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In this talk we will discuss some developments on the
Wiener-Ikehara theorem.

Complex Tauberian theorems have been strikingly useful tools
in diverse areas such as:

Analytic number theory.
Spectral theory for (pseudo-)differential operators.
Last four decades: operator theory and semigroups.

Main questions we will address:
1 Relax boundary requirements to a minimum.
2 Exact form (if and only if form).
3 Conditions on real part of the Laplace transform.
4 Finite forms.
5 Absence of remainders.
6 Some remainder terms and optimality.
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The classical Wiener-Ikehara theorem
L{S; s} =

∫∞
0 S(x)e−sx dx and L{dS; s} =

∫∞
0− e−sx dS(x); s = σ + it .

Theorem (Wiener-Ikehara, Laplace transforms, 1931)

Let S be a non-decreasing function (Tauberian hypothesis) such that
L{S; s} converges for ℜe s > 1. If

L{S; s} − A
s − 1

(
or equivalently L{dS; s} − A

s − 1

)
has analytic continuation through ℜe s = 1, then S(x) ∼ Aex .

Theorem (Wiener-Ikehara, version for Dirichlet series)

Let an ≥ 0. Suppose
∑∞

n=1 ann−s converges for ℜe s > 1. If

∞∑
n=1

an

ns − A
s − 1

has analytic continuation through ℜe s = 1, then
∑
n≤x

an ∼ Ax.
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From the Wiener-Ikehara theorem to the PNT:
The Prime Number Theorem (PNT) asserts that

π(x) =
∑
p≤x

1 ∼ x
log x

PNT is equivalent to ψ(x) =
∑
pk≤x

log p =
∑
n≤x

Λ(n) ∼ x .

ζ(s) =
∑∞

n=1 n−s has analytic continuation to C except for a
simple pole with residue 1 at s = 1.

Logarithmic differentiation of ζ(s) =
∏

p(1 − p−s)−1 leads to
∞∑

n=1

Λ(n)
ns = −ζ

′(s)
ζ(s)

, ℜe s > 1.

(s − 1)ζ(s) has no zeros on ℜe s = 1, so

− d
ds

(log((s − 1)ζ(s))) = −ζ
′(s)
ζ(s)

− 1
s − 1

is analytic in a region containing ℜe s ≥ 1. The rest follows from
the Wiener-Ikehara theorem.
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Remarks on the Wiener-Ikehara theorem

Historically, the Wiener-Ikehara theorem improved upon a
Tauberian theorem of Landau (1908) by eliminating the
unnecessary hypothesis G(s) ≪ |s|N on

G(s) = L{S; s} − A
s − 1

The hypothesis G(s) has analytic continuation to ℜe s = 1
can be significantly relaxed to “good boundary behavior":

1 G(s) has continuous extension to ℜe s = 1.
2 L1

loc-boundary behavior: limσ→1+ G(σ + it) ∈ L1(I) for every
finite interval I.

3 Local pseudofunction boundary behavior (Korevaar, 2005).
4 “if and only if version” (Debruyne and V., 2016).
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Pseudofunctions and pseudomeasures
These concepts naturally arise in harmonic analysis.

C0(R): the space of continuous functions vanishing at ±∞.

Pseudofunctions: PF (R) = {g ∈ S ′(R) : ĝ ∈ C0(R)}.

Pseudomeasures: PM(R) = {g ∈ S ′(R) : ĝ ∈ L∞(R)}.

Given an open set I ⊆ R, we define the local space:

PFloc(I) : g such that for all bounded open subinterval I′ ⊂ I there is
f ∈ PF (R) such that g = f on I′.

PMloc(I) : g such that for all bounded open subinterval I′ ⊂ I there is
f ∈ PM(R) such that g = f on I′.

L1
loc(I) ⊂ PFloc(I).

Every Radon measure is a local pseudomeasure.

Let G be analytic on ℜe s > 1 and I ⊂ R be open. It has local pseudofunction
boundary behavior on 1 + iI if it has distributional boundary values there, i.e.

lim
σ→1+

G(σ + it) = g(t) in D′(I)

and g ∈ PFloc(I).
Analogously, one defines local pseudomeasure boundary behavior.
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Pseudomeasures: PM(R) = {g ∈ S ′(R) : ĝ ∈ L∞(R)}.
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A Tauberian condition: log-linear slow decrease
Classically, a function is called slowly decreasing in the sense
of Schmidt (i.e. in multiplicative form) if

lim inf
λ→1+

lim inf
x→∞

inf
1≤a≤λ

(f (ax)− f (x)) ≥ 0

It is called linearly slowly decreasing if

lim inf
λ→1+

lim inf
x→∞

inf
1≤a≤λ

f (ax)− f (x)
x

≥ 0

Definition
We call a function S log-linearly slowly decreasing if S(log x) is
linearly slowly decreasing, that is, for each ε > 0 there are
δ, x0 > 0 such that

S(x + h)− S(x)
ex ≥ −ε

holds for all x ≥ x0 and 0 < h < δ.
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Extension of the Korevaar-Wiener-Ikehara theorem

Theorem (Debruyne and V., 2016)

Let S ∈ L1
loc [0,∞). Then,

S(x) ∼ Aex

if and only if

1 L{S; s} converges for ℜe s > 1,

2 L{S; s} − A
s − 1

has local pseudofunction boundary behavior on

ℜe s = 1, and

3 S is log-linearly slowly decreasing.

This and related Tauberians have found many recent
applications in the theory of Beurling generalized primes.

Such applications are out of reach for Tauberian theorems with
weaker boundary behavior hypotheses.

The theorem holds if we use ℜe (L{S; s} − A/(s − 1)).
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The real part of Laplace transform

It is possible to obtain theorems solely using the real part of the
Laplace transform.

The following theorem improves upon T. Koga (2021):

Theorem (Chen and V., 2025)

Let S ∈ L1
loc[0,∞) be log-linearly slowly decreasing and such

that L{S; s} converges for ℜe s > 1. Suppose that
1 ℜe L{S; s} has L1

locbehavior on 1 + i(R \ {0}), and
2 there are an open interval 0 ∈ I and a function g ∈ L1(I)

such that

ℜe L{S;σ + it} ≥ g(t), t ∈ I,1 < σ < 2.

Then S(x) ∼ Aex for some A > 0.

This theorem has probabilistic applications: renewal theory.
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Finite forms: upper bound S(x) = O(ex)

S is log-linearly boundedly decreasing if there is δ > 0 such that

lim inf
x→∞

inf
h∈[0,δ]

S(x + h)− S(x)
ex > −∞,

Theorem (Debruyne and V., 2016)

Let S ∈ L1
loc[0,∞). Then,

S(x) = O(ex)

if and only if
1 L{S; s} converges for ℜe s > 1,
2 there is a boundary line segment containing s = 1 such

that L{S; s} has local pseudomeasure boundary behavior
on it, and

3 S is log-linearly boundedly decreasing.
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Finite forms: upper and lower bounds ex ≪ S(x) ≪ ex

Aloc(I) is the local Wiener algebra on I. (Globally A(R) = F(L1(R)).)
An analytic function G has Aloc-boundary values on I if it admits a
boundary distribution g ∈ Aloc(I).

Theorem (Tranoy and V., 2025)

Let S be non-decreasing and have convergent Laplace transform for
ℜe s > 1. Suppose that L{S; s} has a decomposition (for some A > 0)

L{S; s} − A
s − 1

= G0(z) + G1(s) · G∞(s) (each Gj analytic),

where there is a boundary segment containing s = 1 on which:
1 G0 has local pseudofunction boundary behavior,
2 G1 has Aloc-boundary behavior and G1(1) = 0, and
3 G∞ has local pseudomeasure boundary behavior.

Then, 0 < lim inf
x→∞

S(x)
ex ≤ lim sup

x→∞

S(x)
ex < ∞.

It is inspired by work of Diamond and Zhang on Beurling primes.
We have applied it to improve Chebyshev prime bounds in that context.
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Quantified finite form of the Wiener-Ikehara theorem
Let S be non–decreasing on [0,∞) with Laplace transform
such that

L{S; s} − A
s − 1

has local pseudofunction boundary behavior on 1 + i(−λ, λ).
Our previous discussion implies that there are cλ,Cλ > 0

such that

cλ · A ≤ lim inf
x→∞

S(x)
ex ≤ lim sup

x→∞

S(x)
ex ≤ Cλ · A. (1)

Theorem (Graham and Vaaler, 1981)
Under these assumptions, the inequalities hold with

cλ =
2π/λ

e2π/λ − 1
and Cλ =

2π/λ
1 − e−2π/λ .

These constants are best possible.
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Remainders in the Wiener-Ikehara theorem
Let S be non-decreasing.

If one wishes to attain a stronger relative remainder than o(1), i.e.,

S(x)
ex = A + O(ρ(x)) with ρ(x) = o(1),

it is natural to strengthen the assumptions on

L{dS; s} − A
s − 1

. (2)

It is folklore that remainders can be obtained from:
1 quantified information on the shape of the region of analytic

continuation;
2 bounds for (1) on such a region.

In this part of the talk we explore:

whether one could drop the second point here and get some
error term from merely analytic continuation (short answer: no);

some quantitative results when both hypotheses are satisfied.
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A conjecture under merely analytic continuation

M. Müger raised the question of whether it is still possible to
obtain error terms without assuming bounds on the analytic
continuation of L{dS; s} − A/(s − 1) to a half-plane. He
actually conjectured one could get the following error term:

Conjecture (Müger, 2018)

Let 0 < α < 1 and A > 0. If L{dS; s} − A/(s − 1) has analytic
continuation to ℜe s > α, then

S(x) = Aex + Oε(ex(α+2
3 +ε)), ∀ε > 0.

We refuted this conjecture; in fact:

Negative general answer
No remainder can be expected in the Wiener-Ikehara theorem,
even from entire continuation.
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A simply counterexample for Müger’s conjecture

Conjecture (Müger, 2018)

Let 0 < α < 1 and A > 0. If L{dS; s} − A/(s − 1) has analytic
continuation to ℜe s > α, then

S(x) = Aex + Oε(ex(α+2
3 +ε)), ∀ε > 0.

In the case, the following function delivers a counterexample:

For

S(x) =
∫ x

0
(1 + cos uβ)eu du, with β > 1,

L{dS; s} − 1
s − 1

=

∫ ∞

0
e−(s−1)u cosuβ du

has entire continuation, but

S(x) = ex
(

1 +
sin xβ

βxβ−1 + O
(

1
βx2(β−1)

))
.
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Absence of remainders in Wiener-Ikehara theorem

Theorem (Debruyne and V., 2018; Broucke, Debruyne, and V.,
2021; Callewaert, Neyt, and V., 2025)
Let ρ be an arbitrary positive function tending to 0. There is a
non-decreasing function S on [0,∞) such that

L{dS; s} =

∫ ∞

0−
e−sxdS(x) converges for ℜe s > 1

and
L{dS; s} − A

s − 1
admits extension to C as an entire function for some A > 0, but
such that

lim sup
x→∞

|S(x)− Aex |
ρ(x)ex = ∞.
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Remainders under analytic continuation hypotheses I
We consider the following situation, with S, M, and K positive
non-decreasing

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK ,log(t) = M(t)[log(t · K (t) · log t)].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)
For any 0 < c < 1, we always have

S(x)
ex = A + O

(
1

M−1
K ,log(cx)

)
.

Jasson Vindas The Wiener-Ikehara theorem



Remainders under analytic continuation hypotheses I
We consider the following situation, with S, M, and K positive
non-decreasing

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK ,log(t) = M(t)[log(t · K (t) · log t)].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)
For any 0 < c < 1, we always have

S(x)
ex = A + O

(
1

M−1
K ,log(cx)

)
.

Jasson Vindas The Wiener-Ikehara theorem



Remainders under analytic continuation hypotheses I
We consider the following situation, with S, M, and K positive
non-decreasing

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK ,log(t) = M(t)[log(t · K (t) · log t)].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)
For any 0 < c < 1, we always have

S(x)
ex = A + O

(
1

M−1
K ,log(cx)

)
.

Jasson Vindas The Wiener-Ikehara theorem



Remainders under analytic continuation hypotheses I
We consider the following situation, with S, M, and K positive
non-decreasing

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK ,log(t) = M(t)[log(t · K (t) · log t)].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)
For any 0 < c < 1, we always have

S(x)
ex = A + O

(
1

M−1
K ,log(cx)

)
.

Jasson Vindas The Wiener-Ikehara theorem



Remainders under analytic continuation hypotheses I
We consider the following situation, with S, M, and K positive
non-decreasing

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK ,log(t) = M(t)[log(t · K (t) · log t)].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)
For any 0 < c < 1, we always have

S(x)
ex = A + O

(
1

M−1
K ,log(cx)

)
.

Jasson Vindas The Wiener-Ikehara theorem



Remainders under analytic continuation hypotheses II

L{dS; s} − A
s − 1

has analytic continuation to

ΩM =

{
s = σ + it ∈ C : |1 − σ| ≤ 1

M(|t |)

}
.

Bound L{dS; s} − A
s − 1

= O(K (|t |)) for s = σ + it ∈ ΩM .

MK (t) = M(t)[log(t · K (t))].

Theorem (Debruyne, 2024; improving upon Stahn, 2018)

If K is of positive increase, i.e., lim inf
x→∞

K (λx)
K (x)

> 1 for λ > 1,

S(x)
ex = A + O

(
1

M−1
K (x)

)
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Optimality of the remainders
With the previous notation:

Theorem (Debruyne, 2024; improving upon Debruyne-Seifert 2019)

Assume that, for C > 0,

M(x) = O (exp (exp (CxK (x)))) .

Suppose that ρ is a non-increasing function such that

S(x)
ex = A + O (ρ(x))

for all non-decreasing S such that L{dS; s} − A
s − 1

analytically

extends to ΩM with bound O(K (|ℑm s|)) there. Then,

1
M−1

K (x)
≪ ρ(x)

with as before M−1
K the inverse function of MK (t) = M(t)[log(t · K (t))].
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Further developments

(Debruyne, 2024): More general remainder theory;
including non-analytic extension hypotheses.
(Tenenbaum): Effective Wiener-Ikehara theorem in terms
of

η(σ, λ) =

∫ λ

−λ
|G(2σ + it)− G(σ + it)|dt

with G(s) = L{S; s} − A/(s − 1). Here one has

|S(x)− Aex | ≤ Cex inf
λ≥62

(
η

(
1
x
, λ

)
+

1
λ

(
1 +

1
x

))
with an effective explicit constant C only depending on A.
(Révész & de Roton, 2013): Further refinements on the
effective form of the Wiener-Ikehara theorem.
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