θ(z) =
∑
n∈Z

eπin
2z , Im z > 0,

R ′(z) =
iπ

2
(θ(z)− 1).

θ is modular form of ‘weight’ 1/2, satisfies the transformation laws:

θ(z + 2) = θ(z) and θ
(
− 1

z

)
= e−

iπ
4
√
z · θ(z).
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Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Modular forms
Let Γ be a subgroup of finite index of SL(2,Z). A modular form of
weight r is a holomorphic function g on the upper-half plane such that

g(γz) = µγ · (cz + d)rg(z), for each γ =

(
a b
c d

)
∈ Γ, |µγ | = 1,

and such that g(z) ≪ (Im z)−ν as Im z → 0+ for some ν.

Let m be the order of the stabilizer of ∞ in SL(2,Z) mod Γ.

There is 0 ≤ κ < 1 such that g(mz) =
∞∑
n=0

cne
2πi(n+κ)z .

g(∞) = lim
Im z→∞

g(z) and call g cuspidal at ∞ if g(∞) = 0.

We say that g is cuspidal at t ∈ Q if
g(γz)

(cz + d)r
is cuspidal at ∞,

where γ ∈ SL(2,Z) is such that γ(∞) = t.

Cusp form: if cuspidal at every element of Q ∪ {∞}.

Non-cusp form: otherwise.

J. Vindas Pointwise analysis of modular forms



Fractional integrals of modular functions

We assume w.l.o.g. that m = 1, so that g(z) =
∞∑
n=0

cne
2πi(n+κ)z .

ga(z) =
1

(2πi)a

∞∑
n+κ>0

cn
(n + κ)a

e2πi(n+κ)z , Im z ≥ 0.

Non-cusp forms: uniformely convergent for a > r .

Cusp forms: uniformely convergent for a > r/2.

We write αa(x) for the pointwise Hölder exponent of ga at x .

Theorem

Let x ∈ Q.

1 If g is cuspidal at x , then αa(x) = 2a− r .

2 If g is not cuspidal at x , then αa(x) = a− r .
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Behavior of ga at irrational numbers

Let ρ be irrational. Let τ(ρ) = 2 if g is a cusp form, otherwise

τ(ρ) = sup

{
τ :

∣∣∣ρ− p

q

∣∣∣ ≪ 1

qτ
for infinitely many noncuspidal

p

q

}
.

Theorem

If ρ is irrational, αa(ρ) = a− r

(
1− 1

τ(ρ)

)
.

We sketch a proof in the more difficult non-cusp form case.

For simplicity, we impose some restrictions in the parameters.

Main tool: boundary behavior of g at ρ

1 g(ρ+ iy) ≫ y−r+ r
τ(ρ)+ε, infinitely often as y → 0+.

2 g(ρ+ z) ≪ y
r

τ(ρ)−ε−r + y−r |z |
r

τ(ρ)−ε
, for 0 < y < 1/2.
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Special case a = 1 > r . Upper bound α1(ρ) ≤ 1− r + r
τ(ρ) .

Abelian argument based on the maximum modulus principle and

g(ρ+ iy) ≫ y−r+ r
τ(ρ)+ε, infinitely often as y → 0+. (1)

Our assumption is g ′
1(z) = g(z)− g(∞), so that

g(z) = g(∞) +
1

(2πi)

∮
|z−ζ|=η

g1(ζ)− g1(ρ)

(ζ − z)2
dζ, 0 < η < Im z .

Suppose that g1(x)− g1(ρ) = O(|x − ρ|β). Then, f (z) = g1(z)−g1(ρ)
(z−ρ)β

has continuous extension to {z : Im z ≥ 0} \ {ρ} and ≪ (Im z)−ν .

By the Phragmén-Lindelöf principle, f (z) = O(1) on Im z > 0.

Thus, g(z) ≪ 1+ |z − ρ|β−1. Comparing with (1), β ≤ 1− r + r
τ(ρ)

The general case is similar, expressing g as an integral involving ga.
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Multifractal spectrum

Using the knowledge of exact pointwise Hölder exponent and a variant of
the Jarnik’s theorem, Pastor proved:

Theorem

Let da(α) be the Hausdorff dimension of {x : αa(x) = α}. Then,
1 If g is a cusp form,

da(α) =


1 if α = a− r/2

0 if α = 2a− r

−∞ otherwise.

2 If g is not a cusp form,

da(α) =


2
(
1 + α−a

r

)
if a− r ≤ α ≤ a− r/2

0 if α = 2a− r

−∞ otherwise.
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